1 //===-- SystemZMCTargetDesc.cpp - SystemZ target descriptions -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "SystemZMCTargetDesc.h" 11 #include "InstPrinter/SystemZInstPrinter.h" 12 #include "SystemZMCAsmInfo.h" 13 #include "llvm/MC/MCCodeGenInfo.h" 14 #include "llvm/MC/MCInstrInfo.h" 15 #include "llvm/MC/MCStreamer.h" 16 #include "llvm/MC/MCSubtargetInfo.h" 17 #include "llvm/Support/TargetRegistry.h" 18 19 using namespace llvm; 20 21 #define GET_INSTRINFO_MC_DESC 22 #include "SystemZGenInstrInfo.inc" 23 24 #define GET_SUBTARGETINFO_MC_DESC 25 #include "SystemZGenSubtargetInfo.inc" 26 27 #define GET_REGINFO_MC_DESC 28 #include "SystemZGenRegisterInfo.inc" 29 30 const unsigned SystemZMC::GR32Regs[16] = { 31 SystemZ::R0L, SystemZ::R1L, SystemZ::R2L, SystemZ::R3L, 32 SystemZ::R4L, SystemZ::R5L, SystemZ::R6L, SystemZ::R7L, 33 SystemZ::R8L, SystemZ::R9L, SystemZ::R10L, SystemZ::R11L, 34 SystemZ::R12L, SystemZ::R13L, SystemZ::R14L, SystemZ::R15L 35 }; 36 37 const unsigned SystemZMC::GRH32Regs[16] = { 38 SystemZ::R0H, SystemZ::R1H, SystemZ::R2H, SystemZ::R3H, 39 SystemZ::R4H, SystemZ::R5H, SystemZ::R6H, SystemZ::R7H, 40 SystemZ::R8H, SystemZ::R9H, SystemZ::R10H, SystemZ::R11H, 41 SystemZ::R12H, SystemZ::R13H, SystemZ::R14H, SystemZ::R15H 42 }; 43 44 const unsigned SystemZMC::GR64Regs[16] = { 45 SystemZ::R0D, SystemZ::R1D, SystemZ::R2D, SystemZ::R3D, 46 SystemZ::R4D, SystemZ::R5D, SystemZ::R6D, SystemZ::R7D, 47 SystemZ::R8D, SystemZ::R9D, SystemZ::R10D, SystemZ::R11D, 48 SystemZ::R12D, SystemZ::R13D, SystemZ::R14D, SystemZ::R15D 49 }; 50 51 const unsigned SystemZMC::GR128Regs[16] = { 52 SystemZ::R0Q, 0, SystemZ::R2Q, 0, 53 SystemZ::R4Q, 0, SystemZ::R6Q, 0, 54 SystemZ::R8Q, 0, SystemZ::R10Q, 0, 55 SystemZ::R12Q, 0, SystemZ::R14Q, 0 56 }; 57 58 const unsigned SystemZMC::FP32Regs[16] = { 59 SystemZ::F0S, SystemZ::F1S, SystemZ::F2S, SystemZ::F3S, 60 SystemZ::F4S, SystemZ::F5S, SystemZ::F6S, SystemZ::F7S, 61 SystemZ::F8S, SystemZ::F9S, SystemZ::F10S, SystemZ::F11S, 62 SystemZ::F12S, SystemZ::F13S, SystemZ::F14S, SystemZ::F15S 63 }; 64 65 const unsigned SystemZMC::FP64Regs[16] = { 66 SystemZ::F0D, SystemZ::F1D, SystemZ::F2D, SystemZ::F3D, 67 SystemZ::F4D, SystemZ::F5D, SystemZ::F6D, SystemZ::F7D, 68 SystemZ::F8D, SystemZ::F9D, SystemZ::F10D, SystemZ::F11D, 69 SystemZ::F12D, SystemZ::F13D, SystemZ::F14D, SystemZ::F15D 70 }; 71 72 const unsigned SystemZMC::FP128Regs[16] = { 73 SystemZ::F0Q, SystemZ::F1Q, 0, 0, 74 SystemZ::F4Q, SystemZ::F5Q, 0, 0, 75 SystemZ::F8Q, SystemZ::F9Q, 0, 0, 76 SystemZ::F12Q, SystemZ::F13Q, 0, 0 77 }; 78 79 unsigned SystemZMC::getFirstReg(unsigned Reg) { 80 static unsigned Map[SystemZ::NUM_TARGET_REGS]; 81 static bool Initialized = false; 82 if (!Initialized) { 83 for (unsigned I = 0; I < 16; ++I) { 84 Map[GR32Regs[I]] = I; 85 Map[GRH32Regs[I]] = I; 86 Map[GR64Regs[I]] = I; 87 Map[GR128Regs[I]] = I; 88 Map[FP32Regs[I]] = I; 89 Map[FP64Regs[I]] = I; 90 Map[FP128Regs[I]] = I; 91 } 92 } 93 assert(Reg < SystemZ::NUM_TARGET_REGS); 94 return Map[Reg]; 95 } 96 97 static MCAsmInfo *createSystemZMCAsmInfo(const MCRegisterInfo &MRI, 98 StringRef TT) { 99 MCAsmInfo *MAI = new SystemZMCAsmInfo(TT); 100 MCCFIInstruction Inst = 101 MCCFIInstruction::createDefCfa(nullptr, 102 MRI.getDwarfRegNum(SystemZ::R15D, true), 103 SystemZMC::CFAOffsetFromInitialSP); 104 MAI->addInitialFrameState(Inst); 105 return MAI; 106 } 107 108 static MCInstrInfo *createSystemZMCInstrInfo() { 109 MCInstrInfo *X = new MCInstrInfo(); 110 InitSystemZMCInstrInfo(X); 111 return X; 112 } 113 114 static MCRegisterInfo *createSystemZMCRegisterInfo(StringRef TT) { 115 MCRegisterInfo *X = new MCRegisterInfo(); 116 InitSystemZMCRegisterInfo(X, SystemZ::R14D); 117 return X; 118 } 119 120 static MCSubtargetInfo *createSystemZMCSubtargetInfo(StringRef TT, 121 StringRef CPU, 122 StringRef FS) { 123 MCSubtargetInfo *X = new MCSubtargetInfo(); 124 InitSystemZMCSubtargetInfo(X, TT, CPU, FS); 125 return X; 126 } 127 128 static MCCodeGenInfo *createSystemZMCCodeGenInfo(StringRef TT, Reloc::Model RM, 129 CodeModel::Model CM, 130 CodeGenOpt::Level OL) { 131 MCCodeGenInfo *X = new MCCodeGenInfo(); 132 133 // Static code is suitable for use in a dynamic executable; there is no 134 // separate DynamicNoPIC model. 