Home | History | Annotate | Download | only in Utils
      1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs several transformations to transform natural loops into a
     11 // simpler form, which makes subsequent analyses and transformations simpler and
     12 // more effective.
     13 //
     14 // Loop pre-header insertion guarantees that there is a single, non-critical
     15 // entry edge from outside of the loop to the loop header.  This simplifies a
     16 // number of analyses and transformations, such as LICM.
     17 //
     18 // Loop exit-block insertion guarantees that all exit blocks from the loop
     19 // (blocks which are outside of the loop that have predecessors inside of the
     20 // loop) only have predecessors from inside of the loop (and are thus dominated
     21 // by the loop header).  This simplifies transformations such as store-sinking
     22 // that are built into LICM.
     23 //
     24 // This pass also guarantees that loops will have exactly one backedge.
     25 //
     26 // Indirectbr instructions introduce several complications. If the loop
     27 // contains or is entered by an indirectbr instruction, it may not be possible
     28 // to transform the loop and make these guarantees. Client code should check
     29 // that these conditions are true before relying on them.
     30 //
     31 // Note that the simplifycfg pass will clean up blocks which are split out but
     32 // end up being unnecessary, so usage of this pass should not pessimize
     33 // generated code.
     34 //
     35 // This pass obviously modifies the CFG, but updates loop information and
     36 // dominator information.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #include "llvm/Transforms/Scalar.h"
     41 #include "llvm/ADT/DepthFirstIterator.h"
     42 #include "llvm/ADT/SetOperations.h"
     43 #include "llvm/ADT/SetVector.h"
     44 #include "llvm/ADT/SmallVector.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/Analysis/AliasAnalysis.h"
     47 #include "llvm/Analysis/DependenceAnalysis.h"
     48 #include "llvm/Analysis/InstructionSimplify.h"
     49 #include "llvm/Analysis/LoopInfo.h"
     50 #include "llvm/Analysis/ScalarEvolution.h"
     51 #include "llvm/IR/CFG.h"
     52 #include "llvm/IR/Constants.h"
     53 #include "llvm/IR/DataLayout.h"
     54 #include "llvm/IR/Dominators.h"
     55 #include "llvm/IR/Function.h"
     56 #include "llvm/IR/Instructions.h"
     57 #include "llvm/IR/IntrinsicInst.h"
     58 #include "llvm/IR/LLVMContext.h"
     59 #include "llvm/IR/Type.h"
     60 #include "llvm/Support/Debug.h"
     61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     62 #include "llvm/Transforms/Utils/Local.h"
     63 #include "llvm/Transforms/Utils/LoopUtils.h"
     64 using namespace llvm;
     65 
     66 #define DEBUG_TYPE "loop-simplify"
     67 
     68 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
     69 STATISTIC(NumNested  , "Number of nested loops split out");
     70 
     71 // If the block isn't already, move the new block to right after some 'outside
     72 // block' block.  This prevents the preheader from being placed inside the loop
     73 // body, e.g. when the loop hasn't been rotated.
     74 static void placeSplitBlockCarefully(BasicBlock *NewBB,
     75                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
     76                                      Loop *L) {
     77   // Check to see if NewBB is already well placed.
     78   Function::iterator BBI = NewBB; --BBI;
     79   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     80     if (&*BBI == SplitPreds[i])
     81       return;
     82   }
     83 
     84   // If it isn't already after an outside block, move it after one.  This is
     85   // always good as it makes the uncond branch from the outside block into a
     86   // fall-through.
     87 
     88   // Figure out *which* outside block to put this after.  Prefer an outside
     89   // block that neighbors a BB actually in the loop.
     90   BasicBlock *FoundBB = nullptr;
     91   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     92     Function::iterator BBI = SplitPreds[i];
     93     if (++BBI != NewBB->getParent()->end() &&
     94         L->contains(BBI)) {
     95       FoundBB = SplitPreds[i];
     96       break;
     97     }
     98   }
     99 
    100   // If our heuristic for a *good* bb to place this after doesn't find
    101   // anything, just pick something.  It's likely better than leaving it within
    102   // the loop.
