Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSelect.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitSelect function.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/PatternMatch.h"
     18 using namespace llvm;
     19 using namespace PatternMatch;
     20 
     21 #define DEBUG_TYPE "instcombine"
     22 
     23 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
     24 /// returning the kind and providing the out parameter results if we
     25 /// successfully match.
     26 static SelectPatternFlavor
     27 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
     28   SelectInst *SI = dyn_cast<SelectInst>(V);
     29   if (!SI) return SPF_UNKNOWN;
     30 
     31   ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
     32   if (!ICI) return SPF_UNKNOWN;
     33 
     34   ICmpInst::Predicate Pred = ICI->getPredicate();
     35   Value *CmpLHS = ICI->getOperand(0);
     36   Value *CmpRHS = ICI->getOperand(1);
     37   Value *TrueVal = SI->getTrueValue();
     38   Value *FalseVal = SI->getFalseValue();
     39 
     40   LHS = CmpLHS;
     41   RHS = CmpRHS;
     42 
     43   // (icmp X, Y) ? X : Y
     44   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
     45     switch (Pred) {
     46     default: return SPF_UNKNOWN; // Equality.
     47     case ICmpInst::ICMP_UGT:
     48     case ICmpInst::ICMP_UGE: return SPF_UMAX;
     49     case ICmpInst::ICMP_SGT:
     50     case ICmpInst::ICMP_SGE: return SPF_SMAX;
     51     case ICmpInst::ICMP_ULT:
     52     case ICmpInst::ICMP_ULE: return SPF_UMIN;
     53     case ICmpInst::ICMP_SLT:
     54     case ICmpInst::ICMP_SLE: return SPF_SMIN;
     55     }
     56   }
     57 
     58   // (icmp X, Y) ? Y : X
     59   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
     60     switch (Pred) {
     61     default: return SPF_UNKNOWN; // Equality.
     62     case ICmpInst::ICMP_UGT:
     63     case ICmpInst::ICMP_UGE: return SPF_UMIN;
     64     case ICmpInst::ICMP_SGT:
     65     case ICmpInst::ICMP_SGE: return SPF_SMIN;
     66     case ICmpInst::ICMP_ULT:
     67     case ICmpInst::ICMP_ULE: return SPF_UMAX;
     68     case ICmpInst::ICMP_SLT:
     69     case ICmpInst::ICMP_SLE: return SPF_SMAX;
     70     }
     71   }
     72 
     73   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
     74     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
     75         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
     76 
     77       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
     78       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
     79       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
     80         return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS;
     81       }
     82 
     83       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
     84       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
     85       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
     86         return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS;
     87       }
     88     }
     89   }
     90 
     91   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
     92 
     93   return SPF_UNKNOWN;
     94 }
     95 
     96 
     97 /// GetSelectFoldableOperands - We want to turn code that looks like this:
     98 ///   %C = or %A, %B
     99 ///   %D = select %cond, %C, %A
    100 /// into:
    101 ///   %C = select %cond, %B, 0
    102 ///   %D = or %A, %C
    103 ///
    104 /// Assuming that the specified instruction is an operand to the select, return
    105 /// a bitmask indicating which operands of this instruction are foldable if they
    106 /// equal the other incoming value of the select.
    107 ///
    108 static unsigned GetSelectFoldableOperands(Instruction *I) {
    109   switch (I->getOpcode()) {
    110   case Instruction::Add:
    111   case Instruction::Mul:
    112   case Instruction::And:
    113   case Instruction::Or:
    114   case Instruction::Xor:
    115     return 3;              // Can fold through either operand.
    116   case Instruction::Sub:   // Can only fold on the amount subtracted.
    117   case Instruction::Shl:   // Can only fold on the shift amount.
    118   case Instruction::LShr:
    119   case Instruction::AShr:
    120     return 1;
    121   default:
    122     return 0;              // Cannot fold
    123   }
    124 }
    125 
    126 /// GetSelectFoldableConstant - For the same transformation as the previous
    127 /// function, return the identity constant that goes into the select.
    128 static Constant *GetSelectFoldableConstant(Instruction *I) {
    129   switch (I->getOpcode()) {
    130   default: llvm_unreachable("This cannot happen!");
    131   case Instruction::Add:
    132   case Instruction::Sub:
    133   case Instruction::Or:
    134   case Instruction::Xor:
    135   case Instruction::Shl:
    136   case Instruction::LShr:
    137   case Instruction::AShr:
    138     return Constant::getNullValue(I->getType());
    139   case Instruction::And:
    140     return Constant::getAllOnesValue(I->getType());
    141   case Instruction::Mul:
    142     return ConstantInt::get(I->getType(), 1);
    143   }
    144 }
    145 
    146 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
    147 /// have the same opcode and only one use each.  Try to simplify this.
    148 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
    149                                           Instruction *FI) {
    150   if (TI->getNumOperands() == 1) {
    151     // If this is a non-volatile load or a cast from the same type,
    152     // merge.
