Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TypeLocBuilder.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/CharUnits.h"
     21 #include "clang/AST/CommentDiagnostic.h"
     22 #include "clang/AST/DeclCXX.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/AST/DeclTemplate.h"
     25 #include "clang/AST/EvaluatedExprVisitor.h"
     26 #include "clang/AST/ExprCXX.h"
     27 #include "clang/AST/StmtCXX.h"
     28 #include "clang/Basic/Builtins.h"
     29 #include "clang/Basic/PartialDiagnostic.h"
     30 #include "clang/Basic/SourceManager.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
     33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
     34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
     35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
     36 #include "clang/Parse/ParseDiagnostic.h"
     37 #include "clang/Sema/CXXFieldCollector.h"
     38 #include "clang/Sema/DeclSpec.h"
     39 #include "clang/Sema/DelayedDiagnostic.h"
     40 #include "clang/Sema/Initialization.h"
     41 #include "clang/Sema/Lookup.h"
     42 #include "clang/Sema/ParsedTemplate.h"
     43 #include "clang/Sema/Scope.h"
     44 #include "clang/Sema/ScopeInfo.h"
     45 #include "clang/Sema/Template.h"
     46 #include "llvm/ADT/SmallString.h"
     47 #include "llvm/ADT/Triple.h"
     48 #include <algorithm>
     49 #include <cstring>
     50 #include <functional>
     51 using namespace clang;
     52 using namespace sema;
     53 
     54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
     55   if (OwnedType) {
     56     Decl *Group[2] = { OwnedType, Ptr };
     57     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
     58   }
     59 
     60   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
     61 }
     62 
     63 namespace {
     64 
     65 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
     66  public:
     67   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
     68                        bool AllowTemplates=false)
     69       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
     70         AllowClassTemplates(AllowTemplates) {
     71     WantExpressionKeywords = false;
     72     WantCXXNamedCasts = false;
     73     WantRemainingKeywords = false;
     74   }
     75 
     76   bool ValidateCandidate(const TypoCorrection &candidate) override {
     77     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
     78       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
     79       bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
     80       return (IsType || AllowedTemplate) &&
     81              (AllowInvalidDecl || !ND->isInvalidDecl());
     82     }
     83     return !WantClassName && candidate.isKeyword();
     84   }
     85 
     86  private:
     87   bool AllowInvalidDecl;
     88   bool WantClassName;
     89   bool AllowClassTemplates;
     90 };
     91 
     92 }
     93 
     94 /// \brief Determine whether the token kind starts a simple-type-specifier.
     95 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
     96   switch (Kind) {
     97   // FIXME: Take into account the current language when deciding whether a
     98   // token kind is a valid type specifier
     99   case tok::kw_short:
    100   case tok::kw_long:
    101   case tok::kw___int64:
    102   case tok::kw___int128:
    103   case tok::kw_signed:
    104   case tok::kw_unsigned:
    105   case tok::kw_void:
    106   case tok::kw_char:
    107   case tok::kw_int:
    108   case tok::kw_half:
    109   case tok::kw_float:
    110   case tok::kw_double:
    111   case tok::kw_wchar_t:
    112   case tok::kw_bool:
    113   case tok::kw___underlying_type:
    114     return true;
    115 
    116   case tok::annot_typename:
    117   case tok::kw_char16_t:
    118   case tok::kw_char32_t:
    119   case tok::kw_typeof:
    120   case tok::annot_decltype:
    121   case tok::kw_decltype:
    122     return getLangOpts().CPlusPlus;
    123 
    124   default:
    125     break;
    126   }
    127 
    128   return false;
    129 }
    130 
    131 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
    132                                                       const IdentifierInfo &II,
    133                                                       SourceLocation NameLoc) {
    134   // Find the first parent class template context, if any.
    135   // FIXME: Perform the lookup in all enclosing class templates.
    136   const CXXRecordDecl *RD = nullptr;
    137   for (DeclContext *DC = S.CurContext; DC; DC = DC->getParent()) {
    138     RD = dyn_cast<CXXRecordDecl>(DC);
    139     if (RD && RD->getDescribedClassTemplate())
    140       break;
    141   }
    142   if (!RD)
    143     return ParsedType();
    144 
    145   // Look for type decls in dependent base classes that have known primary
    146   // templates.
    147   bool FoundTypeDecl = false;
    148   for (const auto &Base : RD->bases()) {
    149     auto *TST = Base.getType()->getAs<TemplateSpecializationType>();
    150     if (!TST || !TST->isDependentType())
    151       continue;
    152     auto *TD = TST->getTemplateName().getAsTemplateDecl();
    153     if (!TD)
    154       continue;
    155     auto *BasePrimaryTemplate = cast<CXXRecordDecl>(TD->getTemplatedDecl());
    156     // FIXME: Allow lookup into non-dependent bases of dependent bases, possibly
    157     // by calling or integrating with the main LookupQualifiedName mechanism.
    158     for (NamedDecl *ND : BasePrimaryTemplate->lookup(&II)) {
    159       if (FoundTypeDecl)
    160         return ParsedType();
    161       FoundTypeDecl = isa<TypeDecl>(ND);
    162       if (!FoundTypeDecl)
    163         return ParsedType();
    164     }
    165   }
    166   if (!FoundTypeDecl)
    167     return ParsedType();
    168 
    169   // We found some types in dependent base classes.  Recover as if the user
    170   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
    171   // lookup during template instantiation.
    172   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
    173 
    174   ASTContext &Context = S.Context;
    175   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
    176                                           cast<Type>(Context.getRecordType(RD)));
    177   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
    178 
    179   CXXScopeSpec SS;
    180   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    181 
    182   TypeLocBuilder Builder;
    183   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
    184   DepTL.setNameLoc(NameLoc);
    185   DepTL.setElaboratedKeywordLoc(SourceLocation());
    186   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
    187   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    188 }
    189 
    190 /// \brief If the identifier refers to a type name within this scope,
    191 /// return the declaration of that type.
    192 ///
    193 /// This routine performs ordinary name lookup of the identifier II
    194 /// within the given scope, with optional C++ scope specifier SS, to
    195 /// determine whether the name refers to a type. If so, returns an
    196 /// opaque pointer (actually a QualType) corresponding to that
    197 /// type. Otherwise, returns NULL.
    198 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
    199                              Scope *S, CXXScopeSpec *SS,
    200                              bool isClassName, bool HasTrailingDot,
    201                              ParsedType ObjectTypePtr,
    202                              bool IsCtorOrDtorName,
    203                              bool WantNontrivialTypeSourceInfo,
    204                              IdentifierInfo **CorrectedII) {
    205   // Determine where we will perform name lookup.
    206   DeclContext *LookupCtx = nullptr;
    207   if (ObjectTypePtr) {
    208     QualType ObjectType = ObjectTypePtr.get();
    209     if (ObjectType->isRecordType())
    210       LookupCtx = computeDeclContext(ObjectType);
    211   } else if (SS && SS->isNotEmpty()) {
    212     LookupCtx = computeDeclContext(*SS, false);
    213 
    214     if (!LookupCtx) {
    215       if (isDependentScopeSpecifier(*SS)) {
    216         // C++ [temp.res]p3:
    217         //   A qualified-id that refers to a type and in which the
    218         //   nested-name-specifier depends on a template-parameter (14.6.2)
    219         //   shall be prefixed by the keyword typename to indicate that the
    220         //   qualified-id denotes a type, forming an
    221         //   elaborated-type-specifier (7.1.5.3).
    222         //
    223         // We therefore do not perform any name lookup if the result would
    224         // refer to a member of an unknown specialization.
    225         if (!isClassName && !IsCtorOrDtorName)
    226           return ParsedType();
    227 
    228         // We know from the grammar that this name refers to a type,
    229         // so build a dependent node to describe the type.
    230         if (WantNontrivialTypeSourceInfo)
    231           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
    232 
    233         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
    234         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
    235                                        II, NameLoc);
    236         return ParsedType::make(T);
    237       }
    238 
    239       return ParsedType();
    240     }
    241 
    242     if (!LookupCtx->isDependentContext() &&
    243         RequireCompleteDeclContext(*SS, LookupCtx))
    244       return ParsedType();
    245   }
    246 
    247   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
    248   // lookup for class-names.
    249   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
    250                                       LookupOrdinaryName;
    251   LookupResult Result(*this, &II, NameLoc, Kind);
    252   if (LookupCtx) {
    253     // Perform "qualified" name lookup into the declaration context we
    254     // computed, which is either the type of the base of a member access
    255     // expression or the declaration context associated with a prior
    256     // nested-name-specifier.
    257     LookupQualifiedName(Result, LookupCtx);
    258 
    259     if (ObjectTypePtr && Result.empty()) {
    260       // C++ [basic.lookup.classref]p3:
    261       //   If the unqualified-id is ~type-name, the type-name is looked up
    262       //   in the context of the entire postfix-expression. If the type T of
    263       //   the object expression is of a class type C, the type-name is also
    264       //   looked up in the scope of class C. At least one of the lookups shall
    265       //   find a name that refers to (possibly cv-qualified) T.
    266       LookupName(Result, S);
    267     }
    268   } else {
    269     // Perform unqualified name lookup.
    270     LookupName(Result, S);
    271 
    272     // For unqualified lookup in a class template in MSVC mode, look into
    273     // dependent base classes where the primary class template is known.
    274     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
    275       if (ParsedType TypeInBase =
    276               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
    277         return TypeInBase;
    278     }
    279   }
    280 
    281   NamedDecl *IIDecl = nullptr;
    282   switch (Result.getResultKind()) {
    283   case LookupResult::NotFound:
    284   case LookupResult::NotFoundInCurrentInstantiation:
    285     if (CorrectedII) {
    286       TypeNameValidatorCCC Validator(true, isClassName);
    287       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
    288                                               Kind, S, SS, Validator,
    289                                               CTK_ErrorRecovery);
    290       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
    291       TemplateTy Template;
    292       bool MemberOfUnknownSpecialization;
    293       UnqualifiedId TemplateName;
    294       TemplateName.setIdentifier(NewII, NameLoc);
    295       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
    296       CXXScopeSpec NewSS, *NewSSPtr = SS;
    297       if (SS && NNS) {
    298         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    299         NewSSPtr = &NewSS;
    300       }
    301       if (Correction && (NNS || NewII != &II) &&
    302           // Ignore a correction to a template type as the to-be-corrected
    303           // identifier is not a template (typo correction for template names
    304           // is handled elsewhere).
    305           !(getLangOpts().CPlusPlus && NewSSPtr &&
    306             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
    307                            false, Template, MemberOfUnknownSpecialization))) {
    308         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
    309                                     isClassName, HasTrailingDot, ObjectTypePtr,
    310                                     IsCtorOrDtorName,
    311                                     WantNontrivialTypeSourceInfo);
    312         if (Ty) {
    313           diagnoseTypo(Correction,
    314                        PDiag(diag::err_unknown_type_or_class_name_suggest)
    315                          << Result.getLookupName() << isClassName);
    316           if (SS && NNS)
    317             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
    318           *CorrectedII = NewII;
    319           return Ty;
    320         }
    321       }
    322     }
    323     // If typo correction failed or was not performed, fall through
    324   case LookupResult::FoundOverloaded:
    325   case LookupResult::FoundUnresolvedValue:
    326     Result.suppressDiagnostics();
    327     return ParsedType();
    328 
    329   case LookupResult::Ambiguous:
    330     // Recover from type-hiding ambiguities by hiding the type.  We'll
    331     // do the lookup again when looking for an object, and we can
    332     // diagnose the error then.  If we don't do this, then the error
    333     // about hiding the type will be immediately followed by an error
    334     // that only makes sense if the identifier was treated like a type.
    335     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
    336       Result.suppressDiagnostics();
    337       return ParsedType();
    338     }
    339 
    340     // Look to see if we have a type anywhere in the list of results.
    341     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
    342          Res != ResEnd; ++Res) {
    343       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
    344         if (!IIDecl ||
    345             (*Res)->getLocation().getRawEncoding() <
    346               IIDecl->getLocation().getRawEncoding())
    347           IIDecl = *Res;
    348       }
    349     }
    350 
    351     if (!IIDecl) {
    352       // None of the entities we found is a type, so there is no way
    353       // to even assume that the result is a type. In this case, don't
    354       // complain about the ambiguity. The parser will either try to
    355       // perform this lookup again (e.g., as an object name), which
    356       // will produce the ambiguity, or will complain that it expected
    357       // a type name.
    358       Result.suppressDiagnostics();
    359       return ParsedType();
    360     }
    361 
    362     // We found a type within the ambiguous lookup; diagnose the
    363     // ambiguity and then return that type. This might be the right
    364     // answer, or it might not be, but it suppresses any attempt to
    365     // perform the name lookup again.
    366     break;
    367 
    368   case LookupResult::Found:
    369     IIDecl = Result.getFoundDecl();
    370     break;
    371   }
    372 
    373   assert(IIDecl && "Didn't find decl");
    374 
    375   QualType T;
    376   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
    377     DiagnoseUseOfDecl(IIDecl, NameLoc);
    378 
    379     T = Context.getTypeDeclType(TD);
    380 
    381     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
    382     // constructor or destructor name (in such a case, the scope specifier
    383     // will be attached to the enclosing Expr or Decl node).
    384     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
    385       if (WantNontrivialTypeSourceInfo) {
    386         // Construct a type with type-source information.
    387         TypeLocBuilder Builder;
    388         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    389 
    390         T = getElaboratedType(ETK_None, *SS, T);
    391         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    392         ElabTL.setElaboratedKeywordLoc(SourceLocation());
    393         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
    394         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    395       } else {
    396         T = getElaboratedType(ETK_None, *SS, T);
    397       }
    398     }
    399   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
    400     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
    401     if (!HasTrailingDot)
    402       T = Context.getObjCInterfaceType(IDecl);
    403   }
    404 
    405   if (T.isNull()) {
    406     // If it's not plausibly a type, suppress diagnostics.
    407     Result.suppressDiagnostics();
    408     return ParsedType();
    409   }
    410   return ParsedType::make(T);
    411 }
    412 
    413 // Builds a fake NNS for the given decl context.
    414 static NestedNameSpecifier *
    415 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
    416   for (;; DC = DC->getLookupParent()) {
    417     DC = DC->getPrimaryContext();
    418     auto *ND = dyn_cast<NamespaceDecl>(DC);
    419     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
    420       return NestedNameSpecifier::Create(Context, nullptr, ND);
    421     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
    422       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
    423                                          RD->getTypeForDecl());
    424     else if (isa<TranslationUnitDecl>(DC))
    425       return NestedNameSpecifier::GlobalSpecifier(Context);
    426   }
    427   llvm_unreachable("something isn't in TU scope?");
    428 }
    429 
    430 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
    431                                                 SourceLocation NameLoc) {
    432   // Accepting an undeclared identifier as a default argument for a template
    433   // type parameter is a Microsoft extension.
    434   Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
    435 
    436   // Build a fake DependentNameType that will perform lookup into CurContext at
    437   // instantiation time.  The name specifier isn't dependent, so template
    438   // instantiation won't transform it.  It will retry the lookup, however.
    439   NestedNameSpecifier *NNS =
    440       synthesizeCurrentNestedNameSpecifier(Context, CurContext);
    441   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
    442 
    443   // Build type location information.  We synthesized the qualifier, so we have
    444   // to build a fake NestedNameSpecifierLoc.
    445   NestedNameSpecifierLocBuilder NNSLocBuilder;
    446   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    447   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
    448 
    449   TypeLocBuilder Builder;
    450   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
    451   DepTL.setNameLoc(NameLoc);
    452   DepTL.setElaboratedKeywordLoc(SourceLocation());
    453   DepTL.setQualifierLoc(QualifierLoc);
    454   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    455 }
    456 
    457 /// isTagName() - This method is called *for error recovery purposes only*
    458 /// to determine if the specified name is a valid tag name ("struct foo").  If
    459 /// so, this returns the TST for the tag corresponding to it (TST_enum,
    460 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
    461 /// cases in C where the user forgot to specify the tag.
    462 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
    463   // Do a tag name lookup in this scope.
    464   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
    465   LookupName(R, S, false);
    466   R.suppressDiagnostics();
    467   if (R.getResultKind() == LookupResult::Found)
    468     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
    469       switch (TD->getTagKind()) {
    470       case TTK_Struct: return DeclSpec::TST_struct;
    471       case TTK_Interface: return DeclSpec::TST_interface;
    472       case TTK_Union:  return DeclSpec::TST_union;
    473       case TTK_Class:  return DeclSpec::TST_class;
    474       case TTK_Enum:   return DeclSpec::TST_enum;
    475       }
    476     }
    477 
    478   return DeclSpec::TST_unspecified;
    479 }
    480 
    481 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
    482 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
    483 /// then downgrade the missing typename error to a warning.
    484 /// This is needed for MSVC compatibility; Example:
    485 /// @code
    486 /// template<class T> class A {
    487 /// public:
    488 ///   typedef int TYPE;
    489 /// };
    490 /// template<class T> class B : public A<T> {
    491 /// public:
    492 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
    493 /// };
    494 /// @endcode
    495 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
    496   if (CurContext->isRecord()) {
    497     const Type *Ty = SS->getScopeRep()->getAsType();
    498 
    499     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
    500     for (const auto &Base : RD->bases())
    501       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
    502         return true;
    503     return S->isFunctionPrototypeScope();
    504   }
    505   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
    506 }
    507 
    508 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
    509                                    SourceLocation IILoc,
    510                                    Scope *S,
    511                                    CXXScopeSpec *SS,
    512                                    ParsedType &SuggestedType,
    513                                    bool AllowClassTemplates) {
    514   // We don't have anything to suggest (yet).
    515   SuggestedType = ParsedType();
    516 
    517   // There may have been a typo in the name of the type. Look up typo
    518   // results, in case we have something that we can suggest.
    519   TypeNameValidatorCCC Validator(false, false, AllowClassTemplates);
    520   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
    521                                              LookupOrdinaryName, S, SS,
    522                                              Validator, CTK_ErrorRecovery)) {
    523     if (Corrected.isKeyword()) {
    524       // We corrected to a keyword.
    525       diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
    526       II = Corrected.getCorrectionAsIdentifierInfo();
    527     } else {
    528       // We found a similarly-named type or interface; suggest that.
    529       if (!SS || !SS->isSet()) {
    530         diagnoseTypo(Corrected,
    531                      PDiag(diag::err_unknown_typename_suggest) << II);
    532       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
    533         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    534         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
    535                                 II->getName().equals(CorrectedStr);
    536         diagnoseTypo(Corrected,
    537                      PDiag(diag::err_unknown_nested_typename_suggest)
    538                        << II << DC << DroppedSpecifier << SS->getRange());
    539       } else {
    540         llvm_unreachable("could not have corrected a typo here");
    541       }
    542 
    543       CXXScopeSpec tmpSS;
    544       if (Corrected.getCorrectionSpecifier())
    545         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
    546                           SourceRange(IILoc));
    547       SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
    548                                   IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
    549                                   false, ParsedType(),
    550                                   /*IsCtorOrDtorName=*/false,
    551                                   /*NonTrivialTypeSourceInfo=*/true);
    552     }
    553     return;
    554   }
    555 
    556   if (getLangOpts().CPlusPlus) {
    557     // See if II is a class template that the user forgot to pass arguments to.
    558     UnqualifiedId Name;
    559     Name.setIdentifier(II, IILoc);
    560     CXXScopeSpec EmptySS;
    561     TemplateTy TemplateResult;
    562     bool MemberOfUnknownSpecialization;
    563     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
    564                        Name, ParsedType(), true, TemplateResult,
    565                        MemberOfUnknownSpecialization) == TNK_Type_template) {
    566       TemplateName TplName = TemplateResult.get();
    567       Diag(IILoc, diag::err_template_missing_args) << TplName;
    568       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
    569         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
    570           << TplDecl->getTemplateParameters()->getSourceRange();
    571       }
    572       return;
    573     }
    574   }
    575 
    576   // FIXME: Should we move the logic that tries to recover from a missing tag
    577   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
    578 
    579   if (!SS || (!SS->isSet() && !SS->isInvalid()))
    580     Diag(IILoc, diag::err_unknown_typename) << II;
    581   else if (DeclContext *DC = computeDeclContext(*SS, false))
    582     Diag(IILoc, diag::err_typename_nested_not_found)
    583       << II << DC << SS->getRange();
    584   else if (isDependentScopeSpecifier(*SS)) {
    585     unsigned DiagID = diag::err_typename_missing;
    586     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
    587       DiagID = diag::ext_typename_missing;
    588 
    589     Diag(SS->getRange().getBegin(), DiagID)
    590       << SS->getScopeRep() << II->getName()
    591       << SourceRange(SS->getRange().getBegin(), IILoc)
    592       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
    593     SuggestedType = ActOnTypenameType(S, SourceLocation(),
    594                                       *SS, *II, IILoc).get();
    595   } else {
    596     assert(SS && SS->isInvalid() &&
    597            "Invalid scope specifier has already been diagnosed");
    598   }
    599 }
    600 
    601 /// \brief Determine whether the given result set contains either a type name
    602 /// or
    603 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
    604   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
    605                        NextToken.is(tok::less);
    606 
    607   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
    608     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
    609       return true;
    610 
    611     if (CheckTemplate && isa<TemplateDecl>(*I))
    612       return true;
    613   }
    614 
    615   return false;
    616 }
    617 
    618 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
    619                                     Scope *S, CXXScopeSpec &SS,
    620                                     IdentifierInfo *&Name,
    621                                     SourceLocation NameLoc) {
    622   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
    623   SemaRef.LookupParsedName(R, S, &SS);
    624   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
    625     StringRef FixItTagName;
    626     switch (Tag->getTagKind()) {
    627       case TTK_Class:
    628         FixItTagName = "class ";
    629         break;
    630 
    631       case TTK_Enum:
    632         FixItTagName = "enum ";
    633         break;
    634 
    635       case TTK_Struct:
    636         FixItTagName = "struct ";
    637         break;
    638 
    639       case TTK_Interface:
    640         FixItTagName = "__interface ";
    641         break;
    642 
    643       case TTK_Union:
    644         FixItTagName = "union ";
    645         break;
    646     }
    647 
    648     StringRef TagName = FixItTagName.drop_back();
    649     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
    650       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
    651       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
    652 
    653     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
    654          I != IEnd; ++I)
    655       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
    656         << Name << TagName;
    657 
    658     // Replace lookup results with just the tag decl.
    659     Result.clear(Sema::LookupTagName);
    660     SemaRef.LookupParsedName(Result, S, &SS);
    661     return true;
    662   }
    663 
    664   return false;
    665 }
    666 
    667 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
    668 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
    669                                   QualType T, SourceLocation NameLoc) {
    670   ASTContext &Context = S.Context;
    671 
    672   TypeLocBuilder Builder;
    673   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    674 
    675   T = S.getElaboratedType(ETK_None, SS, T);
    676   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    677   ElabTL.setElaboratedKeywordLoc(SourceLocation());
    678   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
    679   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    680 }
    681 
    682 Sema::NameClassification Sema::ClassifyName(Scope *S,
    683                                             CXXScopeSpec &SS,
    684                                             IdentifierInfo *&Name,
    685                                             SourceLocation NameLoc,
    686                                             const Token &NextToken,
    687                                             bool IsAddressOfOperand,
    688                                             CorrectionCandidateCallback *CCC) {
    689   DeclarationNameInfo NameInfo(Name, NameLoc);
    690   ObjCMethodDecl *CurMethod = getCurMethodDecl();
    691 
    692   if (NextToken.is(tok::coloncolon)) {
    693     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
    694                                 QualType(), false, SS, nullptr, false);
    695   }
    696 
    697   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
    698   LookupParsedName(Result, S, &SS, !CurMethod);
    699 
    700   // For unqualified lookup in a class template in MSVC mode, look into
    701   // dependent base classes where the primary class template is known.
    702   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
    703     if (ParsedType TypeInBase =
    704             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
    705       return TypeInBase;
    706   }
    707 
    708   // Perform lookup for Objective-C instance variables (including automatically
    709   // synthesized instance variables), if we're in an Objective-C method.
    710   // FIXME: This lookup really, really needs to be folded in to the normal
    711   // unqualified lookup mechanism.
    712   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
    713     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
    714     if (E.get() || E.isInvalid())
    715       return E;
    716   }
    717 
    718   bool SecondTry = false;
    719   bool IsFilteredTemplateName = false;
    720 
    721 Corrected:
    722   switch (Result.getResultKind()) {
    723   case LookupResult::NotFound:
    724     // If an unqualified-id is followed by a '(', then we have a function
    725     // call.
    726     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
    727       // In C++, this is an ADL-only call.
    728       // FIXME: Reference?
    729       if (getLangOpts().CPlusPlus)
    730         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
    731 
    732       // C90 6.3.2.2:
    733       //   If the expression that precedes the parenthesized argument list in a
    734       //   function call consists solely of an identifier, and if no
    735       //   declaration is visible for this identifier, the identifier is
    736       //   implicitly declared exactly as if, in the innermost block containing
    737       //   the function call, the declaration
    738       //
    739       //     extern int identifier ();
    740       //
    741       //   appeared.
    742       //
    743       // We also allow this in C99 as an extension.
    744       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
    745         Result.addDecl(D);
    746         Result.resolveKind();
    747         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
    748       }
    749     }
    750 
    751     // In C, we first see whether there is a tag type by the same name, in
    752     // which case it's likely that the user just forget to write "enum",
    753     // "struct", or "union".
    754     if (!getLangOpts().CPlusPlus && !SecondTry &&
    755         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
    756       break;
    757     }
    758 
    759     // Perform typo correction to determine if there is another name that is
    760     // close to this name.
    761     if (!SecondTry && CCC) {
    762       SecondTry = true;
    763       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
    764                                                  Result.getLookupKind(), S,
    765                                                  &SS, *CCC,
    766                                                  CTK_ErrorRecovery)) {
    767         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
    768         unsigned QualifiedDiag = diag::err_no_member_suggest;
    769 
    770         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
    771         NamedDecl *UnderlyingFirstDecl
    772           = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
    773         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    774             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
    775           UnqualifiedDiag = diag::err_no_template_suggest;
    776           QualifiedDiag = diag::err_no_member_template_suggest;
    777         } else if (UnderlyingFirstDecl &&
    778                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
    779                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
    780                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
    781           UnqualifiedDiag = diag::err_unknown_typename_suggest;
    782           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
    783         }
    784 
    785         if (SS.isEmpty()) {
    786           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
    787         } else {// FIXME: is this even reachable? Test it.
    788           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    789           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
    790                                   Name->getName().equals(CorrectedStr);
    791           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
    792                                     << Name << computeDeclContext(SS, false)
    793                                     << DroppedSpecifier << SS.getRange());
    794         }
    795 
    796         // Update the name, so that the caller has the new name.
    797         Name = Corrected.getCorrectionAsIdentifierInfo();
    798 
    799         // Typo correction corrected to a keyword.
    800         if (Corrected.isKeyword())
    801           return Name;
    802 
    803         // Also update the LookupResult...
    804         // FIXME: This should probably go away at some point
    805         Result.clear();
    806         Result.setLookupName(Corrected.getCorrection());
    807         if (FirstDecl)
    808           Result.addDecl(FirstDecl);
    809 
    810         // If we found an Objective-C instance variable, let
    811         // LookupInObjCMethod build the appropriate expression to
    812         // reference the ivar.
    813         // FIXME: This is a gross hack.
    814         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
    815           Result.clear();
    816           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
    817           return E;
    818         }
    819 
    820         goto Corrected;
    821       }
    822     }
    823 
    824     // We failed to correct; just fall through and let the parser deal with it.
    825     Result.suppressDiagnostics();
    826     return NameClassification::Unknown();
    827 
    828   case LookupResult::NotFoundInCurrentInstantiation: {
    829     // We performed name lookup into the current instantiation, and there were
    830     // dependent bases, so we treat this result the same way as any other
    831     // dependent nested-name-specifier.
    832 
    833     // C++ [temp.res]p2:
    834     //   A name used in a template declaration or definition and that is
    835     //   dependent on a template-parameter is assumed not to name a type
    836     //   unless the applicable name lookup finds a type name or the name is
    837     //   qualified by the keyword typename.
    838     //
    839     // FIXME: If the next token is '<', we might want to ask the parser to
    840     // perform some heroics to see if we actually have a
    841     // template-argument-list, which would indicate a missing 'template'
    842     // keyword here.
    843     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
    844                                       NameInfo, IsAddressOfOperand,
    845                                       /*TemplateArgs=*/nullptr);
    846   }
    847 
    848   case LookupResult::Found:
    849   case LookupResult::FoundOverloaded:
    850   case LookupResult::FoundUnresolvedValue:
    851     break;
    852 
    853   case LookupResult::Ambiguous:
    854     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    855         hasAnyAcceptableTemplateNames(Result)) {
    856       // C++ [temp.local]p3:
    857       //   A lookup that finds an injected-class-name (10.2) can result in an
    858       //   ambiguity in certain cases (for example, if it is found in more than
    859       //   one base class). If all of the injected-class-names that are found
    860       //   refer to specializations of the same class template, and if the name
    861       //   is followed by a template-argument-list, the reference refers to the
    862       //   class template itself and not a specialization thereof, and is not
    863       //   ambiguous.
    864       //
    865       // This filtering can make an ambiguous result into an unambiguous one,
    866       // so try again after filtering out template names.
    867       FilterAcceptableTemplateNames(Result);
    868       if (!Result.isAmbiguous()) {
    869         IsFilteredTemplateName = true;
    870         break;
    871       }
    872     }
    873 
    874     // Diagnose the ambiguity and return an error.
    875     return NameClassification::Error();
    876   }
    877 
    878   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    879       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
    880     // C++ [temp.names]p3:
    881     //   After name lookup (3.4) finds that a name is a template-name or that
    882     //   an operator-function-id or a literal- operator-id refers to a set of
    883     //   overloaded functions any member of which is a function template if
    884     //   this is followed by a <, the < is always taken as the delimiter of a
    885     //   template-argument-list and never as the less-than operator.
    886     if (!IsFilteredTemplateName)
    887       FilterAcceptableTemplateNames(Result);
    888 
    889     if (!Result.empty()) {
    890       bool IsFunctionTemplate;
    891       bool IsVarTemplate;
    892       TemplateName Template;
    893       if (Result.end() - Result.begin() > 1) {
    894         IsFunctionTemplate = true;
    895         Template = Context.getOverloadedTemplateName(Result.begin(),
    896                                                      Result.end());
    897       } else {
    898         TemplateDecl *TD
    899           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
    900         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
    901         IsVarTemplate = isa<VarTemplateDecl>(TD);
    902 
    903         if (SS.isSet() && !SS.isInvalid())
    904           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
    905                                                     /*TemplateKeyword=*/false,
    906                                                       TD);
    907         else
    908           Template = TemplateName(TD);
    909       }
    910 
    911       if (IsFunctionTemplate) {
    912         // Function templates always go through overload resolution, at which
    913         // point we'll perform the various checks (e.g., accessibility) we need
    914         // to based on which function we selected.
    915         Result.suppressDiagnostics();
    916 
    917         return NameClassification::FunctionTemplate(Template);
    918       }
    919 
    920       return IsVarTemplate ? NameClassification::VarTemplate(Template)
    921                            : NameClassification::TypeTemplate(Template);
    922     }
    923   }
    924 
    925   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
    926   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
    927     DiagnoseUseOfDecl(Type, NameLoc);
    928     QualType T = Context.getTypeDeclType(Type);
    929     if (SS.isNotEmpty())
    930       return buildNestedType(*this, SS, T, NameLoc);
    931     return ParsedType::make(T);
    932   }
    933 
    934   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
    935   if (!Class) {
    936     // FIXME: It's unfortunate that we don't have a Type node for handling this.
    937     if (ObjCCompatibleAliasDecl *Alias =
    938             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
    939       Class = Alias->getClassInterface();
    940   }
    941 
    942   if (Class) {
    943     DiagnoseUseOfDecl(Class, NameLoc);
    944 
    945     if (NextToken.is(tok::period)) {
    946       // Interface. <something> is parsed as a property reference expression.
    947       // Just return "unknown" as a fall-through for now.
    948       Result.suppressDiagnostics();
    949       return NameClassification::Unknown();
    950     }
    951 
    952     QualType T = Context.getObjCInterfaceType(Class);
    953     return ParsedType::make(T);
    954   }
    955 
    956   // We can have a type template here if we're classifying a template argument.
    957   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
    958     return NameClassification::TypeTemplate(
    959         TemplateName(cast<TemplateDecl>(FirstDecl)));
    960 
    961   // Check for a tag type hidden by a non-type decl in a few cases where it
    962   // seems likely a type is wanted instead of the non-type that was found.
    963   bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
    964   if ((NextToken.is(tok::identifier) ||
    965        (NextIsOp &&
    966         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
    967       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
    968     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
    969     DiagnoseUseOfDecl(Type, NameLoc);
    970     QualType T = Context.getTypeDeclType(Type);
    971     if (SS.isNotEmpty())
    972       return buildNestedType(*this, SS, T, NameLoc);
    973     return ParsedType::make(T);
    974   }
    975 
    976   if (FirstDecl->isCXXClassMember())
    977     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
    978                                            nullptr);
    979 
    980   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
    981   return BuildDeclarationNameExpr(SS, Result, ADL);
    982 }
    983 
    984 // Determines the context to return to after temporarily entering a
    985 // context.  This depends in an unnecessarily complicated way on the
    986 // exact ordering of callbacks from the parser.
    987 DeclContext *Sema::getContainingDC(DeclContext *DC) {
    988 
    989   // Functions defined inline within classes aren't parsed until we've
    990   // finished parsing the top-level class, so the top-level class is
    991   // the context we'll need to return to.
    992   // A Lambda call operator whose parent is a class must not be treated
    993   // as an inline member function.  A Lambda can be used legally
    994   // either as an in-class member initializer or a default argument.  These
    995   // are parsed once the class has been marked complete and so the containing
    996   // context would be the nested class (when the lambda is defined in one);
    997   // If the class is not complete, then the lambda is being used in an
    998   // ill-formed fashion (such as to specify the width of a bit-field, or
    999   // in an array-bound) - in which case we still want to return the
   1000   // lexically containing DC (which could be a nested class).
   1001   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
   1002     DC = DC->getLexicalParent();
   1003 
   1004     // A function not defined within a class will always return to its
   1005     // lexical context.
   1006     if (!isa<CXXRecordDecl>(DC))
   1007       return DC;
   1008 
   1009     // A C++ inline method/friend is parsed *after* the topmost class
   1010     // it was declared in is fully parsed ("complete");  the topmost
   1011     // class is the context we need to return to.
   1012     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
   1013       DC = RD;
   1014 
   1015     // Return the declaration context of the topmost class the inline method is
   1016     // declared in.
