Home | History | Annotate | Download | only in lzma_sdk
      1 /* LzmaEnc.c -- LZMA Encoder
      2 2010-04-16 : Igor Pavlov : Public domain */
      3 
      4 #include <string.h>
      5 
      6 /* #define SHOW_STAT */
      7 /* #define SHOW_STAT2 */
      8 
      9 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
     10 #include <stdio.h>
     11 #endif
     12 
     13 #include "LzmaEnc.h"
     14 
     15 #include "LzFind.h"
     16 #ifndef _7ZIP_ST
     17 #include "LzFindMt.h"
     18 #endif
     19 
     20 #ifdef SHOW_STAT
     21 static int ttt = 0;
     22 #endif
     23 
     24 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
     25 
     26 #define kBlockSize (9 << 10)
     27 #define kUnpackBlockSize (1 << 18)
     28 #define kMatchArraySize (1 << 21)
     29 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
     30 
     31 #define kNumMaxDirectBits (31)
     32 
     33 #define kNumTopBits 24
     34 #define kTopValue ((UInt32)1 << kNumTopBits)
     35 
     36 #define kNumBitModelTotalBits 11
     37 #define kBitModelTotal (1 << kNumBitModelTotalBits)
     38 #define kNumMoveBits 5
     39 #define kProbInitValue (kBitModelTotal >> 1)
     40 
     41 #define kNumMoveReducingBits 4
     42 #define kNumBitPriceShiftBits 4
     43 #define kBitPrice (1 << kNumBitPriceShiftBits)
     44 
     45 void LzmaEncProps_Init(CLzmaEncProps *p)
     46 {
     47   p->level = 5;
     48   p->dictSize = p->mc = 0;
     49   p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
     50   p->writeEndMark = 0;
     51 }
     52 
     53 void LzmaEncProps_Normalize(CLzmaEncProps *p)
     54 {
     55   int level = p->level;
     56   if (level < 0) level = 5;
     57   p->level = level;
     58   if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
     59   if (p->lc < 0) p->lc = 3;
     60   if (p->lp < 0) p->lp = 0;
     61   if (p->pb < 0) p->pb = 2;
     62   if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
     63   if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
     64   if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
     65   if (p->numHashBytes < 0) p->numHashBytes = 4;
     66   if (p->mc == 0)  p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
     67   if (p->numThreads < 0)
     68     p->numThreads =
     69       #ifndef _7ZIP_ST
     70       ((p->btMode && p->algo) ? 2 : 1);
     71       #else
     72       1;
     73       #endif
     74 }
     75 
     76 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
     77 {
     78   CLzmaEncProps props = *props2;
     79   LzmaEncProps_Normalize(&props);
     80   return props.dictSize;
     81 }
     82 
     83 /* #define LZMA_LOG_BSR */
     84 /* Define it for Intel's CPU */
     85 
     86 
     87 #ifdef LZMA_LOG_BSR
     88 
     89 #define kDicLogSizeMaxCompress 30
     90 
     91 #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
     92 
     93 UInt32 GetPosSlot1(UInt32 pos)
     94 {
     95   UInt32 res;
     96   BSR2_RET(pos, res);
     97   return res;
     98 }
     99 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
    100 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
    101 
    102 #else
    103 
    104 #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
    105 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
    106 
    107 void LzmaEnc_FastPosInit(Byte *g_FastPos)
    108 {
    109   int c = 2, slotFast;
    110   g_FastPos[0] = 0;
    111   g_FastPos[1] = 1;
    112 
    113   for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
    114   {
    115     UInt32 k = (1 << ((slotFast >> 1) - 1));
    116     UInt32 j;
    117     for (j = 0; j < k; j++, c++)
    118       g_FastPos[c] = (Byte)slotFast;
    119   }
    120 }
    121 
    122 #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
    123   (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
    124   res = p->g_FastPos[pos >> i] + (i * 2); }
    125 /*
    126 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
    127   p->g_FastPos[pos >> 6] + 12 : \
    128   p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
    129 */
    130 
    131 #define GetPosSlot1(pos) p->g_FastPos[pos]
    132 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
    133 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
    134 
    135 #endif
    136 
    137 
    138 #define LZMA_NUM_REPS 4
    139 
    140 typedef unsigned CState;
    141 
    142 typedef struct
    143 {
    144   UInt32 price;
    145 
    146   CState state;
    147   int prev1IsChar;
    148   int prev2;
    149 
    150   UInt32 posPrev2;
    151   UInt32 backPrev2;
    152 
    153   UInt32 posPrev;
    154   UInt32 backPrev;
    155   UInt32 backs[LZMA_NUM_REPS];
    156 } COptimal;
    157 
    158 #define kNumOpts (1 << 12)
    159 
    160 #define kNumLenToPosStates 4
    161 #define kNumPosSlotBits 6
    162 #define kDicLogSizeMin 0
    163 #define kDicLogSizeMax 32
    164 #define kDistTableSizeMax (kDicLogSizeMax * 2)
    165 
    166 
    167 #define kNumAlignBits 4
    168 #define kAlignTableSize (1 << kNumAlignBits)
    169 #define kAlignMask (kAlignTableSize - 1)
    170 
    171 #define kStartPosModelIndex 4
    172 #define kEndPosModelIndex 14
    173 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
    174 
    175 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
    176 
    177 #ifdef _LZMA_PROB32
    178 #define CLzmaProb UInt32
    179 #else
    180 #define CLzmaProb UInt16
    181 #endif
    182 
    183 #define LZMA_PB_MAX 4
    184 #define LZMA_LC_MAX 8
    185 #define LZMA_LP_MAX 4
    186 
    187 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
    188 
    189 
    190 #define kLenNumLowBits 3
    191 #define kLenNumLowSymbols (1 << kLenNumLowBits)
    192 #define kLenNumMidBits 3
    193 #define kLenNumMidSymbols (1 << kLenNumMidBits)
    194 #define kLenNumHighBits 8
    195 #define kLenNumHighSymbols (1 << kLenNumHighBits)
    196 
    197 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
    198 
    199 #define LZMA_MATCH_LEN_MIN 2
    200 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
    201 
    202 #define kNumStates 12
    203 
    204 typedef struct
    205 {
    206   CLzmaProb choice;
    207   CLzmaProb choice2;
    208   CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
    209   CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
    210   CLzmaProb high[kLenNumHighSymbols];
    211 } CLenEnc;
    212 
    213 typedef struct
    214 {
    215   CLenEnc p;
    216   UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
    217   UInt32 tableSize;
    218   UInt32 counters[LZMA_NUM_PB_STATES_MAX];
    219 } CLenPriceEnc;
    220 
    221 typedef struct
    222 {
    223   UInt32 range;
    224   Byte cache;
    225   UInt64 low;
    226   UInt64 cacheSize;
    227   Byte *buf;
    228   Byte *bufLim;
    229   Byte *bufBase;
    230   ISeqOutStream *outStream;
    231   UInt64 processed;
    232   SRes res;
    233 } CRangeEnc;
    234 
    235 typedef struct
    236 {
    237   CLzmaProb *litProbs;
    238 
    239   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
    240   CLzmaProb isRep[kNumStates];
    241   CLzmaProb isRepG0[kNumStates];
    242   CLzmaProb isRepG1[kNumStates];
    243   CLzmaProb isRepG2[kNumStates];
    244   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
    245 
    246   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
    247   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
    248   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
    249 
    250   CLenPriceEnc lenEnc;
    251   CLenPriceEnc repLenEnc;
    252 
    253   UInt32 reps[LZMA_NUM_REPS];
    254   UInt32 state;
    255 } CSaveState;
    256 
    257 typedef struct
    258 {
    259   IMatchFinder matchFinder;
    260   void *matchFinderObj;
    261 
    262   #ifndef _7ZIP_ST
    263   Bool mtMode;
    264   CMatchFinderMt matchFinderMt;
    265   #endif
    266 
    267   CMatchFinder matchFinderBase;
    268 
    269   #ifndef _7ZIP_ST
    270   Byte pad[128];
    271   #endif
    272 
    273   UInt32 optimumEndIndex;
    274   UInt32 optimumCurrentIndex;
    275 
    276   UInt32 longestMatchLength;
    277   UInt32 numPairs;
    278   UInt32 numAvail;
    279   COptimal opt[kNumOpts];
    280 
    281   #ifndef LZMA_LOG_BSR
    282   Byte g_FastPos[1 << kNumLogBits];
    283   #endif
    284 
    285   UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
    286   UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
    287   UInt32 numFastBytes;
    288   UInt32 additionalOffset;
    289   UInt32 reps[LZMA_NUM_REPS];
    290   UInt32 state;
    291 
    292   UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
    293   UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
    294   UInt32 alignPrices[kAlignTableSize];
    295   UInt32 alignPriceCount;
    296 
    297   UInt32 distTableSize;
    298 
    299   unsigned lc, lp, pb;
    300   unsigned lpMask, pbMask;
    301 
    302   CLzmaProb *litProbs;
    303 
    304   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
    305   CLzmaProb isRep[kNumStates];
    306   CLzmaProb isRepG0[kNumStates];
    307   CLzmaProb isRepG1[kNumStates];
    308   CLzmaProb isRepG2[kNumStates];
    309   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
    310 
    311   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
    312   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
    313   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
    314 
    315   CLenPriceEnc lenEnc;
    316   CLenPriceEnc repLenEnc;
    317 
    318   unsigned lclp;
    319 
    320   Bool fastMode;
    321 
    322   CRangeEnc rc;
    323 
    324   Bool writeEndMark;
    325   UInt64 nowPos64;
    326   UInt32 matchPriceCount;
    327   Bool finished;
    328   Bool multiThread;
    329 
    330   SRes result;
    331   UInt32 dictSize;
    332   UInt32 matchFinderCycles;
    333 
    334   int needInit;
    335 
    336   CSaveState saveState;
    337 } CLzmaEnc;
    338 
    339 void LzmaEnc_SaveState(CLzmaEncHandle pp)
    340 {
    341   CLzmaEnc *p = (CLzmaEnc *)pp;
    342   CSaveState *dest = &p->saveState;
    343   int i;
    344   dest->lenEnc = p->lenEnc;
    345   dest->repLenEnc = p->repLenEnc;
    346   dest->state = p->state;
    347 
    348   for (i = 0; i < kNumStates; i++)
    349   {
    350     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
    351     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
    352   }