    103   if (!FoundBB)
    104     FoundBB = SplitPreds[0];
    105   NewBB->moveAfter(FoundBB);
    106 }
    107 
    108 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
    109 /// preheader, this method is called to insert one.  This method has two phases:
    110 /// preheader insertion and analysis updating.
    111 ///
    112 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
    113   BasicBlock *Header = L->getHeader();
    114 
    115   // Compute the set of predecessors of the loop that are not in the loop.
    116   SmallVector<BasicBlock*, 8> OutsideBlocks;
    117   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
    118        PI != PE; ++PI) {
    119     BasicBlock *P = *PI;
    120     if (!L->contains(P)) {         // Coming in from outside the loop?
    121       // If the loop is branched to from an indirect branch, we won't
    122       // be able to fully transform the loop, because it prohibits
    123       // edge splitting.
    124       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
    125 
    126       // Keep track of it.
    127       OutsideBlocks.push_back(P);
    128     }
    129   }
    130 
    131   // Split out the loop pre-header.
    132   BasicBlock *PreheaderBB;
    133   if (!Header->isLandingPad()) {
    134     PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
    135                                          PP);
    136   } else {
    137     SmallVector<BasicBlock*, 2> NewBBs;
    138     SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
    139                                 ".split-lp", PP, NewBBs);
    140     PreheaderBB = NewBBs[0];
    141   }
    142 
    143   PreheaderBB->getTerminator()->setDebugLoc(
    144                                       Header->getFirstNonPHI()->getDebugLoc());
    145   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
    146                << PreheaderBB->getName() << "\n");
    147 
    148   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    149   // code layout too horribly.
    150   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
    151 
    152   return PreheaderBB;
    153 }
    154 
    155 /// \brief Ensure that the loop preheader dominates all exit blocks.
    156 ///
    157 /// This method is used to split exit blocks that have predecessors outside of
    158 /// the loop.
    159 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
    160   SmallVector<BasicBlock*, 8> LoopBlocks;
    161   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
    162     BasicBlock *P = *I;
    163     if (L->contains(P)) {
    164       // Don't do this if the loop is exited via an indirect branch.
    165       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
    166 
    167       LoopBlocks.push_back(P);
    168     }
    169   }
    170 
    171   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
    172   BasicBlock *NewExitBB = nullptr;
    173 
    174   if (Exit->isLandingPad()) {
    175     SmallVector<BasicBlock*, 2> NewBBs;
    176     SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
    177                                                             LoopBlocks.size()),
    178                                 ".loopexit", ".nonloopexit",
    179                                 PP, NewBBs);
    180     NewExitBB = NewBBs[0];
    181   } else {
    182     NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP);
    183   }
    184 
    185   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
    186                << NewExitBB->getName() << "\n");
    187   return NewExitBB;
    188 }
    189 
    190 /// Add the specified block, and all of its predecessors, to the specified set,
    191 /// if it's not already in there.  Stop predecessor traversal when we reach
    192 /// StopBlock.
    193 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
    194                                   std::set<BasicBlock*> &Blocks) {
    195   SmallVector<BasicBlock *, 8> Worklist;
    196   Worklist.push_back(InputBB);
    197   do {
    198     BasicBlock *BB = Worklist.pop_back_val();
    199     if (Blocks.insert(BB).second && BB != StopBlock)
    200       // If BB is not already processed and it is not a stop block then
    201       // insert its predecessor in the work list
    202       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    203         BasicBlock *WBB = *I;
    204         Worklist.push_back(WBB);
    205       }
    206   } while (!Worklist.empty());
    207 }
    208 
    209 /// \brief The first part of loop-nestification is to find a PHI node that tells
    210 /// us how to partition the loops.
