Home | History | Annotate | Download | only in CodeGen
      1 //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the MachineSSAUpdater class. It's based on SSAUpdater
     11 // class in lib/Transforms/Utils.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/MachineSSAUpdater.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/CodeGen/MachineInstr.h"
     19 #include "llvm/CodeGen/MachineInstrBuilder.h"
     20 #include "llvm/CodeGen/MachineRegisterInfo.h"
     21 #include "llvm/Support/AlignOf.h"
     22 #include "llvm/Support/Allocator.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include "llvm/Target/TargetInstrInfo.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 #include "llvm/Target/TargetRegisterInfo.h"
     29 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "machine-ssaupdater"
     33 
     34 typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
     35 static AvailableValsTy &getAvailableVals(void *AV) {
     36   return *static_cast<AvailableValsTy*>(AV);
     37 }
     38 
     39 MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
     40                                      SmallVectorImpl<MachineInstr*> *NewPHI)
     41   : AV(nullptr), InsertedPHIs(NewPHI) {
     42   TII = MF.getTarget().getInstrInfo();
     43   MRI = &MF.getRegInfo();
     44 }
     45 
     46 MachineSSAUpdater::~MachineSSAUpdater() {
     47   delete static_cast<AvailableValsTy*>(AV);
     48 }
     49 
     50 /// Initialize - Reset this object to get ready for a new set of SSA
     51 /// updates.  ProtoValue is the value used to name PHI nodes.
     52 void MachineSSAUpdater::Initialize(unsigned V) {
     53   if (!AV)
     54     AV = new AvailableValsTy();
     55   else
     56     getAvailableVals(AV).clear();
     57 
     58   VR = V;
     59   VRC = MRI->getRegClass(VR);
     60 }
     61 
     62 /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
     63 /// the specified block.
     64 bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
     65   return getAvailableVals(AV).count(BB);
     66 }
     67 
     68 /// AddAvailableValue - Indicate that a rewritten value is available in the
     69 /// specified block with the specified value.
     70 void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
     71   getAvailableVals(AV)[BB] = V;
     72 }
     73 
     74 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
     75 /// live at the end of the specified block.
     76 unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
     77   return GetValueAtEndOfBlockInternal(BB);
     78 }
     79 
     80 static
     81 unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
     82         SmallVectorImpl<std::pair<MachineBasicBlock*, unsigned> > &PredValues) {
     83   if (BB->empty())
     84     return 0;
     85 
     86   MachineBasicBlock::iterator I = BB->begin();
     87   if (!I->isPHI())
     88     return 0;
     89 
     90   AvailableValsTy AVals;
     91   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
     92     AVals[PredValues[i].first] = PredValues[i].second;
     93   while (I != BB->end() && I->isPHI()) {
     94     bool Same = true;
     95     for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
     96       unsigned SrcReg = I->getOperand(i).getReg();
     97       MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
     98       if (AVals[SrcBB] != SrcReg) {
     99         Same = false;
    100         break;
    101       }
    102     }
    103     if (Same)
    104       return I->getOperand(0).getReg();
    105     ++I;
    106   }
    107   return 0;
    108 }
    109 
    110 /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
    111 /// a value of the given register class at the start of the specified basic
    112 /// block. It returns the virtual register defined by the instruction.
    113 static
    114 MachineInstrBuilder InsertNewDef(unsigned Opcode,
    115                            MachineBasicBlock *BB, MachineBasicBlock::iterator I,
    116                            const TargetRegisterClass *RC,
    117                            MachineRegisterInfo *MRI,
    118                            const TargetInstrInfo *TII) {
    119   unsigned NewVR = MRI->createVirtualRegister(RC);
    120   return BuildMI(*BB, I, DebugLoc(), TII->get(Opcode), NewVR);
    121 }
    122 
    123 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
    124 /// is live in the middle of the specified block.
    125 ///
    126 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
    127 /// important case: if there is a definition of the rewritten value after the
    128 /// 'use' in BB.  Consider code like this:
    129 ///
    130 ///      X1 = ...
    131 ///   SomeBB:
    132 ///      use(X)
    133 ///      X2 = ...