    153     if (TI->isCast()) {
    154       Type *FIOpndTy = FI->getOperand(0)->getType();
    155       if (TI->getOperand(0)->getType() != FIOpndTy)
    156         return nullptr;
    157       // The select condition may be a vector. We may only change the operand
    158       // type if the vector width remains the same (and matches the condition).
    159       Type *CondTy = SI.getCondition()->getType();
    160       if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
    161           CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
    162         return nullptr;
    163     } else {
    164       return nullptr;  // unknown unary op.
    165     }
    166 
    167     // Fold this by inserting a select from the input values.
    168     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
    169                                          FI->getOperand(0), SI.getName()+".v");
    170     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
    171                             TI->getType());
    172   }
    173 
    174   // Only handle binary operators here.
    175   if (!isa<BinaryOperator>(TI))
    176     return nullptr;
    177 
    178   // Figure out if the operations have any operands in common.
    179   Value *MatchOp, *OtherOpT, *OtherOpF;
    180   bool MatchIsOpZero;
    181   if (TI->getOperand(0) == FI->getOperand(0)) {
    182     MatchOp  = TI->getOperand(0);
    183     OtherOpT = TI->getOperand(1);
    184     OtherOpF = FI->getOperand(1);
    185     MatchIsOpZero = true;
    186   } else if (TI->getOperand(1) == FI->getOperand(1)) {
    187     MatchOp  = TI->getOperand(1);
    188     OtherOpT = TI->getOperand(0);
    189     OtherOpF = FI->getOperand(0);
    190     MatchIsOpZero = false;
    191   } else if (!TI->isCommutative()) {
    192     return nullptr;
    193   } else if (TI->getOperand(0) == FI->getOperand(1)) {
    194     MatchOp  = TI->getOperand(0);
    195     OtherOpT = TI->getOperand(1);
    196     OtherOpF = FI->getOperand(0);
    197     MatchIsOpZero = true;
    198   } else if (TI->getOperand(1) == FI->getOperand(0)) {
    199     MatchOp  = TI->getOperand(1);
    200     OtherOpT = TI->getOperand(0);
    201     OtherOpF = FI->getOperand(1);
    202     MatchIsOpZero = true;
    203   } else {
    204     return nullptr;
    205   }
    206 
    207   // If we reach here, they do have operations in common.
    208   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
    209                                        OtherOpF, SI.getName()+".v");
    210 
    211   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    212     if (MatchIsOpZero)
    213       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
    214     else
    215       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
    216   }
    217   llvm_unreachable("Shouldn't get here");
    218 }
    219 
    220 static bool isSelect01(Constant *C1, Constant *C2) {
    221   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
    222   if (!C1I)
    223     return false;
    224   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
    225   if (!C2I)
    226     return false;
    227   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
    228     return false;
    229   return C1I->isOne() || C1I->isAllOnesValue() ||
    230          C2I->isOne() || C2I->isAllOnesValue();
    231 }
    232 
    233 /// FoldSelectIntoOp - Try fold the select into one of the operands to
    234 /// facilitate further optimization.
    235 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
    236                                             Value *FalseVal) {
    237   // See the comment above GetSelectFoldableOperands for a description of the
    238   // transformation we are doing here.
    239   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
    240     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
    241         !isa<Constant>(FalseVal)) {
    242       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
    243         unsigned OpToFold = 0;
    244         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
    245           OpToFold = 1;
    246         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
    247           OpToFold = 2;
    248         }
    249 
    250         if (OpToFold) {
    251           Constant *C = GetSelectFoldableConstant(TVI);
    252           Value *OOp = TVI->getOperand(2-OpToFold);
    253           // Avoid creating select between 2 constants unless it's selecting
    254           // between 0, 1 and -1.
    255           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    256             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
    257             NewSel->takeName(TVI);
    258             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
    259             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
    260                                                         FalseVal, NewSel);
    261             if (isa<PossiblyExactOperator>(BO))
    262               BO->setIsExact(TVI_BO->isExact());
    263             if (isa<OverflowingBinaryOperator>(BO)) {
    264               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
    265               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
    266             }
    267             return BO;
    268           }
    269         }
    270       }
    271     }
    272   }
    273 
    274   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
    275     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
    276         !isa<Constant>(TrueVal)) {
    277       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
    278         unsigned OpToFold = 0;
    279         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
    280           OpToFold = 1;
    281         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
    282           OpToFold = 2;
    283         }
    284 
    285         if (OpToFold) {
    286           Constant *C = GetSelectFoldableConstant(FVI);
    287           Value *OOp = FVI->getOperand(2-OpToFold);
    288           // Avoid creating select between 2 constants unless it's selecting
    289           // between 0, 1 and -1.
