Home | History | Annotate | Download | only in compiler
      1 /*
      2  * Copyright (C) 2005 Ben Skeggs.
      3  *
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining
      7  * a copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sublicense, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial
     16  * portions of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     19  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
     21  * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
     22  * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
     23  * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
     24  * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  */
     27 
     28 /**
     29  * \file
     30  *
     31  * Emit the r300_fragment_program_code that can be understood by the hardware.
     32  * Input is a pre-transformed radeon_program.
     33  *
     34  * \author Ben Skeggs <darktama (at) iinet.net.au>
     35  *
     36  * \author Jerome Glisse <j.glisse (at) gmail.com>
     37  */
     38 
     39 #include "r300_fragprog.h"
     40 
     41 #include "../r300_reg.h"
     42 
     43 #include "radeon_program_pair.h"
     44 #include "r300_fragprog_swizzle.h"
     45 
     46 
     47 struct r300_emit_state {
     48 	struct r300_fragment_program_compiler * compiler;
     49 
     50 	unsigned current_node : 2;
     51 	unsigned node_first_tex : 8;
     52 	unsigned node_first_alu : 8;
     53 	uint32_t node_flags;
     54 };
     55 
     56 #define PROG_CODE \
     57 	struct r300_fragment_program_compiler *c = emit->compiler; \
     58 	struct r300_fragment_program_code *code = &c->code->code.r300
     59 
     60 #define error(fmt, args...) do {			\
     61 		rc_error(&c->Base, "%s::%s(): " fmt "\n",	\
     62 			__FILE__, __FUNCTION__, ##args);	\
     63 	} while(0)
     64 
     65 static unsigned int get_msbs_alu(unsigned int bits)
     66 {
     67 	return (bits >> 6) & 0x7;
     68 }
     69 
     70 /**
     71  * @param lsbs The number of least significant bits
     72  */
     73 static unsigned int get_msbs_tex(unsigned int bits, unsigned int lsbs)
     74 {
     75 	return (bits >> lsbs) & 0x15;
     76 }
     77 
     78 #define R400_EXT_GET_MSBS(x, lsbs, mask) (((x) >> lsbs) & mask)
     79 
     80 /**
     81  * Mark a temporary register as used.
     82  */
     83 static void use_temporary(struct r300_fragment_program_code *code, unsigned int index)
     84 {
     85 	if (index > code->pixsize)
     86 		code->pixsize = index;
     87 }
     88 
     89 static unsigned int use_source(struct r300_fragment_program_code* code, struct rc_pair_instruction_source src)
     90 {
     91 	if (!src.Used)
     92 		return 0;
     93 
     94 	if (src.File == RC_FILE_CONSTANT) {
     95 		return src.Index | (1 << 5);
     96 	} else if (src.File == RC_FILE_TEMPORARY || src.File == RC_FILE_INPUT) {
     97 		use_temporary(code, src.Index);
     98 		return src.Index & 0x1f;
     99 	}
    100 
    101 	return 0;
    102 }
    103 
    104 
    105 static unsigned int translate_rgb_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode)
    106 {
    107 	switch(opcode) {
    108 	case RC_OPCODE_CMP: return R300_ALU_OUTC_CMP;
    109 	case RC_OPCODE_CND: return R300_ALU_OUTC_CND;
    110 	case RC_OPCODE_DP3: return R300_ALU_OUTC_DP3;
    111 	case RC_OPCODE_DP4: return R300_ALU_OUTC_DP4;
    112 	case RC_OPCODE_FRC: return R300_ALU_OUTC_FRC;
    113 	default:
    114 		error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name);
    115 		/* fall through */
    116 	case RC_OPCODE_NOP:
