1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetLibraryInfo.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "memory-builtins" 33 34 enum AllocType { 35 OpNewLike = 1<<0, // allocates; never returns null 36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 37 CallocLike = 1<<2, // allocates + bzero 38 ReallocLike = 1<<3, // reallocates 39 StrDupLike = 1<<4, 40 AllocLike = MallocLike | CallocLike | StrDupLike, 41 AnyAlloc = AllocLike | ReallocLike 42 }; 43 44 struct AllocFnsTy { 45 LibFunc::Func Func; 46 AllocType AllocTy; 47 unsigned char NumParams; 48 // First and Second size parameters (or -1 if unused) 49 signed char FstParam, SndParam; 50 }; 51 52 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 53 // know which functions are nounwind, noalias, nocapture parameters, etc. 54 static const AllocFnsTy AllocationFnData[] = { 55 {LibFunc::malloc, MallocLike, 1, 0, -1}, 56 {LibFunc::valloc, MallocLike, 1, 0, -1}, 57 {LibFunc::Znwj, OpNewLike, 1, 0, -1}, // new(unsigned int) 58 {LibFunc::ZnwjRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned int, nothrow) 59 {LibFunc::Znwm, OpNewLike, 1, 0, -1}, // new(unsigned long) 60 {LibFunc::ZnwmRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned long, nothrow) 61 {LibFunc::Znaj, OpNewLike, 1, 0, -1}, // new[](unsigned int) 62 {LibFunc::ZnajRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned int, nothrow) 63 {LibFunc::Znam, OpNewLike, 1, 0, -1}, // new[](unsigned long) 64 {LibFunc::ZnamRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned long, nothrow) 65 {LibFunc::calloc, CallocLike, 2, 0, 1}, 66 {LibFunc::realloc, ReallocLike, 2, 1, -1}, 67 {LibFunc::reallocf, ReallocLike, 2, 1, -1}, 68 {LibFunc::strdup, StrDupLike, 1, -1, -1}, 69 {LibFunc::strndup, StrDupLike, 2, 1, -1} 70 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 71 }; 72 73 74 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) { 75 if (LookThroughBitCast) 76 V = V->stripPointerCasts(); 77 78 CallSite CS(const_cast<Value*>(V)); 79 if (!CS.getInstruction()) 80 return nullptr; 81 82 if (CS.isNoBuiltin()) 83 return nullptr; 84 85 Function *Callee = CS.getCalledFunction(); 86 if (!Callee || !Callee->isDeclaration()) 87 return nullptr; 88 return Callee; 89 } 90 91 /// \brief Returns the allocation data for the given value if it is a call to a 92 /// known allocation function, and NULL otherwise. 93 static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy, 94 const TargetLibraryInfo *TLI, 95 bool LookThroughBitCast = false) { 96 // Skip intrinsics 97 if (isa<IntrinsicInst>(V)) 98 return nullptr; 99 100 Function *Callee = getCalledFunction(V, LookThroughBitCast); 101 if (!Callee) 102 return nullptr; 103 104 // Make sure that the function is available. 105 StringRef FnName = Callee->getName(); 106 LibFunc::Func TLIFn; 107 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 108 return nullptr; 109 110 unsigned i = 0; 111 bool found = false; 112 for ( ; i < array_lengthof(AllocationFnData); ++i) { 113 if (AllocationFnData[i].Func == TLIFn) { 114 found = true; 115 break; 116 } 117 } 118 if (!found) 119 return nullptr; 120 121 const AllocFnsTy *FnData = &AllocationFnData[i]; 122 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 123 return nullptr; 124 125 // Check function prototype. 126 int FstParam = FnData->FstParam; 127 int SndParam = FnData->SndParam; 128 FunctionType *FTy = Callee->getFunctionType(); 129 130 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 131 FTy->getNumParams() == FnData->NumParams && 132 (FstParam < 0 || 133 (FTy->getParamType(FstParam)->isIntegerTy(32) || 134 FTy->getParamType(FstParam)->isIntegerTy(64))) && 135 (SndParam < 0 || 136 FTy->getParamType(SndParam)->isIntegerTy(32) || 137 FTy->getParamType(SndParam)->isIntegerTy(64))) 138 return FnData; 139 return nullptr; 140 } 141 142 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 143 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 144 return CS && CS.hasFnAttr(Attribute::NoAlias); 145 } 146 147 148 /// \brief Tests if a value is a call or invoke to a library function that 149 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 150 /// like). 