1 /* 2 * Copyright 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 /** @file brw_fs.cpp 25 * 26 * This file drives the GLSL IR -> LIR translation, contains the 27 * optimizations on the LIR, and drives the generation of native code 28 * from the LIR. 29 */ 30 31 extern "C" { 32 33 #include <sys/types.h> 34 35 #include "main/macros.h" 36 #include "main/shaderobj.h" 37 #include "main/uniforms.h" 38 #include "main/fbobject.h" 39 #include "program/prog_parameter.h" 40 #include "program/prog_print.h" 41 #include "program/register_allocate.h" 42 #include "program/sampler.h" 43 #include "program/hash_table.h" 44 #include "brw_context.h" 45 #include "brw_eu.h" 46 #include "brw_wm.h" 47 } 48 #include "brw_shader.h" 49 #include "brw_fs.h" 50 #include "glsl/glsl_types.h" 51 #include "glsl/ir_print_visitor.h" 52 53 void 54 fs_inst::init() 55 { 56 memset(this, 0, sizeof(*this)); 57 this->opcode = BRW_OPCODE_NOP; 58 this->conditional_mod = BRW_CONDITIONAL_NONE; 59 60 this->dst = reg_undef; 61 this->src[0] = reg_undef; 62 this->src[1] = reg_undef; 63 this->src[2] = reg_undef; 64 } 65 66 fs_inst::fs_inst() 67 { 68 init(); 69 } 70 71 fs_inst::fs_inst(enum opcode opcode) 72 { 73 init(); 74 this->opcode = opcode; 75 } 76 77 fs_inst::fs_inst(enum opcode opcode, fs_reg dst) 78 { 79 init(); 80 this->opcode = opcode; 81 this->dst = dst; 82 83 if (dst.file == GRF) 84 assert(dst.reg_offset >= 0); 85 } 86 87 fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0) 88 { 89 init(); 90 this->opcode = opcode; 91 this->dst = dst; 92 this->src[0] = src0; 93 94 if (dst.file == GRF) 95 assert(dst.reg_offset >= 0); 96 if (src[0].file == GRF) 97 assert(src[0].reg_offset >= 0); 98 } 99 100 fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1) 101 { 102 init(); 103 this->opcode = opcode; 104 this->dst = dst; 105 this->src[0] = src0; 106 this->src[1] = src1; 107 108 if (dst.file == GRF) 109 assert(dst.reg_offset >= 0); 110 if (src[0].file == GRF) 111 assert(src[0].reg_offset >= 0); 112 if (src[1].file == GRF) 113 assert(src[1].reg_offset >= 0); 114 } 115 116 fs_inst::fs_inst(enum opcode opcode, fs_reg dst, 117 fs_reg src0, fs_reg src1, fs_reg src2) 118 { 119 init(); 120 this->opcode = opcode; 121 this->dst = dst; 122 this->src[0] = src0; 123 this->src[1] = src1; 124 this->src[2] = src2; 125 126 if (dst.file == GRF) 127 assert(dst.reg_offset >= 0); 128 if (src[0].file == GRF) 129 assert(src[0].reg_offset >= 0); 130 if (src[1].file == GRF) 131 assert(src[1].reg_offset >= 0); 132 if (src[2].file == GRF) 133 assert(src[2].reg_offset >= 0); 134 } 135 136 bool 137 fs_inst::equals(fs_inst *inst) 138 { 139 return (opcode == inst->opcode && 140 dst.equals(inst->dst) && 141 src[0].equals(inst->src[0]) && 142 src[1].equals(inst->src[1]) && 143 src[2].equals(inst->src[2]) && 144 saturate == inst->saturate && 145 predicated == inst->predicated && 146 conditional_mod == inst->conditional_mod && 147 mlen == inst->mlen && 148 base_mrf == inst->base_mrf && 149 sampler == inst->sampler && 150 target == inst->target && 151 eot == inst->eot && 152 header_present == inst->header_present && 153 shadow_compare == inst->shadow_compare && 154 offset == inst->offset); 155 } 156 157 int 158 fs_inst::regs_written() 159 { 160 if (is_tex()) 161 return 4; 162 163 /* The SINCOS and INT_DIV_QUOTIENT_AND_REMAINDER math functions return 2, 164 * but we don't currently use them...nor do we have an opcode for them. 165 */ 166 167 return 1; 168 } 169 170 bool 171 fs_inst::overwrites_reg(const fs_reg ®) 172 { 173 return (reg.file == dst.file && 174 reg.reg == dst.reg && 175 reg.reg_offset >= dst.reg_offset && 176 reg.reg_offset < dst.reg_offset + regs_written()); 177 } 178 179 bool 180 fs_inst::is_tex() 181 { 182 return (opcode == SHADER_OPCODE_TEX || 183 opcode == FS_OPCODE_TXB || 184 opcode == SHADER_OPCODE_TXD || 185 opcode == SHADER_OPCODE_TXF || 186 opcode == SHADER_OPCODE_TXL || 187 opcode == SHADER_OPCODE_TXS); 188 } 189 190 bool 191 fs_inst::is_math() 192 { 193 return (opcode == SHADER_OPCODE_RCP || 194 opcode == SHADER_OPCODE_RSQ || 195 opcode == SHADER_OPCODE_SQRT || 196 opcode == SHADER_OPCODE_EXP2 || 197 opcode == SHADER_OPCODE_LOG2 || 198 opcode == SHADER_OPCODE_SIN || 199 opcode == SHADER_OPCODE_COS || 200 opcode == SHADER_OPCODE_INT_QUOTIENT || 201 opcode == SHADER_OPCODE_INT_REMAINDER || 202 opcode == SHADER_OPCODE_POW); 203 } 204 205 void 206 fs_reg::init() 207 { 208 memset(this, 0, sizeof(*this)); 209 this->smear = -1; 210 } 211 212 /** Generic unset register constructor. */ 213 fs_reg::fs_reg() 214 { 215 init(); 216 this->file = BAD_FILE; 217 } 218 219 /** Immediate value constructor. */ 220 fs_reg::fs_reg(float f) 221 { 222 init(); 223 this->file = IMM; 224 this->type = BRW_REGISTER_TYPE_F; 225 this->imm.f = f; 226 } 227 228 /** Immediate value constructor. */ 229 fs_reg::fs_reg(int32_t i) 230 { 231 init(); 232 this->file = IMM; 233 this->type = BRW_REGISTER_TYPE_D; 234 this->imm.i = i; 235 } 236 237 /** Immediate value constructor. */ 238 fs_reg::fs_reg(uint32_t u) 239 { 240 init(); 241 this->file = IMM; 242 this->type = BRW_REGISTER_TYPE_UD; 243 this->imm.u = u; 244 } 245 246 /** Fixed brw_reg Immediate value constructor. */ 247 fs_reg::fs_reg(struct brw_reg fixed_hw_reg) 248 { 249 init(); 250 this->file = FIXED_HW_REG; 251 this->fixed_hw_reg = fixed_hw_reg; 252 this->type = fixed_hw_reg.type; 253 } 254 255 bool 256 fs_reg::equals(const fs_reg &r) const 257 { 258 return (file == r.file && 259 reg == r.reg && 260 reg_offset == r.reg_offset && 261 type == r.type && 262 negate == r.negate && 263 abs == r.abs && 264 memcmp(&fixed_hw_reg, &r.fixed_hw_reg, 265 sizeof(fixed_hw_reg)) == 0 && 266 smear == r.smear && 267 imm.u == r.imm.u); 268 } 269 270 int 271 fs_visitor::type_size(const struct glsl_type *type) 272 { 273 unsigned int size, i; 274 275 switch (type->base_type) { 276 case GLSL_TYPE_UINT: 277 case GLSL_TYPE_INT: 278 case GLSL_TYPE_FLOAT: 279 case GLSL_TYPE_BOOL: 280 return type->components(); 281 case GLSL_TYPE_ARRAY: 282 return type_size(type->fields.array) * type->length; 283 case GLSL_TYPE_STRUCT: 284 size = 0; 285 for (i = 0; i < type->length; i++) { 286 size += type_size(type->fields.structure[i].type); 287 } 288 return size; 289 case GLSL_TYPE_SAMPLER: 290 /* Samplers take up no register space, since they're baked in at 291 * link time. 292 */ 293 return 0; 294 default: 295 assert(!"not reached"); 296 return 0; 297 } 298 } 299 300 void 301 fs_visitor::fail(const char *format, ...) 302 { 303 va_list va; 304 char *msg; 305 306 if (failed) 307 return; 308 309 failed = true; 310 311 va_start(va, format); 312 msg = ralloc_vasprintf(mem_ctx, format, va); 313 va_end(va); 314 msg = ralloc_asprintf(mem_ctx, "FS compile failed: %s\n", msg); 315 316 this->fail_msg = msg; 317 318 if (INTEL_DEBUG & DEBUG_WM) { 319 fprintf(stderr, "%s", msg); 320 } 321 } 322 323 fs_inst * 324 fs_visitor::emit(enum opcode opcode) 325 { 326 return emit(fs_inst(opcode)); 327 } 328 329 fs_inst * 330 fs_visitor::emit(enum opcode opcode, fs_reg dst) 331 { 332 return emit(fs_inst(opcode, dst)); 333 } 334 335 fs_inst * 336 fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0) 337 { 338 return emit(fs_inst(opcode, dst, src0)); 339 } 340 341 fs_inst * 342 fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1) 343 { 344 return emit(fs_inst(opcode, dst, src0, src1)); 345 } 346 347 fs_inst * 348 fs_visitor::emit(enum opcode opcode, fs_reg dst, 349 fs_reg src0, fs_reg src1, fs_reg src2) 350 { 351 return emit(fs_inst(opcode, dst, src0, src1, src2)); 352 } 353 354 void 355 fs_visitor::push_force_uncompressed() 356 { 357 force_uncompressed_stack++; 358 } 359 360 void 361 fs_visitor::pop_force_uncompressed() 362 { 363 force_uncompressed_stack--; 364 assert(force_uncompressed_stack >= 0); 365 } 366 367 void 368 fs_visitor::push_force_sechalf() 369 { 370 force_sechalf_stack++; 371 } 372 373 void 374 fs_visitor::pop_force_sechalf() 375 { 376 force_sechalf_stack--; 377 assert(force_sechalf_stack >= 0); 378 } 379 380 /** 381 * Returns how many MRFs an FS opcode will write over. 382 * 383 * Note that this is not the 0 or 1 implied writes in an actual gen 384 * instruction -- the FS opcodes often generate MOVs in addition. 