Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkGeometry.h"
      9 #include "SkMatrix.h"
     10 
     11 bool SkXRayCrossesLine(const SkXRay& pt,
     12                        const SkPoint pts[2],
     13                        bool* ambiguous) {
     14     if (ambiguous) {
     15         *ambiguous = false;
     16     }
     17     // Determine quick discards.
     18     // Consider query line going exactly through point 0 to not
     19     // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
     20     if (pt.fY == pts[0].fY) {
     21         if (ambiguous) {
     22             *ambiguous = true;
     23         }
     24         return false;
     25     }
     26     if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
     27         return false;
     28     if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
     29         return false;
     30     if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
     31         return false;
     32     // Determine degenerate cases
     33     if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
     34         return false;
     35     if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
     36         // We've already determined the query point lies within the
     37         // vertical range of the line segment.
     38         if (pt.fX <= pts[0].fX) {
     39             if (ambiguous) {
     40                 *ambiguous = (pt.fY == pts[1].fY);
     41             }
     42             return true;
     43         }
     44         return false;
     45     }
     46     // Ambiguity check
     47     if (pt.fY == pts[1].fY) {
     48         if (pt.fX <= pts[1].fX) {
     49             if (ambiguous) {
     50                 *ambiguous = true;
     51             }
     52             return true;
     53         }
     54         return false;
     55     }
     56     // Full line segment evaluation
     57     SkScalar delta_y = pts[1].fY - pts[0].fY;
     58     SkScalar delta_x = pts[1].fX - pts[0].fX;
     59     SkScalar slope = SkScalarDiv(delta_y, delta_x);
     60     SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
     61     // Solve for x coordinate at y = pt.fY
     62     SkScalar x = SkScalarDiv(pt.fY - b, slope);
     63     return pt.fX <= x;
     64 }
     65 
     66 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
     67     involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
     68     May also introduce overflow of fixed when we compute our setup.
     69 */
     70 //    #define DIRECT_EVAL_OF_POLYNOMIALS
     71 
     72 ////////////////////////////////////////////////////////////////////////
     73 
     74 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
     75     SkScalar ab = a - b;
     76     SkScalar bc = b - c;
     77     if (ab < 0) {
     78         bc = -bc;
     79     }
     80     return ab == 0 || bc < 0;
     81 }
     82 
     83 ////////////////////////////////////////////////////////////////////////
     84 
     85 static bool is_unit_interval(SkScalar x) {
     86     return x > 0 && x < SK_Scalar1;
     87 }
     88 
     89 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
     90     SkASSERT(ratio);
     91 
     92     if (numer < 0) {
     93         numer = -numer;
     94         denom = -denom;
     95     }
     96 
     97     if (denom == 0 || numer == 0 || numer >= denom) {
     98         return 0;
     99     }
    100 
    101     SkScalar r = SkScalarDiv(numer, denom);
    102     if (SkScalarIsNaN(r)) {
    103         return 0;
    104     }
    105     SkASSERT(r >= 0 && r < SK_Scalar1);
    106     if (r == 0) { // catch underflow if numer <<<< denom
    107         return 0;
    108     }
    109     *ratio = r;
    110     return 1;
    111 }
    112 
    113 /** From Numerical Recipes in C.
    114 
    115     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
    116     x1 = Q / A
    117     x2 = C / Q
    118 */
    119 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
    120     SkASSERT(roots);
    121 
    122     if (A == 0) {
    123         return valid_unit_divide(-C, B, roots);
    124     }
    125 
    126     SkScalar* r = roots;
    127 
    128     SkScalar R = B*B - 4*A*C;
    129     if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
    130         return 0;
    131     }
    132     R = SkScalarSqrt(R);
    133 
    134     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
    135     r += valid_unit_divide(Q, A, r);
    136     r += valid_unit_divide(C, Q, r);
    137     if (r - roots == 2) {
    138         if (roots[0] > roots[1])
    139             SkTSwap<SkScalar>(roots[0], roots[1]);
    140         else if (roots[0] == roots[1])  // nearly-equal?
    141             r -= 1; // skip the double root
    142     }
    143     return (int)(r - roots);
    144 }
    145 
    146 ///////////////////////////////////////////////////////////////////////////////
    147 ///////////////////////////////////////////////////////////////////////////////
    148 
    149 static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
    150     SkASSERT(src);
    151     SkASSERT(t >= 0 && t <= SK_Scalar1);
    152 
    153 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
    154     SkScalar    C = src[0];
    155     SkScalar    A = src[4] - 2 * src[2] + C;
    156     SkScalar    B = 2 * (src[2] - C);
    157     return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
    158 #else
    159     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    160     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    161     return SkScalarInterp(ab, bc, t);
    162 #endif
    163 }
    164 
    165 static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) {
    166     SkScalar A = src[4] - 2 * src[2] + src[0];
    167     SkScalar B = src[2] - src[0];
    168 
    169     return 2 * SkScalarMulAdd(A, t, B);
    170 }
    171 
    172 static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) {
    173     SkScalar A = src[4] - 2 * src[2] + src[0];
    174     SkScalar B = src[2] - src[0];
    175     return A + 2 * B;
    176 }
    177 
    178 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
    179                   SkVector* tangent) {
    180     SkASSERT(src);
    181     SkASSERT(t >= 0 && t <= SK_Scalar1);
    182 
    183     if (pt) {
    184         pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
    185     }
    186     if (tangent) {
    187         tangent->set(eval_quad_derivative(&src[0].fX, t),
    188                      eval_quad_derivative(&src[0].fY, t));
    189     }
    190 }
    191 
    192 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) {
    193     SkASSERT(src);
    194 
    195     if (pt) {
    196         SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    197         SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    198         SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    199         SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
    200         pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
    201     }
    202     if (tangent) {
    203         tangent->set(eval_quad_derivative_at_half(&src[0].fX),
    204                      eval_quad_derivative_at_half(&src[0].fY));
    205     }
    206 }
    207 
    208 static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) {