135 if (RM == Reloc::Default || RM == Reloc::DynamicNoPIC) 136 RM = Reloc::Static; 137 138 // For SystemZ we define the models as follows: 139 // 140 // Small: BRASL can call any function and will use a stub if necessary. 141 // Locally-binding symbols will always be in range of LARL. 142 // 143 // Medium: BRASL can call any function and will use a stub if necessary. 144 // GOT slots and locally-defined text will always be in range 145 // of LARL, but other symbols might not be. 146 // 147 // Large: Equivalent to Medium for now. 148 // 149 // Kernel: Equivalent to Medium for now. 150 // 151 // This means that any PIC module smaller than 4GB meets the 152 // requirements of Small, so Small seems like the best default there. 153 // 154 // All symbols bind locally in a non-PIC module, so the choice is less 155 // obvious. There are two cases: 156 // 157 // - When creating an executable, PLTs and copy relocations allow 158 // us to treat external symbols as part of the executable. 159 // Any executable smaller than 4GB meets the requirements of Small, 160 // so that seems like the best default. 161 // 162 // - When creating JIT code, stubs will be in range of BRASL if the 163 // image is less than 4GB in size. GOT entries will likewise be 164 // in range of LARL. However, the JIT environment has no equivalent 165 // of copy relocs, so locally-binding data symbols might not be in 166 // the range of LARL. We need the Medium model in that case. 167 if (CM == CodeModel::Default) 168 CM = CodeModel::Small; 169 else if (CM == CodeModel::JITDefault) 170 CM = RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium; 171 X->InitMCCodeGenInfo(RM, CM, OL); 172 return X; 173 } 174 175 static MCInstPrinter *createSystemZMCInstPrinter(const Target &T, 176 unsigned SyntaxVariant, 177 const MCAsmInfo &MAI, 178 const MCInstrInfo &MII, 179 const MCRegisterInfo &MRI, 180 const MCSubtargetInfo &STI) { 181 return new SystemZInstPrinter(MAI, MII, MRI); 182 } 183 184 static MCStreamer *createSystemZMCObjectStreamer(const Target &T, StringRef TT, 185 MCContext &Ctx, 186 MCAsmBackend &MAB, 187 raw_ostream &OS, 188 MCCodeEmitter *Emitter, 189 const MCSubtargetInfo &STI, 190 bool RelaxAll, 191 bool NoExecStack) { 192 return createELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll, NoExecStack); 193 } 194 195 extern "C" void LLVMInitializeSystemZTargetMC() { 196 // Register the MCAsmInfo. 197 TargetRegistry::RegisterMCAsmInfo(TheSystemZTarget, 198 createSystemZMCAsmInfo); 199 200 // Register the MCCodeGenInfo. 201 TargetRegistry::RegisterMCCodeGenInfo(TheSystemZTarget, 202 createSystemZMCCodeGenInfo); 203 204 // Register the MCCodeEmitter. 205 TargetRegistry::RegisterMCCodeEmitter(TheSystemZTarget, 206 createSystemZMCCodeEmitter); 207 208 // Register the MCInstrInfo. 209 TargetRegistry::RegisterMCInstrInfo(TheSystemZTarget, 210 createSystemZMCInstrInfo); 211 212 // Register the MCRegisterInfo. 213 TargetRegistry::RegisterMCRegInfo(TheSystemZTarget, 214 createSystemZMCRegisterInfo); 215 216 // Register the MCSubtargetInfo. 217 TargetRegistry::RegisterMCSubtargetInfo(TheSystemZTarget, 218 createSystemZMCSubtargetInfo); 219 220 // Register the MCAsmBackend. 221 TargetRegistry::RegisterMCAsmBackend(TheSystemZTarget, 222 createSystemZMCAsmBackend); 223 224 // Register the MCInstPrinter. 225 TargetRegistry::RegisterMCInstPrinter(TheSystemZTarget, 226 createSystemZMCInstPrinter); 227 228 // Register the MCObjectStreamer; 229 TargetRegistry::RegisterMCObjectStreamer(TheSystemZTarget, 230 createSystemZMCObjectStreamer); 231 } 232