385 */ 386 int 387 fs_visitor::implied_mrf_writes(fs_inst *inst) 388 { 389 if (inst->mlen == 0) 390 return 0; 391 392 switch (inst->opcode) { 393 case SHADER_OPCODE_RCP: 394 case SHADER_OPCODE_RSQ: 395 case SHADER_OPCODE_SQRT: 396 case SHADER_OPCODE_EXP2: 397 case SHADER_OPCODE_LOG2: 398 case SHADER_OPCODE_SIN: 399 case SHADER_OPCODE_COS: 400 return 1 * c->dispatch_width / 8; 401 case SHADER_OPCODE_POW: 402 case SHADER_OPCODE_INT_QUOTIENT: 403 case SHADER_OPCODE_INT_REMAINDER: 404 return 2 * c->dispatch_width / 8; 405 case SHADER_OPCODE_TEX: 406 case FS_OPCODE_TXB: 407 case SHADER_OPCODE_TXD: 408 case SHADER_OPCODE_TXF: 409 case SHADER_OPCODE_TXL: 410 case SHADER_OPCODE_TXS: 411 return 1; 412 case FS_OPCODE_FB_WRITE: 413 return 2; 414 case FS_OPCODE_PULL_CONSTANT_LOAD: 415 case FS_OPCODE_UNSPILL: 416 return 1; 417 case FS_OPCODE_SPILL: 418 return 2; 419 default: 420 assert(!"not reached"); 421 return inst->mlen; 422 } 423 } 424 425 int 426 fs_visitor::virtual_grf_alloc(int size) 427 { 428 if (virtual_grf_array_size <= virtual_grf_count) { 429 if (virtual_grf_array_size == 0) 430 virtual_grf_array_size = 16; 431 else 432 virtual_grf_array_size *= 2; 433 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int, 434 virtual_grf_array_size); 435 } 436 virtual_grf_sizes[virtual_grf_count] = size; 437 return virtual_grf_count++; 438 } 439 440 /** Fixed HW reg constructor. */ 441 fs_reg::fs_reg(enum register_file file, int reg) 442 { 443 init(); 444 this->file = file; 445 this->reg = reg; 446 this->type = BRW_REGISTER_TYPE_F; 447 } 448 449 /** Fixed HW reg constructor. */ 450 fs_reg::fs_reg(enum register_file file, int reg, uint32_t type) 451 { 452 init(); 453 this->file = file; 454 this->reg = reg; 455 this->type = type; 456 } 457 458 /** Automatic reg constructor. */ 459 fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type) 460 { 461 init(); 462 463 this->file = GRF; 464 this->reg = v->virtual_grf_alloc(v->type_size(type)); 465 this->reg_offset = 0; 466 this->type = brw_type_for_base_type(type); 467 } 468 469 fs_reg * 470 fs_visitor::variable_storage(ir_variable *var) 471 { 472 return (fs_reg *)hash_table_find(this->variable_ht, var); 473 } 474 475 void 476 import_uniforms_callback(const void *key, 477 void *data, 478 void *closure) 479 { 480 struct hash_table *dst_ht = (struct hash_table *)closure; 481 const fs_reg *reg = (const fs_reg *)data; 482 483 if (reg->file != UNIFORM) 484 return; 485 486 hash_table_insert(dst_ht, data, key); 487 } 488 489 /* For 16-wide, we need to follow from the uniform setup of 8-wide dispatch. 490 * This brings in those uniform definitions 491 */ 492 void 493 fs_visitor::import_uniforms(fs_visitor *v) 494 { 495 hash_table_call_foreach(v->variable_ht, 496 import_uniforms_callback, 497 variable_ht); 498 this->params_remap = v->params_remap; 499 } 500 501 /* Our support for uniforms is piggy-backed on the struct 502 * gl_fragment_program, because that's where the values actually 503 * get stored, rather than in some global gl_shader_program uniform 504 * store. 505 */ 506 int 507 fs_visitor::setup_uniform_values(int loc, const glsl_type *type) 508 { 509 unsigned int offset = 0; 510 511 if (type->is_matrix()) { 512 const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT, 513 type->vector_elements, 514 1); 515 516 for (unsigned int i = 0; i < type->matrix_columns; i++) { 517 offset += setup_uniform_values(loc + offset, column); 518 } 519 520 return offset; 521 } 522 523 switch (type->base_type) { 524 case GLSL_TYPE_FLOAT: 525 case GLSL_TYPE_UINT: 526 case GLSL_TYPE_INT: 527 case GLSL_TYPE_BOOL: 528 for (unsigned int i = 0; i < type->vector_elements; i++) { 529 unsigned int param = c->prog_data.nr_params++; 530 531 assert(param < ARRAY_SIZE(c->prog_data.param)); 532 533 this->param_index[param] = loc; 534 this->param_offset[param] = i; 535 } 536 return 1; 537 538 case GLSL_TYPE_STRUCT: 539 for (unsigned int i = 0; i < type->length; i++) { 540 offset += setup_uniform_values(loc + offset, 541 type->fields.structure[i].type); 542 } 543 return offset; 544 545 case GLSL_TYPE_ARRAY: 546 for (unsigned int i = 0; i < type->length; i++) { 547 offset += setup_uniform_values(loc + offset, type->fields.array); 548 } 549 return offset; 550 551 case GLSL_TYPE_SAMPLER: 552 /* The sampler takes up a slot, but we don't use any values from it. */ 553 return 1; 554 555 default: 556 assert(!"not reached"); 557 return 0; 558 } 559 } 560 561 562 /* Our support for builtin uniforms is even scarier than non-builtin. 563 * It sits on top of the PROG_STATE_VAR parameters that are 564 * automatically updated from GL context state. 565 */ 566 void 567 fs_visitor::setup_builtin_uniform_values(ir_variable *ir) 568 { 569 const ir_state_slot *const slots = ir->state_slots; 570 assert(ir->state_slots != NULL); 571 572 for (unsigned int i = 0; i < ir->num_state_slots; i++) { 573 /* This state reference has already been setup by ir_to_mesa, but we'll 574 * get the same index back here. 575 */ 576 int index = _mesa_add_state_reference(this->fp->Base.Parameters, 577 (gl_state_index *)slots[i].tokens); 578 579 /* Add each of the unique swizzles of the element as a parameter. 580 * This'll end up matching the expected layout of the 581 * array/matrix/structure we're trying to fill in. 582 */ 583 int last_swiz = -1; 584 for (unsigned int j = 0; j < 4; j++) { 585 int swiz = GET_SWZ(slots[i].swizzle, j); 586 if (swiz == last_swiz) 587 break; 588 last_swiz = swiz; 589 590 this->param_index[c->prog_data.nr_params] = index; 591 this->param_offset[c->prog_data.nr_params] = swiz; 592 c->prog_data.nr_params++; 593 } 594 } 595 } 596 597 fs_reg * 598 fs_visitor::emit_fragcoord_interpolation(ir_variable *ir) 599 { 600 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); 601 fs_reg wpos = *reg; 602 bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo; 603 604 /* gl_FragCoord.x */ 605 if (ir->pixel_center_integer) { 606 emit(BRW_OPCODE_MOV, wpos, this->pixel_x); 607 } else { 608 emit(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)); 609 } 610 wpos.reg_offset++; 611 612 /* gl_FragCoord.y */ 613 if (!flip && ir->pixel_center_integer) { 614 emit(BRW_OPCODE_MOV, wpos, this->pixel_y); 615 } else { 616 fs_reg pixel_y = this->pixel_y; 617 float offset = (ir->pixel_center_integer ? 