Home | History | Annotate | Download | only in Scalar
      1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements sparse conditional constant propagation and merging:
     11 //
     12 // Specifically, this:
     13 //   * Assumes values are constant unless proven otherwise
     14 //   * Assumes BasicBlocks are dead unless proven otherwise
     15 //   * Proves values to be constant, and replaces them with constants
     16 //   * Proves conditional branches to be unconditional
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Transforms/Scalar.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/DenseSet.h"
     23 #include "llvm/ADT/PointerIntPair.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/IR/CallSite.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/DerivedTypes.h"
     32 #include "llvm/IR/InstVisitor.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/Pass.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include "llvm/Target/TargetLibraryInfo.h"
     39 #include "llvm/Transforms/IPO.h"
     40 #include "llvm/Transforms/Utils/Local.h"
     41 #include <algorithm>
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "sccp"
     45 
     46 STATISTIC(NumInstRemoved, "Number of instructions removed");
     47 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
     48 
     49 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
     50 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
     51 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
     52 
     53 namespace {
     54 /// LatticeVal class - This class represents the different lattice values that
     55 /// an LLVM value may occupy.  It is a simple class with value semantics.
     56 ///
     57 class LatticeVal {
     58   enum LatticeValueTy {
     59     /// undefined - This LLVM Value has no known value yet.
     60     undefined,
     61 
     62     /// constant - This LLVM Value has a specific constant value.
     63     constant,
     64 
     65     /// forcedconstant - This LLVM Value was thought to be undef until
     66     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
     67     /// with another (different) constant, it goes to overdefined, instead of
     68     /// asserting.
     69     forcedconstant,
     70 
     71     /// overdefined - This instruction is not known to be constant, and we know
     72     /// it has a value.
     73     overdefined
     74   };
     75 
     76   /// Val: This stores the current lattice value along with the Constant* for
     77   /// the constant if this is a 'constant' or 'forcedconstant' value.
     78   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
     79 
     80   LatticeValueTy getLatticeValue() const {
     81     return Val.getInt();
     82   }
     83 
     84 public:
     85   LatticeVal() : Val(nullptr, undefined) {}
     86 
     87   bool isUndefined() const { return getLatticeValue() == undefined; }
     88   bool isConstant() const {
     89     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
     90   }
     91   bool isOverdefined() const { return getLatticeValue() == overdefined; }
     92 
     93   Constant *getConstant() const {
     94     assert(isConstant() && "Cannot get the constant of a non-constant!");
     95     return Val.getPointer();
     96   }
     97 
     98   /// markOverdefined - Return true if this is a change in status.
     99   bool markOverdefined() {
    100     if (isOverdefined())
    101       return false;
    102 
    103     Val.setInt(overdefined);
    104     return true;
    105   }
    106 
    107   /// markConstant - Return true if this is a change in status.
    108   bool markConstant(Constant *V) {
    109     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
    110       assert(getConstant() == V && "Marking constant with different value");
    111       return false;
    112     }
    113 
    114     if (isUndefined()) {
    115       Val.setInt(constant);
    116       assert(V && "Marking constant with NULL");
    117       Val.setPointer(V);
    118     } else {
    119       assert(getLatticeValue() == forcedconstant &&
    120              "Cannot move from overdefined to constant!");
    121       // Stay at forcedconstant if the constant is the same.
    122       if (V == getConstant()) return false;
    123 
    124       // Otherwise, we go to overdefined.  Assumptions made based on the
    125       // forced value are possibly wrong.  Assuming this is another constant
    126       // could expose a contradiction.
    127       Val.setInt(overdefined);
    128     }
    129     return true;
    130   }
    131 
    132   /// getConstantInt - If this is a constant with a ConstantInt value, return it
    133   /// otherwise return null.
    134   ConstantInt *getConstantInt() const {
    135     if (isConstant())
    136       return dyn_cast<ConstantInt>(getConstant());
    137     return nullptr;
    138   }
    139 
    140   void markForcedConstant(Constant *V) {
    141     assert(isUndefined() && "Can't force a defined value!");
    142     Val.setInt(forcedconstant);
    143     Val.setPointer(V);
    144   }
    145 };
    146 } // end anonymous namespace.
    147 
    148 
    149 namespace {
    150 
    151 //===----------------------------------------------------------------------===//
    152 //
    153 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
    154 /// Constant Propagation.
    155 ///
    156 class SCCPSolver : public InstVisitor<SCCPSolver> {
    157   const DataLayout *DL;
    158   const TargetLibraryInfo *TLI;
    159   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
    160   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
    161 
    162   /// StructValueState - This maintains ValueState for values that have
    163   /// StructType, for example for formal arguments, calls, insertelement, etc.
    164   ///
    165   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
    166 
    167   /// GlobalValue - If we are tracking any values for the contents of a global
    168   /// variable, we keep a mapping from the constant accessor to the element of
    169   /// the global, to the currently known value.  If the value becomes
    170   /// overdefined, it's entry is simply removed from this map.
    171   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
    172 
    173   /// TrackedRetVals - If we are tracking arguments into and the return
    174   /// value out of a function, it will have an entry in this map, indicating
    175   /// what the known return value for the function is.
    176   DenseMap<Function*, LatticeVal> TrackedRetVals;
    177 
    178   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
    179   /// that return multiple values.
    180   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
    181 
    182   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
    183   /// represented here for efficient lookup.
    184   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
    185 
    186   /// TrackingIncomingArguments - This is the set of functions for whose
    187   /// arguments we make optimistic assumptions about and try to prove as
    188   /// constants.
    189   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
    190 
    191   /// The reason for two worklists is that overdefined is the lowest state
    192   /// on the lattice, and moving things to overdefined as fast as possible
    193   /// makes SCCP converge much faster.
    194   ///
    195   /// By having a separate worklist, we accomplish this because everything
    196   /// possibly overdefined will become overdefined at the soonest possible
    197   /// point.
    198   SmallVector<Value*, 64> OverdefinedInstWorkList;
    199   SmallVector<Value*, 64> InstWorkList;
    200 
    201 
    202   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
    203 
    204   /// KnownFeasibleEdges - Entries in this set are edges which have already had
    205   /// PHI nodes retriggered.
    206   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
    207   DenseSet<Edge> KnownFeasibleEdges;
    208 public:
    209   SCCPSolver(const DataLayout *DL, const TargetLibraryInfo *tli)
    210     : DL(DL), TLI(tli) {}
    211 
    212   /// MarkBlockExecutable - This method can be used by clients to mark all of
    213   /// the blocks that are known to be intrinsically live in the processed unit.
    214   ///
    215   /// This returns true if the block was not considered live before.
    216   bool MarkBlockExecutable(BasicBlock *BB) {
    217     if (!BBExecutable.insert(BB)) return false;
    218     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
    219     BBWorkList.push_back(BB);  // Add the block to the work list!
    220     return true;
    221   }
    222 
    223   /// TrackValueOfGlobalVariable - Clients can use this method to
    224   /// inform the SCCPSolver that it should track loads and stores to the
    225   /// specified global variable if it can.  This is only legal to call if
    226   /// performing Interprocedural SCCP.
    227   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    228     // We only track the contents of scalar globals.
    229     if (GV->getType()->getElementType()->isSingleValueType()) {
    230       LatticeVal &IV = TrackedGlobals[GV];
    231       if (!isa<UndefValue>(GV->getInitializer()))
    232         IV.markConstant(GV->getInitializer());
    233     }
    234   }
    235 
    236   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
    237   /// and out of the specified function (which cannot have its address taken),
    238   /// this method must be called.
    239   void AddTrackedFunction(Function *F) {
    240     // Add an entry, F -> undef.
    241     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
    242       MRVFunctionsTracked.insert(F);
    243       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    244         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
    245                                                      LatticeVal()));
    246     } else
    247       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
    248   }
    249 
    250   void AddArgumentTrackedFunction(Function *F) {
    251     TrackingIncomingArguments.insert(F);
    252   }
    253 
    254   /// Solve - Solve for constants and executable blocks.
    255   ///
    256   void Solve();
    257 
    258   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
    259   /// that branches on undef values cannot reach any of their successors.
    260   /// However, this is not a safe assumption.  After we solve dataflow, this
    261   /// method should be use to handle this.  If this returns true, the solver
    262   /// should be rerun.
    263   bool ResolvedUndefsIn(Function &F);
    264 
    265   bool isBlockExecutable(BasicBlock *BB) const {
    266     return BBExecutable.count(BB);
    267   }
    268 
    269   LatticeVal getLatticeValueFor(Value *V) const {
    270     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
    271     assert(I != ValueState.end() && "V is not in valuemap!");
    272     return I->second;
    273   }
    274 
    275   /// getTrackedRetVals - Get the inferred return value map.