    353   for (i = 0; i < kNumLenToPosStates; i++)
    354     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
    355   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
    356   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
    357   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
    358   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
    359   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
    360   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
    361   memcpy(dest->reps, p->reps, sizeof(p->reps));
    362   memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
    363 }
    364 
    365 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
    366 {
    367   CLzmaEnc *dest = (CLzmaEnc *)pp;
    368   const CSaveState *p = &dest->saveState;
    369   int i;
    370   dest->lenEnc = p->lenEnc;
    371   dest->repLenEnc = p->repLenEnc;
    372   dest->state = p->state;
    373 
    374   for (i = 0; i < kNumStates; i++)
    375   {
    376     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
    377     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
    378   }
    379   for (i = 0; i < kNumLenToPosStates; i++)
    380     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
    381   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
    382   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
    383   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
    384   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
    385   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
    386   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
    387   memcpy(dest->reps, p->reps, sizeof(p->reps));
    388   memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
    389 }
    390 
    391 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
    392 {
    393   CLzmaEnc *p = (CLzmaEnc *)pp;
    394   CLzmaEncProps props = *props2;
    395   LzmaEncProps_Normalize(&props);
    396 
    397   if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
    398       props.dictSize > ((UInt32)1 << kDicLogSizeMaxCompress) || props.dictSize > ((UInt32)1 << 30))
    399     return SZ_ERROR_PARAM;
    400   p->dictSize = props.dictSize;
    401   p->matchFinderCycles = props.mc;
    402   {
    403     unsigned fb = props.fb;
    404     if (fb < 5)
    405       fb = 5;
    406     if (fb > LZMA_MATCH_LEN_MAX)
    407       fb = LZMA_MATCH_LEN_MAX;
    408     p->numFastBytes = fb;
    409   }
    410   p->lc = props.lc;
    411   p->lp = props.lp;
    412   p->pb = props.pb;
    413   p->fastMode = (props.algo == 0);
    414   p->matchFinderBase.btMode = props.btMode;
    415   {
    416     UInt32 numHashBytes = 4;
    417     if (props.btMode)
    418     {
    419       if (props.numHashBytes < 2)
    420         numHashBytes = 2;
    421       else if (props.numHashBytes < 4)
    422         numHashBytes = props.numHashBytes;
    423     }
    424     p->matchFinderBase.numHashBytes = numHashBytes;
    425   }
    426 
    427   p->matchFinderBase.cutValue = props.mc;
    428 
    429   p->writeEndMark = props.writeEndMark;
    430 
    431   #ifndef _7ZIP_ST
    432   /*
    433   if (newMultiThread != _multiThread)
    434   {
    435     ReleaseMatchFinder();
    436     _multiThread = newMultiThread;
    437   }
    438   */
    439   p->multiThread = (props.numThreads > 1);
    440   #endif
    441 
    442   return SZ_OK;
    443 }
    444 
    445 static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
    446 static const int kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
    447 static const int kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
    448 static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
    449 
    450 #define IsCharState(s) ((s) < 7)
    451 
    452 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
    453 
    454 #define kInfinityPrice (1 << 30)
    455 
    456 static void RangeEnc_Construct(CRangeEnc *p)
    457 {
    458   p->outStream = 0;
    459   p->bufBase = 0;
    460 }
    461 
    462 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
    463 
    464 #define RC_BUF_SIZE (1 << 16)
    465 static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
    466 {
    467   if (p->bufBase == 0)
    468   {
    469     p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
    470     if (p->bufBase == 0)
    471       return 0;
    472     p->bufLim = p->bufBase + RC_BUF_SIZE;
    473   }
    474   return 1;
    475 }
    476 
    477 static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
    478 {
    479   alloc->Free(alloc, p->bufBase);
    480   p->bufBase = 0;
    481 }
    482 
    483 static void RangeEnc_Init(CRangeEnc *p)
    484 {
    485   /* Stream.Init(); */
    486   p->low = 0;
    487   p->range = 0xFFFFFFFF;
    488   p->cacheSize = 1;
    489   p->cache = 0;
    490 
    491   p->buf = p->bufBase;
    492 
    493   p->processed = 0;
    494   p->res = SZ_OK;
    495 }
    496 
    497 static void RangeEnc_FlushStream(CRangeEnc *p)
    498 {
    499   size_t num;
    500   if (p->res != SZ_OK)
    501     return;
    502   num = p->buf - p->bufBase;
    503   if (num != p->outStream->Write(p->outStream, p->bufBase, num))
    504     p->res = SZ_ERROR_WRITE;
    505   p->processed += num;
    506   p->buf = p->bufBase;
    507 }
    508 
    509 static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
    510 {
    511   if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
    512   {
    513     Byte temp = p->cache;
    514     do
    515     {
    516       Byte *buf = p->buf;
    517       *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
    518       p->buf = buf;
    519       if (buf == p->bufLim)
    520         RangeEnc_FlushStream(p);
    521       temp = 0xFF;
    522     }
    523     while (--p->cacheSize != 0);
    524     p->cache = (Byte)((UInt32)p->low >> 24);
    525   }
    526   p->cacheSize++;
    527   p->low = (UInt32)p->low << 8;
    528 }
    529 
    530 static void RangeEnc_FlushData(CRangeEnc *p)
    531 {
    532   int i;
    533   for (i = 0; i < 5; i++)
    534     RangeEnc_ShiftLow(p);
    535 }
    536 
    537 static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
    538 {
    539   do
    540   {
    541     p->range >>= 1;
    542     p->low += p->range & (0 - ((value >> --numBits) & 1));
    543     if (p->range < kTopValue)
    544     {
    545       p->range <<= 8;
    546       RangeEnc_ShiftLow(p);
    547     }
    548   }
    549   while (numBits != 0);
    550 }
    551 
    552 static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
    553 {
    554   UInt32 ttt = *prob;
    555   UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
    556   if (symbol == 0)
    557   {
    558     p->range = newBound;
    559     ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
    560   }
    561   else
    562   {
    563     p->low += newBound;
    564     p->range -= newBound;
    565     ttt -= ttt >> kNumMoveBits;
    566   }
    567   *prob = (CLzmaProb)ttt;
    568   if (p->range < kTopValue)
    569   {
    570     p->range <<= 8;
    571     RangeEnc_ShiftLow(p);
    572   }
    573 }
    574 
    575 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
    576 {
    577   symbol |= 0x100;
    578   do
    579   {
    580     RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
    581     symbol <<= 1;
    582   }
    583   while (symbol < 0x10000);
    584 }
    585 
    586 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
    587 {
    588   UInt32 offs = 0x100;
    589   symbol |= 0x100;
    590   do
    591   {
    592     matchByte <<= 1;
    593     RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
    594     symbol <<= 1;
    595     offs &= ~(matchByte ^ symbol);
    596   }
    597   while (symbol < 0x10000);
    598 }
    599 
    600 void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
    601 {
    602   UInt32 i;
    603   for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
    604   {
    605     const int kCyclesBits = kNumBitPriceShiftBits;
    606     UInt32 w = i;
    607     UInt32 bitCount = 0;
    608     int j;
    609     for (j = 0; j < kCyclesBits; j++)
    610     {
    611       w = w * w;
    612       bitCount <<= 1;
    613       while (w >= ((UInt32)1 << 16))
    614       {
    615         w >>= 1;
    616         bitCount++;
    617       }
    618     }
    619     ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
    620   }
    621 }
    622 
    623 
    624 #define GET_PRICE(prob, symbol) \
    625   p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
    626 
    627 #define GET_PRICEa(prob, symbol) \
    628   ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
    629 
    630 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
    631 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
    632 
    633 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
    634 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
    635 
    636 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
    637 {
    638   UInt32 price = 0;
    639   symbol |= 0x100;
    640   do
    641   {
    642     price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
    643     symbol <<= 1;
    644   }
    645   while (symbol < 0x10000);
    646   return price;
    647 }
    648 
    649 static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
    650 {
    651   UInt32 price = 0;
    652   UInt32 offs = 0x100;
    653   symbol |= 0x100;
    654   do
    655   {
    656     matchByte <<= 1;
    657     price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
    658     symbol <<= 1;
    659     offs &= ~(matchByte ^ symbol);
    660   }
    661   while (symbol < 0x10000);
    662   return price;
    663 }
    664 
    665 
    666 static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
    667 {
    668   UInt32 m = 1;
    669   int i;
    670   for (i = numBitLevels; i != 0;)
    671   {
    672     UInt32 bit;
    673     i--;
    674     bit = (symbol >> i) & 1;
    675     RangeEnc_EncodeBit(rc, probs + m, bit);
    676     m = (m << 1) | bit;
    677   }
    678 }
    679 
    680 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
    681 {
    682   UInt32 m = 1;
    683   int i;
    684   for (i = 0; i < numBitLevels; i++)
    685   {
    686     UInt32 bit = symbol & 1;
    687     RangeEnc_EncodeBit(rc, probs + m, bit);
    688     m = (m << 1) | bit;
    689     symbol >>= 1;
    690   }
    691 }
    692 