0.0 : 0.5); 618 619 if (flip) { 620 pixel_y.negate = true; 621 offset += c->key.drawable_height - 1.0; 622 } 623 624 emit(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)); 625 } 626 wpos.reg_offset++; 627 628 /* gl_FragCoord.z */ 629 if (intel->gen >= 6) { 630 emit(BRW_OPCODE_MOV, wpos, 631 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))); 632 } else { 633 emit(FS_OPCODE_LINTERP, wpos, 634 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC], 635 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC], 636 interp_reg(FRAG_ATTRIB_WPOS, 2)); 637 } 638 wpos.reg_offset++; 639 640 /* gl_FragCoord.w: Already set up in emit_interpolation */ 641 emit(BRW_OPCODE_MOV, wpos, this->wpos_w); 642 643 return reg; 644 } 645 646 fs_inst * 647 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp, 648 glsl_interp_qualifier interpolation_mode, 649 bool is_centroid) 650 { 651 brw_wm_barycentric_interp_mode barycoord_mode; 652 if (is_centroid) { 653 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH) 654 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC; 655 else 656 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC; 657 } else { 658 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH) 659 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC; 660 else 661 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC; 662 } 663 return emit(FS_OPCODE_LINTERP, attr, 664 this->delta_x[barycoord_mode], 665 this->delta_y[barycoord_mode], interp); 666 } 667 668 fs_reg * 669 fs_visitor::emit_general_interpolation(ir_variable *ir) 670 { 671 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); 672 reg->type = brw_type_for_base_type(ir->type->get_scalar_type()); 673 fs_reg attr = *reg; 674 675 unsigned int array_elements; 676 const glsl_type *type; 677 678 if (ir->type->is_array()) { 679 array_elements = ir->type->length; 680 if (array_elements == 0) { 681 fail("dereferenced array '%s' has length 0\n", ir->name); 682 } 683 type = ir->type->fields.array; 684 } else { 685 array_elements = 1; 686 type = ir->type; 687 } 688 689 glsl_interp_qualifier interpolation_mode = 690 ir->determine_interpolation_mode(c->key.flat_shade); 691 692 int location = ir->location; 693 for (unsigned int i = 0; i < array_elements; i++) { 694 for (unsigned int j = 0; j < type->matrix_columns; j++) { 695 if (urb_setup[location] == -1) { 696 /* If there's no incoming setup data for this slot, don't 697 * emit interpolation for it. 698 */ 699 attr.reg_offset += type->vector_elements; 700 location++; 701 continue; 702 } 703 704 if (interpolation_mode == INTERP_QUALIFIER_FLAT) { 705 /* Constant interpolation (flat shading) case. The SF has 706 * handed us defined values in only the constant offset 707 * field of the setup reg. 708 */ 709 for (unsigned int k = 0; k < type->vector_elements; k++) { 710 struct brw_reg interp = interp_reg(location, k); 711 interp = suboffset(interp, 3); 712 interp.type = reg->type; 713 emit(FS_OPCODE_CINTERP, attr, fs_reg(interp)); 714 attr.reg_offset++; 715 } 716 } else { 717 /* Smooth/noperspective interpolation case. */ 718 for (unsigned int k = 0; k < type->vector_elements; k++) { 719 /* FINISHME: At some point we probably want to push 720 * this farther by giving similar treatment to the 721 * other potentially constant components of the 722 * attribute, as well as making brw_vs_constval.c 723 * handle varyings other than gl_TexCoord. 724 */ 725 if (location >= FRAG_ATTRIB_TEX0 && 726 location <= FRAG_ATTRIB_TEX7 && 727 k == 3 && !(c->key.proj_attrib_mask & (1 << location))) { 728 emit(BRW_OPCODE_MOV, attr, fs_reg(1.0f)); 729 } else { 730 struct brw_reg interp = interp_reg(location, k); 731 emit_linterp(attr, fs_reg(interp), interpolation_mode, 732 ir->centroid); 733 if (brw->needs_unlit_centroid_workaround && ir->centroid) { 734 /* Get the pixel/sample mask into f0 so that we know 735 * which pixels are lit. Then, for each channel that is 736 * unlit, replace the centroid data with non-centroid 737 * data. 738 */ 739 emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS, attr); 740 fs_inst *inst = emit_linterp(attr, fs_reg(interp), 741 interpolation_mode, false); 742 inst->predicated = true; 743 inst->predicate_inverse = true; 744 } 745 if (intel->gen < 6) { 746 emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w); 747 } 748 } 749 attr.reg_offset++; 750 } 751 752 } 753 location++; 754 } 755 } 756 757 return reg; 758 } 759 760 fs_reg * 761 fs_visitor::emit_frontfacing_interpolation(ir_variable *ir) 762 { 763 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); 764 765 /* The frontfacing comes in as a bit in the thread payload. */ 766 if (intel->gen >= 6) { 767 emit(BRW_OPCODE_ASR, *reg, 768 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)), 769 fs_reg(15)); 770 emit(BRW_OPCODE_NOT, *reg, *reg); 771 emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1)); 772 } else { 773 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD); 774 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives 775 * us front face 776 */ 777 fs_inst *inst = emit(BRW_OPCODE_CMP, *reg, 778 fs_reg(r1_6ud), 779 fs_reg(1u << 31)); 780 inst->conditional_mod = BRW_CONDITIONAL_L; 781 emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)); 782 } 783 784 return reg; 785 } 786 787 fs_inst * 788 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src) 789 { 790 switch (opcode) { 791 case SHADER_OPCODE_RCP: 792 case SHADER_OPCODE_RSQ: 793 case SHADER_OPCODE_SQRT: 794 case SHADER_OPCODE_EXP2: 795 case SHADER_OPCODE_LOG2: 796 case SHADER_OPCODE_SIN: 797 case SHADER_OPCODE_COS: 798 break; 799 default: 800 assert(!"not reached: bad math opcode"); 801 return NULL; 802 } 803 804 /* Can't do hstride == 0 args to gen6 math, so expand it out. We 805 * might be able to do better by doing execsize = 1 math and then 806 * expanding that result out, but we would need to be careful with 807 * masking. 808 * 809 * Gen 6 hardware ignores source modifiers (negate and abs) on math 810 * instructions, so we also move to a temp to set those up. 811 */ 812 if (intel->gen == 6 && (src.file == UNIFORM || 813 src.abs || 814 src.negate)) { 815 fs_reg expanded = fs_reg(this, glsl_type::float_type); 816 emit(BRW_OPCODE_MOV, expanded, src); 817 src = expanded; 818 } 819 820 fs_inst *inst = emit(opcode, dst, src); 821 822 if (intel->gen < 6) { 823 inst->base_mrf = 2; 824 inst->mlen = c->dispatch_width / 8; 825 } 826 827 return inst; 828 } 829 830 fs_inst * 831 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1) 832 { 833 int base_mrf = 2; 834 fs_inst *inst; 835 836 switch (opcode) { 837 case SHADER_OPCODE_POW: 838 case SHADER_OPCODE_INT_QUOTIENT: 839 case SHADER_OPCODE_INT_REMAINDER: 840 break; 841 default: 842 assert(!"not reached: unsupported binary math opcode."); 843 return NULL; 844 } 845 846 if (intel->gen >= 7) { 847 inst = emit(opcode, dst, src0, src1); 848 } else if (intel->gen == 6) { 849 /* Can't do hstride == 0 args to gen6 math, so expand it out. 850 * 851 * The hardware ignores source modifiers (negate and abs) on math 852 * instructions, so we also move to a temp to set those up. 853 */ 854 if (src0.file == UNIFORM || src0.abs || src0.negate) { 855 fs_reg expanded = fs_reg(this, glsl_type::float_type); 856 expanded.type = src0.type; 857 emit(BRW_OPCODE_MOV, expanded, src0); 858 src0 = expanded; 859 } 860 861 if (src1.file == UNIFORM || src1.abs || src1.negate) { 862 fs_reg expanded = fs_reg(this, glsl_type::float_type); 863 expanded.type = src1.type; 864 emit(BRW_OPCODE_MOV, expanded, src1); 865 src1 = expanded; 866 } 867 868 inst = emit(opcode, dst, src0, src1); 869 } else { 870 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13 871 * "Message Payload": 872 * 873 * "Operand0[7]. For the INT DIV functions, this operand is the 874 * denominator." 875 * ... 876 * "Operand1[7]. For the INT DIV functions, this operand is the 877 * numerator." 878 */ 879 bool is_int_div = opcode != SHADER_OPCODE_POW; 880 fs_reg &op0 = is_int_div ? src1 : src0; 881 fs_reg &op1 = is_int_div ? src0 : src1; 882 883 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1, op1.type), op1); 884 inst = emit(opcode, dst, op0, reg_null_f); 885 886 inst->base_mrf = base_mrf; 887 inst->mlen = 2 * c->dispatch_width / 8; 888 } 889 return inst; 890 } 891 892 /** 893 * To be called after the last _mesa_add_state_reference() call, to 894 * set up prog_data.param[] for assign_curb_setup() and 895 * setup_pull_constants(). 