    276   ///
    277   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
    278     return TrackedRetVals;
    279   }
    280 
    281   /// getTrackedGlobals - Get and return the set of inferred initializers for
    282   /// global variables.
    283   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
    284     return TrackedGlobals;
    285   }
    286 
    287   void markOverdefined(Value *V) {
    288     assert(!V->getType()->isStructTy() && "Should use other method");
    289     markOverdefined(ValueState[V], V);
    290   }
    291 
    292   /// markAnythingOverdefined - Mark the specified value overdefined.  This
    293   /// works with both scalars and structs.
    294   void markAnythingOverdefined(Value *V) {
    295     if (StructType *STy = dyn_cast<StructType>(V->getType()))
    296       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    297         markOverdefined(getStructValueState(V, i), V);
    298     else
    299       markOverdefined(V);
    300   }
    301 
    302 private:
    303   // markConstant - Make a value be marked as "constant".  If the value
    304   // is not already a constant, add it to the instruction work list so that
    305   // the users of the instruction are updated later.
    306   //
    307   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
    308     if (!IV.markConstant(C)) return;
    309     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    310     if (IV.isOverdefined())
    311       OverdefinedInstWorkList.push_back(V);
    312     else
    313       InstWorkList.push_back(V);
    314   }
    315 
    316   void markConstant(Value *V, Constant *C) {
    317     assert(!V->getType()->isStructTy() && "Should use other method");
    318     markConstant(ValueState[V], V, C);
    319   }
    320 
    321   void markForcedConstant(Value *V, Constant *C) {
    322     assert(!V->getType()->isStructTy() && "Should use other method");
    323     LatticeVal &IV = ValueState[V];
    324     IV.markForcedConstant(C);
    325     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
    326     if (IV.isOverdefined())
    327       OverdefinedInstWorkList.push_back(V);
    328     else
    329       InstWorkList.push_back(V);
    330   }
    331 
    332 
    333   // markOverdefined - Make a value be marked as "overdefined". If the
    334   // value is not already overdefined, add it to the overdefined instruction
    335   // work list so that the users of the instruction are updated later.
    336   void markOverdefined(LatticeVal &IV, Value *V) {
    337     if (!IV.markOverdefined()) return;
    338 
    339     DEBUG(dbgs() << "markOverdefined: ";
    340           if (Function *F = dyn_cast<Function>(V))
    341             dbgs() << "Function '" << F->getName() << "'\n";
    342           else
    343             dbgs() << *V << '\n');
    344     // Only instructions go on the work list
    345     OverdefinedInstWorkList.push_back(V);
    346   }
    347 
    348   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
    349     if (IV.isOverdefined() || MergeWithV.isUndefined())
    350       return;  // Noop.
    351     if (MergeWithV.isOverdefined())
    352       markOverdefined(IV, V);
    353     else if (IV.isUndefined())
    354       markConstant(IV, V, MergeWithV.getConstant());
    355     else if (IV.getConstant() != MergeWithV.getConstant())
    356       markOverdefined(IV, V);
    357   }
    358 
    359   void mergeInValue(Value *V, LatticeVal MergeWithV) {
    360     assert(!V->getType()->isStructTy() && "Should use other method");
    361     mergeInValue(ValueState[V], V, MergeWithV);
    362   }
    363 
    364 
    365   /// getValueState - Return the LatticeVal object that corresponds to the
    366   /// value.  This function handles the case when the value hasn't been seen yet
    367   /// by properly seeding constants etc.
    368   LatticeVal &getValueState(Value *V) {
    369     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
    370 
    371     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
    372       ValueState.insert(std::make_pair(V, LatticeVal()));
    373     LatticeVal &LV = I.first->second;
    374 
    375     if (!I.second)
    376       return LV;  // Common case, already in the map.
    377 
    378     if (Constant *C = dyn_cast<Constant>(V)) {
    379       // Undef values remain undefined.
    380       if (!isa<UndefValue>(V))
    381         LV.markConstant(C);          // Constants are constant
    382     }
    383 
    384     // All others are underdefined by default.
    385     return LV;
    386   }
    387 
    388   /// getStructValueState - Return the LatticeVal object that corresponds to the
    389   /// value/field pair.  This function handles the case when the value hasn't
    390   /// been seen yet by properly seeding constants etc.
    391   LatticeVal &getStructValueState(Value *V, unsigned i) {
    392     assert(V->getType()->isStructTy() && "Should use getValueState");
    393     assert(i < cast<StructType>(V->getType())->getNumElements() &&
    394            "Invalid element #");
    395 
    396     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
    397               bool> I = StructValueState.insert(
    398                         std::make_pair(std::make_pair(V, i), LatticeVal()));
    399     LatticeVal &LV = I.first->second;
    400 
    401     if (!I.second)
    402       return LV;  // Common case, already in the map.
    403 
    404     if (Constant *C = dyn_cast<Constant>(V)) {
    405       Constant *Elt = C->getAggregateElement(i);
    406 
    407       if (!Elt)
    408         LV.markOverdefined();      // Unknown sort of constant.
    409       else if (isa<UndefValue>(Elt))
    410         ; // Undef values remain undefined.
    411       else
    412         LV.markConstant(Elt);      // Constants are constant.
    413     }
    414 
    415     // All others are underdefined by default.
    416     return LV;
    417   }
    418 
    419 
    420   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
    421   /// work list if it is not already executable.
    422   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    423     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    424       return;  // This edge is already known to be executable!
    425 
    426     if (!MarkBlockExecutable(Dest)) {
    427       // If the destination is already executable, we just made an *edge*
    428       // feasible that wasn't before.  Revisit the PHI nodes in the block
    429       // because they have potentially new operands.
    430       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
    431             << " -> " << Dest->getName() << '\n');
    432 
    433       PHINode *PN;
    434       for (BasicBlock::iterator I = Dest->begin();
    435            (PN = dyn_cast<PHINode>(I)); ++I)
    436         visitPHINode(*PN);
    437     }
    438   }
    439 
    440   // getFeasibleSuccessors - Return a vector of booleans to indicate which
    441   // successors are reachable from a given terminator instruction.
    442   //
    443   void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
    444 
    445   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    446   // block to the 'To' basic block is currently feasible.
    447   //
    448   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
    449 
    450   // OperandChangedState - This method is invoked on all of the users of an
    451   // instruction that was just changed state somehow.  Based on this
    452   // information, we need to update the specified user of this instruction.
    453   //
    454   void OperandChangedState(Instruction *I) {
    455     if (BBExecutable.count(I->getParent()))   // Inst is executable?
    456       visit(*I);
    457   }
    458 
    459 private:
    460   friend class InstVisitor<SCCPSolver>;
    461 
    462   // visit implementations - Something changed in this instruction.  Either an
    463   // operand made a transition, or the instruction is newly executable.  Change
    464   // the value type of I to reflect these changes if appropriate.
    465   void visitPHINode(PHINode &I);
    466 
    467   // Terminators
    468   void visitReturnInst(ReturnInst &I);
    469   void visitTerminatorInst(TerminatorInst &TI);
    470 
    471   void visitCastInst(CastInst &I);
    472   void visitSelectInst(SelectInst &I);
    473   void visitBinaryOperator(Instruction &I);
    474   void visitCmpInst(CmpInst &I);
    475   void visitExtractElementInst(ExtractElementInst &I);
    476   void visitInsertElementInst(InsertElementInst &I);
    477   void visitShuffleVectorInst(ShuffleVectorInst &I);
    478   void visitExtractValueInst(ExtractValueInst &EVI);
    479   void visitInsertValueInst(InsertValueInst &IVI);
    480   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
    481 
    482   // Instructions that cannot be folded away.
    483   void visitStoreInst     (StoreInst &I);
    484   void visitLoadInst      (LoadInst &I);
    485   void visitGetElementPtrInst(GetElementPtrInst &I);
    486   void visitCallInst      (CallInst &I) {
    487     visitCallSite(&I);
    488   }
    489   void visitInvokeInst    (InvokeInst &II) {
    490     visitCallSite(&II);
    491     visitTerminatorInst(II);
    492   }
    493   void visitCallSite      (CallSite CS);
    494   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
    495   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
    496   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
    497   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
    498     markAnythingOverdefined(&I);
    499   }
    500   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
    501   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
    502   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
    503 
    504   void visitInstruction(Instruction &I) {
    505     // If a new instruction is added to LLVM that we don't handle.