    209     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    210     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    211 
    212     dst[0] = src[0];
    213     dst[2] = ab;
    214     dst[4] = SkScalarInterp(ab, bc, t);
    215     dst[6] = bc;
    216     dst[8] = src[4];
    217 }
    218 
    219 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
    220     SkASSERT(t > 0 && t < SK_Scalar1);
    221 
    222     interp_quad_coords(&src[0].fX, &dst[0].fX, t);
    223     interp_quad_coords(&src[0].fY, &dst[0].fY, t);
    224 }
    225 
    226 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
    227     SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    228     SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    229     SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    230     SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
    231 
    232     dst[0] = src[0];
    233     dst[1].set(x01, y01);
    234     dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
    235     dst[3].set(x12, y12);
    236     dst[4] = src[2];
    237 }
    238 
    239 /** Quad'(t) = At + B, where
    240     A = 2(a - 2b + c)
    241     B = 2(b - a)
    242     Solve for t, only if it fits between 0 < t < 1
    243 */
    244 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
    245     /*  At + B == 0
    246         t = -B / A
    247     */
    248     return valid_unit_divide(a - b, a - b - b + c, tValue);
    249 }
    250 
    251 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
    252     coords[2] = coords[6] = coords[4];
    253 }
    254 
    255 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    256  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    257  */
    258 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
    259     SkASSERT(src);
    260     SkASSERT(dst);
    261 
    262     SkScalar a = src[0].fY;
    263     SkScalar b = src[1].fY;
    264     SkScalar c = src[2].fY;
    265 
    266     if (is_not_monotonic(a, b, c)) {
    267         SkScalar    tValue;
    268         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    269             SkChopQuadAt(src, dst, tValue);
    270             flatten_double_quad_extrema(&dst[0].fY);
    271             return 1;
    272         }
    273         // if we get here, we need to force dst to be monotonic, even though
    274         // we couldn't compute a unit_divide value (probably underflow).
    275         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    276     }
    277     dst[0].set(src[0].fX, a);
    278     dst[1].set(src[1].fX, b);
    279     dst[2].set(src[2].fX, c);
    280     return 0;
    281 }
    282 
    283 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    284     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    285  */
    286 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
    287     SkASSERT(src);
    288     SkASSERT(dst);
    289 
    290     SkScalar a = src[0].fX;
    291     SkScalar b = src[1].fX;
    292     SkScalar c = src[2].fX;
    293 
    294     if (is_not_monotonic(a, b, c)) {
    295         SkScalar tValue;
    296         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    297             SkChopQuadAt(src, dst, tValue);
    298             flatten_double_quad_extrema(&dst[0].fX);
    299             return 1;
    300         }
    301         // if we get here, we need to force dst to be monotonic, even though
    302         // we couldn't compute a unit_divide value (probably underflow).
    303         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    304     }
    305     dst[0].set(a, src[0].fY);
    306     dst[1].set(b, src[1].fY);
    307     dst[2].set(c, src[2].fY);
    308     return 0;
    309 }
    310 
    311 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
    312 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
    313 //  F''(t)  = 2 (a - 2b + c)
    314 //
    315 //  A = 2 (b - a)
    316 //  B = 2 (a - 2b + c)
    317 //
    318 //  Maximum curvature for a quadratic means solving
    319 //  Fx' Fx'' + Fy' Fy'' = 0
    320 //
    321 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
    322 //
    323 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
    324     SkScalar    Ax = src[1].fX - src[0].fX;
    325     SkScalar    Ay = src[1].fY - src[0].fY;
    326     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    327     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    328     SkScalar    t = 0;  // 0 means don't chop
    329 
    330     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
    331     return t;
    332 }
    333 
    334 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
    335     SkScalar t = SkFindQuadMaxCurvature(src);
    336     if (t == 0) {
    337         memcpy(dst, src, 3 * sizeof(SkPoint));
    338         return 1;
    339     } else {
    340         SkChopQuadAt(src, dst, t);
    341         return 2;
    342     }
    343 }
    344 
    345 #define SK_ScalarTwoThirds  (0.666666666f)
    346 
    347 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
    348     const SkScalar scale = SK_ScalarTwoThirds;
    349     dst[0] = src[0];
    350     dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
    351                src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
    352     dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
    353                src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
    354     dst[3] = src[2];
    355 }
    356 
    357 //////////////////////////////////////////////////////////////////////////////
    358 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
    359 //////////////////////////////////////////////////////////////////////////////
    360 
    361 static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) {
    362     coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
    363     coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
    364     coeff[2] = 3*(pt[2] - pt[0]);
    365     coeff[3] = pt[0];
    366 }
    367 
    368 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) {
    369     SkASSERT(pts);
    370 
    371     if (cx) {
    372         get_cubic_coeff(&pts[0].fX, cx);
    373     }
    374     if (cy) {
    375         get_cubic_coeff(&pts[0].fY, cy);
    376     }
    377 }
    378 
    379 static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
    380     SkASSERT(src);
    381     SkASSERT(t >= 0 && t <= SK_Scalar1);
    382 
    383     if (t == 0) {
    384         return src[0];
    385     }
    386 
    387 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
    388     SkScalar D = src[0];
    389     SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
    390     SkScalar B = 3*(src[4] - src[2] - src[2] + D);
    391     SkScalar C = 3*(src[2] - D);
    392 
    393     return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
    394 #else
    395     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    396     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    397     SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    398     SkScalar    abc = SkScalarInterp(ab, bc, t);
    399     SkScalar    bcd = SkScalarInterp(bc, cd, t);
    400     return SkScalarInterp(abc, bcd, t);
    401 #endif
    402 }
    403 
    404 /** return At^2 + Bt + C