   1017     return DC;
   1018   }
   1019 
   1020   return DC->getLexicalParent();
   1021 }
   1022 
   1023 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
   1024   assert(getContainingDC(DC) == CurContext &&
   1025       "The next DeclContext should be lexically contained in the current one.");
   1026   CurContext = DC;
   1027   S->setEntity(DC);
   1028 }
   1029 
   1030 void Sema::PopDeclContext() {
   1031   assert(CurContext && "DeclContext imbalance!");
   1032 
   1033   CurContext = getContainingDC(CurContext);
   1034   assert(CurContext && "Popped translation unit!");
   1035 }
   1036 
   1037 /// EnterDeclaratorContext - Used when we must lookup names in the context
   1038 /// of a declarator's nested name specifier.
   1039 ///
   1040 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
   1041   // C++0x [basic.lookup.unqual]p13:
   1042   //   A name used in the definition of a static data member of class
   1043   //   X (after the qualified-id of the static member) is looked up as
   1044   //   if the name was used in a member function of X.
   1045   // C++0x [basic.lookup.unqual]p14:
   1046   //   If a variable member of a namespace is defined outside of the
   1047   //   scope of its namespace then any name used in the definition of
   1048   //   the variable member (after the declarator-id) is looked up as
   1049   //   if the definition of the variable member occurred in its
   1050   //   namespace.
   1051   // Both of these imply that we should push a scope whose context
   1052   // is the semantic context of the declaration.  We can't use
   1053   // PushDeclContext here because that context is not necessarily
   1054   // lexically contained in the current context.  Fortunately,
   1055   // the containing scope should have the appropriate information.
   1056 
   1057   assert(!S->getEntity() && "scope already has entity");
   1058 
   1059 #ifndef NDEBUG
   1060   Scope *Ancestor = S->getParent();
   1061   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
   1062   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
   1063 #endif
   1064 
   1065   CurContext = DC;
   1066   S->setEntity(DC);
   1067 }
   1068 
   1069 void Sema::ExitDeclaratorContext(Scope *S) {
   1070   assert(S->getEntity() == CurContext && "Context imbalance!");
   1071 
   1072   // Switch back to the lexical context.  The safety of this is
   1073   // enforced by an assert in EnterDeclaratorContext.
   1074   Scope *Ancestor = S->getParent();
   1075   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
   1076   CurContext = Ancestor->getEntity();
   1077 
   1078   // We don't need to do anything with the scope, which is going to
   1079   // disappear.
   1080 }
   1081 
   1082 
   1083 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
   1084   // We assume that the caller has already called
   1085   // ActOnReenterTemplateScope so getTemplatedDecl() works.
   1086   FunctionDecl *FD = D->getAsFunction();
   1087   if (!FD)
   1088     return;
   1089 
   1090   // Same implementation as PushDeclContext, but enters the context
   1091   // from the lexical parent, rather than the top-level class.
   1092   assert(CurContext == FD->getLexicalParent() &&
   1093     "The next DeclContext should be lexically contained in the current one.");
   1094   CurContext = FD;
   1095   S->setEntity(CurContext);
   1096 
   1097   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
   1098     ParmVarDecl *Param = FD->getParamDecl(P);
   1099     // If the parameter has an identifier, then add it to the scope
   1100     if (Param->getIdentifier()) {
   1101       S->AddDecl(Param);
   1102       IdResolver.AddDecl(Param);
   1103     }
   1104   }
   1105 }
   1106 
   1107 
   1108 void Sema::ActOnExitFunctionContext() {
   1109   // Same implementation as PopDeclContext, but returns to the lexical parent,
   1110   // rather than the top-level class.
   1111   assert(CurContext && "DeclContext imbalance!");
   1112   CurContext = CurContext->getLexicalParent();
   1113   assert(CurContext && "Popped translation unit!");
   1114 }
   1115 
   1116 
   1117 /// \brief Determine whether we allow overloading of the function
   1118 /// PrevDecl with another declaration.
   1119 ///
   1120 /// This routine determines whether overloading is possible, not
   1121 /// whether some new function is actually an overload. It will return
   1122 /// true in C++ (where we can always provide overloads) or, as an
   1123 /// extension, in C when the previous function is already an
   1124 /// overloaded function declaration or has the "overloadable"
   1125 /// attribute.
   1126 static bool AllowOverloadingOfFunction(LookupResult &Previous,
   1127                                        ASTContext &Context) {
   1128   if (Context.getLangOpts().CPlusPlus)
   1129     return true;
   1130 
   1131   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
   1132     return true;
   1133 
   1134   return (Previous.getResultKind() == LookupResult::Found
   1135           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
   1136 }
   1137 
   1138 /// Add this decl to the scope shadowed decl chains.
   1139 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
   1140   // Move up the scope chain until we find the nearest enclosing
   1141   // non-transparent context. The declaration will be introduced into this
   1142   // scope.
   1143   while (S->getEntity() && S->getEntity()->isTransparentContext())
   1144     S = S->getParent();
   1145 
   1146   // Add scoped declarations into their context, so that they can be
   1147   // found later. Declarations without a context won't be inserted
   1148   // into any context.
   1149   if (AddToContext)
   1150     CurContext->addDecl(D);
   1151 
   1152   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
   1153   // are function-local declarations.
   1154   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
   1155       !D->getDeclContext()->getRedeclContext()->Equals(
   1156         D->getLexicalDeclContext()->getRedeclContext()) &&
   1157       !D->getLexicalDeclContext()->isFunctionOrMethod())
   1158     return;
   1159 
   1160   // Template instantiations should also not be pushed into scope.
   1161   if (isa<FunctionDecl>(D) &&
   1162       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
   1163     return;
   1164 
   1165   // If this replaces anything in the current scope,
   1166   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
   1167                                IEnd = IdResolver.end();
   1168   for (; I != IEnd; ++I) {
   1169     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
   1170       S->RemoveDecl(*I);
   1171       IdResolver.RemoveDecl(*I);
   1172 
   1173       // Should only need to replace one decl.
   1174       break;
   1175     }
   1176   }
   1177 
   1178   S->AddDecl(D);
   1179 
   1180   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
   1181     // Implicitly-generated labels may end up getting generated in an order that
   1182     // isn't strictly lexical, which breaks name lookup. Be careful to insert
   1183     // the label at the appropriate place in the identifier chain.
   1184     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
   1185       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
   1186       if (IDC == CurContext) {
   1187         if (!S->isDeclScope(*I))
   1188           continue;
   1189       } else if (IDC->Encloses(CurContext))
   1190         break;
   1191     }
   1192 
   1193     IdResolver.InsertDeclAfter(I, D);
   1194   } else {
   1195     IdResolver.AddDecl(D);
   1196   }
   1197 }
   1198 
   1199 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
   1200   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
   1201     TUScope->AddDecl(D);
   1202 }
   1203 
   1204 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
   1205                          bool AllowInlineNamespace) {
   1206   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
   1207 }
   1208 
   1209 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
   1210   DeclContext *TargetDC = DC->getPrimaryContext();
   1211   do {
   1212     if (DeclContext *ScopeDC = S->getEntity())
   1213       if (ScopeDC->getPrimaryContext() == TargetDC)
   1214         return S;
   1215   } while ((S = S->getParent()));
   1216 
   1217   return nullptr;
   1218 }
   1219 
   1220 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
   1221                                             DeclContext*,
   1222                                             ASTContext&);
   1223 
   1224 /// Filters out lookup results that don't fall within the given scope
   1225 /// as determined by isDeclInScope.
   1226 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
   1227                                 bool ConsiderLinkage,
   1228                                 bool AllowInlineNamespace) {
   1229   LookupResult::Filter F = R.makeFilter();
   1230   while (F.hasNext()) {
   1231     NamedDecl *D = F.next();
   1232 
   1233     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
   1234       continue;
   1235 
   1236     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
   1237       continue;
   1238 
   1239     F.erase();
   1240   }
   1241 
   1242   F.done();
   1243 }
   1244 
   1245 static bool isUsingDecl(NamedDecl *D) {
   1246   return isa<UsingShadowDecl>(D) ||
   1247          isa<UnresolvedUsingTypenameDecl>(D) ||
   1248          isa<UnresolvedUsingValueDecl>(D);
   1249 }
   1250 
   1251 /// Removes using shadow declarations from the lookup results.
   1252 static void RemoveUsingDecls(LookupResult &R) {
   1253   LookupResult::Filter F = R.makeFilter();
   1254   while (F.hasNext())
   1255     if (isUsingDecl(F.next()))
   1256       F.erase();
   1257 
   1258   F.done();
   1259 }
   1260 
   1261 /// \brief Check for this common pattern:
   1262 /// @code
   1263 /// class S {
   1264 ///   S(const S&); // DO NOT IMPLEMENT
   1265 ///   void operator=(const S&); // DO NOT IMPLEMENT
   1266 /// };
   1267 /// @endcode
   1268 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
   1269   // FIXME: Should check for private access too but access is set after we get
   1270   // the decl here.
   1271   if (D->doesThisDeclarationHaveABody())
   1272     return false;
   1273 
   1274   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
   1275     return CD->isCopyConstructor();
   1276   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   1277     return Method->isCopyAssignmentOperator();
   1278   return false;
   1279 }
   1280 
   1281 // We need this to handle
   1282 //
   1283 // typedef struct {
   1284 //   void *foo() { return 0; }
   1285 // } A;
   1286 //
   1287 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
   1288 // for example. If 'A', foo will have external linkage. If we have '*A',
   1289 // foo will have no linkage. Since we can't know until we get to the end
   1290 // of the typedef, this function finds out if D might have non-external linkage.
   1291 // Callers should verify at the end of the TU if it D has external linkage or
   1292 // not.
   1293 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
   1294   const DeclContext *DC = D->getDeclContext();
   1295   while (!DC->isTranslationUnit()) {
   1296     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
   1297       if (!RD->hasNameForLinkage())
   1298         return true;
   1299     }
   1300     DC = DC->getParent();
   1301   }
   1302 
   1303   return !D->isExternallyVisible();
   1304 }
   1305 
   1306 // FIXME: This needs to be refactored; some other isInMainFile users want
   1307 // these semantics.
   1308 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
   1309   if (S.TUKind != TU_Complete)
   1310     return false;
   1311   return S.SourceMgr.isInMainFile(Loc);
   1312 }
   1313 
   1314 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
   1315   assert(D);
   1316 
   1317   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1318     return false;
   1319 
   1320   // Ignore all entities declared within templates, and out-of-line definitions
   1321   // of members of class templates.
   1322   if (D->getDeclContext()->isDependentContext() ||
   1323       D->getLexicalDeclContext()->isDependentContext())
   1324     return false;
   1325 
   1326   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1327     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1328       return false;
   1329 
   1330     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   1331       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
   1332         return false;
   1333     } else {
   1334       // 'static inline' functions are defined in headers; don't warn.
   1335       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
   1336         return false;
   1337     }
   1338 
   1339     if (FD->doesThisDeclarationHaveABody() &&
   1340         Context.DeclMustBeEmitted(FD))
   1341       return false;
   1342   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1343     // Constants and utility variables are defined in headers with internal
   1344     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
   1345     // like "inline".)
   1346     if (!isMainFileLoc(*this, VD->getLocation()))
   1347       return false;
   1348 
   1349     if (Context.DeclMustBeEmitted(VD))
   1350       return false;
   1351 
   1352     if (VD->isStaticDataMember() &&
   1353         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1354       return false;
   1355   } else {
   1356     return false;
   1357   }
   1358 
   1359   // Only warn for unused decls internal to the translation unit.
   1360   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
   1361   // for inline functions defined in the main source file, for instance.
   1362   return mightHaveNonExternalLinkage(D);
   1363 }
   1364 
   1365 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
   1366   if (!D)
   1367     return;
   1368 
   1369   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1370     const FunctionDecl *First = FD->getFirstDecl();
   1371     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1372       return; // First should already be in the vector.
   1373   }
   1374 
   1375   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1376     const VarDecl *First = VD->getFirstDecl();
   1377     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1378       return; // First should already be in the vector.
   1379   }
   1380 
   1381   if (ShouldWarnIfUnusedFileScopedDecl(D))
   1382     UnusedFileScopedDecls.push_back(D);
   1383 }
   1384 
   1385 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
   1386   if (D->isInvalidDecl())
   1387     return false;
   1388 
   1389   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
   1390       D->hasAttr<ObjCPreciseLifetimeAttr>())
   1391     return false;
   1392 
   1393   if (isa<LabelDecl>(D))
   1394     return true;
   1395 
   1396   // White-list anything that isn't a local variable.
   1397   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
   1398       !D->getDeclContext()->isFunctionOrMethod())
   1399     return false;
   1400 
   1401   // Types of valid local variables should be complete, so this should succeed.
   1402   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1403 
   1404     // White-list anything with an __attribute__((unused)) type.
   1405     QualType Ty = VD->getType();
   1406 
   1407     // Only look at the outermost level of typedef.
   1408     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
   1409       if (TT->getDecl()->hasAttr<UnusedAttr>())
   1410         return false;
   1411     }
   1412 
   1413     // If we failed to complete the type for some reason, or if the type is
   1414     // dependent, don't diagnose the variable.
   1415     if (Ty->isIncompleteType() || Ty->isDependentType())
   1416       return false;
   1417 
   1418     if (const TagType *TT = Ty->getAs<TagType>()) {
   1419       const TagDecl *Tag = TT->getDecl();
   1420       if (Tag->hasAttr<UnusedAttr>())
   1421         return false;
   1422 
   1423       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
   1424         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
   1425           return false;
   1426 
   1427         if (const Expr *Init = VD->getInit()) {
   1428           if (const ExprWithCleanups *Cleanups =
   1429                   dyn_cast<ExprWithCleanups>(Init))
   1430             Init = Cleanups->getSubExpr();
   1431           const CXXConstructExpr *Construct =
   1432             dyn_cast<CXXConstructExpr>(Init);
   1433           if (Construct && !Construct->isElidable()) {
   1434             CXXConstructorDecl *CD = Construct->getConstructor();
   1435             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
   1436               return false;
   1437           }
   1438         }
   1439       }
   1440     }
   1441 
   1442     // TODO: __attribute__((unused)) templates?
   1443   }
   1444 
   1445   return true;
   1446 }
   1447 
   1448 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
   1449                                      FixItHint &Hint) {
   1450   if (isa<LabelDecl>(D)) {
   1451     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
   1452                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
   1453     if (AfterColon.isInvalid())
   1454       return;
   1455     Hint = FixItHint::CreateRemoval(CharSourceRange::
   1456                                     getCharRange(D->getLocStart(), AfterColon));
   1457   }
   1458   return;
   1459 }
   1460 
   1461 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
   1462 /// unless they are marked attr(unused).
   1463 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
   1464   if (!ShouldDiagnoseUnusedDecl(D))
   1465     return;
   1466 
   1467   FixItHint Hint;
   1468   GenerateFixForUnusedDecl(D, Context, Hint);
   1469 
   1470   unsigned DiagID;
   1471   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
   1472     DiagID = diag::warn_unused_exception_param;
   1473   else if (isa<LabelDecl>(D))
   1474     DiagID = diag::warn_unused_label;
   1475   else
   1476     DiagID = diag::warn_unused_variable;
   1477 
   1478   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
   1479 }
   1480 
   1481 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
   1482   // Verify that we have no forward references left.  If so, there was a goto
   1483   // or address of a label taken, but no definition of it.  Label fwd
   1484   // definitions are indicated with a null substmt.
   1485   if (L->getStmt() == nullptr)
   1486     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
   1487 }
   1488 
   1489 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
   1490   S->mergeNRVOIntoParent();
   1491 
   1492   if (S->decl_empty()) return;
   1493   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
   1494          "Scope shouldn't contain decls!");
   1495 
   1496   for (auto *TmpD : S->decls()) {
   1497     assert(TmpD && "This decl didn't get pushed??");
   1498 
   1499     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
   1500     NamedDecl *D = cast<NamedDecl>(TmpD);
   1501 
   1502     if (!D->getDeclName()) continue;
   1503 
   1504     // Diagnose unused variables in this scope.
   1505     if (!S->hasUnrecoverableErrorOccurred())
   1506       DiagnoseUnusedDecl(D);
   1507 
   1508     // If this was a forward reference to a label, verify it was defined.
   1509     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
   1510       CheckPoppedLabel(LD, *this);
   1511 
   1512     // Remove this name from our lexical scope.
   1513     IdResolver.RemoveDecl(D);
   1514   }
   1515 }
   1516 
   1517 /// \brief Look for an Objective-C class in the translation unit.
   1518 ///
   1519 /// \param Id The name of the Objective-C class we're looking for. If
   1520 /// typo-correction fixes this name, the Id will be updated
   1521 /// to the fixed name.
   1522 ///
   1523 /// \param IdLoc The location of the name in the translation unit.
   1524 ///
   1525 /// \param DoTypoCorrection If true, this routine will attempt typo correction
   1526 /// if there is no class with the given name.
   1527 ///
   1528 /// \returns The declaration of the named Objective-C class, or NULL if the
   1529 /// class could not be found.
   1530 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
   1531                                               SourceLocation IdLoc,
   1532                                               bool DoTypoCorrection) {
   1533   // The third "scope" argument is 0 since we aren't enabling lazy built-in
   1534   // creation from this context.
   1535   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
   1536 
   1537   if (!IDecl && DoTypoCorrection) {
   1538     // Perform typo correction at the given location, but only if we
   1539     // find an Objective-C class name.
   1540     DeclFilterCCC<ObjCInterfaceDecl> Validator;
   1541     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
   1542                                        LookupOrdinaryName, TUScope, nullptr,
   1543                                        Validator, CTK_ErrorRecovery)) {
   1544       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
   1545       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
   1546       Id = IDecl->getIdentifier();
   1547     }
   1548   }
   1549   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
   1550   // This routine must always return a class definition, if any.
   1551   if (Def && Def->getDefinition())
   1552       Def = Def->getDefinition();
   1553   return Def;
   1554 }
   1555 
   1556 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
   1557 /// from S, where a non-field would be declared. This routine copes
   1558 /// with the difference between C and C++ scoping rules in structs and
   1559 /// unions. For example, the following code is well-formed in C but
   1560 /// ill-formed in C++:
   1561 /// @code
   1562 /// struct S6 {
   1563 ///   enum { BAR } e;
   1564 /// };
   1565 ///
   1566 /// void test_S6() {
   1567 ///   struct S6 a;
   1568 ///   a.e = BAR;
   1569 /// }
   1570 /// @endcode
   1571 /// For the declaration of BAR, this routine will return a different
   1572 /// scope. The scope S will be the scope of the unnamed enumeration
   1573 /// within S6. In C++, this routine will return the scope associated
   1574 /// with S6, because the enumeration's scope is a transparent
   1575 /// context but structures can contain non-field names. In C, this
   1576 /// routine will return the translation unit scope, since the
   1577 /// enumeration's scope is a transparent context and structures cannot
   1578 /// contain non-field names.
   1579 Scope *Sema::getNonFieldDeclScope(Scope *S) {
   1580   while (((S->getFlags() & Scope::DeclScope) == 0) ||
   1581          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
   1582          (S->isClassScope() && !getLangOpts().CPlusPlus))
   1583     S = S->getParent();
   1584   return S;
   1585 }
   1586 
   1587 /// \brief Looks up the declaration of "struct objc_super" and
   1588 /// saves it for later use in building builtin declaration of
   1589 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
   1590 /// pre-existing declaration exists no action takes place.
   1591 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
   1592                                         IdentifierInfo *II) {
   1593   if (!II->isStr("objc_msgSendSuper"))
   1594     return;
   1595   ASTContext &Context = ThisSema.Context;
   1596 
   1597   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
   1598                       SourceLocation(), Sema::LookupTagName);
   1599   ThisSema.LookupName(Result, S);
   1600   if (Result.getResultKind() == LookupResult::Found)
   1601     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
   1602       Context.setObjCSuperType(Context.getTagDeclType(TD));
   1603 }
   1604 
   1605 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
   1606 /// file scope.  lazily create a decl for it. ForRedeclaration is true
   1607 /// if we're creating this built-in in anticipation of redeclaring the
   1608 /// built-in.
   1609 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
   1610                                      Scope *S, bool ForRedeclaration,
   1611                                      SourceLocation Loc) {
   1612   LookupPredefedObjCSuperType(*this, S, II);
   1613 
   1614   Builtin::ID BID = (Builtin::ID)bid;
   1615 
   1616   ASTContext::GetBuiltinTypeError Error;
   1617   QualType R = Context.GetBuiltinType(BID, Error);
   1618   switch (Error) {
   1619   case ASTContext::GE_None:
   1620     // Okay
   1621     break;
   1622 
   1623   case ASTContext::GE_Missing_stdio:
   1624     if (ForRedeclaration)
   1625       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
   1626         << Context.BuiltinInfo.GetName(BID);
   1627     return nullptr;
   1628 
   1629   case ASTContext::GE_Missing_setjmp:
   1630     if (ForRedeclaration)
   1631       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
   1632         << Context.BuiltinInfo.GetName(BID);
   1633     return nullptr;
   1634 
   1635   case ASTContext::GE_Missing_ucontext:
   1636     if (ForRedeclaration)
   1637       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
   1638         << Context.BuiltinInfo.GetName(BID);
   1639     return nullptr;
   1640   }
   1641 
   1642   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   1643     Diag(Loc, diag::ext_implicit_lib_function_decl)
   1644       << Context.BuiltinInfo.GetName(BID)
   1645       << R;
   1646     if (Context.BuiltinInfo.getHeaderName(BID) &&
   1647         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
   1648       Diag(Loc, diag::note_please_include_header)
   1649         << Context.BuiltinInfo.getHeaderName(BID)
   1650         << Context.BuiltinInfo.GetName(BID);
   1651   }
   1652 
   1653   DeclContext *Parent = Context.getTranslationUnitDecl();
   1654   if (getLangOpts().CPlusPlus) {
   1655     LinkageSpecDecl *CLinkageDecl =
   1656         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
   1657                                 LinkageSpecDecl::lang_c, false);
   1658     CLinkageDecl->setImplicit();
   1659     Parent->addDecl(CLinkageDecl);
   1660     Parent = CLinkageDecl;
   1661   }
   1662 
   1663   FunctionDecl *New = FunctionDecl::Create(Context,
   1664                                            Parent,
   1665                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
   1666                                            SC_Extern,
   1667                                            false,
   1668                                            /*hasPrototype=*/true);
   1669   New->setImplicit();
   1670 
   1671   // Create Decl objects for each parameter, adding them to the
   1672   // FunctionDecl.
   1673   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
   1674     SmallVector<ParmVarDecl*, 16> Params;
   1675     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   1676       ParmVarDecl *parm =
   1677           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
   1678                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
   1679                               SC_None, nullptr);
   1680       parm->setScopeInfo(0, i);
   1681       Params.push_back(parm);
   1682     }
   1683     New->setParams(Params);
   1684   }
   1685 
   1686   AddKnownFunctionAttributes(New);
   1687   RegisterLocallyScopedExternCDecl(New, S);
   1688 
   1689   // TUScope is the translation-unit scope to insert this function into.
   1690   // FIXME: This is hideous. We need to teach PushOnScopeChains to
   1691   // relate Scopes to DeclContexts, and probably eliminate CurContext
   1692   // entirely, but we're not there yet.
   1693   DeclContext *SavedContext = CurContext;
   1694   CurContext = Parent;
   1695   PushOnScopeChains(New, TUScope);
   1696   CurContext = SavedContext;
   1697   return New;
   1698 }
   1699 
   1700 /// \brief Filter out any previous declarations that the given declaration
   1701 /// should not consider because they are not permitted to conflict, e.g.,
   1702 /// because they come from hidden sub-modules and do not refer to the same
   1703 /// entity.
   1704 static void filterNonConflictingPreviousDecls(ASTContext &context,
   1705                                               NamedDecl *decl,
   1706                                               LookupResult &previous){
   1707   // This is only interesting when modules are enabled.
   1708   if (!context.getLangOpts().Modules)
   1709     return;
   1710 
   1711   // Empty sets are uninteresting.
   1712   if (previous.empty())
   1713     return;
   1714 
   1715   LookupResult::Filter filter = previous.makeFilter();
   1716   while (filter.hasNext()) {
   1717     NamedDecl *old = filter.next();
   1718 
   1719     // Non-hidden declarations are never ignored.
   1720     if (!old->isHidden())
   1721       continue;
   1722 
   1723     if (!old->isExternallyVisible())
   1724       filter.erase();
   1725   }
   1726 
   1727   filter.done();
   1728 }
   1729 
   1730 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
   1731   QualType OldType;
   1732   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
   1733     OldType = OldTypedef->getUnderlyingType();
   1734   else
   1735     OldType = Context.getTypeDeclType(Old);
   1736   QualType NewType = New->getUnderlyingType();
   1737 
   1738   if (NewType->isVariablyModifiedType()) {
   1739     // Must not redefine a typedef with a variably-modified type.
   1740     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1741     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
   1742       << Kind << NewType;
   1743     if (Old->getLocation().isValid())
   1744       Diag(Old->getLocation(), diag::note_previous_definition);
   1745     New->setInvalidDecl();
   1746     return true;
   1747   }
   1748 
   1749   if (OldType != NewType &&
   1750       !OldType->isDependentType() &&
   1751       !NewType->isDependentType() &&
   1752       !Context.hasSameType(OldType, NewType)) {
   1753     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1754     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
   1755       << Kind << NewType << OldType;
   1756     if (Old->getLocation().isValid())
   1757       Diag(Old->getLocation(), diag::note_previous_definition);
   1758     New->setInvalidDecl();
   1759     return true;
   1760   }
   1761   return false;
   1762 }
   1763 
   1764 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
   1765 /// same name and scope as a previous declaration 'Old'.  Figure out
   1766 /// how to resolve this situation, merging decls or emitting
   1767 /// diagnostics as appropriate. If there was an error, set New to be invalid.
   1768 ///
   1769 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
   1770   // If the new decl is known invalid already, don't bother doing any
   1771   // merging checks.
   1772   if (New->isInvalidDecl()) return;
   1773 
   1774   // Allow multiple definitions for ObjC built-in typedefs.
   1775   // FIXME: Verify the underlying types are equivalent!
   1776   if (getLangOpts().ObjC1) {
   1777     const IdentifierInfo *TypeID = New->getIdentifier();
   1778     switch (TypeID->getLength()) {
   1779     default: break;
   1780     case 2:
   1781       {
   1782         if (!TypeID->isStr("id"))
   1783           break;
   1784         QualType T = New->getUnderlyingType();
   1785         if (!T->isPointerType())
   1786           break;
   1787         if (!T->isVoidPointerType()) {
   1788           QualType PT = T->getAs<PointerType>()->getPointeeType();
   1789           if (!PT->isStructureType())
   1790             break;
   1791         }
   1792         Context.setObjCIdRedefinitionType(T);
   1793         // Install the built-in type for 'id', ignoring the current definition.
   1794         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
   1795         return;
   1796       }
   1797     case 5:
   1798       if (!TypeID->isStr("Class"))
   1799         break;
   1800       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
   1801       // Install the built-in type for 'Class', ignoring the current definition.
   1802       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
   1803       return;
   1804     case 3:
   1805       if (!TypeID->isStr("SEL"))
   1806         break;
   1807       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
   1808       // Install the built-in type for 'SEL', ignoring the current definition.
   1809       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
   1810       return;
   1811     }
   1812     // Fall through - the typedef name was not a builtin type.
   1813   }
   1814 
   1815   // Verify the old decl was also a type.
   1816   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
   1817   if (!Old) {
   1818     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1819       << New->getDeclName();
   1820 
   1821     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
   1822     if (OldD->getLocation().isValid())
   1823       Diag(OldD->getLocation(), diag::note_previous_definition);
   1824 
   1825     return New->setInvalidDecl();
   1826   }
   1827 
   1828   // If the old declaration is invalid, just give up here.
   1829   if (Old->isInvalidDecl())
   1830     return New->setInvalidDecl();
   1831 
   1832   // If the typedef types are not identical, reject them in all languages and
   1833   // with any extensions enabled.
   1834   if (isIncompatibleTypedef(Old, New))
   1835     return;
   1836 
   1837   // The types match.  Link up the redeclaration chain and merge attributes if
   1838   // the old declaration was a typedef.
   1839   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
   1840     New->setPreviousDecl(Typedef);
   1841     mergeDeclAttributes(New, Old);
   1842   }
   1843 
   1844   if (getLangOpts().MicrosoftExt)
   1845     return;
   1846 
   1847   if (getLangOpts().CPlusPlus) {
   1848     // C++ [dcl.typedef]p2:
   1849     //   In a given non-class scope, a typedef specifier can be used to
   1850     //   redefine the name of any type declared in that scope to refer
   1851     //   to the type to which it already refers.
   1852     if (!isa<CXXRecordDecl>(CurContext))
   1853       return;
   1854 
   1855     // C++0x [dcl.typedef]p4:
   1856     //   In a given class scope, a typedef specifier can be used to redefine
   1857     //   any class-name declared in that scope that is not also a typedef-name
   1858     //   to refer to the type to which it already refers.
   1859     //
   1860     // This wording came in via DR424, which was a correction to the
   1861     // wording in DR56, which accidentally banned code like:
   1862     //
   1863     //   struct S {
   1864     //     typedef struct A { } A;
   1865     //   };
   1866     //
   1867     // in the C++03 standard. We implement the C++0x semantics, which
   1868     // allow the above but disallow
   1869     //
   1870     //   struct S {
   1871     //     typedef int I;
   1872     //     typedef int I;
   1873     //   };
   1874     //
   1875     // since that was the intent of DR56.
   1876     if (!isa<TypedefNameDecl>(Old))
   1877       return;
   1878 
   1879     Diag(New->getLocation(), diag::err_redefinition)
   1880       << New->getDeclName();
   1881     Diag(Old->getLocation(), diag::note_previous_definition);
   1882     return New->setInvalidDecl();
   1883   }
   1884 
   1885   // Modules always permit redefinition of typedefs, as does C11.
   1886   if (getLangOpts().Modules || getLangOpts().C11)
   1887     return;
   1888 
   1889   // If we have a redefinition of a typedef in C, emit a warning.  This warning
   1890   // is normally mapped to an error, but can be controlled with
   1891   // -Wtypedef-redefinition.  If either the original or the redefinition is
   1892   // in a system header, don't emit this for compatibility with GCC.
   1893   if (getDiagnostics().getSuppressSystemWarnings() &&
   1894       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
   1895        Context.getSourceManager().isInSystemHeader(New->getLocation())))
   1896     return;
   1897 
   1898   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
   1899     << New->getDeclName();
   1900   Diag(Old->getLocation(), diag::note_previous_definition);
   1901   return;
   1902 }
   1903 
   1904 /// DeclhasAttr - returns true if decl Declaration already has the target
   1905 /// attribute.
   1906 static bool DeclHasAttr(const Decl *D, const Attr *A) {
   1907   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
   1908   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
   1909   for (const auto *i : D->attrs())
   1910     if (i->getKind() == A->getKind()) {
   1911       if (Ann) {
   1912         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
   1913           return true;
   1914         continue;
   1915       }
   1916       // FIXME: Don't hardcode this check
   1917       if (OA && isa<OwnershipAttr>(i))
   1918         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
   1919       return true;
   1920     }
   1921 
   1922   return false;
   1923 }
   1924 
   1925 static bool isAttributeTargetADefinition(Decl *D) {
   1926   if (VarDecl *VD = dyn_cast<VarDecl>(D))
   1927     return VD->isThisDeclarationADefinition();
   1928   if (TagDecl *TD = dyn_cast<TagDecl>(D))
   1929     return TD->isCompleteDefinition() || TD->isBeingDefined();
   1930   return true;
   1931 }
   1932 
   1933 /// Merge alignment attributes from \p Old to \p New, taking into account the
   1934 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
   1935 ///
   1936 /// \return \c true if any attributes were added to \p New.
   1937 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
   1938   // Look for alignas attributes on Old, and pick out whichever attribute
   1939   // specifies the strictest alignment requirement.
   1940   AlignedAttr *OldAlignasAttr = nullptr;
   1941   AlignedAttr *OldStrictestAlignAttr = nullptr;
   1942   unsigned OldAlign = 0;
   1943   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
   1944     // FIXME: We have no way of representing inherited dependent alignments
   1945     // in a case like:
   1946     //   template<int A, int B> struct alignas(A) X;
   1947     //   template<int A, int B> struct alignas(B) X {};
   1948     // For now, we just ignore any alignas attributes which are not on the
   1949     // definition in such a case.
   1950     if (I->isAlignmentDependent())
   1951       return false;
   1952 
   1953     if (I->isAlignas())
   1954       OldAlignasAttr = I;
   1955 
   1956     unsigned Align = I->getAlignment(S.Context);
   1957     if (Align > OldAlign) {
   1958       OldAlign = Align;
   1959       OldStrictestAlignAttr = I;
   1960     }
   1961   }
   1962 
   1963   // Look for alignas attributes on New.
   1964   AlignedAttr *NewAlignasAttr = nullptr;
   1965   unsigned NewAlign = 0;
   1966   for (auto *I : New->specific_attrs<AlignedAttr>()) {
   1967     if (I->isAlignmentDependent())
   1968       return false;
   1969 
   1970     if (I->isAlignas())
   1971       NewAlignasAttr = I;
   1972 
   1973     unsigned Align = I->getAlignment(S.Context);
   1974     if (Align > NewAlign)
   1975       NewAlign = Align;
   1976   }
   1977 
   1978   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
   1979     // Both declarations have 'alignas' attributes. We require them to match.
   1980     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
   1981     // fall short. (If two declarations both have alignas, they must both match
   1982     // every definition, and so must match each other if there is a definition.)
   1983 
   1984     // If either declaration only contains 'alignas(0)' specifiers, then it
   1985     // specifies the natural alignment for the type.
   1986     if (OldAlign == 0 || NewAlign == 0) {
   1987       QualType Ty;
   1988       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
   1989         Ty = VD->getType();
   1990       else
   1991         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
   1992 
   1993       if (OldAlign == 0)
   1994         OldAlign = S.Context.getTypeAlign(Ty);
   1995       if (NewAlign == 0)
   1996         NewAlign = S.Context.getTypeAlign(Ty);
   1997     }
   1998 
   1999     if (OldAlign != NewAlign) {
   2000       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
   2001         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
   2002         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
   2003       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
   2004     }
   2005   }
   2006 
   2007   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
   2008     // C++11 [dcl.align]p6:
   2009     //   if any declaration of an entity has an alignment-specifier,
   2010     //   every defining declaration of that entity shall specify an
   2011     //   equivalent alignment.
