Home | History | Annotate | Download | only in time
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 
      6 // Windows Timer Primer
      7 //
      8 // A good article:  http://www.ddj.com/windows/184416651
      9 // A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
     10 //
     11 // The default windows timer, GetSystemTimeAsFileTime is not very precise.
     12 // It is only good to ~15.5ms.
     13 //
     14 // QueryPerformanceCounter is the logical choice for a high-precision timer.
     15 // However, it is known to be buggy on some hardware.  Specifically, it can
     16 // sometimes "jump".  On laptops, QPC can also be very expensive to call.
     17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
     18 // on laptops.  A unittest exists which will show the relative cost of various
     19 // timers on any system.
     20 //
     21 // The next logical choice is timeGetTime().  timeGetTime has a precision of
     22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
     23 // applications on the system.  By default, precision is only 15.5ms.
     24 // Unfortunately, we don't want to call timeBeginPeriod because we don't
     25 // want to affect other applications.  Further, on mobile platforms, use of
     26 // faster multimedia timers can hurt battery life.  See the intel
     27 // article about this here:
     28 // http://softwarecommunity.intel.com/articles/eng/1086.htm
     29 //
     30 // To work around all this, we're going to generally use timeGetTime().  We
     31 // will only increase the system-wide timer if we're not running on battery
     32 // power.  Using timeBeginPeriod(1) is a requirement in order to make our
     33 // message loop waits have the same resolution that our time measurements
     34 // do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
     35 // there is nothing else to waken the Wait.
     36 
     37 #include "base/time/time.h"
     38 
     39 #pragma comment(lib, "winmm.lib")
     40 #include <windows.h>
     41 #include <mmsystem.h>
     42 
     43 #include "base/basictypes.h"
     44 #include "base/cpu.h"
     45 #include "base/lazy_instance.h"
     46 #include "base/logging.h"
     47 #include "base/synchronization/lock.h"
     48 
     49 using base::Time;
     50 using base::TimeDelta;
     51 using base::TimeTicks;
     52 
     53 namespace {
     54 
     55 // From MSDN, FILETIME "Contains a 64-bit value representing the number of
     56 // 100-nanosecond intervals since January 1, 1601 (UTC)."
     57 int64 FileTimeToMicroseconds(const FILETIME& ft) {
     58   // Need to bit_cast to fix alignment, then divide by 10 to convert
     59   // 100-nanoseconds to milliseconds. This only works on little-endian
     60   // machines.
     61   return bit_cast<int64, FILETIME>(ft) / 10;
     62 }
     63 
     64 void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
     65   DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not "
     66       "representable in FILETIME";
     67 
     68   // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
     69   // handle alignment problems. This only works on little-endian machines.
     70   *ft = bit_cast<FILETIME, int64>(us * 10);
     71 }
     72 
     73 int64 CurrentWallclockMicroseconds() {
     74   FILETIME ft;
     75   ::GetSystemTimeAsFileTime(&ft);
     76   return FileTimeToMicroseconds(ft);
     77 }
     78 
     79 // Time between resampling the un-granular clock for this API.  60 seconds.
     80 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
     81 
     82 int64 initial_time = 0;
     83 TimeTicks initial_ticks;
     84 
     85 void InitializeClock() {
     86   initial_ticks = TimeTicks::Now();
     87   initial_time = CurrentWallclockMicroseconds();
     88 }
     89 
     90 }  // namespace
     91 
     92 // Time -----------------------------------------------------------------------
     93 
     94 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
     95 // 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
     96 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
     97 // 1700, 1800, and 1900.
     98 // static
     99 const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
    100 
    101 bool Time::high_resolution_timer_enabled_ = false;
    102 int Time::high_resolution_timer_activated_ = 0;
    103 
    104 // static
    105 Time Time::Now() {
    106   if (initial_time == 0)
    107     InitializeClock();
    108 
    109   // We implement time using the high-resolution timers so that we can get
    110   // timeouts which are smaller than 10-15ms.  If we just used
    111   // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
    112   //
    113   // To make this work, we initialize the clock (initial_time) and the
    114   // counter (initial_ctr).  To compute the initial time, we can check
    115   // the number of ticks that have elapsed, and compute the delta.