    211 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
    212                                         DominatorTree *DT) {
    213   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    214     PHINode *PN = cast<PHINode>(I);
    215     ++I;
    216     if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
    217       // This is a degenerate PHI already, don't modify it!
    218       PN->replaceAllUsesWith(V);
    219       if (AA) AA->deleteValue(PN);
    220       PN->eraseFromParent();
    221       continue;
    222     }
    223 
    224     // Scan this PHI node looking for a use of the PHI node by itself.
    225     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    226       if (PN->getIncomingValue(i) == PN &&
    227           L->contains(PN->getIncomingBlock(i)))
    228         // We found something tasty to remove.
    229         return PN;
    230   }
    231   return nullptr;
    232 }
    233 
    234 /// \brief If this loop has multiple backedges, try to pull one of them out into
    235 /// a nested loop.
    236 ///
    237 /// This is important for code that looks like
    238 /// this:
    239 ///
    240 ///  Loop:
    241 ///     ...
    242 ///     br cond, Loop, Next
    243 ///     ...
    244 ///     br cond2, Loop, Out
    245 ///
    246 /// To identify this common case, we look at the PHI nodes in the header of the
    247 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
    248 /// that change in the "outer" loop, but not in the "inner" loop.
    249 ///
    250 /// If we are able to separate out a loop, return the new outer loop that was
    251 /// created.
    252 ///
    253 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
    254                                 AliasAnalysis *AA, DominatorTree *DT,
    255                                 LoopInfo *LI, ScalarEvolution *SE, Pass *PP) {
    256   // Don't try to separate loops without a preheader.
    257   if (!Preheader)
    258     return nullptr;
    259 
    260   // The header is not a landing pad; preheader insertion should ensure this.
    261   assert(!L->getHeader()->isLandingPad() &&
    262          "Can't insert backedge to landing pad");
    263 
    264   PHINode *PN = findPHIToPartitionLoops(L, AA, DT);
    265   if (!PN) return nullptr;  // No known way to partition.
    266 
    267   // Pull out all predecessors that have varying values in the loop.  This
    268   // handles the case when a PHI node has multiple instances of itself as
    269   // arguments.
    270   SmallVector<BasicBlock*, 8> OuterLoopPreds;
    271   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    272     if (PN->getIncomingValue(i) != PN ||
    273         !L->contains(PN->getIncomingBlock(i))) {
    274       // We can't split indirectbr edges.
    275       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
    276         return nullptr;
    277       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    278     }
    279   }
    280   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
    281 
    282   // If ScalarEvolution is around and knows anything about values in
    283   // this loop, tell it to forget them, because we're about to
    284   // substantially change it.
    285   if (SE)
    286     SE->forgetLoop(L);
    287 
    288   BasicBlock *Header = L->getHeader();
    289   BasicBlock *NewBB =
    290     SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", PP);
    291 
    292   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    293   // code layout too horribly.
    294   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
    295 
    296   // Create the new outer loop.
    297   Loop *NewOuter = new Loop();
    298 
    299   // Change the parent loop to use the outer loop as its child now.
    300   if (Loop *Parent = L->getParentLoop())
    301     Parent->replaceChildLoopWith(L, NewOuter);
    302   else
    303     LI->changeTopLevelLoop(L, NewOuter);
    304 
    305   // L is now a subloop of our outer loop.
    306   NewOuter->addChildLoop(L);
    307 
    308   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    309        I != E; ++I)
    310     NewOuter->addBlockEntry(*I);
    311 
    312   // Now reset the header in L, which had been moved by
    313   // SplitBlockPredecessors for the outer loop.
    314   L->moveToHeader(Header);
    315 
    316   // Determine which blocks should stay in L and which should be moved out to
    317   // the Outer loop now.
    318   std::set<BasicBlock*> BlocksInL;
    319   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
    320     BasicBlock *P = *PI;
    321     if (DT->dominates(Header, P))
    322       addBlockAndPredsToSet(P, Header, BlocksInL);
    323   }
    324 
    325   // Scan all of the loop children of L, moving them to OuterLoop if they are
    326   // not part of the inner loop.
