1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits information about intrinsic functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenIntrinsics.h" 15 #include "CodeGenTarget.h" 16 #include "SequenceToOffsetTable.h" 17 #include "TableGenBackends.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/TableGen/Error.h" 20 #include "llvm/TableGen/Record.h" 21 #include "llvm/TableGen/StringMatcher.h" 22 #include "llvm/TableGen/TableGenBackend.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 namespace { 27 class IntrinsicEmitter { 28 RecordKeeper &Records; 29 bool TargetOnly; 30 std::string TargetPrefix; 31 32 public: 33 IntrinsicEmitter(RecordKeeper &R, bool T) 34 : Records(R), TargetOnly(T) {} 35 36 void run(raw_ostream &OS); 37 38 void EmitPrefix(raw_ostream &OS); 39 40 void EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints, 41 raw_ostream &OS); 42 43 void EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints, 44 raw_ostream &OS); 45 void EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints, 46 raw_ostream &OS); 47 void EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints, 48 raw_ostream &OS); 49 void EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, 50 raw_ostream &OS); 51 void EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, 52 raw_ostream &OS); 53 void EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, 54 raw_ostream &OS); 55 void EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, 56 raw_ostream &OS); 57 void EmitIntrinsicToMSBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, 58 raw_ostream &OS); 59 void EmitSuffix(raw_ostream &OS); 60 }; 61 } // End anonymous namespace 62 63 //===----------------------------------------------------------------------===// 64 // IntrinsicEmitter Implementation 65 //===----------------------------------------------------------------------===// 66 67 void IntrinsicEmitter::run(raw_ostream &OS) { 68 emitSourceFileHeader("Intrinsic Function Source Fragment", OS); 69 70 std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records, TargetOnly); 71 72 if (TargetOnly && !Ints.empty()) 73 TargetPrefix = Ints[0].TargetPrefix; 74 75 EmitPrefix(OS); 76 77 // Emit the enum information. 78 EmitEnumInfo(Ints, OS); 79 80 // Emit the intrinsic ID -> name table. 81 EmitIntrinsicToNameTable(Ints, OS); 82 83 // Emit the intrinsic ID -> overload table. 84 EmitIntrinsicToOverloadTable(Ints, OS); 85 86 // Emit the function name recognizer. 87 EmitFnNameRecognizer(Ints, OS); 88 89 // Emit the intrinsic declaration generator. 90 EmitGenerator(Ints, OS); 91 92 // Emit the intrinsic parameter attributes. 93 EmitAttributes(Ints, OS); 94 95 // Emit intrinsic alias analysis mod/ref behavior. 96 EmitModRefBehavior(Ints, OS); 97 98 // Emit code to translate GCC builtins into LLVM intrinsics. 99 EmitIntrinsicToGCCBuiltinMap(Ints, OS); 100 101 // Emit code to translate MS builtins into LLVM intrinsics. 102 EmitIntrinsicToMSBuiltinMap(Ints, OS); 103 104 EmitSuffix(OS); 105 } 106 107 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) { 108 OS << "// VisualStudio defines setjmp as _setjmp\n" 109 "#if defined(_MSC_VER) && defined(setjmp) && \\\n" 110 " !defined(setjmp_undefined_for_msvc)\n" 111 "# pragma push_macro(\"setjmp\")\n" 112 "# undef setjmp\n" 113 "# define setjmp_undefined_for_msvc\n" 114 "#endif\n\n"; 115 } 116 117 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) { 118 OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n" 119 "// let's return it to _setjmp state\n" 120 "# pragma pop_macro(\"setjmp\")\n" 121 "# undef setjmp_undefined_for_msvc\n" 122 "#endif\n\n"; 123 } 124 125 void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints, 126 raw_ostream &OS) { 127 OS << "// Enum values for Intrinsics.h\n"; 128 OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; 129 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 130 OS << " " << Ints[i].EnumName; 131 OS << ((i != e-1) ? ", " : " "); 132 OS << std::string(40-Ints[i].EnumName.size(), ' ') 133 << "// " << Ints[i].Name << "\n"; 134 } 135 OS << "#endif\n\n"; 136 } 137 138 void IntrinsicEmitter:: 139 EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints, 140 raw_ostream &OS) { 141 // Build a 'first character of function name' -> intrinsic # mapping. 