    693 static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
    694 {
    695   UInt32 price = 0;
    696   symbol |= (1 << numBitLevels);
    697   while (symbol != 1)
    698   {
    699     price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
    700     symbol >>= 1;
    701   }
    702   return price;
    703 }
    704 
    705 static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
    706 {
    707   UInt32 price = 0;
    708   UInt32 m = 1;
    709   int i;
    710   for (i = numBitLevels; i != 0; i--)
    711   {
    712     UInt32 bit = symbol & 1;
    713     symbol >>= 1;
    714     price += GET_PRICEa(probs[m], bit);
    715     m = (m << 1) | bit;
    716   }
    717   return price;
    718 }
    719 
    720 
    721 static void LenEnc_Init(CLenEnc *p)
    722 {
    723   unsigned i;
    724   p->choice = p->choice2 = kProbInitValue;
    725   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
    726     p->low[i] = kProbInitValue;
    727   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
    728     p->mid[i] = kProbInitValue;
    729   for (i = 0; i < kLenNumHighSymbols; i++)
    730     p->high[i] = kProbInitValue;
    731 }
    732 
    733 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
    734 {
    735   if (symbol < kLenNumLowSymbols)
    736   {
    737     RangeEnc_EncodeBit(rc, &p->choice, 0);
    738     RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
    739   }
    740   else
    741   {
    742     RangeEnc_EncodeBit(rc, &p->choice, 1);
    743     if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
    744     {
    745       RangeEnc_EncodeBit(rc, &p->choice2, 0);
    746       RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
    747     }
    748     else
    749     {
    750       RangeEnc_EncodeBit(rc, &p->choice2, 1);
    751       RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
    752     }
    753   }
    754 }
    755 
    756 static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
    757 {
    758   UInt32 a0 = GET_PRICE_0a(p->choice);
    759   UInt32 a1 = GET_PRICE_1a(p->choice);
    760   UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
    761   UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
    762   UInt32 i = 0;
    763   for (i = 0; i < kLenNumLowSymbols; i++)
    764   {
    765     if (i >= numSymbols)
    766       return;
    767     prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
    768   }
    769   for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
    770   {
    771     if (i >= numSymbols)
    772       return;
    773     prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
    774   }
    775   for (; i < numSymbols; i++)
    776     prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
    777 }
    778 
    779 static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
    780 {
    781   LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
    782   p->counters[posState] = p->tableSize;
    783 }
    784 
    785 static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
    786 {
    787   UInt32 posState;
    788   for (posState = 0; posState < numPosStates; posState++)
    789     LenPriceEnc_UpdateTable(p, posState, ProbPrices);
    790 }
    791 
    792 static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
    793 {
    794   LenEnc_Encode(&p->p, rc, symbol, posState);
    795   if (updatePrice)
    796     if (--p->counters[posState] == 0)
    797       LenPriceEnc_UpdateTable(p, posState, ProbPrices);
    798 }
    799 
    800 
    801 
    802 
    803 static void MovePos(CLzmaEnc *p, UInt32 num)
    804 {
    805   #ifdef SHOW_STAT
    806   ttt += num;
    807   printf("\n MovePos %d", num);
    808   #endif
    809   if (num != 0)
    810   {
    811     p->additionalOffset += num;
    812     p->matchFinder.Skip(p->matchFinderObj, num);
    813   }
    814 }
    815 
    816 static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
    817 {
    818   UInt32 lenRes = 0, numPairs;
    819   p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
    820   numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
    821   #ifdef SHOW_STAT
    822   printf("\n i = %d numPairs = %d    ", ttt, numPairs / 2);
    823   ttt++;
    824   {
    825     UInt32 i;
    826     for (i = 0; i < numPairs; i += 2)
    827       printf("%2d %6d   | ", p->matches[i], p->matches[i + 1]);
    828   }
    829   #endif
    830   if (numPairs > 0)
    831   {
    832     lenRes = p->matches[numPairs - 2];
    833     if (lenRes == p->numFastBytes)
    834     {
    835       const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
    836       UInt32 distance = p->matches[numPairs - 1] + 1;
    837       UInt32 numAvail = p->numAvail;
    838       if (numAvail > LZMA_MATCH_LEN_MAX)
    839         numAvail = LZMA_MATCH_LEN_MAX;
    840       {
    841         const Byte *pby2 = pby - distance;
    842         for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
    843       }
    844     }
    845   }
    846   p->additionalOffset++;
    847   *numDistancePairsRes = numPairs;
    848   return lenRes;
    849 }
    850 
    851 
    852 #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
    853 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
    854 #define IsShortRep(p) ((p)->backPrev == 0)
    855 
    856 static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
    857 {
    858   return
    859     GET_PRICE_0(p->isRepG0[state]) +
    860     GET_PRICE_0(p->isRep0Long[state][posState]);
    861 }
    862 
    863 static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
    864 {
    865   UInt32 price;
    866   if (repIndex == 0)
    867   {
    868     price = GET_PRICE_0(p->isRepG0[state]);
    869     price += GET_PRICE_1(p->isRep0Long[state][posState]);
    870   }
    871   else
    872   {
    873     price = GET_PRICE_1(p->isRepG0[state]);
    874     if (repIndex == 1)
    875       price += GET_PRICE_0(p->isRepG1[state]);
    876     else
    877     {
    878       price += GET_PRICE_1(p->isRepG1[state]);
    879       price += GET_PRICE(p->isRepG2[state], repIndex - 2);
    880     }
    881   }
    882   return price;
    883 }
    884 
    885 static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
    886 {
    887   return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
    888     GetPureRepPrice(p, repIndex, state, posState);
    889 }
    890 
    891 static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
    892 {
    893   UInt32 posMem = p->opt[cur].posPrev;
    894   UInt32 backMem = p->opt[cur].backPrev;
    895   p->optimumEndIndex = cur;
    896   do
    897   {
    898     if (p->opt[cur].prev1IsChar)
    899     {
    900       MakeAsChar(&p->opt[posMem])
    901       p->opt[posMem].posPrev = posMem - 1;
    902       if (p->opt[cur].prev2)
    903       {
    904         p->opt[posMem - 1].prev1IsChar = False;
    905         p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
    906         p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
    907       }
    908     }
    909     {
    910       UInt32 posPrev = posMem;
    911       UInt32 backCur = backMem;
    912 
    913       backMem = p->opt[posPrev].backPrev;
    914       posMem = p->opt[posPrev].posPrev;
    915 
    916       p->opt[posPrev].backPrev = backCur;
    917       p->opt[posPrev].posPrev = cur;
    918       cur = posPrev;
    919     }
    920   }
    921   while (cur != 0);
    922   *backRes = p->opt[0].backPrev;
    923   p->optimumCurrentIndex  = p->opt[0].posPrev;
    924   return p->optimumCurrentIndex;
    925 }
    926 
    927 #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
    928 
    929 static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
    930 {
    931   UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
    932   UInt32 matchPrice, repMatchPrice, normalMatchPrice;
    933   UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
    934   UInt32 *matches;
    935   const Byte *data;
    936   Byte curByte, matchByte;
    937   if (p->optimumEndIndex != p->optimumCurrentIndex)
    938   {
    939     const COptimal *opt = &p->opt[p->optimumCurrentIndex];
    940     UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
    941     *backRes = opt->backPrev;
    942     p->optimumCurrentIndex = opt->posPrev;
    943     return lenRes;
    944   }
    945   p->optimumCurrentIndex = p->optimumEndIndex = 0;
    946 
    947   if (p->additionalOffset == 0)
    948     mainLen = ReadMatchDistances(p, &numPairs);
    949   else
    950   {
    951     mainLen = p->longestMatchLength;
    952     numPairs = p->numPairs;
    953   }
    954 
    955   numAvail = p->numAvail;
    956   if (numAvail < 2)
    957   {
    958     *backRes = (UInt32)(-1);
    959     return 1;
    960   }
    961   if (numAvail > LZMA_MATCH_LEN_MAX)
    962     numAvail = LZMA_MATCH_LEN_MAX;
    963 
    964   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
    965   repMaxIndex = 0;
    966   for (i = 0; i < LZMA_NUM_REPS; i++)
    967   {
    968     UInt32 lenTest;
    969     const Byte *data2;
    970     reps[i] = p->reps[i];
    971     data2 = data - (reps[i] + 1);
    972     if (data[0] != data2[0] || data[1] != data2[1])
    973     {
    974       repLens[i] = 0;
    975       continue;
    976     }
    977     for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
    978     repLens[i] = lenTest;
    979     if (lenTest > repLens[repMaxIndex])
    980       repMaxIndex = i;
    981   }
    982   if (repLens[repMaxIndex] >= p->numFastBytes)
    983   {
    984     UInt32 lenRes;
    985     *backRes = repMaxIndex;
    986     lenRes = repLens[repMaxIndex];
    987     MovePos(p, lenRes - 1);
    988     return lenRes;
    989   }
    990 
    991   matches = p->matches;
    992   if (mainLen >= p->numFastBytes)
    993   {
    994     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
    995     MovePos(p, mainLen - 1);
    996     return mainLen;
    997   }
    998   curByte = *data;
    999   matchByte = *(data - (reps[0] + 1));
   1000 
   1001   if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
   1002   {
   1003     *backRes = (UInt32)-1;
   1004     return 1;
   1005   }
   1006 
   1007   p->opt[0].state = (CState)p->state;
   1008 
   1009   posState = (position & p->pbMask);
   1010 
   1011   {
   1012     const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
   1013     p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
   1014         (!IsCharState(p->state) ?