896 */ 897 void 898 fs_visitor::setup_paramvalues_refs() 899 { 900 if (c->dispatch_width != 8) 901 return; 902 903 /* Set up the pointers to ParamValues now that that array is finalized. */ 904 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) { 905 c->prog_data.param[i] = 906 (const float *)fp->Base.Parameters->ParameterValues[this->param_index[i]] + 907 this->param_offset[i]; 908 } 909 } 910 911 void 912 fs_visitor::assign_curb_setup() 913 { 914 c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8; 915 if (c->dispatch_width == 8) { 916 c->prog_data.first_curbe_grf = c->nr_payload_regs; 917 } else { 918 c->prog_data.first_curbe_grf_16 = c->nr_payload_regs; 919 } 920 921 /* Map the offsets in the UNIFORM file to fixed HW regs. */ 922 foreach_list(node, &this->instructions) { 923 fs_inst *inst = (fs_inst *)node; 924 925 for (unsigned int i = 0; i < 3; i++) { 926 if (inst->src[i].file == UNIFORM) { 927 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset; 928 struct brw_reg brw_reg = brw_vec1_grf(c->nr_payload_regs + 929 constant_nr / 8, 930 constant_nr % 8); 931 932 inst->src[i].file = FIXED_HW_REG; 933 inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type); 934 } 935 } 936 } 937 } 938 939 void 940 fs_visitor::calculate_urb_setup() 941 { 942 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) { 943 urb_setup[i] = -1; 944 } 945 946 int urb_next = 0; 947 /* Figure out where each of the incoming setup attributes lands. */ 948 if (intel->gen >= 6) { 949 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) { 950 if (fp->Base.InputsRead & BITFIELD64_BIT(i)) { 951 urb_setup[i] = urb_next++; 952 } 953 } 954 } else { 955 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */ 956 for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) { 957 /* Point size is packed into the header, not as a general attribute */ 958 if (i == VERT_RESULT_PSIZ) 959 continue; 960 961 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) { 962 int fp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i); 963 964 /* The back color slot is skipped when the front color is 965 * also written to. In addition, some slots can be 966 * written in the vertex shader and not read in the 967 * fragment shader. So the register number must always be 968 * incremented, mapped or not. 969 */ 970 if (fp_index >= 0) 971 urb_setup[fp_index] = urb_next; 972 urb_next++; 973 } 974 } 975 976 /* 977 * It's a FS only attribute, and we did interpolation for this attribute 978 * in SF thread. So, count it here, too. 979 * 980 * See compile_sf_prog() for more info. 981 */ 982 if (fp->Base.InputsRead & BITFIELD64_BIT(FRAG_ATTRIB_PNTC)) 983 urb_setup[FRAG_ATTRIB_PNTC] = urb_next++; 984 } 985 986 /* Each attribute is 4 setup channels, each of which is half a reg. */ 987 c->prog_data.urb_read_length = urb_next * 2; 988 } 989 990 void 991 fs_visitor::assign_urb_setup() 992 { 993 int urb_start = c->nr_payload_regs + c->prog_data.curb_read_length; 994 995 /* Offset all the urb_setup[] index by the actual position of the 996 * setup regs, now that the location of the constants has been chosen. 997 */ 998 foreach_list(node, &this->instructions) { 999 fs_inst *inst = (fs_inst *)node; 1000 1001 if (inst->opcode == FS_OPCODE_LINTERP) { 1002 assert(inst->src[2].file == FIXED_HW_REG); 1003 inst->src[2].fixed_hw_reg.nr += urb_start; 1004 } 1005 1006 if (inst->opcode == FS_OPCODE_CINTERP) { 1007 assert(inst->src[0].file == FIXED_HW_REG); 1008 inst->src[0].fixed_hw_reg.nr += urb_start; 1009 } 1010 } 1011 1012 this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length; 1013 } 1014 1015 /** 1016 * Split large virtual GRFs into separate components if we can. 1017 * 1018 * This is mostly duplicated with what brw_fs_vector_splitting does, 1019 * but that's really conservative because it's afraid of doing 1020 * splitting that doesn't result in real progress after the rest of 1021 * the optimization phases, which would cause infinite looping in 1022 * optimization. We can do it once here, safely. This also has the 1023 * opportunity to split interpolated values, or maybe even uniforms, 1024 * which we don't have at the IR level. 1025 * 1026 * We want to split, because virtual GRFs are what we register 1027 * allocate and spill (due to contiguousness requirements for some 1028 * instructions), and they're what we naturally generate in the 1029 * codegen process, but most virtual GRFs don't actually need to be 1030 * contiguous sets of GRFs. If we split, we'll end up with reduced 1031 * live intervals and better dead code elimination and coalescing. 1032 */ 1033 void 1034 fs_visitor::split_virtual_grfs() 1035 { 1036 int num_vars = this->virtual_grf_count; 1037 bool split_grf[num_vars]; 1038 int new_virtual_grf[num_vars]; 1039 1040 /* Try to split anything > 0 sized. */ 1041 for (int i = 0; i < num_vars; i++) { 1042 if (this->virtual_grf_sizes[i] != 1) 1043 split_grf[i] = true; 1044 else 1045 split_grf[i] = false; 1046 } 1047 1048 if (brw->has_pln && 1049 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF) { 1050 /* PLN opcodes rely on the delta_xy being contiguous. We only have to 1051 * check this for BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC, because prior to 1052 * Gen6, that was the only supported interpolation mode, and since Gen6, 1053 * delta_x and delta_y are in fixed hardware registers. 1054 */ 1055 split_grf[this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg] = 1056 false; 1057 } 1058 1059 foreach_list(node, &this->instructions) { 1060 fs_inst *inst = (fs_inst *)node; 1061 1062 /* If there's a SEND message that requires contiguous destination 1063 * registers, no splitting is allowed. 1064 */ 1065 if (inst->regs_written() > 1) { 1066 split_grf[inst->dst.reg] = false; 1067 } 1068 } 1069 1070 /* Allocate new space for split regs. Note that the virtual 1071 * numbers will be contiguous. 1072 */ 1073 for (int i = 0; i < num_vars; i++) { 1074 if (split_grf[i]) { 1075 new_virtual_grf[i] = virtual_grf_alloc(1); 1076 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) { 1077 int reg = virtual_grf_alloc(1); 1078 assert(reg == new_virtual_grf[i] + j - 1); 1079 (void) reg; 1080 } 1081 this->virtual_grf_sizes[i] = 1; 1082 } 1083 } 1084 1085 foreach_list(node, &this->instructions) { 1086 fs_inst *inst = (fs_inst *)node; 1087 1088 if (inst->dst.file == GRF && 1089 split_grf[inst->dst.reg] && 1090 inst->dst.reg_offset != 0) { 1091 inst->dst.reg = (new_virtual_grf[inst->dst.reg] + 1092 inst->dst.reg_offset - 1); 1093 inst->dst.reg_offset = 0; 1094 } 1095 for (int i = 0; i < 3; i++) { 1096 if (inst->src[i].file == GRF && 1097 split_grf[inst->src[i].reg] && 1098 inst->src[i].reg_offset != 0) { 1099 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] + 1100 inst->src[i].reg_offset - 1); 1101 inst->src[i].reg_offset = 0; 1102 } 1103 } 1104 } 1105 this->live_intervals_valid = false; 1106 } 1107 1108 bool 1109 fs_visitor::remove_dead_constants() 1110 { 1111 if (c->dispatch_width == 8) { 1112 this->params_remap = ralloc_array(mem_ctx, int, c->prog_data.nr_params); 1113 1114 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) 1115 this->params_remap[i] = -1; 1116 1117 /* Find which params are still in use. */ 1118 foreach_list(node, &this->instructions) { 1119 fs_inst *inst = (fs_inst *)node; 1120 1121 for (int i = 0; i < 3; i++) { 1122 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset; 1123 1124 if (inst->src[i].file != UNIFORM) 1125 continue; 1126 1127 assert(constant_nr < (int)c->prog_data.nr_params); 1128 1129 /* For now, set this to non-negative. We'll give it the 1130 * actual new number in a moment, in order to keep the 1131 * register numbers nicely ordered. 