    327   const std::vector<Loop*> &SubLoops = L->getSubLoops();
    328   for (size_t I = 0; I != SubLoops.size(); )
    329     if (BlocksInL.count(SubLoops[I]->getHeader()))
    330       ++I;   // Loop remains in L
    331     else
    332       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
    333 
    334   // Now that we know which blocks are in L and which need to be moved to
    335   // OuterLoop, move any blocks that need it.
    336   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    337     BasicBlock *BB = L->getBlocks()[i];
    338     if (!BlocksInL.count(BB)) {
    339       // Move this block to the parent, updating the exit blocks sets
    340       L->removeBlockFromLoop(BB);
    341       if ((*LI)[BB] == L)
    342         LI->changeLoopFor(BB, NewOuter);
    343       --i;
    344     }
    345   }
    346 
    347   return NewOuter;
    348 }
    349 
    350 /// \brief This method is called when the specified loop has more than one
    351 /// backedge in it.
    352 ///
    353 /// If this occurs, revector all of these backedges to target a new basic block
    354 /// and have that block branch to the loop header.  This ensures that loops
    355 /// have exactly one backedge.
    356 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
    357                                              AliasAnalysis *AA,
    358                                              DominatorTree *DT, LoopInfo *LI) {
    359   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
    360 
    361   // Get information about the loop
    362   BasicBlock *Header = L->getHeader();
    363   Function *F = Header->getParent();
    364 
    365   // Unique backedge insertion currently depends on having a preheader.
    366   if (!Preheader)
    367     return nullptr;
    368 
    369   // The header is not a landing pad; preheader insertion should ensure this.
    370   assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
    371 
    372   // Figure out which basic blocks contain back-edges to the loop header.
    373   std::vector<BasicBlock*> BackedgeBlocks;
    374   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    375     BasicBlock *P = *I;
    376 
    377     // Indirectbr edges cannot be split, so we must fail if we find one.
    378     if (isa<IndirectBrInst>(P->getTerminator()))
    379       return nullptr;
    380 
    381     if (P != Preheader) BackedgeBlocks.push_back(P);
    382   }
    383 
    384   // Create and insert the new backedge block...
    385   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
    386                                            Header->getName()+".backedge", F);
    387   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
    388 
    389   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
    390                << BEBlock->getName() << "\n");
    391 
    392   // Move the new backedge block to right after the last backedge block.
    393   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
    394   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
    395 
    396   // Now that the block has been inserted into the function, create PHI nodes in
    397   // the backedge block which correspond to any PHI nodes in the header block.
    398   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    399     PHINode *PN = cast<PHINode>(I);
    400     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
    401                                      PN->getName()+".be", BETerminator);
    402     if (AA) AA->copyValue(PN, NewPN);
    403 
    404     // Loop over the PHI node, moving all entries except the one for the
    405     // preheader over to the new PHI node.
    406     unsigned PreheaderIdx = ~0U;
    407     bool HasUniqueIncomingValue = true;
    408     Value *UniqueValue = nullptr;
    409     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    410       BasicBlock *IBB = PN->getIncomingBlock(i);
    411       Value *IV = PN->getIncomingValue(i);
    412       if (IBB == Preheader) {
    413         PreheaderIdx = i;
    414       } else {
    415         NewPN->addIncoming(IV, IBB);
    416         if (HasUniqueIncomingValue) {
    417           if (!UniqueValue)
    418             UniqueValue = IV;
    419           else if (UniqueValue != IV)
    420             HasUniqueIncomingValue = false;
    421         }
    422       }
    423     }
    424 
    425     // Delete all of the incoming values from the old PN except the preheader's
    426     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    427     if (PreheaderIdx != 0) {
    428       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
    429       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    430     }
    431     // Nuke all entries except the zero'th.