142 std::map<char, std::vector<unsigned> > IntMapping; 143 for (unsigned i = 0, e = Ints.size(); i != e; ++i) 144 IntMapping[Ints[i].Name[5]].push_back(i); 145 146 OS << "// Function name -> enum value recognizer code.\n"; 147 OS << "#ifdef GET_FUNCTION_RECOGNIZER\n"; 148 OS << " StringRef NameR(Name+6, Len-6); // Skip over 'llvm.'\n"; 149 OS << " switch (Name[5]) { // Dispatch on first letter.\n"; 150 OS << " default: break;\n"; 151 // Emit the intrinsic matching stuff by first letter. 152 for (std::map<char, std::vector<unsigned> >::iterator I = IntMapping.begin(), 153 E = IntMapping.end(); I != E; ++I) { 154 OS << " case '" << I->first << "':\n"; 155 std::vector<unsigned> &IntList = I->second; 156 157 // Sort in reverse order of intrinsic name so "abc.def" appears after 158 // "abd.def.ghi" in the overridden name matcher 159 std::sort(IntList.begin(), IntList.end(), [&](unsigned i, unsigned j) { 160 return Ints[i].Name > Ints[j].Name; 161 }); 162 163 // Emit all the overloaded intrinsics first, build a table of the 164 // non-overloaded ones. 165 std::vector<StringMatcher::StringPair> MatchTable; 166 167 for (unsigned i = 0, e = IntList.size(); i != e; ++i) { 168 unsigned IntNo = IntList[i]; 169 std::string Result = "return " + TargetPrefix + "Intrinsic::" + 170 Ints[IntNo].EnumName + ";"; 171 172 if (!Ints[IntNo].isOverloaded) { 173 MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result)); 174 continue; 175 } 176 177 // For overloaded intrinsics, only the prefix needs to match 178 std::string TheStr = Ints[IntNo].Name.substr(6); 179 TheStr += '.'; // Require "bswap." instead of bswap. 180 OS << " if (NameR.startswith(\"" << TheStr << "\")) " 181 << Result << '\n'; 182 } 183 184 // Emit the matcher logic for the fixed length strings. 185 StringMatcher("NameR", MatchTable, OS).Emit(1); 186 OS << " break; // end of '" << I->first << "' case.\n"; 187 } 188 189 OS << " }\n"; 190 OS << "#endif\n\n"; 191 } 192 193 void IntrinsicEmitter:: 194 EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints, 195 raw_ostream &OS) { 196 OS << "// Intrinsic ID to name table\n"; 197 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; 198 OS << " // Note that entry #0 is the invalid intrinsic!\n"; 199 for (unsigned i = 0, e = Ints.size(); i != e; ++i) 200 OS << " \"" << Ints[i].Name << "\",\n"; 201 OS << "#endif\n\n"; 202 } 203 204 void IntrinsicEmitter:: 205 EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints, 206 raw_ostream &OS) { 207 OS << "// Intrinsic ID to overload bitset\n"; 208 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; 209 OS << "static const uint8_t OTable[] = {\n"; 210 OS << " 0"; 211 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 212 // Add one to the index so we emit a null bit for the invalid #0 intrinsic. 213 if ((i+1)%8 == 0) 214 OS << ",\n 0"; 215 if (Ints[i].isOverloaded) 216 OS << " | (1<<" << (i+1)%8 << ')'; 217 } 218 OS << "\n};\n\n"; 219 // OTable contains a true bit at the position if the intrinsic is overloaded. 220 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; 221 OS << "#endif\n\n"; 222 } 223 224 225 // NOTE: This must be kept in synch with the copy in lib/VMCore/Function.cpp! 226 enum IIT_Info { 227 // Common values should be encoded with 0-15. 228 IIT_Done = 0, 229 IIT_I1 = 1, 230 IIT_I8 = 2, 231 IIT_I16 = 3, 232 IIT_I32 = 4, 233 IIT_I64 = 5, 234 IIT_F16 = 6, 235 IIT_F32 = 7, 236 IIT_F64 = 8, 237 IIT_V2 = 9, 238 IIT_V4 = 10, 239 IIT_V8 = 11, 240 IIT_V16 = 12, 241 IIT_V32 = 13, 242 IIT_PTR = 14, 243 IIT_ARG = 15, 244 245 // Values from 16+ are only encodable with the inefficient encoding. 