    506     dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
    507     markAnythingOverdefined(&I);   // Just in case
    508   }
    509 };
    510 
    511 } // end anonymous namespace
    512 
    513 
    514 // getFeasibleSuccessors - Return a vector of booleans to indicate which
    515 // successors are reachable from a given terminator instruction.
    516 //
    517 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
    518                                        SmallVectorImpl<bool> &Succs) {
    519   Succs.resize(TI.getNumSuccessors());
    520   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    521     if (BI->isUnconditional()) {
    522       Succs[0] = true;
    523       return;
    524     }
    525 
    526     LatticeVal BCValue = getValueState(BI->getCondition());
    527     ConstantInt *CI = BCValue.getConstantInt();
    528     if (!CI) {
    529       // Overdefined condition variables, and branches on unfoldable constant
    530       // conditions, mean the branch could go either way.
    531       if (!BCValue.isUndefined())
    532         Succs[0] = Succs[1] = true;
    533       return;
    534     }
    535 
    536     // Constant condition variables mean the branch can only go a single way.
    537     Succs[CI->isZero()] = true;
    538     return;
    539   }
    540 
    541   if (isa<InvokeInst>(TI)) {
    542     // Invoke instructions successors are always executable.
    543     Succs[0] = Succs[1] = true;
    544     return;
    545   }
    546 
    547   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    548     if (!SI->getNumCases()) {
    549       Succs[0] = true;
    550       return;
    551     }
    552     LatticeVal SCValue = getValueState(SI->getCondition());
    553     ConstantInt *CI = SCValue.getConstantInt();
    554 
    555     if (!CI) {   // Overdefined or undefined condition?
    556       // All destinations are executable!
    557       if (!SCValue.isUndefined())
    558         Succs.assign(TI.getNumSuccessors(), true);
    559       return;
    560     }
    561 
    562     Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
    563     return;
    564   }
    565 
    566   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    567   if (isa<IndirectBrInst>(&TI)) {
    568     // Just mark all destinations executable!
    569     Succs.assign(TI.getNumSuccessors(), true);
    570     return;
    571   }
    572 
    573 #ifndef NDEBUG
    574   dbgs() << "Unknown terminator instruction: " << TI << '\n';
    575 #endif
    576   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    577 }
    578 
    579 
    580 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    581 // block to the 'To' basic block is currently feasible.
    582 //
    583 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
    584   assert(BBExecutable.count(To) && "Dest should always be alive!");
    585 
    586   // Make sure the source basic block is executable!!
    587   if (!BBExecutable.count(From)) return false;
    588 
    589   // Check to make sure this edge itself is actually feasible now.
    590   TerminatorInst *TI = From->getTerminator();
    591   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    592     if (BI->isUnconditional())
    593       return true;
    594 
    595     LatticeVal BCValue = getValueState(BI->getCondition());
    596 
    597     // Overdefined condition variables mean the branch could go either way,
    598     // undef conditions mean that neither edge is feasible yet.
    599     ConstantInt *CI = BCValue.getConstantInt();
    600     if (!CI)
    601       return !BCValue.isUndefined();
    602 
    603     // Constant condition variables mean the branch can only go a single way.
    604     return BI->getSuccessor(CI->isZero()) == To;
    605   }
    606 
    607   // Invoke instructions successors are always executable.
    608   if (isa<InvokeInst>(TI))
    609     return true;
    610 
    611   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    612     if (SI->getNumCases() < 1)
    613       return true;
    614 
    615     LatticeVal SCValue = getValueState(SI->getCondition());
    616     ConstantInt *CI = SCValue.getConstantInt();
    617 
    618     if (!CI)
    619       return !SCValue.isUndefined();
    620 
    621     return SI->findCaseValue(CI).getCaseSuccessor() == To;
    622   }
    623 
    624   // Just mark all destinations executable!
    625   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    626   if (isa<IndirectBrInst>(TI))
    627     return true;
    628 
    629 #ifndef NDEBUG
    630   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
    631 #endif
    632   llvm_unreachable(nullptr);
    633 }
    634 
    635 // visit Implementations - Something changed in this instruction, either an
    636 // operand made a transition, or the instruction is newly executable.  Change
    637 // the value type of I to reflect these changes if appropriate.  This method
    638 // makes sure to do the following actions:
    639 //
    640 // 1. If a phi node merges two constants in, and has conflicting value coming
    641 //    from different branches, or if the PHI node merges in an overdefined
    642 //    value, then the PHI node becomes overdefined.
    643 // 2. If a phi node merges only constants in, and they all agree on value, the
    644 //    PHI node becomes a constant value equal to that.
    645 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
    646 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
    647 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
    648 // 6. If a conditional branch has a value that is constant, make the selected
    649 //    destination executable
    650 // 7. If a conditional branch has a value that is overdefined, make all
    651 //    successors executable.
    652 //
    653 void SCCPSolver::visitPHINode(PHINode &PN) {
    654   // If this PN returns a struct, just mark the result overdefined.
    655   // TODO: We could do a lot better than this if code actually uses this.
    656   if (PN.getType()->isStructTy())
    657     return markAnythingOverdefined(&PN);
    658 
    659   if (getValueState(&PN).isOverdefined())
    660     return;  // Quick exit
    661 
    662   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
    663   // and slow us down a lot.  Just mark them overdefined.
    664   if (PN.getNumIncomingValues() > 64)
    665     return markOverdefined(&PN);
    666 
    667   // Look at all of the executable operands of the PHI node.  If any of them
    668   // are overdefined, the PHI becomes overdefined as well.  If they are all
    669   // constant, and they agree with each other, the PHI becomes the identical
    670   // constant.  If they are constant and don't agree, the PHI is overdefined.
    671   // If there are no executable operands, the PHI remains undefined.
    672   //
    673   Constant *OperandVal = nullptr;
    674   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    675     LatticeVal IV = getValueState(PN.getIncomingValue(i));
    676     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
    677 
    678     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
    679       continue;
    680 
    681     if (IV.isOverdefined())    // PHI node becomes overdefined!
    682       return markOverdefined(&PN);
    683 
    684     if (!OperandVal) {   // Grab the first value.
    685       OperandVal = IV.getConstant();
    686       continue;
    687     }
    688 
    689     // There is already a reachable operand.  If we conflict with it,
    690     // then the PHI node becomes overdefined.  If we agree with it, we
    691     // can continue on.
    692 
    693     // Check to see if there are two different constants merging, if so, the PHI
    694     // node is overdefined.
    695     if (IV.getConstant() != OperandVal)
    696       return markOverdefined(&PN);
    697   }
    698 
    699   // If we exited the loop, this means that the PHI node only has constant
    700   // arguments that agree with each other(and OperandVal is the constant) or
    701   // OperandVal is null because there are no defined incoming arguments.  If
    702   // this is the case, the PHI remains undefined.
    703   //
    704   if (OperandVal)
    705     markConstant(&PN, OperandVal);      // Acquire operand value
    706 }
    707 
    708 void SCCPSolver::visitReturnInst(ReturnInst &I) {
    709   if (I.getNumOperands() == 0) return;  // ret void
    710 
    711   Function *F = I.getParent()->getParent();
    712   Value *ResultOp = I.getOperand(0);
    713 
    714   // If we are tracking the return value of this function, merge it in.
    715   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    716     DenseMap<Function*, LatticeVal>::iterator TFRVI =
    717       TrackedRetVals.find(F);
    718     if (TFRVI != TrackedRetVals.end()) {
    719       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
    720       return;
    721     }
    722   }
    723 
    724   // Handle functions that return multiple values.
    725   if (!TrackedMultipleRetVals.empty()) {
    726     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
    727       if (MRVFunctionsTracked.count(F))
    728         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    729           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
    730                        getStructValueState(ResultOp, i));
    731 
    732   }
    733 }
    734 
    735 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
    736   SmallVector<bool, 16> SuccFeasible;
    737   getFeasibleSuccessors(TI, SuccFeasible);
    738 
    739   BasicBlock *BB = TI.getParent();
    740 
    741   // Mark all feasible successors executable.
    742   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    743     if (SuccFeasible[i])
    744       markEdgeExecutable(BB, TI.getSuccessor(i));
    745 }
    746 
    747 void SCCPSolver::visitCastInst(CastInst &I) {
    748   LatticeVal OpSt = getValueState(I.getOperand(0));
    749   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
    750     markOverdefined(&I);
    751   else if (OpSt.isConstant())        // Propagate constant value
    752     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
    753                                            OpSt.getConstant(), I.getType()));
    754 }
    755 
    756 
    757 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
    758   // If this returns a struct, mark all elements over defined, we don't track
    759   // structs in structs.