    432     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
    433       PN->removeIncomingValue(e-i, false);
    434 
    435     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    436     PN->addIncoming(NewPN, BEBlock);
    437 
    438     // As an optimization, if all incoming values in the new PhiNode (which is a
    439     // subset of the incoming values of the old PHI node) have the same value,
    440     // eliminate the PHI Node.
    441     if (HasUniqueIncomingValue) {
    442       NewPN->replaceAllUsesWith(UniqueValue);
    443       if (AA) AA->deleteValue(NewPN);
    444       BEBlock->getInstList().erase(NewPN);
    445     }
    446   }
    447 
    448   // Now that all of the PHI nodes have been inserted and adjusted, modify the
    449   // backedge blocks to just to the BEBlock instead of the header.
    450   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    451     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    452     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
    453       if (TI->getSuccessor(Op) == Header)
    454         TI->setSuccessor(Op, BEBlock);
    455   }
    456 
    457   //===--- Update all analyses which we must preserve now -----------------===//
    458 
    459   // Update Loop Information - we know that this block is now in the current
    460   // loop and all parent loops.
    461   L->addBasicBlockToLoop(BEBlock, LI->getBase());
    462 
    463   // Update dominator information
    464   DT->splitBlock(BEBlock);
    465 
    466   return BEBlock;
    467 }
    468 
    469 /// \brief Simplify one loop and queue further loops for simplification.
    470 ///
    471 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw
    472 /// Pass pointer. The Pass pointer is used by numerous utilities to update
    473 /// specific analyses. Rather than a pass it would be much cleaner and more
    474 /// explicit if they accepted the analysis directly and then updated it.
    475 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
    476                             AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
    477                             ScalarEvolution *SE, Pass *PP,
    478                             const DataLayout *DL) {
    479   bool Changed = false;
    480 ReprocessLoop:
    481 
    482   // Check to see that no blocks (other than the header) in this loop have
    483   // predecessors that are not in the loop.  This is not valid for natural
    484   // loops, but can occur if the blocks are unreachable.  Since they are
    485   // unreachable we can just shamelessly delete those CFG edges!
    486   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
    487        BB != E; ++BB) {
    488     if (*BB == L->getHeader()) continue;
    489 
    490     SmallPtrSet<BasicBlock*, 4> BadPreds;
    491     for (pred_iterator PI = pred_begin(*BB),
    492          PE = pred_end(*BB); PI != PE; ++PI) {
    493       BasicBlock *P = *PI;
    494       if (!L->contains(P))
    495         BadPreds.insert(P);
    496     }
    497 
    498     // Delete each unique out-of-loop (and thus dead) predecessor.
    499     for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
    500          E = BadPreds.end(); I != E; ++I) {
    501 
    502       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
    503                    << (*I)->getName() << "\n");
    504 
    505       // Inform each successor of each dead pred.
    506       for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
    507         (*SI)->removePredecessor(*I);
    508       // Zap the dead pred's terminator and replace it with unreachable.
    509       TerminatorInst *TI = (*I)->getTerminator();
    510        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
    511       (*I)->getTerminator()->eraseFromParent();
    512       new UnreachableInst((*I)->getContext(), *I);
    513       Changed = true;
    514     }
    515   }
    516 
    517   // If there are exiting blocks with branches on undef, resolve the undef in
    518   // the direction which will exit the loop. This will help simplify loop
    519   // trip count computations.
    520   SmallVector<BasicBlock*, 8> ExitingBlocks;
    521   L->getExitingBlocks(ExitingBlocks);
    522   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
    523        E = ExitingBlocks.end(); I != E; ++I)
    524     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
    525       if (BI->isConditional()) {
    526         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
    527 
    528           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
    529                        << (*I)->getName() << "\n");
    530 
    531           BI->setCondition(ConstantInt::get(Cond->getType(),
    532                                             !L->contains(BI->getSuccessor(0))));
    533 
    534           // This may make the loop analyzable, force SCEV recomputation.