   1015           LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
   1016           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
   1017   }
   1018 
   1019   MakeAsChar(&p->opt[1]);
   1020 
   1021   matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
   1022   repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
   1023 
   1024   if (matchByte == curByte)
   1025   {
   1026     UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
   1027     if (shortRepPrice < p->opt[1].price)
   1028     {
   1029       p->opt[1].price = shortRepPrice;
   1030       MakeAsShortRep(&p->opt[1]);
   1031     }
   1032   }
   1033   lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
   1034 
   1035   if (lenEnd < 2)
   1036   {
   1037     *backRes = p->opt[1].backPrev;
   1038     return 1;
   1039   }
   1040 
   1041   p->opt[1].posPrev = 0;
   1042   for (i = 0; i < LZMA_NUM_REPS; i++)
   1043     p->opt[0].backs[i] = reps[i];
   1044 
   1045   len = lenEnd;
   1046   do
   1047     p->opt[len--].price = kInfinityPrice;
   1048   while (len >= 2);
   1049 
   1050   for (i = 0; i < LZMA_NUM_REPS; i++)
   1051   {
   1052     UInt32 repLen = repLens[i];
   1053     UInt32 price;
   1054     if (repLen < 2)
   1055       continue;
   1056     price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
   1057     do
   1058     {
   1059       UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
   1060       COptimal *opt = &p->opt[repLen];
   1061       if (curAndLenPrice < opt->price)
   1062       {
   1063         opt->price = curAndLenPrice;
   1064         opt->posPrev = 0;
   1065         opt->backPrev = i;
   1066         opt->prev1IsChar = False;
   1067       }
   1068     }
   1069     while (--repLen >= 2);
   1070   }
   1071 
   1072   normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
   1073 
   1074   len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
   1075   if (len <= mainLen)
   1076   {
   1077     UInt32 offs = 0;
   1078     while (len > matches[offs])
   1079       offs += 2;
   1080     for (; ; len++)
   1081     {
   1082       COptimal *opt;
   1083       UInt32 distance = matches[offs + 1];
   1084 
   1085       UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
   1086       UInt32 lenToPosState = GetLenToPosState(len);
   1087       if (distance < kNumFullDistances)
   1088         curAndLenPrice += p->distancesPrices[lenToPosState][distance];
   1089       else
   1090       {
   1091         UInt32 slot;
   1092         GetPosSlot2(distance, slot);
   1093         curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
   1094       }
   1095       opt = &p->opt[len];
   1096       if (curAndLenPrice < opt->price)
   1097       {
   1098         opt->price = curAndLenPrice;
   1099         opt->posPrev = 0;
   1100         opt->backPrev = distance + LZMA_NUM_REPS;
   1101         opt->prev1IsChar = False;
   1102       }
   1103       if (len == matches[offs])
   1104       {
   1105         offs += 2;
   1106         if (offs == numPairs)
   1107           break;
   1108       }
   1109     }
   1110   }
   1111 
   1112   cur = 0;
   1113 
   1114     #ifdef SHOW_STAT2
   1115     if (position >= 0)
   1116     {
   1117       unsigned i;
   1118       printf("\n pos = %4X", position);
   1119       for (i = cur; i <= lenEnd; i++)
   1120       printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
   1121     }
   1122     #endif
   1123 
   1124   for (;;)
   1125   {
   1126     UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
   1127     UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
   1128     Bool nextIsChar;
   1129     Byte curByte, matchByte;
   1130     const Byte *data;
   1131     COptimal *curOpt;
   1132     COptimal *nextOpt;
   1133 
   1134     cur++;
   1135     if (cur == lenEnd)
   1136       return Backward(p, backRes, cur);
   1137 
   1138     newLen = ReadMatchDistances(p, &numPairs);
   1139     if (newLen >= p->numFastBytes)
   1140     {
   1141       p->numPairs = numPairs;
   1142       p->longestMatchLength = newLen;
   1143       return Backward(p, backRes, cur);
   1144     }
   1145     position++;
   1146     curOpt = &p->opt[cur];
   1147     posPrev = curOpt->posPrev;
   1148     if (curOpt->prev1IsChar)
   1149     {
   1150       posPrev--;
   1151       if (curOpt->prev2)
   1152       {
   1153         state = p->opt[curOpt->posPrev2].state;
   1154         if (curOpt->backPrev2 < LZMA_NUM_REPS)
   1155           state = kRepNextStates[state];
   1156         else
   1157           state = kMatchNextStates[state];
   1158       }
   1159       else
   1160         state = p->opt[posPrev].state;
   1161       state = kLiteralNextStates[state];
   1162     }
   1163     else
   1164       state = p->opt[posPrev].state;
   1165     if (posPrev == cur - 1)
   1166     {
   1167       if (IsShortRep(curOpt))
   1168         state = kShortRepNextStates[state];
   1169       else
   1170         state = kLiteralNextStates[state];
   1171     }
   1172     else
   1173     {
   1174       UInt32 pos;
   1175       const COptimal *prevOpt;
   1176       if (curOpt->prev1IsChar && curOpt->prev2)
   1177       {
   1178         posPrev = curOpt->posPrev2;
   1179         pos = curOpt->backPrev2;
   1180         state = kRepNextStates[state];
   1181       }
   1182       else
   1183       {
   1184         pos = curOpt->backPrev;
   1185         if (pos < LZMA_NUM_REPS)
   1186           state = kRepNextStates[state];
   1187         else
   1188           state = kMatchNextStates[state];
   1189       }
   1190       prevOpt = &p->opt[posPrev];
   1191       if (pos < LZMA_NUM_REPS)
   1192       {
   1193         UInt32 i;
   1194         reps[0] = prevOpt->backs[pos];
   1195         for (i = 1; i <= pos; i++)
   1196           reps[i] = prevOpt->backs[i - 1];
   1197         for (; i < LZMA_NUM_REPS; i++)
   1198           reps[i] = prevOpt->backs[i];
   1199       }
   1200       else
   1201       {
   1202         UInt32 i;
   1203         reps[0] = (pos - LZMA_NUM_REPS);
   1204         for (i = 1; i < LZMA_NUM_REPS; i++)
   1205           reps[i] = prevOpt->backs[i - 1];
   1206       }
   1207     }
   1208     curOpt->state = (CState)state;
   1209 
   1210     curOpt->backs[0] = reps[0];
   1211     curOpt->backs[1] = reps[1];
   1212     curOpt->backs[2] = reps[2];
   1213     curOpt->backs[3] = reps[3];
   1214 
   1215     curPrice = curOpt->price;
   1216     nextIsChar = False;
   1217     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1218     curByte = *data;
   1219     matchByte = *(data - (reps[0] + 1));
   1220 
   1221     posState = (position & p->pbMask);
   1222 
   1223     curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
   1224     {
   1225       const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
   1226       curAnd1Price +=
   1227         (!IsCharState(state) ?