    760   if (EVI.getType()->isStructTy())
    761     return markAnythingOverdefined(&EVI);
    762 
    763   // If this is extracting from more than one level of struct, we don't know.
    764   if (EVI.getNumIndices() != 1)
    765     return markOverdefined(&EVI);
    766 
    767   Value *AggVal = EVI.getAggregateOperand();
    768   if (AggVal->getType()->isStructTy()) {
    769     unsigned i = *EVI.idx_begin();
    770     LatticeVal EltVal = getStructValueState(AggVal, i);
    771     mergeInValue(getValueState(&EVI), &EVI, EltVal);
    772   } else {
    773     // Otherwise, must be extracting from an array.
    774     return markOverdefined(&EVI);
    775   }
    776 }
    777 
    778 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
    779   StructType *STy = dyn_cast<StructType>(IVI.getType());
    780   if (!STy)
    781     return markOverdefined(&IVI);
    782 
    783   // If this has more than one index, we can't handle it, drive all results to
    784   // undef.
    785   if (IVI.getNumIndices() != 1)
    786     return markAnythingOverdefined(&IVI);
    787 
    788   Value *Aggr = IVI.getAggregateOperand();
    789   unsigned Idx = *IVI.idx_begin();
    790 
    791   // Compute the result based on what we're inserting.
    792   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    793     // This passes through all values that aren't the inserted element.
    794     if (i != Idx) {
    795       LatticeVal EltVal = getStructValueState(Aggr, i);
    796       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
    797       continue;
    798     }
    799 
    800     Value *Val = IVI.getInsertedValueOperand();
    801     if (Val->getType()->isStructTy())
    802       // We don't track structs in structs.
    803       markOverdefined(getStructValueState(&IVI, i), &IVI);
    804     else {
    805       LatticeVal InVal = getValueState(Val);
    806       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    807     }
    808   }
    809 }
    810 
    811 void SCCPSolver::visitSelectInst(SelectInst &I) {
    812   // If this select returns a struct, just mark the result overdefined.
    813   // TODO: We could do a lot better than this if code actually uses this.
    814   if (I.getType()->isStructTy())
    815     return markAnythingOverdefined(&I);
    816 
    817   LatticeVal CondValue = getValueState(I.getCondition());
    818   if (CondValue.isUndefined())
    819     return;
    820 
    821   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
    822     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    823     mergeInValue(&I, getValueState(OpVal));
    824     return;
    825   }
    826 
    827   // Otherwise, the condition is overdefined or a constant we can't evaluate.
    828   // See if we can produce something better than overdefined based on the T/F
    829   // value.
    830   LatticeVal TVal = getValueState(I.getTrueValue());
    831   LatticeVal FVal = getValueState(I.getFalseValue());
    832 
    833   // select ?, C, C -> C.
    834   if (TVal.isConstant() && FVal.isConstant() &&
    835       TVal.getConstant() == FVal.getConstant())
    836     return markConstant(&I, FVal.getConstant());
    837 
    838   if (TVal.isUndefined())   // select ?, undef, X -> X.
    839     return mergeInValue(&I, FVal);
    840   if (FVal.isUndefined())   // select ?, X, undef -> X.
    841     return mergeInValue(&I, TVal);
    842   markOverdefined(&I);
    843 }
    844 
    845 // Handle Binary Operators.
    846 void SCCPSolver::visitBinaryOperator(Instruction &I) {
    847   LatticeVal V1State = getValueState(I.getOperand(0));
    848   LatticeVal V2State = getValueState(I.getOperand(1));
    849 
    850   LatticeVal &IV = ValueState[&I];
    851   if (IV.isOverdefined()) return;
    852 
    853   if (V1State.isConstant() && V2State.isConstant())
    854     return markConstant(IV, &I,
    855                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
    856                                           V2State.getConstant()));
    857 
    858   // If something is undef, wait for it to resolve.
    859   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    860     return;
    861 
    862   // Otherwise, one of our operands is overdefined.  Try to produce something
    863   // better than overdefined with some tricks.
    864 
    865   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
    866   // operand is overdefined.
    867   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
    868     LatticeVal *NonOverdefVal = nullptr;
    869     if (!V1State.isOverdefined())
    870       NonOverdefVal = &V1State;
    871     else if (!V2State.isOverdefined())
    872       NonOverdefVal = &V2State;
    873 
    874     if (NonOverdefVal) {
    875       if (NonOverdefVal->isUndefined()) {
    876         // Could annihilate value.
    877         if (I.getOpcode() == Instruction::And)
    878           markConstant(IV, &I, Constant::getNullValue(I.getType()));
    879         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
    880           markConstant(IV, &I, Constant::getAllOnesValue(PT));
    881         else
    882           markConstant(IV, &I,
    883                        Constant::getAllOnesValue(I.getType()));
    884         return;
    885       }
    886 
    887       if (I.getOpcode() == Instruction::And) {
    888         // X and 0 = 0
    889         if (NonOverdefVal->getConstant()->isNullValue())
    890           return markConstant(IV, &I, NonOverdefVal->getConstant());
    891       } else {
    892         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
    893           if (CI->isAllOnesValue())     // X or -1 = -1
    894             return markConstant(IV, &I, NonOverdefVal->getConstant());
    895       }
    896     }
    897   }
    898 
    899 
    900   markOverdefined(&I);
    901 }
    902 
    903 // Handle ICmpInst instruction.
    904 void SCCPSolver::visitCmpInst(CmpInst &I) {
    905   LatticeVal V1State = getValueState(I.getOperand(0));
    906   LatticeVal V2State = getValueState(I.getOperand(1));
    907 
    908   LatticeVal &IV = ValueState[&I];
    909   if (IV.isOverdefined()) return;
    910 
    911   if (V1State.isConstant() && V2State.isConstant())
    912     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
    913                                                          V1State.getConstant(),
    914                                                         V2State.getConstant()));
    915 
    916   // If operands are still undefined, wait for it to resolve.
    917   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    918     return;
    919 
    920   markOverdefined(&I);
    921 }
    922 
    923 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
    924   // TODO : SCCP does not handle vectors properly.
    925   return markOverdefined(&I);
    926 
    927 #if 0
    928   LatticeVal &ValState = getValueState(I.getOperand(0));
    929   LatticeVal &IdxState = getValueState(I.getOperand(1));
    930 
    931   if (ValState.isOverdefined() || IdxState.isOverdefined())
    932     markOverdefined(&I);
    933   else if(ValState.isConstant() && IdxState.isConstant())
    934     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
    935                                                      IdxState.getConstant()));
    936 #endif
    937 }
    938 
    939 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
    940   // TODO : SCCP does not handle vectors properly.
    941   return markOverdefined(&I);
    942 #if 0
    943   LatticeVal &ValState = getValueState(I.getOperand(0));
    944   LatticeVal &EltState = getValueState(I.getOperand(1));
    945   LatticeVal &IdxState = getValueState(I.getOperand(2));
    946 
    947   if (ValState.isOverdefined() || EltState.isOverdefined() ||
    948       IdxState.isOverdefined())
    949     markOverdefined(&I);
    950   else if(ValState.isConstant() && EltState.isConstant() &&
    951           IdxState.isConstant())
    952     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
    953                                                     EltState.getConstant(),
    954                                                     IdxState.getConstant()));
    955   else if (ValState.isUndefined() && EltState.isConstant() &&
    956            IdxState.isConstant())
    957     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
    958                                                    EltState.getConstant(),
    959                                                    IdxState.getConstant()));
    960 #endif
    961 }
    962 
    963 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
    964   // TODO : SCCP does not handle vectors properly.
    965   return markOverdefined(&I);
    966 #if 0
    967   LatticeVal &V1State   = getValueState(I.getOperand(0));
    968   LatticeVal &V2State   = getValueState(I.getOperand(1));
    969   LatticeVal &MaskState = getValueState(I.getOperand(2));
    970 
    971   if (MaskState.isUndefined() ||
    972       (V1State.isUndefined() && V2State.isUndefined()))
    973     return;  // Undefined output if mask or both inputs undefined.
    974 
    975   if (V1State.isOverdefined() || V2State.isOverdefined() ||
    976       MaskState.isOverdefined()) {
    977     markOverdefined(&I);
    978   } else {
    979     // A mix of constant/undef inputs.
    980     Constant *V1 = V1State.isConstant() ?
    981         V1State.getConstant() : UndefValue::get(I.getType());
    982     Constant *V2 = V2State.isConstant() ?
    983         V2State.getConstant() : UndefValue::get(I.getType());
    984     Constant *Mask = MaskState.isConstant() ?
    985       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
    986     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
    987   }
    988 #endif
    989 }
    990 
    991 // Handle getelementptr instructions.  If all operands are constants then we
    992 // can turn this into a getelementptr ConstantExpr.