1132 */ 1133 this->params_remap[constant_nr] = 0; 1134 } 1135 } 1136 1137 /* Figure out what the new numbers for the params will be. At some 1138 * point when we're doing uniform array access, we're going to want 1139 * to keep the distinction between .reg and .reg_offset, but for 1140 * now we don't care. 1141 */ 1142 unsigned int new_nr_params = 0; 1143 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) { 1144 if (this->params_remap[i] != -1) { 1145 this->params_remap[i] = new_nr_params++; 1146 } 1147 } 1148 1149 /* Update the list of params to be uploaded to match our new numbering. */ 1150 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) { 1151 int remapped = this->params_remap[i]; 1152 1153 if (remapped == -1) 1154 continue; 1155 1156 /* We've already done setup_paramvalues_refs() so no need to worry 1157 * about param_index and param_offset. 1158 */ 1159 c->prog_data.param[remapped] = c->prog_data.param[i]; 1160 } 1161 1162 c->prog_data.nr_params = new_nr_params; 1163 } else { 1164 /* This should have been generated in the 8-wide pass already. */ 1165 assert(this->params_remap); 1166 } 1167 1168 /* Now do the renumbering of the shader to remove unused params. */ 1169 foreach_list(node, &this->instructions) { 1170 fs_inst *inst = (fs_inst *)node; 1171 1172 for (int i = 0; i < 3; i++) { 1173 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset; 1174 1175 if (inst->src[i].file != UNIFORM) 1176 continue; 1177 1178 assert(this->params_remap[constant_nr] != -1); 1179 inst->src[i].reg = this->params_remap[constant_nr]; 1180 inst->src[i].reg_offset = 0; 1181 } 1182 } 1183 1184 return true; 1185 } 1186 1187 /** 1188 * Choose accesses from the UNIFORM file to demote to using the pull 1189 * constant buffer. 1190 * 1191 * We allow a fragment shader to have more than the specified minimum 1192 * maximum number of fragment shader uniform components (64). If 1193 * there are too many of these, they'd fill up all of register space. 1194 * So, this will push some of them out to the pull constant buffer and 1195 * update the program to load them. 1196 */ 1197 void 1198 fs_visitor::setup_pull_constants() 1199 { 1200 /* Only allow 16 registers (128 uniform components) as push constants. */ 1201 unsigned int max_uniform_components = 16 * 8; 1202 if (c->prog_data.nr_params <= max_uniform_components) 1203 return; 1204 1205 if (c->dispatch_width == 16) { 1206 fail("Pull constants not supported in 16-wide\n"); 1207 return; 1208 } 1209 1210 /* Just demote the end of the list. We could probably do better 1211 * here, demoting things that are rarely used in the program first. 1212 */ 1213 int pull_uniform_base = max_uniform_components; 1214 int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base; 1215 1216 foreach_list(node, &this->instructions) { 1217 fs_inst *inst = (fs_inst *)node; 1218 1219 for (int i = 0; i < 3; i++) { 1220 if (inst->src[i].file != UNIFORM) 1221 continue; 1222 1223 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset; 1224 if (uniform_nr < pull_uniform_base) 1225 continue; 1226 1227 fs_reg dst = fs_reg(this, glsl_type::float_type); 1228 fs_reg index = fs_reg((unsigned)SURF_INDEX_FRAG_CONST_BUFFER); 1229 fs_reg offset = fs_reg((unsigned)(((uniform_nr - 1230 pull_uniform_base) * 4) & ~15)); 1231 fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD, 1232 dst, index, offset); 1233 pull->ir = inst->ir; 1234 pull->annotation = inst->annotation; 1235 pull->base_mrf = 14; 1236 pull->mlen = 1; 1237 1238 inst->insert_before(pull); 1239 1240 inst->src[i].file = GRF; 1241 inst->src[i].reg = dst.reg; 1242 inst->src[i].reg_offset = 0; 1243 inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3; 1244 } 1245 } 1246 1247 for (int i = 0; i < pull_uniform_count; i++) { 1248 c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i]; 1249 } 1250 c->prog_data.nr_params -= pull_uniform_count; 1251 c->prog_data.nr_pull_params = pull_uniform_count; 1252 } 1253 1254 /** 1255 * Attempts to move immediate constants into the immediate 1256 * constant slot of following instructions. 1257 * 1258 * Immediate constants are a bit tricky -- they have to be in the last 1259 * operand slot, you can't do abs/negate on them, 1260 */ 1261 1262 bool 1263 fs_visitor::propagate_constants() 1264 { 1265 bool progress = false; 1266 1267 calculate_live_intervals(); 1268 1269 foreach_list(node, &this->instructions) { 1270 fs_inst *inst = (fs_inst *)node; 1271 1272 if (inst->opcode != BRW_OPCODE_MOV || 1273 inst->predicated || 1274 inst->dst.file != GRF || inst->src[0].file != IMM || 1275 inst->dst.type != inst->src[0].type || 1276 (c->dispatch_width == 16 && 1277 (inst->force_uncompressed || inst->force_sechalf))) 1278 continue; 1279 1280 /* Don't bother with cases where we should have had the 1281 * operation on the constant folded in GLSL already. 1282 */ 1283 if (inst->saturate) 1284 continue; 1285 1286 /* Found a move of a constant to a GRF. Find anything else using the GRF 1287 * before it's written, and replace it with the constant if we can. 1288 */ 1289 for (fs_inst *scan_inst = (fs_inst *)inst->next; 1290 !scan_inst->is_tail_sentinel(); 1291 scan_inst = (fs_inst *)scan_inst->next) { 1292 if (scan_inst->opcode == BRW_OPCODE_DO || 1293 scan_inst->opcode == BRW_OPCODE_WHILE || 1294 scan_inst->opcode == BRW_OPCODE_ELSE || 1295 scan_inst->opcode == BRW_OPCODE_ENDIF) { 1296 break; 1297 } 1298 1299 for (int i = 2; i >= 0; i--) { 1300 if (scan_inst->src[i].file != GRF || 1301 scan_inst->src[i].reg != inst->dst.reg || 1302 scan_inst->src[i].reg_offset != inst->dst.reg_offset) 1303 continue; 1304 1305 /* Don't bother with cases where we should have had the 1306 * operation on the constant folded in GLSL already. 1307 */ 1308 if (scan_inst->src[i].negate || scan_inst->src[i].abs) 1309 continue; 1310 1311 switch (scan_inst->opcode) { 1312 case BRW_OPCODE_MOV: 1313 scan_inst->src[i] = inst->src[0]; 1314 progress = true; 1315 break; 1316 1317 case BRW_OPCODE_MUL: 1318 case BRW_OPCODE_ADD: 1319 if (i == 1) { 1320 scan_inst->src[i] = inst->src[0]; 1321 progress = true; 1322 } else if (i == 0 && scan_inst->src[1].file != IMM) { 1323 /* Fit this constant in by commuting the operands. 1324 * Exception: we can't do this for 32-bit integer MUL 1325 * because it's asymmetric. 1326 */ 1327 if (scan_inst->opcode == BRW_OPCODE_MUL && 1328 (scan_inst->src[1].type == BRW_REGISTER_TYPE_D || 1329 scan_inst->src[1].type == BRW_REGISTER_TYPE_UD)) 1330 break; 1331 scan_inst->src[0] = scan_inst->src[1]; 1332 scan_inst->src[1] = inst->src[0]; 1333 progress = true; 1334 } 1335 break; 1336 1337 case BRW_OPCODE_CMP: 1338 case BRW_OPCODE_IF: 1339 if (i == 1) { 1340 scan_inst->src[i] = inst->src[0]; 1341 progress = true; 1342 } else if (i == 0 && scan_inst->src[1].file != IMM) { 1343 uint32_t new_cmod; 1344 1345 new_cmod = brw_swap_cmod(scan_inst->conditional_mod); 1346 if (new_cmod != ~0u) { 1347 /* Fit this constant in by swapping the operands and 1348 * flipping the test 1349 */ 1350 scan_inst->src[0] = scan_inst->src[1]; 1351 scan_inst->src[1] = inst->src[0]; 1352 scan_inst->conditional_mod = new_cmod; 1353 progress = true; 1354 } 1355 } 1356 break; 1357 1358 case BRW_OPCODE_SEL: 1359 if (i == 1) { 1360 scan_inst->src[i] = inst->src[0]; 1361 progress = true; 1362 } else if (i == 0 && scan_inst->src[1].file != IMM) { 1363 scan_inst->src[0] = scan_inst->src[1]; 1364 scan_inst->src[1] = inst->src[0]; 1365 1366 /* If this was predicated, flipping operands means 1367 * we also need to flip the predicate. 1368 */ 1369 if (scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) { 1370 scan_inst->predicate_inverse = 1371 !scan_inst->predicate_inverse; 1372 } 1373 progress = true; 1374 } 1375 break; 1376 1377 case SHADER_OPCODE_RCP: 1378 /* The hardware doesn't do math on immediate values 1379 * (because why are you doing that, seriously?), but 1380 * the correct answer is to just constant fold it 1381 * anyway. 