   1228           LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
   1229           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
   1230     }
   1231 
   1232     nextOpt = &p->opt[cur + 1];
   1233 
   1234     if (curAnd1Price < nextOpt->price)
   1235     {
   1236       nextOpt->price = curAnd1Price;
   1237       nextOpt->posPrev = cur;
   1238       MakeAsChar(nextOpt);
   1239       nextIsChar = True;
   1240     }
   1241 
   1242     matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
   1243     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
   1244 
   1245     if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
   1246     {
   1247       UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
   1248       if (shortRepPrice <= nextOpt->price)
   1249       {
   1250         nextOpt->price = shortRepPrice;
   1251         nextOpt->posPrev = cur;
   1252         MakeAsShortRep(nextOpt);
   1253         nextIsChar = True;
   1254       }
   1255     }
   1256     numAvailFull = p->numAvail;
   1257     {
   1258       UInt32 temp = kNumOpts - 1 - cur;
   1259       if (temp < numAvailFull)
   1260         numAvailFull = temp;
   1261     }
   1262 
   1263     if (numAvailFull < 2)
   1264       continue;
   1265     numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
   1266 
   1267     if (!nextIsChar && matchByte != curByte) /* speed optimization */
   1268     {
   1269       /* try Literal + rep0 */
   1270       UInt32 temp;
   1271       UInt32 lenTest2;
   1272       const Byte *data2 = data - (reps[0] + 1);
   1273       UInt32 limit = p->numFastBytes + 1;
   1274       if (limit > numAvailFull)
   1275         limit = numAvailFull;
   1276 
   1277       for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
   1278       lenTest2 = temp - 1;
   1279       if (lenTest2 >= 2)
   1280       {
   1281         UInt32 state2 = kLiteralNextStates[state];
   1282         UInt32 posStateNext = (position + 1) & p->pbMask;
   1283         UInt32 nextRepMatchPrice = curAnd1Price +
   1284             GET_PRICE_1(p->isMatch[state2][posStateNext]) +
   1285             GET_PRICE_1(p->isRep[state2]);
   1286         /* for (; lenTest2 >= 2; lenTest2--) */
   1287         {
   1288           UInt32 curAndLenPrice;
   1289           COptimal *opt;
   1290           UInt32 offset = cur + 1 + lenTest2;
   1291           while (lenEnd < offset)
   1292             p->opt[++lenEnd].price = kInfinityPrice;
   1293           curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
   1294           opt = &p->opt[offset];
   1295           if (curAndLenPrice < opt->price)
   1296           {
   1297             opt->price = curAndLenPrice;
   1298             opt->posPrev = cur + 1;
   1299             opt->backPrev = 0;
   1300             opt->prev1IsChar = True;
   1301             opt->prev2 = False;
   1302           }
   1303         }
   1304       }
   1305     }
   1306 
   1307     startLen = 2; /* speed optimization */
   1308     {
   1309     UInt32 repIndex;
   1310     for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
   1311     {
   1312       UInt32 lenTest;
   1313       UInt32 lenTestTemp;
   1314       UInt32 price;
   1315       const Byte *data2 = data - (reps[repIndex] + 1);
   1316       if (data[0] != data2[0] || data[1] != data2[1])
   1317         continue;
   1318       for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
   1319       while (lenEnd < cur + lenTest)
   1320         p->opt[++lenEnd].price = kInfinityPrice;
   1321       lenTestTemp = lenTest;
   1322       price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
   1323       do
   1324       {
   1325         UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
   1326         COptimal *opt = &p->opt[cur + lenTest];
   1327         if (curAndLenPrice < opt->price)
   1328         {
   1329           opt->price = curAndLenPrice;
   1330           opt->posPrev = cur;
   1331           opt->backPrev = repIndex;
   1332           opt->prev1IsChar = False;
   1333         }
   1334       }
   1335       while (--lenTest >= 2);
   1336       lenTest = lenTestTemp;
   1337 
   1338       if (repIndex == 0)
   1339         startLen = lenTest + 1;
   1340 
   1341       /* if (_maxMode) */
   1342         {
   1343           UInt32 lenTest2 = lenTest + 1;
   1344           UInt32 limit = lenTest2 + p->numFastBytes;
   1345           UInt32 nextRepMatchPrice;
   1346           if (limit > numAvailFull)
   1347             limit = numAvailFull;
   1348           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
   1349           lenTest2 -= lenTest + 1;
   1350           if (lenTest2 >= 2)
   1351           {
   1352             UInt32 state2 = kRepNextStates[state];
   1353             UInt32 posStateNext = (position + lenTest) & p->pbMask;
   1354             UInt32 curAndLenCharPrice =
   1355                 price + p->repLenEnc.prices[posState][lenTest - 2] +
   1356                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
   1357                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
   1358                     data[lenTest], data2[lenTest], p->ProbPrices);
   1359             state2 = kLiteralNextStates[state2];
   1360             posStateNext = (position + lenTest + 1) & p->pbMask;
   1361             nextRepMatchPrice = curAndLenCharPrice +
   1362                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
   1363                 GET_PRICE_1(p->isRep[state2]);
   1364 
   1365             /* for (; lenTest2 >= 2; lenTest2--) */
   1366             {
   1367               UInt32 curAndLenPrice;
   1368               COptimal *opt;
   1369               UInt32 offset = cur + lenTest + 1 + lenTest2;
   1370               while (lenEnd < offset)
   1371                 p->opt[++lenEnd].price = kInfinityPrice;
   1372               curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
   1373               opt = &p->opt[offset];
   1374               if (curAndLenPrice < opt->price)
   1375               {
   1376                 opt->price = curAndLenPrice;
   1377                 opt->posPrev = cur + lenTest + 1;
   1378                 opt->backPrev = 0;
   1379                 opt->prev1IsChar = True;
   1380                 opt->prev2 = True;
   1381                 opt->posPrev2 = cur;
   1382                 opt->backPrev2 = repIndex;
   1383               }
   1384             }
   1385           }
   1386         }
   1387     }
   1388     }
   1389     /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
   1390     if (newLen > numAvail)
   1391     {
   1392       newLen = numAvail;
   1393       for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
   1394       matches[numPairs] = newLen;
   1395       numPairs += 2;
   1396     }
   1397     if (newLen >= startLen)
   1398     {
   1399       UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
   1400       UInt32 offs, curBack, posSlot;
   1401       UInt32 lenTest;
   1402       while (lenEnd < cur + newLen)
   1403         p->opt[++lenEnd].price = kInfinityPrice;
   1404 
   1405       offs = 0;
   1406       while (startLen > matches[offs])
   1407         offs += 2;
   1408       curBack = matches[offs + 1];
   1409       GetPosSlot2(curBack, posSlot);
   1410       for (lenTest = /*2*/ startLen; ; lenTest++)
   1411       {
   1412         UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
   1413         UInt32 lenToPosState = GetLenToPosState(lenTest);
   1414         COptimal *opt;
   1415         if (curBack < kNumFullDistances)
   1416           curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
   1417         else
   1418           curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
   1419 
   1420         opt = &p->opt[cur + lenTest];
   1421         if (curAndLenPrice < opt->price)
   1422         {
   1423           opt->price = curAndLenPrice;
   1424           opt->posPrev = cur;
   1425           opt->backPrev = curBack + LZMA_NUM_REPS;
   1426           opt->prev1IsChar = False;
   1427         }
   1428 
   1429         if (/*_maxMode && */lenTest == matches[offs])
   1430         {
   1431           /* Try Match + Literal + Rep0 */
   1432           const Byte *data2 = data - (curBack + 1);
   1433           UInt32 lenTest2 = lenTest + 1;
   1434           UInt32 limit = lenTest2 + p->numFastBytes;
   1435           UInt32 nextRepMatchPrice;
   1436           if (limit > numAvailFull)
   1437             limit = numAvailFull;
   1438           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
   1439           lenTest2 -= lenTest + 1;
   1440           if (lenTest2 >= 2)
   1441           {
   1442             UInt32 state2 = kMatchNextStates[state];
   1443             UInt32 posStateNext = (position + lenTest) & p->pbMask;
   1444             UInt32 curAndLenCharPrice = curAndLenPrice +
   1445                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
   1446                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
   1447                     data[lenTest], data2[lenTest], p->ProbPrices);
   1448             state2 = kLiteralNextStates[state2];