    993 //
    994 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
    995   if (ValueState[&I].isOverdefined()) return;
    996 
    997   SmallVector<Constant*, 8> Operands;
    998   Operands.reserve(I.getNumOperands());
    999 
   1000   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1001     LatticeVal State = getValueState(I.getOperand(i));
   1002     if (State.isUndefined())
   1003       return;  // Operands are not resolved yet.
   1004 
   1005     if (State.isOverdefined())
   1006       return markOverdefined(&I);
   1007 
   1008     assert(State.isConstant() && "Unknown state!");
   1009     Operands.push_back(State.getConstant());
   1010   }
   1011 
   1012   Constant *Ptr = Operands[0];
   1013   ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
   1014   markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
   1015 }
   1016 
   1017 void SCCPSolver::visitStoreInst(StoreInst &SI) {
   1018   // If this store is of a struct, ignore it.
   1019   if (SI.getOperand(0)->getType()->isStructTy())
   1020     return;
   1021 
   1022   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
   1023     return;
   1024 
   1025   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
   1026   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
   1027   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
   1028 
   1029   // Get the value we are storing into the global, then merge it.
   1030   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
   1031   if (I->second.isOverdefined())
   1032     TrackedGlobals.erase(I);      // No need to keep tracking this!
   1033 }
   1034 
   1035 
   1036 // Handle load instructions.  If the operand is a constant pointer to a constant
   1037 // global, we can replace the load with the loaded constant value!
   1038 void SCCPSolver::visitLoadInst(LoadInst &I) {
   1039   // If this load is of a struct, just mark the result overdefined.
   1040   if (I.getType()->isStructTy())
   1041     return markAnythingOverdefined(&I);
   1042 
   1043   LatticeVal PtrVal = getValueState(I.getOperand(0));
   1044   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
   1045 
   1046   LatticeVal &IV = ValueState[&I];
   1047   if (IV.isOverdefined()) return;
   1048 
   1049   if (!PtrVal.isConstant() || I.isVolatile())
   1050     return markOverdefined(IV, &I);
   1051 
   1052   Constant *Ptr = PtrVal.getConstant();
   1053 
   1054   // load null -> null
   1055   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
   1056     return markConstant(IV, &I, Constant::getNullValue(I.getType()));
   1057 
   1058   // Transform load (constant global) into the value loaded.
   1059   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   1060     if (!TrackedGlobals.empty()) {
   1061       // If we are tracking this global, merge in the known value for it.
   1062       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
   1063         TrackedGlobals.find(GV);
   1064       if (It != TrackedGlobals.end()) {
   1065         mergeInValue(IV, &I, It->second);
   1066         return;
   1067       }
   1068     }
   1069   }
   1070 
   1071   // Transform load from a constant into a constant if possible.
   1072   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
   1073     return markConstant(IV, &I, C);
   1074 
   1075   // Otherwise we cannot say for certain what value this load will produce.
   1076   // Bail out.
   1077   markOverdefined(IV, &I);
   1078 }
   1079 
   1080 void SCCPSolver::visitCallSite(CallSite CS) {
   1081   Function *F = CS.getCalledFunction();
   1082   Instruction *I = CS.getInstruction();
   1083 
   1084   // The common case is that we aren't tracking the callee, either because we
   1085   // are not doing interprocedural analysis or the callee is indirect, or is
   1086   // external.  Handle these cases first.
   1087   if (!F || F->isDeclaration()) {
   1088 CallOverdefined:
   1089     // Void return and not tracking callee, just bail.
   1090     if (I->getType()->isVoidTy()) return;
   1091 
   1092     // Otherwise, if we have a single return value case, and if the function is
   1093     // a declaration, maybe we can constant fold it.
   1094     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
   1095         canConstantFoldCallTo(F)) {
   1096 
   1097       SmallVector<Constant*, 8> Operands;
   1098       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
   1099            AI != E; ++AI) {
   1100         LatticeVal State = getValueState(*AI);
   1101 
   1102         if (State.isUndefined())
   1103           return;  // Operands are not resolved yet.
   1104         if (State.isOverdefined())
   1105           return markOverdefined(I);
   1106         assert(State.isConstant() && "Unknown state!");
   1107         Operands.push_back(State.getConstant());
   1108       }
   1109 
   1110       // If we can constant fold this, mark the result of the call as a
   1111       // constant.
   1112       if (Constant *C = ConstantFoldCall(F, Operands, TLI))
   1113         return markConstant(I, C);
   1114     }
   1115 
   1116     // Otherwise, we don't know anything about this call, mark it overdefined.
   1117     return markAnythingOverdefined(I);
   1118   }
   1119 
   1120   // If this is a local function that doesn't have its address taken, mark its
   1121   // entry block executable and merge in the actual arguments to the call into
   1122   // the formal arguments of the function.
   1123   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
   1124     MarkBlockExecutable(F->begin());
   1125 
   1126     // Propagate information from this call site into the callee.
   1127     CallSite::arg_iterator CAI = CS.arg_begin();
   1128     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1129          AI != E; ++AI, ++CAI) {
   1130       // If this argument is byval, and if the function is not readonly, there
   1131       // will be an implicit copy formed of the input aggregate.
   1132       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
   1133         markOverdefined(AI);
   1134         continue;
   1135       }
   1136 
   1137       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
   1138         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1139           LatticeVal CallArg = getStructValueState(*CAI, i);
   1140           mergeInValue(getStructValueState(AI, i), AI, CallArg);
   1141         }
   1142       } else {
   1143         mergeInValue(AI, getValueState(*CAI));
   1144       }
   1145     }
   1146   }
   1147 
   1148   // If this is a single/zero retval case, see if we're tracking the function.
   1149   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
   1150     if (!MRVFunctionsTracked.count(F))
   1151       goto CallOverdefined;  // Not tracking this callee.
   1152 
   1153     // If we are tracking this callee, propagate the result of the function
   1154     // into this call site.
   1155     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1156       mergeInValue(getStructValueState(I, i), I,
   1157                    TrackedMultipleRetVals[std::make_pair(F, i)]);
   1158   } else {
   1159     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
   1160     if (TFRVI == TrackedRetVals.end())
   1161       goto CallOverdefined;  // Not tracking this callee.
   1162 
   1163     // If so, propagate the return value of the callee into this call result.
   1164     mergeInValue(I, TFRVI->second);
   1165   }
   1166 }
   1167 
   1168 void SCCPSolver::Solve() {
   1169   // Process the work lists until they are empty!
   1170   while (!BBWorkList.empty() || !InstWorkList.empty() ||
   1171          !OverdefinedInstWorkList.empty()) {
   1172     // Process the overdefined instruction's work list first, which drives other
   1173     // things to overdefined more quickly.
   1174     while (!OverdefinedInstWorkList.empty()) {
   1175       Value *I = OverdefinedInstWorkList.pop_back_val();
   1176 
   1177       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
   1178 
   1179       // "I" got into the work list because it either made the transition from
   1180       // bottom to constant, or to overdefined.
   1181       //
   1182       // Anything on this worklist that is overdefined need not be visited
   1183       // since all of its users will have already been marked as overdefined
   1184       // Update all of the users of this instruction's value.
   1185       //
   1186       for (User *U : I->users())
   1187         if (Instruction *UI = dyn_cast<Instruction>(U))
   1188           OperandChangedState(UI);
   1189     }
   1190 
   1191     // Process the instruction work list.
   1192     while (!InstWorkList.empty()) {
   1193       Value *I = InstWorkList.pop_back_val();
   1194 
   1195       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
   1196 
   1197       // "I" got into the work list because it made the transition from undef to
   1198       // constant.
   1199       //
   1200       // Anything on this worklist that is overdefined need not be visited
   1201       // since all of its users will have already been marked as overdefined.
   1202       // Update all of the users of this instruction's value.
   1203       //
   1204       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
   1205         for (User *U : I->users())
   1206           if (Instruction *UI = dyn_cast<Instruction>(U))
   1207             OperandChangedState(UI);
   1208     }
   1209 
   1210     // Process the basic block work list.
   1211     while (!BBWorkList.empty()) {
   1212       BasicBlock *BB = BBWorkList.back();
   1213       BBWorkList.pop_back();
   1214 
   1215       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
   1216 
   1217       // Notify all instructions in this basic block that they are newly
   1218       // executable.
   1219       visit(BB);
   1220     }
   1221   }
   1222 }
   1223 
   1224 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
   1225 /// that branches on undef values cannot reach any of their successors.