    116   //
    117   // To avoid any drift, we periodically resync the counters to the system
    118   // clock.
    119   while (true) {
    120     TimeTicks ticks = TimeTicks::Now();
    121 
    122     // Calculate the time elapsed since we started our timer
    123     TimeDelta elapsed = ticks - initial_ticks;
    124 
    125     // Check if enough time has elapsed that we need to resync the clock.
    126     if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
    127       InitializeClock();
    128       continue;
    129     }
    130 
    131     return Time(elapsed + Time(initial_time));
    132   }
    133 }
    134 
    135 // static
    136 Time Time::NowFromSystemTime() {
    137   // Force resync.
    138   InitializeClock();
    139   return Time(initial_time);
    140 }
    141 
    142 // static
    143 Time Time::FromFileTime(FILETIME ft) {
    144   if (bit_cast<int64, FILETIME>(ft) == 0)
    145     return Time();
    146   if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
    147       ft.dwLowDateTime == std::numeric_limits<DWORD>::max())
    148     return Max();
    149   return Time(FileTimeToMicroseconds(ft));
    150 }
    151 
    152 FILETIME Time::ToFileTime() const {
    153   if (is_null())
    154     return bit_cast<FILETIME, int64>(0);
    155   if (is_max()) {
    156     FILETIME result;
    157     result.dwHighDateTime = std::numeric_limits<DWORD>::max();
    158     result.dwLowDateTime = std::numeric_limits<DWORD>::max();
    159     return result;
    160   }
    161   FILETIME utc_ft;
    162   MicrosecondsToFileTime(us_, &utc_ft);
    163   return utc_ft;
    164 }
    165 
    166 // static
    167 void Time::EnableHighResolutionTimer(bool enable) {
    168   // Test for single-threaded access.
    169   static PlatformThreadId my_thread = PlatformThread::CurrentId();
    170   DCHECK(PlatformThread::CurrentId() == my_thread);
    171 
    172   if (high_resolution_timer_enabled_ == enable)
    173     return;
    174 
    175   high_resolution_timer_enabled_ = enable;
    176 }
    177 
    178 // static
    179 bool Time::ActivateHighResolutionTimer(bool activating) {
    180   if (!high_resolution_timer_enabled_ && activating)
    181     return false;
    182 
    183   // Using anything other than 1ms makes timers granular
    184   // to that interval.
    185   const int kMinTimerIntervalMs = 1;
    186   MMRESULT result;
    187   if (activating) {
    188     result = timeBeginPeriod(kMinTimerIntervalMs);
    189     high_resolution_timer_activated_++;
    190   } else {
    191     result = timeEndPeriod(kMinTimerIntervalMs);
    192     high_resolution_timer_activated_--;
    193   }
    194   return result == TIMERR_NOERROR;
    195 }
    196 
    197 // static
    198 bool Time::IsHighResolutionTimerInUse() {
    199   // Note:  we should track the high_resolution_timer_activated_ value
    200   // under a lock if we want it to be accurate in a system with multiple
    201   // message loops.  We don't do that - because we don't want to take the
    202   // expense of a lock for this.  We *only* track this value so that unit
    203   // tests can see if the high resolution timer is on or off.
    204   return high_resolution_timer_enabled_ &&
    205       high_resolution_timer_activated_ > 0;
    206 }
    207 
    208 // static
    209 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
    210   // Create the system struct representing our exploded time. It will either be
    211   // in local time or UTC.
    212   SYSTEMTIME st;
    213   st.wYear = exploded.year;
    214   st.wMonth = exploded.month;
    215   st.wDayOfWeek = exploded.day_of_week;
    216   st.wDay = exploded.day_of_month;
    217   st.wHour = exploded.hour;
    218   st.wMinute = exploded.minute;
    219   st.wSecond = exploded.second;
    220   st.wMilliseconds = exploded.millisecond;
    221 
    222   FILETIME ft;
    223   bool success = true;
    224   // Ensure that it's in UTC.