246 IIT_MMX = 16, 247 IIT_METADATA = 17, 248 IIT_EMPTYSTRUCT = 18, 249 IIT_STRUCT2 = 19, 250 IIT_STRUCT3 = 20, 251 IIT_STRUCT4 = 21, 252 IIT_STRUCT5 = 22, 253 IIT_EXTEND_ARG = 23, 254 IIT_TRUNC_ARG = 24, 255 IIT_ANYPTR = 25, 256 IIT_V1 = 26, 257 IIT_VARARG = 27, 258 IIT_HALF_VEC_ARG = 28 259 }; 260 261 262 static void EncodeFixedValueType(MVT::SimpleValueType VT, 263 std::vector<unsigned char> &Sig) { 264 if (MVT(VT).isInteger()) { 265 unsigned BitWidth = MVT(VT).getSizeInBits(); 266 switch (BitWidth) { 267 default: PrintFatalError("unhandled integer type width in intrinsic!"); 268 case 1: return Sig.push_back(IIT_I1); 269 case 8: return Sig.push_back(IIT_I8); 270 case 16: return Sig.push_back(IIT_I16); 271 case 32: return Sig.push_back(IIT_I32); 272 case 64: return Sig.push_back(IIT_I64); 273 } 274 } 275 276 switch (VT) { 277 default: PrintFatalError("unhandled MVT in intrinsic!"); 278 case MVT::f16: return Sig.push_back(IIT_F16); 279 case MVT::f32: return Sig.push_back(IIT_F32); 280 case MVT::f64: return Sig.push_back(IIT_F64); 281 case MVT::Metadata: return Sig.push_back(IIT_METADATA); 282 case MVT::x86mmx: return Sig.push_back(IIT_MMX); 283 // MVT::OtherVT is used to mean the empty struct type here. 284 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); 285 // MVT::isVoid is used to represent varargs here. 286 case MVT::isVoid: return Sig.push_back(IIT_VARARG); 287 } 288 } 289 290 #ifdef _MSC_VER 291 #pragma optimize("",off) // MSVC 2010 optimizer can't deal with this function. 292 #endif 293 294 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, 295 std::vector<unsigned char> &Sig) { 296 297 if (R->isSubClassOf("LLVMMatchType")) { 298 unsigned Number = R->getValueAsInt("Number"); 299 assert(Number < ArgCodes.size() && "Invalid matching number!"); 300 if (R->isSubClassOf("LLVMExtendedType")) 301 Sig.push_back(IIT_EXTEND_ARG); 302 else if (R->isSubClassOf("LLVMTruncatedType")) 303 Sig.push_back(IIT_TRUNC_ARG); 304 else if (R->isSubClassOf("LLVMHalfElementsVectorType")) 305 Sig.push_back(IIT_HALF_VEC_ARG); 306 else 307 Sig.push_back(IIT_ARG); 308 return Sig.push_back((Number << 2) | ArgCodes[Number]); 309 } 310 311 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); 312 313 unsigned Tmp = 0; 314 switch (VT) { 315 default: break; 316 case MVT::iPTRAny: ++Tmp; // FALL THROUGH. 317 case MVT::vAny: ++Tmp; // FALL THROUGH. 318 case MVT::fAny: ++Tmp; // FALL THROUGH. 319 case MVT::iAny: { 320 // If this is an "any" valuetype, then the type is the type of the next 321 // type in the list specified to getIntrinsic(). 322 Sig.push_back(IIT_ARG); 323 324 // Figure out what arg # this is consuming, and remember what kind it was. 325 unsigned ArgNo = ArgCodes.size(); 326 ArgCodes.push_back(Tmp); 327 328 // Encode what sort of argument it must be in the low 2 bits of the ArgNo. 329 return Sig.push_back((ArgNo << 2) | Tmp); 330 } 331 332 case MVT::iPTR: { 333 unsigned AddrSpace = 0; 334 if (R->isSubClassOf("LLVMQualPointerType")) { 335 AddrSpace = R->getValueAsInt("AddrSpace"); 336 assert(AddrSpace < 256 && "Address space exceeds 255"); 337 } 338 if (AddrSpace) { 339 Sig.push_back(IIT_ANYPTR); 340 Sig.push_back(AddrSpace); 341 } else { 342 Sig.push_back(IIT_PTR); 343 } 344 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig); 345 } 346 } 347 348 if (MVT(VT).isVector()) { 349 MVT VVT = VT; 350 switch (VVT.getVectorNumElements()) { 351 default: PrintFatalError("unhandled vector type width in intrinsic!"); 352 case 1: Sig.push_back(IIT_V1); break; 353 case 2: Sig.push_back(IIT_V2); break; 354 case 4: Sig.push_back(IIT_V4); break; 355 case 8: Sig.push_back(IIT_V8); break; 356 case 16: Sig.push_back(IIT_V16); break; 357 case 32: Sig.push_back(IIT_V32); break; 358 } 359 360 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig); 361 } 362 363 EncodeFixedValueType(VT, Sig); 