151 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 152 bool LookThroughBitCast) { 153 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast); 154 } 155 156 /// \brief Tests if a value is a call or invoke to a function that returns a 157 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 158 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 159 bool LookThroughBitCast) { 160 // it's safe to consider realloc as noalias since accessing the original 161 // pointer is undefined behavior 162 return isAllocationFn(V, TLI, LookThroughBitCast) || 163 hasNoAliasAttr(V, LookThroughBitCast); 164 } 165 166 /// \brief Tests if a value is a call or invoke to a library function that 167 /// allocates uninitialized memory (such as malloc). 168 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 169 bool LookThroughBitCast) { 170 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast); 171 } 172 173 /// \brief Tests if a value is a call or invoke to a library function that 174 /// allocates zero-filled memory (such as calloc). 175 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 176 bool LookThroughBitCast) { 177 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast); 178 } 179 180 /// \brief Tests if a value is a call or invoke to a library function that 181 /// allocates memory (either malloc, calloc, or strdup like). 182 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 183 bool LookThroughBitCast) { 184 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast); 185 } 186 187 /// \brief Tests if a value is a call or invoke to a library function that 188 /// reallocates memory (such as realloc). 189 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 190 bool LookThroughBitCast) { 191 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast); 192 } 193 194 /// \brief Tests if a value is a call or invoke to a library function that 195 /// allocates memory and never returns null (such as operator new). 196 bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI, 197 bool LookThroughBitCast) { 198 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast); 199 } 200 201 /// extractMallocCall - Returns the corresponding CallInst if the instruction 202 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 203 /// ignore InvokeInst here. 204 const CallInst *llvm::extractMallocCall(const Value *I, 205 const TargetLibraryInfo *TLI) { 206 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 207 } 208 209 static Value *computeArraySize(const CallInst *CI, const DataLayout *DL, 210 const TargetLibraryInfo *TLI, 211 bool LookThroughSExt = false) { 212 if (!CI) 213 return nullptr; 214 215 // The size of the malloc's result type must be known to determine array size. 216 Type *T = getMallocAllocatedType(CI, TLI); 217 if (!T || !T->isSized() || !DL) 218 return nullptr; 219 220 unsigned ElementSize = DL->getTypeAllocSize(T); 221 if (StructType *ST = dyn_cast<StructType>(T)) 222 ElementSize = DL->getStructLayout(ST)->getSizeInBytes(); 223 224 // If malloc call's arg can be determined to be a multiple of ElementSize, 225 // return the multiple. Otherwise, return NULL. 226 Value *MallocArg = CI->getArgOperand(0); 227 Value *Multiple = nullptr; 228 if (ComputeMultiple(MallocArg, ElementSize, Multiple, 229 LookThroughSExt)) 230 return Multiple; 231 232 return nullptr; 233 } 234 235 /// isArrayMalloc - Returns the corresponding CallInst if the instruction 236 /// is a call to malloc whose array size can be determined and the array size 237 /// is not constant 1. Otherwise, return NULL. 238 const CallInst *llvm::isArrayMalloc(const Value *I, 239 const DataLayout *DL, 240 const TargetLibraryInfo *TLI) { 241 const CallInst *CI = extractMallocCall(I, TLI); 242 Value *ArraySize = computeArraySize(CI, DL, TLI); 243 244 if (ConstantInt *ConstSize = dyn_cast_or_null<ConstantInt>(ArraySize)) 245 if (ConstSize->isOne()) 246 return CI; 247 248 // CI is a non-array malloc or we can't figure out that it is an array malloc. 249 return nullptr; 250 } 251 252 /// getMallocType - Returns the PointerType resulting from the malloc call. 253 /// The PointerType depends on the number of bitcast uses of the malloc call: 254 /// 0: PointerType is the calls' return type. 255 /// 1: PointerType is the bitcast's result type. 256 /// >1: Unique PointerType cannot be determined, return NULL. 257 PointerType *llvm::getMallocType(const CallInst *CI, 258 const TargetLibraryInfo *TLI) { 259 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 260 261 PointerType *MallocType = nullptr; 262 unsigned NumOfBitCastUses = 0; 263 264 // Determine if CallInst has a bitcast use. 265 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 266 UI != E;) 267 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 268 MallocType = cast<PointerType>(BCI->getDestTy()); 269 NumOfBitCastUses++; 270 } 271 272 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 273 if (NumOfBitCastUses == 1) 274 return MallocType; 275 276 // Malloc call was not bitcast, so type is the malloc function's return type. 277 if (NumOfBitCastUses == 0) 278 return cast<PointerType>(CI->getType()); 279 280 // Type could not be determined. 