Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SystemZSelectionDAGInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZTargetMachine.h"
     15 #include "llvm/CodeGen/SelectionDAG.h"
     16 
     17 using namespace llvm;
     18 
     19 #define DEBUG_TYPE "systemz-selectiondag-info"
     20 
     21 SystemZSelectionDAGInfo::SystemZSelectionDAGInfo(const DataLayout &DL)
     22     : TargetSelectionDAGInfo(&DL) {}
     23 
     24 SystemZSelectionDAGInfo::~SystemZSelectionDAGInfo() {
     25 }
     26 
     27 // Decide whether it is best to use a loop or straight-line code for
     28 // a block operation of Size bytes with source address Src and destination
     29 // address Dest.  Sequence is the opcode to use for straight-line code
     30 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
     31 // Return the chain for the completed operation.
     32 static SDValue emitMemMem(SelectionDAG &DAG, SDLoc DL, unsigned Sequence,
     33                           unsigned Loop, SDValue Chain, SDValue Dst,
     34                           SDValue Src, uint64_t Size) {
     35   EVT PtrVT = Src.getValueType();
     36   // The heuristic we use is to prefer loops for anything that would
     37   // require 7 or more MVCs.  With these kinds of sizes there isn't
     38   // much to choose between straight-line code and looping code,
     39   // since the time will be dominated by the MVCs themselves.
     40   // However, the loop has 4 or 5 instructions (depending on whether
     41   // the base addresses can be proved equal), so there doesn't seem
     42   // much point using a loop for 5 * 256 bytes or fewer.  Anything in
     43   // the range (5 * 256, 6 * 256) will need another instruction after
     44   // the loop, so it doesn't seem worth using a loop then either.
     45   // The next value up, 6 * 256, can be implemented in the same
     46   // number of straight-line MVCs as 6 * 256 - 1.
     47   if (Size > 6 * 256)
     48     return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
     49                        DAG.getConstant(Size, PtrVT),
     50                        DAG.getConstant(Size / 256, PtrVT));
     51   return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
     52                      DAG.getConstant(Size, PtrVT));
     53 }
     54 
     55 SDValue SystemZSelectionDAGInfo::
     56 EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
     57                         SDValue Dst, SDValue Src, SDValue Size, unsigned Align,
     58                         bool IsVolatile, bool AlwaysInline,
     59                         MachinePointerInfo DstPtrInfo,
     60                         MachinePointerInfo SrcPtrInfo) const {
     61   if (IsVolatile)
     62     return SDValue();
     63 
     64   if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
     65     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
     66                       Chain, Dst, Src, CSize->getZExtValue());
     67   return SDValue();
     68 }
     69 
     70 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
     71 // Chain, Dst, ByteVal and Size.  These cases are expected to use
     72 // MVI, MVHHI, MVHI and MVGHI respectively.
     73 static SDValue memsetStore(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
     74                            SDValue Dst, uint64_t ByteVal, uint64_t Size,
     75                            unsigned Align,
     76                            MachinePointerInfo DstPtrInfo) {
     77   uint64_t StoreVal = ByteVal;
     78   for (unsigned I = 1; I < Size; ++I)
     79     StoreVal |= ByteVal << (I * 8);
     80   return DAG.getStore(Chain, DL,
     81                       DAG.getConstant(StoreVal, MVT::getIntegerVT(Size * 8)),
     82                       Dst, DstPtrInfo, false, false, Align);
     83 }
     84 
     85 SDValue SystemZSelectionDAGInfo::
     86 EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
     87                         SDValue Dst, SDValue Byte, SDValue Size,
     88                         unsigned Align, bool IsVolatile,
     89                         MachinePointerInfo DstPtrInfo) const {
     90   EVT PtrVT = Dst.getValueType();
     91 
     92   if (IsVolatile)
     93     return SDValue();
     94 
     95   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
     96     uint64_t Bytes = CSize->getZExtValue();
     97     if (Bytes == 0)
     98       return SDValue();
     99     if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) {
    100       // Handle cases that can be done using at most two of
    101       // MVI, MVHI, MVHHI and MVGHI.  The latter two can only be
    102       // used if ByteVal is all zeros or all ones; in other casees,
    103       // we can move at most 2 halfwords.
    104       uint64_t ByteVal = CByte->getZExtValue();
    105       if (ByteVal == 0 || ByteVal == 255 ?
    106           Bytes <= 16 && CountPopulation_64(Bytes) <= 2 :
    107           Bytes <= 4) {
    108         unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
    109         unsigned Size2 = Bytes - Size1;
    110         SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
    111                                      Align, DstPtrInfo);
    112         if (Size2 == 0)
    113           return Chain1;
    114         Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
    115                           DAG.getConstant(Size1, PtrVT));
    116         DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
    117         SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2,
    118                                      std::min(Align, Size1), DstPtrInfo);
    119         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
    120       }
    121     } else {
    122       // Handle one and two bytes using STC.
    123       if (Bytes <= 2) {
    124         SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
    125                                       false, false, Align);
    126         if (Bytes == 1)
    127           return Chain1;
    128         SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
    129                                    DAG.getConstant(1, PtrVT));
    130         SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2,
    131                                       DstPtrInfo.getWithOffset(1),
    132                                       false, false, 1);
    133         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
    134       }
    135     }
    136     assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");
    137 
    138     // Handle the special case of a memset of 0, which can use XC.
    139     auto *CByte = dyn_cast<ConstantSDNode>(Byte);
    140     if (CByte && CByte->getZExtValue() == 0)
    141       return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
    142                         Chain, Dst, Dst, Bytes);
    143 
    144     // Copy the byte to the first location and then use MVC to copy
    145     // it to the rest.