    405 */
    406 static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
    407     SkASSERT(t >= 0 && t <= SK_Scalar1);
    408 
    409     return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
    410 }
    411 
    412 static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
    413     SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    414     SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
    415     SkScalar C = src[2] - src[0];
    416 
    417     return eval_quadratic(A, B, C, t);
    418 }
    419 
    420 static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
    421     SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    422     SkScalar B = src[4] - 2 * src[2] + src[0];
    423 
    424     return SkScalarMulAdd(A, t, B);
    425 }
    426 
    427 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
    428                    SkVector* tangent, SkVector* curvature) {
    429     SkASSERT(src);
    430     SkASSERT(t >= 0 && t <= SK_Scalar1);
    431 
    432     if (loc) {
    433         loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
    434     }
    435     if (tangent) {
    436         tangent->set(eval_cubic_derivative(&src[0].fX, t),
    437                      eval_cubic_derivative(&src[0].fY, t));
    438     }
    439     if (curvature) {
    440         curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
    441                        eval_cubic_2ndDerivative(&src[0].fY, t));
    442     }
    443 }
    444 
    445 /** Cubic'(t) = At^2 + Bt + C, where
    446     A = 3(-a + 3(b - c) + d)
    447     B = 6(a - 2b + c)
    448     C = 3(b - a)
    449     Solve for t, keeping only those that fit betwee 0 < t < 1
    450 */
    451 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    452                        SkScalar tValues[2]) {
    453     // we divide A,B,C by 3 to simplify
    454     SkScalar A = d - a + 3*(b - c);
    455     SkScalar B = 2*(a - b - b + c);
    456     SkScalar C = b - a;
    457 
    458     return SkFindUnitQuadRoots(A, B, C, tValues);
    459 }
    460 
    461 static void interp_cubic_coords(const SkScalar* src, SkScalar* dst,
    462                                 SkScalar t) {
    463     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    464     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    465     SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    466     SkScalar    abc = SkScalarInterp(ab, bc, t);
    467     SkScalar    bcd = SkScalarInterp(bc, cd, t);
    468     SkScalar    abcd = SkScalarInterp(abc, bcd, t);
    469 
    470     dst[0] = src[0];
    471     dst[2] = ab;
    472     dst[4] = abc;
    473     dst[6] = abcd;
    474     dst[8] = bcd;
    475     dst[10] = cd;
    476     dst[12] = src[6];
    477 }
    478 
    479 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
    480     SkASSERT(t > 0 && t < SK_Scalar1);
    481 
    482     interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
    483     interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
    484 }
    485 
    486 /*  http://code.google.com/p/skia/issues/detail?id=32
    487 
    488     This test code would fail when we didn't check the return result of
    489     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
    490     that after the first chop, the parameters to valid_unit_divide are equal
    491     (thanks to finite float precision and rounding in the subtracts). Thus
    492     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
    493     up with 1.0, hence the need to check and just return the last cubic as
    494     a degenerate clump of 4 points in the sampe place.
    495 
    496     static void test_cubic() {
    497         SkPoint src[4] = {
    498             { 556.25000, 523.03003 },
    499             { 556.23999, 522.96002 },
    500             { 556.21997, 522.89001 },
    501             { 556.21997, 522.82001 }
    502         };
    503         SkPoint dst[10];
    504         SkScalar tval[] = { 0.33333334f, 0.99999994f };
    505         SkChopCubicAt(src, dst, tval, 2);
    506     }
    507  */
    508 
    509 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
    510                    const SkScalar tValues[], int roots) {
    511 #ifdef SK_DEBUG
    512     {
    513         for (int i = 0; i < roots - 1; i++)
    514         {
    515             SkASSERT(is_unit_interval(tValues[i]));
    516             SkASSERT(is_unit_interval(tValues[i+1]));
    517             SkASSERT(tValues[i] < tValues[i+1]);
    518         }
    519     }
    520 #endif
    521 
    522     if (dst) {
    523         if (roots == 0) { // nothing to chop
    524             memcpy(dst, src, 4*sizeof(SkPoint));
    525         } else {
    526             SkScalar    t = tValues[0];
    527             SkPoint     tmp[4];
    528 
    529             for (int i = 0; i < roots; i++) {
    530                 SkChopCubicAt(src, dst, t);
    531                 if (i == roots - 1) {
    532                     break;
    533                 }
    534 
    535                 dst += 3;
    536                 // have src point to the remaining cubic (after the chop)
    537                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
    538                 src = tmp;
    539 
    540                 // watch out in case the renormalized t isn't in range
    541                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
    542                                        SK_Scalar1 - tValues[i], &t)) {
    543                     // if we can't, just create a degenerate cubic
    544                     dst[4] = dst[5] = dst[6] = src[3];
    545                     break;
    546                 }
    547             }
    548         }
    549     }
    550 }
    551 
    552 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
    553     SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    554     SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    555     SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    556     SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
    557     SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
    558     SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
    559 
    560     SkScalar x012 = SkScalarAve(x01, x12);
    561     SkScalar y012 = SkScalarAve(y01, y12);
    562     SkScalar x123 = SkScalarAve(x12, x23);
    563     SkScalar y123 = SkScalarAve(y12, y23);
    564 
    565     dst[0] = src[0];
    566     dst[1].set(x01, y01);
    567     dst[2].set(x012, y012);
    568     dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
    569     dst[4].set(x123, y123);
    570     dst[5].set(x23, y23);
    571     dst[6] = src[3];
    572 }
    573 
    574 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
    575     coords[4] = coords[8] = coords[6];
    576 }
    577 
    578 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    579     the resulting beziers are monotonic in Y. This is called by the scan
    580     converter.  Depending on what is returned, dst[] is treated as follows:
    581     0   dst[0..3] is the original cubic
    582     1   dst[0..3] and dst[3..6] are the two new cubics
    583     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    584     If dst == null, it is ignored and only the count is returned.