   1449             posStateNext = (posStateNext + 1) & p->pbMask;
   1450             nextRepMatchPrice = curAndLenCharPrice +
   1451                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
   1452                 GET_PRICE_1(p->isRep[state2]);
   1453 
   1454             /* for (; lenTest2 >= 2; lenTest2--) */
   1455             {
   1456               UInt32 offset = cur + lenTest + 1 + lenTest2;
   1457               UInt32 curAndLenPrice;
   1458               COptimal *opt;
   1459               while (lenEnd < offset)
   1460                 p->opt[++lenEnd].price = kInfinityPrice;
   1461               curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
   1462               opt = &p->opt[offset];
   1463               if (curAndLenPrice < opt->price)
   1464               {
   1465                 opt->price = curAndLenPrice;
   1466                 opt->posPrev = cur + lenTest + 1;
   1467                 opt->backPrev = 0;
   1468                 opt->prev1IsChar = True;
   1469                 opt->prev2 = True;
   1470                 opt->posPrev2 = cur;
   1471                 opt->backPrev2 = curBack + LZMA_NUM_REPS;
   1472               }
   1473             }
   1474           }
   1475           offs += 2;
   1476           if (offs == numPairs)
   1477             break;
   1478           curBack = matches[offs + 1];
   1479           if (curBack >= kNumFullDistances)
   1480             GetPosSlot2(curBack, posSlot);
   1481         }
   1482       }
   1483     }
   1484   }
   1485 }
   1486 
   1487 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
   1488 
   1489 static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
   1490 {
   1491   UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
   1492   const Byte *data;
   1493   const UInt32 *matches;
   1494 
   1495   if (p->additionalOffset == 0)
   1496     mainLen = ReadMatchDistances(p, &numPairs);
   1497   else
   1498   {
   1499     mainLen = p->longestMatchLength;
   1500     numPairs = p->numPairs;
   1501   }
   1502 
   1503   numAvail = p->numAvail;
   1504   *backRes = (UInt32)-1;
   1505   if (numAvail < 2)
   1506     return 1;
   1507   if (numAvail > LZMA_MATCH_LEN_MAX)
   1508     numAvail = LZMA_MATCH_LEN_MAX;
   1509   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1510 
   1511   repLen = repIndex = 0;
   1512   for (i = 0; i < LZMA_NUM_REPS; i++)
   1513   {
   1514     UInt32 len;
   1515     const Byte *data2 = data - (p->reps[i] + 1);
   1516     if (data[0] != data2[0] || data[1] != data2[1])
   1517       continue;
   1518     for (len = 2; len < numAvail && data[len] == data2[len]; len++);
   1519     if (len >= p->numFastBytes)
   1520     {
   1521       *backRes = i;
   1522       MovePos(p, len - 1);
   1523       return len;
   1524     }
   1525     if (len > repLen)
   1526     {
   1527       repIndex = i;
   1528       repLen = len;
   1529     }
   1530   }
   1531 
   1532   matches = p->matches;
   1533   if (mainLen >= p->numFastBytes)
   1534   {
   1535     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
   1536     MovePos(p, mainLen - 1);
   1537     return mainLen;
   1538   }
   1539 
   1540   mainDist = 0; /* for GCC */
   1541   if (mainLen >= 2)
   1542   {
   1543     mainDist = matches[numPairs - 1];
   1544     while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
   1545     {
   1546       if (!ChangePair(matches[numPairs - 3], mainDist))
   1547         break;
   1548       numPairs -= 2;
   1549       mainLen = matches[numPairs - 2];
   1550       mainDist = matches[numPairs - 1];
   1551     }
   1552     if (mainLen == 2 && mainDist >= 0x80)
   1553       mainLen = 1;
   1554   }
   1555 
   1556   if (repLen >= 2 && (
   1557         (repLen + 1 >= mainLen) ||
   1558         (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
   1559         (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
   1560   {
   1561     *backRes = repIndex;
   1562     MovePos(p, repLen - 1);
   1563     return repLen;
   1564   }
   1565 
   1566   if (mainLen < 2 || numAvail <= 2)
   1567     return 1;
   1568 
   1569   p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
   1570   if (p->longestMatchLength >= 2)
   1571   {
   1572     UInt32 newDistance = matches[p->numPairs - 1];
   1573     if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
   1574         (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
   1575         (p->longestMatchLength > mainLen + 1) ||
   1576         (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
   1577       return 1;
   1578   }
   1579 
   1580   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1581   for (i = 0; i < LZMA_NUM_REPS; i++)
   1582   {
   1583     UInt32 len, limit;
   1584     const Byte *data2 = data - (p->reps[i] + 1);
   1585     if (data[0] != data2[0] || data[1] != data2[1])
   1586       continue;
   1587     limit = mainLen - 1;
   1588     for (len = 2; len < limit && data[len] == data2[len]; len++);
   1589     if (len >= limit)
   1590       return 1;
   1591   }
   1592   *backRes = mainDist + LZMA_NUM_REPS;
   1593   MovePos(p, mainLen - 2);
   1594   return mainLen;
   1595 }
   1596 
   1597 static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
   1598 {
   1599   UInt32 len;
   1600   RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
   1601   RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
   1602   p->state = kMatchNextStates[p->state];
   1603   len = LZMA_MATCH_LEN_MIN;
   1604   LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
   1605   RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
   1606   RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
   1607   RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
   1608 }
   1609 
   1610 static SRes CheckErrors(CLzmaEnc *p)
   1611 {
   1612   if (p->result != SZ_OK)
   1613     return p->result;
   1614   if (p->rc.res != SZ_OK)
   1615     p->result = SZ_ERROR_WRITE;
   1616   if (p->matchFinderBase.result != SZ_OK)
   1617     p->result = SZ_ERROR_READ;
   1618   if (p->result != SZ_OK)
   1619     p->finished = True;
   1620   return p->result;
   1621 }
   1622 
   1623 static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
   1624 {
   1625   /* ReleaseMFStream(); */
   1626   p->finished = True;
   1627   if (p->writeEndMark)
   1628     WriteEndMarker(p, nowPos & p->pbMask);
   1629   RangeEnc_FlushData(&p->rc);
   1630   RangeEnc_FlushStream(&p->rc);
   1631   return CheckErrors(p);
   1632 }
   1633 
   1634 static void FillAlignPrices(CLzmaEnc *p)
   1635 {
   1636   UInt32 i;
   1637   for (i = 0; i < kAlignTableSize; i++)
   1638     p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
   1639   p->alignPriceCount = 0;
   1640 }
   1641 
   1642 static void FillDistancesPrices(CLzmaEnc *p)
   1643 {
   1644   UInt32 tempPrices[kNumFullDistances];
   1645   UInt32 i, lenToPosState;
   1646   for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
   1647   {
   1648     UInt32 posSlot = GetPosSlot1(i);
   1649     UInt32 footerBits = ((posSlot >> 1) - 1);
   1650     UInt32 base = ((2 | (posSlot & 1)) << footerBits);
   1651     tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
   1652   }
   1653 
   1654   for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
   1655   {
   1656     UInt32 posSlot;
   1657     const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
   1658     UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
   1659     for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
   1660       posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
   1661     for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
   1662       posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
   1663 
   1664     {
   1665       UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
   1666       UInt32 i;
   1667       for (i = 0; i < kStartPosModelIndex; i++)
   1668         distancesPrices[i] = posSlotPrices[i];
   1669       for (; i < kNumFullDistances; i++)
   1670         distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
   1671     }
   1672   }
   1673   p->matchPriceCount = 0;
   1674 }
   1675 
   1676 void LzmaEnc_Construct(CLzmaEnc *p)
   1677 {
   1678   RangeEnc_Construct(&p->rc);
   1679   MatchFinder_Construct(&p->matchFinderBase);
   1680   #ifndef _7ZIP_ST
   1681   MatchFinderMt_Construct(&p->matchFinderMt);
   1682   p->matchFinderMt.MatchFinder = &p->matchFinderBase;
   1683   #endif
   1684 
   1685   {
   1686     CLzmaEncProps props;
   1687     LzmaEncProps_Init(&props);
   1688     LzmaEnc_SetProps(p, &props);
   1689   }
   1690 
   1691   #ifndef LZMA_LOG_BSR
   1692   LzmaEnc_FastPosInit(p->g_FastPos);
   1693   #endif
   1694 
   1695   LzmaEnc_InitPriceTables(p->ProbPrices);
   1696   p->litProbs = 0;
   1697   p->saveState.litProbs = 0;
   1698 }
   1699 
   1700 CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
   1701 {
   1702   void *p;
   1703   p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
   1704   if (p != 0)
   1705     LzmaEnc_Construct((CLzmaEnc *)p);
   1706   return p;
   1707 }