   1226 /// However, this is not a safe assumption.  After we solve dataflow, this
   1227 /// method should be use to handle this.  If this returns true, the solver
   1228 /// should be rerun.
   1229 ///
   1230 /// This method handles this by finding an unresolved branch and marking it one
   1231 /// of the edges from the block as being feasible, even though the condition
   1232 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
   1233 /// CFG and only slightly pessimizes the analysis results (by marking one,
   1234 /// potentially infeasible, edge feasible).  This cannot usefully modify the
   1235 /// constraints on the condition of the branch, as that would impact other users
   1236 /// of the value.
   1237 ///
   1238 /// This scan also checks for values that use undefs, whose results are actually
   1239 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
   1240 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
   1241 /// even if X isn't defined.
   1242 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
   1243   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1244     if (!BBExecutable.count(BB))
   1245       continue;
   1246 
   1247     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1248       // Look for instructions which produce undef values.
   1249       if (I->getType()->isVoidTy()) continue;
   1250 
   1251       if (StructType *STy = dyn_cast<StructType>(I->getType())) {
   1252         // Only a few things that can be structs matter for undef.
   1253 
   1254         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
   1255         if (CallSite CS = CallSite(I))
   1256           if (Function *F = CS.getCalledFunction())
   1257             if (MRVFunctionsTracked.count(F))
   1258               continue;
   1259 
   1260         // extractvalue and insertvalue don't need to be marked; they are
   1261         // tracked as precisely as their operands.
   1262         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
   1263           continue;
   1264 
   1265         // Send the results of everything else to overdefined.  We could be
   1266         // more precise than this but it isn't worth bothering.
   1267         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1268           LatticeVal &LV = getStructValueState(I, i);
   1269           if (LV.isUndefined())
   1270             markOverdefined(LV, I);
   1271         }
   1272         continue;
   1273       }
   1274 
   1275       LatticeVal &LV = getValueState(I);
   1276       if (!LV.isUndefined()) continue;
   1277 
   1278       // extractvalue is safe; check here because the argument is a struct.
   1279       if (isa<ExtractValueInst>(I))
   1280         continue;
   1281 
   1282       // Compute the operand LatticeVals, for convenience below.
   1283       // Anything taking a struct is conservatively assumed to require
   1284       // overdefined markings.
   1285       if (I->getOperand(0)->getType()->isStructTy()) {
   1286         markOverdefined(I);
   1287         return true;
   1288       }
   1289       LatticeVal Op0LV = getValueState(I->getOperand(0));
   1290       LatticeVal Op1LV;
   1291       if (I->getNumOperands() == 2) {
   1292         if (I->getOperand(1)->getType()->isStructTy()) {
   1293           markOverdefined(I);
   1294           return true;
   1295         }
   1296 
   1297         Op1LV = getValueState(I->getOperand(1));
   1298       }
   1299       // If this is an instructions whose result is defined even if the input is
   1300       // not fully defined, propagate the information.
   1301       Type *ITy = I->getType();
   1302       switch (I->getOpcode()) {
   1303       case Instruction::Add:
   1304       case Instruction::Sub:
   1305       case Instruction::Trunc:
   1306       case Instruction::FPTrunc:
   1307       case Instruction::BitCast:
   1308         break; // Any undef -> undef
   1309       case Instruction::FSub:
   1310       case Instruction::FAdd:
   1311       case Instruction::FMul:
   1312       case Instruction::FDiv:
   1313       case Instruction::FRem:
   1314         // Floating-point binary operation: be conservative.
   1315         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1316           markForcedConstant(I, Constant::getNullValue(ITy));
   1317         else
   1318           markOverdefined(I);
   1319         return true;
   1320       case Instruction::ZExt:
   1321       case Instruction::SExt:
   1322       case Instruction::FPToUI:
   1323       case Instruction::FPToSI:
   1324       case Instruction::FPExt:
   1325       case Instruction::PtrToInt:
   1326       case Instruction::IntToPtr:
   1327       case Instruction::SIToFP:
   1328       case Instruction::UIToFP:
   1329         // undef -> 0; some outputs are impossible
   1330         markForcedConstant(I, Constant::getNullValue(ITy));
   1331         return true;
   1332       case Instruction::Mul:
   1333       case Instruction::And:
   1334         // Both operands undef -> undef
   1335         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1336           break;
   1337         // undef * X -> 0.   X could be zero.
   1338         // undef & X -> 0.   X could be zero.
   1339         markForcedConstant(I, Constant::getNullValue(ITy));
   1340         return true;
   1341 
   1342       case Instruction::Or:
   1343         // Both operands undef -> undef
   1344         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1345           break;
   1346         // undef | X -> -1.   X could be -1.
   1347         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1348         return true;
   1349 
   1350       case Instruction::Xor:
   1351         // undef ^ undef -> 0; strictly speaking, this is not strictly
   1352         // necessary, but we try to be nice to people who expect this
   1353         // behavior in simple cases
   1354         if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
   1355           markForcedConstant(I, Constant::getNullValue(ITy));
   1356           return true;
   1357         }
   1358         // undef ^ X -> undef
   1359         break;
   1360 
   1361       case Instruction::SDiv:
   1362       case Instruction::UDiv:
   1363       case Instruction::SRem:
   1364       case Instruction::URem:
   1365         // X / undef -> undef.  No change.
   1366         // X % undef -> undef.  No change.
   1367         if (Op1LV.isUndefined()) break;
   1368 
   1369         // undef / X -> 0.   X could be maxint.
   1370         // undef % X -> 0.   X could be 1.
   1371         markForcedConstant(I, Constant::getNullValue(ITy));
   1372         return true;
   1373 
   1374       case Instruction::AShr:
   1375         // X >>a undef -> undef.
   1376         if (Op1LV.isUndefined()) break;
   1377 
   1378         // undef >>a X -> all ones
   1379         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1380         return true;
   1381       case Instruction::LShr:
   1382       case Instruction::Shl:
   1383         // X << undef -> undef.
   1384         // X >> undef -> undef.
   1385         if (Op1LV.isUndefined()) break;
   1386 
   1387         // undef << X -> 0
   1388         // undef >> X -> 0
   1389         markForcedConstant(I, Constant::getNullValue(ITy));
   1390         return true;
   1391       case Instruction::Select:
   1392         Op1LV = getValueState(I->getOperand(1));
   1393         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
   1394         if (Op0LV.isUndefined()) {
   1395           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
   1396             Op1LV = getValueState(I->getOperand(2));
   1397         } else if (Op1LV.isUndefined()) {
   1398           // c ? undef : undef -> undef.  No change.
   1399           Op1LV = getValueState(I->getOperand(2));
   1400           if (Op1LV.isUndefined())
   1401             break;
   1402           // Otherwise, c ? undef : x -> x.
   1403         } else {
   1404           // Leave Op1LV as Operand(1)'s LatticeValue.
   1405         }
   1406 
   1407         if (Op1LV.isConstant())
   1408           markForcedConstant(I, Op1LV.getConstant());
   1409         else
   1410           markOverdefined(I);
   1411         return true;
   1412       case Instruction::Load:
   1413         // A load here means one of two things: a load of undef from a global,
   1414         // a load from an unknown pointer.  Either way, having it return undef
   1415         // is okay.
   1416         break;
   1417       case Instruction::ICmp:
   1418         // X == undef -> undef.  Other comparisons get more complicated.
   1419         if (cast<ICmpInst>(I)->isEquality())
   1420           break;
   1421         markOverdefined(I);
   1422         return true;
   1423       case Instruction::Call:
   1424       case Instruction::Invoke: {
   1425         // There are two reasons a call can have an undef result
   1426         // 1. It could be tracked.
   1427         // 2. It could be constant-foldable.
   1428         // Because of the way we solve return values, tracked calls must
   1429         // never be marked overdefined in ResolvedUndefsIn.
   1430         if (Function *F = CallSite(I).getCalledFunction())
   1431           if (TrackedRetVals.count(F))
   1432             break;
   1433 
   1434         // If the call is constant-foldable, we mark it overdefined because
   1435         // we do not know what return values are valid.
   1436         markOverdefined(I);
   1437         return true;
   1438       }
   1439       default:
   1440         // If we don't know what should happen here, conservatively mark it
   1441         // overdefined.
   1442         markOverdefined(I);
   1443         return true;
   1444       }
   1445     }
   1446 
   1447     // Check to see if we have a branch or switch on an undefined value.  If so
   1448     // we force the branch to go one way or the other to make the successor
   1449     // values live.  It doesn't really matter which way we force it.