    585 */
    586 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
    587     SkScalar    tValues[2];
    588     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
    589                                            src[3].fY, tValues);
    590 
    591     SkChopCubicAt(src, dst, tValues, roots);
    592     if (dst && roots > 0) {
    593         // we do some cleanup to ensure our Y extrema are flat
    594         flatten_double_cubic_extrema(&dst[0].fY);
    595         if (roots == 2) {
    596             flatten_double_cubic_extrema(&dst[3].fY);
    597         }
    598     }
    599     return roots;
    600 }
    601 
    602 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
    603     SkScalar    tValues[2];
    604     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
    605                                            src[3].fX, tValues);
    606 
    607     SkChopCubicAt(src, dst, tValues, roots);
    608     if (dst && roots > 0) {
    609         // we do some cleanup to ensure our Y extrema are flat
    610         flatten_double_cubic_extrema(&dst[0].fX);
    611         if (roots == 2) {
    612             flatten_double_cubic_extrema(&dst[3].fX);
    613         }
    614     }
    615     return roots;
    616 }
    617 
    618 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
    619 
    620     Inflection means that curvature is zero.
    621     Curvature is [F' x F''] / [F'^3]
    622     So we solve F'x X F''y - F'y X F''y == 0
    623     After some canceling of the cubic term, we get
    624     A = b - a
    625     B = c - 2b + a
    626     C = d - 3c + 3b - a
    627     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
    628 */
    629 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
    630     SkScalar    Ax = src[1].fX - src[0].fX;
    631     SkScalar    Ay = src[1].fY - src[0].fY;
    632     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
    633     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
    634     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
    635     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
    636 
    637     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
    638                                Ax*Cy - Ay*Cx,
    639                                Ax*By - Ay*Bx,
    640                                tValues);
    641 }
    642 
    643 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
    644     SkScalar    tValues[2];
    645     int         count = SkFindCubicInflections(src, tValues);
    646 
    647     if (dst) {
    648         if (count == 0) {
    649             memcpy(dst, src, 4 * sizeof(SkPoint));
    650         } else {
    651             SkChopCubicAt(src, dst, tValues, count);
    652         }
    653     }
    654     return count + 1;
    655 }
    656 
    657 template <typename T> void bubble_sort(T array[], int count) {
    658     for (int i = count - 1; i > 0; --i)
    659         for (int j = i; j > 0; --j)
    660             if (array[j] < array[j-1])
    661             {
    662                 T   tmp(array[j]);
    663                 array[j] = array[j-1];
    664                 array[j-1] = tmp;
    665             }
    666 }
    667 
    668 /**
    669  *  Given an array and count, remove all pair-wise duplicates from the array,
    670  *  keeping the existing sorting, and return the new count
    671  */
    672 static int collaps_duplicates(SkScalar array[], int count) {
    673     for (int n = count; n > 1; --n) {
    674         if (array[0] == array[1]) {
    675             for (int i = 1; i < n; ++i) {
    676                 array[i - 1] = array[i];
    677             }
    678             count -= 1;
    679         } else {
    680             array += 1;
    681         }
    682     }
    683     return count;
    684 }
    685 
    686 #ifdef SK_DEBUG
    687 
    688 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
    689 
    690 static void test_collaps_duplicates() {
    691     static bool gOnce;
    692     if (gOnce) { return; }
    693     gOnce = true;
    694     const SkScalar src0[] = { 0 };
    695     const SkScalar src1[] = { 0, 0 };
    696     const SkScalar src2[] = { 0, 1 };
    697     const SkScalar src3[] = { 0, 0, 0 };
    698     const SkScalar src4[] = { 0, 0, 1 };
    699     const SkScalar src5[] = { 0, 1, 1 };
    700     const SkScalar src6[] = { 0, 1, 2 };
    701     const struct {
    702         const SkScalar* fData;
    703         int fCount;
    704         int fCollapsedCount;
    705     } data[] = {
    706         { TEST_COLLAPS_ENTRY(src0), 1 },
    707         { TEST_COLLAPS_ENTRY(src1), 1 },
    708         { TEST_COLLAPS_ENTRY(src2), 2 },
    709         { TEST_COLLAPS_ENTRY(src3), 1 },
    710         { TEST_COLLAPS_ENTRY(src4), 2 },
    711         { TEST_COLLAPS_ENTRY(src5), 2 },
    712         { TEST_COLLAPS_ENTRY(src6), 3 },
    713     };
    714     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
    715         SkScalar dst[3];
    716         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
    717         int count = collaps_duplicates(dst, data[i].fCount);
    718         SkASSERT(data[i].fCollapsedCount == count);
    719         for (int j = 1; j < count; ++j) {
    720             SkASSERT(dst[j-1] < dst[j]);
    721         }
    722     }
    723 }
    724 #endif
    725 
    726 static SkScalar SkScalarCubeRoot(SkScalar x) {
    727     return SkScalarPow(x, 0.3333333f);
    728 }
    729 
    730 /*  Solve coeff(t) == 0, returning the number of roots that
    731     lie withing 0 < t < 1.
    732     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
    733 
    734     Eliminates repeated roots (so that all tValues are distinct, and are always
    735     in increasing order.