1382 */ 1383 assert(i == 0); 1384 if (inst->src[0].imm.f != 0.0f) { 1385 scan_inst->opcode = BRW_OPCODE_MOV; 1386 scan_inst->src[0] = inst->src[0]; 1387 scan_inst->src[0].imm.f = 1.0f / scan_inst->src[0].imm.f; 1388 progress = true; 1389 } 1390 break; 1391 1392 case FS_OPCODE_PULL_CONSTANT_LOAD: 1393 scan_inst->src[i] = inst->src[0]; 1394 progress = true; 1395 break; 1396 1397 default: 1398 break; 1399 } 1400 } 1401 1402 if (scan_inst->dst.file == GRF && 1403 scan_inst->overwrites_reg(inst->dst)) { 1404 break; 1405 } 1406 } 1407 } 1408 1409 if (progress) 1410 this->live_intervals_valid = false; 1411 1412 return progress; 1413 } 1414 1415 1416 /** 1417 * Attempts to move immediate constants into the immediate 1418 * constant slot of following instructions. 1419 * 1420 * Immediate constants are a bit tricky -- they have to be in the last 1421 * operand slot, you can't do abs/negate on them, 1422 */ 1423 1424 bool 1425 fs_visitor::opt_algebraic() 1426 { 1427 bool progress = false; 1428 1429 calculate_live_intervals(); 1430 1431 foreach_list(node, &this->instructions) { 1432 fs_inst *inst = (fs_inst *)node; 1433 1434 switch (inst->opcode) { 1435 case BRW_OPCODE_MUL: 1436 if (inst->src[1].file != IMM) 1437 continue; 1438 1439 /* a * 1.0 = a */ 1440 if (inst->src[1].type == BRW_REGISTER_TYPE_F && 1441 inst->src[1].imm.f == 1.0) { 1442 inst->opcode = BRW_OPCODE_MOV; 1443 inst->src[1] = reg_undef; 1444 progress = true; 1445 break; 1446 } 1447 1448 break; 1449 default: 1450 break; 1451 } 1452 } 1453 1454 return progress; 1455 } 1456 1457 /** 1458 * Must be called after calculate_live_intervales() to remove unused 1459 * writes to registers -- register allocation will fail otherwise 1460 * because something deffed but not used won't be considered to 1461 * interfere with other regs. 1462 */ 1463 bool 1464 fs_visitor::dead_code_eliminate() 1465 { 1466 bool progress = false; 1467 int pc = 0; 1468 1469 calculate_live_intervals(); 1470 1471 foreach_list_safe(node, &this->instructions) { 1472 fs_inst *inst = (fs_inst *)node; 1473 1474 if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) { 1475 inst->remove(); 1476 progress = true; 1477 } 1478 1479 pc++; 1480 } 1481 1482 if (progress) 1483 live_intervals_valid = false; 1484 1485 return progress; 1486 } 1487 1488 /** 1489 * Implements a second type of register coalescing: This one checks if 1490 * the two regs involved in a raw move don't interfere, in which case 1491 * they can both by stored in the same place and the MOV removed. 1492 */ 1493 bool 1494 fs_visitor::register_coalesce_2() 1495 { 1496 bool progress = false; 1497 1498 calculate_live_intervals(); 1499 1500 foreach_list_safe(node, &this->instructions) { 1501 fs_inst *inst = (fs_inst *)node; 1502 1503 if (inst->opcode != BRW_OPCODE_MOV || 1504 inst->predicated || 1505 inst->saturate || 1506 inst->src[0].file != GRF || 1507 inst->src[0].negate || 1508 inst->src[0].abs || 1509 inst->src[0].smear != -1 || 1510 inst->dst.file != GRF || 1511 inst->dst.type != inst->src[0].type || 1512 virtual_grf_sizes[inst->src[0].reg] != 1 || 1513 virtual_grf_interferes(inst->dst.reg, inst->src[0].reg)) { 1514 continue; 1515 } 1516 1517 int reg_from = inst->src[0].reg; 1518 assert(inst->src[0].reg_offset == 0); 1519 int reg_to = inst->dst.reg; 1520 int reg_to_offset = inst->dst.reg_offset; 1521 1522 foreach_list_safe(node, &this->instructions) { 1523 fs_inst *scan_inst = (fs_inst *)node; 1524 1525 if (scan_inst->dst.file == GRF && 1526 scan_inst->dst.reg == reg_from) { 1527 scan_inst->dst.reg = reg_to; 1528 scan_inst->dst.reg_offset = reg_to_offset; 1529 } 1530 for (int i = 0; i < 3; i++) { 1531 if (scan_inst->src[i].file == GRF && 1532 scan_inst->src[i].reg == reg_from) { 1533 scan_inst->src[i].reg = reg_to; 1534 scan_inst->src[i].reg_offset = reg_to_offset; 1535 } 1536 } 1537 } 1538 1539 inst->remove(); 1540 live_intervals_valid = false; 1541 progress = true; 1542 continue; 1543 } 1544 1545 return progress; 1546 } 1547 1548 bool 1549 fs_visitor::register_coalesce() 1550 { 1551 bool progress = false; 1552 int if_depth = 0; 1553 int loop_depth = 0; 1554 1555 foreach_list_safe(node, &this->instructions) { 1556 fs_inst *inst = (fs_inst *)node; 1557 1558 /* Make sure that we dominate the instructions we're going to 1559 * scan for interfering with our coalescing, or we won't have 1560 * scanned enough to see if anything interferes with our 1561 * coalescing. We don't dominate the following instructions if 1562 * we're in a loop or an if block. 1563 */ 1564 switch (inst->opcode) { 1565 case BRW_OPCODE_DO: 1566 loop_depth++; 1567 break; 1568 case BRW_OPCODE_WHILE: 1569 loop_depth--; 1570 break; 1571 case BRW_OPCODE_IF: 1572 if_depth++; 1573 break; 1574 case BRW_OPCODE_ENDIF: 1575 if_depth--; 1576 break; 1577 default: 1578 break; 1579 } 1580 if (loop_depth || if_depth) 1581 continue; 1582 1583 if (inst->opcode != BRW_OPCODE_MOV || 1584 inst->predicated || 1585 inst->saturate || 1586 inst->dst.file != GRF || (inst->src[0].file != GRF && 1587 inst->src[0].file != UNIFORM)|| 1588 inst->dst.type != inst->src[0].type) 1589 continue; 1590 1591 bool has_source_modifiers = inst->src[0].abs || inst->src[0].negate; 1592 1593 /* Found a move of a GRF to a GRF. Let's see if we can coalesce 1594 * them: check for no writes to either one until the exit of the 1595 * program. 1596 */ 1597 bool interfered = false; 1598 1599 for (fs_inst *scan_inst = (fs_inst *)inst->next; 1600 !scan_inst->is_tail_sentinel(); 1601 scan_inst = (fs_inst *)scan_inst->next) { 1602 if (scan_inst->dst.file == GRF) { 1603 if (scan_inst->overwrites_reg(inst->dst) || 1604 scan_inst->overwrites_reg(inst->src[0])) { 1605 interfered = true; 1606 break; 1607 } 1608 } 1609 1610 /* The gen6 MATH instruction can't handle source modifiers or 1611 * unusual register regions, so avoid coalescing those for 1612 * now. We should do something more specific. 1613 */ 1614 if (intel->gen >= 6 && 1615 scan_inst->is_math() && 1616 (has_source_modifiers || inst->src[0].file == UNIFORM)) { 1617 interfered = true; 1618 break; 1619 } 1620 1621 /* The accumulator result appears to get used for the 1622 * conditional modifier generation. When negating a UD 1623 * value, there is a 33rd bit generated for the sign in the 1624 * accumulator value, so now you can't check, for example, 1625 * equality with a 32-bit value. See piglit fs-op-neg-uint. 1626 */ 1627 if (scan_inst->conditional_mod && 1628 inst->src[0].negate && 1629 inst->src[0].type == BRW_REGISTER_TYPE_UD) { 1630 interfered = true; 1631 break; 1632 } 1633 } 1634 if (interfered) { 1635 continue; 1636 } 1637 1638 /* Rewrite the later usage to point at the source of the move to 1639 * be removed. 1640 */ 1641 for (fs_inst *scan_inst = inst; 1642 !scan_inst->is_tail_sentinel(); 1643 scan_inst = (fs_inst *)scan_inst->next) { 1644 for (int i = 0; i < 3; i++) { 1645 if (scan_inst->src[i].file == GRF && 1646 scan_inst->src[i].reg == inst->dst.reg && 1647 scan_inst->src[i].reg_offset == inst->dst.reg_offset) { 1648 fs_reg new_src = inst->src[0]; 1649 if (scan_inst->src[i].abs) { 1650 new_src.negate = 0; 1651 new_src.abs = 1; 1652 } 1653 new_src.negate ^= scan_inst->src[i].negate; 1654 scan_inst->src[i] = new_src; 1655 } 1656 } 1657 } 1658 1659 inst->remove(); 1660 progress = true; 1661 } 1662 1663 if (progress) 1664 live_intervals_valid = false; 1665 1666 return progress; 1667 } 1668 1669 1670 bool 1671 fs_visitor::compute_to_mrf() 1672 { 1673 bool progress = false; 1674 int next_ip = 0; 1675 1676 calculate_live_intervals(); 1677 1678 foreach_list_safe(node, &this->instructions) { 1679 fs_inst *inst = (fs_inst *)node; 1680 1681 int ip = next_ip; 1682 next_ip++; 1683 1684 if (inst->opcode != BRW_OPCODE_MOV || 1685 inst->predicated || 1686 inst->dst.file != MRF || inst->src[0].file != GRF || 1687 inst->dst.type != inst->src[0].type || 1688 inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1) 1689 continue; 1690 1691 /* Work out which hardware MRF registers are written by this 1692 * instruction. 