    225   if (is_local) {
    226     SYSTEMTIME utc_st;
    227     success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) &&
    228               SystemTimeToFileTime(&utc_st, &ft);
    229   } else {
    230     success = !!SystemTimeToFileTime(&st, &ft);
    231   }
    232 
    233   if (!success) {
    234     NOTREACHED() << "Unable to convert time";
    235     return Time(0);
    236   }
    237   return Time(FileTimeToMicroseconds(ft));
    238 }
    239 
    240 void Time::Explode(bool is_local, Exploded* exploded) const {
    241   if (us_ < 0LL) {
    242     // We are not able to convert it to FILETIME.
    243     ZeroMemory(exploded, sizeof(*exploded));
    244     return;
    245   }
    246 
    247   // FILETIME in UTC.
    248   FILETIME utc_ft;
    249   MicrosecondsToFileTime(us_, &utc_ft);
    250 
    251   // FILETIME in local time if necessary.
    252   bool success = true;
    253   // FILETIME in SYSTEMTIME (exploded).
    254   SYSTEMTIME st;
    255   if (is_local) {
    256     SYSTEMTIME utc_st;
    257     // We don't use FileTimeToLocalFileTime here, since it uses the current
    258     // settings for the time zone and daylight saving time. Therefore, if it is
    259     // daylight saving time, it will take daylight saving time into account,
    260     // even if the time you are converting is in standard time.
    261     success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
    262               SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st);
    263   } else {
    264     success = !!FileTimeToSystemTime(&utc_ft, &st);
    265   }
    266 
    267   if (!success) {
    268     NOTREACHED() << "Unable to convert time, don't know why";
    269     ZeroMemory(exploded, sizeof(*exploded));
    270     return;
    271   }
    272 
    273   exploded->year = st.wYear;
    274   exploded->month = st.wMonth;
    275   exploded->day_of_week = st.wDayOfWeek;
    276   exploded->day_of_month = st.wDay;
    277   exploded->hour = st.wHour;
    278   exploded->minute = st.wMinute;
    279   exploded->second = st.wSecond;
    280   exploded->millisecond = st.wMilliseconds;
    281 }
    282 
    283 // TimeTicks ------------------------------------------------------------------
    284 namespace {
    285 
    286 // We define a wrapper to adapt between the __stdcall and __cdecl call of the
    287 // mock function, and to avoid a static constructor.  Assigning an import to a
    288 // function pointer directly would require setup code to fetch from the IAT.
    289 DWORD timeGetTimeWrapper() {
    290   return timeGetTime();
    291 }
    292 
    293 DWORD (*tick_function)(void) = &timeGetTimeWrapper;
    294 
    295 // Accumulation of time lost due to rollover (in milliseconds).
    296 int64 rollover_ms = 0;
    297 
    298 // The last timeGetTime value we saw, to detect rollover.
    299 DWORD last_seen_now = 0;
    300 
    301 // Lock protecting rollover_ms and last_seen_now.
    302 // Note: this is a global object, and we usually avoid these. However, the time
    303 // code is low-level, and we don't want to use Singletons here (it would be too
    304 // easy to use a Singleton without even knowing it, and that may lead to many
    305 // gotchas). Its impact on startup time should be negligible due to low-level
    306 // nature of time code.
    307 base::Lock rollover_lock;
    308 
    309 // We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
    310 // because it returns the number of milliseconds since Windows has started,
    311 // which will roll over the 32-bit value every ~49 days.  We try to track
    312 // rollover ourselves, which works if TimeTicks::Now() is called at least every
    313 // 49 days.
    314 TimeDelta RolloverProtectedNow() {
    315   base::AutoLock locked(rollover_lock);
    316   // We should hold the lock while calling tick_function to make sure that
    317   // we keep last_seen_now stay correctly in sync.