   2012     // C11 6.7.5/7:
   2013     //   If the definition of an object does not have an alignment
   2014     //   specifier, any other declaration of that object shall also
   2015     //   have no alignment specifier.
   2016     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
   2017       << OldAlignasAttr;
   2018     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
   2019       << OldAlignasAttr;
   2020   }
   2021 
   2022   bool AnyAdded = false;
   2023 
   2024   // Ensure we have an attribute representing the strictest alignment.
   2025   if (OldAlign > NewAlign) {
   2026     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
   2027     Clone->setInherited(true);
   2028     New->addAttr(Clone);
   2029     AnyAdded = true;
   2030   }
   2031 
   2032   // Ensure we have an alignas attribute if the old declaration had one.
   2033   if (OldAlignasAttr && !NewAlignasAttr &&
   2034       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
   2035     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
   2036     Clone->setInherited(true);
   2037     New->addAttr(Clone);
   2038     AnyAdded = true;
   2039   }
   2040 
   2041   return AnyAdded;
   2042 }
   2043 
   2044 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
   2045                                const InheritableAttr *Attr, bool Override) {
   2046   InheritableAttr *NewAttr = nullptr;
   2047   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
   2048   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
   2049     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
   2050                                       AA->getIntroduced(), AA->getDeprecated(),
   2051                                       AA->getObsoleted(), AA->getUnavailable(),
   2052                                       AA->getMessage(), Override,
   2053                                       AttrSpellingListIndex);
   2054   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
   2055     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
   2056                                     AttrSpellingListIndex);
   2057   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
   2058     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
   2059                                         AttrSpellingListIndex);
   2060   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
   2061     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
   2062                                    AttrSpellingListIndex);
   2063   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
   2064     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
   2065                                    AttrSpellingListIndex);
   2066   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
   2067     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
   2068                                 FA->getFormatIdx(), FA->getFirstArg(),
   2069                                 AttrSpellingListIndex);
   2070   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
   2071     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
   2072                                  AttrSpellingListIndex);
   2073   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
   2074     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
   2075                                        AttrSpellingListIndex,
   2076                                        IA->getSemanticSpelling());
   2077   else if (isa<AlignedAttr>(Attr))
   2078     // AlignedAttrs are handled separately, because we need to handle all
   2079     // such attributes on a declaration at the same time.
   2080     NewAttr = nullptr;
   2081   else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
   2082     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
   2083 
   2084   if (NewAttr) {
   2085     NewAttr->setInherited(true);
   2086     D->addAttr(NewAttr);
   2087     return true;
   2088   }
   2089 
   2090   return false;
   2091 }
   2092 
   2093 static const Decl *getDefinition(const Decl *D) {
   2094   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
   2095     return TD->getDefinition();
   2096   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   2097     const VarDecl *Def = VD->getDefinition();
   2098     if (Def)
   2099       return Def;
   2100     return VD->getActingDefinition();
   2101   }
   2102   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2103     const FunctionDecl* Def;
   2104     if (FD->isDefined(Def))
   2105       return Def;
   2106   }
   2107   return nullptr;
   2108 }
   2109 
   2110 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
   2111   for (const auto *Attribute : D->attrs())
   2112     if (Attribute->getKind() == Kind)
   2113       return true;
   2114   return false;
   2115 }
   2116 
   2117 /// checkNewAttributesAfterDef - If we already have a definition, check that
   2118 /// there are no new attributes in this declaration.
   2119 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
   2120   if (!New->hasAttrs())
   2121     return;
   2122 
   2123   const Decl *Def = getDefinition(Old);
   2124   if (!Def || Def == New)
   2125     return;
   2126 
   2127   AttrVec &NewAttributes = New->getAttrs();
   2128   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
   2129     const Attr *NewAttribute = NewAttributes[I];
   2130 
   2131     if (isa<AliasAttr>(NewAttribute)) {
   2132       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
   2133         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
   2134       else {
   2135         VarDecl *VD = cast<VarDecl>(New);
   2136         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
   2137                                 VarDecl::TentativeDefinition
   2138                             ? diag::err_alias_after_tentative
   2139                             : diag::err_redefinition;
   2140         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
   2141         S.Diag(Def->getLocation(), diag::note_previous_definition);
   2142         VD->setInvalidDecl();
   2143       }
   2144       ++I;
   2145       continue;
   2146     }
   2147 
   2148     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
   2149       // Tentative definitions are only interesting for the alias check above.
   2150       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
   2151         ++I;
   2152         continue;
   2153       }
   2154     }
   2155 
   2156     if (hasAttribute(Def, NewAttribute->getKind())) {
   2157       ++I;
   2158       continue; // regular attr merging will take care of validating this.
   2159     }
   2160 
   2161     if (isa<C11NoReturnAttr>(NewAttribute)) {
   2162       // C's _Noreturn is allowed to be added to a function after it is defined.
   2163       ++I;
   2164       continue;
   2165     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
   2166       if (AA->isAlignas()) {
   2167         // C++11 [dcl.align]p6:
   2168         //   if any declaration of an entity has an alignment-specifier,
   2169         //   every defining declaration of that entity shall specify an
   2170         //   equivalent alignment.
   2171         // C11 6.7.5/7:
   2172         //   If the definition of an object does not have an alignment
   2173         //   specifier, any other declaration of that object shall also
   2174         //   have no alignment specifier.
   2175         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
   2176           << AA;
   2177         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
   2178           << AA;
   2179         NewAttributes.erase(NewAttributes.begin() + I);
   2180         --E;
   2181         continue;
   2182       }
   2183     }
   2184 
   2185     S.Diag(NewAttribute->getLocation(),
   2186            diag::warn_attribute_precede_definition);
   2187     S.Diag(Def->getLocation(), diag::note_previous_definition);
   2188     NewAttributes.erase(NewAttributes.begin() + I);
   2189     --E;
   2190   }
   2191 }
   2192 
   2193 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
   2194 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
   2195                                AvailabilityMergeKind AMK) {
   2196   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
   2197     UsedAttr *NewAttr = OldAttr->clone(Context);
   2198     NewAttr->setInherited(true);
   2199     New->addAttr(NewAttr);
   2200   }
   2201 
   2202   if (!Old->hasAttrs() && !New->hasAttrs())
   2203     return;
   2204 
   2205   // attributes declared post-definition are currently ignored
   2206   checkNewAttributesAfterDef(*this, New, Old);
   2207 
   2208   if (!Old->hasAttrs())
   2209     return;
   2210 
   2211   bool foundAny = New->hasAttrs();
   2212 
   2213   // Ensure that any moving of objects within the allocated map is done before
   2214   // we process them.
   2215   if (!foundAny) New->setAttrs(AttrVec());
   2216 
   2217   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
   2218     bool Override = false;
   2219     // Ignore deprecated/unavailable/availability attributes if requested.
   2220     if (isa<DeprecatedAttr>(I) ||
   2221         isa<UnavailableAttr>(I) ||
   2222         isa<AvailabilityAttr>(I)) {
   2223       switch (AMK) {
   2224       case AMK_None:
   2225         continue;
   2226 
   2227       case AMK_Redeclaration:
   2228         break;
   2229 
   2230       case AMK_Override:
   2231         Override = true;
   2232         break;
   2233       }
   2234     }
   2235 
   2236     // Already handled.
   2237     if (isa<UsedAttr>(I))
   2238       continue;
   2239 
   2240     if (mergeDeclAttribute(*this, New, I, Override))
   2241       foundAny = true;
   2242   }
   2243 
   2244   if (mergeAlignedAttrs(*this, New, Old))
   2245     foundAny = true;
   2246 
   2247   if (!foundAny) New->dropAttrs();
   2248 }
   2249 
   2250 /// mergeParamDeclAttributes - Copy attributes from the old parameter
   2251 /// to the new one.
   2252 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
   2253                                      const ParmVarDecl *oldDecl,
   2254                                      Sema &S) {
   2255   // C++11 [dcl.attr.depend]p2:
   2256   //   The first declaration of a function shall specify the
   2257   //   carries_dependency attribute for its declarator-id if any declaration
   2258   //   of the function specifies the carries_dependency attribute.
   2259   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
   2260   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
   2261     S.Diag(CDA->getLocation(),
   2262            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
   2263     // Find the first declaration of the parameter.
   2264     // FIXME: Should we build redeclaration chains for function parameters?
   2265     const FunctionDecl *FirstFD =
   2266       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
   2267     const ParmVarDecl *FirstVD =
   2268       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
   2269     S.Diag(FirstVD->getLocation(),
   2270            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
   2271   }
   2272 
   2273   if (!oldDecl->hasAttrs())
   2274     return;
   2275 
   2276   bool foundAny = newDecl->hasAttrs();
   2277 
   2278   // Ensure that any moving of objects within the allocated map is
   2279   // done before we process them.
   2280   if (!foundAny) newDecl->setAttrs(AttrVec());
   2281 
   2282   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
   2283     if (!DeclHasAttr(newDecl, I)) {
   2284       InheritableAttr *newAttr =
   2285         cast<InheritableParamAttr>(I->clone(S.Context));
   2286       newAttr->setInherited(true);
   2287       newDecl->addAttr(newAttr);
   2288       foundAny = true;
   2289     }
   2290   }
   2291 
   2292   if (!foundAny) newDecl->dropAttrs();
   2293 }
   2294 
   2295 namespace {
   2296 
   2297 /// Used in MergeFunctionDecl to keep track of function parameters in
   2298 /// C.
   2299 struct GNUCompatibleParamWarning {
   2300   ParmVarDecl *OldParm;
   2301   ParmVarDecl *NewParm;
   2302   QualType PromotedType;
   2303 };
   2304 
   2305 }
   2306 
   2307 /// getSpecialMember - get the special member enum for a method.
   2308 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
   2309   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
   2310     if (Ctor->isDefaultConstructor())
   2311       return Sema::CXXDefaultConstructor;
   2312 
   2313     if (Ctor->isCopyConstructor())
   2314       return Sema::CXXCopyConstructor;
   2315 
   2316     if (Ctor->isMoveConstructor())
   2317       return Sema::CXXMoveConstructor;
   2318   } else if (isa<CXXDestructorDecl>(MD)) {
   2319     return Sema::CXXDestructor;
   2320   } else if (MD->isCopyAssignmentOperator()) {
   2321     return Sema::CXXCopyAssignment;
   2322   } else if (MD->isMoveAssignmentOperator()) {
   2323     return Sema::CXXMoveAssignment;
   2324   }
   2325 
   2326   return Sema::CXXInvalid;
   2327 }
   2328 
   2329 // Determine whether the previous declaration was a definition, implicit
   2330 // declaration, or a declaration.
   2331 template <typename T>
   2332 static std::pair<diag::kind, SourceLocation>
   2333 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
   2334   diag::kind PrevDiag;
   2335   SourceLocation OldLocation = Old->getLocation();
   2336   if (Old->isThisDeclarationADefinition())
   2337     PrevDiag = diag::note_previous_definition;
   2338   else if (Old->isImplicit()) {
   2339     PrevDiag = diag::note_previous_implicit_declaration;
   2340     if (OldLocation.isInvalid())
   2341       OldLocation = New->getLocation();
   2342   } else
   2343     PrevDiag = diag::note_previous_declaration;
   2344   return std::make_pair(PrevDiag, OldLocation);
   2345 }
   2346 
   2347 /// canRedefineFunction - checks if a function can be redefined. Currently,
   2348 /// only extern inline functions can be redefined, and even then only in
   2349 /// GNU89 mode.
   2350 static bool canRedefineFunction(const FunctionDecl *FD,
   2351                                 const LangOptions& LangOpts) {
   2352   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
   2353           !LangOpts.CPlusPlus &&
   2354           FD->isInlineSpecified() &&
   2355           FD->getStorageClass() == SC_Extern);
   2356 }
   2357 
   2358 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
   2359   const AttributedType *AT = T->getAs<AttributedType>();
   2360   while (AT && !AT->isCallingConv())
   2361     AT = AT->getModifiedType()->getAs<AttributedType>();
   2362   return AT;
   2363 }
   2364 
   2365 template <typename T>
   2366 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
   2367   const DeclContext *DC = Old->getDeclContext();
   2368   if (DC->isRecord())
   2369     return false;
   2370 
   2371   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
   2372   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
   2373     return true;
   2374   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
   2375     return true;
   2376   return false;
   2377 }
   2378 
   2379 /// MergeFunctionDecl - We just parsed a function 'New' from
   2380 /// declarator D which has the same name and scope as a previous
   2381 /// declaration 'Old'.  Figure out how to resolve this situation,
   2382 /// merging decls or emitting diagnostics as appropriate.
   2383 ///
   2384 /// In C++, New and Old must be declarations that are not
   2385 /// overloaded. Use IsOverload to determine whether New and Old are
   2386 /// overloaded, and to select the Old declaration that New should be
   2387 /// merged with.
   2388 ///
   2389 /// Returns true if there was an error, false otherwise.
   2390 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
   2391                              Scope *S, bool MergeTypeWithOld) {
   2392   // Verify the old decl was also a function.
   2393   FunctionDecl *Old = OldD->getAsFunction();
   2394   if (!Old) {
   2395     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
   2396       if (New->getFriendObjectKind()) {
   2397         Diag(New->getLocation(), diag::err_using_decl_friend);
   2398         Diag(Shadow->getTargetDecl()->getLocation(),
   2399              diag::note_using_decl_target);
   2400         Diag(Shadow->getUsingDecl()->getLocation(),
   2401              diag::note_using_decl) << 0;
   2402         return true;
   2403       }
   2404 
   2405       // C++11 [namespace.udecl]p14:
   2406       //   If a function declaration in namespace scope or block scope has the
   2407       //   same name and the same parameter-type-list as a function introduced
   2408       //   by a using-declaration, and the declarations do not declare the same
   2409       //   function, the program is ill-formed.
   2410 
   2411       // Check whether the two declarations might declare the same function.
   2412       Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl());
   2413       if (Old &&
   2414           !Old->getDeclContext()->getRedeclContext()->Equals(
   2415               New->getDeclContext()->getRedeclContext()) &&
   2416           !(Old->isExternC() && New->isExternC()))
   2417         Old = nullptr;
   2418 
   2419       if (!Old) {
   2420         Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
   2421         Diag(Shadow->getTargetDecl()->getLocation(),
   2422              diag::note_using_decl_target);
   2423         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
   2424         return true;
   2425       }
   2426       OldD = Old;
   2427     } else {
   2428       Diag(New->getLocation(), diag::err_redefinition_different_kind)
   2429         << New->getDeclName();
   2430       Diag(OldD->getLocation(), diag::note_previous_definition);
   2431       return true;
   2432     }
   2433   }
   2434 
   2435   // If the old declaration is invalid, just give up here.
   2436   if (Old->isInvalidDecl())
   2437     return true;
   2438 
   2439   diag::kind PrevDiag;
   2440   SourceLocation OldLocation;
   2441   std::tie(PrevDiag, OldLocation) =
   2442       getNoteDiagForInvalidRedeclaration(Old, New);
   2443 
   2444   // Don't complain about this if we're in GNU89 mode and the old function
   2445   // is an extern inline function.
   2446   // Don't complain about specializations. They are not supposed to have
   2447   // storage classes.
   2448   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
   2449       New->getStorageClass() == SC_Static &&
   2450       Old->hasExternalFormalLinkage() &&
   2451       !New->getTemplateSpecializationInfo() &&
   2452       !canRedefineFunction(Old, getLangOpts())) {
   2453     if (getLangOpts().MicrosoftExt) {
   2454       Diag(New->getLocation(), diag::ext_static_non_static) << New;
   2455       Diag(OldLocation, PrevDiag);
   2456     } else {
   2457       Diag(New->getLocation(), diag::err_static_non_static) << New;
   2458       Diag(OldLocation, PrevDiag);
   2459       return true;
   2460     }
   2461   }
   2462 
   2463 
   2464   // If a function is first declared with a calling convention, but is later
   2465   // declared or defined without one, all following decls assume the calling
   2466   // convention of the first.
   2467   //
   2468   // It's OK if a function is first declared without a calling convention,
   2469   // but is later declared or defined with the default calling convention.
   2470   //
   2471   // To test if either decl has an explicit calling convention, we look for
   2472   // AttributedType sugar nodes on the type as written.  If they are missing or
   2473   // were canonicalized away, we assume the calling convention was implicit.
   2474   //
   2475   // Note also that we DO NOT return at this point, because we still have
   2476   // other tests to run.
   2477   QualType OldQType = Context.getCanonicalType(Old->getType());
   2478   QualType NewQType = Context.getCanonicalType(New->getType());
   2479   const FunctionType *OldType = cast<FunctionType>(OldQType);
   2480   const FunctionType *NewType = cast<FunctionType>(NewQType);
   2481   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
   2482   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
   2483   bool RequiresAdjustment = false;
   2484 
   2485   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
   2486     FunctionDecl *First = Old->getFirstDecl();
   2487     const FunctionType *FT =
   2488         First->getType().getCanonicalType()->castAs<FunctionType>();
   2489     FunctionType::ExtInfo FI = FT->getExtInfo();
   2490     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
   2491     if (!NewCCExplicit) {
   2492       // Inherit the CC from the previous declaration if it was specified
   2493       // there but not here.
   2494       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   2495       RequiresAdjustment = true;
   2496     } else {
   2497       // Calling conventions aren't compatible, so complain.
   2498       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
   2499       Diag(New->getLocation(), diag::err_cconv_change)
   2500         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
   2501         << !FirstCCExplicit
   2502         << (!FirstCCExplicit ? "" :
   2503             FunctionType::getNameForCallConv(FI.getCC()));
   2504 
   2505       // Put the note on the first decl, since it is the one that matters.
   2506       Diag(First->getLocation(), diag::note_previous_declaration);
   2507       return true;
   2508     }
   2509   }
   2510 
   2511   // FIXME: diagnose the other way around?
   2512   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
   2513     NewTypeInfo = NewTypeInfo.withNoReturn(true);
   2514     RequiresAdjustment = true;
   2515   }
   2516 
   2517   // Merge regparm attribute.
   2518   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
   2519       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
   2520     if (NewTypeInfo.getHasRegParm()) {
   2521       Diag(New->getLocation(), diag::err_regparm_mismatch)
   2522         << NewType->getRegParmType()
   2523         << OldType->getRegParmType();
   2524       Diag(OldLocation, diag::note_previous_declaration);
   2525       return true;
   2526     }
   2527 
   2528     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
   2529     RequiresAdjustment = true;
   2530   }
   2531 
   2532   // Merge ns_returns_retained attribute.
   2533   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
   2534     if (NewTypeInfo.getProducesResult()) {
   2535       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
   2536       Diag(OldLocation, diag::note_previous_declaration);
   2537       return true;
   2538     }
   2539 
   2540     NewTypeInfo = NewTypeInfo.withProducesResult(true);
   2541     RequiresAdjustment = true;
   2542   }
   2543 
   2544   if (RequiresAdjustment) {
   2545     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
   2546     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
   2547     New->setType(QualType(AdjustedType, 0));
   2548     NewQType = Context.getCanonicalType(New->getType());
   2549     NewType = cast<FunctionType>(NewQType);
   2550   }
   2551 
   2552   // If this redeclaration makes the function inline, we may need to add it to
   2553   // UndefinedButUsed.
   2554   if (!Old->isInlined() && New->isInlined() &&
   2555       !New->hasAttr<GNUInlineAttr>() &&
   2556       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
   2557       Old->isUsed(false) &&
   2558       !Old->isDefined() && !New->isThisDeclarationADefinition())
   2559     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
   2560                                            SourceLocation()));
   2561 
   2562   // If this redeclaration makes it newly gnu_inline, we don't want to warn
   2563   // about it.
   2564   if (New->hasAttr<GNUInlineAttr>() &&
   2565       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
   2566     UndefinedButUsed.erase(Old->getCanonicalDecl());
   2567   }
   2568 
   2569   if (getLangOpts().CPlusPlus) {
   2570     // (C++98 13.1p2):
   2571     //   Certain function declarations cannot be overloaded:
   2572     //     -- Function declarations that differ only in the return type
   2573     //        cannot be overloaded.
   2574 
   2575     // Go back to the type source info to compare the declared return types,
   2576     // per C++1y [dcl.type.auto]p13:
   2577     //   Redeclarations or specializations of a function or function template
   2578     //   with a declared return type that uses a placeholder type shall also
   2579     //   use that placeholder, not a deduced type.
   2580     QualType OldDeclaredReturnType =
   2581         (Old->getTypeSourceInfo()
   2582              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
   2583              : OldType)->getReturnType();
   2584     QualType NewDeclaredReturnType =
   2585         (New->getTypeSourceInfo()
   2586              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
   2587              : NewType)->getReturnType();
   2588     QualType ResQT;
   2589     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
   2590         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
   2591           New->isLocalExternDecl())) {
   2592       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
   2593           OldDeclaredReturnType->isObjCObjectPointerType())
   2594         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
   2595       if (ResQT.isNull()) {
   2596         if (New->isCXXClassMember() && New->isOutOfLine())
   2597           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
   2598               << New << New->getReturnTypeSourceRange();
   2599         else
   2600           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
   2601               << New->getReturnTypeSourceRange();
   2602         Diag(OldLocation, PrevDiag) << Old << Old->getType()
   2603                                     << Old->getReturnTypeSourceRange();
   2604         return true;
   2605       }
   2606       else
   2607         NewQType = ResQT;
   2608     }
   2609 
   2610     QualType OldReturnType = OldType->getReturnType();
   2611     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
   2612     if (OldReturnType != NewReturnType) {
   2613       // If this function has a deduced return type and has already been
   2614       // defined, copy the deduced value from the old declaration.
   2615       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
   2616       if (OldAT && OldAT->isDeduced()) {
   2617         New->setType(
   2618             SubstAutoType(New->getType(),
   2619                           OldAT->isDependentType() ? Context.DependentTy
   2620                                                    : OldAT->getDeducedType()));
   2621         NewQType = Context.getCanonicalType(
   2622             SubstAutoType(NewQType,
   2623                           OldAT->isDependentType() ? Context.DependentTy
   2624                                                    : OldAT->getDeducedType()));
   2625       }
   2626     }
   2627 
   2628     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
   2629     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
   2630     if (OldMethod && NewMethod) {
   2631       // Preserve triviality.
   2632       NewMethod->setTrivial(OldMethod->isTrivial());
   2633 
   2634       // MSVC allows explicit template specialization at class scope:
   2635       // 2 CXXMethodDecls referring to the same function will be injected.
   2636       // We don't want a redeclaration error.
   2637       bool IsClassScopeExplicitSpecialization =
   2638                               OldMethod->isFunctionTemplateSpecialization() &&
   2639                               NewMethod->isFunctionTemplateSpecialization();
   2640       bool isFriend = NewMethod->getFriendObjectKind();
   2641 
   2642       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
   2643           !IsClassScopeExplicitSpecialization) {
   2644         //    -- Member function declarations with the same name and the
   2645         //       same parameter types cannot be overloaded if any of them
   2646         //       is a static member function declaration.
   2647         if (OldMethod->isStatic() != NewMethod->isStatic()) {
   2648           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
   2649           Diag(OldLocation, PrevDiag) << Old << Old->getType();
   2650           return true;
   2651         }
   2652 
   2653         // C++ [class.mem]p1:
   2654         //   [...] A member shall not be declared twice in the
   2655         //   member-specification, except that a nested class or member
   2656         //   class template can be declared and then later defined.
   2657         if (ActiveTemplateInstantiations.empty()) {
   2658           unsigned NewDiag;
   2659           if (isa<CXXConstructorDecl>(OldMethod))
   2660             NewDiag = diag::err_constructor_redeclared;
   2661           else if (isa<CXXDestructorDecl>(NewMethod))
   2662             NewDiag = diag::err_destructor_redeclared;
   2663           else if (isa<CXXConversionDecl>(NewMethod))
   2664             NewDiag = diag::err_conv_function_redeclared;
   2665           else
   2666             NewDiag = diag::err_member_redeclared;
   2667 
   2668           Diag(New->getLocation(), NewDiag);
   2669         } else {
   2670           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
   2671             << New << New->getType();
   2672         }
   2673         Diag(OldLocation, PrevDiag) << Old << Old->getType();
   2674 
   2675       // Complain if this is an explicit declaration of a special
   2676       // member that was initially declared implicitly.
   2677       //
   2678       // As an exception, it's okay to befriend such methods in order
   2679       // to permit the implicit constructor/destructor/operator calls.
   2680       } else if (OldMethod->isImplicit()) {
   2681         if (isFriend) {
   2682           NewMethod->setImplicit();
   2683         } else {
   2684           Diag(NewMethod->getLocation(),
   2685                diag::err_definition_of_implicitly_declared_member)
   2686             << New << getSpecialMember(OldMethod);
   2687           return true;
   2688         }
   2689       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
   2690         Diag(NewMethod->getLocation(),
   2691              diag::err_definition_of_explicitly_defaulted_member)
   2692           << getSpecialMember(OldMethod);
   2693         return true;
   2694       }
   2695     }
   2696 
   2697     // C++11 [dcl.attr.noreturn]p1:
   2698     //   The first declaration of a function shall specify the noreturn
   2699     //   attribute if any declaration of that function specifies the noreturn
   2700     //   attribute.
   2701     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
   2702     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
   2703       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
   2704       Diag(Old->getFirstDecl()->getLocation(),
   2705            diag::note_noreturn_missing_first_decl);
   2706     }
   2707 
   2708     // C++11 [dcl.attr.depend]p2:
   2709     //   The first declaration of a function shall specify the
   2710     //   carries_dependency attribute for its declarator-id if any declaration
   2711     //   of the function specifies the carries_dependency attribute.
   2712     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
   2713     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
   2714       Diag(CDA->getLocation(),
   2715            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
   2716       Diag(Old->getFirstDecl()->getLocation(),
   2717            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
   2718     }
   2719 
   2720     // (C++98 8.3.5p3):
   2721     //   All declarations for a function shall agree exactly in both the
   2722     //   return type and the parameter-type-list.
   2723     // We also want to respect all the extended bits except noreturn.
   2724 
   2725     // noreturn should now match unless the old type info didn't have it.
   2726     QualType OldQTypeForComparison = OldQType;
   2727     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
   2728       assert(OldQType == QualType(OldType, 0));
   2729       const FunctionType *OldTypeForComparison
   2730         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
   2731       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
   2732       assert(OldQTypeForComparison.isCanonical());
   2733     }
   2734 
   2735     if (haveIncompatibleLanguageLinkages(Old, New)) {
   2736       // As a special case, retain the language linkage from previous
   2737       // declarations of a friend function as an extension.
   2738       //
   2739       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
   2740       // and is useful because there's otherwise no way to specify language
   2741       // linkage within class scope.
   2742       //
   2743       // Check cautiously as the friend object kind isn't yet complete.
   2744       if (New->getFriendObjectKind() != Decl::FOK_None) {
   2745         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
   2746         Diag(OldLocation, PrevDiag);
   2747       } else {
   2748         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
   2749         Diag(OldLocation, PrevDiag);
   2750         return true;
   2751       }
   2752     }
   2753 
   2754     if (OldQTypeForComparison == NewQType)
   2755       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
   2756 
   2757     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
   2758         New->isLocalExternDecl()) {
   2759       // It's OK if we couldn't merge types for a local function declaraton
   2760       // if either the old or new type is dependent. We'll merge the types
   2761       // when we instantiate the function.
   2762       return false;
   2763     }
   2764 
   2765     // Fall through for conflicting redeclarations and redefinitions.
   2766   }
   2767 
   2768   // C: Function types need to be compatible, not identical. This handles
   2769   // duplicate function decls like "void f(int); void f(enum X);" properly.
   2770   if (!getLangOpts().CPlusPlus &&
   2771       Context.typesAreCompatible(OldQType, NewQType)) {
   2772     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
   2773     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
   2774     const FunctionProtoType *OldProto = nullptr;
   2775     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
   2776         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
   2777       // The old declaration provided a function prototype, but the
   2778       // new declaration does not. Merge in the prototype.
   2779       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
   2780       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
   2781       NewQType =
   2782           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
   2783                                   OldProto->getExtProtoInfo());
   2784       New->setType(NewQType);
   2785       New->setHasInheritedPrototype();
   2786 
   2787       // Synthesize parameters with the same types.
   2788       SmallVector<ParmVarDecl*, 16> Params;
   2789       for (const auto &ParamType : OldProto->param_types()) {
   2790         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
   2791                                                  SourceLocation(), nullptr,
   2792                                                  ParamType, /*TInfo=*/nullptr,
   2793                                                  SC_None, nullptr);
   2794         Param->setScopeInfo(0, Params.size());
   2795         Param->setImplicit();
   2796         Params.push_back(Param);
   2797       }
   2798 
   2799       New->setParams(Params);
   2800     }
   2801 
   2802     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
   2803   }
   2804 
   2805   // GNU C permits a K&R definition to follow a prototype declaration
   2806   // if the declared types of the parameters in the K&R definition
   2807   // match the types in the prototype declaration, even when the
   2808   // promoted types of the parameters from the K&R definition differ
   2809   // from the types in the prototype. GCC then keeps the types from
   2810   // the prototype.
   2811   //
   2812   // If a variadic prototype is followed by a non-variadic K&R definition,
   2813   // the K&R definition becomes variadic.  This is sort of an edge case, but
   2814   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
   2815   // C99 6.9.1p8.
   2816   if (!getLangOpts().CPlusPlus &&
   2817       Old->hasPrototype() && !New->hasPrototype() &&
   2818       New->getType()->getAs<FunctionProtoType>() &&
   2819       Old->getNumParams() == New->getNumParams()) {
   2820     SmallVector<QualType, 16> ArgTypes;
   2821     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
   2822     const FunctionProtoType *OldProto
   2823       = Old->getType()->getAs<FunctionProtoType>();
   2824     const FunctionProtoType *NewProto
   2825       = New->getType()->getAs<FunctionProtoType>();
   2826 
   2827     // Determine whether this is the GNU C extension.
   2828     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
   2829                                                NewProto->getReturnType());
   2830     bool LooseCompatible = !MergedReturn.isNull();
   2831     for (unsigned Idx = 0, End = Old->getNumParams();
   2832          LooseCompatible && Idx != End; ++Idx) {
   2833       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
   2834       ParmVarDecl *NewParm = New->getParamDecl(Idx);
   2835       if (Context.typesAreCompatible(OldParm->getType(),
   2836                                      NewProto->getParamType(Idx))) {
   2837         ArgTypes.push_back(NewParm->getType());
   2838       } else if (Context.typesAreCompatible(OldParm->getType(),
   2839                                             NewParm->getType(),
   2840                                             /*CompareUnqualified=*/true)) {
   2841         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
   2842                                            NewProto->getParamType(Idx) };
   2843         Warnings.push_back(Warn);
   2844         ArgTypes.push_back(NewParm->getType());
   2845       } else
   2846         LooseCompatible = false;
   2847     }
   2848 
   2849     if (LooseCompatible) {
   2850       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
   2851         Diag(Warnings[Warn].NewParm->getLocation(),
   2852              diag::ext_param_promoted_not_compatible_with_prototype)
   2853           << Warnings[Warn].PromotedType
   2854           << Warnings[Warn].OldParm->getType();
   2855         if (Warnings[Warn].OldParm->getLocation().isValid())
   2856           Diag(Warnings[Warn].OldParm->getLocation(),
   2857                diag::note_previous_declaration);
   2858       }
   2859 
   2860       if (MergeTypeWithOld)
   2861         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
   2862                                              OldProto->getExtProtoInfo()));
   2863       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
   2864     }
   2865 
   2866     // Fall through to diagnose conflicting types.
   2867   }
   2868 
   2869   // A function that has already been declared has been redeclared or
   2870   // defined with a different type; show an appropriate diagnostic.
   2871 
   2872   // If the previous declaration was an implicitly-generated builtin
   2873   // declaration, then at the very least we should use a specialized note.
   2874   unsigned BuiltinID;
   2875   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
   2876     // If it's actually a library-defined builtin function like 'malloc'
   2877     // or 'printf', just warn about the incompatible redeclaration.
   2878     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   2879       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
   2880       Diag(OldLocation, diag::note_previous_builtin_declaration)
   2881         << Old << Old->getType();
   2882 
   2883       // If this is a global redeclaration, just forget hereafter
   2884       // about the "builtin-ness" of the function.
   2885       //
   2886       // Doing this for local extern declarations is problematic.  If
   2887       // the builtin declaration remains visible, a second invalid
   2888       // local declaration will produce a hard error; if it doesn't
   2889       // remain visible, a single bogus local redeclaration (which is
   2890       // actually only a warning) could break all the downstream code.
   2891       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
   2892         New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
   2893 
   2894       return false;
   2895     }
   2896 
   2897     PrevDiag = diag::note_previous_builtin_declaration;
   2898   }
   2899 
   2900   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
   2901   Diag(OldLocation, PrevDiag) << Old << Old->getType();
   2902   return true;
   2903 }
   2904 
   2905 /// \brief Completes the merge of two function declarations that are
   2906 /// known to be compatible.
   2907 ///
   2908 /// This routine handles the merging of attributes and other
   2909 /// properties of function declarations from the old declaration to
   2910 /// the new declaration, once we know that New is in fact a
   2911 /// redeclaration of Old.
   2912 ///
   2913 /// \returns false
   2914 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
   2915                                         Scope *S, bool MergeTypeWithOld) {
   2916   // Merge the attributes
   2917   mergeDeclAttributes(New, Old);
   2918 
   2919   // Merge "pure" flag.
   2920   if (Old->isPure())
   2921     New->setPure();
   2922 
   2923   // Merge "used" flag.
   2924   if (Old->getMostRecentDecl()->isUsed(false))
   2925     New->setIsUsed();
   2926 
   2927   // Merge attributes from the parameters.  These can mismatch with K&R
   2928   // declarations.
   2929   if (New->getNumParams() == Old->getNumParams())
   2930     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
   2931       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
   2932                                *this);
   2933 
   2934   if (getLangOpts().CPlusPlus)
   2935     return MergeCXXFunctionDecl(New, Old, S);
   2936 
   2937   // Merge the function types so the we get the composite types for the return
   2938   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
   2939   // was visible.
   2940   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
   2941   if (!Merged.isNull() && MergeTypeWithOld)
   2942     New->setType(Merged);
   2943 
   2944   return false;
   2945 }
   2946 
   2947 
   2948 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
   2949                                 ObjCMethodDecl *oldMethod) {
   2950 
   2951   // Merge the attributes, including deprecated/unavailable
   2952   AvailabilityMergeKind MergeKind =
   2953     isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
   2954                                                    : AMK_Override;
   2955   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
   2956 
   2957   // Merge attributes from the parameters.