    736 */
    737 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
    738     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
    739         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
    740     }
    741 
    742     SkScalar a, b, c, Q, R;
    743 
    744     {
    745         SkASSERT(coeff[0] != 0);
    746 
    747         SkScalar inva = SkScalarInvert(coeff[0]);
    748         a = coeff[1] * inva;
    749         b = coeff[2] * inva;
    750         c = coeff[3] * inva;
    751     }
    752     Q = (a*a - b*3) / 9;
    753     R = (2*a*a*a - 9*a*b + 27*c) / 54;
    754 
    755     SkScalar Q3 = Q * Q * Q;
    756     SkScalar R2MinusQ3 = R * R - Q3;
    757     SkScalar adiv3 = a / 3;
    758 
    759     SkScalar*   roots = tValues;
    760     SkScalar    r;
    761 
    762     if (R2MinusQ3 < 0) { // we have 3 real roots
    763         SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
    764         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
    765 
    766         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
    767         if (is_unit_interval(r)) {
    768             *roots++ = r;
    769         }
    770         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
    771         if (is_unit_interval(r)) {
    772             *roots++ = r;
    773         }
    774         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
    775         if (is_unit_interval(r)) {
    776             *roots++ = r;
    777         }
    778         SkDEBUGCODE(test_collaps_duplicates();)
    779 
    780         // now sort the roots
    781         int count = (int)(roots - tValues);
    782         SkASSERT((unsigned)count <= 3);
    783         bubble_sort(tValues, count);
    784         count = collaps_duplicates(tValues, count);
    785         roots = tValues + count;    // so we compute the proper count below
    786     } else {              // we have 1 real root
    787         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
    788         A = SkScalarCubeRoot(A);
    789         if (R > 0) {
    790             A = -A;
    791         }
    792         if (A != 0) {
    793             A += Q / A;
    794         }
    795         r = A - adiv3;
    796         if (is_unit_interval(r)) {
    797             *roots++ = r;
    798         }
    799     }
    800 
    801     return (int)(roots - tValues);
    802 }
    803 
    804 /*  Looking for F' dot F'' == 0
    805 
    806     A = b - a
    807     B = c - 2b + a
    808     C = d - 3c + 3b - a
    809 
    810     F' = 3Ct^2 + 6Bt + 3A
    811     F'' = 6Ct + 6B
    812 
    813     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    814 */
    815 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
    816     SkScalar    a = src[2] - src[0];
    817     SkScalar    b = src[4] - 2 * src[2] + src[0];
    818     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
    819 
    820     coeff[0] = c * c;
    821     coeff[1] = 3 * b * c;
    822     coeff[2] = 2 * b * b + c * a;
    823     coeff[3] = a * b;
    824 }
    825 
    826 /*  Looking for F' dot F'' == 0
    827 
    828     A = b - a
    829     B = c - 2b + a
    830     C = d - 3c + 3b - a
    831 
    832     F' = 3Ct^2 + 6Bt + 3A
    833     F'' = 6Ct + 6B
    834 
    835     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    836 */
    837 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
    838     SkScalar coeffX[4], coeffY[4];
    839     int      i;
    840 
    841     formulate_F1DotF2(&src[0].fX, coeffX);
    842     formulate_F1DotF2(&src[0].fY, coeffY);
    843 
    844     for (i = 0; i < 4; i++) {
    845         coeffX[i] += coeffY[i];
    846     }
    847 
    848     SkScalar    t[3];
    849     int         count = solve_cubic_poly(coeffX, t);
    850     int         maxCount = 0;
    851 
    852     // now remove extrema where the curvature is zero (mins)
    853     // !!!! need a test for this !!!!
    854     for (i = 0; i < count; i++) {
    855         // if (not_min_curvature())
    856         if (t[i] > 0 && t[i] < SK_Scalar1) {
    857             tValues[maxCount++] = t[i];
    858         }
    859     }
    860     return maxCount;
    861 }
    862 
    863 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    864                               SkScalar tValues[3]) {
    865     SkScalar    t_storage[3];
    866 
    867     if (tValues == NULL) {
    868         tValues = t_storage;
    869     }
    870 
    871     int count = SkFindCubicMaxCurvature(src, tValues);
    872 
    873     if (dst) {
    874         if (count == 0) {
    875             memcpy(dst, src, 4 * sizeof(SkPoint));
    876         } else {
    877             SkChopCubicAt(src, dst, tValues, count);
    878         }
    879     }
    880     return count + 1;
    881 }
    882 
    883 bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
    884                                  bool* ambiguous) {
    885     if (ambiguous) {
    886         *ambiguous = false;
    887     }
    888 
    889     // Find the minimum and maximum y of the extrema, which are the
    890     // first and last points since this cubic is monotonic
    891     SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
    892     SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);
    893 
    894     if (pt.fY == cubic[0].fY
    895         || pt.fY < min_y
    896         || pt.fY > max_y) {
    897         // The query line definitely does not cross the curve
    898         if (ambiguous) {
    899             *ambiguous = (pt.fY == cubic[0].fY);
    900         }
    901         return false;
    902     }
    903 
    904     bool pt_at_extremum = (pt.fY == cubic[3].fY);
    905 
    906     SkScalar min_x =
    907         SkMinScalar(
    908             SkMinScalar(
    909                 SkMinScalar(cubic[0].fX, cubic[1].fX),
    910                 cubic[2].fX),
    911             cubic[3].fX);
    912     if (pt.fX < min_x) {
    913         // The query line definitely crosses the curve
    914         if (ambiguous) {
    915             *ambiguous = pt_at_extremum;
    916         }
    917         return true;
    918     }
    919 
    920     SkScalar max_x =
    921         SkMaxScalar(
    922             SkMaxScalar(
    923                 SkMaxScalar(cubic[0].fX, cubic[1].fX),
    924                 cubic[2].fX),
    925             cubic[3].fX);
    926     if (pt.fX > max_x) {
    927         // The query line definitely does not cross the curve
    928         return false;
    929     }
    930 
    931     // Do a binary search to find the parameter value which makes y as
    932     // close as possible to the query point. See whether the query
    933     // line's origin is to the left of the associated x coordinate.
    934 
    935     // kMaxIter is chosen as the number of mantissa bits for a float,
    936     // since there's no way we are going to get more precision by
    937     // iterating more times than that.