    117 		/* fall through */
    118 	case RC_OPCODE_MAD: return R300_ALU_OUTC_MAD;
    119 	case RC_OPCODE_MAX: return R300_ALU_OUTC_MAX;
    120 	case RC_OPCODE_MIN: return R300_ALU_OUTC_MIN;
    121 	case RC_OPCODE_REPL_ALPHA: return R300_ALU_OUTC_REPL_ALPHA;
    122 	}
    123 }
    124 
    125 static unsigned int translate_alpha_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode)
    126 {
    127 	switch(opcode) {
    128 	case RC_OPCODE_CMP: return R300_ALU_OUTA_CMP;
    129 	case RC_OPCODE_CND: return R300_ALU_OUTA_CND;
    130 	case RC_OPCODE_DP3: return R300_ALU_OUTA_DP4;
    131 	case RC_OPCODE_DP4: return R300_ALU_OUTA_DP4;
    132 	case RC_OPCODE_EX2: return R300_ALU_OUTA_EX2;
    133 	case RC_OPCODE_FRC: return R300_ALU_OUTA_FRC;
    134 	case RC_OPCODE_LG2: return R300_ALU_OUTA_LG2;
    135 	default:
    136 		error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name);
    137 		/* fall through */
    138 	case RC_OPCODE_NOP:
    139 		/* fall through */
    140 	case RC_OPCODE_MAD: return R300_ALU_OUTA_MAD;
    141 	case RC_OPCODE_MAX: return R300_ALU_OUTA_MAX;
    142 	case RC_OPCODE_MIN: return R300_ALU_OUTA_MIN;
    143 	case RC_OPCODE_RCP: return R300_ALU_OUTA_RCP;
    144 	case RC_OPCODE_RSQ: return R300_ALU_OUTA_RSQ;
    145 	}
    146 }
    147 
    148 /**
    149  * Emit one paired ALU instruction.
    150  */
    151 static int emit_alu(struct r300_emit_state * emit, struct rc_pair_instruction* inst)
    152 {
    153 	int ip;
    154 	int j;
    155 	PROG_CODE;
    156 
    157 	if (code->alu.length >= c->Base.max_alu_insts) {
    158 		error("Too many ALU instructions");
    159 		return 0;
    160 	}
    161 
    162 	ip = code->alu.length++;
    163 
    164 	code->alu.inst[ip].rgb_inst = translate_rgb_opcode(c, inst->RGB.Opcode);
    165 	code->alu.inst[ip].alpha_inst = translate_alpha_opcode(c, inst->Alpha.Opcode);
    166 
    167 	for(j = 0; j < 3; ++j) {
    168 		/* Set the RGB address */
    169 		unsigned int src = use_source(code, inst->RGB.Src[j]);
    170 		unsigned int arg;
    171 		if (inst->RGB.Src[j].Index >= R300_PFS_NUM_TEMP_REGS)
    172 			code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_RGB_MSB_BIT(j);
    173 
    174 		code->alu.inst[ip].rgb_addr |= src << (6*j);
    175 
    176 		/* Set the Alpha address */
    177 		src = use_source(code, inst->Alpha.Src[j]);
    178 		if (inst->Alpha.Src[j].Index >= R300_PFS_NUM_TEMP_REGS)
    179 			code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_A_MSB_BIT(j);
    180 
    181 		code->alu.inst[ip].alpha_addr |= src << (6*j);
    182 
    183 		arg = r300FPTranslateRGBSwizzle(inst->RGB.Arg[j].Source, inst->RGB.Arg[j].Swizzle);
    184 		arg |= inst->RGB.Arg[j].Abs << 6;
    185 		arg |= inst->RGB.Arg[j].Negate << 5;
    186 		code->alu.inst[ip].rgb_inst |= arg << (7*j);
    187 
    188 		arg = r300FPTranslateAlphaSwizzle(inst->Alpha.Arg[j].Source, inst->Alpha.Arg[j].Swizzle);
    189 		arg |= inst->Alpha.Arg[j].Abs << 6;
    190 		arg |= inst->Alpha.Arg[j].Negate << 5;
    191 		code->alu.inst[ip].alpha_inst |= arg << (7*j);
    192 	}
    193 
    194 	/* Presubtract */
    195 	if (inst->RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
    196 		switch(inst->RGB.Src[RC_PAIR_PRESUB_SRC].Index) {
    197 		case RC_PRESUB_BIAS:
    198 			code->alu.inst[ip].rgb_inst |=
    199 						R300_ALU_SRCP_1_MINUS_2_SRC0;
    200 			break;
    201 		case RC_PRESUB_ADD:
    202 			code->alu.inst[ip].rgb_inst |=
    203 						R300_ALU_SRCP_SRC1_PLUS_SRC0;
    204 			break;
    205 		case RC_PRESUB_SUB:
    206 			code->alu.inst[ip].rgb_inst |=