    535           if (SE)
    536             SE->forgetLoop(L);
    537 
    538           Changed = true;
    539         }
    540       }
    541 
    542   // Does the loop already have a preheader?  If so, don't insert one.
    543   BasicBlock *Preheader = L->getLoopPreheader();
    544   if (!Preheader) {
    545     Preheader = InsertPreheaderForLoop(L, PP);
    546     if (Preheader) {
    547       ++NumInserted;
    548       Changed = true;
    549     }
    550   }
    551 
    552   // Next, check to make sure that all exit nodes of the loop only have
    553   // predecessors that are inside of the loop.  This check guarantees that the
    554   // loop preheader/header will dominate the exit blocks.  If the exit block has
    555   // predecessors from outside of the loop, split the edge now.
    556   SmallVector<BasicBlock*, 8> ExitBlocks;
    557   L->getExitBlocks(ExitBlocks);
    558 
    559   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
    560                                                ExitBlocks.end());
    561   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
    562          E = ExitBlockSet.end(); I != E; ++I) {
    563     BasicBlock *ExitBlock = *I;
    564     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
    565          PI != PE; ++PI)
    566       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
    567       // allowed.
    568       if (!L->contains(*PI)) {
    569         if (rewriteLoopExitBlock(L, ExitBlock, PP)) {
    570           ++NumInserted;
    571           Changed = true;
    572         }
    573         break;
    574       }
    575   }
    576 
    577   // If the header has more than two predecessors at this point (from the
    578   // preheader and from multiple backedges), we must adjust the loop.
    579   BasicBlock *LoopLatch = L->getLoopLatch();
    580   if (!LoopLatch) {
    581     // If this is really a nested loop, rip it out into a child loop.  Don't do
    582     // this for loops with a giant number of backedges, just factor them into a
    583     // common backedge instead.
    584     if (L->getNumBackEdges() < 8) {
    585       if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) {
    586         ++NumNested;
    587         // Enqueue the outer loop as it should be processed next in our
    588         // depth-first nest walk.
    589         Worklist.push_back(OuterL);
    590 
    591         // This is a big restructuring change, reprocess the whole loop.
    592         Changed = true;
    593         // GCC doesn't tail recursion eliminate this.
    594         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
    595         goto ReprocessLoop;
    596       }
    597     }
    598 
    599     // If we either couldn't, or didn't want to, identify nesting of the loops,
    600     // insert a new block that all backedges target, then make it jump to the
    601     // loop header.
    602     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
    603     if (LoopLatch) {
    604       ++NumInserted;
    605       Changed = true;
    606     }
    607   }
    608 
    609   // Scan over the PHI nodes in the loop header.  Since they now have only two
    610   // incoming values (the loop is canonicalized), we may have simplified the PHI
    611   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    612   PHINode *PN;
    613   for (BasicBlock::iterator I = L->getHeader()->begin();
    614        (PN = dyn_cast<PHINode>(I++)); )
    615     if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
    616       if (AA) AA->deleteValue(PN);
    617       if (SE) SE->forgetValue(PN);
    618       PN->replaceAllUsesWith(V);
    619       PN->eraseFromParent();
    620     }
    621 
    622   // If this loop has multiple exits and the exits all go to the same
    623   // block, attempt to merge the exits. This helps several passes, such
    624   // as LoopRotation, which do not support loops with multiple exits.
    625   // SimplifyCFG also does this (and this code uses the same utility
    626   // function), however this code is loop-aware, where SimplifyCFG is
    627   // not. That gives it the advantage of being able to hoist
    628   // loop-invariant instructions out of the way to open up more
    629   // opportunities, and the disadvantage of having the responsibility
    630   // to preserve dominator information.
