Home | History | Annotate | Download | only in Intersection
      1 /*
      2 http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
      3 */
      4 
      5 /*
      6 Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
      7 Then for degree elevation, the equations are:
      8 
      9 Q0 = P0
     10 Q1 = 1/3 P0 + 2/3 P1
     11 Q2 = 2/3 P1 + 1/3 P2
     12 Q3 = P2
     13 In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
     14  the equations above:
     15 
     16 P1 = 3/2 Q1 - 1/2 Q0
     17 P1 = 3/2 Q2 - 1/2 Q3
     18 If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
     19  it's likely not, your best bet is to average them. So,
     20 
     21 P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
     22 
     23 
     24 Cubic defined by: P1/2 - anchor points, C1/C2 control points
     25 |x| is the euclidean norm of x
     26 mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
     27  control point at C = (3C2 - P2 + 3C1 - P1)/4
     28 
     29 Algorithm
     30 
     31 pick an absolute precision (prec)
     32 Compute the Tdiv as the root of (cubic) equation
     33 sqrt(3)/18  |P2 - 3C2 + 3C1 - P1|/2  Tdiv ^ 3 = prec
     34 if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
     35  quadratic, with a defect less than prec, by the mid-point approximation.
     36  Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
     37 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
     38  approximation
     39 Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
     40 
     41 confirmed by (maybe stolen from)
     42 http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
     43 // maybe in turn derived from  http://www.cccg.ca/proceedings/2004/36.pdf
     44 // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf
     45 
     46 */
     47 
     48 #include "CubicUtilities.h"
     49 #include "CurveIntersection.h"
     50 #include "LineIntersection.h"
     51 #include "TSearch.h"
     52 
     53 const bool AVERAGE_END_POINTS = true; // results in better fitting curves
     54 
     55 #define USE_CUBIC_END_POINTS 1
     56 
     57 static double calcTDiv(const Cubic& cubic, double precision, double start) {
     58     const double adjust = sqrt(3) / 36;
     59     Cubic sub;
     60     const Cubic* cPtr;
     61     if (start == 0) {
     62         cPtr = &cubic;
     63     } else {
     64         // OPTIMIZE: special-case half-split ?
     65         sub_divide(cubic, start, 1, sub);
     66         cPtr = &sub;
     67     }
     68     const Cubic& c = *cPtr;
     69     double dx = c[3].x - 3 * (c[2].x - c[1].x) - c[0].x;
     70     double dy = c[3].y - 3 * (c[2].y - c[1].y) - c[0].y;
     71     double dist = sqrt(dx * dx + dy * dy);
     72     double tDiv3 = precision / (adjust * dist);
     73     double t = cube_root(tDiv3);
     74     if (start > 0) {
     75         t = start + (1 - start) * t;
     76     }
     77     return t;
     78 }
     79 
     80 void demote_cubic_to_quad(const Cubic& cubic, Quadratic& quad) {
     81     quad[0] = cubic[0];
     82 if (AVERAGE_END_POINTS) {
     83     const _Point fromC1 = { (3 * cubic[1].x - cubic[0].x) / 2, (3 * cubic[1].y - cubic[0].y) / 2 };
     84     const _Point fromC2 = { (3 * cubic[2].x - cubic[3].x) / 2, (3 * cubic[2].y - cubic[3].y) / 2 };
     85     quad[1].x = (fromC1.x + fromC2.x) / 2;
     86     quad[1].y = (fromC1.y + fromC2.y) / 2;
     87 } else {
     88     lineIntersect((const _Line&) cubic[0], (const _Line&) cubic[2], quad[1]);
     89 }
     90     quad[2] = cubic[3];
     91 }
     92 
     93 int cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<Quadratic>& quadratics) {
     94     SkTDArray<double> ts;
     95     cubic_to_quadratics(cubic, precision, ts);
     96     int tsCount = ts.count();
     97     double t1Start = 0;
     98     int order = 0;
     99     for (int idx = 0; idx <= tsCount; ++idx) {
    100         double t1 = idx < tsCount ? ts[idx] : 1;
    101         Cubic part;
    102         sub_divide(cubic, t1Start, t1, part);
    103         Quadratic q1;
    104         demote_cubic_to_quad(part, q1);
    105         Quadratic s1;
    106         int o1 = reduceOrder(q1, s1, kReduceOrder_TreatAsFill);
    107         if (order < o1) {
    108             order = o1;
    109         }
    110         memcpy(quadratics.append(), o1 < 2 ? s1 : q1, sizeof(Quadratic));
    111         t1Start = t1;
    112     }
    113     return order;
    114 }
    115 