   2958   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
   2959                                        oe = oldMethod->param_end();
   2960   for (ObjCMethodDecl::param_iterator
   2961          ni = newMethod->param_begin(), ne = newMethod->param_end();
   2962        ni != ne && oi != oe; ++ni, ++oi)
   2963     mergeParamDeclAttributes(*ni, *oi, *this);
   2964 
   2965   CheckObjCMethodOverride(newMethod, oldMethod);
   2966 }
   2967 
   2968 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
   2969 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
   2970 /// emitting diagnostics as appropriate.
   2971 ///
   2972 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
   2973 /// to here in AddInitializerToDecl. We can't check them before the initializer
   2974 /// is attached.
   2975 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
   2976                              bool MergeTypeWithOld) {
   2977   if (New->isInvalidDecl() || Old->isInvalidDecl())
   2978     return;
   2979 
   2980   QualType MergedT;
   2981   if (getLangOpts().CPlusPlus) {
   2982     if (New->getType()->isUndeducedType()) {
   2983       // We don't know what the new type is until the initializer is attached.
   2984       return;
   2985     } else if (Context.hasSameType(New->getType(), Old->getType())) {
   2986       // These could still be something that needs exception specs checked.
   2987       return MergeVarDeclExceptionSpecs(New, Old);
   2988     }
   2989     // C++ [basic.link]p10:
   2990     //   [...] the types specified by all declarations referring to a given
   2991     //   object or function shall be identical, except that declarations for an
   2992     //   array object can specify array types that differ by the presence or
   2993     //   absence of a major array bound (8.3.4).
   2994     else if (Old->getType()->isIncompleteArrayType() &&
   2995              New->getType()->isArrayType()) {
   2996       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
   2997       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
   2998       if (Context.hasSameType(OldArray->getElementType(),
   2999                               NewArray->getElementType()))
   3000         MergedT = New->getType();
   3001     } else if (Old->getType()->isArrayType() &&
   3002                New->getType()->isIncompleteArrayType()) {
   3003       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
   3004       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
   3005       if (Context.hasSameType(OldArray->getElementType(),
   3006                               NewArray->getElementType()))
   3007         MergedT = Old->getType();
   3008     } else if (New->getType()->isObjCObjectPointerType() &&
   3009                Old->getType()->isObjCObjectPointerType()) {
   3010       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
   3011                                               Old->getType());
   3012     }
   3013   } else {
   3014     // C 6.2.7p2:
   3015     //   All declarations that refer to the same object or function shall have
   3016     //   compatible type.
   3017     MergedT = Context.mergeTypes(New->getType(), Old->getType());
   3018   }
   3019   if (MergedT.isNull()) {
   3020     // It's OK if we couldn't merge types if either type is dependent, for a
   3021     // block-scope variable. In other cases (static data members of class
   3022     // templates, variable templates, ...), we require the types to be
   3023     // equivalent.
   3024     // FIXME: The C++ standard doesn't say anything about this.
   3025     if ((New->getType()->isDependentType() ||
   3026          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
   3027       // If the old type was dependent, we can't merge with it, so the new type
   3028       // becomes dependent for now. We'll reproduce the original type when we
   3029       // instantiate the TypeSourceInfo for the variable.
   3030       if (!New->getType()->isDependentType() && MergeTypeWithOld)
   3031         New->setType(Context.DependentTy);
   3032       return;
   3033     }
   3034 
   3035     // FIXME: Even if this merging succeeds, some other non-visible declaration
   3036     // of this variable might have an incompatible type. For instance:
   3037     //
   3038     //   extern int arr[];
   3039     //   void f() { extern int arr[2]; }
   3040     //   void g() { extern int arr[3]; }
   3041     //
   3042     // Neither C nor C++ requires a diagnostic for this, but we should still try
   3043     // to diagnose it.
   3044     Diag(New->getLocation(), diag::err_redefinition_different_type)
   3045       << New->getDeclName() << New->getType() << Old->getType();
   3046     Diag(Old->getLocation(), diag::note_previous_definition);
   3047     return New->setInvalidDecl();
   3048   }
   3049 
   3050   // Don't actually update the type on the new declaration if the old
   3051   // declaration was an extern declaration in a different scope.
   3052   if (MergeTypeWithOld)
   3053     New->setType(MergedT);
   3054 }
   3055 
   3056 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
   3057                                   LookupResult &Previous) {
   3058   // C11 6.2.7p4:
   3059   //   For an identifier with internal or external linkage declared
   3060   //   in a scope in which a prior declaration of that identifier is
   3061   //   visible, if the prior declaration specifies internal or
   3062   //   external linkage, the type of the identifier at the later
   3063   //   declaration becomes the composite type.
   3064   //
   3065   // If the variable isn't visible, we do not merge with its type.
   3066   if (Previous.isShadowed())
   3067     return false;
   3068 
   3069   if (S.getLangOpts().CPlusPlus) {
   3070     // C++11 [dcl.array]p3:
   3071     //   If there is a preceding declaration of the entity in the same
   3072     //   scope in which the bound was specified, an omitted array bound
   3073     //   is taken to be the same as in that earlier declaration.
   3074     return NewVD->isPreviousDeclInSameBlockScope() ||
   3075            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
   3076             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
   3077   } else {
   3078     // If the old declaration was function-local, don't merge with its
   3079     // type unless we're in the same function.
   3080     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
   3081            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
   3082   }
   3083 }
   3084 
   3085 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
   3086 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
   3087 /// situation, merging decls or emitting diagnostics as appropriate.
   3088 ///
   3089 /// Tentative definition rules (C99 6.9.2p2) are checked by
   3090 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
   3091 /// definitions here, since the initializer hasn't been attached.
   3092 ///
   3093 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
   3094   // If the new decl is already invalid, don't do any other checking.
   3095   if (New->isInvalidDecl())
   3096     return;
   3097 
   3098   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
   3099 
   3100   // Verify the old decl was also a variable or variable template.
   3101   VarDecl *Old = nullptr;
   3102   VarTemplateDecl *OldTemplate = nullptr;
   3103   if (Previous.isSingleResult()) {
   3104     if (NewTemplate) {
   3105       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
   3106       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
   3107     } else
   3108       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
   3109   }
   3110   if (!Old) {
   3111     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   3112       << New->getDeclName();
   3113     Diag(Previous.getRepresentativeDecl()->getLocation(),
   3114          diag::note_previous_definition);
   3115     return New->setInvalidDecl();
   3116   }
   3117 
   3118   if (!shouldLinkPossiblyHiddenDecl(Old, New))
   3119     return;
   3120 
   3121   // Ensure the template parameters are compatible.
   3122   if (NewTemplate &&
   3123       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
   3124                                       OldTemplate->getTemplateParameters(),
   3125                                       /*Complain=*/true, TPL_TemplateMatch))
   3126     return;
   3127 
   3128   // C++ [class.mem]p1:
   3129   //   A member shall not be declared twice in the member-specification [...]
   3130   //
   3131   // Here, we need only consider static data members.
   3132   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
   3133     Diag(New->getLocation(), diag::err_duplicate_member)
   3134       << New->getIdentifier();
   3135     Diag(Old->getLocation(), diag::note_previous_declaration);
   3136     New->setInvalidDecl();
   3137   }
   3138 
   3139   mergeDeclAttributes(New, Old);
   3140   // Warn if an already-declared variable is made a weak_import in a subsequent
   3141   // declaration
   3142   if (New->hasAttr<WeakImportAttr>() &&
   3143       Old->getStorageClass() == SC_None &&
   3144       !Old->hasAttr<WeakImportAttr>()) {
   3145     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
   3146     Diag(Old->getLocation(), diag::note_previous_definition);
   3147     // Remove weak_import attribute on new declaration.
   3148     New->dropAttr<WeakImportAttr>();
   3149   }
   3150 
   3151   // Merge the types.
   3152   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
   3153 
   3154   if (New->isInvalidDecl())
   3155     return;
   3156 
   3157   diag::kind PrevDiag;
   3158   SourceLocation OldLocation;
   3159   std::tie(PrevDiag, OldLocation) =
   3160       getNoteDiagForInvalidRedeclaration(Old, New);
   3161 
   3162   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
   3163   if (New->getStorageClass() == SC_Static &&
   3164       !New->isStaticDataMember() &&
   3165       Old->hasExternalFormalLinkage()) {
   3166     if (getLangOpts().MicrosoftExt) {
   3167       Diag(New->getLocation(), diag::ext_static_non_static)
   3168           << New->getDeclName();
   3169       Diag(OldLocation, PrevDiag);
   3170     } else {
   3171       Diag(New->getLocation(), diag::err_static_non_static)
   3172           << New->getDeclName();
   3173       Diag(OldLocation, PrevDiag);
   3174       return New->setInvalidDecl();
   3175     }
   3176   }
   3177   // C99 6.2.2p4:
   3178   //   For an identifier declared with the storage-class specifier
   3179   //   extern in a scope in which a prior declaration of that
   3180   //   identifier is visible,23) if the prior declaration specifies
   3181   //   internal or external linkage, the linkage of the identifier at
   3182   //   the later declaration is the same as the linkage specified at
   3183   //   the prior declaration. If no prior declaration is visible, or
   3184   //   if the prior declaration specifies no linkage, then the
   3185   //   identifier has external linkage.
   3186   if (New->hasExternalStorage() && Old->hasLinkage())
   3187     /* Okay */;
   3188   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
   3189            !New->isStaticDataMember() &&
   3190            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
   3191     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
   3192     Diag(OldLocation, PrevDiag);
   3193     return New->setInvalidDecl();
   3194   }
   3195 
   3196   // Check if extern is followed by non-extern and vice-versa.
   3197   if (New->hasExternalStorage() &&
   3198       !Old->hasLinkage() && Old->isLocalVarDecl()) {
   3199     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
   3200     Diag(OldLocation, PrevDiag);
   3201     return New->setInvalidDecl();
   3202   }
   3203   if (Old->hasLinkage() && New->isLocalVarDecl() &&
   3204       !New->hasExternalStorage()) {
   3205     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
   3206     Diag(OldLocation, PrevDiag);
   3207     return New->setInvalidDecl();
   3208   }
   3209 
   3210   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
   3211 
   3212   // FIXME: The test for external storage here seems wrong? We still
   3213   // need to check for mismatches.
   3214   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
   3215       // Don't complain about out-of-line definitions of static members.
   3216       !(Old->getLexicalDeclContext()->isRecord() &&
   3217         !New->getLexicalDeclContext()->isRecord())) {
   3218     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
   3219     Diag(OldLocation, PrevDiag);
   3220     return New->setInvalidDecl();
   3221   }
   3222 
   3223   if (New->getTLSKind() != Old->getTLSKind()) {
   3224     if (!Old->getTLSKind()) {
   3225       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
   3226       Diag(OldLocation, PrevDiag);
   3227     } else if (!New->getTLSKind()) {
   3228       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
   3229       Diag(OldLocation, PrevDiag);
   3230     } else {
   3231       // Do not allow redeclaration to change the variable between requiring
   3232       // static and dynamic initialization.
   3233       // FIXME: GCC allows this, but uses the TLS keyword on the first
   3234       // declaration to determine the kind. Do we need to be compatible here?
   3235       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
   3236         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
   3237       Diag(OldLocation, PrevDiag);
   3238     }
   3239   }
   3240 
   3241   // C++ doesn't have tentative definitions, so go right ahead and check here.
   3242   const VarDecl *Def;
   3243   if (getLangOpts().CPlusPlus &&
   3244       New->isThisDeclarationADefinition() == VarDecl::Definition &&
   3245       (Def = Old->getDefinition())) {
   3246     Diag(New->getLocation(), diag::err_redefinition) << New;
   3247     Diag(Def->getLocation(), diag::note_previous_definition);
   3248     New->setInvalidDecl();
   3249     return;
   3250   }
   3251 
   3252   if (haveIncompatibleLanguageLinkages(Old, New)) {
   3253     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
   3254     Diag(OldLocation, PrevDiag);
   3255     New->setInvalidDecl();
   3256     return;
   3257   }
   3258 
   3259   // Merge "used" flag.
   3260   if (Old->getMostRecentDecl()->isUsed(false))
   3261     New->setIsUsed();
   3262 
   3263   // Keep a chain of previous declarations.
   3264   New->setPreviousDecl(Old);
   3265   if (NewTemplate)
   3266     NewTemplate->setPreviousDecl(OldTemplate);
   3267 
   3268   // Inherit access appropriately.
   3269   New->setAccess(Old->getAccess());
   3270   if (NewTemplate)
   3271     NewTemplate->setAccess(New->getAccess());
   3272 }
   3273 
   3274 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   3275 /// no declarator (e.g. "struct foo;") is parsed.
   3276 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   3277                                        DeclSpec &DS) {
   3278   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
   3279 }
   3280 
   3281 static void HandleTagNumbering(Sema &S, const TagDecl *Tag, Scope *TagScope) {
   3282   if (!S.Context.getLangOpts().CPlusPlus)
   3283     return;
   3284 
   3285   if (isa<CXXRecordDecl>(Tag->getParent())) {
   3286     // If this tag is the direct child of a class, number it if
   3287     // it is anonymous.
   3288     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
   3289       return;
   3290     MangleNumberingContext &MCtx =
   3291         S.Context.getManglingNumberContext(Tag->getParent());
   3292     S.Context.setManglingNumber(
   3293         Tag, MCtx.getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
   3294     return;
   3295   }
   3296 
   3297   // If this tag isn't a direct child of a class, number it if it is local.
   3298   Decl *ManglingContextDecl;
   3299   if (MangleNumberingContext *MCtx =
   3300           S.getCurrentMangleNumberContext(Tag->getDeclContext(),
   3301                                           ManglingContextDecl)) {
   3302     S.Context.setManglingNumber(
   3303         Tag,
   3304         MCtx->getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
   3305   }
   3306 }
   3307 
   3308 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   3309 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
   3310 /// parameters to cope with template friend declarations.
   3311 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   3312                                        DeclSpec &DS,
   3313                                        MultiTemplateParamsArg TemplateParams,
   3314                                        bool IsExplicitInstantiation) {
   3315   Decl *TagD = nullptr;
   3316   TagDecl *Tag = nullptr;
   3317   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
   3318       DS.getTypeSpecType() == DeclSpec::TST_struct ||
   3319       DS.getTypeSpecType() == DeclSpec::TST_interface ||
   3320       DS.getTypeSpecType() == DeclSpec::TST_union ||
   3321       DS.getTypeSpecType() == DeclSpec::TST_enum) {
   3322     TagD = DS.getRepAsDecl();
   3323 
   3324     if (!TagD) // We probably had an error
   3325       return nullptr;
   3326 
   3327     // Note that the above type specs guarantee that the
   3328     // type rep is a Decl, whereas in many of the others
   3329     // it's a Type.
   3330     if (isa<TagDecl>(TagD))
   3331       Tag = cast<TagDecl>(TagD);
   3332     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
   3333       Tag = CTD->getTemplatedDecl();
   3334   }
   3335 
   3336   if (Tag) {
   3337     HandleTagNumbering(*this, Tag, S);
   3338     Tag->setFreeStanding();
   3339     if (Tag->isInvalidDecl())
   3340       return Tag;
   3341   }
   3342 
   3343   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   3344     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
   3345     // or incomplete types shall not be restrict-qualified."
   3346     if (TypeQuals & DeclSpec::TQ_restrict)
   3347       Diag(DS.getRestrictSpecLoc(),
   3348            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
   3349            << DS.getSourceRange();
   3350   }
   3351 
   3352   if (DS.isConstexprSpecified()) {
   3353     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
   3354     // and definitions of functions and variables.
   3355     if (Tag)
   3356       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
   3357         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
   3358             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
   3359             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
   3360             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
   3361     else
   3362       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
   3363     // Don't emit warnings after this error.
   3364     return TagD;
   3365   }
   3366 
   3367   DiagnoseFunctionSpecifiers(DS);
   3368 
   3369   if (DS.isFriendSpecified()) {
   3370     // If we're dealing with a decl but not a TagDecl, assume that
   3371     // whatever routines created it handled the friendship aspect.
   3372     if (TagD && !Tag)
   3373       return nullptr;
   3374     return ActOnFriendTypeDecl(S, DS, TemplateParams);
   3375   }
   3376 
   3377   CXXScopeSpec &SS = DS.getTypeSpecScope();
   3378   bool IsExplicitSpecialization =
   3379     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
   3380   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
   3381       !IsExplicitInstantiation && !IsExplicitSpecialization) {
   3382     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
   3383     // nested-name-specifier unless it is an explicit instantiation
   3384     // or an explicit specialization.
   3385     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
   3386     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
   3387       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
   3388           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
   3389           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
   3390           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
   3391       << SS.getRange();
   3392     return nullptr;
   3393   }
   3394 
   3395   // Track whether this decl-specifier declares anything.
   3396   bool DeclaresAnything = true;
   3397 
   3398   // Handle anonymous struct definitions.
   3399   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
   3400     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
   3401         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
   3402       if (getLangOpts().CPlusPlus ||
   3403           Record->getDeclContext()->isRecord())
   3404         return BuildAnonymousStructOrUnion(S, DS, AS, Record, Context.getPrintingPolicy());
   3405 
   3406       DeclaresAnything = false;
   3407     }
   3408   }
   3409 
   3410   // Check for Microsoft C extension: anonymous struct member.
   3411   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
   3412       CurContext->isRecord() &&
   3413       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
   3414     // Handle 2 kinds of anonymous struct:
   3415     //   struct STRUCT;
   3416     // and
   3417     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
   3418     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
   3419     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
   3420         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
   3421          DS.getRepAsType().get()->isStructureType())) {
   3422       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
   3423         << DS.getSourceRange();
   3424       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
   3425     }
   3426   }
   3427 
   3428   // Skip all the checks below if we have a type error.
   3429   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
   3430       (TagD && TagD->isInvalidDecl()))
   3431     return TagD;
   3432 
   3433   if (getLangOpts().CPlusPlus &&
   3434       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
   3435     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
   3436       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
   3437           !Enum->getIdentifier() && !Enum->isInvalidDecl())
   3438         DeclaresAnything = false;
   3439 
   3440   if (!DS.isMissingDeclaratorOk()) {
   3441     // Customize diagnostic for a typedef missing a name.
   3442     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
   3443       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
   3444         << DS.getSourceRange();
   3445     else
   3446       DeclaresAnything = false;
   3447   }
   3448 
   3449   if (DS.isModulePrivateSpecified() &&
   3450       Tag && Tag->getDeclContext()->isFunctionOrMethod())
   3451     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
   3452       << Tag->getTagKind()
   3453       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
   3454 
   3455   ActOnDocumentableDecl(TagD);
   3456 
   3457   // C 6.7/2:
   3458   //   A declaration [...] shall declare at least a declarator [...], a tag,
   3459   //   or the members of an enumeration.
   3460   // C++ [dcl.dcl]p3:
   3461   //   [If there are no declarators], and except for the declaration of an
   3462   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
   3463   //   names into the program, or shall redeclare a name introduced by a
   3464   //   previous declaration.
   3465   if (!DeclaresAnything) {
   3466     // In C, we allow this as a (popular) extension / bug. Don't bother
   3467     // producing further diagnostics for redundant qualifiers after this.
   3468     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
   3469     return TagD;
   3470   }
   3471 
   3472   // C++ [dcl.stc]p1:
   3473   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
   3474   //   init-declarator-list of the declaration shall not be empty.
   3475   // C++ [dcl.fct.spec]p1:
   3476   //   If a cv-qualifier appears in a decl-specifier-seq, the
   3477   //   init-declarator-list of the declaration shall not be empty.
   3478   //
   3479   // Spurious qualifiers here appear to be valid in C.
   3480   unsigned DiagID = diag::warn_standalone_specifier;
   3481   if (getLangOpts().CPlusPlus)
   3482     DiagID = diag::ext_standalone_specifier;
   3483 
   3484   // Note that a linkage-specification sets a storage class, but
   3485   // 'extern "C" struct foo;' is actually valid and not theoretically
   3486   // useless.
   3487   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
   3488     if (SCS == DeclSpec::SCS_mutable)
   3489       // Since mutable is not a viable storage class specifier in C, there is
   3490       // no reason to treat it as an extension. Instead, diagnose as an error.
   3491       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
   3492     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
   3493       Diag(DS.getStorageClassSpecLoc(), DiagID)
   3494         << DeclSpec::getSpecifierName(SCS);
   3495   }
   3496 
   3497   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
   3498     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
   3499       << DeclSpec::getSpecifierName(TSCS);
   3500   if (DS.getTypeQualifiers()) {
   3501     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   3502       Diag(DS.getConstSpecLoc(), DiagID) << "const";
   3503     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   3504       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
   3505     // Restrict is covered above.
   3506     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   3507       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
   3508   }
   3509 
   3510   // Warn about ignored type attributes, for example:
   3511   // __attribute__((aligned)) struct A;
   3512   // Attributes should be placed after tag to apply to type declaration.
   3513   if (!DS.getAttributes().empty()) {
   3514     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
   3515     if (TypeSpecType == DeclSpec::TST_class ||
   3516         TypeSpecType == DeclSpec::TST_struct ||
   3517         TypeSpecType == DeclSpec::TST_interface ||
   3518         TypeSpecType == DeclSpec::TST_union ||
   3519         TypeSpecType == DeclSpec::TST_enum) {
   3520       AttributeList* attrs = DS.getAttributes().getList();
   3521       while (attrs) {
   3522         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
   3523         << attrs->getName()
   3524         << (TypeSpecType == DeclSpec::TST_class ? 0 :
   3525             TypeSpecType == DeclSpec::TST_struct ? 1 :
   3526             TypeSpecType == DeclSpec::TST_union ? 2 :
   3527             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
   3528         attrs = attrs->getNext();
   3529       }
   3530     }
   3531   }
   3532 
   3533   return TagD;
   3534 }
   3535 
   3536 /// We are trying to inject an anonymous member into the given scope;
   3537 /// check if there's an existing declaration that can't be overloaded.
   3538 ///
   3539 /// \return true if this is a forbidden redeclaration
   3540 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
   3541                                          Scope *S,
   3542                                          DeclContext *Owner,
   3543                                          DeclarationName Name,
   3544                                          SourceLocation NameLoc,
   3545                                          unsigned diagnostic) {
   3546   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
   3547                  Sema::ForRedeclaration);
   3548   if (!SemaRef.LookupName(R, S)) return false;
   3549 
   3550   if (R.getAsSingle<TagDecl>())
   3551     return false;
   3552 
   3553   // Pick a representative declaration.
   3554   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
   3555   assert(PrevDecl && "Expected a non-null Decl");
   3556 
   3557   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
   3558     return false;
   3559 
   3560   SemaRef.Diag(NameLoc, diagnostic) << Name;
   3561   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   3562 
   3563   return true;
   3564 }
   3565 
   3566 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
   3567 /// anonymous struct or union AnonRecord into the owning context Owner
   3568 /// and scope S. This routine will be invoked just after we realize
   3569 /// that an unnamed union or struct is actually an anonymous union or
   3570 /// struct, e.g.,
   3571 ///
   3572 /// @code
   3573 /// union {
   3574 ///   int i;
   3575 ///   float f;
   3576 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
   3577 ///    // f into the surrounding scope.x
   3578 /// @endcode
   3579 ///
   3580 /// This routine is recursive, injecting the names of nested anonymous
   3581 /// structs/unions into the owning context and scope as well.
   3582 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
   3583                                          DeclContext *Owner,
   3584                                          RecordDecl *AnonRecord,
   3585                                          AccessSpecifier AS,
   3586                                          SmallVectorImpl<NamedDecl *> &Chaining,
   3587                                          bool MSAnonStruct) {
   3588   unsigned diagKind
   3589     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
   3590                             : diag::err_anonymous_struct_member_redecl;
   3591 
   3592   bool Invalid = false;
   3593 
   3594   // Look every FieldDecl and IndirectFieldDecl with a name.
   3595   for (auto *D : AnonRecord->decls()) {
   3596     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
   3597         cast<NamedDecl>(D)->getDeclName()) {
   3598       ValueDecl *VD = cast<ValueDecl>(D);
   3599       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
   3600                                        VD->getLocation(), diagKind)) {
   3601         // C++ [class.union]p2:
   3602         //   The names of the members of an anonymous union shall be
   3603         //   distinct from the names of any other entity in the
   3604         //   scope in which the anonymous union is declared.
   3605         Invalid = true;
   3606       } else {
   3607         // C++ [class.union]p2:
   3608         //   For the purpose of name lookup, after the anonymous union
   3609         //   definition, the members of the anonymous union are
   3610         //   considered to have been defined in the scope in which the
   3611         //   anonymous union is declared.
   3612         unsigned OldChainingSize = Chaining.size();
   3613         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
   3614           for (auto *PI : IF->chain())
   3615             Chaining.push_back(PI);
   3616         else
   3617           Chaining.push_back(VD);
   3618 
   3619         assert(Chaining.size() >= 2);
   3620         NamedDecl **NamedChain =
   3621           new (SemaRef.Context)NamedDecl*[Chaining.size()];
   3622         for (unsigned i = 0; i < Chaining.size(); i++)
   3623           NamedChain[i] = Chaining[i];
   3624 
   3625         IndirectFieldDecl* IndirectField =
   3626           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
   3627                                     VD->getIdentifier(), VD->getType(),
   3628                                     NamedChain, Chaining.size());
   3629 
   3630         IndirectField->setAccess(AS);
   3631         IndirectField->setImplicit();
   3632         SemaRef.PushOnScopeChains(IndirectField, S);
   3633 
   3634         // That includes picking up the appropriate access specifier.
   3635         if (AS != AS_none) IndirectField->setAccess(AS);
   3636 
   3637         Chaining.resize(OldChainingSize);
   3638       }
   3639     }
   3640   }
   3641 
   3642   return Invalid;
   3643 }
   3644 
   3645 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
   3646 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
   3647 /// illegal input values are mapped to SC_None.
   3648 static StorageClass
   3649 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
   3650   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
   3651   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
   3652          "Parser allowed 'typedef' as storage class VarDecl.");
   3653   switch (StorageClassSpec) {
   3654   case DeclSpec::SCS_unspecified:    return SC_None;
   3655   case DeclSpec::SCS_extern:
   3656     if (DS.isExternInLinkageSpec())
   3657       return SC_None;
   3658     return SC_Extern;
   3659   case DeclSpec::SCS_static:         return SC_Static;
   3660   case DeclSpec::SCS_auto:           return SC_Auto;
   3661   case DeclSpec::SCS_register:       return SC_Register;
   3662   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   3663     // Illegal SCSs map to None: error reporting is up to the caller.
   3664   case DeclSpec::SCS_mutable:        // Fall through.
   3665   case DeclSpec::SCS_typedef:        return SC_None;
   3666   }
   3667   llvm_unreachable("unknown storage class specifier");
   3668 }
   3669 
   3670 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
   3671   assert(Record->hasInClassInitializer());
   3672 
   3673   for (const auto *I : Record->decls()) {
   3674     const auto *FD = dyn_cast<FieldDecl>(I);
   3675     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
   3676       FD = IFD->getAnonField();
   3677     if (FD && FD->hasInClassInitializer())
   3678       return FD->getLocation();
   3679   }
   3680 
   3681   llvm_unreachable("couldn't find in-class initializer");
   3682 }
   3683 
   3684 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
   3685                                       SourceLocation DefaultInitLoc) {
   3686   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
   3687     return;
   3688 
   3689   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
   3690   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
   3691 }
   3692 
   3693 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
   3694                                       CXXRecordDecl *AnonUnion) {
   3695   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
   3696     return;
   3697 
   3698   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
   3699 }
   3700 
   3701 /// BuildAnonymousStructOrUnion - Handle the declaration of an
   3702 /// anonymous structure or union. Anonymous unions are a C++ feature
   3703 /// (C++ [class.union]) and a C11 feature; anonymous structures
   3704 /// are a C11 feature and GNU C++ extension.
   3705 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
   3706                                         AccessSpecifier AS,
   3707                                         RecordDecl *Record,
   3708                                         const PrintingPolicy &Policy) {
   3709   DeclContext *Owner = Record->getDeclContext();
   3710 
   3711   // Diagnose whether this anonymous struct/union is an extension.
   3712   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
   3713     Diag(Record->getLocation(), diag::ext_anonymous_union);
   3714   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
   3715     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
   3716   else if (!Record->isUnion() && !getLangOpts().C11)
   3717     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
   3718 
   3719   // C and C++ require different kinds of checks for anonymous
   3720   // structs/unions.
   3721   bool Invalid = false;
   3722   if (getLangOpts().CPlusPlus) {
   3723     const char *PrevSpec = nullptr;
   3724     unsigned DiagID;
   3725     if (Record->isUnion()) {
   3726       // C++ [class.union]p6:
   3727       //   Anonymous unions declared in a named namespace or in the
   3728       //   global namespace shall be declared static.
   3729       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
   3730           (isa<TranslationUnitDecl>(Owner) ||
   3731            (isa<NamespaceDecl>(Owner) &&
   3732             cast<NamespaceDecl>(Owner)->getDeclName()))) {
   3733         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
   3734           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
   3735 
   3736         // Recover by adding 'static'.
   3737         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
   3738                                PrevSpec, DiagID, Policy);
   3739       }
   3740       // C++ [class.union]p6:
   3741       //   A storage class is not allowed in a declaration of an
   3742       //   anonymous union in a class scope.
   3743       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
   3744                isa<RecordDecl>(Owner)) {
   3745         Diag(DS.getStorageClassSpecLoc(),
   3746              diag::err_anonymous_union_with_storage_spec)
   3747           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   3748 
   3749         // Recover by removing the storage specifier.
   3750         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
   3751                                SourceLocation(),
   3752                                PrevSpec, DiagID, Context.getPrintingPolicy());
   3753       }
   3754     }
   3755 
   3756     // Ignore const/volatile/restrict qualifiers.
   3757     if (DS.getTypeQualifiers()) {
   3758       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   3759         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   3760           << Record->isUnion() << "const"
   3761           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
   3762       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   3763         Diag(DS.getVolatileSpecLoc(),
   3764              diag::ext_anonymous_struct_union_qualified)
   3765           << Record->isUnion() << "volatile"
   3766           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
   3767       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
   3768         Diag(DS.getRestrictSpecLoc(),
   3769              diag::ext_anonymous_struct_union_qualified)
   3770           << Record->isUnion() << "restrict"
   3771           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
   3772       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   3773         Diag(DS.getAtomicSpecLoc(),
   3774              diag::ext_anonymous_struct_union_qualified)
   3775           << Record->isUnion() << "_Atomic"
   3776           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
   3777 
   3778       DS.ClearTypeQualifiers();
   3779     }
   3780 
   3781     // C++ [class.union]p2:
   3782     //   The member-specification of an anonymous union shall only
   3783     //   define non-static data members. [Note: nested types and
   3784     //   functions cannot be declared within an anonymous union. ]
   3785     for (auto *Mem : Record->decls()) {
   3786       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
   3787         // C++ [class.union]p3:
   3788         //   An anonymous union shall not have private or protected
   3789         //   members (clause 11).
   3790         assert(FD->getAccess() != AS_none);
   3791         if (FD->getAccess() != AS_public) {
   3792           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
   3793             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
   3794           Invalid = true;
   3795         }
   3796 
   3797         // C++ [class.union]p1
   3798         //   An object of a class with a non-trivial constructor, a non-trivial
   3799         //   copy constructor, a non-trivial destructor, or a non-trivial copy
   3800         //   assignment operator cannot be a member of a union, nor can an
   3801         //   array of such objects.
   3802         if (CheckNontrivialField(FD))
   3803           Invalid = true;
   3804       } else if (Mem->isImplicit()) {
   3805         // Any implicit members are fine.
   3806       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
   3807         // This is a type that showed up in an
   3808         // elaborated-type-specifier inside the anonymous struct or
   3809         // union, but which actually declares a type outside of the
   3810         // anonymous struct or union. It's okay.
   3811       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
   3812         if (!MemRecord->isAnonymousStructOrUnion() &&
   3813             MemRecord->getDeclName()) {
   3814           // Visual C++ allows type definition in anonymous struct or union.
   3815           if (getLangOpts().MicrosoftExt)
   3816             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
   3817               << (int)Record->isUnion();
   3818           else {
   3819             // This is a nested type declaration.
   3820             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
   3821               << (int)Record->isUnion();
   3822             Invalid = true;
   3823           }
   3824         } else {
   3825           // This is an anonymous type definition within another anonymous type.
   3826           // This is a popular extension, provided by Plan9, MSVC and GCC, but
   3827           // not part of standard C++.
   3828           Diag(MemRecord->getLocation(),
   3829                diag::ext_anonymous_record_with_anonymous_type)
   3830             << (int)Record->isUnion();
   3831         }
   3832       } else if (isa<AccessSpecDecl>(Mem)) {
   3833         // Any access specifier is fine.
   3834       } else if (isa<StaticAssertDecl>(Mem)) {
   3835         // In C++1z, static_assert declarations are also fine.
   3836       } else {
   3837         // We have something that isn't a non-static data
   3838         // member. Complain about it.
   3839         unsigned DK = diag::err_anonymous_record_bad_member;
   3840         if (isa<TypeDecl>(Mem))
   3841           DK = diag::err_anonymous_record_with_type;
   3842         else if (isa<FunctionDecl>(Mem))
   3843           DK = diag::err_anonymous_record_with_function;
   3844         else if (isa<VarDecl>(Mem))
   3845           DK = diag::err_anonymous_record_with_static;
   3846 
   3847         // Visual C++ allows type definition in anonymous struct or union.
   3848         if (getLangOpts().MicrosoftExt &&
   3849             DK == diag::err_anonymous_record_with_type)
   3850           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
   3851             << (int)Record->isUnion();
   3852         else {
   3853           Diag(Mem->getLocation(), DK)
   3854               << (int)Record->isUnion();
   3855           Invalid = true;
   3856         }
   3857       }
   3858     }
   3859 
   3860     // C++11 [class.union]p8 (DR1460):
   3861     //   At most one variant member of a union may have a
   3862     //   brace-or-equal-initializer.
   3863     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
   3864         Owner->isRecord())
   3865       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
   3866                                 cast<CXXRecordDecl>(Record));
   3867   }
   3868 
   3869   if (!Record->isUnion() && !Owner->isRecord()) {
   3870     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
   3871       << (int)getLangOpts().CPlusPlus;
   3872     Invalid = true;
   3873   }
   3874 
   3875   // Mock up a declarator.
   3876   Declarator Dc(DS, Declarator::MemberContext);
   3877   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   3878   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
   3879 
   3880   // Create a declaration for this anonymous struct/union.