281 return nullptr; 282 } 283 284 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 285 /// The Type depends on the number of bitcast uses of the malloc call: 286 /// 0: PointerType is the malloc calls' return type. 287 /// 1: PointerType is the bitcast's result type. 288 /// >1: Unique PointerType cannot be determined, return NULL. 289 Type *llvm::getMallocAllocatedType(const CallInst *CI, 290 const TargetLibraryInfo *TLI) { 291 PointerType *PT = getMallocType(CI, TLI); 292 return PT ? PT->getElementType() : nullptr; 293 } 294 295 /// getMallocArraySize - Returns the array size of a malloc call. If the 296 /// argument passed to malloc is a multiple of the size of the malloced type, 297 /// then return that multiple. For non-array mallocs, the multiple is 298 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 299 /// determined. 300 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout *DL, 301 const TargetLibraryInfo *TLI, 302 bool LookThroughSExt) { 303 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 304 return computeArraySize(CI, DL, TLI, LookThroughSExt); 305 } 306 307 308 /// extractCallocCall - Returns the corresponding CallInst if the instruction 309 /// is a calloc call. 310 const CallInst *llvm::extractCallocCall(const Value *I, 311 const TargetLibraryInfo *TLI) { 312 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 313 } 314 315 316 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 317 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 318 const CallInst *CI = dyn_cast<CallInst>(I); 319 if (!CI || isa<IntrinsicInst>(CI)) 320 return nullptr; 321 Function *Callee = CI->getCalledFunction(); 322 if (Callee == nullptr || !Callee->isDeclaration()) 323 return nullptr; 324 325 StringRef FnName = Callee->getName(); 326 LibFunc::Func TLIFn; 327 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 328 return nullptr; 329 330 unsigned ExpectedNumParams; 331 if (TLIFn == LibFunc::free || 332 TLIFn == LibFunc::ZdlPv || // operator delete(void*) 333 TLIFn == LibFunc::ZdaPv) // operator delete[](void*) 334 ExpectedNumParams = 1; 335 else if (TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 336 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t) // delete[](void*, nothrow) 337 ExpectedNumParams = 2; 338 else 339 return nullptr; 340 341 // Check free prototype. 342 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 343 // attribute will exist. 344 FunctionType *FTy = Callee->getFunctionType(); 345 if (!FTy->getReturnType()->isVoidTy()) 346 return nullptr; 347 if (FTy->getNumParams() != ExpectedNumParams) 348 return nullptr; 349 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 350 return nullptr; 351 352 return CI; 353 } 354 355 356 357 //===----------------------------------------------------------------------===// 358 // Utility functions to compute size of objects. 359 // 360 361 362 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 363 /// object size in Size if successful, and false otherwise. 364 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas, 365 /// byval arguments, and global variables. 366 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout *DL, 367 const TargetLibraryInfo *TLI, bool RoundToAlign) { 368 if (!DL) 369 return false; 370 371 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), RoundToAlign); 372 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 373 if (!Visitor.bothKnown(Data)) 374 return false; 375 376 APInt ObjSize = Data.first, Offset = Data.second; 377 // check for overflow 378 if (Offset.slt(0) || ObjSize.ult(Offset)) 379 Size = 0; 380 else 381 Size = (ObjSize - Offset).getZExtValue(); 382 return true; 383 } 384 385 386 STATISTIC(ObjectVisitorArgument, 387 "Number of arguments with unsolved size and offset"); 388 STATISTIC(ObjectVisitorLoad, 389 "Number of load instructions with unsolved size and offset"); 390 391 392 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 393 if (RoundToAlign && Align) 394 return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align)); 395 return Size; 396 } 397 398 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout *DL, 399 const TargetLibraryInfo *TLI, 400 LLVMContext &Context, 401 bool RoundToAlign) 402 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) { 403 // Pointer size must be rechecked for each object visited since it could have 404 // a different address space. 