    318   DWORD now = tick_function();
    319   if (now < last_seen_now)
    320     rollover_ms += 0x100000000I64;  // ~49.7 days.
    321   last_seen_now = now;
    322   return TimeDelta::FromMilliseconds(now + rollover_ms);
    323 }
    324 
    325 bool IsBuggyAthlon(const base::CPU& cpu) {
    326   // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
    327   // unreliable.  Fallback to low-res clock.
    328   return cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15;
    329 }
    330 
    331 // Overview of time counters:
    332 // (1) CPU cycle counter. (Retrieved via RDTSC)
    333 // The CPU counter provides the highest resolution time stamp and is the least
    334 // expensive to retrieve. However, the CPU counter is unreliable and should not
    335 // be used in production. Its biggest issue is that it is per processor and it
    336 // is not synchronized between processors. Also, on some computers, the counters
    337 // will change frequency due to thermal and power changes, and stop in some
    338 // states.
    339 //
    340 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
    341 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
    342 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
    343 // (with some help from ACPI).
    344 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
    345 // in the worst case, it gets the counter from the rollover interrupt on the
    346 // programmable interrupt timer. In best cases, the HAL may conclude that the
    347 // RDTSC counter runs at a constant frequency, then it uses that instead. On
    348 // multiprocessor machines, it will try to verify the values returned from
    349 // RDTSC on each processor are consistent with each other, and apply a handful
    350 // of workarounds for known buggy hardware. In other words, QPC is supposed to
    351 // give consistent result on a multiprocessor computer, but it is unreliable in
    352 // reality due to bugs in BIOS or HAL on some, especially old computers.
    353 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
    354 // it should be used with caution.
    355 //
    356 // (3) System time. The system time provides a low-resolution (typically 10ms
    357 // to 55 milliseconds) time stamp but is comparatively less expensive to
    358 // retrieve and more reliable.
    359 class HighResNowSingleton {
    360  public:
    361   HighResNowSingleton()
    362     : ticks_per_second_(0),
    363       skew_(0) {
    364     InitializeClock();
    365 
    366     base::CPU cpu;
    367     if (IsBuggyAthlon(cpu))
    368       DisableHighResClock();
    369   }
    370 
    371   bool IsUsingHighResClock() {
    372     return ticks_per_second_ != 0.0;
    373   }
    374 
    375   void DisableHighResClock() {
    376     ticks_per_second_ = 0.0;
    377   }
    378 
    379   TimeDelta Now() {
    380     if (IsUsingHighResClock())
    381       return TimeDelta::FromMicroseconds(UnreliableNow());
    382 
    383     // Just fallback to the slower clock.
    384     return RolloverProtectedNow();
    385   }
    386 
    387   int64 GetQPCDriftMicroseconds() {
    388     if (!IsUsingHighResClock())
    389       return 0;
    390     return abs((UnreliableNow() - ReliableNow()) - skew_);
    391   }
    392 
    393   int64 QPCValueToMicroseconds(LONGLONG qpc_value) {
    394     if (!ticks_per_second_)
    395       return 0;
    396 
    397     // Intentionally calculate microseconds in a round about manner to avoid
    398     // overflow and precision issues. Think twice before simplifying!
    399     int64 whole_seconds = qpc_value / ticks_per_second_;
    400     int64 leftover_ticks = qpc_value % ticks_per_second_;
    401     int64 microseconds = (whole_seconds * Time::kMicrosecondsPerSecond) +
    402                          ((leftover_ticks * Time::kMicrosecondsPerSecond) /
    403                           ticks_per_second_);
    404     return microseconds;
    405   }
    406 
    407  private:
    408   // Synchronize the QPC clock with GetSystemTimeAsFileTime.
    409   void InitializeClock() {
    410     LARGE_INTEGER ticks_per_sec = {0};
    411     if (!QueryPerformanceFrequency(&ticks_per_sec))
    412       return;  // Broken, we don't guarantee this function works.
