Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_ROTATION2D_H
     11 #define EIGEN_ROTATION2D_H
     12 
     13 namespace Eigen {
     14 
     15 /** \geometry_module \ingroup Geometry_Module
     16   *
     17   * \class Rotation2D
     18   *
     19   * \brief Represents a rotation/orientation in a 2 dimensional space.
     20   *
     21   * \param _Scalar the scalar type, i.e., the type of the coefficients
     22   *
     23   * This class is equivalent to a single scalar representing a counter clock wise rotation
     24   * as a single angle in radian. It provides some additional features such as the automatic
     25   * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
     26   * interface to Quaternion in order to facilitate the writing of generic algorithms
     27   * dealing with rotations.
     28   *
     29   * \sa class Quaternion, class Transform
     30   */
     31 
     32 namespace internal {
     33 
     34 template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
     35 {
     36   typedef _Scalar Scalar;
     37 };
     38 } // end namespace internal
     39 
     40 template<typename _Scalar>
     41 class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
     42 {
     43   typedef RotationBase<Rotation2D<_Scalar>,2> Base;
     44 
     45 public:
     46 
     47   using Base::operator*;
     48 
     49   enum { Dim = 2 };
     50   /** the scalar type of the coefficients */
     51   typedef _Scalar Scalar;
     52   typedef Matrix<Scalar,2,1> Vector2;
     53   typedef Matrix<Scalar,2,2> Matrix2;
     54 
     55 protected:
     56 
     57   Scalar m_angle;
     58 
     59 public:
     60 
     61   /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
     62   inline Rotation2D(const Scalar& a) : m_angle(a) {}
     63 
     64   /** \returns the rotation angle */
     65   inline Scalar angle() const { return m_angle; }
     66 
     67   /** \returns a read-write reference to the rotation angle */
     68   inline Scalar& angle() { return m_angle; }
     69 
     70   /** \returns the inverse rotation */
     71   inline Rotation2D inverse() const { return -m_angle; }
     72 
     73   /** Concatenates two rotations */
     74   inline Rotation2D operator*(const Rotation2D& other) const
     75   { return m_angle + other.m_angle; }
     76 
     77   /** Concatenates two rotations */
     78   inline Rotation2D& operator*=(const Rotation2D& other)
     79   { m_angle += other.m_angle; return *this; }
     80 
     81   /** Applies the rotation to a 2D vector */
     82   Vector2 operator* (const Vector2& vec) const
     83   { return toRotationMatrix() * vec; }
     84 
     85   template<typename Derived>
     86   Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
     87   Matrix2 toRotationMatrix(void) const;
     88 
     89   /** \returns the spherical interpolation between \c *this and \a other using
     90     * parameter \a t. It is in fact equivalent to a linear interpolation.
     91     */
     92   inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
     93   { return m_angle * (1-t) + other.angle() * t; }
     94 
     95   /** \returns \c *this with scalar type casted to \a NewScalarType
     96     *
     97     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
     98     * then this function smartly returns a const reference to \c *this.
     99     */
    100   template<typename NewScalarType>
    101   inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
    102   { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
    103 
    104   /** Copy constructor with scalar type conversion */
    105   template<typename OtherScalarType>
    106   inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
    107   {
    108     m_angle = Scalar(other.angle());
    109   }
    110 
    111   static inline Rotation2D Identity() { return Rotation2D(0); }
    112 
    113   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    114     * determined by \a prec.
    115     *
    116     * \sa MatrixBase::isApprox() */
    117   bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
    118   { return internal::isApprox(m_angle,other.m_angle, prec); }
    119 };
    120 
    121 /** \ingroup Geometry_Module
    122   * single precision 2D rotation type */
    123 typedef Rotation2D<float> Rotation2Df;
    124 /** \ingroup Geometry_Module
    125   * double precision 2D rotation type */
    126 typedef Rotation2D<double> Rotation2Dd;
    127 
    128 /** Set \c *this from a 2x2 rotation matrix \a mat.
    129   * In other words, this function extract the rotation angle
    130   * from the rotation matrix.
    131   */
    132 template<typename Scalar>
    133 template<typename Derived>
    134 Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
    135 {
    136   using std::atan2;
    137   EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
    138   m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
    139   return *this;
    140 }
    141 
    142 /** Constructs and \returns an equivalent 2x2 rotation matrix.
    143   */
    144 template<typename Scalar>
    145 typename Rotation2D<Scalar>::Matrix2
    146 Rotation2D<Scalar>::toRotationMatrix(void) const
    147 {
    148   using std::sin;
    149   using std::cos;
    150   Scalar sinA = sin(m_angle);
    151   Scalar cosA = cos(m_angle);
    152   return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
    153 }
    154 
    155 } // end namespace Eigen
    156 
    157 #endif // EIGEN_ROTATION2D_H
    158