    116 static bool addSimpleTs(const Cubic& cubic, double precision, SkTDArray<double>& ts) {
    117     double tDiv = calcTDiv(cubic, precision, 0);
    118     if (tDiv >= 1) {
    119         return true;
    120     }
    121     if (tDiv >= 0.5) {
    122         *ts.append() = 0.5;
    123         return true;
    124     }
    125     return false;
    126 }
    127 
    128 static void addTs(const Cubic& cubic, double precision, double start, double end,
    129         SkTDArray<double>& ts) {
    130     double tDiv = calcTDiv(cubic, precision, 0);
    131     double parts = ceil(1.0 / tDiv);
    132     for (double index = 0; index < parts; ++index) {
    133         double newT = start + (index / parts) * (end - start);
    134         if (newT > 0 && newT < 1) {
    135             *ts.append() = newT;
    136         }
    137     }
    138 }
    139 
    140 // flavor that returns T values only, deferring computing the quads until they are needed
    141 // FIXME: when called from recursive intersect 2, this could take the original cubic
    142 // and do a more precise job when calling chop at and sub divide by computing the fractional ts.
    143 // it would still take the prechopped cubic for reduce order and find cubic inflections
    144 void cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<double>& ts) {
    145     Cubic reduced;
    146     int order = reduceOrder(cubic, reduced, kReduceOrder_QuadraticsAllowed,
    147             kReduceOrder_TreatAsFill);
    148     if (order < 3) {
    149         return;
    150     }
    151     double inflectT[5];
    152     int inflections = find_cubic_inflections(cubic, inflectT);
    153     SkASSERT(inflections <= 2);
    154     if (!ends_are_extrema_in_x_or_y(cubic)) {
    155         inflections += find_cubic_max_curvature(cubic, &inflectT[inflections]);
    156         SkASSERT(inflections <= 5);
    157     }
    158     QSort<double>(inflectT, &inflectT[inflections - 1]);
    159     // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
    160     // own subroutine?
    161     while (inflections && approximately_less_than_zero(inflectT[0])) {
    162         memcpy(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
    163     }
    164     int start = 0;
    165     do {
    166         int next = start + 1;
    167         if (next >= inflections) {
    168             break;
    169         }
    170         if (!approximately_equal(inflectT[start], inflectT[next])) {
    171             ++start;
    172             continue;
    173         }
    174         memcpy(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
    175     } while (true);
    176     while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
    177         --inflections;
    178     }
    179     CubicPair pair;
    180     if (inflections == 1) {
    181         chop_at(cubic, pair, inflectT[0]);
    182         int orderP1 = reduceOrder(pair.first(), reduced, kReduceOrder_NoQuadraticsAllowed,
    183                 kReduceOrder_TreatAsFill);
    184         if (orderP1 < 2) {
    185             --inflections;
    186         } else {
    187             int orderP2 = reduceOrder(pair.second(), reduced, kReduceOrder_NoQuadraticsAllowed,
    188                     kReduceOrder_TreatAsFill);
    189             if (orderP2 < 2) {
    190                 --inflections;
    191             }
    192         }
    193     }
    194     if (inflections == 0 && addSimpleTs(cubic, precision, ts)) {
    195         return;
    196     }
    197     if (inflections == 1) {
    198         chop_at(cubic, pair, inflectT[0]);
    199         addTs(pair.first(), precision, 0, inflectT[0], ts);
    200         addTs(pair.second(), precision, inflectT[0], 1, ts);
    201         return;
    202     }
    203     if (inflections > 1) {
    204         Cubic part;
    205         sub_divide(cubic, 0, inflectT[0], part);
    206         addTs(part, precision, 0, inflectT[0], ts);
    207         int last = inflections - 1;
    208         for (int idx = 0; idx < last; ++idx) {
    209             sub_divide(cubic, inflectT[idx], inflectT[idx + 1], part);
    210             addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
    211         }
    212         sub_divide(cubic, inflectT[last], 1, part);
    213         addTs(part, precision, inflectT[last], 1, ts);
    214         return;
    215     }
    216     addTs(cubic, precision, 0, 1, ts);
    217 }
    218