    413     ticks_per_second_ = ticks_per_sec.QuadPart;
    414 
    415     skew_ = UnreliableNow() - ReliableNow();
    416   }
    417 
    418   // Get the number of microseconds since boot in an unreliable fashion.
    419   int64 UnreliableNow() {
    420     LARGE_INTEGER now;
    421     QueryPerformanceCounter(&now);
    422     return QPCValueToMicroseconds(now.QuadPart);
    423   }
    424 
    425   // Get the number of microseconds since boot in a reliable fashion.
    426   int64 ReliableNow() {
    427     return RolloverProtectedNow().InMicroseconds();
    428   }
    429 
    430   int64 ticks_per_second_;  // 0 indicates QPF failed and we're broken.
    431   int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).
    432 };
    433 
    434 static base::LazyInstance<HighResNowSingleton>::Leaky
    435     leaky_high_res_now_singleton = LAZY_INSTANCE_INITIALIZER;
    436 
    437 HighResNowSingleton* GetHighResNowSingleton() {
    438   return leaky_high_res_now_singleton.Pointer();
    439 }
    440 
    441 TimeDelta HighResNowWrapper() {
    442   return GetHighResNowSingleton()->Now();
    443 }
    444 
    445 typedef TimeDelta (*NowFunction)(void);
    446 NowFunction now_function = RolloverProtectedNow;
    447 
    448 bool CPUReliablySupportsHighResTime() {
    449   base::CPU cpu;
    450   if (!cpu.has_non_stop_time_stamp_counter())
    451     return false;
    452 
    453   if (IsBuggyAthlon(cpu))
    454     return false;
    455 
    456   return true;
    457 }
    458 
    459 }  // namespace
    460 
    461 // static
    462 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
    463     TickFunctionType ticker) {
    464   base::AutoLock locked(rollover_lock);
    465   TickFunctionType old = tick_function;
    466   tick_function = ticker;
    467   rollover_ms = 0;
    468   last_seen_now = 0;
    469   return old;
    470 }
    471 
    472 // static
    473 bool TimeTicks::SetNowIsHighResNowIfSupported() {
    474   if (!CPUReliablySupportsHighResTime()) {
    475     return false;
    476   }
    477 
    478   now_function = HighResNowWrapper;
    479   return true;
    480 }
    481 
    482 // static
    483 TimeTicks TimeTicks::Now() {
    484   return TimeTicks() + now_function();
    485 }
    486 
    487 // static
    488 TimeTicks TimeTicks::HighResNow() {
    489   return TimeTicks() + HighResNowWrapper();
    490 }
    491 
    492 // static
    493 bool TimeTicks::IsHighResNowFastAndReliable() {
    494   return CPUReliablySupportsHighResTime();
    495 }
    496 
    497 // static
    498 TimeTicks TimeTicks::ThreadNow() {
    499   NOTREACHED();
    500   return TimeTicks();
    501 }
    502 
    503 // static
    504 TimeTicks TimeTicks::NowFromSystemTraceTime() {
    505   return HighResNow();
    506 }
    507 
    508 // static
    509 int64 TimeTicks::GetQPCDriftMicroseconds() {
    510   return GetHighResNowSingleton()->GetQPCDriftMicroseconds();
    511 }
    512 
    513 // static
    514 TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
    515   return TimeTicks(GetHighResNowSingleton()->QPCValueToMicroseconds(qpc_value));
    516 }
    517 
    518 // static
    519 bool TimeTicks::IsHighResClockWorking() {
    520   return GetHighResNowSingleton()->IsUsingHighResClock();
    521 }
    522 
    523 TimeTicks TimeTicks::UnprotectedNow() {
    524   if (now_function == HighResNowWrapper) {
    525     return Now();
    526   } else {
    527     return TimeTicks() + TimeDelta::FromMilliseconds(timeGetTime());
    528   }
    529 }
    530 
    531 // TimeDelta ------------------------------------------------------------------
    532 
    533 // static
    534 TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
    535   return TimeDelta(GetHighResNowSingleton()->QPCValueToMicroseconds(qpc_value));
    536 }
    537