    134 ///      br Cond, SomeBB, OutBB
    135 ///
    136 /// In this case, there are two values (X1 and X2) added to the AvailableVals
    137 /// set by the client of the rewriter, and those values are both live out of
    138 /// their respective blocks.  However, the use of X happens in the *middle* of
    139 /// a block.  Because of this, we need to insert a new PHI node in SomeBB to
    140 /// merge the appropriate values, and this value isn't live out of the block.
    141 ///
    142 unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
    143   // If there is no definition of the renamed variable in this block, just use
    144   // GetValueAtEndOfBlock to do our work.
    145   if (!HasValueForBlock(BB))
    146     return GetValueAtEndOfBlockInternal(BB);
    147 
    148   // If there are no predecessors, just return undef.
    149   if (BB->pred_empty()) {
    150     // Insert an implicit_def to represent an undef value.
    151     MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
    152                                         BB, BB->getFirstTerminator(),
    153                                         VRC, MRI, TII);
    154     return NewDef->getOperand(0).getReg();
    155   }
    156 
    157   // Otherwise, we have the hard case.  Get the live-in values for each
    158   // predecessor.
    159   SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
    160   unsigned SingularValue = 0;
    161 
    162   bool isFirstPred = true;
    163   for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
    164          E = BB->pred_end(); PI != E; ++PI) {
    165     MachineBasicBlock *PredBB = *PI;
    166     unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
    167     PredValues.push_back(std::make_pair(PredBB, PredVal));
    168 
    169     // Compute SingularValue.
    170     if (isFirstPred) {
    171       SingularValue = PredVal;
    172       isFirstPred = false;
    173     } else if (PredVal != SingularValue)
    174       SingularValue = 0;
    175   }
    176 
    177   // Otherwise, if all the merged values are the same, just use it.
    178   if (SingularValue != 0)
    179     return SingularValue;
    180 
    181   // If an identical PHI is already in BB, just reuse it.
    182   unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
    183   if (DupPHI)
    184     return DupPHI;
    185 
    186   // Otherwise, we do need a PHI: insert one now.
    187   MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->begin();
    188   MachineInstrBuilder InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB,
    189                                                  Loc, VRC, MRI, TII);
    190 
    191   // Fill in all the predecessors of the PHI.
    192   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
    193     InsertedPHI.addReg(PredValues[i].second).addMBB(PredValues[i].first);
    194 
    195   // See if the PHI node can be merged to a single value.  This can happen in
    196   // loop cases when we get a PHI of itself and one other value.
    197   if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
    198     InsertedPHI->eraseFromParent();
    199     return ConstVal;
    200   }
    201 
    202   // If the client wants to know about all new instructions, tell it.
    203   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
    204 
    205   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
    206   return InsertedPHI->getOperand(0).getReg();
    207 }
    208 
    209 static
    210 MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
    211                                          MachineOperand *U) {
    212   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
    213     if (&MI->getOperand(i) == U)
    214       return MI->getOperand(i+1).getMBB();
    215   }
    216 
    217   llvm_unreachable("MachineOperand::getParent() failure?");
    218 }
    219 
    220 /// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
    221 /// which use their value in the corresponding predecessor.
    222 void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
    223   MachineInstr *UseMI = U.getParent();
    224   unsigned NewVR = 0;
    225   if (UseMI->isPHI()) {
    226     MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
    227     NewVR = GetValueAtEndOfBlockInternal(SourceBB);
    228   } else {
    229     NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
    230   }
    231 
    232   U.setReg(NewVR);
    233 }
    234 
    235 /// SSAUpdaterTraits<MachineSSAUpdater> - Traits for the SSAUpdaterImpl
    236 /// template, specialized for MachineSSAUpdater.
    237 namespace llvm {
    238 template<>
    239 class SSAUpdaterTraits<MachineSSAUpdater> {
    240 public:
    241   typedef MachineBasicBlock BlkT;
    242   typedef unsigned ValT;
    243   typedef MachineInstr PhiT;
    244 
    245   typedef MachineBasicBlock::succ_iterator BlkSucc_iterator;
    246   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
    247   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
    248 
    249   /// Iterator for PHI operands.