    938     const int kMaxIter = 23;
    939     SkPoint eval;
    940     int iter = 0;
    941     SkScalar upper_t;
    942     SkScalar lower_t;
    943     // Need to invert direction of t parameter if cubic goes up
    944     // instead of down
    945     if (cubic[3].fY > cubic[0].fY) {
    946         upper_t = SK_Scalar1;
    947         lower_t = 0;
    948     } else {
    949         upper_t = 0;
    950         lower_t = SK_Scalar1;
    951     }
    952     do {
    953         SkScalar t = SkScalarAve(upper_t, lower_t);
    954         SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
    955         if (pt.fY > eval.fY) {
    956             lower_t = t;
    957         } else {
    958             upper_t = t;
    959         }
    960     } while (++iter < kMaxIter
    961              && !SkScalarNearlyZero(eval.fY - pt.fY));
    962     if (pt.fX <= eval.fX) {
    963         if (ambiguous) {
    964             *ambiguous = pt_at_extremum;
    965         }
    966         return true;
    967     }
    968     return false;
    969 }
    970 
    971 int SkNumXRayCrossingsForCubic(const SkXRay& pt,
    972                                const SkPoint cubic[4],
    973                                bool* ambiguous) {
    974     int num_crossings = 0;
    975     SkPoint monotonic_cubics[10];
    976     int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
    977     if (ambiguous) {
    978         *ambiguous = false;
    979     }
    980     bool locally_ambiguous;
    981     if (SkXRayCrossesMonotonicCubic(pt,
    982                                     &monotonic_cubics[0],
    983                                     &locally_ambiguous))
    984         ++num_crossings;
    985     if (ambiguous) {
    986         *ambiguous |= locally_ambiguous;
    987     }
    988     if (num_monotonic_cubics > 0)
    989         if (SkXRayCrossesMonotonicCubic(pt,
    990                                         &monotonic_cubics[3],
    991                                         &locally_ambiguous))
    992             ++num_crossings;
    993     if (ambiguous) {
    994         *ambiguous |= locally_ambiguous;
    995     }
    996     if (num_monotonic_cubics > 1)
    997         if (SkXRayCrossesMonotonicCubic(pt,
    998                                         &monotonic_cubics[6],
    999                                         &locally_ambiguous))
   1000             ++num_crossings;
   1001     if (ambiguous) {
   1002         *ambiguous |= locally_ambiguous;
   1003     }
   1004     return num_crossings;
   1005 }
   1006 
   1007 ///////////////////////////////////////////////////////////////////////////////
   1008 
   1009 /*  Find t value for quadratic [a, b, c] = d.
   1010     Return 0 if there is no solution within [0, 1)
   1011 */
   1012 static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
   1013     // At^2 + Bt + C = d
   1014     SkScalar A = a - 2 * b + c;
   1015     SkScalar B = 2 * (b - a);
   1016     SkScalar C = a - d;
   1017 
   1018     SkScalar    roots[2];
   1019     int         count = SkFindUnitQuadRoots(A, B, C, roots);
   1020 
   1021     SkASSERT(count <= 1);
   1022     return count == 1 ? roots[0] : 0;
   1023 }
   1024 
   1025 /*  given a quad-curve and a point (x,y), chop the quad at that point and place
   1026     the new off-curve point and endpoint into 'dest'.
   1027     Should only return false if the computed pos is the start of the curve
   1028     (i.e. root == 0)
   1029 */
   1030 static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
   1031                                 SkPoint* dest) {
   1032     const SkScalar* base;
   1033     SkScalar        value;
   1034 
   1035     if (SkScalarAbs(x) < SkScalarAbs(y)) {
   1036         base = &quad[0].fX;
   1037         value = x;
   1038     } else {
   1039         base = &quad[0].fY;
   1040         value = y;
   1041     }
   1042 
   1043     // note: this returns 0 if it thinks value is out of range, meaning the
   1044     // root might return something outside of [0, 1)
   1045     SkScalar t = quad_solve(base[0], base[2], base[4], value);
   1046 
   1047     if (t > 0) {
   1048         SkPoint tmp[5];
   1049         SkChopQuadAt(quad, tmp, t);
   1050         dest[0] = tmp[1];
   1051         dest[1].set(x, y);
   1052         return true;
   1053     } else {
   1054         /*  t == 0 means either the value triggered a root outside of [0, 1)
   1055             For our purposes, we can ignore the <= 0 roots, but we want to
   1056             catch the >= 1 roots (which given our caller, will basically mean
   1057             a root of 1, give-or-take numerical instability). If we are in the
   1058             >= 1 case, return the existing offCurve point.
   1059 
   1060             The test below checks to see if we are close to the "end" of the
   1061             curve (near base[4]). Rather than specifying a tolerance, I just
   1062             check to see if value is on to the right/left of the middle point
   1063             (depending on the direction/sign of the end points).
   1064         */
   1065         if ((base[0] < base[4] && value > base[2]) ||
   1066             (base[0] > base[4] && value < base[2]))   // should root have been 1
   1067         {
   1068             dest[0] = quad[1];
   1069             dest[1].set(x, y);
   1070             return true;
   1071         }
   1072     }
   1073     return false;
   1074 }
   1075 
   1076 static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
   1077 // The mid point of the quadratic arc approximation is half way between the two
   1078 // control points. The float epsilon adjustment moves the on curve point out by
   1079 // two bits, distributing the convex test error between the round rect
   1080 // approximation and the convex cross product sign equality test.
   1081 #define SK_MID_RRECT_OFFSET \
   1082     (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
   1083     { SK_Scalar1,            0                      },
   1084     { SK_Scalar1,            SK_ScalarTanPIOver8    },
   1085     { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
   1086     { SK_ScalarTanPIOver8,   SK_Scalar1             },
   1087 
   1088     { 0,                     SK_Scalar1             },
   1089     { -SK_ScalarTanPIOver8,  SK_Scalar1             },
   1090     { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
   1091     { -SK_Scalar1,           SK_ScalarTanPIOver8    },
   1092 
   1093     { -SK_Scalar1,           0                      },
   1094     { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
   1095     { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
   1096     { -SK_ScalarTanPIOver8,  -SK_Scalar1            },
   1097 
   1098     { 0,                     -SK_Scalar1            },
   1099     { SK_ScalarTanPIOver8,   -SK_Scalar1            },
   1100     { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
   1101     { SK_Scalar1,            -SK_ScalarTanPIOver8   },
   1102 
   1103     { SK_Scalar1,            0                      }
   1104 #undef SK_MID_RRECT_OFFSET
   1105 };
   1106 
   1107 int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
   1108                    SkRotationDirection dir, const SkMatrix* userMatrix,
   1109                    SkPoint quadPoints[]) {
   1110     // rotate by x,y so that uStart is (1.0)
   1111     SkScalar x = SkPoint::DotProduct(uStart, uStop);
   1112     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
   1113 
   1114     SkScalar absX = SkScalarAbs(x);
   1115     SkScalar absY = SkScalarAbs(y);
   1116 
   1117     int pointCount;
   1118 
   1119     // check for (effectively) coincident vectors
   1120     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
   1121     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
   1122     if (absY <= SK_ScalarNearlyZero && x > 0 &&
   1123         ((y >= 0 && kCW_SkRotationDirection == dir) ||
   1124          (y <= 0 && kCCW_SkRotationDirection == dir))) {
   1125 
   1126         // just return the start-point
   1127         quadPoints[0].set(SK_Scalar1, 0);
   1128         pointCount = 1;
   1129     } else {
   1130         if (dir == kCCW_SkRotationDirection) {
   1131             y = -y;
   1132         }
   1133         // what octant (quadratic curve) is [xy] in?