   3881   NamedDecl *Anon = nullptr;
   3882   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
   3883     Anon = FieldDecl::Create(Context, OwningClass,
   3884                              DS.getLocStart(),
   3885                              Record->getLocation(),
   3886                              /*IdentifierInfo=*/nullptr,
   3887                              Context.getTypeDeclType(Record),
   3888                              TInfo,
   3889                              /*BitWidth=*/nullptr, /*Mutable=*/false,
   3890                              /*InitStyle=*/ICIS_NoInit);
   3891     Anon->setAccess(AS);
   3892     if (getLangOpts().CPlusPlus)
   3893       FieldCollector->Add(cast<FieldDecl>(Anon));
   3894   } else {
   3895     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
   3896     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
   3897     if (SCSpec == DeclSpec::SCS_mutable) {
   3898       // mutable can only appear on non-static class members, so it's always
   3899       // an error here
   3900       Diag(Record->getLocation(), diag::err_mutable_nonmember);
   3901       Invalid = true;
   3902       SC = SC_None;
   3903     }
   3904 
   3905     Anon = VarDecl::Create(Context, Owner,
   3906                            DS.getLocStart(),
   3907                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
   3908                            Context.getTypeDeclType(Record),
   3909                            TInfo, SC);
   3910 
   3911     // Default-initialize the implicit variable. This initialization will be
   3912     // trivial in almost all cases, except if a union member has an in-class
   3913     // initializer:
   3914     //   union { int n = 0; };
   3915     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
   3916   }
   3917   Anon->setImplicit();
   3918 
   3919   // Mark this as an anonymous struct/union type.
   3920   Record->setAnonymousStructOrUnion(true);
   3921 
   3922   // Add the anonymous struct/union object to the current
   3923   // context. We'll be referencing this object when we refer to one of
   3924   // its members.
   3925   Owner->addDecl(Anon);
   3926 
   3927   // Inject the members of the anonymous struct/union into the owning
   3928   // context and into the identifier resolver chain for name lookup
   3929   // purposes.
   3930   SmallVector<NamedDecl*, 2> Chain;
   3931   Chain.push_back(Anon);
   3932 
   3933   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
   3934                                           Chain, false))
   3935     Invalid = true;
   3936 
   3937   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
   3938     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
   3939       Decl *ManglingContextDecl;
   3940       if (MangleNumberingContext *MCtx =
   3941               getCurrentMangleNumberContext(NewVD->getDeclContext(),
   3942                                             ManglingContextDecl)) {
   3943         Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
   3944         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
   3945       }
   3946     }
   3947   }
   3948 
   3949   if (Invalid)
   3950     Anon->setInvalidDecl();
   3951 
   3952   return Anon;
   3953 }
   3954 
   3955 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
   3956 /// Microsoft C anonymous structure.
   3957 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
   3958 /// Example:
   3959 ///
   3960 /// struct A { int a; };
   3961 /// struct B { struct A; int b; };
   3962 ///
   3963 /// void foo() {
   3964 ///   B var;
   3965 ///   var.a = 3;
   3966 /// }
   3967 ///
   3968 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
   3969                                            RecordDecl *Record) {
   3970 
   3971   // If there is no Record, get the record via the typedef.
   3972   if (!Record)
   3973     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
   3974 
   3975   // Mock up a declarator.
   3976   Declarator Dc(DS, Declarator::TypeNameContext);
   3977   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   3978   assert(TInfo && "couldn't build declarator info for anonymous struct");
   3979 
   3980   // Create a declaration for this anonymous struct.
   3981   NamedDecl *Anon = FieldDecl::Create(Context,
   3982                              cast<RecordDecl>(CurContext),
   3983                              DS.getLocStart(),
   3984                              DS.getLocStart(),
   3985                              /*IdentifierInfo=*/nullptr,
   3986                              Context.getTypeDeclType(Record),
   3987                              TInfo,
   3988                              /*BitWidth=*/nullptr, /*Mutable=*/false,
   3989                              /*InitStyle=*/ICIS_NoInit);
   3990   Anon->setImplicit();
   3991 
   3992   // Add the anonymous struct object to the current context.
   3993   CurContext->addDecl(Anon);
   3994 
   3995   // Inject the members of the anonymous struct into the current
   3996   // context and into the identifier resolver chain for name lookup
   3997   // purposes.
   3998   SmallVector<NamedDecl*, 2> Chain;
   3999   Chain.push_back(Anon);
   4000 
   4001   RecordDecl *RecordDef = Record->getDefinition();
   4002   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
   4003                                                         RecordDef, AS_none,
   4004                                                         Chain, true))
   4005     Anon->setInvalidDecl();
   4006 
   4007   return Anon;
   4008 }
   4009 
   4010 /// GetNameForDeclarator - Determine the full declaration name for the
   4011 /// given Declarator.
   4012 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
   4013   return GetNameFromUnqualifiedId(D.getName());
   4014 }
   4015 
   4016 /// \brief Retrieves the declaration name from a parsed unqualified-id.
   4017 DeclarationNameInfo
   4018 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
   4019   DeclarationNameInfo NameInfo;
   4020   NameInfo.setLoc(Name.StartLocation);
   4021 
   4022   switch (Name.getKind()) {
   4023 
   4024   case UnqualifiedId::IK_ImplicitSelfParam:
   4025   case UnqualifiedId::IK_Identifier:
   4026     NameInfo.setName(Name.Identifier);
   4027     NameInfo.setLoc(Name.StartLocation);
   4028     return NameInfo;
   4029 
   4030   case UnqualifiedId::IK_OperatorFunctionId:
   4031     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
   4032                                            Name.OperatorFunctionId.Operator));
   4033     NameInfo.setLoc(Name.StartLocation);
   4034     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
   4035       = Name.OperatorFunctionId.SymbolLocations[0];
   4036     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
   4037       = Name.EndLocation.getRawEncoding();
   4038     return NameInfo;
   4039 
   4040   case UnqualifiedId::IK_LiteralOperatorId:
   4041     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
   4042                                                            Name.Identifier));
   4043     NameInfo.setLoc(Name.StartLocation);
   4044     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
   4045     return NameInfo;
   4046 
   4047   case UnqualifiedId::IK_ConversionFunctionId: {
   4048     TypeSourceInfo *TInfo;
   4049     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
   4050     if (Ty.isNull())
   4051       return DeclarationNameInfo();
   4052     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
   4053                                                Context.getCanonicalType(Ty)));
   4054     NameInfo.setLoc(Name.StartLocation);
   4055     NameInfo.setNamedTypeInfo(TInfo);
   4056     return NameInfo;
   4057   }
   4058 
   4059   case UnqualifiedId::IK_ConstructorName: {
   4060     TypeSourceInfo *TInfo;
   4061     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
   4062     if (Ty.isNull())
   4063       return DeclarationNameInfo();
   4064     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   4065                                               Context.getCanonicalType(Ty)));
   4066     NameInfo.setLoc(Name.StartLocation);
   4067     NameInfo.setNamedTypeInfo(TInfo);
   4068     return NameInfo;
   4069   }
   4070 
   4071   case UnqualifiedId::IK_ConstructorTemplateId: {
   4072     // In well-formed code, we can only have a constructor
   4073     // template-id that refers to the current context, so go there
   4074     // to find the actual type being constructed.
   4075     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
   4076     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
   4077       return DeclarationNameInfo();
   4078 
   4079     // Determine the type of the class being constructed.
   4080     QualType CurClassType = Context.getTypeDeclType(CurClass);
   4081 
   4082     // FIXME: Check two things: that the template-id names the same type as
   4083     // CurClassType, and that the template-id does not occur when the name
   4084     // was qualified.
   4085 
   4086     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   4087                                     Context.getCanonicalType(CurClassType)));
   4088     NameInfo.setLoc(Name.StartLocation);
   4089     // FIXME: should we retrieve TypeSourceInfo?
   4090     NameInfo.setNamedTypeInfo(nullptr);
   4091     return NameInfo;
   4092   }
   4093 
   4094   case UnqualifiedId::IK_DestructorName: {
   4095     TypeSourceInfo *TInfo;
   4096     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
   4097     if (Ty.isNull())
   4098       return DeclarationNameInfo();
   4099     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
   4100                                               Context.getCanonicalType(Ty)));
   4101     NameInfo.setLoc(Name.StartLocation);
   4102     NameInfo.setNamedTypeInfo(TInfo);
   4103     return NameInfo;
   4104   }
   4105 
   4106   case UnqualifiedId::IK_TemplateId: {
   4107     TemplateName TName = Name.TemplateId->Template.get();
   4108     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
   4109     return Context.getNameForTemplate(TName, TNameLoc);
   4110   }
   4111 
   4112   } // switch (Name.getKind())
   4113 
   4114   llvm_unreachable("Unknown name kind");
   4115 }
   4116 
   4117 static QualType getCoreType(QualType Ty) {
   4118   do {
   4119     if (Ty->isPointerType() || Ty->isReferenceType())
   4120       Ty = Ty->getPointeeType();
   4121     else if (Ty->isArrayType())
   4122       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
   4123     else
   4124       return Ty.withoutLocalFastQualifiers();
   4125   } while (true);
   4126 }
   4127 
   4128 /// hasSimilarParameters - Determine whether the C++ functions Declaration
   4129 /// and Definition have "nearly" matching parameters. This heuristic is
   4130 /// used to improve diagnostics in the case where an out-of-line function
   4131 /// definition doesn't match any declaration within the class or namespace.
   4132 /// Also sets Params to the list of indices to the parameters that differ
   4133 /// between the declaration and the definition. If hasSimilarParameters
   4134 /// returns true and Params is empty, then all of the parameters match.
   4135 static bool hasSimilarParameters(ASTContext &Context,
   4136                                      FunctionDecl *Declaration,
   4137                                      FunctionDecl *Definition,
   4138                                      SmallVectorImpl<unsigned> &Params) {
   4139   Params.clear();
   4140   if (Declaration->param_size() != Definition->param_size())
   4141     return false;
   4142   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
   4143     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
   4144     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
   4145 
   4146     // The parameter types are identical
   4147     if (Context.hasSameType(DefParamTy, DeclParamTy))
   4148       continue;
   4149 
   4150     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
   4151     QualType DefParamBaseTy = getCoreType(DefParamTy);
   4152     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
   4153     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
   4154 
   4155     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
   4156         (DeclTyName && DeclTyName == DefTyName))
   4157       Params.push_back(Idx);
   4158     else  // The two parameters aren't even close
   4159       return false;
   4160   }
   4161 
   4162   return true;
   4163 }
   4164 
   4165 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
   4166 /// declarator needs to be rebuilt in the current instantiation.
   4167 /// Any bits of declarator which appear before the name are valid for
   4168 /// consideration here.  That's specifically the type in the decl spec
   4169 /// and the base type in any member-pointer chunks.
   4170 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
   4171                                                     DeclarationName Name) {
   4172   // The types we specifically need to rebuild are:
   4173   //   - typenames, typeofs, and decltypes
   4174   //   - types which will become injected class names
   4175   // Of course, we also need to rebuild any type referencing such a
   4176   // type.  It's safest to just say "dependent", but we call out a
   4177   // few cases here.
   4178 
   4179   DeclSpec &DS = D.getMutableDeclSpec();
   4180   switch (DS.getTypeSpecType()) {
   4181   case DeclSpec::TST_typename:
   4182   case DeclSpec::TST_typeofType:
   4183   case DeclSpec::TST_underlyingType:
   4184   case DeclSpec::TST_atomic: {
   4185     // Grab the type from the parser.
   4186     TypeSourceInfo *TSI = nullptr;
   4187     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
   4188     if (T.isNull() || !T->isDependentType()) break;
   4189 
   4190     // Make sure there's a type source info.  This isn't really much
   4191     // of a waste; most dependent types should have type source info
   4192     // attached already.
   4193     if (!TSI)
   4194       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
   4195 
   4196     // Rebuild the type in the current instantiation.
   4197     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
   4198     if (!TSI) return true;
   4199 
   4200     // Store the new type back in the decl spec.
   4201     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
   4202     DS.UpdateTypeRep(LocType);
   4203     break;
   4204   }
   4205 
   4206   case DeclSpec::TST_decltype:
   4207   case DeclSpec::TST_typeofExpr: {
   4208     Expr *E = DS.getRepAsExpr();
   4209     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
   4210     if (Result.isInvalid()) return true;
   4211     DS.UpdateExprRep(Result.get());
   4212     break;
   4213   }
   4214 
   4215   default:
   4216     // Nothing to do for these decl specs.
   4217     break;
   4218   }
   4219 
   4220   // It doesn't matter what order we do this in.
   4221   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   4222     DeclaratorChunk &Chunk = D.getTypeObject(I);
   4223 
   4224     // The only type information in the declarator which can come
   4225     // before the declaration name is the base type of a member
   4226     // pointer.
   4227     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
   4228       continue;
   4229 
   4230     // Rebuild the scope specifier in-place.
   4231     CXXScopeSpec &SS = Chunk.Mem.Scope();
   4232     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
   4233       return true;
   4234   }
   4235 
   4236   return false;
   4237 }
   4238 
   4239 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
   4240   D.setFunctionDefinitionKind(FDK_Declaration);
   4241   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
   4242 
   4243   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
   4244       Dcl && Dcl->getDeclContext()->isFileContext())
   4245     Dcl->setTopLevelDeclInObjCContainer();
   4246 
   4247   return Dcl;
   4248 }
   4249 
   4250 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
   4251 ///   If T is the name of a class, then each of the following shall have a
   4252 ///   name different from T:
   4253 ///     - every static data member of class T;
   4254 ///     - every member function of class T
   4255 ///     - every member of class T that is itself a type;
   4256 /// \returns true if the declaration name violates these rules.
   4257 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
   4258                                    DeclarationNameInfo NameInfo) {
   4259   DeclarationName Name = NameInfo.getName();
   4260 
   4261   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
   4262     if (Record->getIdentifier() && Record->getDeclName() == Name) {
   4263       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
   4264       return true;
   4265     }
   4266 
   4267   return false;
   4268 }
   4269 
   4270 /// \brief Diagnose a declaration whose declarator-id has the given
   4271 /// nested-name-specifier.
   4272 ///
   4273 /// \param SS The nested-name-specifier of the declarator-id.
   4274 ///
   4275 /// \param DC The declaration context to which the nested-name-specifier
   4276 /// resolves.
   4277 ///
   4278 /// \param Name The name of the entity being declared.
   4279 ///
   4280 /// \param Loc The location of the name of the entity being declared.
   4281 ///
   4282 /// \returns true if we cannot safely recover from this error, false otherwise.
   4283 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
   4284                                         DeclarationName Name,
   4285                                         SourceLocation Loc) {
   4286   DeclContext *Cur = CurContext;
   4287   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
   4288     Cur = Cur->getParent();
   4289 
   4290   // If the user provided a superfluous scope specifier that refers back to the
   4291   // class in which the entity is already declared, diagnose and ignore it.
   4292   //
   4293   // class X {
   4294   //   void X::f();
   4295   // };
   4296   //
   4297   // Note, it was once ill-formed to give redundant qualification in all
   4298   // contexts, but that rule was removed by DR482.
   4299   if (Cur->Equals(DC)) {
   4300     if (Cur->isRecord()) {
   4301       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
   4302                                       : diag::err_member_extra_qualification)
   4303         << Name << FixItHint::CreateRemoval(SS.getRange());
   4304       SS.clear();
   4305     } else {
   4306       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
   4307     }
   4308     return false;
   4309   }
   4310 
   4311   // Check whether the qualifying scope encloses the scope of the original
   4312   // declaration.
   4313   if (!Cur->Encloses(DC)) {
   4314     if (Cur->isRecord())
   4315       Diag(Loc, diag::err_member_qualification)
   4316         << Name << SS.getRange();
   4317     else if (isa<TranslationUnitDecl>(DC))
   4318       Diag(Loc, diag::err_invalid_declarator_global_scope)
   4319         << Name << SS.getRange();
   4320     else if (isa<FunctionDecl>(Cur))
   4321       Diag(Loc, diag::err_invalid_declarator_in_function)
   4322         << Name << SS.getRange();
   4323     else if (isa<BlockDecl>(Cur))
   4324       Diag(Loc, diag::err_invalid_declarator_in_block)
   4325         << Name << SS.getRange();
   4326     else
   4327       Diag(Loc, diag::err_invalid_declarator_scope)
   4328       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
   4329 
   4330     return true;
   4331   }
   4332 
   4333   if (Cur->isRecord()) {
   4334     // Cannot qualify members within a class.
   4335     Diag(Loc, diag::err_member_qualification)
   4336       << Name << SS.getRange();
   4337     SS.clear();
   4338 
   4339     // C++ constructors and destructors with incorrect scopes can break
   4340     // our AST invariants by having the wrong underlying types. If
   4341     // that's the case, then drop this declaration entirely.
   4342     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
   4343          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
   4344         !Context.hasSameType(Name.getCXXNameType(),
   4345                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
   4346       return true;
   4347 
   4348     return false;
   4349   }
   4350 
   4351   // C++11 [dcl.meaning]p1:
   4352   //   [...] "The nested-name-specifier of the qualified declarator-id shall
   4353   //   not begin with a decltype-specifer"
   4354   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
   4355   while (SpecLoc.getPrefix())
   4356     SpecLoc = SpecLoc.getPrefix();
   4357   if (dyn_cast_or_null<DecltypeType>(
   4358         SpecLoc.getNestedNameSpecifier()->getAsType()))
   4359     Diag(Loc, diag::err_decltype_in_declarator)
   4360       << SpecLoc.getTypeLoc().getSourceRange();
   4361 
   4362   return false;
   4363 }
   4364 
   4365 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
   4366                                   MultiTemplateParamsArg TemplateParamLists) {
   4367   // TODO: consider using NameInfo for diagnostic.
   4368   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   4369   DeclarationName Name = NameInfo.getName();
   4370 
   4371   // All of these full declarators require an identifier.  If it doesn't have
   4372   // one, the ParsedFreeStandingDeclSpec action should be used.
   4373   if (!Name) {
   4374     if (!D.isInvalidType())  // Reject this if we think it is valid.
   4375       Diag(D.getDeclSpec().getLocStart(),
   4376            diag::err_declarator_need_ident)
   4377         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
   4378     return nullptr;
   4379   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
   4380     return nullptr;
   4381 
   4382   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   4383   // we find one that is.
   4384   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   4385          (S->getFlags() & Scope::TemplateParamScope) != 0)
   4386     S = S->getParent();
   4387 
   4388   DeclContext *DC = CurContext;
   4389   if (D.getCXXScopeSpec().isInvalid())
   4390     D.setInvalidType();
   4391   else if (D.getCXXScopeSpec().isSet()) {
   4392     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
   4393                                         UPPC_DeclarationQualifier))
   4394       return nullptr;
   4395 
   4396     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
   4397     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
   4398     if (!DC || isa<EnumDecl>(DC)) {
   4399       // If we could not compute the declaration context, it's because the
   4400       // declaration context is dependent but does not refer to a class,
   4401       // class template, or class template partial specialization. Complain
   4402       // and return early, to avoid the coming semantic disaster.
   4403       Diag(D.getIdentifierLoc(),
   4404            diag::err_template_qualified_declarator_no_match)
   4405         << D.getCXXScopeSpec().getScopeRep()
   4406         << D.getCXXScopeSpec().getRange();
   4407       return nullptr;
   4408     }
   4409     bool IsDependentContext = DC->isDependentContext();
   4410 
   4411     if (!IsDependentContext &&
   4412         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
   4413       return nullptr;
   4414 
   4415     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
   4416       Diag(D.getIdentifierLoc(),
   4417            diag::err_member_def_undefined_record)
   4418         << Name << DC << D.getCXXScopeSpec().getRange();
   4419       D.setInvalidType();
   4420     } else if (!D.getDeclSpec().isFriendSpecified()) {
   4421       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
   4422                                       Name, D.getIdentifierLoc())) {
   4423         if (DC->isRecord())
   4424           return nullptr;
   4425 
   4426         D.setInvalidType();
   4427       }
   4428     }
   4429 
   4430     // Check whether we need to rebuild the type of the given
   4431     // declaration in the current instantiation.
   4432     if (EnteringContext && IsDependentContext &&
   4433         TemplateParamLists.size() != 0) {
   4434       ContextRAII SavedContext(*this, DC);
   4435       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
   4436         D.setInvalidType();
   4437     }
   4438   }
   4439 
   4440   if (DiagnoseClassNameShadow(DC, NameInfo))
   4441     // If this is a typedef, we'll end up spewing multiple diagnostics.
   4442     // Just return early; it's safer.
   4443     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   4444       return nullptr;
   4445 
   4446   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   4447   QualType R = TInfo->getType();
   4448 
   4449   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   4450                                       UPPC_DeclarationType))
   4451     D.setInvalidType();
   4452 
   4453   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   4454                         ForRedeclaration);
   4455 
   4456   // See if this is a redefinition of a variable in the same scope.
   4457   if (!D.getCXXScopeSpec().isSet()) {
   4458     bool IsLinkageLookup = false;
   4459     bool CreateBuiltins = false;
   4460 
   4461     // If the declaration we're planning to build will be a function
   4462     // or object with linkage, then look for another declaration with
   4463     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
   4464     //
   4465     // If the declaration we're planning to build will be declared with
   4466     // external linkage in the translation unit, create any builtin with
   4467     // the same name.
   4468     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   4469       /* Do nothing*/;
   4470     else if (CurContext->isFunctionOrMethod() &&
   4471              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
   4472               R->isFunctionType())) {
   4473       IsLinkageLookup = true;
   4474       CreateBuiltins =
   4475           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
   4476     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
   4477                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   4478       CreateBuiltins = true;
   4479 
   4480     if (IsLinkageLookup)
   4481       Previous.clear(LookupRedeclarationWithLinkage);
   4482 
   4483     LookupName(Previous, S, CreateBuiltins);
   4484   } else { // Something like "int foo::x;"
   4485     LookupQualifiedName(Previous, DC);
   4486 
   4487     // C++ [dcl.meaning]p1:
   4488     //   When the declarator-id is qualified, the declaration shall refer to a
   4489     //  previously declared member of the class or namespace to which the
   4490     //  qualifier refers (or, in the case of a namespace, of an element of the
   4491     //  inline namespace set of that namespace (7.3.1)) or to a specialization
   4492     //  thereof; [...]
   4493     //
   4494     // Note that we already checked the context above, and that we do not have
   4495     // enough information to make sure that Previous contains the declaration
   4496     // we want to match. For example, given:
   4497     //
   4498     //   class X {
   4499     //     void f();
   4500     //     void f(float);
   4501     //   };
   4502     //
   4503     //   void X::f(int) { } // ill-formed
   4504     //
   4505     // In this case, Previous will point to the overload set
   4506     // containing the two f's declared in X, but neither of them
   4507     // matches.
   4508 
   4509     // C++ [dcl.meaning]p1:
   4510     //   [...] the member shall not merely have been introduced by a
   4511     //   using-declaration in the scope of the class or namespace nominated by
   4512     //   the nested-name-specifier of the declarator-id.
   4513     RemoveUsingDecls(Previous);
   4514   }
   4515 
   4516   if (Previous.isSingleResult() &&
   4517       Previous.getFoundDecl()->isTemplateParameter()) {
   4518     // Maybe we will complain about the shadowed template parameter.
   4519     if (!D.isInvalidType())
   4520       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
   4521                                       Previous.getFoundDecl());
   4522 
   4523     // Just pretend that we didn't see the previous declaration.
   4524     Previous.clear();
   4525   }
   4526 
   4527   // In C++, the previous declaration we find might be a tag type
   4528   // (class or enum). In this case, the new declaration will hide the
   4529   // tag type. Note that this does does not apply if we're declaring a
   4530   // typedef (C++ [dcl.typedef]p4).
   4531   if (Previous.isSingleTagDecl() &&
   4532       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
   4533     Previous.clear();
   4534 
   4535   // Check that there are no default arguments other than in the parameters
   4536   // of a function declaration (C++ only).
   4537   if (getLangOpts().CPlusPlus)
   4538     CheckExtraCXXDefaultArguments(D);
   4539 
   4540   NamedDecl *New;
   4541 
   4542   bool AddToScope = true;
   4543   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   4544     if (TemplateParamLists.size()) {
   4545       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
   4546       return nullptr;
   4547     }
   4548 
   4549     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
   4550   } else if (R->isFunctionType()) {
   4551     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
   4552                                   TemplateParamLists,
   4553                                   AddToScope);
   4554   } else {
   4555     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
   4556                                   AddToScope);
   4557   }
   4558 
   4559   if (!New)
   4560     return nullptr;
   4561 
   4562   // If this has an identifier and is not an invalid redeclaration or
   4563   // function template specialization, add it to the scope stack.
   4564   if (New->getDeclName() && AddToScope &&
   4565        !(D.isRedeclaration() && New->isInvalidDecl())) {
   4566     // Only make a locally-scoped extern declaration visible if it is the first
   4567     // declaration of this entity. Qualified lookup for such an entity should
   4568     // only find this declaration if there is no visible declaration of it.
   4569     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
   4570     PushOnScopeChains(New, S, AddToContext);
   4571     if (!AddToContext)
   4572       CurContext->addHiddenDecl(New);
   4573   }
   4574 
   4575   return New;
   4576 }
   4577 
   4578 /// Helper method to turn variable array types into constant array
   4579 /// types in certain situations which would otherwise be errors (for
   4580 /// GCC compatibility).
   4581 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
   4582                                                     ASTContext &Context,
   4583                                                     bool &SizeIsNegative,
   4584                                                     llvm::APSInt &Oversized) {
   4585   // This method tries to turn a variable array into a constant
   4586   // array even when the size isn't an ICE.  This is necessary
   4587   // for compatibility with code that depends on gcc's buggy
   4588   // constant expression folding, like struct {char x[(int)(char*)2];}
   4589   SizeIsNegative = false;
   4590   Oversized = 0;
   4591 
   4592   if (T->isDependentType())
   4593     return QualType();
   4594 
   4595   QualifierCollector Qs;
   4596   const Type *Ty = Qs.strip(T);
   4597 
   4598   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
   4599     QualType Pointee = PTy->getPointeeType();
   4600     QualType FixedType =
   4601         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
   4602                                             Oversized);
   4603     if (FixedType.isNull()) return FixedType;
   4604     FixedType = Context.getPointerType(FixedType);
   4605     return Qs.apply(Context, FixedType);
   4606   }
   4607   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
   4608     QualType Inner = PTy->getInnerType();
   4609     QualType FixedType =
   4610         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
   4611                                             Oversized);
   4612     if (FixedType.isNull()) return FixedType;
   4613     FixedType = Context.getParenType(FixedType);
   4614     return Qs.apply(Context, FixedType);
   4615   }
   4616 
   4617   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
   4618   if (!VLATy)
   4619     return QualType();
   4620   // FIXME: We should probably handle this case
   4621   if (VLATy->getElementType()->isVariablyModifiedType())
   4622     return QualType();
   4623 
   4624   llvm::APSInt Res;
   4625   if (!VLATy->getSizeExpr() ||
   4626       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
   4627     return QualType();
   4628 
   4629   // Check whether the array size is negative.
   4630   if (Res.isSigned() && Res.isNegative()) {
   4631     SizeIsNegative = true;
   4632     return QualType();
   4633   }
   4634 
   4635   // Check whether the array is too large to be addressed.
   4636   unsigned ActiveSizeBits
   4637     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
   4638                                               Res);
   4639   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   4640     Oversized = Res;
   4641     return QualType();
   4642   }
   4643 
   4644   return Context.getConstantArrayType(VLATy->getElementType(),
   4645                                       Res, ArrayType::Normal, 0);
   4646 }
   4647 
   4648 static void
   4649 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
   4650   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
   4651     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
   4652     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
   4653                                       DstPTL.getPointeeLoc());
   4654     DstPTL.setStarLoc(SrcPTL.getStarLoc());
   4655     return;
   4656   }
   4657   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
   4658     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
   4659     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
   4660                                       DstPTL.getInnerLoc());
   4661     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
   4662     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
   4663     return;
   4664   }
   4665   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
   4666   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
   4667   TypeLoc SrcElemTL = SrcATL.getElementLoc();
   4668   TypeLoc DstElemTL = DstATL.getElementLoc();
   4669   DstElemTL.initializeFullCopy(SrcElemTL);
   4670   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
   4671   DstATL.setSizeExpr(SrcATL.getSizeExpr());
   4672   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
   4673 }
   4674 
   4675 /// Helper method to turn variable array types into constant array
   4676 /// types in certain situations which would otherwise be errors (for
   4677 /// GCC compatibility).
   4678 static TypeSourceInfo*
   4679 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
   4680                                               ASTContext &Context,
   4681                                               bool &SizeIsNegative,
   4682                                               llvm::APSInt &Oversized) {
   4683   QualType FixedTy
   4684     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
   4685                                           SizeIsNegative, Oversized);
   4686   if (FixedTy.isNull())
   4687     return nullptr;
   4688   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
   4689   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
   4690                                     FixedTInfo->getTypeLoc());
   4691   return FixedTInfo;
   4692 }
   4693 
   4694 /// \brief Register the given locally-scoped extern "C" declaration so
   4695 /// that it can be found later for redeclarations. We include any extern "C"
   4696 /// declaration that is not visible in the translation unit here, not just
   4697 /// function-scope declarations.
   4698 void
   4699 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
   4700   if (!getLangOpts().CPlusPlus &&
   4701       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
   4702     // Don't need to track declarations in the TU in C.
   4703     return;
   4704 
   4705   // Note that we have a locally-scoped external with this name.
   4706   // FIXME: There can be multiple such declarations if they are functions marked
   4707   // __attribute__((overloadable)) declared in function scope in C.
   4708   LocallyScopedExternCDecls[ND->getDeclName()] = ND;
   4709 }
   4710 
   4711 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
   4712   if (ExternalSource) {
   4713     // Load locally-scoped external decls from the external source.
   4714     // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
   4715     SmallVector<NamedDecl *, 4> Decls;
   4716     ExternalSource->ReadLocallyScopedExternCDecls(Decls);
   4717     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
   4718       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   4719         = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
   4720       if (Pos == LocallyScopedExternCDecls.end())
   4721         LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
   4722     }
   4723   }
   4724 
   4725   NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
   4726   return D ? D->getMostRecentDecl() : nullptr;
   4727 }
   4728 
   4729 /// \brief Diagnose function specifiers on a declaration of an identifier that
   4730 /// does not identify a function.
   4731 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
   4732   // FIXME: We should probably indicate the identifier in question to avoid
   4733   // confusion for constructs like "inline int a(), b;"
   4734   if (DS.isInlineSpecified())
   4735     Diag(DS.getInlineSpecLoc(),
   4736          diag::err_inline_non_function);
   4737 
   4738   if (DS.isVirtualSpecified())
   4739     Diag(DS.getVirtualSpecLoc(),
   4740          diag::err_virtual_non_function);
   4741 
   4742   if (DS.isExplicitSpecified())
   4743     Diag(DS.getExplicitSpecLoc(),
   4744          diag::err_explicit_non_function);
   4745 
   4746   if (DS.isNoreturnSpecified())
   4747     Diag(DS.getNoreturnSpecLoc(),
   4748          diag::err_noreturn_non_function);
   4749 }
   4750 
   4751 NamedDecl*
   4752 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
   4753                              TypeSourceInfo *TInfo, LookupResult &Previous) {
   4754   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
   4755   if (D.getCXXScopeSpec().isSet()) {
   4756     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
   4757       << D.getCXXScopeSpec().getRange();
   4758     D.setInvalidType();
   4759     // Pretend we didn't see the scope specifier.
   4760     DC = CurContext;
   4761     Previous.clear();
   4762   }
   4763 
   4764   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   4765 
   4766   if (D.getDeclSpec().isConstexprSpecified())
   4767     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   4768       << 1;
   4769 
   4770   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
   4771     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
   4772       << D.getName().getSourceRange();
   4773     return nullptr;
   4774   }
   4775 
   4776   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
   4777   if (!NewTD) return nullptr;
   4778 
   4779   // Handle attributes prior to checking for duplicates in MergeVarDecl
   4780   ProcessDeclAttributes(S, NewTD, D);
   4781 
   4782   CheckTypedefForVariablyModifiedType(S, NewTD);
   4783 
   4784   bool Redeclaration = D.isRedeclaration();
   4785   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
   4786   D.setRedeclaration(Redeclaration);
   4787   return ND;
   4788 }
   4789 
   4790 void
   4791 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
   4792   // C99 6.7.7p2: If a typedef name specifies a variably modified type
   4793   // then it shall have block scope.
   4794   // Note that variably modified types must be fixed before merging the decl so
   4795   // that redeclarations will match.
   4796   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
   4797   QualType T = TInfo->getType();
   4798   if (T->isVariablyModifiedType()) {
   4799     getCurFunction()->setHasBranchProtectedScope();
   4800 
   4801     if (S->getFnParent() == nullptr) {
   4802       bool SizeIsNegative;
   4803       llvm::APSInt Oversized;
   4804       TypeSourceInfo *FixedTInfo =
   4805         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   4806                                                       SizeIsNegative,
   4807                                                       Oversized);
   4808       if (FixedTInfo) {
   4809         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
   4810         NewTD->setTypeSourceInfo(FixedTInfo);
   4811       } else {
   4812         if (SizeIsNegative)
   4813           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
   4814         else if (T->isVariableArrayType())
   4815           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
   4816         else if (Oversized.getBoolValue())
   4817           Diag(NewTD->getLocation(), diag::err_array_too_large)
   4818             << Oversized.toString(10);
   4819         else
   4820           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
   4821         NewTD->setInvalidDecl();
   4822       }
   4823     }
   4824   }
   4825 }
   4826 
   4827 
   4828 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
   4829 /// declares a typedef-name, either using the 'typedef' type specifier or via
   4830 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
   4831 NamedDecl*
   4832 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
   4833                            LookupResult &Previous, bool &Redeclaration) {
   4834   // Merge the decl with the existing one if appropriate. If the decl is
   4835   // in an outer scope, it isn't the same thing.
   4836   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
   4837                        /*AllowInlineNamespace*/false);
   4838   filterNonConflictingPreviousDecls(Context, NewTD, Previous);
   4839   if (!Previous.empty()) {
   4840     Redeclaration = true;
   4841     MergeTypedefNameDecl(NewTD, Previous);
   4842   }
   4843 
   4844   // If this is the C FILE type, notify the AST context.
   4845   if (IdentifierInfo *II = NewTD->getIdentifier())
   4846     if (!NewTD->isInvalidDecl() &&
   4847         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   4848       if (II->isStr("FILE"))
   4849         Context.setFILEDecl(NewTD);
   4850       else if (II->isStr("jmp_buf"))
   4851         Context.setjmp_bufDecl(NewTD);
   4852       else if (II->isStr("sigjmp_buf"))
   4853         Context.setsigjmp_bufDecl(NewTD);
   4854       else if (II->isStr("ucontext_t"))
   4855         Context.setucontext_tDecl(NewTD);
   4856     }
   4857 
   4858   return NewTD;
   4859 }
   4860 
   4861 /// \brief Determines whether the given declaration is an out-of-scope
   4862 /// previous declaration.