1693 */ 1694 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4; 1695 int mrf_high; 1696 if (inst->dst.reg & BRW_MRF_COMPR4) { 1697 mrf_high = mrf_low + 4; 1698 } else if (c->dispatch_width == 16 && 1699 (!inst->force_uncompressed && !inst->force_sechalf)) { 1700 mrf_high = mrf_low + 1; 1701 } else { 1702 mrf_high = mrf_low; 1703 } 1704 1705 /* Can't compute-to-MRF this GRF if someone else was going to 1706 * read it later. 1707 */ 1708 if (this->virtual_grf_use[inst->src[0].reg] > ip) 1709 continue; 1710 1711 /* Found a move of a GRF to a MRF. Let's see if we can go 1712 * rewrite the thing that made this GRF to write into the MRF. 1713 */ 1714 fs_inst *scan_inst; 1715 for (scan_inst = (fs_inst *)inst->prev; 1716 scan_inst->prev != NULL; 1717 scan_inst = (fs_inst *)scan_inst->prev) { 1718 if (scan_inst->dst.file == GRF && 1719 scan_inst->dst.reg == inst->src[0].reg) { 1720 /* Found the last thing to write our reg we want to turn 1721 * into a compute-to-MRF. 1722 */ 1723 1724 /* SENDs can only write to GRFs, so no compute-to-MRF. */ 1725 if (scan_inst->mlen) { 1726 break; 1727 } 1728 1729 /* If it's predicated, it (probably) didn't populate all 1730 * the channels. We might be able to rewrite everything 1731 * that writes that reg, but it would require smarter 1732 * tracking to delay the rewriting until complete success. 1733 */ 1734 if (scan_inst->predicated) 1735 break; 1736 1737 /* If it's half of register setup and not the same half as 1738 * our MOV we're trying to remove, bail for now. 1739 */ 1740 if (scan_inst->force_uncompressed != inst->force_uncompressed || 1741 scan_inst->force_sechalf != inst->force_sechalf) { 1742 break; 1743 } 1744 1745 /* SEND instructions can't have MRF as a destination. */ 1746 if (scan_inst->mlen) 1747 break; 1748 1749 if (intel->gen >= 6) { 1750 /* gen6 math instructions must have the destination be 1751 * GRF, so no compute-to-MRF for them. 1752 */ 1753 if (scan_inst->is_math()) { 1754 break; 1755 } 1756 } 1757 1758 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) { 1759 /* Found the creator of our MRF's source value. */ 1760 scan_inst->dst.file = MRF; 1761 scan_inst->dst.reg = inst->dst.reg; 1762 scan_inst->saturate |= inst->saturate; 1763 inst->remove(); 1764 progress = true; 1765 } 1766 break; 1767 } 1768 1769 /* We don't handle flow control here. Most computation of 1770 * values that end up in MRFs are shortly before the MRF 1771 * write anyway. 1772 */ 1773 if (scan_inst->opcode == BRW_OPCODE_DO || 1774 scan_inst->opcode == BRW_OPCODE_WHILE || 1775 scan_inst->opcode == BRW_OPCODE_ELSE || 1776 scan_inst->opcode == BRW_OPCODE_ENDIF) { 1777 break; 1778 } 1779 1780 /* You can't read from an MRF, so if someone else reads our 1781 * MRF's source GRF that we wanted to rewrite, that stops us. 1782 */ 1783 bool interfered = false; 1784 for (int i = 0; i < 3; i++) { 1785 if (scan_inst->src[i].file == GRF && 1786 scan_inst->src[i].reg == inst->src[0].reg && 1787 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) { 1788 interfered = true; 1789 } 1790 } 1791 if (interfered) 1792 break; 1793 1794 if (scan_inst->dst.file == MRF) { 1795 /* If somebody else writes our MRF here, we can't 1796 * compute-to-MRF before that. 1797 */ 1798 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4; 1799 int scan_mrf_high; 1800 1801 if (scan_inst->dst.reg & BRW_MRF_COMPR4) { 1802 scan_mrf_high = scan_mrf_low + 4; 1803 } else if (c->dispatch_width == 16 && 1804 (!scan_inst->force_uncompressed && 1805 !scan_inst->force_sechalf)) { 1806 scan_mrf_high = scan_mrf_low + 1; 1807 } else { 1808 scan_mrf_high = scan_mrf_low; 1809 } 1810 1811 if (mrf_low == scan_mrf_low || 1812 mrf_low == scan_mrf_high || 1813 mrf_high == scan_mrf_low || 1814 mrf_high == scan_mrf_high) { 1815 break; 1816 } 1817 } 1818 1819 if (scan_inst->mlen > 0) { 1820 /* Found a SEND instruction, which means that there are 1821 * live values in MRFs from base_mrf to base_mrf + 1822 * scan_inst->mlen - 1. Don't go pushing our MRF write up 1823 * above it. 1824 */ 1825 if (mrf_low >= scan_inst->base_mrf && 1826 mrf_low < scan_inst->base_mrf + scan_inst->mlen) { 1827 break; 1828 } 1829 if (mrf_high >= scan_inst->base_mrf && 1830 mrf_high < scan_inst->base_mrf + scan_inst->mlen) { 1831 break; 1832 } 1833 } 1834 } 1835 } 1836 1837 if (progress) 1838 live_intervals_valid = false; 1839 1840 return progress; 1841 } 1842 1843 /** 1844 * Walks through basic blocks, looking for repeated MRF writes and 1845 * removing the later ones. 1846 */ 1847 bool 1848 fs_visitor::remove_duplicate_mrf_writes() 1849 { 1850 fs_inst *last_mrf_move[16]; 1851 bool progress = false; 1852 1853 /* Need to update the MRF tracking for compressed instructions. */ 1854 if (c->dispatch_width == 16) 1855 return false; 1856 1857 memset(last_mrf_move, 0, sizeof(last_mrf_move)); 1858 1859 foreach_list_safe(node, &this->instructions) { 1860 fs_inst *inst = (fs_inst *)node; 1861 1862 switch (inst->opcode) { 1863 case BRW_OPCODE_DO: 1864 case BRW_OPCODE_WHILE: 1865 case BRW_OPCODE_IF: 1866 case BRW_OPCODE_ELSE: 1867 case BRW_OPCODE_ENDIF: 1868 memset(last_mrf_move, 0, sizeof(last_mrf_move)); 1869 continue; 1870 default: 1871 break; 1872 } 1873 1874 if (inst->opcode == BRW_OPCODE_MOV && 1875 inst->dst.file == MRF) { 1876 fs_inst *prev_inst = last_mrf_move[inst->dst.reg]; 1877 if (prev_inst && inst->equals(prev_inst)) { 1878 inst->remove(); 1879 progress = true; 1880 continue; 1881 } 1882 } 1883 1884 /* Clear out the last-write records for MRFs that were overwritten. */ 1885 if (inst->dst.file == MRF) { 1886 last_mrf_move[inst->dst.reg] = NULL; 1887 } 1888 1889 if (inst->mlen > 0) { 1890 /* Found a SEND instruction, which will include two or fewer 1891 * implied MRF writes. We could do better here. 1892 */ 1893 for (int i = 0; i < implied_mrf_writes(inst); i++) { 1894 last_mrf_move[inst->base_mrf + i] = NULL; 1895 } 1896 } 1897 1898 /* Clear out any MRF move records whose sources got overwritten. */ 1899 if (inst->dst.file == GRF) { 1900 for (unsigned int i = 0; i < Elements(last_mrf_move); i++) { 1901 if (last_mrf_move[i] && 1902 last_mrf_move[i]->src[0].reg == inst->dst.reg) { 1903 last_mrf_move[i] = NULL; 1904 } 1905 } 1906 } 1907 1908 if (inst->opcode == BRW_OPCODE_MOV && 1909 inst->dst.file == MRF && 1910 inst->src[0].file == GRF && 1911 !inst->predicated) { 1912 last_mrf_move[inst->dst.reg] = inst; 1913 } 1914 } 1915 1916 if (progress) 1917 live_intervals_valid = false; 1918 1919 return progress; 1920 } 1921 1922 /** 1923 * Possibly returns an instruction that set up @param reg. 1924 * 1925 * Sometimes we want to take the result of some expression/variable 1926 * dereference tree and rewrite the instruction generating the result 1927 * of the tree. When processing the tree, we know that the 1928 * instructions generated are all writing temporaries that are dead 1929 * outside of this tree. So, if we have some instructions that write 1930 * a temporary, we're free to point that temp write somewhere else. 1931 * 1932 * Note that this doesn't guarantee that the instruction generated 1933 * only reg -- it might be the size=4 destination of a texture instruction. 