   1708 
   1709 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
   1710 {
   1711   alloc->Free(alloc, p->litProbs);
   1712   alloc->Free(alloc, p->saveState.litProbs);
   1713   p->litProbs = 0;
   1714   p->saveState.litProbs = 0;
   1715 }
   1716 
   1717 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
   1718 {
   1719   #ifndef _7ZIP_ST
   1720   MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
   1721   #endif
   1722   MatchFinder_Free(&p->matchFinderBase, allocBig);
   1723   LzmaEnc_FreeLits(p, alloc);
   1724   RangeEnc_Free(&p->rc, alloc);
   1725 }
   1726 
   1727 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
   1728 {
   1729   LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
   1730   alloc->Free(alloc, p);
   1731 }
   1732 
   1733 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
   1734 {
   1735   UInt32 nowPos32, startPos32;
   1736   if (p->needInit)
   1737   {
   1738     p->matchFinder.Init(p->matchFinderObj);
   1739     p->needInit = 0;
   1740   }
   1741 
   1742   if (p->finished)
   1743     return p->result;
   1744   RINOK(CheckErrors(p));
   1745 
   1746   nowPos32 = (UInt32)p->nowPos64;
   1747   startPos32 = nowPos32;
   1748 
   1749   if (p->nowPos64 == 0)
   1750   {
   1751     UInt32 numPairs;
   1752     Byte curByte;
   1753     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
   1754       return Flush(p, nowPos32);
   1755     ReadMatchDistances(p, &numPairs);
   1756     RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
   1757     p->state = kLiteralNextStates[p->state];
   1758     curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
   1759     LitEnc_Encode(&p->rc, p->litProbs, curByte);
   1760     p->additionalOffset--;
   1761     nowPos32++;
   1762   }
   1763 
   1764   if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
   1765   for (;;)
   1766   {
   1767     UInt32 pos, len, posState;
   1768 
   1769     if (p->fastMode)
   1770       len = GetOptimumFast(p, &pos);
   1771     else
   1772       len = GetOptimum(p, nowPos32, &pos);
   1773 
   1774     #ifdef SHOW_STAT2
   1775     printf("\n pos = %4X,   len = %d   pos = %d", nowPos32, len, pos);
   1776     #endif
   1777 
   1778     posState = nowPos32 & p->pbMask;
   1779     if (len == 1 && pos == (UInt32)-1)
   1780     {
   1781       Byte curByte;
   1782       CLzmaProb *probs;
   1783       const Byte *data;
   1784 
   1785       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
   1786       data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
   1787       curByte = *data;
   1788       probs = LIT_PROBS(nowPos32, *(data - 1));
   1789       if (IsCharState(p->state))
   1790         LitEnc_Encode(&p->rc, probs, curByte);
   1791       else
   1792         LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
   1793       p->state = kLiteralNextStates[p->state];
   1794     }
   1795     else
   1796     {
   1797       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
   1798       if (pos < LZMA_NUM_REPS)
   1799       {
   1800         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
   1801         if (pos == 0)
   1802         {
   1803           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
   1804           RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
   1805         }
   1806         else
   1807         {
   1808           UInt32 distance = p->reps[pos];
   1809           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
   1810           if (pos == 1)
   1811             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
   1812           else
   1813           {
   1814             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
   1815             RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
   1816             if (pos == 3)
   1817               p->reps[3] = p->reps[2];
   1818             p->reps[2] = p->reps[1];
   1819           }
   1820           p->reps[1] = p->reps[0];
   1821           p->reps[0] = distance;
   1822         }
   1823         if (len == 1)
   1824           p->state = kShortRepNextStates[p->state];
   1825         else
   1826         {
   1827           LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
   1828           p->state = kRepNextStates[p->state];
   1829         }
   1830       }
   1831       else
   1832       {
   1833         UInt32 posSlot;
   1834         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
   1835         p->state = kMatchNextStates[p->state];
   1836         LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
   1837         pos -= LZMA_NUM_REPS;
   1838         GetPosSlot(pos, posSlot);
   1839         RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
   1840 
   1841         if (posSlot >= kStartPosModelIndex)
   1842         {
   1843           UInt32 footerBits = ((posSlot >> 1) - 1);
   1844           UInt32 base = ((2 | (posSlot & 1)) << footerBits);
   1845           UInt32 posReduced = pos - base;
   1846 
   1847           if (posSlot < kEndPosModelIndex)
   1848             RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
   1849           else
   1850           {
   1851             RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
   1852             RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
   1853             p->alignPriceCount++;
   1854           }
   1855         }
   1856         p->reps[3] = p->reps[2];
   1857         p->reps[2] = p->reps[1];
   1858         p->reps[1] = p->reps[0];
   1859         p->reps[0] = pos;
   1860         p->matchPriceCount++;
   1861       }
   1862     }
   1863     p->additionalOffset -= len;
   1864     nowPos32 += len;
   1865     if (p->additionalOffset == 0)
   1866     {
   1867       UInt32 processed;
   1868       if (!p->fastMode)
   1869       {
   1870         if (p->matchPriceCount >= (1 << 7))
   1871           FillDistancesPrices(p);
   1872         if (p->alignPriceCount >= kAlignTableSize)
   1873           FillAlignPrices(p);
   1874       }
   1875       if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
   1876         break;
   1877       processed = nowPos32 - startPos32;
   1878       if (useLimits)
   1879       {
   1880         if (processed + kNumOpts + 300 >= maxUnpackSize ||
   1881             RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
   1882           break;
   1883       }
   1884       else if (processed >= (1 << 15))
   1885       {
   1886         p->nowPos64 += nowPos32 - startPos32;
   1887         return CheckErrors(p);
   1888       }
   1889     }
   1890   }
   1891   p->nowPos64 += nowPos32 - startPos32;
   1892   return Flush(p, nowPos32);
   1893 }
   1894 
   1895 #define kBigHashDicLimit ((UInt32)1 << 24)
   1896 
   1897 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
   1898 {
   1899   UInt32 beforeSize = kNumOpts;
   1900   Bool btMode;
   1901   if (!RangeEnc_Alloc(&p->rc, alloc))
   1902     return SZ_ERROR_MEM;
   1903   btMode = (p->matchFinderBase.btMode != 0);
   1904   #ifndef _7ZIP_ST
   1905   p->mtMode = (p->multiThread && !p->fastMode && btMode);
   1906   #endif
   1907 
   1908   {
   1909     unsigned lclp = p->lc + p->lp;
   1910     if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
   1911     {
   1912       LzmaEnc_FreeLits(p, alloc);
   1913       p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
   1914       p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
   1915       if (p->litProbs == 0 || p->saveState.litProbs == 0)
   1916       {
   1917         LzmaEnc_FreeLits(p, alloc);
   1918         return SZ_ERROR_MEM;
   1919       }
   1920       p->lclp = lclp;
   1921     }
   1922   }
   1923 
   1924   p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
   1925 
   1926   if (beforeSize + p->dictSize < keepWindowSize)
   1927     beforeSize = keepWindowSize - p->dictSize;
   1928 
   1929   #ifndef _7ZIP_ST
   1930   if (p->mtMode)
   1931   {
   1932     RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
   1933     p->matchFinderObj = &p->matchFinderMt;
   1934     MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
   1935   }
   1936   else
   1937   #endif
   1938   {
   1939     if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
   1940       return SZ_ERROR_MEM;
   1941     p->matchFinderObj = &p->matchFinderBase;
   1942     MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
   1943   }
   1944   return SZ_OK;
   1945 }
   1946 
   1947 void LzmaEnc_Init(CLzmaEnc *p)
   1948 {
   1949   UInt32 i;
   1950   p->state = 0;
   1951   for (i = 0 ; i < LZMA_NUM_REPS; i++)
   1952     p->reps[i] = 0;
   1953 
   1954   RangeEnc_Init(&p->rc);
   1955 
   1956 
   1957   for (i = 0; i < kNumStates; i++)
   1958   {
   1959     UInt32 j;
   1960     for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
   1961     {
   1962       p->isMatch[i][j] = kProbInitValue;
   1963       p->isRep0Long[i][j] = kProbInitValue;
   1964     }
   1965     p->isRep[i] = kProbInitValue;
   1966     p->isRepG0[i] = kProbInitValue;
   1967     p->isRepG1[i] = kProbInitValue;
   1968     p->isRepG2[i] = kProbInitValue;
   1969   }
   1970 