    290           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    291             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
    292             NewSel->takeName(FVI);
    293             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
    294             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
    295                                                         TrueVal, NewSel);
    296             if (isa<PossiblyExactOperator>(BO))
    297               BO->setIsExact(FVI_BO->isExact());
    298             if (isa<OverflowingBinaryOperator>(BO)) {
    299               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
    300               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
    301             }
    302             return BO;
    303           }
    304         }
    305       }
    306     }
    307   }
    308 
    309   return nullptr;
    310 }
    311 
    312 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
    313 /// replaced with RepOp.
    314 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
    315                                      const DataLayout *TD,
    316                                      const TargetLibraryInfo *TLI) {
    317   // Trivial replacement.
    318   if (V == Op)
    319     return RepOp;
    320 
    321   Instruction *I = dyn_cast<Instruction>(V);
    322   if (!I)
    323     return nullptr;
    324 
    325   // If this is a binary operator, try to simplify it with the replaced op.
    326   if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
    327     if (B->getOperand(0) == Op)
    328       return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
    329     if (B->getOperand(1) == Op)
    330       return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
    331   }
    332 
    333   // Same for CmpInsts.
    334   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    335     if (C->getOperand(0) == Op)
    336       return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
    337                              TLI);
    338     if (C->getOperand(1) == Op)
    339       return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
    340                              TLI);
    341   }
    342 
    343   // TODO: We could hand off more cases to instsimplify here.
    344 
    345   // If all operands are constant after substituting Op for RepOp then we can
    346   // constant fold the instruction.
    347   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
    348     // Build a list of all constant operands.
    349     SmallVector<Constant*, 8> ConstOps;
    350     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    351       if (I->getOperand(i) == Op)
    352         ConstOps.push_back(CRepOp);
    353       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
    354         ConstOps.push_back(COp);
    355       else
    356         break;
    357     }
    358 
    359     // All operands were constants, fold it.
    360     if (ConstOps.size() == I->getNumOperands()) {
    361       if (CmpInst *C = dyn_cast<CmpInst>(I))
    362         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
    363                                                ConstOps[1], TD, TLI);
    364 
    365       if (LoadInst *LI = dyn_cast<LoadInst>(I))
    366         if (!LI->isVolatile())
    367           return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
    368 
    369       return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
    370                                       ConstOps, TD, TLI);
    371     }
    372   }
    373 
    374   return nullptr;
    375 }
    376 
    377 /// foldSelectICmpAndOr - We want to turn:
    378 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
    379 /// into:
    380 ///   (or (shl (and X, C1), C3), y)
    381 /// iff:
    382 ///   C1 and C2 are both powers of 2
    383 /// where:
    384 ///   C3 = Log(C2) - Log(C1)
    385 ///
    386 /// This transform handles cases where:
    387 /// 1. The icmp predicate is inverted
    388 /// 2. The select operands are reversed
    389 /// 3. The magnitude of C2 and C1 are flipped
    390 ///
    391 /// This also tries to turn
    392 /// --- Single bit tests:
    393 /// if ((x & C) == 0) x |= C	to  x |= C
    394 /// if ((x & C) != 0) x ^= C	to  x &= ~C
    395 /// if ((x & C) == 0) x ^= C	to  x |= C
    396 /// if ((x & C) != 0) x &= ~C	to  x &= ~C
    397 /// if ((x & C) == 0) x &= ~C	to  nothing
    398 static Value *foldSelectICmpAndOr(SelectInst &SI, Value *TrueVal,
    399                                   Value *FalseVal,
    400                                   InstCombiner::BuilderTy *Builder) {
    401   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    402   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
    403     return nullptr;
    404 
    405   Value *CmpLHS = IC->getOperand(0);
    406   Value *CmpRHS = IC->getOperand(1);
    407 
    408   if (!match(CmpRHS, m_Zero()))
    409     return nullptr;
    410 
    411   Value *X;
    412   const APInt *C1;
    413   if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
    414     return nullptr;
    415 
    416   const APInt *C2;
    417   if (match(TrueVal, m_Specific(X))) {
    418     // if ((X & C) != 0) X ^= C becomes X &= ~C
    419     if (match(FalseVal, m_Xor(m_Specific(X), m_APInt(C2))) && C1 == C2)
    420       return Builder->CreateAnd(X, ~(*C1));
    421     // if ((X & C) != 0) X &= ~C becomes X &= ~C
    422     if (match(FalseVal, m_And(m_Specific(X), m_APInt(C2))) && *C1 == ~(*C2))
    423       return FalseVal;
    424   } else if (match(FalseVal, m_Specific(X))) {
    425     // if ((X & C) == 0) X ^= C becomes X |= C
    426     if (match(TrueVal, m_Xor(m_Specific(X), m_APInt(C2))) && C1 == C2)
    427       return Builder->CreateOr(X, *C1);
    428     // if ((X & C) == 0) X &= ~C becomes nothing
    429     if (match(TrueVal, m_And(m_Specific(X), m_APInt(C2))) && *C1 == ~(*C2))
    430       return X;
    431     // if ((X & C) == 0) X |= C becomes X |= C
    432     if (match(TrueVal, m_Or(m_Specific(X), m_APInt(C2))) && C1 == C2)
    433       return TrueVal;
    434   }
    435 
    436   bool OrOnTrueVal = false;
    437   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
    438   if (!OrOnFalseVal)
    439     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
    440 
    441   if (!OrOnFalseVal && !OrOnTrueVal)
    442     return nullptr;
    443 
    444   Value *V = CmpLHS;
    445   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
    446 
    447   unsigned C1Log = C1->logBase2();
    448   unsigned C2Log = C2->logBase2();
    449   if (C2Log > C1Log) {
    450     V = Builder->CreateZExtOrTrunc(V, Y->getType());
    451     V = Builder->CreateShl(V, C2Log - C1Log);
    452   } else if (C1Log > C2Log) {
    453     V = Builder->CreateLShr(V, C1Log - C2Log);
    454     V = Builder->CreateZExtOrTrunc(V, Y->getType());
    455   } else
    456     V = Builder->CreateZExtOrTrunc(V, Y->getType());
    457 
    458   ICmpInst::Predicate Pred = IC->getPredicate();
    459   if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
    460       (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
    461     V = Builder->CreateXor(V, *C2);
    462 
    463   return Builder->CreateOr(V, Y);
    464 }
    465 
    466 /// visitSelectInstWithICmp - Visit a SelectInst that has an
    467 /// ICmpInst as its first operand.