364 } 365 366 #ifdef _MSC_VER 367 #pragma optimize("",on) 368 #endif 369 370 /// ComputeFixedEncoding - If we can encode the type signature for this 371 /// intrinsic into 32 bits, return it. If not, return ~0U. 372 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, 373 std::vector<unsigned char> &TypeSig) { 374 std::vector<unsigned char> ArgCodes; 375 376 if (Int.IS.RetVTs.empty()) 377 TypeSig.push_back(IIT_Done); 378 else if (Int.IS.RetVTs.size() == 1 && 379 Int.IS.RetVTs[0] == MVT::isVoid) 380 TypeSig.push_back(IIT_Done); 381 else { 382 switch (Int.IS.RetVTs.size()) { 383 case 1: break; 384 case 2: TypeSig.push_back(IIT_STRUCT2); break; 385 case 3: TypeSig.push_back(IIT_STRUCT3); break; 386 case 4: TypeSig.push_back(IIT_STRUCT4); break; 387 case 5: TypeSig.push_back(IIT_STRUCT5); break; 388 default: llvm_unreachable("Unhandled case in struct"); 389 } 390 391 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 392 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig); 393 } 394 395 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 396 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig); 397 } 398 399 static void printIITEntry(raw_ostream &OS, unsigned char X) { 400 OS << (unsigned)X; 401 } 402 403 void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, 404 raw_ostream &OS) { 405 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and 406 // capture it in this vector, otherwise store a ~0U. 407 std::vector<unsigned> FixedEncodings; 408 409 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; 410 411 std::vector<unsigned char> TypeSig; 412 413 // Compute the unique argument type info. 414 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 415 // Get the signature for the intrinsic. 416 TypeSig.clear(); 417 ComputeFixedEncoding(Ints[i], TypeSig); 418 419 // Check to see if we can encode it into a 32-bit word. We can only encode 420 // 8 nibbles into a 32-bit word. 421 if (TypeSig.size() <= 8) { 422 bool Failed = false; 423 unsigned Result = 0; 424 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { 425 // If we had an unencodable argument, bail out. 426 if (TypeSig[i] > 15) { 427 Failed = true; 428 break; 429 } 430 Result = (Result << 4) | TypeSig[e-i-1]; 431 } 432 433 // If this could be encoded into a 31-bit word, return it. 434 if (!Failed && (Result >> 31) == 0) { 435 FixedEncodings.push_back(Result); 436 continue; 437 } 438 } 439 440 // Otherwise, we're going to unique the sequence into the 441 // LongEncodingTable, and use its offset in the 32-bit table instead. 442 LongEncodingTable.add(TypeSig); 443 444 // This is a placehold that we'll replace after the table is laid out. 445 FixedEncodings.push_back(~0U); 446 } 447 448 LongEncodingTable.layout(); 449 450 OS << "// Global intrinsic function declaration type table.\n"; 451 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; 452 453 OS << "static const unsigned IIT_Table[] = {\n "; 454 455 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { 456 if ((i & 7) == 7) 457 OS << "\n "; 458 459 // If the entry fit in the table, just emit it. 460 if (FixedEncodings[i] != ~0U) { 461 OS << "0x" << utohexstr(FixedEncodings[i]) << ", "; 462 continue; 463 } 464 465 TypeSig.clear(); 466 ComputeFixedEncoding(Ints[i], TypeSig); 467 468 469 // Otherwise, emit the offset into the long encoding table. We emit it this 470 // way so that it is easier to read the offset in the .def file. 471 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; 472 } 473 474 OS << "0\n};\n\n"; 475 476 // Emit the shared table of register lists. 