405 } 406 407 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 408 IntTyBits = DL->getPointerTypeSizeInBits(V->getType()); 409 Zero = APInt::getNullValue(IntTyBits); 410 411 V = V->stripPointerCasts(); 412 if (Instruction *I = dyn_cast<Instruction>(V)) { 413 // If we have already seen this instruction, bail out. Cycles can happen in 414 // unreachable code after constant propagation. 415 if (!SeenInsts.insert(I)) 416 return unknown(); 417 418 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 419 return visitGEPOperator(*GEP); 420 return visit(*I); 421 } 422 if (Argument *A = dyn_cast<Argument>(V)) 423 return visitArgument(*A); 424 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 425 return visitConstantPointerNull(*P); 426 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 427 return visitGlobalAlias(*GA); 428 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 429 return visitGlobalVariable(*GV); 430 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 431 return visitUndefValue(*UV); 432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 433 if (CE->getOpcode() == Instruction::IntToPtr) 434 return unknown(); // clueless 435 if (CE->getOpcode() == Instruction::GetElementPtr) 436 return visitGEPOperator(cast<GEPOperator>(*CE)); 437 } 438 439 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 440 << '\n'); 441 return unknown(); 442 } 443 444 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 445 if (!I.getAllocatedType()->isSized()) 446 return unknown(); 447 448 APInt Size(IntTyBits, DL->getTypeAllocSize(I.getAllocatedType())); 449 if (!I.isArrayAllocation()) 450 return std::make_pair(align(Size, I.getAlignment()), Zero); 451 452 Value *ArraySize = I.getArraySize(); 453 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 454 Size *= C->getValue().zextOrSelf(IntTyBits); 455 return std::make_pair(align(Size, I.getAlignment()), Zero); 456 } 457 return unknown(); 458 } 459 460 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 461 // no interprocedural analysis is done at the moment 462 if (!A.hasByValOrInAllocaAttr()) { 463 ++ObjectVisitorArgument; 464 return unknown(); 465 } 466 PointerType *PT = cast<PointerType>(A.getType()); 467 APInt Size(IntTyBits, DL->getTypeAllocSize(PT->getElementType())); 468 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 469 } 470 471 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 472 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc, 473 TLI); 474 if (!FnData) 475 return unknown(); 476 477 // handle strdup-like functions separately 478 if (FnData->AllocTy == StrDupLike) { 479 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 480 if (!Size) 481 return unknown(); 482 483 // strndup limits strlen 484 if (FnData->FstParam > 0) { 485 ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 486 if (!Arg) 487 return unknown(); 488 489 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 490 if (Size.ugt(MaxSize)) 491 Size = MaxSize + 1; 492 } 493 return std::make_pair(Size, Zero); 494 } 495 496 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 497 if (!Arg) 498 return unknown(); 499 500 APInt Size = Arg->getValue().zextOrSelf(IntTyBits); 501 // size determined by just 1 parameter 502 if (FnData->SndParam < 0) 503 return std::make_pair(Size, Zero); 504 505 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 506 if (!Arg) 507 return unknown(); 508 509 Size *= Arg->getValue().zextOrSelf(IntTyBits); 510 return std::make_pair(Size, Zero); 511 512 // TODO: handle more standard functions (+ wchar cousins): 513 // - strdup / strndup 514 // - strcpy / strncpy 515 // - strcat / strncat 516 // - memcpy / memmove 517 // - strcat / strncat 518 // - memset 519 } 520 521 SizeOffsetType 522 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) { 523 return std::make_pair(Zero, Zero); 524 } 525 526 SizeOffsetType 527 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 528 return unknown(); 529 } 530 531 SizeOffsetType 532 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 533 // Easy cases were already folded by previous passes. 