    468 ///
    469 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
    470                                                    ICmpInst *ICI) {
    471   bool Changed = false;
    472   ICmpInst::Predicate Pred = ICI->getPredicate();
    473   Value *CmpLHS = ICI->getOperand(0);
    474   Value *CmpRHS = ICI->getOperand(1);
    475   Value *TrueVal = SI.getTrueValue();
    476   Value *FalseVal = SI.getFalseValue();
    477 
    478   // Check cases where the comparison is with a constant that
    479   // can be adjusted to fit the min/max idiom. We may move or edit ICI
    480   // here, so make sure the select is the only user.
    481   if (ICI->hasOneUse())
    482     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
    483       // X < MIN ? T : F  -->  F
    484       if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
    485           && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
    486         return ReplaceInstUsesWith(SI, FalseVal);
    487       // X > MAX ? T : F  -->  F
    488       else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
    489                && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
    490         return ReplaceInstUsesWith(SI, FalseVal);
    491       switch (Pred) {
    492       default: break;
    493       case ICmpInst::ICMP_ULT:
    494       case ICmpInst::ICMP_SLT:
    495       case ICmpInst::ICMP_UGT:
    496       case ICmpInst::ICMP_SGT: {
    497         // These transformations only work for selects over integers.
    498         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
    499         if (!SelectTy)
    500           break;
    501 
    502         Constant *AdjustedRHS;
    503         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
    504           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
    505         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
    506           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
    507 
    508         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
    509         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
    510         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
    511             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
    512           ; // Nothing to do here. Values match without any sign/zero extension.
    513 
    514         // Types do not match. Instead of calculating this with mixed types
    515         // promote all to the larger type. This enables scalar evolution to
    516         // analyze this expression.
    517         else if (CmpRHS->getType()->getScalarSizeInBits()
    518                  < SelectTy->getBitWidth()) {
    519           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
    520 
    521           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
    522           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
    523           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
    524           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
    525           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
    526                 sextRHS == FalseVal) {
    527             CmpLHS = TrueVal;
    528             AdjustedRHS = sextRHS;
    529           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
    530                      sextRHS == TrueVal) {
    531             CmpLHS = FalseVal;
    532             AdjustedRHS = sextRHS;
    533           } else if (ICI->isUnsigned()) {
    534             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
    535             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
    536             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
    537             // zext + signed compare cannot be changed:
    538             //    0xff <s 0x00, but 0x00ff >s 0x0000
    539             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
    540                 zextRHS == FalseVal) {
    541               CmpLHS = TrueVal;
    542               AdjustedRHS = zextRHS;
    543             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
    544                        zextRHS == TrueVal) {
    545               CmpLHS = FalseVal;
    546               AdjustedRHS = zextRHS;
    547             } else
    548               break;
    549           } else
    550             break;
    551         } else
    552           break;
    553 
    554         Pred = ICmpInst::getSwappedPredicate(Pred);
    555         CmpRHS = AdjustedRHS;
    556         std::swap(FalseVal, TrueVal);
    557         ICI->setPredicate(Pred);
    558         ICI->setOperand(0, CmpLHS);
    559         ICI->setOperand(1, CmpRHS);
    560         SI.setOperand(1, TrueVal);
    561         SI.setOperand(2, FalseVal);
    562 
    563         // Move ICI instruction right before the select instruction. Otherwise
    564         // the sext/zext value may be defined after the ICI instruction uses it.