   1971   {
   1972     UInt32 num = 0x300 << (p->lp + p->lc);
   1973     for (i = 0; i < num; i++)
   1974       p->litProbs[i] = kProbInitValue;
   1975   }
   1976 
   1977   {
   1978     for (i = 0; i < kNumLenToPosStates; i++)
   1979     {
   1980       CLzmaProb *probs = p->posSlotEncoder[i];
   1981       UInt32 j;
   1982       for (j = 0; j < (1 << kNumPosSlotBits); j++)
   1983         probs[j] = kProbInitValue;
   1984     }
   1985   }
   1986   {
   1987     for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
   1988       p->posEncoders[i] = kProbInitValue;
   1989   }
   1990 
   1991   LenEnc_Init(&p->lenEnc.p);
   1992   LenEnc_Init(&p->repLenEnc.p);
   1993 
   1994   for (i = 0; i < (1 << kNumAlignBits); i++)
   1995     p->posAlignEncoder[i] = kProbInitValue;
   1996 
   1997   p->optimumEndIndex = 0;
   1998   p->optimumCurrentIndex = 0;
   1999   p->additionalOffset = 0;
   2000 
   2001   p->pbMask = (1 << p->pb) - 1;
   2002   p->lpMask = (1 << p->lp) - 1;
   2003 }
   2004 
   2005 void LzmaEnc_InitPrices(CLzmaEnc *p)
   2006 {
   2007   if (!p->fastMode)
   2008   {
   2009     FillDistancesPrices(p);
   2010     FillAlignPrices(p);
   2011   }
   2012 
   2013   p->lenEnc.tableSize =
   2014   p->repLenEnc.tableSize =
   2015       p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
   2016   LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
   2017   LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
   2018 }
   2019 
   2020 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
   2021 {
   2022   UInt32 i;
   2023   for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
   2024     if (p->dictSize <= ((UInt32)1 << i))
   2025       break;
   2026   p->distTableSize = i * 2;
   2027 
   2028   p->finished = False;
   2029   p->result = SZ_OK;
   2030   RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
   2031   LzmaEnc_Init(p);
   2032   LzmaEnc_InitPrices(p);
   2033   p->nowPos64 = 0;
   2034   return SZ_OK;
   2035 }
   2036 
   2037 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
   2038     ISzAlloc *alloc, ISzAlloc *allocBig)
   2039 {
   2040   CLzmaEnc *p = (CLzmaEnc *)pp;
   2041   p->matchFinderBase.stream = inStream;
   2042   p->needInit = 1;
   2043   p->rc.outStream = outStream;
   2044   return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
   2045 }
   2046 
   2047 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
   2048     ISeqInStream *inStream, UInt32 keepWindowSize,
   2049     ISzAlloc *alloc, ISzAlloc *allocBig)
   2050 {
   2051   CLzmaEnc *p = (CLzmaEnc *)pp;
   2052   p->matchFinderBase.stream = inStream;
   2053   p->needInit = 1;
   2054   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
   2055 }
   2056 
   2057 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
   2058 {
   2059   p->matchFinderBase.directInput = 1;
   2060   p->matchFinderBase.bufferBase = (Byte *)src;
   2061   p->matchFinderBase.directInputRem = srcLen;
   2062 }
   2063 
   2064 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
   2065     UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
   2066 {
   2067   CLzmaEnc *p = (CLzmaEnc *)pp;
   2068   LzmaEnc_SetInputBuf(p, src, srcLen);
   2069   p->needInit = 1;
   2070 
   2071   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
   2072 }
   2073 
   2074 void LzmaEnc_Finish(CLzmaEncHandle pp)
   2075 {
   2076   #ifndef _7ZIP_ST
   2077   CLzmaEnc *p = (CLzmaEnc *)pp;
   2078   if (p->mtMode)
   2079     MatchFinderMt_ReleaseStream(&p->matchFinderMt);
   2080   #else
   2081   pp = pp;
   2082   #endif
   2083 }
   2084 
   2085 typedef struct
   2086 {
   2087   ISeqOutStream funcTable;
   2088   Byte *data;
   2089   SizeT rem;
   2090   Bool overflow;
   2091 } CSeqOutStreamBuf;
   2092 
   2093 static size_t MyWrite(void *pp, const void *data, size_t size)
   2094 {
   2095   CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
   2096   if (p->rem < size)
   2097   {
   2098     size = p->rem;
   2099     p->overflow = True;
   2100   }
   2101   memcpy(p->data, data, size);
   2102   p->rem -= size;
   2103   p->data += size;
   2104   return size;
   2105 }
   2106 
   2107 
   2108 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
   2109 {
   2110   const CLzmaEnc *p = (CLzmaEnc *)pp;
   2111   return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
   2112 }
   2113 
   2114 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
   2115 {
   2116   const CLzmaEnc *p = (CLzmaEnc *)pp;
   2117   return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
   2118 }
   2119 
   2120 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
   2121     Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
   2122 {
   2123   CLzmaEnc *p = (CLzmaEnc *)pp;
   2124   UInt64 nowPos64;
   2125   SRes res;
   2126   CSeqOutStreamBuf outStream;
   2127 
   2128   outStream.funcTable.Write = MyWrite;
   2129   outStream.data = dest;
   2130   outStream.rem = *destLen;
   2131   outStream.overflow = False;
   2132 
   2133   p->writeEndMark = False;
   2134   p->finished = False;
   2135   p->result = SZ_OK;
   2136 
   2137   if (reInit)
   2138     LzmaEnc_Init(p);
   2139   LzmaEnc_InitPrices(p);
   2140   nowPos64 = p->nowPos64;
   2141   RangeEnc_Init(&p->rc);
   2142   p->rc.outStream = &outStream.funcTable;
   2143 
   2144   res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
   2145 
   2146   *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
   2147   *destLen -= outStream.rem;
   2148   if (outStream.overflow)
   2149     return SZ_ERROR_OUTPUT_EOF;
   2150 
   2151   return res;
   2152 }
   2153 
   2154 static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
   2155 {
   2156   SRes res = SZ_OK;
   2157 
   2158   #ifndef _7ZIP_ST
   2159   Byte allocaDummy[0x300];
   2160   int i = 0;
   2161   for (i = 0; i < 16; i++)
   2162     allocaDummy[i] = (Byte)i;
   2163   #endif
   2164 
   2165   for (;;)
   2166   {
   2167     res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
   2168     if (res != SZ_OK || p->finished != 0)
   2169       break;
   2170     if (progress != 0)
   2171     {
   2172       res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
   2173       if (res != SZ_OK)
   2174       {
   2175         res = SZ_ERROR_PROGRESS;
   2176         break;
   2177       }
   2178     }
   2179   }
   2180   LzmaEnc_Finish(p);
   2181   return res;
   2182 }
   2183 
   2184 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
   2185     ISzAlloc *alloc, ISzAlloc *allocBig)
   2186 {
   2187   RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
   2188   return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
   2189 }
   2190 
   2191 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
   2192 {
   2193   CLzmaEnc *p = (CLzmaEnc *)pp;
   2194   int i;
   2195   UInt32 dictSize = p->dictSize;
   2196   if (*size < LZMA_PROPS_SIZE)
   2197     return SZ_ERROR_PARAM;
   2198   *size = LZMA_PROPS_SIZE;
   2199   props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
   2200 
   2201   for (i = 11; i <= 30; i++)
   2202   {
   2203     if (dictSize <= ((UInt32)2 << i))
   2204     {
   2205       dictSize = (2 << i);
   2206       break;
   2207     }
   2208     if (dictSize <= ((UInt32)3 << i))
   2209     {
   2210       dictSize = (3 << i);
   2211       break;
   2212     }
   2213   }
   2214 
   2215   for (i = 0; i < 4; i++)
   2216     props[1 + i] = (Byte)(dictSize >> (8 * i));
   2217   return SZ_OK;
   2218 }
   2219 
   2220 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
   2221     int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
   2222 {
   2223   SRes res;
   2224   CLzmaEnc *p = (CLzmaEnc *)pp;
   2225 
   2226   CSeqOutStreamBuf outStream;
   2227 
   2228   LzmaEnc_SetInputBuf(p, src, srcLen);
   2229 
   2230   outStream.funcTable.Write = MyWrite;
   2231   outStream.data = dest;
   2232   outStream.rem = *destLen;
   2233   outStream.overflow = False;
   2234 
   2235   p->writeEndMark = writeEndMark;
   2236 
   2237   p->rc.outStream = &outStream.funcTable;
   2238   res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
   2239   if (res == SZ_OK)
   2240     res = LzmaEnc_Encode2(p, progress);
   2241 
   2242   *destLen -= outStream.rem;
   2243   if (outStream.overflow)
   2244     return SZ_ERROR_OUTPUT_EOF;
   2245   return res;
   2246 }
   2247 
   2248 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
   2249     const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
   2250     ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
   2251 {
   2252   CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
   2253   SRes res;
   2254   if (p == 0)
   2255     return SZ_ERROR_MEM;
   2256 
   2257   res = LzmaEnc_SetProps(p, props);
   2258   if (res == SZ_OK)
   2259   {
   2260     res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
   2261     if (res == SZ_OK)
   2262       res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
   2263           writeEndMark, progress, alloc, allocBig);
   2264   }
   2265 
   2266   LzmaEnc_Destroy(p, alloc, allocBig);
   2267   return res;
   2268 }
   2269