    207 						R300_ALU_SRCP_SRC1_MINUS_SRC0;
    208 			break;
    209 		case RC_PRESUB_INV:
    210 			code->alu.inst[ip].rgb_inst |=
    211 						R300_ALU_SRCP_1_MINUS_SRC0;
    212 			break;
    213 		default:
    214 			break;
    215 		}
    216 	}
    217 
    218 	if (inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Used) {
    219 		switch(inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Index) {
    220 		case RC_PRESUB_BIAS:
    221 			code->alu.inst[ip].alpha_inst |=
    222 						R300_ALU_SRCP_1_MINUS_2_SRC0;
    223 			break;
    224 		case RC_PRESUB_ADD:
    225 			code->alu.inst[ip].alpha_inst |=
    226 						R300_ALU_SRCP_SRC1_PLUS_SRC0;
    227 			break;
    228 		case RC_PRESUB_SUB:
    229 			code->alu.inst[ip].alpha_inst |=
    230 						R300_ALU_SRCP_SRC1_MINUS_SRC0;
    231 			break;
    232 		case RC_PRESUB_INV:
    233 			code->alu.inst[ip].alpha_inst |=
    234 						R300_ALU_SRCP_1_MINUS_SRC0;
    235 			break;
    236 		default:
    237 			break;
    238 		}
    239 	}
    240 
    241 	if (inst->RGB.Saturate)
    242 		code->alu.inst[ip].rgb_inst |= R300_ALU_OUTC_CLAMP;
    243 	if (inst->Alpha.Saturate)
    244 		code->alu.inst[ip].alpha_inst |= R300_ALU_OUTA_CLAMP;
    245 
    246 	if (inst->RGB.WriteMask) {
    247 		use_temporary(code, inst->RGB.DestIndex);
    248 		if (inst->RGB.DestIndex >= R300_PFS_NUM_TEMP_REGS)
    249 			code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_RGB_MSB_BIT;
    250 		code->alu.inst[ip].rgb_addr |=
    251 			((inst->RGB.DestIndex & 0x1f) << R300_ALU_DSTC_SHIFT) |
    252 			(inst->RGB.WriteMask << R300_ALU_DSTC_REG_MASK_SHIFT);
    253 	}
    254 	if (inst->RGB.OutputWriteMask) {
    255 		code->alu.inst[ip].rgb_addr |=
    256             (inst->RGB.OutputWriteMask << R300_ALU_DSTC_OUTPUT_MASK_SHIFT) |
    257             R300_RGB_TARGET(inst->RGB.Target);
    258 		emit->node_flags |= R300_RGBA_OUT;
    259 	}
    260 
    261 	if (inst->Alpha.WriteMask) {
    262 		use_temporary(code, inst->Alpha.DestIndex);
    263 		if (inst->Alpha.DestIndex >= R300_PFS_NUM_TEMP_REGS)
    264 			code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_A_MSB_BIT;
    265 		code->alu.inst[ip].alpha_addr |=
    266 			((inst->Alpha.DestIndex & 0x1f) << R300_ALU_DSTA_SHIFT) |
    267 			R300_ALU_DSTA_REG;
    268 	}
    269 	if (inst->Alpha.OutputWriteMask) {
    270 		code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_OUTPUT |
    271             R300_ALPHA_TARGET(inst->Alpha.Target);
    272 		emit->node_flags |= R300_RGBA_OUT;
    273 	}
    274 	if (inst->Alpha.DepthWriteMask) {
    275 		code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_DEPTH;
    276 		emit->node_flags |= R300_W_OUT;
    277 		c->code->writes_depth = 1;
    278 	}
    279 	if (inst->Nop)
    280 		code->alu.inst[ip].rgb_inst |= R300_ALU_INSERT_NOP;
    281 
    282 	/* Handle Output Modifier
    283 	 * According to the r300 docs, there is no RC_OMOD_DISABLE for r300 */
    284 	if (inst->RGB.Omod) {
    285 		if (inst->RGB.Omod == RC_OMOD_DISABLE) {
    286 			rc_error(&c->Base, "RC_OMOD_DISABLE not supported");
    287 		}
    288 		code->alu.inst[ip].rgb_inst |=
    289 			(inst->RGB.Omod << R300_ALU_OUTC_MOD_SHIFT);
    290 	}
    291 	if (inst->Alpha.Omod) {
    292 		if (inst->Alpha.Omod == RC_OMOD_DISABLE) {
    293 			rc_error(&c->Base, "RC_OMOD_DISABLE not supported");
    294 		}
    295 		code->alu.inst[ip].alpha_inst |=
    296 			(inst->Alpha.Omod << R300_ALU_OUTC_MOD_SHIFT);
    297 	}
    298 	return 1;
    299 }
    300 
    301 
    302 /**
    303  * Finish the current node without advancing to the next one.