    565         ICI->moveBefore(&SI);
    566 
    567         Changed = true;
    568         break;
    569       }
    570       }
    571     }
    572 
    573   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
    574   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
    575   // FIXME: Type and constness constraints could be lifted, but we have to
    576   //        watch code size carefully. We should consider xor instead of
    577   //        sub/add when we decide to do that.
    578   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
    579     if (TrueVal->getType() == Ty) {
    580       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
    581         ConstantInt *C1 = nullptr, *C2 = nullptr;
    582         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
    583           C1 = dyn_cast<ConstantInt>(TrueVal);
    584           C2 = dyn_cast<ConstantInt>(FalseVal);
    585         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
    586           C1 = dyn_cast<ConstantInt>(FalseVal);
    587           C2 = dyn_cast<ConstantInt>(TrueVal);
    588         }
    589         if (C1 && C2) {
    590           // This shift results in either -1 or 0.
    591           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
    592 
    593           // Check if we can express the operation with a single or.
    594           if (C2->isAllOnesValue())
    595             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
    596 
    597           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
    598           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
    599         }
    600       }
    601     }
    602   }
    603 
    604   // If we have an equality comparison then we know the value in one of the
    605   // arms of the select. See if substituting this value into the arm and
    606   // simplifying the result yields the same value as the other arm.
    607   if (Pred == ICmpInst::ICMP_EQ) {
    608     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI) == TrueVal ||
    609         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI) == TrueVal)
    610       return ReplaceInstUsesWith(SI, FalseVal);
    611     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI) == FalseVal ||
    612         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI) == FalseVal)
    613       return ReplaceInstUsesWith(SI, FalseVal);
    614   } else if (Pred == ICmpInst::ICMP_NE) {
    615     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI) == FalseVal ||
    616         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI) == FalseVal)
    617       return ReplaceInstUsesWith(SI, TrueVal);
    618     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI) == TrueVal ||
    619         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI) == TrueVal)
    620       return ReplaceInstUsesWith(SI, TrueVal);
    621   }
    622 
    623   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
    624 
    625   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
    626     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
    627       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
    628       SI.setOperand(1, CmpRHS);
    629       Changed = true;
    630     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
    631       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
    632       SI.setOperand(2, CmpRHS);
    633       Changed = true;
    634     }
    635   }
    636 
    637   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
    638     return ReplaceInstUsesWith(SI, V);
    639 
    640   return Changed ? &SI : nullptr;
    641 }
    642 
    643 
    644 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
    645 /// PHI node (but the two may be in different blocks).  See if the true/false
    646 /// values (V) are live in all of the predecessor blocks of the PHI.  For
    647 /// example, cases like this cannot be mapped:
    648 ///
    649 ///   X = phi [ C1, BB1], [C2, BB2]
    650 ///   Y = add
    651 ///   Z = select X, Y, 0
    652 ///
    653 /// because Y is not live in BB1/BB2.
    654 ///
    655 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
    656                                                    const SelectInst &SI) {
    657   // If the value is a non-instruction value like a constant or argument, it
    658   // can always be mapped.
    659   const Instruction *I = dyn_cast<Instruction>(V);
    660   if (!I) return true;
    661 
    662   // If V is a PHI node defined in the same block as the condition PHI, we can
    663   // map the arguments.
    664   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
    665 
    666   if (const PHINode *VP = dyn_cast<PHINode>(I))
    667     if (VP->getParent() == CondPHI->getParent())
    668       return true;
    669 
    670   // Otherwise, if the PHI and select are defined in the same block and if V is
    671   // defined in a different block, then we can transform it.
    672   if (SI.getParent() == CondPHI->getParent() &&
    673       I->getParent() != CondPHI->getParent())
    674     return true;
    675 
    676   // Otherwise we have a 'hard' case and we can't tell without doing more
    677   // detailed dominator based analysis, punt.