534 return unknown(); 535 } 536 537 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 538 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 539 APInt Offset(IntTyBits, 0); 540 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(*DL, Offset)) 541 return unknown(); 542 543 return std::make_pair(PtrData.first, PtrData.second + Offset); 544 } 545 546 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 547 if (GA.mayBeOverridden()) 548 return unknown(); 549 return compute(GA.getAliasee()); 550 } 551 552 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 553 if (!GV.hasDefinitiveInitializer()) 554 return unknown(); 555 556 APInt Size(IntTyBits, DL->getTypeAllocSize(GV.getType()->getElementType())); 557 return std::make_pair(align(Size, GV.getAlignment()), Zero); 558 } 559 560 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 561 // clueless 562 return unknown(); 563 } 564 565 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 566 ++ObjectVisitorLoad; 567 return unknown(); 568 } 569 570 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 571 // too complex to analyze statically. 572 return unknown(); 573 } 574 575 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 576 SizeOffsetType TrueSide = compute(I.getTrueValue()); 577 SizeOffsetType FalseSide = compute(I.getFalseValue()); 578 if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide) 579 return TrueSide; 580 return unknown(); 581 } 582 583 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 584 return std::make_pair(Zero, Zero); 585 } 586 587 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 588 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 589 return unknown(); 590 } 591 592 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const DataLayout *DL, 593 const TargetLibraryInfo *TLI, 594 LLVMContext &Context, 595 bool RoundToAlign) 596 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 597 RoundToAlign(RoundToAlign) { 598 // IntTy and Zero must be set for each compute() since the address space may 599 // be different for later objects. 600 } 601 602 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 603 // XXX - Are vectors of pointers possible here? 604 IntTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 605 Zero = ConstantInt::get(IntTy, 0); 606 607 SizeOffsetEvalType Result = compute_(V); 608 609 if (!bothKnown(Result)) { 610 // erase everything that was computed in this iteration from the cache, so 611 // that no dangling references are left behind. We could be a bit smarter if 612 // we kept a dependency graph. It's probably not worth the complexity. 613 for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) { 614 CacheMapTy::iterator CacheIt = CacheMap.find(*I); 615 // non-computable results can be safely cached 616 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 617 CacheMap.erase(CacheIt); 618 } 619 } 620 621 SeenVals.clear(); 622 return Result; 623 } 624 625 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 626 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign); 627 SizeOffsetType Const = Visitor.compute(V); 628 if (Visitor.bothKnown(Const)) 629 return std::make_pair(ConstantInt::get(Context, Const.first), 630 ConstantInt::get(Context, Const.second)); 631 632 V = V->stripPointerCasts(); 633 634 // check cache 635 CacheMapTy::iterator CacheIt = CacheMap.find(V); 636 if (CacheIt != CacheMap.end()) 637 return CacheIt->second; 638 639 // always generate code immediately before the instruction being 640 // processed, so that the generated code dominates the same BBs 641 Instruction *PrevInsertPoint = Builder.GetInsertPoint(); 642 if (Instruction *I = dyn_cast<Instruction>(V)) 643 Builder.SetInsertPoint(I); 644 645 // now compute the size and offset 646 SizeOffsetEvalType Result; 647 648 // Record the pointers that were handled in this run, so that they can be 649 // cleaned later if something fails. We also use this set to break cycles that 650 // can occur in dead code. 651 if (!SeenVals.insert(V)) { 652 Result = unknown(); 653 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 654 Result = visitGEPOperator(*GEP); 655 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 656 Result = visit(*I); 657 } else if (isa<Argument>(V) || 658 (isa<ConstantExpr>(V) && 659 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 660 isa<GlobalAlias>(V) || 661 isa<GlobalVariable>(V)) { 662 // ignore values where we cannot do more than what ObjectSizeVisitor can 663 Result = unknown(); 664 } else { 665 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 666 << *V << '\n'); 667 Result = unknown(); 668 } 669 670 if (PrevInsertPoint) 671 Builder.SetInsertPoint(PrevInsertPoint); 672 673 // Don't reuse CacheIt since it may be invalid at this point. 