   4863 ///
   4864 /// This routine should be invoked when name lookup has found a
   4865 /// previous declaration (PrevDecl) that is not in the scope where a
   4866 /// new declaration by the same name is being introduced. If the new
   4867 /// declaration occurs in a local scope, previous declarations with
   4868 /// linkage may still be considered previous declarations (C99
   4869 /// 6.2.2p4-5, C++ [basic.link]p6).
   4870 ///
   4871 /// \param PrevDecl the previous declaration found by name
   4872 /// lookup
   4873 ///
   4874 /// \param DC the context in which the new declaration is being
   4875 /// declared.
   4876 ///
   4877 /// \returns true if PrevDecl is an out-of-scope previous declaration
   4878 /// for a new delcaration with the same name.
   4879 static bool
   4880 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
   4881                                 ASTContext &Context) {
   4882   if (!PrevDecl)
   4883     return false;
   4884 
   4885   if (!PrevDecl->hasLinkage())
   4886     return false;
   4887 
   4888   if (Context.getLangOpts().CPlusPlus) {
   4889     // C++ [basic.link]p6:
   4890     //   If there is a visible declaration of an entity with linkage
   4891     //   having the same name and type, ignoring entities declared
   4892     //   outside the innermost enclosing namespace scope, the block
   4893     //   scope declaration declares that same entity and receives the
   4894     //   linkage of the previous declaration.
   4895     DeclContext *OuterContext = DC->getRedeclContext();
   4896     if (!OuterContext->isFunctionOrMethod())
   4897       // This rule only applies to block-scope declarations.
   4898       return false;
   4899 
   4900     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
   4901     if (PrevOuterContext->isRecord())
   4902       // We found a member function: ignore it.
   4903       return false;
   4904 
   4905     // Find the innermost enclosing namespace for the new and
   4906     // previous declarations.
   4907     OuterContext = OuterContext->getEnclosingNamespaceContext();
   4908     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
   4909 
   4910     // The previous declaration is in a different namespace, so it
   4911     // isn't the same function.
   4912     if (!OuterContext->Equals(PrevOuterContext))
   4913       return false;
   4914   }
   4915 
   4916   return true;
   4917 }
   4918 
   4919 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
   4920   CXXScopeSpec &SS = D.getCXXScopeSpec();
   4921   if (!SS.isSet()) return;
   4922   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
   4923 }
   4924 
   4925 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
   4926   QualType type = decl->getType();
   4927   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   4928   if (lifetime == Qualifiers::OCL_Autoreleasing) {
   4929     // Various kinds of declaration aren't allowed to be __autoreleasing.
   4930     unsigned kind = -1U;
   4931     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   4932       if (var->hasAttr<BlocksAttr>())
   4933         kind = 0; // __block
   4934       else if (!var->hasLocalStorage())
   4935         kind = 1; // global
   4936     } else if (isa<ObjCIvarDecl>(decl)) {
   4937       kind = 3; // ivar
   4938     } else if (isa<FieldDecl>(decl)) {
   4939       kind = 2; // field
   4940     }
   4941 
   4942     if (kind != -1U) {
   4943       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
   4944         << kind;
   4945     }
   4946   } else if (lifetime == Qualifiers::OCL_None) {
   4947     // Try to infer lifetime.
   4948     if (!type->isObjCLifetimeType())
   4949       return false;
   4950 
   4951     lifetime = type->getObjCARCImplicitLifetime();
   4952     type = Context.getLifetimeQualifiedType(type, lifetime);
   4953     decl->setType(type);
   4954   }
   4955 
   4956   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   4957     // Thread-local variables cannot have lifetime.
   4958     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
   4959         var->getTLSKind()) {
   4960       Diag(var->getLocation(), diag::err_arc_thread_ownership)
   4961         << var->getType();
   4962       return true;
   4963     }
   4964   }
   4965 
   4966   return false;
   4967 }
   4968 
   4969 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
   4970   // Ensure that an auto decl is deduced otherwise the checks below might cache
   4971   // the wrong linkage.
   4972   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
   4973 
   4974   // 'weak' only applies to declarations with external linkage.
   4975   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
   4976     if (!ND.isExternallyVisible()) {
   4977       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
   4978       ND.dropAttr<WeakAttr>();
   4979     }
   4980   }
   4981   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
   4982     if (ND.isExternallyVisible()) {
   4983       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
   4984       ND.dropAttr<WeakRefAttr>();
   4985     }
   4986   }
   4987 
   4988   // 'selectany' only applies to externally visible varable declarations.
   4989   // It does not apply to functions.
   4990   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
   4991     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
   4992       S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
   4993       ND.dropAttr<SelectAnyAttr>();
   4994     }
   4995   }
   4996 
   4997   // dll attributes require external linkage.
   4998   if (const DLLImportAttr *Attr = ND.getAttr<DLLImportAttr>()) {
   4999     if (!ND.isExternallyVisible()) {
   5000       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
   5001         << &ND << Attr;
   5002       ND.setInvalidDecl();
   5003     }
   5004   }
   5005   if (const DLLExportAttr *Attr = ND.getAttr<DLLExportAttr>()) {
   5006     if (!ND.isExternallyVisible()) {
   5007       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
   5008         << &ND << Attr;
   5009       ND.setInvalidDecl();
   5010     }
   5011   }
   5012 }
   5013 
   5014 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
   5015                                            NamedDecl *NewDecl,
   5016                                            bool IsSpecialization) {
   5017   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
   5018     OldDecl = OldTD->getTemplatedDecl();
   5019   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
   5020     NewDecl = NewTD->getTemplatedDecl();
   5021 
   5022   if (!OldDecl || !NewDecl)
   5023       return;
   5024 
   5025   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
   5026   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
   5027   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
   5028   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
   5029 
   5030   // dllimport and dllexport are inheritable attributes so we have to exclude
   5031   // inherited attribute instances.
   5032   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
   5033                     (NewExportAttr && !NewExportAttr->isInherited());
   5034 
   5035   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
   5036   // the only exception being explicit specializations.
   5037   // Implicitly generated declarations are also excluded for now because there
   5038   // is no other way to switch these to use dllimport or dllexport.
   5039   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
   5040   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
   5041     S.Diag(NewDecl->getLocation(), diag::err_attribute_dll_redeclaration)
   5042       << NewDecl
   5043       << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
   5044     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
   5045     NewDecl->setInvalidDecl();
   5046     return;
   5047   }
   5048 
   5049   // A redeclaration is not allowed to drop a dllimport attribute, the only
   5050   // exception being inline function definitions.
   5051   // NB: MSVC converts such a declaration to dllexport.
   5052   bool IsInline = false, IsStaticDataMember = false;
   5053   if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
   5054     // Ignore static data because out-of-line definitions are diagnosed
   5055     // separately.
   5056     IsStaticDataMember = VD->isStaticDataMember();
   5057   else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl))
   5058     IsInline = FD->isInlined();
   5059 
   5060   if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember) {
   5061     S.Diag(NewDecl->getLocation(),
   5062            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
   5063       << NewDecl << OldImportAttr;
   5064     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
   5065     S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
   5066     OldDecl->dropAttr<DLLImportAttr>();
   5067     NewDecl->dropAttr<DLLImportAttr>();
   5068   }
   5069 }
   5070 
   5071 /// Given that we are within the definition of the given function,
   5072 /// will that definition behave like C99's 'inline', where the
   5073 /// definition is discarded except for optimization purposes?
   5074 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
   5075   // Try to avoid calling GetGVALinkageForFunction.
   5076 
   5077   // All cases of this require the 'inline' keyword.
   5078   if (!FD->isInlined()) return false;
   5079 
   5080   // This is only possible in C++ with the gnu_inline attribute.
   5081   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
   5082     return false;
   5083 
   5084   // Okay, go ahead and call the relatively-more-expensive function.
   5085 
   5086 #ifndef NDEBUG
   5087   // AST quite reasonably asserts that it's working on a function
   5088   // definition.  We don't really have a way to tell it that we're
   5089   // currently defining the function, so just lie to it in +Asserts
   5090   // builds.  This is an awful hack.
   5091   FD->setLazyBody(1);
   5092 #endif
   5093 
   5094   bool isC99Inline =
   5095       S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
   5096 
   5097 #ifndef NDEBUG
   5098   FD->setLazyBody(0);
   5099 #endif
   5100 
   5101   return isC99Inline;
   5102 }
   5103 
   5104 /// Determine whether a variable is extern "C" prior to attaching
   5105 /// an initializer. We can't just call isExternC() here, because that
   5106 /// will also compute and cache whether the declaration is externally
   5107 /// visible, which might change when we attach the initializer.
   5108 ///
   5109 /// This can only be used if the declaration is known to not be a
   5110 /// redeclaration of an internal linkage declaration.
   5111 ///
   5112 /// For instance:
   5113 ///
   5114 ///   auto x = []{};
   5115 ///
   5116 /// Attaching the initializer here makes this declaration not externally
   5117 /// visible, because its type has internal linkage.
   5118 ///
   5119 /// FIXME: This is a hack.
   5120 template<typename T>
   5121 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
   5122   if (S.getLangOpts().CPlusPlus) {
   5123     // In C++, the overloadable attribute negates the effects of extern "C".
   5124     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
   5125       return false;
   5126   }
   5127   return D->isExternC();
   5128 }
   5129 
   5130 static bool shouldConsiderLinkage(const VarDecl *VD) {
   5131   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
   5132   if (DC->isFunctionOrMethod())
   5133     return VD->hasExternalStorage();
   5134   if (DC->isFileContext())
   5135     return true;
   5136   if (DC->isRecord())
   5137     return false;
   5138   llvm_unreachable("Unexpected context");
   5139 }
   5140 
   5141 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
   5142   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
   5143   if (DC->isFileContext() || DC->isFunctionOrMethod())
   5144     return true;
   5145   if (DC->isRecord())
   5146     return false;
   5147   llvm_unreachable("Unexpected context");
   5148 }
   5149 
   5150 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
   5151                           AttributeList::Kind Kind) {
   5152   for (const AttributeList *L = AttrList; L; L = L->getNext())
   5153     if (L->getKind() == Kind)
   5154       return true;
   5155   return false;
   5156 }
   5157 
   5158 static bool hasParsedAttr(Scope *S, const Declarator &PD,
   5159                           AttributeList::Kind Kind) {
   5160   // Check decl attributes on the DeclSpec.
   5161   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
   5162     return true;
   5163 
   5164   // Walk the declarator structure, checking decl attributes that were in a type
   5165   // position to the decl itself.
   5166   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
   5167     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
   5168       return true;
   5169   }
   5170 
   5171   // Finally, check attributes on the decl itself.
   5172   return hasParsedAttr(S, PD.getAttributes(), Kind);
   5173 }
   5174 
   5175 /// Adjust the \c DeclContext for a function or variable that might be a
   5176 /// function-local external declaration.
   5177 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
   5178   if (!DC->isFunctionOrMethod())
   5179     return false;
   5180 
   5181   // If this is a local extern function or variable declared within a function
   5182   // template, don't add it into the enclosing namespace scope until it is
   5183   // instantiated; it might have a dependent type right now.
   5184   if (DC->isDependentContext())
   5185     return true;
   5186 
   5187   // C++11 [basic.link]p7:
   5188   //   When a block scope declaration of an entity with linkage is not found to
   5189   //   refer to some other declaration, then that entity is a member of the
   5190   //   innermost enclosing namespace.
   5191   //
   5192   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
   5193   // semantically-enclosing namespace, not a lexically-enclosing one.
   5194   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
   5195     DC = DC->getParent();
   5196   return true;
   5197 }
   5198 
   5199 NamedDecl *
   5200 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   5201                               TypeSourceInfo *TInfo, LookupResult &Previous,
   5202                               MultiTemplateParamsArg TemplateParamLists,
   5203                               bool &AddToScope) {
   5204   QualType R = TInfo->getType();
   5205   DeclarationName Name = GetNameForDeclarator(D).getName();
   5206 
   5207   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
   5208   VarDecl::StorageClass SC =
   5209     StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
   5210 
   5211   // dllimport globals without explicit storage class are treated as extern. We
   5212   // have to change the storage class this early to get the right DeclContext.
   5213   if (SC == SC_None && !DC->isRecord() &&
   5214       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
   5215       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
   5216     SC = SC_Extern;
   5217 
   5218   DeclContext *OriginalDC = DC;
   5219   bool IsLocalExternDecl = SC == SC_Extern &&
   5220                            adjustContextForLocalExternDecl(DC);
   5221 
   5222   if (getLangOpts().OpenCL) {
   5223     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
   5224     QualType NR = R;
   5225     while (NR->isPointerType()) {
   5226       if (NR->isFunctionPointerType()) {
   5227         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
   5228         D.setInvalidType();
   5229         break;
   5230       }
   5231       NR = NR->getPointeeType();
   5232     }
   5233 
   5234     if (!getOpenCLOptions().cl_khr_fp16) {
   5235       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
   5236       // half array type (unless the cl_khr_fp16 extension is enabled).
   5237       if (Context.getBaseElementType(R)->isHalfType()) {
   5238         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
   5239         D.setInvalidType();
   5240       }
   5241     }
   5242   }
   5243 
   5244   if (SCSpec == DeclSpec::SCS_mutable) {
   5245     // mutable can only appear on non-static class members, so it's always
   5246     // an error here
   5247     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
   5248     D.setInvalidType();
   5249     SC = SC_None;
   5250   }
   5251 
   5252   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
   5253       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
   5254                               D.getDeclSpec().getStorageClassSpecLoc())) {
   5255     // In C++11, the 'register' storage class specifier is deprecated.
   5256     // Suppress the warning in system macros, it's used in macros in some
   5257     // popular C system headers, such as in glibc's htonl() macro.
   5258     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5259          diag::warn_deprecated_register)
   5260       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5261   }
   5262 
   5263   IdentifierInfo *II = Name.getAsIdentifierInfo();
   5264   if (!II) {
   5265     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
   5266       << Name;
   5267     return nullptr;
   5268   }
   5269 
   5270   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   5271 
   5272   if (!DC->isRecord() && S->getFnParent() == nullptr) {
   5273     // C99 6.9p2: The storage-class specifiers auto and register shall not
   5274     // appear in the declaration specifiers in an external declaration.
   5275     // Global Register+Asm is a GNU extension we support.
   5276     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
   5277       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
   5278       D.setInvalidType();
   5279     }
   5280   }
   5281 
   5282   if (getLangOpts().OpenCL) {
   5283     // Set up the special work-group-local storage class for variables in the
   5284     // OpenCL __local address space.
   5285     if (R.getAddressSpace() == LangAS::opencl_local) {
   5286       SC = SC_OpenCLWorkGroupLocal;
   5287     }
   5288 
   5289     // OpenCL v1.2 s6.9.b p4:
   5290     // The sampler type cannot be used with the __local and __global address
   5291     // space qualifiers.
   5292     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
   5293       R.getAddressSpace() == LangAS::opencl_global)) {
   5294       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
   5295     }
   5296 
   5297     // OpenCL 1.2 spec, p6.9 r:
   5298     // The event type cannot be used to declare a program scope variable.
   5299     // The event type cannot be used with the __local, __constant and __global
   5300     // address space qualifiers.
   5301     if (R->isEventT()) {
   5302       if (S->getParent() == nullptr) {
   5303         Diag(D.getLocStart(), diag::err_event_t_global_var);
   5304         D.setInvalidType();
   5305       }
   5306 
   5307       if (R.getAddressSpace()) {
   5308         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
   5309         D.setInvalidType();
   5310       }
   5311     }
   5312   }
   5313 
   5314   bool IsExplicitSpecialization = false;
   5315   bool IsVariableTemplateSpecialization = false;
   5316   bool IsPartialSpecialization = false;
   5317   bool IsVariableTemplate = false;
   5318   VarDecl *NewVD = nullptr;
   5319   VarTemplateDecl *NewTemplate = nullptr;
   5320   TemplateParameterList *TemplateParams = nullptr;
   5321   if (!getLangOpts().CPlusPlus) {
   5322     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   5323                             D.getIdentifierLoc(), II,
   5324                             R, TInfo, SC);
   5325 
   5326     if (D.isInvalidType())
   5327       NewVD->setInvalidDecl();
   5328   } else {
   5329     bool Invalid = false;
   5330 
   5331     if (DC->isRecord() && !CurContext->isRecord()) {
   5332       // This is an out-of-line definition of a static data member.
   5333       switch (SC) {
   5334       case SC_None:
   5335         break;
   5336       case SC_Static:
   5337         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5338              diag::err_static_out_of_line)
   5339           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5340         break;
   5341       case SC_Auto:
   5342       case SC_Register:
   5343       case SC_Extern:
   5344         // [dcl.stc] p2: The auto or register specifiers shall be applied only
   5345         // to names of variables declared in a block or to function parameters.
   5346         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
   5347         // of class members
   5348 
   5349         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5350              diag::err_storage_class_for_static_member)
   5351           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5352         break;
   5353       case SC_PrivateExtern:
   5354         llvm_unreachable("C storage class in c++!");
   5355       case SC_OpenCLWorkGroupLocal:
   5356         llvm_unreachable("OpenCL storage class in c++!");
   5357       }
   5358     }
   5359 
   5360     if (SC == SC_Static && CurContext->isRecord()) {
   5361       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
   5362         if (RD->isLocalClass())
   5363           Diag(D.getIdentifierLoc(),
   5364                diag::err_static_data_member_not_allowed_in_local_class)
   5365             << Name << RD->getDeclName();
   5366 
   5367         // C++98 [class.union]p1: If a union contains a static data member,
   5368         // the program is ill-formed. C++11 drops this restriction.
   5369         if (RD->isUnion())
   5370           Diag(D.getIdentifierLoc(),
   5371                getLangOpts().CPlusPlus11
   5372                  ? diag::warn_cxx98_compat_static_data_member_in_union
   5373                  : diag::ext_static_data_member_in_union) << Name;
   5374         // We conservatively disallow static data members in anonymous structs.
   5375         else if (!RD->getDeclName())
   5376           Diag(D.getIdentifierLoc(),
   5377                diag::err_static_data_member_not_allowed_in_anon_struct)
   5378             << Name << RD->isUnion();
   5379       }
   5380     }
   5381 
   5382     // Match up the template parameter lists with the scope specifier, then
   5383     // determine whether we have a template or a template specialization.
   5384     TemplateParams = MatchTemplateParametersToScopeSpecifier(
   5385         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
   5386         D.getCXXScopeSpec(),
   5387         D.getName().getKind() == UnqualifiedId::IK_TemplateId
   5388             ? D.getName().TemplateId
   5389             : nullptr,
   5390         TemplateParamLists,
   5391         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
   5392 
   5393     if (TemplateParams) {
   5394       if (!TemplateParams->size() &&
   5395           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   5396         // There is an extraneous 'template<>' for this variable. Complain
   5397         // about it, but allow the declaration of the variable.
   5398         Diag(TemplateParams->getTemplateLoc(),
   5399              diag::err_template_variable_noparams)
   5400           << II
   5401           << SourceRange(TemplateParams->getTemplateLoc(),
   5402                          TemplateParams->getRAngleLoc());
   5403         TemplateParams = nullptr;
   5404       } else {
   5405         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   5406           // This is an explicit specialization or a partial specialization.
   5407           // FIXME: Check that we can declare a specialization here.
   5408           IsVariableTemplateSpecialization = true;
   5409           IsPartialSpecialization = TemplateParams->size() > 0;
   5410         } else { // if (TemplateParams->size() > 0)
   5411           // This is a template declaration.
   5412           IsVariableTemplate = true;
   5413 
   5414           // Check that we can declare a template here.
   5415           if (CheckTemplateDeclScope(S, TemplateParams))
   5416             return nullptr;
   5417 
   5418           // Only C++1y supports variable templates (N3651).
   5419           Diag(D.getIdentifierLoc(),
   5420                getLangOpts().CPlusPlus1y
   5421                    ? diag::warn_cxx11_compat_variable_template
   5422                    : diag::ext_variable_template);
   5423         }
   5424       }
   5425     } else {
   5426       assert(D.getName().getKind() != UnqualifiedId::IK_TemplateId &&
   5427              "should have a 'template<>' for this decl");
   5428     }
   5429 
   5430     if (IsVariableTemplateSpecialization) {
   5431       SourceLocation TemplateKWLoc =
   5432           TemplateParamLists.size() > 0
   5433               ? TemplateParamLists[0]->getTemplateLoc()
   5434               : SourceLocation();
   5435       DeclResult Res = ActOnVarTemplateSpecialization(
   5436           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
   5437           IsPartialSpecialization);
   5438       if (Res.isInvalid())
   5439         return nullptr;
   5440       NewVD = cast<VarDecl>(Res.get());
   5441       AddToScope = false;
   5442     } else
   5443       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   5444                               D.getIdentifierLoc(), II, R, TInfo, SC);
   5445 
   5446     // If this is supposed to be a variable template, create it as such.
   5447     if (IsVariableTemplate) {
   5448       NewTemplate =
   5449           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
   5450                                   TemplateParams, NewVD);
   5451       NewVD->setDescribedVarTemplate(NewTemplate);
   5452     }
   5453 
   5454     // If this decl has an auto type in need of deduction, make a note of the
   5455     // Decl so we can diagnose uses of it in its own initializer.
   5456     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
   5457       ParsingInitForAutoVars.insert(NewVD);
   5458 
   5459     if (D.isInvalidType() || Invalid) {
   5460       NewVD->setInvalidDecl();
   5461       if (NewTemplate)
   5462         NewTemplate->setInvalidDecl();
   5463     }
   5464 
   5465     SetNestedNameSpecifier(NewVD, D);
   5466 
   5467     // If we have any template parameter lists that don't directly belong to
   5468     // the variable (matching the scope specifier), store them.
   5469     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
   5470     if (TemplateParamLists.size() > VDTemplateParamLists)
   5471       NewVD->setTemplateParameterListsInfo(
   5472           Context, TemplateParamLists.size() - VDTemplateParamLists,
   5473           TemplateParamLists.data());
   5474 
   5475     if (D.getDeclSpec().isConstexprSpecified())
   5476       NewVD->setConstexpr(true);
   5477   }
   5478 
   5479   // Set the lexical context. If the declarator has a C++ scope specifier, the
   5480   // lexical context will be different from the semantic context.
   5481   NewVD->setLexicalDeclContext(CurContext);
   5482   if (NewTemplate)
   5483     NewTemplate->setLexicalDeclContext(CurContext);
   5484 
   5485   if (IsLocalExternDecl)
   5486     NewVD->setLocalExternDecl();
   5487 
   5488   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
   5489     if (NewVD->hasLocalStorage()) {
   5490       // C++11 [dcl.stc]p4:
   5491       //   When thread_local is applied to a variable of block scope the
   5492       //   storage-class-specifier static is implied if it does not appear
   5493       //   explicitly.
   5494       // Core issue: 'static' is not implied if the variable is declared
   5495       //   'extern'.
   5496       if (SCSpec == DeclSpec::SCS_unspecified &&
   5497           TSCS == DeclSpec::TSCS_thread_local &&
   5498           DC->isFunctionOrMethod())
   5499         NewVD->setTSCSpec(TSCS);
   5500       else
   5501         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   5502              diag::err_thread_non_global)
   5503           << DeclSpec::getSpecifierName(TSCS);
   5504     } else if (!Context.getTargetInfo().isTLSSupported())
   5505       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   5506            diag::err_thread_unsupported);
   5507     else
   5508       NewVD->setTSCSpec(TSCS);
   5509   }
   5510 
   5511   // C99 6.7.4p3
   5512   //   An inline definition of a function with external linkage shall
   5513   //   not contain a definition of a modifiable object with static or
   5514   //   thread storage duration...
   5515   // We only apply this when the function is required to be defined
   5516   // elsewhere, i.e. when the function is not 'extern inline'.  Note
   5517   // that a local variable with thread storage duration still has to
   5518   // be marked 'static'.  Also note that it's possible to get these
   5519   // semantics in C++ using __attribute__((gnu_inline)).
   5520   if (SC == SC_Static && S->getFnParent() != nullptr &&
   5521       !NewVD->getType().isConstQualified()) {
   5522     FunctionDecl *CurFD = getCurFunctionDecl();
   5523     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
   5524       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5525            diag::warn_static_local_in_extern_inline);
   5526       MaybeSuggestAddingStaticToDecl(CurFD);
   5527     }
   5528   }
   5529 
   5530   if (D.getDeclSpec().isModulePrivateSpecified()) {
   5531     if (IsVariableTemplateSpecialization)
   5532       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   5533           << (IsPartialSpecialization ? 1 : 0)
   5534           << FixItHint::CreateRemoval(
   5535                  D.getDeclSpec().getModulePrivateSpecLoc());
   5536     else if (IsExplicitSpecialization)
   5537       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   5538         << 2
   5539         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   5540     else if (NewVD->hasLocalStorage())
   5541       Diag(NewVD->getLocation(), diag::err_module_private_local)
   5542         << 0 << NewVD->getDeclName()
   5543         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   5544         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   5545     else {
   5546       NewVD->setModulePrivate();
   5547       if (NewTemplate)
   5548         NewTemplate->setModulePrivate();
   5549     }
   5550   }
   5551 
   5552   // Handle attributes prior to checking for duplicates in MergeVarDecl
   5553   ProcessDeclAttributes(S, NewVD, D);
   5554 
   5555   if (getLangOpts().CUDA) {
   5556     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
   5557     // storage [duration]."
   5558     if (SC == SC_None && S->getFnParent() != nullptr &&
   5559         (NewVD->hasAttr<CUDASharedAttr>() ||
   5560          NewVD->hasAttr<CUDAConstantAttr>())) {
   5561       NewVD->setStorageClass(SC_Static);
   5562     }
   5563   }
   5564 
   5565   // Ensure that dllimport globals without explicit storage class are treated as
   5566   // extern. The storage class is set above using parsed attributes. Now we can
   5567   // check the VarDecl itself.
   5568   assert(!NewVD->hasAttr<DLLImportAttr>() ||
   5569          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
   5570          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
   5571 
   5572   // In auto-retain/release, infer strong retension for variables of
   5573   // retainable type.
   5574   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
   5575     NewVD->setInvalidDecl();
   5576 
   5577   // Handle GNU asm-label extension (encoded as an attribute).
   5578   if (Expr *E = (Expr*)D.getAsmLabel()) {
   5579     // The parser guarantees this is a string.
   5580     StringLiteral *SE = cast<StringLiteral>(E);
   5581     StringRef Label = SE->getString();
   5582     if (S->getFnParent() != nullptr) {
   5583       switch (SC) {
   5584       case SC_None:
   5585       case SC_Auto:
   5586         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
   5587         break;
   5588       case SC_Register:
   5589         // Local Named register
   5590         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
   5591           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   5592         break;
   5593       case SC_Static:
   5594       case SC_Extern:
   5595       case SC_PrivateExtern:
   5596       case SC_OpenCLWorkGroupLocal:
   5597         break;
   5598       }
   5599     } else if (SC == SC_Register) {
   5600       // Global Named register
   5601       if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
   5602         Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   5603       if (!R->isIntegralType(Context) && !R->isPointerType()) {
   5604         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
   5605         NewVD->setInvalidDecl(true);
   5606       }
   5607     }
   5608 
   5609     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
   5610                                                 Context, Label, 0));
   5611   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   5612     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   5613       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
   5614     if (I != ExtnameUndeclaredIdentifiers.end()) {
   5615       NewVD->addAttr(I->second);
   5616       ExtnameUndeclaredIdentifiers.erase(I);
   5617     }
   5618   }
   5619 
   5620   // Diagnose shadowed variables before filtering for scope.
   5621   if (D.getCXXScopeSpec().isEmpty())
   5622     CheckShadow(S, NewVD, Previous);
   5623 
   5624   // Don't consider existing declarations that are in a different
   5625   // scope and are out-of-semantic-context declarations (if the new
   5626   // declaration has linkage).
   5627   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
   5628                        D.getCXXScopeSpec().isNotEmpty() ||
   5629                        IsExplicitSpecialization ||
   5630                        IsVariableTemplateSpecialization);
   5631 
   5632   // Check whether the previous declaration is in the same block scope. This
   5633   // affects whether we merge types with it, per C++11 [dcl.array]p3.
   5634   if (getLangOpts().CPlusPlus &&
   5635       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
   5636     NewVD->setPreviousDeclInSameBlockScope(
   5637         Previous.isSingleResult() && !Previous.isShadowed() &&
   5638         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
   5639 
   5640   if (!getLangOpts().CPlusPlus) {
   5641     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   5642   } else {
   5643     // If this is an explicit specialization of a static data member, check it.
   5644     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
   5645         CheckMemberSpecialization(NewVD, Previous))
   5646       NewVD->setInvalidDecl();
   5647 
   5648     // Merge the decl with the existing one if appropriate.
   5649     if (!Previous.empty()) {
   5650       if (Previous.isSingleResult() &&
   5651           isa<FieldDecl>(Previous.getFoundDecl()) &&
   5652           D.getCXXScopeSpec().isSet()) {
   5653         // The user tried to define a non-static data member
   5654         // out-of-line (C++ [dcl.meaning]p1).
   5655         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
   5656           << D.getCXXScopeSpec().getRange();
   5657         Previous.clear();
   5658         NewVD->setInvalidDecl();
   5659       }
   5660     } else if (D.getCXXScopeSpec().isSet()) {
   5661       // No previous declaration in the qualifying scope.
   5662       Diag(D.getIdentifierLoc(), diag::err_no_member)
   5663         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
   5664         << D.getCXXScopeSpec().getRange();
   5665       NewVD->setInvalidDecl();
   5666     }
   5667 
   5668     if (!IsVariableTemplateSpecialization)
   5669       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   5670 
   5671     if (NewTemplate) {
   5672       VarTemplateDecl *PrevVarTemplate =
   5673           NewVD->getPreviousDecl()
   5674               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
   5675               : nullptr;
   5676 
   5677       // Check the template parameter list of this declaration, possibly
   5678       // merging in the template parameter list from the previous variable
   5679       // template declaration.
   5680       if (CheckTemplateParameterList(
   5681               TemplateParams,
   5682               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
   5683                               : nullptr,
   5684               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
   5685                DC->isDependentContext())
   5686                   ? TPC_ClassTemplateMember
   5687                   : TPC_VarTemplate))
   5688         NewVD->setInvalidDecl();
   5689 
   5690       // If we are providing an explicit specialization of a static variable
   5691       // template, make a note of that.
   5692       if (PrevVarTemplate &&
   5693           PrevVarTemplate->getInstantiatedFromMemberTemplate())
   5694         PrevVarTemplate->setMemberSpecialization();
   5695     }
   5696   }
   5697 
   5698   ProcessPragmaWeak(S, NewVD);
   5699 
   5700   // If this is the first declaration of an extern C variable, update
   5701   // the map of such variables.
   5702   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
   5703       isIncompleteDeclExternC(*this, NewVD))
   5704     RegisterLocallyScopedExternCDecl(NewVD, S);
   5705 
   5706   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
   5707     Decl *ManglingContextDecl;
   5708     if (MangleNumberingContext *MCtx =
   5709             getCurrentMangleNumberContext(NewVD->getDeclContext(),
   5710                                           ManglingContextDecl)) {
   5711       Context.setManglingNumber(
   5712           NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
   5713       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
   5714     }
   5715   }
   5716 
   5717   if (D.isRedeclaration() && !Previous.empty()) {
   5718     checkDLLAttributeRedeclaration(
   5719         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
   5720         IsExplicitSpecialization);
   5721   }
   5722 
   5723   if (NewTemplate) {
   5724     if (NewVD->isInvalidDecl())
   5725       NewTemplate->setInvalidDecl();
   5726     ActOnDocumentableDecl(NewTemplate);
   5727     return NewTemplate;
   5728   }
   5729 
   5730   return NewVD;
   5731 }
   5732 
   5733 /// \brief Diagnose variable or built-in function shadowing.  Implements
   5734 /// -Wshadow.
   5735 ///
   5736 /// This method is called whenever a VarDecl is added to a "useful"
   5737 /// scope.
   5738 ///
   5739 /// \param S the scope in which the shadowing name is being declared
   5740 /// \param R the lookup of the name
   5741 ///
   5742 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
   5743   // Return if warning is ignored.
   5744   if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
   5745     return;
   5746 
   5747   // Don't diagnose declarations at file scope.
   5748   if (D->hasGlobalStorage())
   5749     return;
   5750 
   5751   DeclContext *NewDC = D->getDeclContext();
   5752 
   5753   // Only diagnose if we're shadowing an unambiguous field or variable.
   5754   if (R.getResultKind() != LookupResult::Found)
   5755     return;
   5756 
   5757   NamedDecl* ShadowedDecl = R.getFoundDecl();
   5758   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
   5759     return;
   5760 
   5761   // Fields are not shadowed by variables in C++ static methods.
   5762   if (isa<FieldDecl>(ShadowedDecl))
   5763     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
   5764       if (MD->isStatic())
   5765         return;
   5766 
   5767   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
   5768     if (shadowedVar->isExternC()) {
   5769       // For shadowing external vars, make sure that we point to the global
   5770       // declaration, not a locally scoped extern declaration.
   5771       for (auto I : shadowedVar->redecls())
   5772         if (I->isFileVarDecl()) {
   5773           ShadowedDecl = I;
   5774           break;
   5775         }
   5776     }
   5777 
   5778   DeclContext *OldDC = ShadowedDecl->getDeclContext();
   5779 
   5780   // Only warn about certain kinds of shadowing for class members.
   5781   if (NewDC && NewDC->isRecord()) {
   5782     // In particular, don't warn about shadowing non-class members.
   5783     if (!OldDC->isRecord())
   5784       return;
   5785 
   5786     // TODO: should we warn about static data members shadowing
   5787     // static data members from base classes?
   5788 
   5789     // TODO: don't diagnose for inaccessible shadowed members.
   5790     // This is hard to do perfectly because we might friend the
   5791     // shadowing context, but that's just a false negative.
   5792   }
   5793 
   5794   // Determine what kind of declaration we're shadowing.
   5795   unsigned Kind;
   5796   if (isa<RecordDecl>(OldDC)) {
   5797     if (isa<FieldDecl>(ShadowedDecl))
   5798       Kind = 3; // field
   5799     else
   5800       Kind = 2; // static data member
   5801   } else if (OldDC->isFileContext())
   5802     Kind = 1; // global
   5803   else
   5804     Kind = 0; // local
   5805 
   5806   DeclarationName Name = R.getLookupName();
   5807 
   5808   // Emit warning and note.
   5809   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
   5810     return;
   5811   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
   5812   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
   5813 }
   5814 
   5815 /// \brief Check -Wshadow without the advantage of a previous lookup.