    678   return false;
    679 }
    680 
    681 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
    682 ///   SPF2(SPF1(A, B), C)
    683 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
    684                                         SelectPatternFlavor SPF1,
    685                                         Value *A, Value *B,
    686                                         Instruction &Outer,
    687                                         SelectPatternFlavor SPF2, Value *C) {
    688   if (C == A || C == B) {
    689     // MAX(MAX(A, B), B) -> MAX(A, B)
    690     // MIN(MIN(a, b), a) -> MIN(a, b)
    691     if (SPF1 == SPF2)
    692       return ReplaceInstUsesWith(Outer, Inner);
    693 
    694     // MAX(MIN(a, b), a) -> a
    695     // MIN(MAX(a, b), a) -> a
    696     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
    697         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
    698         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
    699         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
    700       return ReplaceInstUsesWith(Outer, C);
    701   }
    702 
    703   if (SPF1 == SPF2) {
    704     if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) {
    705       if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) {
    706         APInt ACB = CB->getValue();
    707         APInt ACC = CC->getValue();
    708 
    709         // MIN(MIN(A, 23), 97) -> MIN(A, 23)
    710         // MAX(MAX(A, 97), 23) -> MAX(A, 97)
    711         if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) ||
    712             (SPF1 == SPF_SMIN && ACB.sle(ACC)) ||
    713             (SPF1 == SPF_UMAX && ACB.uge(ACC)) ||
    714             (SPF1 == SPF_SMAX && ACB.sge(ACC)))
    715           return ReplaceInstUsesWith(Outer, Inner);
    716 
    717         // MIN(MIN(A, 97), 23) -> MIN(A, 23)
    718         // MAX(MAX(A, 23), 97) -> MAX(A, 97)
    719         if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) ||
    720             (SPF1 == SPF_SMIN && ACB.sgt(ACC)) ||
    721             (SPF1 == SPF_UMAX && ACB.ult(ACC)) ||
    722             (SPF1 == SPF_SMAX && ACB.slt(ACC))) {
    723           Outer.replaceUsesOfWith(Inner, A);
    724           return &Outer;
    725         }
    726       }
    727     }
    728   }
    729 
    730   // ABS(ABS(X)) -> ABS(X)
    731   // NABS(NABS(X)) -> NABS(X)
    732   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
    733     return ReplaceInstUsesWith(Outer, Inner);
    734   }
    735 
    736   // ABS(NABS(X)) -> ABS(X)
    737   // NABS(ABS(X)) -> NABS(X)
    738   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
    739       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
    740     SelectInst *SI = cast<SelectInst>(Inner);
    741     Value *NewSI = Builder->CreateSelect(
    742         SI->getCondition(), SI->getFalseValue(), SI->getTrueValue());
    743     return ReplaceInstUsesWith(Outer, NewSI);
    744   }
    745   return nullptr;
    746 }
    747 
    748 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
    749 /// both be) and we have an icmp instruction with zero, and we have an 'and'
    750 /// with the non-constant value and a power of two we can turn the select
    751 /// into a shift on the result of the 'and'.
    752 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
    753                                 ConstantInt *FalseVal,
    754                                 InstCombiner::BuilderTy *Builder) {
    755   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    756   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
    757     return nullptr;
    758 
    759   if (!match(IC->getOperand(1), m_Zero()))
    760     return nullptr;
    761 
    762   ConstantInt *AndRHS;
    763   Value *LHS = IC->getOperand(0);
    764   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
    765     return nullptr;
    766 
    767   // If both select arms are non-zero see if we have a select of the form
    768   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
    769   // for 'x ? 2^n : 0' and fix the thing up at the end.
    770   ConstantInt *Offset = nullptr;
    771   if (!TrueVal->isZero() && !FalseVal->isZero()) {
    772     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
    773       Offset = FalseVal;
    774     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
    775       Offset = TrueVal;
    776     else
    777       return nullptr;
    778 
    779     // Adjust TrueVal and FalseVal to the offset.
    780     TrueVal = ConstantInt::get(Builder->getContext(),
    781                                TrueVal->getValue() - Offset->getValue());
    782     FalseVal = ConstantInt::get(Builder->getContext(),
    783                                 FalseVal->getValue() - Offset->getValue());
    784   }
    785 
    786   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
    787   if (!AndRHS->getValue().isPowerOf2() ||
    788       (!TrueVal->getValue().isPowerOf2() &&
    789        !FalseVal->getValue().isPowerOf2()))
    790     return nullptr;
    791 
    792   // Determine which shift is needed to transform result of the 'and' into the
    793   // desired result.
    794   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
    795   unsigned ValZeros = ValC->getValue().logBase2();
    796   unsigned AndZeros = AndRHS->getValue().logBase2();
    797 
    798   // If types don't match we can still convert the select by introducing a zext
    799   // or a trunc of the 'and'. The trunc case requires that all of the truncated
    800   // bits are zero, we can figure that out by looking at the 'and' mask.
    801   if (AndZeros >= ValC->getBitWidth())
    802     return nullptr;
    803 
    804   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
    805   if (ValZeros > AndZeros)
    806     V = Builder->CreateShl(V, ValZeros - AndZeros);
    807   else if (ValZeros < AndZeros)
    808     V = Builder->CreateLShr(V, AndZeros - ValZeros);
    809 
    810   // Okay, now we know that everything is set up, we just don't know whether we
    811   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
    812   bool ShouldNotVal = !TrueVal->isZero();
    813   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
    814   if (ShouldNotVal)
    815     V = Builder->CreateXor(V, ValC);
    816 
    817   // Apply an offset if needed.