477 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; 478 if (!LongEncodingTable.empty()) 479 LongEncodingTable.emit(OS, printIITEntry); 480 OS << " 255\n};\n\n"; 481 482 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL 483 } 484 485 namespace { 486 enum ModRefKind { 487 MRK_none, 488 MRK_readonly, 489 MRK_readnone 490 }; 491 } 492 493 static ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) { 494 switch (intrinsic.ModRef) { 495 case CodeGenIntrinsic::NoMem: 496 return MRK_readnone; 497 case CodeGenIntrinsic::ReadArgMem: 498 case CodeGenIntrinsic::ReadMem: 499 return MRK_readonly; 500 case CodeGenIntrinsic::ReadWriteArgMem: 501 case CodeGenIntrinsic::ReadWriteMem: 502 return MRK_none; 503 } 504 llvm_unreachable("bad mod-ref kind"); 505 } 506 507 namespace { 508 struct AttributeComparator { 509 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { 510 // Sort throwing intrinsics after non-throwing intrinsics. 511 if (L->canThrow != R->canThrow) 512 return R->canThrow; 513 514 if (L->isNoDuplicate != R->isNoDuplicate) 515 return R->isNoDuplicate; 516 517 if (L->isNoReturn != R->isNoReturn) 518 return R->isNoReturn; 519 520 // Try to order by readonly/readnone attribute. 521 ModRefKind LK = getModRefKind(*L); 522 ModRefKind RK = getModRefKind(*R); 523 if (LK != RK) return (LK > RK); 524 525 // Order by argument attributes. 526 // This is reliable because each side is already sorted internally. 527 return (L->ArgumentAttributes < R->ArgumentAttributes); 528 } 529 }; 530 } // End anonymous namespace 531 532 /// EmitAttributes - This emits the Intrinsic::getAttributes method. 533 void IntrinsicEmitter:: 534 EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { 535 OS << "// Add parameter attributes that are not common to all intrinsics.\n"; 536 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; 537 if (TargetOnly) 538 OS << "static AttributeSet getAttributes(LLVMContext &C, " << TargetPrefix 539 << "Intrinsic::ID id) {\n"; 540 else 541 OS << "AttributeSet Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; 542 543 // Compute the maximum number of attribute arguments and the map 544 typedef std::map<const CodeGenIntrinsic*, unsigned, 545 AttributeComparator> UniqAttrMapTy; 546 UniqAttrMapTy UniqAttributes; 547 unsigned maxArgAttrs = 0; 548 unsigned AttrNum = 0; 549 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 550 const CodeGenIntrinsic &intrinsic = Ints[i]; 551 maxArgAttrs = 552 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); 553 unsigned &N = UniqAttributes[&intrinsic]; 554 if (N) continue; 555 assert(AttrNum < 256 && "Too many unique attributes for table!"); 556 N = ++AttrNum; 557 } 558 559 // Emit an array of AttributeSet. Most intrinsics will have at least one 560 // entry, for the function itself (index ~1), which is usually nounwind. 561 OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n"; 562 563 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 564 const CodeGenIntrinsic &intrinsic = Ints[i]; 565 566 OS << " " << UniqAttributes[&intrinsic] << ", // " 567 << intrinsic.Name << "\n"; 568 } 569 OS << " };\n\n"; 570 571 OS << " AttributeSet AS[" << maxArgAttrs+1 << "];\n"; 572 OS << " unsigned NumAttrs = 0;\n"; 573 OS << " if (id != 0) {\n"; 574 OS << " switch(IntrinsicsToAttributesMap[id - "; 575 if (TargetOnly) 576 OS << "Intrinsic::num_intrinsics"; 577 else 578 OS << "1"; 579 OS << "]) {\n"; 580 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; 581 for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(), 582 E = UniqAttributes.end(); I != E; ++I) { 583 OS << " case " << I->second << ": {\n"; 584 585 const CodeGenIntrinsic &intrinsic = *(I->first); 586 587 // Keep track of the number of attributes we're writing out. 588 unsigned numAttrs = 0; 589 590 // The argument attributes are alreadys sorted by argument index. 