   1450     TerminatorInst *TI = BB->getTerminator();
   1451     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1452       if (!BI->isConditional()) continue;
   1453       if (!getValueState(BI->getCondition()).isUndefined())
   1454         continue;
   1455 
   1456       // If the input to SCCP is actually branch on undef, fix the undef to
   1457       // false.
   1458       if (isa<UndefValue>(BI->getCondition())) {
   1459         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
   1460         markEdgeExecutable(BB, TI->getSuccessor(1));
   1461         return true;
   1462       }
   1463 
   1464       // Otherwise, it is a branch on a symbolic value which is currently
   1465       // considered to be undef.  Handle this by forcing the input value to the
   1466       // branch to false.
   1467       markForcedConstant(BI->getCondition(),
   1468                          ConstantInt::getFalse(TI->getContext()));
   1469       return true;
   1470     }
   1471 
   1472     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1473       if (!SI->getNumCases())
   1474         continue;
   1475       if (!getValueState(SI->getCondition()).isUndefined())
   1476         continue;
   1477 
   1478       // If the input to SCCP is actually switch on undef, fix the undef to
   1479       // the first constant.
   1480       if (isa<UndefValue>(SI->getCondition())) {
   1481         SI->setCondition(SI->case_begin().getCaseValue());
   1482         markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
   1483         return true;
   1484       }
   1485 
   1486       markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
   1487       return true;
   1488     }
   1489   }
   1490 
   1491   return false;
   1492 }
   1493 
   1494 
   1495 namespace {
   1496   //===--------------------------------------------------------------------===//
   1497   //
   1498   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
   1499   /// Sparse Conditional Constant Propagator.
   1500   ///
   1501   struct SCCP : public FunctionPass {
   1502     void getAnalysisUsage(AnalysisUsage &AU) const override {
   1503       AU.addRequired<TargetLibraryInfo>();
   1504     }
   1505     static char ID; // Pass identification, replacement for typeid
   1506     SCCP() : FunctionPass(ID) {
   1507       initializeSCCPPass(*PassRegistry::getPassRegistry());
   1508     }
   1509 
   1510     // runOnFunction - Run the Sparse Conditional Constant Propagation
   1511     // algorithm, and return true if the function was modified.
   1512     //
   1513     bool runOnFunction(Function &F) override;
   1514   };
   1515 } // end anonymous namespace
   1516 
   1517 char SCCP::ID = 0;
   1518 INITIALIZE_PASS(SCCP, "sccp",
   1519                 "Sparse Conditional Constant Propagation", false, false)
   1520 
   1521 // createSCCPPass - This is the public interface to this file.
   1522 FunctionPass *llvm::createSCCPPass() {
   1523   return new SCCP();
   1524 }
   1525 
   1526 static void DeleteInstructionInBlock(BasicBlock *BB) {
   1527   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
   1528   ++NumDeadBlocks;
   1529 
   1530   // Check to see if there are non-terminating instructions to delete.
   1531   if (isa<TerminatorInst>(BB->begin()))
   1532     return;
   1533 
   1534   // Delete the instructions backwards, as it has a reduced likelihood of having
   1535   // to update as many def-use and use-def chains.
   1536   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   1537   while (EndInst != BB->begin()) {
   1538     // Delete the next to last instruction.
   1539     BasicBlock::iterator I = EndInst;
   1540     Instruction *Inst = --I;
   1541     if (!Inst->use_empty())
   1542       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   1543     if (isa<LandingPadInst>(Inst)) {
   1544       EndInst = Inst;
   1545       continue;
   1546     }
   1547     BB->getInstList().erase(Inst);
   1548     ++NumInstRemoved;
   1549   }
   1550 }
   1551 
   1552 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
   1553 // and return true if the function was modified.
   1554 //
   1555 bool SCCP::runOnFunction(Function &F) {
   1556   if (skipOptnoneFunction(F))
   1557     return false;
   1558 
   1559   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
   1560   const DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1561   const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
   1562   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
   1563   SCCPSolver Solver(DL, TLI);
   1564 
   1565   // Mark the first block of the function as being executable.
   1566   Solver.MarkBlockExecutable(F.begin());
   1567 
   1568   // Mark all arguments to the function as being overdefined.
   1569   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
   1570     Solver.markAnythingOverdefined(AI);
   1571 
   1572   // Solve for constants.
   1573   bool ResolvedUndefs = true;
   1574   while (ResolvedUndefs) {
   1575     Solver.Solve();
   1576     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
   1577     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
   1578   }
   1579 
   1580   bool MadeChanges = false;
   1581 
   1582   // If we decided that there are basic blocks that are dead in this function,
   1583   // delete their contents now.  Note that we cannot actually delete the blocks,
   1584   // as we cannot modify the CFG of the function.
   1585 
   1586   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1587     if (!Solver.isBlockExecutable(BB)) {
   1588       DeleteInstructionInBlock(BB);
   1589       MadeChanges = true;
   1590       continue;
   1591     }
   1592 
   1593     // Iterate over all of the instructions in a function, replacing them with
   1594     // constants if we have found them to be of constant values.
   1595     //
   1596     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1597       Instruction *Inst = BI++;
   1598       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
   1599         continue;
   1600 
   1601       // TODO: Reconstruct structs from their elements.
   1602       if (Inst->getType()->isStructTy())
   1603         continue;
   1604 
   1605       LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1606       if (IV.isOverdefined())
   1607         continue;
   1608 
   1609       Constant *Const = IV.isConstant()
   1610         ? IV.getConstant() : UndefValue::get(Inst->getType());
   1611       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
   1612 
   1613       // Replaces all of the uses of a variable with uses of the constant.
   1614       Inst->replaceAllUsesWith(Const);
   1615 
   1616       // Delete the instruction.
   1617       Inst->eraseFromParent();
   1618 
   1619       // Hey, we just changed something!
   1620       MadeChanges = true;
   1621       ++NumInstRemoved;
   1622     }
   1623   }
   1624 
   1625   return MadeChanges;
   1626 }
   1627 
   1628 namespace {
   1629   //===--------------------------------------------------------------------===//
   1630   //
   1631   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
   1632   /// Constant Propagation.
   1633   ///
   1634   struct IPSCCP : public ModulePass {
   1635     void getAnalysisUsage(AnalysisUsage &AU) const override {
   1636       AU.addRequired<TargetLibraryInfo>();
   1637     }
   1638     static char ID;
   1639     IPSCCP() : ModulePass(ID) {
   1640       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
   1641     }
   1642     bool runOnModule(Module &M) override;
   1643   };
   1644 } // end anonymous namespace
   1645 
   1646 char IPSCCP::ID = 0;
   1647 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
   1648                 "Interprocedural Sparse Conditional Constant Propagation",
   1649                 false, false)
   1650 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
   1651 INITIALIZE_PASS_END(IPSCCP, "ipsccp",
   1652                 "Interprocedural Sparse Conditional Constant Propagation",
   1653                 false, false)
   1654 
   1655 // createIPSCCPPass - This is the public interface to this file.
   1656 ModulePass *llvm::createIPSCCPPass() {
   1657   return new IPSCCP();
   1658 }
   1659 
   1660 
   1661 static bool AddressIsTaken(const GlobalValue *GV) {
   1662   // Delete any dead constantexpr klingons.
   1663   GV->removeDeadConstantUsers();
   1664 
   1665   for (const Use &U : GV->uses()) {
   1666     const User *UR = U.getUser();
   1667     if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
   1668       if (SI->getOperand(0) == GV || SI->isVolatile())
   1669         return true;  // Storing addr of GV.
   1670     } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
   1671       // Make sure we are calling the function, not passing the address.
   1672       ImmutableCallSite CS(cast<Instruction>(UR));
   1673       if (!CS.isCallee(&U))
   1674         return true;
   1675     } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
   1676       if (LI->isVolatile())
   1677         return true;
   1678     } else if (isa<BlockAddress>(UR)) {
   1679       // blockaddress doesn't take the address of the function, it takes addr
   1680       // of label.
   1681     } else {
   1682       return true;
   1683     }
   1684   }
   1685   return false;
   1686 }
   1687 
   1688 bool IPSCCP::runOnModule(Module &M) {
   1689   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1690   const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
   1691   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
   1692   SCCPSolver Solver(DL, TLI);
   1693 
   1694   // AddressTakenFunctions - This set keeps track of the address-taken functions
   1695   // that are in the input.  As IPSCCP runs through and simplifies code,
   1696   // functions that were address taken can end up losing their
   1697   // address-taken-ness.  Because of this, we keep track of their addresses from
   1698   // the first pass so we can use them for the later simplification pass.