    818   if (Offset)
    819     V = Builder->CreateAdd(V, Offset);
    820   return V;
    821 }
    822 
    823 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
    824   Value *CondVal = SI.getCondition();
    825   Value *TrueVal = SI.getTrueValue();
    826   Value *FalseVal = SI.getFalseValue();
    827 
    828   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, DL))
    829     return ReplaceInstUsesWith(SI, V);
    830 
    831   if (SI.getType()->isIntegerTy(1)) {
    832     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
    833       if (C->getZExtValue()) {
    834         // Change: A = select B, true, C --> A = or B, C
    835         return BinaryOperator::CreateOr(CondVal, FalseVal);
    836       }
    837       // Change: A = select B, false, C --> A = and !B, C
    838       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    839       return BinaryOperator::CreateAnd(NotCond, FalseVal);
    840     }
    841     if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
    842       if (C->getZExtValue() == false) {
    843         // Change: A = select B, C, false --> A = and B, C
    844         return BinaryOperator::CreateAnd(CondVal, TrueVal);
    845       }
    846       // Change: A = select B, C, true --> A = or !B, C
    847       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    848       return BinaryOperator::CreateOr(NotCond, TrueVal);
    849     }
    850 
    851     // select a, b, a  -> a&b
    852     // select a, a, b  -> a|b
    853     if (CondVal == TrueVal)
    854       return BinaryOperator::CreateOr(CondVal, FalseVal);
    855     if (CondVal == FalseVal)
    856       return BinaryOperator::CreateAnd(CondVal, TrueVal);
    857 
    858     // select a, ~a, b -> (~a)&b
    859     // select a, b, ~a -> (~a)|b
    860     if (match(TrueVal, m_Not(m_Specific(CondVal))))
    861       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
    862     if (match(FalseVal, m_Not(m_Specific(CondVal))))
    863       return BinaryOperator::CreateOr(TrueVal, FalseVal);
    864   }
    865 
    866   // Selecting between two integer constants?
    867   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    868     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
    869       // select C, 1, 0 -> zext C to int
    870       if (FalseValC->isZero() && TrueValC->getValue() == 1)
    871         return new ZExtInst(CondVal, SI.getType());
    872 
    873       // select C, -1, 0 -> sext C to int
    874       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
    875         return new SExtInst(CondVal, SI.getType());
    876 
    877       // select C, 0, 1 -> zext !C to int
    878       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
    879         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    880         return new ZExtInst(NotCond, SI.getType());
    881       }
    882 
    883       // select C, 0, -1 -> sext !C to int
    884       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
    885         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    886         return new SExtInst(NotCond, SI.getType());
    887       }
    888 
    889       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
    890         return ReplaceInstUsesWith(SI, V);
    891     }
    892 
    893   // See if we are selecting two values based on a comparison of the two values.
    894   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    895     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
    896       // Transform (X == Y) ? X : Y  -> Y
    897       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    898         // This is not safe in general for floating point:
    899         // consider X== -0, Y== +0.
    900         // It becomes safe if either operand is a nonzero constant.
    901         ConstantFP *CFPt, *CFPf;
    902         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    903               !CFPt->getValueAPF().isZero()) ||
    904             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    905              !CFPf->getValueAPF().isZero()))
    906         return ReplaceInstUsesWith(SI, FalseVal);
    907       }
    908       // Transform (X une Y) ? X : Y  -> X
    909       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    910         // This is not safe in general for floating point:
    911         // consider X== -0, Y== +0.
    912         // It becomes safe if either operand is a nonzero constant.
    913         ConstantFP *CFPt, *CFPf;
    914         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    915               !CFPt->getValueAPF().isZero()) ||
    916             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    917              !CFPf->getValueAPF().isZero()))
    918         return ReplaceInstUsesWith(SI, TrueVal);
    919       }
    920       // NOTE: if we wanted to, this is where to detect MIN/MAX
    921 
    922     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
    923       // Transform (X == Y) ? Y : X  -> X
    924       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    925         // This is not safe in general for floating point:
    926         // consider X== -0, Y== +0.
    927         // It becomes safe if either operand is a nonzero constant.
    928         ConstantFP *CFPt, *CFPf;
    929         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    930               !CFPt->getValueAPF().isZero()) ||
    931             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    932              !CFPf->getValueAPF().isZero()))
    933           return ReplaceInstUsesWith(SI, FalseVal);
    934       }
    935       // Transform (X une Y) ? Y : X  -> Y
    936       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    937         // This is not safe in general for floating point:
    938         // consider X== -0, Y== +0.
    939         // It becomes safe if either operand is a nonzero constant.
    940         ConstantFP *CFPt, *CFPf;
    941         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    942               !CFPt->getValueAPF().isZero()) ||
    943             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    944              !CFPf->getValueAPF().isZero()))
    945           return ReplaceInstUsesWith(SI, TrueVal);
    946       }
    947       // NOTE: if we wanted to, this is where to detect MIN/MAX
    948     }
    949     // NOTE: if we wanted to, this is where to detect ABS
    950   }
    951 
    952   // See if we are selecting two values based on a comparison of the two values.
    953   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
    954     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
    955       return Result;
    956 
    957   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
    958     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
    959       if (TI->hasOneUse() && FI->hasOneUse()) {
    960         Instruction *AddOp = nullptr, *SubOp = nullptr;
    961 
    962         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
    963         if (TI->getOpcode() == FI->getOpcode())
    964           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
    965             return IV;
    966 
    967         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
    968         // even legal for FP.