591 unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); 592 if (ae) { 593 while (ai != ae) { 594 unsigned argNo = intrinsic.ArgumentAttributes[ai].first; 595 596 OS << " const Attribute::AttrKind AttrParam" << argNo + 1 <<"[]= {"; 597 bool addComma = false; 598 599 do { 600 switch (intrinsic.ArgumentAttributes[ai].second) { 601 case CodeGenIntrinsic::NoCapture: 602 if (addComma) 603 OS << ","; 604 OS << "Attribute::NoCapture"; 605 addComma = true; 606 break; 607 case CodeGenIntrinsic::ReadOnly: 608 if (addComma) 609 OS << ","; 610 OS << "Attribute::ReadOnly"; 611 addComma = true; 612 break; 613 case CodeGenIntrinsic::ReadNone: 614 if (addComma) 615 OS << ","; 616 OS << "Attributes::ReadNone"; 617 addComma = true; 618 break; 619 } 620 621 ++ai; 622 } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo); 623 OS << "};\n"; 624 OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, " 625 << argNo+1 << ", AttrParam" << argNo +1 << ");\n"; 626 } 627 } 628 629 ModRefKind modRef = getModRefKind(intrinsic); 630 631 if (!intrinsic.canThrow || modRef || intrinsic.isNoReturn || 632 intrinsic.isNoDuplicate) { 633 OS << " const Attribute::AttrKind Atts[] = {"; 634 bool addComma = false; 635 if (!intrinsic.canThrow) { 636 OS << "Attribute::NoUnwind"; 637 addComma = true; 638 } 639 if (intrinsic.isNoReturn) { 640 if (addComma) 641 OS << ","; 642 OS << "Attribute::NoReturn"; 643 addComma = true; 644 } 645 if (intrinsic.isNoDuplicate) { 646 if (addComma) 647 OS << ","; 648 OS << "Attribute::NoDuplicate"; 649 addComma = true; 650 } 651 652 switch (modRef) { 653 case MRK_none: break; 654 case MRK_readonly: 655 if (addComma) 656 OS << ","; 657 OS << "Attribute::ReadOnly"; 658 break; 659 case MRK_readnone: 660 if (addComma) 661 OS << ","; 662 OS << "Attribute::ReadNone"; 663 break; 664 } 665 OS << "};\n"; 666 OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, " 667 << "AttributeSet::FunctionIndex, Atts);\n"; 668 } 669 670 if (numAttrs) { 671 OS << " NumAttrs = " << numAttrs << ";\n"; 672 OS << " break;\n"; 673 OS << " }\n"; 674 } else { 675 OS << " return AttributeSet();\n"; 676 OS << " }\n"; 677 } 678 } 679 680 OS << " }\n"; 681 OS << " }\n"; 682 OS << " return AttributeSet::get(C, ArrayRef<AttributeSet>(AS, " 683 "NumAttrs));\n"; 684 OS << "}\n"; 685 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; 686 } 687 688 /// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior. 689 void IntrinsicEmitter:: 690 EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){ 691 OS << "// Determine intrinsic alias analysis mod/ref behavior.\n" 692 << "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n" 693 << "assert(iid <= Intrinsic::" << Ints.back().EnumName << " && " 694 << "\"Unknown intrinsic.\");\n\n"; 695 696 OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n" 697 << " /* invalid */ UnknownModRefBehavior,\n"; 698 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 699 OS << " /* " << TargetPrefix << Ints[i].EnumName << " */ "; 700 switch (Ints[i].ModRef) { 701 case CodeGenIntrinsic::NoMem: 702 OS << "DoesNotAccessMemory,\n"; 703 break; 704 case CodeGenIntrinsic::ReadArgMem: 705 OS << "OnlyReadsArgumentPointees,\n"; 706 break; 707 case CodeGenIntrinsic::ReadMem: 708 OS << "OnlyReadsMemory,\n"; 709 break; 710 case CodeGenIntrinsic::ReadWriteArgMem: 711 OS << "OnlyAccessesArgumentPointees,\n"; 712 break; 713 case CodeGenIntrinsic::ReadWriteMem: 714 OS << "UnknownModRefBehavior,\n"; 715 break; 716 } 717 } 718 OS << "};\n\n" 719 << "return static_cast<ModRefBehavior>(IntrinsicModRefBehavior[iid]);\n" 720 << "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n"; 721 } 722 723 /// EmitTargetBuiltins - All of the builtins in the specified map are for the 724 /// same target, and we already checked it. 725 static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM, 726 const std::string &TargetPrefix, 727 raw_ostream &OS) { 728 729 std::vector<StringMatcher::StringPair> Results; 730 731 for (std::map<std::string, std::string>::const_iterator I = BIM.begin(), 732 E = BIM.end(); I != E; ++I) { 733 std::string ResultCode = 734 "return " + TargetPrefix + "Intrinsic::" + I->second + ";"; 735 Results.push_back(StringMatcher::StringPair(I->first, ResultCode)); 736 } 737 738 StringMatcher("BuiltinName", Results, OS).Emit(); 739 } 740 741 742 void IntrinsicEmitter:: 743 EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, 744 raw_ostream &OS) { 745 typedef std::map<std::string, std::map<std::string, std::string> > BIMTy; 746 BIMTy BuiltinMap; 747 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 748 if (!Ints[i].GCCBuiltinName.empty()) { 749 // Get the map for this target prefix. 