   1134         int oct = 0;
   1135         bool sameSign = true;
   1136 
   1137         if (0 == y) {
   1138             oct = 4;        // 180
   1139             SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
   1140         } else if (0 == x) {
   1141             SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
   1142             oct = y > 0 ? 2 : 6; // 90 : 270
   1143         } else {
   1144             if (y < 0) {
   1145                 oct += 4;
   1146             }
   1147             if ((x < 0) != (y < 0)) {
   1148                 oct += 2;
   1149                 sameSign = false;
   1150             }
   1151             if ((absX < absY) == sameSign) {
   1152                 oct += 1;
   1153             }
   1154         }
   1155 
   1156         int wholeCount = oct << 1;
   1157         memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
   1158 
   1159         const SkPoint* arc = &gQuadCirclePts[wholeCount];
   1160         if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
   1161             wholeCount += 2;
   1162         }
   1163         pointCount = wholeCount + 1;
   1164     }
   1165 
   1166     // now handle counter-clockwise and the initial unitStart rotation
   1167     SkMatrix    matrix;
   1168     matrix.setSinCos(uStart.fY, uStart.fX);
   1169     if (dir == kCCW_SkRotationDirection) {
   1170         matrix.preScale(SK_Scalar1, -SK_Scalar1);
   1171     }
   1172     if (userMatrix) {
   1173         matrix.postConcat(*userMatrix);
   1174     }
   1175     matrix.mapPoints(quadPoints, pointCount);
   1176     return pointCount;
   1177 }
   1178 
   1179 
   1180 ///////////////////////////////////////////////////////////////////////////////
   1181 //
   1182 // NURB representation for conics.  Helpful explanations at:
   1183 //
   1184 // http://citeseerx.ist.psu.edu/viewdoc/
   1185 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
   1186 // and
   1187 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
   1188 //
   1189 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
   1190 //     ------------------------------------------
   1191 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
   1192 //
   1193 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
   1194 //     ------------------------------------------------
   1195 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
   1196 //
   1197 
   1198 static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
   1199     SkASSERT(src);
   1200     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1201 
   1202     SkScalar    src2w = SkScalarMul(src[2], w);
   1203     SkScalar    C = src[0];
   1204     SkScalar    A = src[4] - 2 * src2w + C;
   1205     SkScalar    B = 2 * (src2w - C);
   1206     SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
   1207 
   1208     B = 2 * (w - SK_Scalar1);
   1209     C = SK_Scalar1;
   1210     A = -B;
   1211     SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
   1212 
   1213     return SkScalarDiv(numer, denom);
   1214 }
   1215 
   1216 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
   1217 //
   1218 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
   1219 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
   1220 //  t^0 : -2 P0 w + 2 P1 w
   1221 //
   1222 //  We disregard magnitude, so we can freely ignore the denominator of F', and
   1223 //  divide the numerator by 2
   1224 //
   1225 //    coeff[0] for t^2
   1226 //    coeff[1] for t^1
   1227 //    coeff[2] for t^0
   1228 //
   1229 static void conic_deriv_coeff(const SkScalar src[],
   1230                               SkScalar w,
   1231                               SkScalar coeff[3]) {
   1232     const SkScalar P20 = src[4] - src[0];
   1233     const SkScalar P10 = src[2] - src[0];
   1234     const SkScalar wP10 = w * P10;
   1235     coeff[0] = w * P20 - P20;
   1236     coeff[1] = P20 - 2 * wP10;
   1237     coeff[2] = wP10;
   1238 }
   1239 
   1240 static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
   1241     SkScalar coeff[3];
   1242     conic_deriv_coeff(coord, w, coeff);
   1243     return t * (t * coeff[0] + coeff[1]) + coeff[2];
   1244 }
   1245 
   1246 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
   1247     SkScalar coeff[3];
   1248     conic_deriv_coeff(src, w, coeff);
   1249 
   1250     SkScalar tValues[2];
   1251     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
   1252     SkASSERT(0 == roots || 1 == roots);
   1253 
   1254     if (1 == roots) {
   1255         *t = tValues[0];
   1256         return true;
   1257     }
   1258     return false;
   1259 }
   1260 
   1261 struct SkP3D {
   1262     SkScalar fX, fY, fZ;
   1263 
   1264     void set(SkScalar x, SkScalar y, SkScalar z) {
   1265         fX = x; fY = y; fZ = z;
   1266     }
   1267 
   1268     void projectDown(SkPoint* dst) const {
   1269         dst->set(fX / fZ, fY / fZ);
   1270     }
   1271 };
   1272 
   1273 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
   1274 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
   1275     SkScalar ab = SkScalarInterp(src[0], src[3], t);
   1276     SkScalar bc = SkScalarInterp(src[3], src[6], t);
   1277     dst[0] = ab;
   1278     dst[3] = SkScalarInterp(ab, bc, t);
   1279     dst[6] = bc;
   1280 }
   1281 
   1282 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
   1283     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
   1284     dst[1].set(src[1].fX * w, src[1].fY * w, w);
   1285     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
   1286 }
   1287 
   1288 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
   1289     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1290 
   1291     if (pt) {
   1292         pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
   1293                 conic_eval_pos(&fPts[0].fY, fW, t));
   1294     }
   1295     if (tangent) {
   1296         tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
   1297                      conic_eval_tan(&fPts[0].fY, fW, t));
   1298     }
   1299 }
   1300 