    969         if ((TI->getOpcode() == Instruction::Sub &&
    970              FI->getOpcode() == Instruction::Add) ||
    971             (TI->getOpcode() == Instruction::FSub &&
    972              FI->getOpcode() == Instruction::FAdd)) {
    973           AddOp = FI; SubOp = TI;
    974         } else if ((FI->getOpcode() == Instruction::Sub &&
    975                     TI->getOpcode() == Instruction::Add) ||
    976                    (FI->getOpcode() == Instruction::FSub &&
    977                     TI->getOpcode() == Instruction::FAdd)) {
    978           AddOp = TI; SubOp = FI;
    979         }
    980 
    981         if (AddOp) {
    982           Value *OtherAddOp = nullptr;
    983           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
    984             OtherAddOp = AddOp->getOperand(1);
    985           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
    986             OtherAddOp = AddOp->getOperand(0);
    987           }
    988 
    989           if (OtherAddOp) {
    990             // So at this point we know we have (Y -> OtherAddOp):
    991             //        select C, (add X, Y), (sub X, Z)
    992             Value *NegVal;  // Compute -Z
    993             if (SI.getType()->isFPOrFPVectorTy()) {
    994               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
    995               if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
    996                 FastMathFlags Flags = AddOp->getFastMathFlags();
    997                 Flags &= SubOp->getFastMathFlags();
    998                 NegInst->setFastMathFlags(Flags);
    999               }
   1000             } else {
   1001               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
   1002             }
   1003 
   1004             Value *NewTrueOp = OtherAddOp;
   1005             Value *NewFalseOp = NegVal;
   1006             if (AddOp != TI)
   1007               std::swap(NewTrueOp, NewFalseOp);
   1008             Value *NewSel =
   1009               Builder->CreateSelect(CondVal, NewTrueOp,
   1010                                     NewFalseOp, SI.getName() + ".p");
   1011 
   1012             if (SI.getType()->isFPOrFPVectorTy()) {
   1013               Instruction *RI =
   1014                 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
   1015 
   1016               FastMathFlags Flags = AddOp->getFastMathFlags();
   1017               Flags &= SubOp->getFastMathFlags();
   1018               RI->setFastMathFlags(Flags);
   1019               return RI;
   1020             } else
   1021               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
   1022           }
   1023         }
   1024       }
   1025 
   1026   // See if we can fold the select into one of our operands.
   1027   if (SI.getType()->isIntegerTy()) {
   1028     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
   1029       return FoldI;
   1030 
   1031     // MAX(MAX(a, b), a) -> MAX(a, b)
   1032     // MIN(MIN(a, b), a) -> MIN(a, b)
   1033     // MAX(MIN(a, b), a) -> a
   1034     // MIN(MAX(a, b), a) -> a
   1035     Value *LHS, *RHS, *LHS2, *RHS2;
   1036     if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
   1037       if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
   1038         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
   1039                                           SI, SPF, RHS))
   1040           return R;
   1041       if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
   1042         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
   1043                                           SI, SPF, LHS))
   1044           return R;
   1045     }
   1046 
   1047     // TODO.
   1048     // ABS(-X) -> ABS(X)
   1049   }
   1050 
   1051   // See if we can fold the select into a phi node if the condition is a select.
   1052   if (isa<PHINode>(SI.getCondition()))
   1053     // The true/false values have to be live in the PHI predecessor's blocks.
   1054     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
   1055         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
   1056       if (Instruction *NV = FoldOpIntoPhi(SI))
   1057         return NV;
   1058 
   1059   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
   1060     if (TrueSI->getCondition() == CondVal) {
   1061       if (SI.getTrueValue() == TrueSI->getTrueValue())
   1062         return nullptr;
   1063       SI.setOperand(1, TrueSI->getTrueValue());
   1064       return &SI;
   1065     }
   1066   }
   1067   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
   1068     if (FalseSI->getCondition() == CondVal) {
   1069       if (SI.getFalseValue() == FalseSI->getFalseValue())
   1070         return nullptr;
   1071       SI.setOperand(2, FalseSI->getFalseValue());
   1072       return &SI;
   1073     }
   1074   }
   1075 
   1076   if (BinaryOperator::isNot(CondVal)) {
   1077     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
   1078     SI.setOperand(1, FalseVal);
   1079     SI.setOperand(2, TrueVal);
   1080     return &SI;
   1081   }
   1082 
   1083   if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
   1084     unsigned VWidth = VecTy->getNumElements();
   1085     APInt UndefElts(VWidth, 0);
   1086     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
   1087     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
   1088       if (V != &SI)
   1089         return ReplaceInstUsesWith(SI, V);
   1090       return &SI;
   1091     }
   1092 
   1093     if (isa<ConstantAggregateZero>(CondVal)) {
   1094       return ReplaceInstUsesWith(SI, FalseVal);
   1095     }
   1096   }
   1097 
   1098   return nullptr;
   1099 }
   1100