674 CacheMap[V] = Result; 675 return Result; 676 } 677 678 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 679 if (!I.getAllocatedType()->isSized()) 680 return unknown(); 681 682 // must be a VLA 683 assert(I.isArrayAllocation()); 684 Value *ArraySize = I.getArraySize(); 685 Value *Size = ConstantInt::get(ArraySize->getType(), 686 DL->getTypeAllocSize(I.getAllocatedType())); 687 Size = Builder.CreateMul(Size, ArraySize); 688 return std::make_pair(Size, Zero); 689 } 690 691 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 692 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc, 693 TLI); 694 if (!FnData) 695 return unknown(); 696 697 // handle strdup-like functions separately 698 if (FnData->AllocTy == StrDupLike) { 699 // TODO 700 return unknown(); 701 } 702 703 Value *FirstArg = CS.getArgument(FnData->FstParam); 704 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 705 if (FnData->SndParam < 0) 706 return std::make_pair(FirstArg, Zero); 707 708 Value *SecondArg = CS.getArgument(FnData->SndParam); 709 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 710 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 711 return std::make_pair(Size, Zero); 712 713 // TODO: handle more standard functions (+ wchar cousins): 714 // - strdup / strndup 715 // - strcpy / strncpy 716 // - strcat / strncat 717 // - memcpy / memmove 718 // - strcat / strncat 719 // - memset 720 } 721 722 SizeOffsetEvalType 723 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 724 return unknown(); 725 } 726 727 SizeOffsetEvalType 728 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 729 return unknown(); 730 } 731 732 SizeOffsetEvalType 733 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 734 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 735 if (!bothKnown(PtrData)) 736 return unknown(); 737 738 Value *Offset = EmitGEPOffset(&Builder, *DL, &GEP, /*NoAssumptions=*/true); 739 Offset = Builder.CreateAdd(PtrData.second, Offset); 740 return std::make_pair(PtrData.first, Offset); 741 } 742 743 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 744 // clueless 745 return unknown(); 746 } 747 748 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 749 return unknown(); 750 } 751 752 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 753 // create 2 PHIs: one for size and another for offset 754 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 755 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 756 757 // insert right away in the cache to handle recursive PHIs 758 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 759 760 // compute offset/size for each PHI incoming pointer 761 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 762 Builder.SetInsertPoint(PHI.getIncomingBlock(i)->getFirstInsertionPt()); 763 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 764 765 if (!bothKnown(EdgeData)) { 766 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 767 OffsetPHI->eraseFromParent(); 768 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 769 SizePHI->eraseFromParent(); 770 return unknown(); 771 } 772 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 773 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 774 } 775 776 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 777 if ((Tmp = SizePHI->hasConstantValue())) { 778 Size = Tmp; 779 SizePHI->replaceAllUsesWith(Size); 780 SizePHI->eraseFromParent(); 781 } 782 if ((Tmp = OffsetPHI->hasConstantValue())) { 783 Offset = Tmp; 784 OffsetPHI->replaceAllUsesWith(Offset); 785 OffsetPHI->eraseFromParent(); 786 } 787 return std::make_pair(Size, Offset); 788 } 789 790 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 791 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 792 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 793 794 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 795 return unknown(); 796 if (TrueSide == FalseSide) 797 return TrueSide; 798 799 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 800 FalseSide.first); 801 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 802 FalseSide.second); 803 return std::make_pair(Size, Offset); 804 } 805 806 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 807 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 808 return unknown(); 809 } 810