   1301 void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
   1302     SkP3D tmp[3], tmp2[3];
   1303 
   1304     ratquad_mapTo3D(fPts, fW, tmp);
   1305 
   1306     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
   1307     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
   1308     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
   1309 
   1310     dst[0].fPts[0] = fPts[0];
   1311     tmp2[0].projectDown(&dst[0].fPts[1]);
   1312     tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
   1313     tmp2[2].projectDown(&dst[1].fPts[1]);
   1314     dst[1].fPts[2] = fPts[2];
   1315 
   1316     // to put in "standard form", where w0 and w2 are both 1, we compute the
   1317     // new w1 as sqrt(w1*w1/w0*w2)
   1318     // or
   1319     // w1 /= sqrt(w0*w2)
   1320     //
   1321     // However, in our case, we know that for dst[0]:
   1322     //     w0 == 1, and for dst[1], w2 == 1
   1323     //
   1324     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
   1325     dst[0].fW = tmp2[0].fZ / root;
   1326     dst[1].fW = tmp2[2].fZ / root;
   1327 }
   1328 
   1329 static SkScalar subdivide_w_value(SkScalar w) {
   1330     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
   1331 }
   1332 
   1333 void SkConic::chop(SkConic dst[2]) const {
   1334     SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
   1335     SkScalar p1x = fW * fPts[1].fX;
   1336     SkScalar p1y = fW * fPts[1].fY;
   1337     SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
   1338     SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;
   1339 
   1340     dst[0].fPts[0] = fPts[0];
   1341     dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
   1342                        (fPts[0].fY + p1y) * scale);
   1343     dst[0].fPts[2].set(mx, my);
   1344 
   1345     dst[1].fPts[0].set(mx, my);
   1346     dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
   1347                        (p1y + fPts[2].fY) * scale);
   1348     dst[1].fPts[2] = fPts[2];
   1349 
   1350     dst[0].fW = dst[1].fW = subdivide_w_value(fW);
   1351 }
   1352 
   1353 /*
   1354  *  "High order approximation of conic sections by quadratic splines"
   1355  *      by Michael Floater, 1993
   1356  */
   1357 #define AS_QUAD_ERROR_SETUP                                         \
   1358     SkScalar a = fW - 1;                                            \
   1359     SkScalar k = a / (4 * (2 + a));                                 \
   1360     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
   1361     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
   1362 
   1363 void SkConic::computeAsQuadError(SkVector* err) const {
   1364     AS_QUAD_ERROR_SETUP
   1365     err->set(x, y);
   1366 }
   1367 
   1368 bool SkConic::asQuadTol(SkScalar tol) const {
   1369     AS_QUAD_ERROR_SETUP
   1370     return (x * x + y * y) <= tol * tol;
   1371 }
   1372 
   1373 int SkConic::computeQuadPOW2(SkScalar tol) const {
   1374     AS_QUAD_ERROR_SETUP
   1375     SkScalar error = SkScalarSqrt(x * x + y * y) - tol;
   1376 
   1377     if (error <= 0) {
   1378         return 0;
   1379     }
   1380     uint32_t ierr = (uint32_t)error;
   1381     return (34 - SkCLZ(ierr)) >> 1;
   1382 }
   1383 
   1384 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
   1385     SkASSERT(level >= 0);
   1386 
   1387     if (0 == level) {
   1388         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
   1389         return pts + 2;
   1390     } else {
   1391         SkConic dst[2];
   1392         src.chop(dst);
   1393         --level;
   1394         pts = subdivide(dst[0], pts, level);
   1395         return subdivide(dst[1], pts, level);
   1396     }
   1397 }
   1398 
   1399 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
   1400     SkASSERT(pow2 >= 0);
   1401     *pts = fPts[0];
   1402     SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
   1403     SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
   1404     return 1 << pow2;
   1405 }
   1406 
   1407 bool SkConic::findXExtrema(SkScalar* t) const {
   1408     return conic_find_extrema(&fPts[0].fX, fW, t);
   1409 }
   1410 
   1411 bool SkConic::findYExtrema(SkScalar* t) const {
   1412     return conic_find_extrema(&fPts[0].fY, fW, t);
   1413 }
   1414 
   1415 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
   1416     SkScalar t;
   1417     if (this->findXExtrema(&t)) {
   1418         this->chopAt(t, dst);
   1419         // now clean-up the middle, since we know t was meant to be at
   1420         // an X-extrema
   1421         SkScalar value = dst[0].fPts[2].fX;
   1422         dst[0].fPts[1].fX = value;
   1423         dst[1].fPts[0].fX = value;
   1424         dst[1].fPts[1].fX = value;
   1425         return true;
   1426     }
   1427     return false;
   1428 }
   1429 
   1430 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
   1431     SkScalar t;
   1432     if (this->findYExtrema(&t)) {
   1433         this->chopAt(t, dst);
   1434         // now clean-up the middle, since we know t was meant to be at
   1435         // an Y-extrema
   1436         SkScalar value = dst[0].fPts[2].fY;
   1437         dst[0].fPts[1].fY = value;
   1438         dst[1].fPts[0].fY = value;
   1439         dst[1].fPts[1].fY = value;
   1440         return true;
   1441     }
   1442     return false;
   1443 }
   1444 
   1445 void SkConic::computeTightBounds(SkRect* bounds) const {
   1446     SkPoint pts[4];
   1447     pts[0] = fPts[0];
   1448     pts[1] = fPts[2];
   1449     int count = 2;
   1450 
   1451     SkScalar t;
   1452     if (this->findXExtrema(&t)) {
   1453         this->evalAt(t, &pts[count++]);
   1454     }
   1455     if (this->findYExtrema(&t)) {
   1456         this->evalAt(t, &pts[count++]);
   1457     }
   1458     bounds->set(pts, count);
   1459 }
   1460 
   1461 void SkConic::computeFastBounds(SkRect* bounds) const {
   1462     bounds->set(fPts, 3);
   1463 }
   1464 
   1465 bool SkConic::findMaxCurvature(SkScalar* t) const {
   1466     // TODO: Implement me
   1467     return false;
   1468 }
   1469