   1699   SmallPtrSet<Function*, 32> AddressTakenFunctions;
   1700 
   1701   // Loop over all functions, marking arguments to those with their addresses
   1702   // taken or that are external as overdefined.
   1703   //
   1704   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1705     if (F->isDeclaration())
   1706       continue;
   1707 
   1708     // If this is a strong or ODR definition of this function, then we can
   1709     // propagate information about its result into callsites of it.
   1710     if (!F->mayBeOverridden())
   1711       Solver.AddTrackedFunction(F);
   1712 
   1713     // If this function only has direct calls that we can see, we can track its
   1714     // arguments and return value aggressively, and can assume it is not called
   1715     // unless we see evidence to the contrary.
   1716     if (F->hasLocalLinkage()) {
   1717       if (AddressIsTaken(F))
   1718         AddressTakenFunctions.insert(F);
   1719       else {
   1720         Solver.AddArgumentTrackedFunction(F);
   1721         continue;
   1722       }
   1723     }
   1724 
   1725     // Assume the function is called.
   1726     Solver.MarkBlockExecutable(F->begin());
   1727 
   1728     // Assume nothing about the incoming arguments.
   1729     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1730          AI != E; ++AI)
   1731       Solver.markAnythingOverdefined(AI);
   1732   }
   1733 
   1734   // Loop over global variables.  We inform the solver about any internal global
   1735   // variables that do not have their 'addresses taken'.  If they don't have
   1736   // their addresses taken, we can propagate constants through them.
   1737   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
   1738        G != E; ++G)
   1739     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
   1740       Solver.TrackValueOfGlobalVariable(G);
   1741 
   1742   // Solve for constants.
   1743   bool ResolvedUndefs = true;
   1744   while (ResolvedUndefs) {
   1745     Solver.Solve();
   1746 
   1747     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
   1748     ResolvedUndefs = false;
   1749     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
   1750       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
   1751   }
   1752 
   1753   bool MadeChanges = false;
   1754 
   1755   // Iterate over all of the instructions in the module, replacing them with
   1756   // constants if we have found them to be of constant values.
   1757   //
   1758   SmallVector<BasicBlock*, 512> BlocksToErase;
   1759 
   1760   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1761     if (Solver.isBlockExecutable(F->begin())) {
   1762       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1763            AI != E; ++AI) {
   1764         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
   1765 
   1766         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1767         // result is a constant and replace it entirely if so.
   1768 
   1769         LatticeVal IV = Solver.getLatticeValueFor(AI);
   1770         if (IV.isOverdefined()) continue;
   1771 
   1772         Constant *CST = IV.isConstant() ?
   1773         IV.getConstant() : UndefValue::get(AI->getType());
   1774         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
   1775 
   1776         // Replaces all of the uses of a variable with uses of the
   1777         // constant.
   1778         AI->replaceAllUsesWith(CST);
   1779         ++IPNumArgsElimed;
   1780       }
   1781     }
   1782 
   1783     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
   1784       if (!Solver.isBlockExecutable(BB)) {
   1785         DeleteInstructionInBlock(BB);
   1786         MadeChanges = true;
   1787 
   1788         TerminatorInst *TI = BB->getTerminator();
   1789         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
   1790           BasicBlock *Succ = TI->getSuccessor(i);
   1791           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
   1792             TI->getSuccessor(i)->removePredecessor(BB);
   1793         }
   1794         if (!TI->use_empty())
   1795           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
   1796         TI->eraseFromParent();
   1797 
   1798         if (&*BB != &F->front())
   1799           BlocksToErase.push_back(BB);
   1800         else
   1801           new UnreachableInst(M.getContext(), BB);
   1802         continue;
   1803       }
   1804 
   1805       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1806         Instruction *Inst = BI++;
   1807         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
   1808           continue;
   1809 
   1810         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1811         // result is a constant and replace it entirely if so.
   1812 
   1813         LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1814         if (IV.isOverdefined())
   1815           continue;
   1816 
   1817         Constant *Const = IV.isConstant()
   1818           ? IV.getConstant() : UndefValue::get(Inst->getType());
   1819         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
   1820 
   1821         // Replaces all of the uses of a variable with uses of the
   1822         // constant.
   1823         Inst->replaceAllUsesWith(Const);
   1824 
   1825         // Delete the instruction.
   1826         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
   1827           Inst->eraseFromParent();
   1828 
   1829         // Hey, we just changed something!
   1830         MadeChanges = true;
   1831         ++IPNumInstRemoved;
   1832       }
   1833     }
   1834 
   1835     // Now that all instructions in the function are constant folded, erase dead
   1836     // blocks, because we can now use ConstantFoldTerminator to get rid of
   1837     // in-edges.
   1838     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
   1839       // If there are any PHI nodes in this successor, drop entries for BB now.
   1840       BasicBlock *DeadBB = BlocksToErase[i];
   1841       for (Value::user_iterator UI = DeadBB->user_begin(),
   1842                                 UE = DeadBB->user_end();
   1843            UI != UE;) {
   1844         // Grab the user and then increment the iterator early, as the user
   1845         // will be deleted. Step past all adjacent uses from the same user.
   1846         Instruction *I = dyn_cast<Instruction>(*UI);
   1847         do { ++UI; } while (UI != UE && *UI == I);
   1848 
   1849         // Ignore blockaddress users; BasicBlock's dtor will handle them.
   1850         if (!I) continue;
   1851 
   1852         bool Folded = ConstantFoldTerminator(I->getParent());
   1853         if (!Folded) {
   1854           // The constant folder may not have been able to fold the terminator
   1855           // if this is a branch or switch on undef.  Fold it manually as a
   1856           // branch to the first successor.
   1857 #ifndef NDEBUG
   1858           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1859             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
   1860                    "Branch should be foldable!");
   1861           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   1862             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
   1863           } else {
   1864             llvm_unreachable("Didn't fold away reference to block!");
   1865           }
   1866 #endif
   1867 
   1868           // Make this an uncond branch to the first successor.
   1869           TerminatorInst *TI = I->getParent()->getTerminator();
   1870           BranchInst::Create(TI->getSuccessor(0), TI);
   1871 
   1872           // Remove entries in successor phi nodes to remove edges.
   1873           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
   1874             TI->getSuccessor(i)->removePredecessor(TI->getParent());
   1875 
   1876           // Remove the old terminator.
   1877           TI->eraseFromParent();
   1878         }
   1879       }
   1880 
   1881       // Finally, delete the basic block.
   1882       F->getBasicBlockList().erase(DeadBB);
   1883     }
   1884     BlocksToErase.clear();
   1885   }
   1886 
   1887   // If we inferred constant or undef return values for a function, we replaced
   1888   // all call uses with the inferred value.  This means we don't need to bother
   1889   // actually returning anything from the function.  Replace all return
   1890   // instructions with return undef.
   1891   //
   1892   // Do this in two stages: first identify the functions we should process, then
   1893   // actually zap their returns.  This is important because we can only do this
   1894   // if the address of the function isn't taken.  In cases where a return is the
   1895   // last use of a function, the order of processing functions would affect
   1896   // whether other functions are optimizable.
   1897   SmallVector<ReturnInst*, 8> ReturnsToZap;
   1898 
   1899   // TODO: Process multiple value ret instructions also.
   1900   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
   1901   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
   1902        E = RV.end(); I != E; ++I) {
   1903     Function *F = I->first;
   1904     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
   1905       continue;
   1906 
   1907     // We can only do this if we know that nothing else can call the function.
   1908     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
   1909       continue;
   1910 
   1911     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
   1912       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
   1913         if (!isa<UndefValue>(RI->getOperand(0)))
   1914           ReturnsToZap.push_back(RI);
   1915   }
   1916 
   1917   // Zap all returns which we've identified as zap to change.
   1918   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
   1919     Function *F = ReturnsToZap[i]->getParent()->getParent();
   1920     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
   1921   }
   1922 
   1923   // If we inferred constant or undef values for globals variables, we can
   1924   // delete the global and any stores that remain to it.
   1925   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
   1926   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
   1927          E = TG.end(); I != E; ++I) {
   1928     GlobalVariable *GV = I->first;
   1929     assert(!I->second.isOverdefined() &&
   1930            "Overdefined values should have been taken out of the map!");
   1931     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
   1932     while (!GV->use_empty()) {
   1933       StoreInst *SI = cast<StoreInst>(GV->user_back());
   1934       SI->eraseFromParent();
   1935     }
   1936     M.getGlobalList().erase(GV);
   1937     ++IPNumGlobalConst;
   1938   }
   1939 
   1940   return MadeChanges;
   1941 }
   1942