   5816 void Sema::CheckShadow(Scope *S, VarDecl *D) {
   5817   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
   5818     return;
   5819 
   5820   LookupResult R(*this, D->getDeclName(), D->getLocation(),
   5821                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   5822   LookupName(R, S);
   5823   CheckShadow(S, D, R);
   5824 }
   5825 
   5826 /// Check for conflict between this global or extern "C" declaration and
   5827 /// previous global or extern "C" declarations. This is only used in C++.
   5828 template<typename T>
   5829 static bool checkGlobalOrExternCConflict(
   5830     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
   5831   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
   5832   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
   5833 
   5834   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
   5835     // The common case: this global doesn't conflict with any extern "C"
   5836     // declaration.
   5837     return false;
   5838   }
   5839 
   5840   if (Prev) {
   5841     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
   5842       // Both the old and new declarations have C language linkage. This is a
   5843       // redeclaration.
   5844       Previous.clear();
   5845       Previous.addDecl(Prev);
   5846       return true;
   5847     }
   5848 
   5849     // This is a global, non-extern "C" declaration, and there is a previous
   5850     // non-global extern "C" declaration. Diagnose if this is a variable
   5851     // declaration.
   5852     if (!isa<VarDecl>(ND))
   5853       return false;
   5854   } else {
   5855     // The declaration is extern "C". Check for any declaration in the
   5856     // translation unit which might conflict.
   5857     if (IsGlobal) {
   5858       // We have already performed the lookup into the translation unit.
   5859       IsGlobal = false;
   5860       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   5861            I != E; ++I) {
   5862         if (isa<VarDecl>(*I)) {
   5863           Prev = *I;
   5864           break;
   5865         }
   5866       }
   5867     } else {
   5868       DeclContext::lookup_result R =
   5869           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
   5870       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
   5871            I != E; ++I) {
   5872         if (isa<VarDecl>(*I)) {
   5873           Prev = *I;
   5874           break;
   5875         }
   5876         // FIXME: If we have any other entity with this name in global scope,
   5877         // the declaration is ill-formed, but that is a defect: it breaks the
   5878         // 'stat' hack, for instance. Only variables can have mangled name
   5879         // clashes with extern "C" declarations, so only they deserve a
   5880         // diagnostic.
   5881       }
   5882     }
   5883 
   5884     if (!Prev)
   5885       return false;
   5886   }
   5887 
   5888   // Use the first declaration's location to ensure we point at something which
   5889   // is lexically inside an extern "C" linkage-spec.
   5890   assert(Prev && "should have found a previous declaration to diagnose");
   5891   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
   5892     Prev = FD->getFirstDecl();
   5893   else
   5894     Prev = cast<VarDecl>(Prev)->getFirstDecl();
   5895 
   5896   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
   5897     << IsGlobal << ND;
   5898   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
   5899     << IsGlobal;
   5900   return false;
   5901 }
   5902 
   5903 /// Apply special rules for handling extern "C" declarations. Returns \c true
   5904 /// if we have found that this is a redeclaration of some prior entity.
   5905 ///
   5906 /// Per C++ [dcl.link]p6:
   5907 ///   Two declarations [for a function or variable] with C language linkage
   5908 ///   with the same name that appear in different scopes refer to the same
   5909 ///   [entity]. An entity with C language linkage shall not be declared with
   5910 ///   the same name as an entity in global scope.
   5911 template<typename T>
   5912 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
   5913                                                   LookupResult &Previous) {
   5914   if (!S.getLangOpts().CPlusPlus) {
   5915     // In C, when declaring a global variable, look for a corresponding 'extern'
   5916     // variable declared in function scope. We don't need this in C++, because
   5917     // we find local extern decls in the surrounding file-scope DeclContext.
   5918     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   5919       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
   5920         Previous.clear();
   5921         Previous.addDecl(Prev);
   5922         return true;
   5923       }
   5924     }
   5925     return false;
   5926   }
   5927 
   5928   // A declaration in the translation unit can conflict with an extern "C"
   5929   // declaration.
   5930   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
   5931     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
   5932 
   5933   // An extern "C" declaration can conflict with a declaration in the
   5934   // translation unit or can be a redeclaration of an extern "C" declaration
   5935   // in another scope.
   5936   if (isIncompleteDeclExternC(S,ND))
   5937     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
   5938 
   5939   // Neither global nor extern "C": nothing to do.
   5940   return false;
   5941 }
   5942 
   5943 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
   5944   // If the decl is already known invalid, don't check it.
   5945   if (NewVD->isInvalidDecl())
   5946     return;
   5947 
   5948   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
   5949   QualType T = TInfo->getType();
   5950 
   5951   // Defer checking an 'auto' type until its initializer is attached.
   5952   if (T->isUndeducedType())
   5953     return;
   5954 
   5955   if (NewVD->hasAttrs())
   5956     CheckAlignasUnderalignment(NewVD);
   5957 
   5958   if (T->isObjCObjectType()) {
   5959     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
   5960       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
   5961     T = Context.getObjCObjectPointerType(T);
   5962     NewVD->setType(T);
   5963   }
   5964 
   5965   // Emit an error if an address space was applied to decl with local storage.
   5966   // This includes arrays of objects with address space qualifiers, but not
   5967   // automatic variables that point to other address spaces.
   5968   // ISO/IEC TR 18037 S5.1.2
   5969   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
   5970     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
   5971     NewVD->setInvalidDecl();
   5972     return;
   5973   }
   5974 
   5975   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
   5976   // __constant address space.
   5977   if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
   5978       && T.getAddressSpace() != LangAS::opencl_constant
   5979       && !T->isSamplerT()){
   5980     Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
   5981     NewVD->setInvalidDecl();
   5982     return;
   5983   }
   5984 
   5985   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
   5986   // scope.
   5987   if ((getLangOpts().OpenCLVersion >= 120)
   5988       && NewVD->isStaticLocal()) {
   5989     Diag(NewVD->getLocation(), diag::err_static_function_scope);
   5990     NewVD->setInvalidDecl();
   5991     return;
   5992   }
   5993 
   5994   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
   5995       && !NewVD->hasAttr<BlocksAttr>()) {
   5996     if (getLangOpts().getGC() != LangOptions::NonGC)
   5997       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
   5998     else {
   5999       assert(!getLangOpts().ObjCAutoRefCount);
   6000       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
   6001     }
   6002   }
   6003 
   6004   bool isVM = T->isVariablyModifiedType();
   6005   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
   6006       NewVD->hasAttr<BlocksAttr>())
   6007     getCurFunction()->setHasBranchProtectedScope();
   6008 
   6009   if ((isVM && NewVD->hasLinkage()) ||
   6010       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
   6011     bool SizeIsNegative;
   6012     llvm::APSInt Oversized;
   6013     TypeSourceInfo *FixedTInfo =
   6014       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   6015                                                     SizeIsNegative, Oversized);
   6016     if (!FixedTInfo && T->isVariableArrayType()) {
   6017       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
   6018       // FIXME: This won't give the correct result for
   6019       // int a[10][n];
   6020       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
   6021 
   6022       if (NewVD->isFileVarDecl())
   6023         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
   6024         << SizeRange;
   6025       else if (NewVD->isStaticLocal())
   6026         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
   6027         << SizeRange;
   6028       else
   6029         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
   6030         << SizeRange;
   6031       NewVD->setInvalidDecl();
   6032       return;
   6033     }
   6034 
   6035     if (!FixedTInfo) {
   6036       if (NewVD->isFileVarDecl())
   6037         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
   6038       else
   6039         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
   6040       NewVD->setInvalidDecl();
   6041       return;
   6042     }
   6043 
   6044     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
   6045     NewVD->setType(FixedTInfo->getType());
   6046     NewVD->setTypeSourceInfo(FixedTInfo);
   6047   }
   6048 
   6049   if (T->isVoidType()) {
   6050     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
   6051     //                    of objects and functions.
   6052     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
   6053       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
   6054         << T;
   6055       NewVD->setInvalidDecl();
   6056       return;
   6057     }
   6058   }
   6059 
   6060   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
   6061     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
   6062     NewVD->setInvalidDecl();
   6063     return;
   6064   }
   6065 
   6066   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
   6067     Diag(NewVD->getLocation(), diag::err_block_on_vm);
   6068     NewVD->setInvalidDecl();
   6069     return;
   6070   }
   6071 
   6072   if (NewVD->isConstexpr() && !T->isDependentType() &&
   6073       RequireLiteralType(NewVD->getLocation(), T,
   6074                          diag::err_constexpr_var_non_literal)) {
   6075     NewVD->setInvalidDecl();
   6076     return;
   6077   }
   6078 }
   6079 
   6080 /// \brief Perform semantic checking on a newly-created variable
   6081 /// declaration.
   6082 ///
   6083 /// This routine performs all of the type-checking required for a
   6084 /// variable declaration once it has been built. It is used both to
   6085 /// check variables after they have been parsed and their declarators
   6086 /// have been translated into a declaration, and to check variables
   6087 /// that have been instantiated from a template.
   6088 ///
   6089 /// Sets NewVD->isInvalidDecl() if an error was encountered.
   6090 ///
   6091 /// Returns true if the variable declaration is a redeclaration.
   6092 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
   6093   CheckVariableDeclarationType(NewVD);
   6094 
   6095   // If the decl is already known invalid, don't check it.
   6096   if (NewVD->isInvalidDecl())
   6097     return false;
   6098 
   6099   // If we did not find anything by this name, look for a non-visible
   6100   // extern "C" declaration with the same name.
   6101   if (Previous.empty() &&
   6102       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
   6103     Previous.setShadowed();
   6104 
   6105   // Filter out any non-conflicting previous declarations.
   6106   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
   6107 
   6108   if (!Previous.empty()) {
   6109     MergeVarDecl(NewVD, Previous);
   6110     return true;
   6111   }
   6112   return false;
   6113 }
   6114 
   6115 /// \brief Data used with FindOverriddenMethod
   6116 struct FindOverriddenMethodData {
   6117   Sema *S;
   6118   CXXMethodDecl *Method;
   6119 };
   6120 
   6121 /// \brief Member lookup function that determines whether a given C++
   6122 /// method overrides a method in a base class, to be used with
   6123 /// CXXRecordDecl::lookupInBases().
   6124 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
   6125                                  CXXBasePath &Path,
   6126                                  void *UserData) {
   6127   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   6128 
   6129   FindOverriddenMethodData *Data
   6130     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
   6131 
   6132   DeclarationName Name = Data->Method->getDeclName();
   6133 
   6134   // FIXME: Do we care about other names here too?
   6135   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   6136     // We really want to find the base class destructor here.
   6137     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
   6138     CanQualType CT = Data->S->Context.getCanonicalType(T);
   6139 
   6140     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
   6141   }
   6142 
   6143   for (Path.Decls = BaseRecord->lookup(Name);
   6144        !Path.Decls.empty();
   6145        Path.Decls = Path.Decls.slice(1)) {
   6146     NamedDecl *D = Path.Decls.front();
   6147     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   6148       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
   6149         return true;
   6150     }
   6151   }
   6152 
   6153   return false;
   6154 }
   6155 
   6156 namespace {
   6157   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
   6158 }
   6159 /// \brief Report an error regarding overriding, along with any relevant
   6160 /// overriden methods.
   6161 ///
   6162 /// \param DiagID the primary error to report.
   6163 /// \param MD the overriding method.
   6164 /// \param OEK which overrides to include as notes.
   6165 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
   6166                             OverrideErrorKind OEK = OEK_All) {
   6167   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
   6168   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   6169                                       E = MD->end_overridden_methods();
   6170        I != E; ++I) {
   6171     // This check (& the OEK parameter) could be replaced by a predicate, but
   6172     // without lambdas that would be overkill. This is still nicer than writing
   6173     // out the diag loop 3 times.
   6174     if ((OEK == OEK_All) ||
   6175         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
   6176         (OEK == OEK_Deleted && (*I)->isDeleted()))
   6177       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
   6178   }
   6179 }
   6180 
   6181 /// AddOverriddenMethods - See if a method overrides any in the base classes,
   6182 /// and if so, check that it's a valid override and remember it.
   6183 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   6184   // Look for virtual methods in base classes that this method might override.
   6185   CXXBasePaths Paths;
   6186   FindOverriddenMethodData Data;
   6187   Data.Method = MD;
   6188   Data.S = this;
   6189   bool hasDeletedOverridenMethods = false;
   6190   bool hasNonDeletedOverridenMethods = false;
   6191   bool AddedAny = false;
   6192   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
   6193     for (auto *I : Paths.found_decls()) {
   6194       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
   6195         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
   6196         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
   6197             !CheckOverridingFunctionAttributes(MD, OldMD) &&
   6198             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
   6199             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
   6200           hasDeletedOverridenMethods |= OldMD->isDeleted();
   6201           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
   6202           AddedAny = true;
   6203         }
   6204       }
   6205     }
   6206   }
   6207 
   6208   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
   6209     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
   6210   }
   6211   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
   6212     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
   6213   }
   6214 
   6215   return AddedAny;
   6216 }
   6217 
   6218 namespace {
   6219   // Struct for holding all of the extra arguments needed by
   6220   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
   6221   struct ActOnFDArgs {
   6222     Scope *S;
   6223     Declarator &D;
   6224     MultiTemplateParamsArg TemplateParamLists;
   6225     bool AddToScope;
   6226   };
   6227 }
   6228 
   6229 namespace {
   6230 
   6231 // Callback to only accept typo corrections that have a non-zero edit distance.
   6232 // Also only accept corrections that have the same parent decl.
   6233 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
   6234  public:
   6235   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
   6236                             CXXRecordDecl *Parent)
   6237       : Context(Context), OriginalFD(TypoFD),
   6238         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
   6239 
   6240   bool ValidateCandidate(const TypoCorrection &candidate) override {
   6241     if (candidate.getEditDistance() == 0)
   6242       return false;
   6243 
   6244     SmallVector<unsigned, 1> MismatchedParams;
   6245     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
   6246                                           CDeclEnd = candidate.end();
   6247          CDecl != CDeclEnd; ++CDecl) {
   6248       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   6249 
   6250       if (FD && !FD->hasBody() &&
   6251           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
   6252         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   6253           CXXRecordDecl *Parent = MD->getParent();
   6254           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
   6255             return true;
   6256         } else if (!ExpectedParent) {
   6257           return true;
   6258         }
   6259       }
   6260     }
   6261 
   6262     return false;
   6263   }
   6264 
   6265  private:
   6266   ASTContext &Context;
   6267   FunctionDecl *OriginalFD;
   6268   CXXRecordDecl *ExpectedParent;
   6269 };
   6270 
   6271 }
   6272 
   6273 /// \brief Generate diagnostics for an invalid function redeclaration.
   6274 ///
   6275 /// This routine handles generating the diagnostic messages for an invalid
   6276 /// function redeclaration, including finding possible similar declarations
   6277 /// or performing typo correction if there are no previous declarations with
   6278 /// the same name.
   6279 ///
   6280 /// Returns a NamedDecl iff typo correction was performed and substituting in
   6281 /// the new declaration name does not cause new errors.
   6282 static NamedDecl *DiagnoseInvalidRedeclaration(
   6283     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
   6284     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
   6285   DeclarationName Name = NewFD->getDeclName();
   6286   DeclContext *NewDC = NewFD->getDeclContext();
   6287   SmallVector<unsigned, 1> MismatchedParams;
   6288   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
   6289   TypoCorrection Correction;
   6290   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
   6291   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
   6292                                    : diag::err_member_decl_does_not_match;
   6293   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
   6294                     IsLocalFriend ? Sema::LookupLocalFriendName
   6295                                   : Sema::LookupOrdinaryName,
   6296                     Sema::ForRedeclaration);
   6297 
   6298   NewFD->setInvalidDecl();
   6299   if (IsLocalFriend)
   6300     SemaRef.LookupName(Prev, S);
   6301   else
   6302     SemaRef.LookupQualifiedName(Prev, NewDC);
   6303   assert(!Prev.isAmbiguous() &&
   6304          "Cannot have an ambiguity in previous-declaration lookup");
   6305   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   6306   DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
   6307                                       MD ? MD->getParent() : nullptr);
   6308   if (!Prev.empty()) {
   6309     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
   6310          Func != FuncEnd; ++Func) {
   6311       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
   6312       if (FD &&
   6313           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   6314         // Add 1 to the index so that 0 can mean the mismatch didn't
   6315         // involve a parameter
   6316         unsigned ParamNum =
   6317             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
   6318         NearMatches.push_back(std::make_pair(FD, ParamNum));
   6319       }
   6320     }
   6321   // If the qualified name lookup yielded nothing, try typo correction
   6322   } else if ((Correction = SemaRef.CorrectTypo(
   6323                  Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
   6324                  &ExtraArgs.D.getCXXScopeSpec(), Validator,
   6325                  Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
   6326     // Set up everything for the call to ActOnFunctionDeclarator
   6327     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
   6328                               ExtraArgs.D.getIdentifierLoc());
   6329     Previous.clear();
   6330     Previous.setLookupName(Correction.getCorrection());
   6331     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
   6332                                     CDeclEnd = Correction.end();
   6333          CDecl != CDeclEnd; ++CDecl) {
   6334       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   6335       if (FD && !FD->hasBody() &&
   6336           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   6337         Previous.addDecl(FD);
   6338       }
   6339     }
   6340     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
   6341 
   6342     NamedDecl *Result;
   6343     // Retry building the function declaration with the new previous
   6344     // declarations, and with errors suppressed.
   6345     {
   6346       // Trap errors.
   6347       Sema::SFINAETrap Trap(SemaRef);
   6348 
   6349       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
   6350       // pieces need to verify the typo-corrected C++ declaration and hopefully
   6351       // eliminate the need for the parameter pack ExtraArgs.
   6352       Result = SemaRef.ActOnFunctionDeclarator(
   6353           ExtraArgs.S, ExtraArgs.D,
   6354           Correction.getCorrectionDecl()->getDeclContext(),
   6355           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
   6356           ExtraArgs.AddToScope);
   6357 
   6358       if (Trap.hasErrorOccurred())
   6359         Result = nullptr;
   6360     }
   6361 
   6362     if (Result) {
   6363       // Determine which correction we picked.
   6364       Decl *Canonical = Result->getCanonicalDecl();
   6365       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   6366            I != E; ++I)
   6367         if ((*I)->getCanonicalDecl() == Canonical)
   6368           Correction.setCorrectionDecl(*I);
   6369 
   6370       SemaRef.diagnoseTypo(
   6371           Correction,
   6372           SemaRef.PDiag(IsLocalFriend
   6373                           ? diag::err_no_matching_local_friend_suggest
   6374                           : diag::err_member_decl_does_not_match_suggest)
   6375             << Name << NewDC << IsDefinition);
   6376       return Result;
   6377     }
   6378 
   6379     // Pretend the typo correction never occurred
   6380     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
   6381                               ExtraArgs.D.getIdentifierLoc());
   6382     ExtraArgs.D.setRedeclaration(wasRedeclaration);
   6383     Previous.clear();
   6384     Previous.setLookupName(Name);
   6385   }
   6386 
   6387   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
   6388       << Name << NewDC << IsDefinition << NewFD->getLocation();
   6389 
   6390   bool NewFDisConst = false;
   6391   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
   6392     NewFDisConst = NewMD->isConst();
   6393 
   6394   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
   6395        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
   6396        NearMatch != NearMatchEnd; ++NearMatch) {
   6397     FunctionDecl *FD = NearMatch->first;
   6398     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   6399     bool FDisConst = MD && MD->isConst();
   6400     bool IsMember = MD || !IsLocalFriend;
   6401 
   6402     // FIXME: These notes are poorly worded for the local friend case.
   6403     if (unsigned Idx = NearMatch->second) {
   6404       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
   6405       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
   6406       if (Loc.isInvalid()) Loc = FD->getLocation();
   6407       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
   6408                                  : diag::note_local_decl_close_param_match)
   6409         << Idx << FDParam->getType()
   6410         << NewFD->getParamDecl(Idx - 1)->getType();
   6411     } else if (FDisConst != NewFDisConst) {
   6412       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
   6413           << NewFDisConst << FD->getSourceRange().getEnd();
   6414     } else
   6415       SemaRef.Diag(FD->getLocation(),
   6416                    IsMember ? diag::note_member_def_close_match
   6417                             : diag::note_local_decl_close_match);
   6418   }
   6419   return nullptr;
   6420 }
   6421 
   6422 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
   6423                                                           Declarator &D) {
   6424   switch (D.getDeclSpec().getStorageClassSpec()) {
   6425   default: llvm_unreachable("Unknown storage class!");
   6426   case DeclSpec::SCS_auto:
   6427   case DeclSpec::SCS_register:
   6428   case DeclSpec::SCS_mutable:
   6429     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   6430                  diag::err_typecheck_sclass_func);
   6431     D.setInvalidType();
   6432     break;
   6433   case DeclSpec::SCS_unspecified: break;
   6434   case DeclSpec::SCS_extern:
   6435     if (D.getDeclSpec().isExternInLinkageSpec())
   6436       return SC_None;
   6437     return SC_Extern;
   6438   case DeclSpec::SCS_static: {
   6439     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   6440       // C99 6.7.1p5:
   6441       //   The declaration of an identifier for a function that has
   6442       //   block scope shall have no explicit storage-class specifier
   6443       //   other than extern
   6444       // See also (C++ [dcl.stc]p4).
   6445       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   6446                    diag::err_static_block_func);
   6447       break;
   6448     } else
   6449       return SC_Static;
   6450   }
   6451   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   6452   }
   6453 
   6454   // No explicit storage class has already been returned
   6455   return SC_None;
   6456 }
   6457 
   6458 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
   6459                                            DeclContext *DC, QualType &R,
   6460                                            TypeSourceInfo *TInfo,
   6461                                            FunctionDecl::StorageClass SC,
   6462                                            bool &IsVirtualOkay) {
   6463   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
   6464   DeclarationName Name = NameInfo.getName();
   6465 
   6466   FunctionDecl *NewFD = nullptr;
   6467   bool isInline = D.getDeclSpec().isInlineSpecified();
   6468 
   6469   if (!SemaRef.getLangOpts().CPlusPlus) {
   6470     // Determine whether the function was written with a
   6471     // prototype. This true when:
   6472     //   - there is a prototype in the declarator, or
   6473     //   - the type R of the function is some kind of typedef or other reference
   6474     //     to a type name (which eventually refers to a function type).
   6475     bool HasPrototype =
   6476       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
   6477       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
   6478 
   6479     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
   6480                                  D.getLocStart(), NameInfo, R,
   6481                                  TInfo, SC, isInline,
   6482                                  HasPrototype, false);
   6483     if (D.isInvalidType())
   6484       NewFD->setInvalidDecl();
   6485 
   6486     // Set the lexical context.
   6487     NewFD->setLexicalDeclContext(SemaRef.CurContext);
   6488 
   6489     return NewFD;
   6490   }
   6491 
   6492   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   6493   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   6494 
   6495   // Check that the return type is not an abstract class type.
   6496   // For record types, this is done by the AbstractClassUsageDiagnoser once
   6497   // the class has been completely parsed.
   6498   if (!DC->isRecord() &&
   6499       SemaRef.RequireNonAbstractType(
   6500           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
   6501           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
   6502     D.setInvalidType();
   6503 
   6504   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
   6505     // This is a C++ constructor declaration.
   6506     assert(DC->isRecord() &&
   6507            "Constructors can only be declared in a member context");
   6508 
   6509     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
   6510     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   6511                                       D.getLocStart(), NameInfo,
   6512                                       R, TInfo, isExplicit, isInline,
   6513                                       /*isImplicitlyDeclared=*/false,
   6514                                       isConstexpr);
   6515 
   6516   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   6517     // This is a C++ destructor declaration.
   6518     if (DC->isRecord()) {
   6519       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
   6520       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
   6521       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
   6522                                         SemaRef.Context, Record,
   6523                                         D.getLocStart(),
   6524                                         NameInfo, R, TInfo, isInline,
   6525                                         /*isImplicitlyDeclared=*/false);
   6526 
   6527       // If the class is complete, then we now create the implicit exception
   6528       // specification. If the class is incomplete or dependent, we can't do
   6529       // it yet.
   6530       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
   6531           Record->getDefinition() && !Record->isBeingDefined() &&
   6532           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
   6533         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
   6534       }
   6535 
   6536       IsVirtualOkay = true;
   6537       return NewDD;
   6538 
   6539     } else {
   6540       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
   6541       D.setInvalidType();
   6542 
   6543       // Create a FunctionDecl to satisfy the function definition parsing
   6544       // code path.
   6545       return FunctionDecl::Create(SemaRef.Context, DC,
   6546                                   D.getLocStart(),
   6547                                   D.getIdentifierLoc(), Name, R, TInfo,
   6548                                   SC, isInline,
   6549                                   /*hasPrototype=*/true, isConstexpr);
   6550     }
   6551 
   6552   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   6553     if (!DC->isRecord()) {
   6554       SemaRef.Diag(D.getIdentifierLoc(),
   6555            diag::err_conv_function_not_member);
   6556       return nullptr;
   6557     }
   6558 
   6559     SemaRef.CheckConversionDeclarator(D, R, SC);
   6560     IsVirtualOkay = true;
   6561     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   6562                                      D.getLocStart(), NameInfo,
   6563                                      R, TInfo, isInline, isExplicit,
   6564                                      isConstexpr, SourceLocation());
   6565 
   6566   } else if (DC->isRecord()) {
   6567     // If the name of the function is the same as the name of the record,
   6568     // then this must be an invalid constructor that has a return type.
   6569     // (The parser checks for a return type and makes the declarator a
   6570     // constructor if it has no return type).
   6571     if (Name.getAsIdentifierInfo() &&
   6572         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
   6573       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
   6574         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   6575         << SourceRange(D.getIdentifierLoc());
   6576       return nullptr;
   6577     }
   6578 
   6579     // This is a C++ method declaration.
   6580     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
   6581                                                cast<CXXRecordDecl>(DC),
   6582                                                D.getLocStart(), NameInfo, R,
   6583                                                TInfo, SC, isInline,
   6584                                                isConstexpr, SourceLocation());
   6585     IsVirtualOkay = !Ret->isStatic();
   6586     return Ret;
   6587   } else {
   6588     // Determine whether the function was written with a
   6589     // prototype. This true when:
   6590     //   - we're in C++ (where every function has a prototype),
   6591     return FunctionDecl::Create(SemaRef.Context, DC,
   6592                                 D.getLocStart(),
   6593                                 NameInfo, R, TInfo, SC, isInline,
   6594                                 true/*HasPrototype*/, isConstexpr);
   6595   }
   6596 }
   6597 
   6598 enum OpenCLParamType {
   6599   ValidKernelParam,
   6600   PtrPtrKernelParam,
   6601   PtrKernelParam,
   6602   PrivatePtrKernelParam,
   6603   InvalidKernelParam,
   6604   RecordKernelParam
   6605 };
   6606 
   6607 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
   6608   if (PT->isPointerType()) {
   6609     QualType PointeeType = PT->getPointeeType();
   6610     if (PointeeType->isPointerType())
   6611       return PtrPtrKernelParam;
   6612     return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
   6613                                               : PtrKernelParam;
   6614   }
   6615 
   6616   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
   6617   // be used as builtin types.
   6618 
   6619   if (PT->isImageType())
   6620     return PtrKernelParam;
   6621 
   6622   if (PT->isBooleanType())
   6623     return InvalidKernelParam;
   6624 
   6625   if (PT->isEventT())
   6626     return InvalidKernelParam;
   6627 
   6628   if (PT->isHalfType())
   6629     return InvalidKernelParam;
   6630 
   6631   if (PT->isRecordType())
   6632     return RecordKernelParam;
   6633 
   6634   return ValidKernelParam;
   6635 }
   6636 
   6637 static void checkIsValidOpenCLKernelParameter(
   6638   Sema &S,
   6639   Declarator &D,
   6640   ParmVarDecl *Param,
   6641   llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
   6642   QualType PT = Param->getType();
   6643 
   6644   // Cache the valid types we encounter to avoid rechecking structs that are
   6645   // used again
   6646   if (ValidTypes.count(PT.getTypePtr()))
   6647     return;
   6648 
   6649   switch (getOpenCLKernelParameterType(PT)) {
   6650   case PtrPtrKernelParam:
   6651     // OpenCL v1.2 s6.9.a:
   6652     // A kernel function argument cannot be declared as a
   6653     // pointer to a pointer type.
   6654     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
   6655     D.setInvalidType();
   6656     return;
   6657 
   6658   case PrivatePtrKernelParam:
   6659     // OpenCL v1.2 s6.9.a:
   6660     // A kernel function argument cannot be declared as a
   6661     // pointer to the private address space.
   6662     S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
   6663     D.setInvalidType();
   6664     return;
   6665 
   6666     // OpenCL v1.2 s6.9.k:
   6667     // Arguments to kernel functions in a program cannot be declared with the
   6668     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
   6669     // uintptr_t or a struct and/or union that contain fields declared to be
   6670     // one of these built-in scalar types.
   6671 
   6672   case InvalidKernelParam:
   6673     // OpenCL v1.2 s6.8 n:
   6674     // A kernel function argument cannot be declared
   6675     // of event_t type.
   6676     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
   6677     D.setInvalidType();
   6678     return;
   6679 
   6680   case PtrKernelParam:
   6681   case ValidKernelParam:
   6682     ValidTypes.insert(PT.getTypePtr());
   6683     return;
   6684 
   6685   case RecordKernelParam:
   6686     break;
   6687   }
   6688 
   6689   // Track nested structs we will inspect
   6690   SmallVector<const Decl *, 4> VisitStack;
   6691 
   6692   // Track where we are in the nested structs. Items will migrate from
   6693   // VisitStack to HistoryStack as we do the DFS for bad field.
   6694   SmallVector<const FieldDecl *, 4> HistoryStack;
   6695   HistoryStack.push_back(nullptr);
   6696 
   6697   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
   6698   VisitStack.push_back(PD);
   6699 
   6700   assert(VisitStack.back() && "First decl null?");
   6701 
   6702   do {
   6703     const Decl *Next = VisitStack.pop_back_val();
   6704     if (!Next) {
   6705       assert(!HistoryStack.empty());
   6706       // Found a marker, we have gone up a level
   6707       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
   6708         ValidTypes.insert(Hist->getType().getTypePtr());
   6709 
   6710       continue;
   6711     }
   6712 
   6713     // Adds everything except the original parameter declaration (which is not a
   6714     // field itself) to the history stack.
   6715     const RecordDecl *RD;
   6716     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
   6717       HistoryStack.push_back(Field);
   6718       RD = Field->getType()->castAs<RecordType>()->getDecl();
   6719     } else {
   6720       RD = cast<RecordDecl>(Next);
   6721     }
   6722 
   6723     // Add a null marker so we know when we've gone back up a level
   6724     VisitStack.push_back(nullptr);
   6725 
   6726     for (const auto *FD : RD->fields()) {
   6727       QualType QT = FD->getType();
   6728 
   6729       if (ValidTypes.count(QT.getTypePtr()))
   6730         continue;
   6731 
   6732       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
   6733       if (ParamType == ValidKernelParam)
   6734         continue;
   6735 
   6736       if (ParamType == RecordKernelParam) {
   6737         VisitStack.push_back(FD);
   6738         continue;
   6739       }
   6740 
   6741       // OpenCL v1.2 s6.9.p:
   6742       // Arguments to kernel functions that are declared to be a struct or union
   6743       // do not allow OpenCL objects to be passed as elements of the struct or
   6744       // union.
   6745       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
   6746           ParamType == PrivatePtrKernelParam) {
   6747         S.Diag(Param->getLocation(),
   6748                diag::err_record_with_pointers_kernel_param)
   6749           << PT->isUnionType()
   6750           << PT;
   6751       } else {
   6752         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
   6753       }
   6754 
   6755       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
   6756         << PD->getDeclName();
   6757 
   6758       // We have an error, now let's go back up through history and show where
   6759       // the offending field came from
   6760       for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
   6761              E = HistoryStack.end(); I != E; ++I) {
   6762         const FieldDecl *OuterField = *I;
   6763         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
   6764           << OuterField->getType();
   6765       }
   6766 
   6767       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
   6768         << QT->isPointerType()
   6769         << QT;
   6770       D.setInvalidType();
   6771       return;
   6772     }
   6773   } while (!VisitStack.empty());
   6774 }
   6775 
   6776 NamedDecl*
   6777 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   6778                               TypeSourceInfo *TInfo, LookupResult &Previous,
   6779                               MultiTemplateParamsArg TemplateParamLists,
   6780                               bool &AddToScope) {
   6781   QualType R = TInfo->getType();
   6782 
   6783   assert(R.getTypePtr()->isFunctionType());
   6784 
   6785   // TODO: consider using NameInfo for diagnostic.
   6786   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   6787   DeclarationName Name = NameInfo.getName();
   6788   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
   6789 
   6790   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   6791     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   6792          diag::err_invalid_thread)
   6793       << DeclSpec::getSpecifierName(TSCS);
   6794 
   6795   if (D.isFirstDeclarationOfMember())
   6796     adjustMemberFunctionCC(R, D.isStaticMember());
   6797 
   6798   bool isFriend = false;
   6799   FunctionTemplateDecl *FunctionTemplate = nullptr;
   6800   bool isExplicitSpecialization = false;
   6801   bool isFunctionTemplateSpecialization = false;
   6802 
   6803   bool isDependentClassScopeExplicitSpecialization = false;
   6804   bool HasExplicitTemplateArgs = false;
   6805   TemplateArgumentListInfo TemplateArgs;
   6806 
   6807   bool isVirtualOkay = false;
   6808 
   6809   DeclContext *OriginalDC = DC;
   6810   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
   6811 
   6812   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
   6813                                               isVirtualOkay);
   6814   if (!NewFD) return nullptr;
   6815 
   6816   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
   6817     NewFD->setTopLevelDeclInObjCContainer();
   6818 
   6819   // Set the lexical context. If this is a function-scope declaration, or has a
   6820   // C++ scope specifier, or is the object of a friend declaration, the lexical
   6821   // context will be different from the semantic context.
   6822   NewFD->setLexicalDeclContext(CurContext);
   6823 
   6824   if (IsLocalExternDecl)
   6825     NewFD->setLocalExternDecl();
   6826 
   6827   if (getLangOpts().CPlusPlus) {
   6828     bool isInline = D.getDeclSpec().isInlineSpecified();
   6829     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   6830     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   6831     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   6832     isFriend = D.getDeclSpec().isFriendSpecified();
   6833     if (isFriend && !isInline && D.isFunctionDefinition()) {
   6834       // C++ [class.friend]p5
   6835       //   A function can be defined in a friend declaration of a
   6836       //   class . . . . Such a function is implicitly inline.