    304  */
    305 static int finish_node(struct r300_emit_state * emit)
    306 {
    307 	struct r300_fragment_program_compiler * c = emit->compiler;
    308 	struct r300_fragment_program_code *code = &emit->compiler->code->code.r300;
    309 	unsigned alu_offset;
    310 	unsigned alu_end;
    311 	unsigned tex_offset;
    312 	unsigned tex_end;
    313 
    314 	unsigned int alu_offset_msbs, alu_end_msbs;
    315 
    316 	if (code->alu.length == emit->node_first_alu) {
    317 		/* Generate a single NOP for this node */
    318 		struct rc_pair_instruction inst;
    319 		memset(&inst, 0, sizeof(inst));
    320 		if (!emit_alu(emit, &inst))
    321 			return 0;
    322 	}
    323 
    324 	alu_offset = emit->node_first_alu;
    325 	alu_end = code->alu.length - alu_offset - 1;
    326 	tex_offset = emit->node_first_tex;
    327 	tex_end = code->tex.length - tex_offset - 1;
    328 
    329 	if (code->tex.length == emit->node_first_tex) {
    330 		if (emit->current_node > 0) {
    331 			error("Node %i has no TEX instructions", emit->current_node);
    332 			return 0;
    333 		}
    334 
    335 		tex_end = 0;
    336 	} else {
    337 		if (emit->current_node == 0)
    338 			code->config |= R300_PFS_CNTL_FIRST_NODE_HAS_TEX;
    339 	}
    340 
    341 	/* Write the config register.
    342 	 * Note: The order in which the words for each node are written
    343 	 * is not correct here and needs to be fixed up once we're entirely
    344 	 * done
    345 	 *
    346 	 * Also note that the register specification from AMD is slightly
    347 	 * incorrect in its description of this register. */
    348 	code->code_addr[emit->current_node]  =
    349 			((alu_offset << R300_ALU_START_SHIFT)
    350 				& R300_ALU_START_MASK)
    351 			| ((alu_end << R300_ALU_SIZE_SHIFT)
    352 				& R300_ALU_SIZE_MASK)
    353 			| ((tex_offset << R300_TEX_START_SHIFT)
    354 				& R300_TEX_START_MASK)
    355 			| ((tex_end << R300_TEX_SIZE_SHIFT)
    356 				& R300_TEX_SIZE_MASK)
    357 			| emit->node_flags
    358 			| (get_msbs_tex(tex_offset, 5)
    359 				<< R400_TEX_START_MSB_SHIFT)
    360 			| (get_msbs_tex(tex_end, 5)
    361 				<< R400_TEX_SIZE_MSB_SHIFT)
    362 			;
    363 
    364 	/* Write r400 extended instruction fields.  These will be ignored on
    365 	 * r300 cards.  */
    366 	alu_offset_msbs = get_msbs_alu(alu_offset);
    367 	alu_end_msbs = get_msbs_alu(alu_end);
    368 	switch(emit->current_node) {
    369 	case 0:
    370 		code->r400_code_offset_ext |=
    371 			alu_offset_msbs << R400_ALU_START3_MSB_SHIFT
    372 			| alu_end_msbs << R400_ALU_SIZE3_MSB_SHIFT;
    373 		break;
    374 	case 1:
    375 		code->r400_code_offset_ext |=
    376 			alu_offset_msbs << R400_ALU_START2_MSB_SHIFT
    377 			| alu_end_msbs << R400_ALU_SIZE2_MSB_SHIFT;
    378 		break;
    379 	case 2:
    380 		code->r400_code_offset_ext |=
    381 			alu_offset_msbs << R400_ALU_START1_MSB_SHIFT
    382 			| alu_end_msbs << R400_ALU_SIZE1_MSB_SHIFT;
    383 		break;
    384 	case 3:
    385 		code->r400_code_offset_ext |=
    386 			alu_offset_msbs << R400_ALU_START0_MSB_SHIFT
    387 			| alu_end_msbs << R400_ALU_SIZE0_MSB_SHIFT;
    388 		break;
    389 	}
    390 	return 1;
    391 }
    392 
    393 
    394 /**
    395  * Begin a block of texture instructions.