    631   bool UniqueExit = true;
    632   if (!ExitBlocks.empty())
    633     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
    634       if (ExitBlocks[i] != ExitBlocks[0]) {
    635         UniqueExit = false;
    636         break;
    637       }
    638   if (UniqueExit) {
    639     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    640       BasicBlock *ExitingBlock = ExitingBlocks[i];
    641       if (!ExitingBlock->getSinglePredecessor()) continue;
    642       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    643       if (!BI || !BI->isConditional()) continue;
    644       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
    645       if (!CI || CI->getParent() != ExitingBlock) continue;
    646 
    647       // Attempt to hoist out all instructions except for the
    648       // comparison and the branch.
    649       bool AllInvariant = true;
    650       bool AnyInvariant = false;
    651       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
    652         Instruction *Inst = I++;
    653         // Skip debug info intrinsics.
    654         if (isa<DbgInfoIntrinsic>(Inst))
    655           continue;
    656         if (Inst == CI)
    657           continue;
    658         if (!L->makeLoopInvariant(Inst, AnyInvariant,
    659                                   Preheader ? Preheader->getTerminator()
    660                                             : nullptr)) {
    661           AllInvariant = false;
    662           break;
    663         }
    664       }
    665       if (AnyInvariant) {
    666         Changed = true;
    667         // The loop disposition of all SCEV expressions that depend on any
    668         // hoisted values have also changed.
    669         if (SE)
    670           SE->forgetLoopDispositions(L);
    671       }
    672       if (!AllInvariant) continue;
    673 
    674       // The block has now been cleared of all instructions except for
    675       // a comparison and a conditional branch. SimplifyCFG may be able
    676       // to fold it now.
    677       if (!FoldBranchToCommonDest(BI, DL)) continue;
    678 
    679       // Success. The block is now dead, so remove it from the loop,
    680       // update the dominator tree and delete it.
    681       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
    682                    << ExitingBlock->getName() << "\n");
    683 
    684       // Notify ScalarEvolution before deleting this block. Currently assume the
    685       // parent loop doesn't change (spliting edges doesn't count). If blocks,
    686       // CFG edges, or other values in the parent loop change, then we need call
    687       // to forgetLoop() for the parent instead.
    688       if (SE)
    689         SE->forgetLoop(L);
    690 
    691       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
    692       Changed = true;
    693       LI->removeBlock(ExitingBlock);
    694 
    695       DomTreeNode *Node = DT->getNode(ExitingBlock);
    696       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
    697         Node->getChildren();
    698       while (!Children.empty()) {
    699         DomTreeNode *Child = Children.front();
    700         DT->changeImmediateDominator(Child, Node->getIDom());
    701       }
    702       DT->eraseNode(ExitingBlock);
    703 
    704       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
    705       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
    706       ExitingBlock->eraseFromParent();
    707     }
    708   }
    709 
    710   return Changed;
    711 }
    712 
    713 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
    714                         AliasAnalysis *AA, ScalarEvolution *SE,
    715                         const DataLayout *DL) {
    716   bool Changed = false;
    717 
    718   // Worklist maintains our depth-first queue of loops in this nest to process.
    719   SmallVector<Loop *, 4> Worklist;
    720   Worklist.push_back(L);
    721 
    722   // Walk the worklist from front to back, pushing newly found sub loops onto
    723   // the back. This will let us process loops from back to front in depth-first
    724   // order. We can use this simple process because loops form a tree.
    725   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
    726     Loop *L2 = Worklist[Idx];
    727     for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I)
    728       Worklist.push_back(*I);
    729   }
    730 
    731   while (!Worklist.empty())
    732     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
    733                                SE, PP, DL);
    734 
    735   return Changed;
    736 }
    737 
    738 namespace {
    739   struct LoopSimplify : public FunctionPass {
    740     static char ID; // Pass identification, replacement for typeid
    741     LoopSimplify() : FunctionPass(ID) {
    742       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
    743     }
    744 
    745     // AA - If we have an alias analysis object to update, this is it, otherwise
    746     // this is null.