1934 */ 1935 fs_inst * 1936 fs_visitor::get_instruction_generating_reg(fs_inst *start, 1937 fs_inst *end, 1938 fs_reg reg) 1939 { 1940 if (end == start || 1941 end->predicated || 1942 end->force_uncompressed || 1943 end->force_sechalf || 1944 !reg.equals(end->dst)) { 1945 return NULL; 1946 } else { 1947 return end; 1948 } 1949 } 1950 1951 bool 1952 fs_visitor::run() 1953 { 1954 uint32_t prog_offset_16 = 0; 1955 uint32_t orig_nr_params = c->prog_data.nr_params; 1956 1957 brw_wm_payload_setup(brw, c); 1958 1959 if (c->dispatch_width == 16) { 1960 /* align to 64 byte boundary. */ 1961 while ((c->func.nr_insn * sizeof(struct brw_instruction)) % 64) { 1962 brw_NOP(p); 1963 } 1964 1965 /* Save off the start of this 16-wide program in case we succeed. */ 1966 prog_offset_16 = c->func.nr_insn * sizeof(struct brw_instruction); 1967 1968 brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); 1969 } 1970 1971 if (0) { 1972 emit_dummy_fs(); 1973 } else { 1974 calculate_urb_setup(); 1975 if (intel->gen < 6) 1976 emit_interpolation_setup_gen4(); 1977 else 1978 emit_interpolation_setup_gen6(); 1979 1980 /* Generate FS IR for main(). (the visitor only descends into 1981 * functions called "main"). 1982 */ 1983 foreach_list(node, &*shader->ir) { 1984 ir_instruction *ir = (ir_instruction *)node; 1985 base_ir = ir; 1986 this->result = reg_undef; 1987 ir->accept(this); 1988 } 1989 if (failed) 1990 return false; 1991 1992 emit_fb_writes(); 1993 1994 split_virtual_grfs(); 1995 1996 setup_paramvalues_refs(); 1997 setup_pull_constants(); 1998 1999 bool progress; 2000 do { 2001 progress = false; 2002 2003 progress = remove_duplicate_mrf_writes() || progress; 2004 2005 progress = propagate_constants() || progress; 2006 progress = opt_algebraic() || progress; 2007 progress = opt_cse() || progress; 2008 progress = opt_copy_propagate() || progress; 2009 progress = register_coalesce() || progress; 2010 progress = register_coalesce_2() || progress; 2011 progress = compute_to_mrf() || progress; 2012 progress = dead_code_eliminate() || progress; 2013 } while (progress); 2014 2015 remove_dead_constants(); 2016 2017 schedule_instructions(); 2018 2019 assign_curb_setup(); 2020 assign_urb_setup(); 2021 2022 if (0) { 2023 /* Debug of register spilling: Go spill everything. */ 2024 for (int i = 0; i < virtual_grf_count; i++) { 2025 spill_reg(i); 2026 } 2027 } 2028 2029 if (0) 2030 assign_regs_trivial(); 2031 else { 2032 while (!assign_regs()) { 2033 if (failed) 2034 break; 2035 } 2036 } 2037 } 2038 assert(force_uncompressed_stack == 0); 2039 assert(force_sechalf_stack == 0); 2040 2041 if (failed) 2042 return false; 2043 2044 generate_code(); 2045 2046 if (c->dispatch_width == 8) { 2047 c->prog_data.reg_blocks = brw_register_blocks(grf_used); 2048 } else { 2049 c->prog_data.reg_blocks_16 = brw_register_blocks(grf_used); 2050 c->prog_data.prog_offset_16 = prog_offset_16; 2051 2052 /* Make sure we didn't try to sneak in an extra uniform */ 2053 assert(orig_nr_params == c->prog_data.nr_params); 2054 (void) orig_nr_params; 2055 } 2056 2057 return !failed; 2058 } 2059 2060 bool 2061 brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c, 2062 struct gl_shader_program *prog) 2063 { 2064 struct intel_context *intel = &brw->intel; 2065 bool start_busy = false; 2066 float start_time = 0; 2067 2068 if (!prog) 2069 return false; 2070 2071 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) { 2072 start_busy = (intel->batch.last_bo && 2073 drm_intel_bo_busy(intel->batch.last_bo)); 2074 start_time = get_time(); 2075 } 2076 2077 struct brw_shader *shader = 2078 (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; 2079 if (!shader) 2080 return false; 2081 2082 if (unlikely(INTEL_DEBUG & DEBUG_WM)) { 2083 printf("GLSL IR for native fragment shader %d:\n", prog->Name); 2084 _mesa_print_ir(shader->ir, NULL); 2085 printf("\n\n"); 2086 } 2087 2088 /* Now the main event: Visit the shader IR and generate our FS IR for it. 2089 */ 2090 c->dispatch_width = 8; 2091 2092 fs_visitor v(c, prog, shader); 2093 if (!v.run()) { 2094 prog->LinkStatus = false; 2095 ralloc_strcat(&prog->InfoLog, v.fail_msg); 2096 2097 _mesa_problem(NULL, "Failed to compile fragment shader: %s\n", 2098 v.fail_msg); 2099 2100 return false; 2101 } 2102 2103 if (intel->gen >= 5 && c->prog_data.nr_pull_params == 0) { 2104 c->dispatch_width = 16; 2105 fs_visitor v2(c, prog, shader); 2106 v2.import_uniforms(&v); 2107 if (!v2.run()) { 2108 perf_debug("16-wide shader failed to compile, falling back to " 2109 "8-wide at a 10-20%% performance cost: %s", v2.fail_msg); 2110 } 2111 } 2112 2113 c->prog_data.dispatch_width = 8; 2114 2115 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) { 2116 if (shader->compiled_once) 2117 brw_wm_debug_recompile(brw, prog, &c->key); 2118 shader->compiled_once = true; 2119 2120 if (start_busy && !drm_intel_bo_busy(intel->batch.last_bo)) { 2121 perf_debug("FS compile took %.03f ms and stalled the GPU\n", 2122 (get_time() - start_time) * 1000); 2123 } 2124 } 2125 2126 return true; 2127 } 2128 2129 bool 2130 brw_fs_precompile(struct gl_context *ctx, struct gl_shader_program *prog) 2131 { 2132 struct brw_context *brw = brw_context(ctx); 2133 struct intel_context *intel = &brw->intel; 2134 struct brw_wm_prog_key key; 2135 2136 if (!prog->_LinkedShaders[MESA_SHADER_FRAGMENT]) 2137 return true; 2138 2139 struct gl_fragment_program *fp = (struct gl_fragment_program *) 2140 prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program; 2141 struct brw_fragment_program *bfp = brw_fragment_program(fp); 2142 bool program_uses_dfdy = fp->UsesDFdy; 2143 2144 memset(&key, 0, sizeof(key)); 2145 2146 if (intel->gen < 6) { 2147 if (fp->UsesKill) 2148 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT; 2149 2150 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) 2151 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT; 2152 2153 /* Just assume depth testing. */ 2154 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT; 2155 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT; 2156 } 2157 2158 if (prog->Name != 0) 2159 key.proj_attrib_mask = 0xffffffff; 2160 2161 if (intel->gen < 6) 2162 key.vp_outputs_written |= BITFIELD64_BIT(FRAG_ATTRIB_WPOS); 2163 2164 for (int i = 0; i < FRAG_ATTRIB_MAX; i++) { 2165 if (!(fp->Base.InputsRead & BITFIELD64_BIT(i))) 2166 continue; 2167 2168 if (prog->Name == 0) 2169 key.proj_attrib_mask |= 1 << i; 2170 2171 if (intel->gen < 6) { 2172 int vp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i); 2173 2174 if (vp_index >= 0) 2175 key.vp_outputs_written |= BITFIELD64_BIT(vp_index); 2176 } 2177 } 2178 2179 key.clamp_fragment_color = true; 2180 2181 for (int i = 0; i < MAX_SAMPLERS; i++) { 2182 if (fp->Base.ShadowSamplers & (1 << i)) { 2183 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */ 2184 key.tex.swizzles[i] = 2185 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE); 2186 } else { 2187 /* Color sampler: assume no swizzling. */ 2188 key.tex.swizzles[i] = SWIZZLE_XYZW; 2189 } 2190 } 2191 2192 if (fp->Base.InputsRead & FRAG_BIT_WPOS) { 2193 key.drawable_height = ctx->DrawBuffer->Height; 2194 } 2195 2196 if ((fp->Base.InputsRead & FRAG_BIT_WPOS) || program_uses_dfdy) { 2197 key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer); 2198 } 2199 2200 key.nr_color_regions = 1; 2201 2202 key.program_string_id = bfp->id; 2203 2204 uint32_t old_prog_offset = brw->wm.prog_offset; 2205 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data; 2206 2207 bool success = do_wm_prog(brw, prog, bfp, &key); 2208 2209 brw->wm.prog_offset = old_prog_offset; 2210 brw->wm.prog_data = old_prog_data; 2211 2212 return success; 2213 } 2214