750 std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix]; 751 752 if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName, 753 Ints[i].EnumName)).second) 754 PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() + 755 "': duplicate GCC builtin name!"); 756 } 757 } 758 759 OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n"; 760 OS << "// This is used by the C front-end. The GCC builtin name is passed\n"; 761 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; 762 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; 763 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n"; 764 765 if (TargetOnly) { 766 OS << "static " << TargetPrefix << "Intrinsic::ID " 767 << "getIntrinsicForGCCBuiltin(const char " 768 << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; 769 } else { 770 OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char " 771 << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; 772 } 773 774 OS << " StringRef BuiltinName(BuiltinNameStr);\n"; 775 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; 776 777 // Note: this could emit significantly better code if we cared. 778 for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ 779 OS << " "; 780 if (!I->first.empty()) 781 OS << "if (TargetPrefix == \"" << I->first << "\") "; 782 else 783 OS << "/* Target Independent Builtins */ "; 784 OS << "{\n"; 785 786 // Emit the comparisons for this target prefix. 787 EmitTargetBuiltins(I->second, TargetPrefix, OS); 788 OS << " }\n"; 789 } 790 OS << " return "; 791 if (!TargetPrefix.empty()) 792 OS << "(" << TargetPrefix << "Intrinsic::ID)"; 793 OS << "Intrinsic::not_intrinsic;\n"; 794 OS << "}\n"; 795 OS << "#endif\n\n"; 796 } 797 798 void IntrinsicEmitter:: 799 EmitIntrinsicToMSBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, 800 raw_ostream &OS) { 801 std::map<std::string, std::map<std::string, std::string>> TargetBuiltins; 802 803 for (const auto &Intrinsic : Ints) { 804 if (Intrinsic.MSBuiltinName.empty()) 805 continue; 806 807 auto &Builtins = TargetBuiltins[Intrinsic.TargetPrefix]; 808 if (!Builtins.insert(std::make_pair(Intrinsic.MSBuiltinName, 809 Intrinsic.EnumName)).second) 810 PrintFatalError("Intrinsic '" + Intrinsic.TheDef->getName() + "': " 811 "duplicate MS builtin name!"); 812 } 813 814 OS << "// Get the LLVM intrinsic that corresponds to a MS builtin.\n" 815 "// This is used by the C front-end. The MS builtin name is passed\n" 816 "// in as a BuiltinName, and a target prefix (e.g. 'arm') is passed\n" 817 "// in as a TargetPrefix. The result is assigned to 'IntrinsicID'.\n" 818 "#ifdef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN\n"; 819 820 OS << (TargetOnly ? "static " + TargetPrefix : "") << "Intrinsic::ID " 821 << (TargetOnly ? "" : "Intrinsic::") 822 << "getIntrinsicForMSBuiltin(const char *TP, const char *BN) {\n"; 823 OS << " StringRef BuiltinName(BN);\n" 824 " StringRef TargetPrefix(TP);\n" 825 "\n"; 826 827 for (const auto &Builtins : TargetBuiltins) { 828 OS << " "; 829 if (Builtins.first.empty()) 830 OS << "/* Target Independent Builtins */ "; 831 else 832 OS << "if (TargetPrefix == \"" << Builtins.first << "\") "; 833 OS << "{\n"; 834 EmitTargetBuiltins(Builtins.second, TargetPrefix, OS); 835 OS << "}"; 836 } 837 838 OS << " return "; 839 if (!TargetPrefix.empty()) 840 OS << "(" << TargetPrefix << "Intrinsic::ID)"; 841 OS << "Intrinsic::not_intrinsic;\n"; 842 OS << "}\n"; 843 844 OS << "#endif\n\n"; 845 } 846 847 void llvm::EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly) { 848 IntrinsicEmitter(RK, TargetOnly).run(OS); 849 } 850