    747     AliasAnalysis *AA;
    748     DominatorTree *DT;
    749     LoopInfo *LI;
    750     ScalarEvolution *SE;
    751     const DataLayout *DL;
    752 
    753     bool runOnFunction(Function &F) override;
    754 
    755     void getAnalysisUsage(AnalysisUsage &AU) const override {
    756       // We need loop information to identify the loops...
    757       AU.addRequired<DominatorTreeWrapperPass>();
    758       AU.addPreserved<DominatorTreeWrapperPass>();
    759 
    760       AU.addRequired<LoopInfo>();
    761       AU.addPreserved<LoopInfo>();
    762 
    763       AU.addPreserved<AliasAnalysis>();
    764       AU.addPreserved<ScalarEvolution>();
    765       AU.addPreserved<DependenceAnalysis>();
    766       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
    767     }
    768 
    769     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
    770     void verifyAnalysis() const override;
    771   };
    772 }
    773 
    774 char LoopSimplify::ID = 0;
    775 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
    776                 "Canonicalize natural loops", true, false)
    777 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    778 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    779 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
    780                 "Canonicalize natural loops", true, false)
    781 
    782 // Publicly exposed interface to pass...
    783 char &llvm::LoopSimplifyID = LoopSimplify::ID;
    784 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
    785 
    786 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
    787 /// it in any convenient order) inserting preheaders...
    788 ///
    789 bool LoopSimplify::runOnFunction(Function &F) {
    790   bool Changed = false;
    791   AA = getAnalysisIfAvailable<AliasAnalysis>();
    792   LI = &getAnalysis<LoopInfo>();
    793   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    794   SE = getAnalysisIfAvailable<ScalarEvolution>();
    795   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
    796   DL = DLP ? &DLP->getDataLayout() : nullptr;
    797 
    798   // Simplify each loop nest in the function.
    799   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    800     Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL);
    801 
    802   return Changed;
    803 }
    804 
    805 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
    806 // below.
    807 #if 0
    808 static void verifyLoop(Loop *L) {
    809   // Verify subloops.
    810   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    811     verifyLoop(*I);
    812 
    813   // It used to be possible to just assert L->isLoopSimplifyForm(), however
    814   // with the introduction of indirectbr, there are now cases where it's
    815   // not possible to transform a loop as necessary. We can at least check
    816   // that there is an indirectbr near any time there's trouble.
    817 
    818   // Indirectbr can interfere with preheader and unique backedge insertion.
    819   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    820     bool HasIndBrPred = false;
    821     for (pred_iterator PI = pred_begin(L->getHeader()),
    822          PE = pred_end(L->getHeader()); PI != PE; ++PI)
    823       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
    824         HasIndBrPred = true;
    825         break;
    826       }
    827     assert(HasIndBrPred &&
    828            "LoopSimplify has no excuse for missing loop header info!");
    829     (void)HasIndBrPred;
    830   }
    831 
    832   // Indirectbr can interfere with exit block canonicalization.
    833   if (!L->hasDedicatedExits()) {
    834     bool HasIndBrExiting = false;
    835     SmallVector<BasicBlock*, 8> ExitingBlocks;
    836     L->getExitingBlocks(ExitingBlocks);
    837     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    838       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
    839         HasIndBrExiting = true;
    840         break;
    841       }
    842     }
    843 
    844     assert(HasIndBrExiting &&
    845            "LoopSimplify has no excuse for missing exit block info!");
    846     (void)HasIndBrExiting;
    847   }
    848 }
    849 #endif
    850 
    851 void LoopSimplify::verifyAnalysis() const {
    852   // FIXME: This routine is being called mid-way through the loop pass manager
    853   // as loop passes destroy this analysis. That's actually fine, but we have no
    854   // way of expressing that here. Once all of the passes that destroy this are
    855   // hoisted out of the loop pass manager we can add back verification here.
    856 #if 0
    857   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    858     verifyLoop(*I);
    859 #endif
    860 }
    861