    396  * Create the necessary indirection.
    397  */
    398 static int begin_tex(struct r300_emit_state * emit)
    399 {
    400 	PROG_CODE;
    401 
    402 	if (code->alu.length == emit->node_first_alu &&
    403 	    code->tex.length == emit->node_first_tex) {
    404 		return 1;
    405 	}
    406 
    407 	if (emit->current_node == 3) {
    408 		error("Too many texture indirections");
    409 		return 0;
    410 	}
    411 
    412 	if (!finish_node(emit))
    413 		return 0;
    414 
    415 	emit->current_node++;
    416 	emit->node_first_tex = code->tex.length;
    417 	emit->node_first_alu = code->alu.length;
    418 	emit->node_flags = 0;
    419 	return 1;
    420 }
    421 
    422 
    423 static int emit_tex(struct r300_emit_state * emit, struct rc_instruction * inst)
    424 {
    425 	unsigned int unit;
    426 	unsigned int dest;
    427 	unsigned int opcode;
    428 	PROG_CODE;
    429 
    430 	if (code->tex.length >= emit->compiler->Base.max_tex_insts) {
    431 		error("Too many TEX instructions");
    432 		return 0;
    433 	}
    434 
    435 	unit = inst->U.I.TexSrcUnit;
    436 	dest = inst->U.I.DstReg.Index;
    437 
    438 	switch(inst->U.I.Opcode) {
    439 	case RC_OPCODE_KIL: opcode = R300_TEX_OP_KIL; break;
    440 	case RC_OPCODE_TEX: opcode = R300_TEX_OP_LD; break;
    441 	case RC_OPCODE_TXB: opcode = R300_TEX_OP_TXB; break;
    442 	case RC_OPCODE_TXP: opcode = R300_TEX_OP_TXP; break;
    443 	default:
    444 		error("Unknown texture opcode %s", rc_get_opcode_info(inst->U.I.Opcode)->Name);
    445 		return 0;
    446 	}
    447 
    448 	if (inst->U.I.Opcode == RC_OPCODE_KIL) {
    449 		unit = 0;
    450 		dest = 0;
    451 	} else {
    452 		use_temporary(code, dest);
    453 	}
    454 
    455 	use_temporary(code, inst->U.I.SrcReg[0].Index);
    456 
    457 	code->tex.inst[code->tex.length++] =
    458 		((inst->U.I.SrcReg[0].Index << R300_SRC_ADDR_SHIFT)
    459 			& R300_SRC_ADDR_MASK)
    460 		| ((dest << R300_DST_ADDR_SHIFT)
    461 			& R300_DST_ADDR_MASK)
    462 		| (unit << R300_TEX_ID_SHIFT)
    463 		| (opcode << R300_TEX_INST_SHIFT)
    464 		| (inst->U.I.SrcReg[0].Index >= R300_PFS_NUM_TEMP_REGS ?
    465 			R400_SRC_ADDR_EXT_BIT : 0)
    466 		| (dest >= R300_PFS_NUM_TEMP_REGS ?