    250   class PHI_iterator {
    251   private:
    252     MachineInstr *PHI;
    253     unsigned idx;
    254 
    255   public:
    256     explicit PHI_iterator(MachineInstr *P) // begin iterator
    257       : PHI(P), idx(1) {}
    258     PHI_iterator(MachineInstr *P, bool) // end iterator
    259       : PHI(P), idx(PHI->getNumOperands()) {}
    260 
    261     PHI_iterator &operator++() { idx += 2; return *this; }
    262     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
    263     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
    264     unsigned getIncomingValue() { return PHI->getOperand(idx).getReg(); }
    265     MachineBasicBlock *getIncomingBlock() {
    266       return PHI->getOperand(idx+1).getMBB();
    267     }
    268   };
    269   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
    270   static inline PHI_iterator PHI_end(PhiT *PHI) {
    271     return PHI_iterator(PHI, true);
    272   }
    273 
    274   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
    275   /// vector.
    276   static void FindPredecessorBlocks(MachineBasicBlock *BB,
    277                                     SmallVectorImpl<MachineBasicBlock*> *Preds){
    278     for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
    279            E = BB->pred_end(); PI != E; ++PI)
    280       Preds->push_back(*PI);
    281   }
    282 
    283   /// GetUndefVal - Create an IMPLICIT_DEF instruction with a new register.
    284   /// Add it into the specified block and return the register.
    285   static unsigned GetUndefVal(MachineBasicBlock *BB,
    286                               MachineSSAUpdater *Updater) {
    287     // Insert an implicit_def to represent an undef value.
    288     MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
    289                                         BB, BB->getFirstTerminator(),
    290                                         Updater->VRC, Updater->MRI,
    291                                         Updater->TII);
    292     return NewDef->getOperand(0).getReg();
    293   }
    294 
    295   /// CreateEmptyPHI - Create a PHI instruction that defines a new register.
    296   /// Add it into the specified block and return the register.
    297   static unsigned CreateEmptyPHI(MachineBasicBlock *BB, unsigned NumPreds,
    298                                  MachineSSAUpdater *Updater) {
    299     MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->begin();
    300     MachineInstr *PHI = InsertNewDef(TargetOpcode::PHI, BB, Loc,
    301                                      Updater->VRC, Updater->MRI,
    302                                      Updater->TII);
    303     return PHI->getOperand(0).getReg();
    304   }
    305 
    306   /// AddPHIOperand - Add the specified value as an operand of the PHI for
    307   /// the specified predecessor block.
    308   static void AddPHIOperand(MachineInstr *PHI, unsigned Val,
    309                             MachineBasicBlock *Pred) {
    310     MachineInstrBuilder(*Pred->getParent(), PHI).addReg(Val).addMBB(Pred);
    311   }
    312 
    313   /// InstrIsPHI - Check if an instruction is a PHI.
    314   ///
    315   static MachineInstr *InstrIsPHI(MachineInstr *I) {
    316     if (I && I->isPHI())
    317       return I;
    318     return nullptr;
    319   }
    320 
    321   /// ValueIsPHI - Check if the instruction that defines the specified register
    322   /// is a PHI instruction.
    323   static MachineInstr *ValueIsPHI(unsigned Val, MachineSSAUpdater *Updater) {
    324     return InstrIsPHI(Updater->MRI->getVRegDef(Val));
    325   }
    326 
    327   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
    328   /// operands, i.e., it was just added.
    329   static MachineInstr *ValueIsNewPHI(unsigned Val, MachineSSAUpdater *Updater) {
    330     MachineInstr *PHI = ValueIsPHI(Val, Updater);
    331     if (PHI && PHI->getNumOperands() <= 1)
    332       return PHI;
    333     return nullptr;
    334   }
    335 
    336   /// GetPHIValue - For the specified PHI instruction, return the register
    337   /// that it defines.
    338   static unsigned GetPHIValue(MachineInstr *PHI) {
    339     return PHI->getOperand(0).getReg();
    340   }
    341 };
    342 
    343 } // End llvm namespace
    344 
    345 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
    346 /// for the specified BB and if so, return it.  If not, construct SSA form by
    347 /// first calculating the required placement of PHIs and then inserting new
    348 /// PHIs where needed.
    349 unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
    350   AvailableValsTy &AvailableVals = getAvailableVals(AV);
    351   if (unsigned V = AvailableVals[BB])
    352     return V;
    353 
    354   SSAUpdaterImpl<MachineSSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
    355   return Impl.GetValue(BB);
    356 }
    357