    146     Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
    147                          false, false, Align);
    148     SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
    149                                    DAG.getConstant(1, PtrVT));
    150     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
    151                       Chain, DstPlus1, Dst, Bytes - 1);
    152   }
    153   return SDValue();
    154 }
    155 
    156 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
    157 // deciding whether to use a loop or straight-line code.
    158 static SDValue emitCLC(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    159                        SDValue Src1, SDValue Src2, uint64_t Size) {
    160   SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
    161   EVT PtrVT = Src1.getValueType();
    162   // A two-CLC sequence is a clear win over a loop, not least because it
    163   // needs only one branch.  A three-CLC sequence needs the same number
    164   // of branches as a loop (i.e. 2), but is shorter.  That brings us to
    165   // lengths greater than 768 bytes.  It seems relatively likely that
    166   // a difference will be found within the first 768 bytes, so we just
    167   // optimize for the smallest number of branch instructions, in order
    168   // to avoid polluting the prediction buffer too much.  A loop only ever
    169   // needs 2 branches, whereas a straight-line sequence would need 3 or more.
    170   if (Size > 3 * 256)
    171     return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
    172                        DAG.getConstant(Size, PtrVT),
    173                        DAG.getConstant(Size / 256, PtrVT));
    174   return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
    175                      DAG.getConstant(Size, PtrVT));
    176 }
    177 
    178 // Convert the current CC value into an integer that is 0 if CC == 0,
    179 // less than zero if CC == 1 and greater than zero if CC >= 2.
    180 // The sequence starts with IPM, which puts CC into bits 29 and 28
    181 // of an integer and clears bits 30 and 31.
    182 static SDValue addIPMSequence(SDLoc DL, SDValue Glue, SelectionDAG &DAG) {
    183   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
    184   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
    185                             DAG.getConstant(SystemZ::IPM_CC, MVT::i32));
    186   SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL,
    187                              DAG.getConstant(31, MVT::i32));
    188   return ROTL;
    189 }
    190 
    191 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    192 EmitTargetCodeForMemcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    193                         SDValue Src1, SDValue Src2, SDValue Size,
    194                         MachinePointerInfo Op1PtrInfo,
    195                         MachinePointerInfo Op2PtrInfo) const {
    196   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
    197     uint64_t Bytes = CSize->getZExtValue();
    198     assert(Bytes > 0 && "Caller should have handled 0-size case");
    199     Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes);
    200     SDValue Glue = Chain.getValue(1);
    201     return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
    202   }
    203   return std::make_pair(SDValue(), SDValue());
    204 }
    205 
    206 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    207 EmitTargetCodeForMemchr(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    208                         SDValue Src, SDValue Char, SDValue Length,
    209                         MachinePointerInfo SrcPtrInfo) const {
    210   // Use SRST to find the character.  End is its address on success.
    211   EVT PtrVT = Src.getValueType();
    212   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
    213   Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
    214   Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
    215   Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
    216                      DAG.getConstant(255, MVT::i32));
    217   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
    218   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
    219                             Limit, Src, Char);
    220   Chain = End.getValue(1);
    221   SDValue Glue = End.getValue(2);
    222 
    223   // Now select between End and null, depending on whether the character
    224   // was found.
    225   SmallVector<SDValue, 5> Ops;
    226   Ops.push_back(End);
    227   Ops.push_back(DAG.getConstant(0, PtrVT));
    228   Ops.push_back(DAG.getConstant(SystemZ::CCMASK_SRST, MVT::i32));
    229   Ops.push_back(DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, MVT::i32));
    230   Ops.push_back(Glue);
    231   VTs = DAG.getVTList(PtrVT, MVT::Glue);
    232   End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
    233   return std::make_pair(End, Chain);
    234 }
    235 
    236 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    237 EmitTargetCodeForStrcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    238                         SDValue Dest, SDValue Src,
    239                         MachinePointerInfo DestPtrInfo,
    240                         MachinePointerInfo SrcPtrInfo, bool isStpcpy) const {
    241   SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
    242   SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
    243                                 DAG.getConstant(0, MVT::i32));
    244   return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
    245 }
    246 
    247 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    248 EmitTargetCodeForStrcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    249                         SDValue Src1, SDValue Src2,
    250                         MachinePointerInfo Op1PtrInfo,
    251                         MachinePointerInfo Op2PtrInfo) const {
    252   SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue);
    253   SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2,
    254                                DAG.getConstant(0, MVT::i32));
    255   Chain = Unused.getValue(1);
    256   SDValue Glue = Chain.getValue(2);
    257   return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
    258 }
    259 
    260 // Search from Src for a null character, stopping once Src reaches Limit.
    261 // Return a pair of values, the first being the number of nonnull characters
    262 // and the second being the out chain.
    263 //
    264 // This can be used for strlen by setting Limit to 0.
    265 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG, SDLoc DL,
    266                                                     SDValue Chain, SDValue Src,
    267                                                     SDValue Limit) {
    268   EVT PtrVT = Src.getValueType();
    269   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
    270   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
    271                             Limit, Src, DAG.getConstant(0, MVT::i32));
    272   Chain = End.getValue(1);
    273   SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
    274   return std::make_pair(Len, Chain);
    275 }
    276 
    277 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    278 EmitTargetCodeForStrlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    279                         SDValue Src, MachinePointerInfo SrcPtrInfo) const {
    280   EVT PtrVT = Src.getValueType();
    281   return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, PtrVT));
    282 }
    283 
    284 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    285 EmitTargetCodeForStrnlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    286                          SDValue Src, SDValue MaxLength,
    287                          MachinePointerInfo SrcPtrInfo) const {
    288   EVT PtrVT = Src.getValueType();
    289   MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
    290   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
    291   return getBoundedStrlen(DAG, DL, Chain, Src, Limit);
    292 }
    293