    467 			R400_DST_ADDR_EXT_BIT : 0)
    468 		;
    469 	return 1;
    470 }
    471 
    472 
    473 /**
    474  * Final compilation step: Turn the intermediate radeon_program into
    475  * machine-readable instructions.
    476  */
    477 void r300BuildFragmentProgramHwCode(struct radeon_compiler *c, void *user)
    478 {
    479 	struct r300_fragment_program_compiler *compiler = (struct r300_fragment_program_compiler*)c;
    480 	struct r300_emit_state emit;
    481 	struct r300_fragment_program_code *code = &compiler->code->code.r300;
    482 	unsigned int tex_end;
    483 
    484 	memset(&emit, 0, sizeof(emit));
    485 	emit.compiler = compiler;
    486 
    487 	memset(code, 0, sizeof(struct r300_fragment_program_code));
    488 
    489 	for(struct rc_instruction * inst = compiler->Base.Program.Instructions.Next;
    490 	    inst != &compiler->Base.Program.Instructions && !compiler->Base.Error;
    491 	    inst = inst->Next) {
    492 		if (inst->Type == RC_INSTRUCTION_NORMAL) {
    493 			if (inst->U.I.Opcode == RC_OPCODE_BEGIN_TEX) {
    494 				begin_tex(&emit);
    495 				continue;
    496 			}
    497 
    498 			emit_tex(&emit, inst);
    499 		} else {
    500 			emit_alu(&emit, &inst->U.P);
    501 		}
    502 	}
    503 
    504 	if (code->pixsize >= compiler->Base.max_temp_regs)
    505 		rc_error(&compiler->Base, "Too many hardware temporaries used.\n");
    506 
    507 	if (compiler->Base.Error)
    508 		return;
    509 
    510 	/* Finish the program */
    511 	finish_node(&emit);
    512 
    513 	code->config |= emit.current_node; /* FIRST_NODE_HAS_TEX set by finish_node */
    514 
    515 	/* Set r400 extended instruction fields.  These values will be ignored
    516 	 * on r300 cards. */
    517 	code->r400_code_offset_ext |=
    518 		(get_msbs_alu(0)
    519 				<< R400_ALU_OFFSET_MSB_SHIFT)
    520 		| (get_msbs_alu(code->alu.length - 1)
    521 				<< R400_ALU_SIZE_MSB_SHIFT);
    522 
    523 	tex_end = code->tex.length ? code->tex.length - 1 : 0;
    524 	code->code_offset =
    525 		((0 << R300_PFS_CNTL_ALU_OFFSET_SHIFT)
    526 			& R300_PFS_CNTL_ALU_OFFSET_MASK)
    527 		| (((code->alu.length - 1) << R300_PFS_CNTL_ALU_END_SHIFT)
    528 			& R300_PFS_CNTL_ALU_END_MASK)
    529 		| ((0 << R300_PFS_CNTL_TEX_OFFSET_SHIFT)
    530 			& R300_PFS_CNTL_TEX_OFFSET_MASK)
    531 		| ((tex_end << R300_PFS_CNTL_TEX_END_SHIFT)
    532 			& R300_PFS_CNTL_TEX_END_MASK)
    533 		| (get_msbs_tex(0, 5) << R400_TEX_START_MSB_SHIFT)
    534 		| (get_msbs_tex(tex_end, 6) << R400_TEX_SIZE_MSB_SHIFT)
    535 		;
    536 
    537 	if (emit.current_node < 3) {
    538 		int shift = 3 - emit.current_node;
    539 		int i;
    540 		for(i = emit.current_node; i >= 0; --i)
    541 			code->code_addr[shift + i] = code->code_addr[i];
    542 		for(i = 0; i < shift; ++i)
    543 			code->code_addr[i] = 0;
    544 	}
    545 
    546 	if (code->pixsize >= R300_PFS_NUM_TEMP_REGS
    547 	    || code->alu.length > R300_PFS_MAX_ALU_INST
    548 	    || code->tex.length > R300_PFS_MAX_TEX_INST) {
    549 
    550 		code->r390_mode = 1;
    551 	}
    552 }
    553