   6837       NewFD->setImplicitlyInline();
   6838     }
   6839 
   6840     // If this is a method defined in an __interface, and is not a constructor
   6841     // or an overloaded operator, then set the pure flag (isVirtual will already
   6842     // return true).
   6843     if (const CXXRecordDecl *Parent =
   6844           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
   6845       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
   6846         NewFD->setPure(true);
   6847     }
   6848 
   6849     SetNestedNameSpecifier(NewFD, D);
   6850     isExplicitSpecialization = false;
   6851     isFunctionTemplateSpecialization = false;
   6852     if (D.isInvalidType())
   6853       NewFD->setInvalidDecl();
   6854 
   6855     // Match up the template parameter lists with the scope specifier, then
   6856     // determine whether we have a template or a template specialization.
   6857     bool Invalid = false;
   6858     if (TemplateParameterList *TemplateParams =
   6859             MatchTemplateParametersToScopeSpecifier(
   6860                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
   6861                 D.getCXXScopeSpec(),
   6862                 D.getName().getKind() == UnqualifiedId::IK_TemplateId
   6863                     ? D.getName().TemplateId
   6864                     : nullptr,
   6865                 TemplateParamLists, isFriend, isExplicitSpecialization,
   6866                 Invalid)) {
   6867       if (TemplateParams->size() > 0) {
   6868         // This is a function template
   6869 
   6870         // Check that we can declare a template here.
   6871         if (CheckTemplateDeclScope(S, TemplateParams))
   6872           return nullptr;
   6873 
   6874         // A destructor cannot be a template.
   6875         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   6876           Diag(NewFD->getLocation(), diag::err_destructor_template);
   6877           return nullptr;
   6878         }
   6879 
   6880         // If we're adding a template to a dependent context, we may need to
   6881         // rebuilding some of the types used within the template parameter list,
   6882         // now that we know what the current instantiation is.
   6883         if (DC->isDependentContext()) {
   6884           ContextRAII SavedContext(*this, DC);
   6885           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
   6886             Invalid = true;
   6887         }
   6888 
   6889 
   6890         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
   6891                                                         NewFD->getLocation(),
   6892                                                         Name, TemplateParams,
   6893                                                         NewFD);
   6894         FunctionTemplate->setLexicalDeclContext(CurContext);
   6895         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
   6896 
   6897         // For source fidelity, store the other template param lists.
   6898         if (TemplateParamLists.size() > 1) {
   6899           NewFD->setTemplateParameterListsInfo(Context,
   6900                                                TemplateParamLists.size() - 1,
   6901                                                TemplateParamLists.data());
   6902         }
   6903       } else {
   6904         // This is a function template specialization.
   6905         isFunctionTemplateSpecialization = true;
   6906         // For source fidelity, store all the template param lists.
   6907         if (TemplateParamLists.size() > 0)
   6908           NewFD->setTemplateParameterListsInfo(Context,
   6909                                                TemplateParamLists.size(),
   6910                                                TemplateParamLists.data());
   6911 
   6912         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
   6913         if (isFriend) {
   6914           // We want to remove the "template<>", found here.
   6915           SourceRange RemoveRange = TemplateParams->getSourceRange();
   6916 
   6917           // If we remove the template<> and the name is not a
   6918           // template-id, we're actually silently creating a problem:
   6919           // the friend declaration will refer to an untemplated decl,
   6920           // and clearly the user wants a template specialization.  So
   6921           // we need to insert '<>' after the name.
   6922           SourceLocation InsertLoc;
   6923           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   6924             InsertLoc = D.getName().getSourceRange().getEnd();
   6925             InsertLoc = getLocForEndOfToken(InsertLoc);
   6926           }
   6927 
   6928           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
   6929             << Name << RemoveRange
   6930             << FixItHint::CreateRemoval(RemoveRange)
   6931             << FixItHint::CreateInsertion(InsertLoc, "<>");
   6932         }
   6933       }
   6934     }
   6935     else {
   6936       // All template param lists were matched against the scope specifier:
   6937       // this is NOT (an explicit specialization of) a template.
   6938       if (TemplateParamLists.size() > 0)
   6939         // For source fidelity, store all the template param lists.
   6940         NewFD->setTemplateParameterListsInfo(Context,
   6941                                              TemplateParamLists.size(),
   6942                                              TemplateParamLists.data());
   6943     }
   6944 
   6945     if (Invalid) {
   6946       NewFD->setInvalidDecl();
   6947       if (FunctionTemplate)
   6948         FunctionTemplate->setInvalidDecl();
   6949     }
   6950 
   6951     // C++ [dcl.fct.spec]p5:
   6952     //   The virtual specifier shall only be used in declarations of
   6953     //   nonstatic class member functions that appear within a
   6954     //   member-specification of a class declaration; see 10.3.
   6955     //
   6956     if (isVirtual && !NewFD->isInvalidDecl()) {
   6957       if (!isVirtualOkay) {
   6958         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   6959              diag::err_virtual_non_function);
   6960       } else if (!CurContext->isRecord()) {
   6961         // 'virtual' was specified outside of the class.
   6962         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   6963              diag::err_virtual_out_of_class)
   6964           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   6965       } else if (NewFD->getDescribedFunctionTemplate()) {
   6966         // C++ [temp.mem]p3:
   6967         //  A member function template shall not be virtual.
   6968         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   6969              diag::err_virtual_member_function_template)
   6970           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   6971       } else {
   6972         // Okay: Add virtual to the method.
   6973         NewFD->setVirtualAsWritten(true);
   6974       }
   6975 
   6976       if (getLangOpts().CPlusPlus1y &&
   6977           NewFD->getReturnType()->isUndeducedType())
   6978         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
   6979     }
   6980 
   6981     if (getLangOpts().CPlusPlus1y &&
   6982         (NewFD->isDependentContext() ||
   6983          (isFriend && CurContext->isDependentContext())) &&
   6984         NewFD->getReturnType()->isUndeducedType()) {
   6985       // If the function template is referenced directly (for instance, as a
   6986       // member of the current instantiation), pretend it has a dependent type.
   6987       // This is not really justified by the standard, but is the only sane
   6988       // thing to do.
   6989       // FIXME: For a friend function, we have not marked the function as being
   6990       // a friend yet, so 'isDependentContext' on the FD doesn't work.
   6991       const FunctionProtoType *FPT =
   6992           NewFD->getType()->castAs<FunctionProtoType>();
   6993       QualType Result =
   6994           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
   6995       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
   6996                                              FPT->getExtProtoInfo()));
   6997     }
   6998 
   6999     // C++ [dcl.fct.spec]p3:
   7000     //  The inline specifier shall not appear on a block scope function
   7001     //  declaration.
   7002     if (isInline && !NewFD->isInvalidDecl()) {
   7003       if (CurContext->isFunctionOrMethod()) {
   7004         // 'inline' is not allowed on block scope function declaration.
   7005         Diag(D.getDeclSpec().getInlineSpecLoc(),
   7006              diag::err_inline_declaration_block_scope) << Name
   7007           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   7008       }
   7009     }
   7010 
   7011     // C++ [dcl.fct.spec]p6:
   7012     //  The explicit specifier shall be used only in the declaration of a
   7013     //  constructor or conversion function within its class definition;
   7014     //  see 12.3.1 and 12.3.2.
   7015     if (isExplicit && !NewFD->isInvalidDecl()) {
   7016       if (!CurContext->isRecord()) {
   7017         // 'explicit' was specified outside of the class.
   7018         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   7019              diag::err_explicit_out_of_class)
   7020           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   7021       } else if (!isa<CXXConstructorDecl>(NewFD) &&
   7022                  !isa<CXXConversionDecl>(NewFD)) {
   7023         // 'explicit' was specified on a function that wasn't a constructor
   7024         // or conversion function.
   7025         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   7026              diag::err_explicit_non_ctor_or_conv_function)
   7027           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   7028       }
   7029     }
   7030 
   7031     if (isConstexpr) {
   7032       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
   7033       // are implicitly inline.
   7034       NewFD->setImplicitlyInline();
   7035 
   7036       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
   7037       // be either constructors or to return a literal type. Therefore,
   7038       // destructors cannot be declared constexpr.
   7039       if (isa<CXXDestructorDecl>(NewFD))
   7040         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
   7041     }
   7042 
   7043     // If __module_private__ was specified, mark the function accordingly.
   7044     if (D.getDeclSpec().isModulePrivateSpecified()) {
   7045       if (isFunctionTemplateSpecialization) {
   7046         SourceLocation ModulePrivateLoc
   7047           = D.getDeclSpec().getModulePrivateSpecLoc();
   7048         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
   7049           << 0
   7050           << FixItHint::CreateRemoval(ModulePrivateLoc);
   7051       } else {
   7052         NewFD->setModulePrivate();
   7053         if (FunctionTemplate)
   7054           FunctionTemplate->setModulePrivate();
   7055       }
   7056     }
   7057 
   7058     if (isFriend) {
   7059       if (FunctionTemplate) {
   7060         FunctionTemplate->setObjectOfFriendDecl();
   7061         FunctionTemplate->setAccess(AS_public);
   7062       }
   7063       NewFD->setObjectOfFriendDecl();
   7064       NewFD->setAccess(AS_public);
   7065     }
   7066 
   7067     // If a function is defined as defaulted or deleted, mark it as such now.
   7068     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
   7069     // definition kind to FDK_Definition.
   7070     switch (D.getFunctionDefinitionKind()) {
   7071       case FDK_Declaration:
   7072       case FDK_Definition:
   7073         break;
   7074 
   7075       case FDK_Defaulted:
   7076         NewFD->setDefaulted();
   7077         break;
   7078 
   7079       case FDK_Deleted:
   7080         NewFD->setDeletedAsWritten();
   7081         break;
   7082     }
   7083 
   7084     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
   7085         D.isFunctionDefinition()) {
   7086       // C++ [class.mfct]p2:
   7087       //   A member function may be defined (8.4) in its class definition, in
   7088       //   which case it is an inline member function (7.1.2)
   7089       NewFD->setImplicitlyInline();
   7090     }
   7091 
   7092     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
   7093         !CurContext->isRecord()) {
   7094       // C++ [class.static]p1:
   7095       //   A data or function member of a class may be declared static
   7096       //   in a class definition, in which case it is a static member of
   7097       //   the class.
   7098 
   7099       // Complain about the 'static' specifier if it's on an out-of-line
   7100       // member function definition.
   7101       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   7102            diag::err_static_out_of_line)
   7103         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   7104     }
   7105 
   7106     // C++11 [except.spec]p15:
   7107     //   A deallocation function with no exception-specification is treated
   7108     //   as if it were specified with noexcept(true).
   7109     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
   7110     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
   7111          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
   7112         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
   7113       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   7114       EPI.ExceptionSpecType = EST_BasicNoexcept;
   7115       NewFD->setType(Context.getFunctionType(FPT->getReturnType(),
   7116                                              FPT->getParamTypes(), EPI));
   7117     }
   7118   }
   7119 
   7120   // Filter out previous declarations that don't match the scope.
   7121   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
   7122                        D.getCXXScopeSpec().isNotEmpty() ||
   7123                        isExplicitSpecialization ||
   7124                        isFunctionTemplateSpecialization);
   7125 
   7126   // Handle GNU asm-label extension (encoded as an attribute).
   7127   if (Expr *E = (Expr*) D.getAsmLabel()) {
   7128     // The parser guarantees this is a string.
   7129     StringLiteral *SE = cast<StringLiteral>(E);
   7130     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
   7131                                                 SE->getString(), 0));
   7132   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   7133     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   7134       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
   7135     if (I != ExtnameUndeclaredIdentifiers.end()) {
   7136       NewFD->addAttr(I->second);
   7137       ExtnameUndeclaredIdentifiers.erase(I);
   7138     }
   7139   }
   7140 
   7141   // Copy the parameter declarations from the declarator D to the function
   7142   // declaration NewFD, if they are available.  First scavenge them into Params.
   7143   SmallVector<ParmVarDecl*, 16> Params;
   7144   if (D.isFunctionDeclarator()) {
   7145     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   7146 
   7147     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
   7148     // function that takes no arguments, not a function that takes a
   7149     // single void argument.
   7150     // We let through "const void" here because Sema::GetTypeForDeclarator
   7151     // already checks for that case.
   7152     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
   7153       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
   7154         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
   7155         assert(Param->getDeclContext() != NewFD && "Was set before ?");
   7156         Param->setDeclContext(NewFD);
   7157         Params.push_back(Param);
   7158 
   7159         if (Param->isInvalidDecl())
   7160           NewFD->setInvalidDecl();
   7161       }
   7162     }
   7163 
   7164   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
   7165     // When we're declaring a function with a typedef, typeof, etc as in the
   7166     // following example, we'll need to synthesize (unnamed)
   7167     // parameters for use in the declaration.
   7168     //
   7169     // @code
   7170     // typedef void fn(int);
   7171     // fn f;
   7172     // @endcode
   7173 
   7174     // Synthesize a parameter for each argument type.
   7175     for (const auto &AI : FT->param_types()) {
   7176       ParmVarDecl *Param =
   7177           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
   7178       Param->setScopeInfo(0, Params.size());
   7179       Params.push_back(Param);
   7180     }
   7181   } else {
   7182     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
   7183            "Should not need args for typedef of non-prototype fn");
   7184   }
   7185 
   7186   // Finally, we know we have the right number of parameters, install them.
   7187   NewFD->setParams(Params);
   7188 
   7189   // Find all anonymous symbols defined during the declaration of this function
   7190   // and add to NewFD. This lets us track decls such 'enum Y' in:
   7191   //
   7192   //   void f(enum Y {AA} x) {}
   7193   //
   7194   // which would otherwise incorrectly end up in the translation unit scope.
   7195   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
   7196   DeclsInPrototypeScope.clear();
   7197 
   7198   if (D.getDeclSpec().isNoreturnSpecified())
   7199     NewFD->addAttr(
   7200         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
   7201                                        Context, 0));
   7202 
   7203   // Functions returning a variably modified type violate C99 6.7.5.2p2
   7204   // because all functions have linkage.
   7205   if (!NewFD->isInvalidDecl() &&
   7206       NewFD->getReturnType()->isVariablyModifiedType()) {
   7207     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
   7208     NewFD->setInvalidDecl();
   7209   }
   7210 
   7211   if (D.isFunctionDefinition() && CodeSegStack.CurrentValue &&
   7212       !NewFD->hasAttr<SectionAttr>()) {
   7213     NewFD->addAttr(
   7214         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
   7215                                     CodeSegStack.CurrentValue->getString(),
   7216                                     CodeSegStack.CurrentPragmaLocation));
   7217     if (UnifySection(CodeSegStack.CurrentValue->getString(),
   7218                      PSF_Implicit | PSF_Execute | PSF_Read, NewFD))
   7219       NewFD->dropAttr<SectionAttr>();
   7220   }
   7221 
   7222   // Handle attributes.
   7223   ProcessDeclAttributes(S, NewFD, D);
   7224 
   7225   QualType RetType = NewFD->getReturnType();
   7226   const CXXRecordDecl *Ret = RetType->isRecordType() ?
   7227       RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
   7228   if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
   7229       Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
   7230     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   7231     // Attach WarnUnusedResult to functions returning types with that attribute.
   7232     // Don't apply the attribute to that type's own non-static member functions
   7233     // (to avoid warning on things like assignment operators)
   7234     if (!MD || MD->getParent() != Ret)
   7235       NewFD->addAttr(WarnUnusedResultAttr::CreateImplicit(Context));
   7236   }
   7237 
   7238   if (getLangOpts().OpenCL) {
   7239     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
   7240     // type declaration will generate a compilation error.
   7241     unsigned AddressSpace = RetType.getAddressSpace();
   7242     if (AddressSpace == LangAS::opencl_local ||
   7243         AddressSpace == LangAS::opencl_global ||
   7244         AddressSpace == LangAS::opencl_constant) {
   7245       Diag(NewFD->getLocation(),
   7246            diag::err_opencl_return_value_with_address_space);
   7247       NewFD->setInvalidDecl();
   7248     }
   7249   }
   7250 
   7251   if (!getLangOpts().CPlusPlus) {
   7252     // Perform semantic checking on the function declaration.
   7253     bool isExplicitSpecialization=false;
   7254     if (!NewFD->isInvalidDecl() && NewFD->isMain())
   7255       CheckMain(NewFD, D.getDeclSpec());
   7256 
   7257     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
   7258       CheckMSVCRTEntryPoint(NewFD);
   7259 
   7260     if (!NewFD->isInvalidDecl())
   7261       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   7262                                                   isExplicitSpecialization));
   7263     else if (!Previous.empty())
   7264       // Make graceful recovery from an invalid redeclaration.
   7265       D.setRedeclaration(true);
   7266     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   7267             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   7268            "previous declaration set still overloaded");
   7269   } else {
   7270     // C++11 [replacement.functions]p3:
   7271     //  The program's definitions shall not be specified as inline.
   7272     //
   7273     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
   7274     //
   7275     // Suppress the diagnostic if the function is __attribute__((used)), since
   7276     // that forces an external definition to be emitted.
   7277     if (D.getDeclSpec().isInlineSpecified() &&
   7278         NewFD->isReplaceableGlobalAllocationFunction() &&
   7279         !NewFD->hasAttr<UsedAttr>())
   7280       Diag(D.getDeclSpec().getInlineSpecLoc(),
   7281            diag::ext_operator_new_delete_declared_inline)
   7282         << NewFD->getDeclName();
   7283 
   7284     // If the declarator is a template-id, translate the parser's template
   7285     // argument list into our AST format.
   7286     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   7287       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   7288       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   7289       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   7290       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   7291                                          TemplateId->NumArgs);
   7292       translateTemplateArguments(TemplateArgsPtr,
   7293                                  TemplateArgs);
   7294 
   7295       HasExplicitTemplateArgs = true;
   7296 
   7297       if (NewFD->isInvalidDecl()) {
   7298         HasExplicitTemplateArgs = false;
   7299       } else if (FunctionTemplate) {
   7300         // Function template with explicit template arguments.
   7301         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
   7302           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
   7303 
   7304         HasExplicitTemplateArgs = false;
   7305       } else {
   7306         assert((isFunctionTemplateSpecialization ||
   7307                 D.getDeclSpec().isFriendSpecified()) &&
   7308                "should have a 'template<>' for this decl");
   7309         // "friend void foo<>(int);" is an implicit specialization decl.
   7310         isFunctionTemplateSpecialization = true;
   7311       }
   7312     } else if (isFriend && isFunctionTemplateSpecialization) {
   7313       // This combination is only possible in a recovery case;  the user
   7314       // wrote something like:
   7315       //   template <> friend void foo(int);
   7316       // which we're recovering from as if the user had written:
   7317       //   friend void foo<>(int);
   7318       // Go ahead and fake up a template id.
   7319       HasExplicitTemplateArgs = true;
   7320       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
   7321       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
   7322     }
   7323 
   7324     // If it's a friend (and only if it's a friend), it's possible
   7325     // that either the specialized function type or the specialized
   7326     // template is dependent, and therefore matching will fail.  In
   7327     // this case, don't check the specialization yet.
   7328     bool InstantiationDependent = false;
   7329     if (isFunctionTemplateSpecialization && isFriend &&
   7330         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
   7331          TemplateSpecializationType::anyDependentTemplateArguments(
   7332             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
   7333             InstantiationDependent))) {
   7334       assert(HasExplicitTemplateArgs &&
   7335              "friend function specialization without template args");
   7336       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
   7337                                                        Previous))
   7338         NewFD->setInvalidDecl();
   7339     } else if (isFunctionTemplateSpecialization) {
   7340       if (CurContext->isDependentContext() && CurContext->isRecord()
   7341           && !isFriend) {
   7342         isDependentClassScopeExplicitSpecialization = true;
   7343         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   7344           diag::ext_function_specialization_in_class :
   7345           diag::err_function_specialization_in_class)
   7346           << NewFD->getDeclName();
   7347       } else if (CheckFunctionTemplateSpecialization(NewFD,
   7348                                   (HasExplicitTemplateArgs ? &TemplateArgs
   7349                                                            : nullptr),
   7350                                                      Previous))
   7351         NewFD->setInvalidDecl();
   7352 
   7353       // C++ [dcl.stc]p1:
   7354       //   A storage-class-specifier shall not be specified in an explicit
   7355       //   specialization (14.7.3)
   7356       FunctionTemplateSpecializationInfo *Info =
   7357           NewFD->getTemplateSpecializationInfo();
   7358       if (Info && SC != SC_None) {
   7359         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
   7360           Diag(NewFD->getLocation(),
   7361                diag::err_explicit_specialization_inconsistent_storage_class)
   7362             << SC
   7363             << FixItHint::CreateRemoval(
   7364                                       D.getDeclSpec().getStorageClassSpecLoc());
   7365 
   7366         else
   7367           Diag(NewFD->getLocation(),
   7368                diag::ext_explicit_specialization_storage_class)
   7369             << FixItHint::CreateRemoval(
   7370                                       D.getDeclSpec().getStorageClassSpecLoc());
   7371       }
   7372 
   7373     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
   7374       if (CheckMemberSpecialization(NewFD, Previous))
   7375           NewFD->setInvalidDecl();
   7376     }
   7377 
   7378     // Perform semantic checking on the function declaration.
   7379     if (!isDependentClassScopeExplicitSpecialization) {
   7380       if (!NewFD->isInvalidDecl() && NewFD->isMain())
   7381         CheckMain(NewFD, D.getDeclSpec());
   7382 
   7383       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
   7384         CheckMSVCRTEntryPoint(NewFD);
   7385 
   7386       if (!NewFD->isInvalidDecl())
   7387         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   7388                                                     isExplicitSpecialization));
   7389     }
   7390 
   7391     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   7392             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   7393            "previous declaration set still overloaded");
   7394 
   7395     NamedDecl *PrincipalDecl = (FunctionTemplate
   7396                                 ? cast<NamedDecl>(FunctionTemplate)
   7397                                 : NewFD);
   7398 
   7399     if (isFriend && D.isRedeclaration()) {
   7400       AccessSpecifier Access = AS_public;
   7401       if (!NewFD->isInvalidDecl())
   7402         Access = NewFD->getPreviousDecl()->getAccess();
   7403 
   7404       NewFD->setAccess(Access);
   7405       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
   7406     }
   7407 
   7408     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
   7409         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
   7410       PrincipalDecl->setNonMemberOperator();
   7411 
   7412     // If we have a function template, check the template parameter
   7413     // list. This will check and merge default template arguments.
   7414     if (FunctionTemplate) {
   7415       FunctionTemplateDecl *PrevTemplate =
   7416                                      FunctionTemplate->getPreviousDecl();
   7417       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
   7418                        PrevTemplate ? PrevTemplate->getTemplateParameters()
   7419                                     : nullptr,
   7420                             D.getDeclSpec().isFriendSpecified()
   7421                               ? (D.isFunctionDefinition()
   7422                                    ? TPC_FriendFunctionTemplateDefinition
   7423                                    : TPC_FriendFunctionTemplate)
   7424                               : (D.getCXXScopeSpec().isSet() &&
   7425                                  DC && DC->isRecord() &&
   7426                                  DC->isDependentContext())
   7427                                   ? TPC_ClassTemplateMember
   7428                                   : TPC_FunctionTemplate);
   7429     }
   7430 
   7431     if (NewFD->isInvalidDecl()) {
   7432       // Ignore all the rest of this.
   7433     } else if (!D.isRedeclaration()) {
   7434       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
   7435                                        AddToScope };
   7436       // Fake up an access specifier if it's supposed to be a class member.
   7437       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
   7438         NewFD->setAccess(AS_public);
   7439 
   7440       // Qualified decls generally require a previous declaration.
   7441       if (D.getCXXScopeSpec().isSet()) {
   7442         // ...with the major exception of templated-scope or
   7443         // dependent-scope friend declarations.
   7444 
   7445         // TODO: we currently also suppress this check in dependent
   7446         // contexts because (1) the parameter depth will be off when
   7447         // matching friend templates and (2) we might actually be
   7448         // selecting a friend based on a dependent factor.  But there
   7449         // are situations where these conditions don't apply and we
   7450         // can actually do this check immediately.
   7451         if (isFriend &&
   7452             (TemplateParamLists.size() ||
   7453              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
   7454              CurContext->isDependentContext())) {
   7455           // ignore these
   7456         } else {
   7457           // The user tried to provide an out-of-line definition for a
   7458           // function that is a member of a class or namespace, but there
   7459           // was no such member function declared (C++ [class.mfct]p2,
   7460           // C++ [namespace.memdef]p2). For example:
   7461           //
   7462           // class X {
   7463           //   void f() const;
   7464           // };
   7465           //
   7466           // void X::f() { } // ill-formed
   7467           //
   7468           // Complain about this problem, and attempt to suggest close
   7469           // matches (e.g., those that differ only in cv-qualifiers and
   7470           // whether the parameter types are references).
   7471 
   7472           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
   7473                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
   7474             AddToScope = ExtraArgs.AddToScope;
   7475             return Result;
   7476           }
   7477         }
   7478 
   7479         // Unqualified local friend declarations are required to resolve
   7480         // to something.
   7481       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
   7482         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
   7483                 *this, Previous, NewFD, ExtraArgs, true, S)) {
   7484           AddToScope = ExtraArgs.AddToScope;
   7485           return Result;
   7486         }
   7487       }
   7488 
   7489     } else if (!D.isFunctionDefinition() &&
   7490                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
   7491                !isFriend && !isFunctionTemplateSpecialization &&
   7492                !isExplicitSpecialization) {
   7493       // An out-of-line member function declaration must also be a
   7494       // definition (C++ [class.mfct]p2).
   7495       // Note that this is not the case for explicit specializations of
   7496       // function templates or member functions of class templates, per
   7497       // C++ [temp.expl.spec]p2. We also allow these declarations as an
   7498       // extension for compatibility with old SWIG code which likes to
   7499       // generate them.
   7500       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
   7501         << D.getCXXScopeSpec().getRange();
   7502     }
   7503   }
   7504 
   7505   ProcessPragmaWeak(S, NewFD);
   7506   checkAttributesAfterMerging(*this, *NewFD);
   7507 
   7508   AddKnownFunctionAttributes(NewFD);
   7509 
   7510   if (NewFD->hasAttr<OverloadableAttr>() &&
   7511       !NewFD->getType()->getAs<FunctionProtoType>()) {
   7512     Diag(NewFD->getLocation(),
   7513          diag::err_attribute_overloadable_no_prototype)
   7514       << NewFD;
   7515 
   7516     // Turn this into a variadic function with no parameters.
   7517     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
   7518     FunctionProtoType::ExtProtoInfo EPI(
   7519         Context.getDefaultCallingConvention(true, false));
   7520     EPI.Variadic = true;
   7521     EPI.ExtInfo = FT->getExtInfo();
   7522 
   7523     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
   7524     NewFD->setType(R);
   7525   }
   7526 
   7527   // If there's a #pragma GCC visibility in scope, and this isn't a class
   7528   // member, set the visibility of this function.
   7529   if (!DC->isRecord() && NewFD->isExternallyVisible())
   7530     AddPushedVisibilityAttribute(NewFD);
   7531 
   7532   // If there's a #pragma clang arc_cf_code_audited in scope, consider
   7533   // marking the function.
   7534   AddCFAuditedAttribute(NewFD);
   7535 
   7536   // If this is a function definition, check if we have to apply optnone due to
   7537   // a pragma.
   7538   if(D.isFunctionDefinition())
   7539     AddRangeBasedOptnone(NewFD);
   7540 
   7541   // If this is the first declaration of an extern C variable, update
   7542   // the map of such variables.
   7543   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
   7544       isIncompleteDeclExternC(*this, NewFD))
   7545     RegisterLocallyScopedExternCDecl(NewFD, S);
   7546 
   7547   // Set this FunctionDecl's range up to the right paren.
   7548   NewFD->setRangeEnd(D.getSourceRange().getEnd());
   7549 
   7550   if (D.isRedeclaration() && !Previous.empty()) {
   7551     checkDLLAttributeRedeclaration(
   7552         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
   7553         isExplicitSpecialization || isFunctionTemplateSpecialization);
   7554   }
   7555 
   7556   if (getLangOpts().CPlusPlus) {
   7557     if (FunctionTemplate) {
   7558       if (NewFD->isInvalidDecl())
   7559         FunctionTemplate->setInvalidDecl();
   7560       return FunctionTemplate;
   7561     }
   7562   }
   7563 
   7564   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
   7565     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
   7566     if ((getLangOpts().OpenCLVersion >= 120)
   7567         && (SC == SC_Static)) {
   7568       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
   7569       D.setInvalidType();
   7570     }
   7571 
   7572     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
   7573     if (!NewFD->getReturnType()->isVoidType()) {
   7574       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
   7575       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
   7576           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
   7577                                 : FixItHint());
   7578       D.setInvalidType();
   7579     }
   7580 
   7581     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
   7582     for (auto Param : NewFD->params())
   7583       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
   7584   }
   7585 
   7586   MarkUnusedFileScopedDecl(NewFD);
   7587 
   7588   if (getLangOpts().CUDA)
   7589     if (IdentifierInfo *II = NewFD->getIdentifier())
   7590       if (!NewFD->isInvalidDecl() &&
   7591           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   7592         if (II->isStr("cudaConfigureCall")) {
   7593           if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
   7594             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
   7595 
   7596           Context.setcudaConfigureCallDecl(NewFD);
   7597         }
   7598       }
   7599 
   7600   // Here we have an function template explicit specialization at class scope.
   7601   // The actually specialization will be postponed to template instatiation
   7602   // time via the ClassScopeFunctionSpecializationDecl node.
   7603   if (isDependentClassScopeExplicitSpecialization) {
   7604     ClassScopeFunctionSpecializationDecl *NewSpec =
   7605                          ClassScopeFunctionSpecializationDecl::Create(
   7606                                 Context, CurContext, SourceLocation(),
   7607                                 cast<CXXMethodDecl>(NewFD),
   7608                                 HasExplicitTemplateArgs, TemplateArgs);
   7609     CurContext->addDecl(NewSpec);
   7610     AddToScope = false;
   7611   }
   7612 
   7613   return NewFD;
   7614 }
   7615 
   7616 /// \brief Perform semantic checking of a new function declaration.
   7617 ///
   7618 /// Performs semantic analysis of the new function declaration
   7619 /// NewFD. This routine performs all semantic checking that does not
   7620 /// require the actual declarator involved in the declaration, and is
   7621 /// used both for the declaration of functions as they are parsed
   7622 /// (called via ActOnDeclarator) and for the declaration of functions
   7623 /// that have been instantiated via C++ template instantiation (called
   7624 /// via InstantiateDecl).
   7625 ///
   7626 /// \param IsExplicitSpecialization whether this new function declaration is
   7627 /// an explicit specialization of the previous declaration.
   7628 ///
   7629 /// This sets NewFD->isInvalidDecl() to true if there was an error.
   7630 ///
   7631 /// \returns true if the function declaration is a redeclaration.
   7632 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
   7633                                     LookupResult &Previous,
   7634                                     bool IsExplicitSpecialization) {
   7635   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
   7636          "Variably modified return types are not handled here");
   7637 
   7638   // Determine whether the type of this function should be merged with
   7639   // a previous visible declaration. This never happens for functions in C++,
   7640   // and always happens in C if the previous declaration was visible.
   7641   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
   7642                                !Previous.isShadowed();
   7643 
   7644   // Filter out any non-conflicting previous declarations.
   7645   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
   7646 
   7647   bool Redeclaration = false;
   7648   NamedDecl *OldDecl = nullptr;
   7649 
   7650   // Merge or overload the declaration with an existing declaration of
   7651   // the same name, if appropriate.
   7652   if (!Previous.empty()) {
   7653     // Determine whether NewFD is an overload of PrevDecl or
   7654     // a declaration that requires merging. If it's an overload,
   7655     // there's no more work to do here; we'll just add the new
   7656     // function to the scope.
   7657     if (!AllowOverloadingOfFunction(Previous, Context)) {
   7658       NamedDecl *Candidate = Previous.getFoundDecl();
   7659       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
   7660         Redeclaration = true;
   7661         OldDecl = Candidate;
   7662       }
   7663     } else {
   7664       switch (CheckOverload(S, NewFD, Previous, OldDecl,
   7665                             /*NewIsUsingDecl*/ false)) {
   7666       case Ovl_Match:
   7667         Redeclaration = true;
   7668         break;
   7669 
   7670       case Ovl_NonFunction:
   7671         Redeclaration = true;
   7672         break;
   7673 
   7674       case Ovl_Overload:
   7675         Redeclaration = false;
   7676         break;
   7677       }
   7678 
   7679       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   7680         // If a function name is overloadable in C, then every function
   7681         // with that name must be marked "overloadable".
   7682         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   7683           << Redeclaration << NewFD;
   7684         NamedDecl *OverloadedDecl = nullptr;
   7685         if (Redeclaration)
   7686           OverloadedDecl = OldDecl;
   7687         else if (!Previous.empty())
   7688           OverloadedDecl = Previous.getRepresentativeDecl();
   7689         if (OverloadedDecl)
   7690           Diag(OverloadedDecl->getLocation(),
   7691                diag::note_attribute_overloadable_prev_overload);
   7692         NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
   7693       }
   7694     }
   7695   }
   7696 
   7697   // Check for a previous extern "C" declaration with this name.
   7698   if (!Redeclaration &&
   7699       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
   7700     filterNonConflictingPreviousDecls(Context, NewFD, Previous);
   7701     if (!Previous.empty()) {
   7702       // This is an extern "C" declaration with the same name as a previous
   7703       // declaration, and thus redeclares that entity...
   7704       Redeclaration = true;
   7705       OldDecl = Previous.getFoundDecl();
   7706       MergeTypeWithPrevious = false;
   7707 
   7708       // ... except in the presence of __attribute__((overloadable)).
   7709       if (OldDecl->hasAttr<OverloadableAttr>()) {
   7710         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   7711           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   7712             << Redeclaration << NewFD;
   7713           Diag(Previous.getFoundDecl()->getLocation(),
   7714                diag::note_attribute_overloadable_prev_overload);
   7715           NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
   7716         }
   7717         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
   7718           Redeclaration = false;
   7719           OldDecl = nullptr;
   7720         }
   7721       }
   7722     }
   7723   }
   7724 
   7725   // C++11 [dcl.constexpr]p8:
   7726   //   A constexpr specifier for a non-static member function that is not
   7727   //   a constructor declares that member function to be const.
   7728   //
   7729   // This needs to be delayed until we know whether this is an out-of-line
   7730   // definition of a static member function.
   7731   //
   7732   // This rule is not present in C++1y, so we produce a backwards
   7733   // compatibility warning whenever it happens in C++11.
   7734   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   7735   if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
   7736       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
   7737       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
   7738     CXXMethodDecl *OldMD = nullptr;
   7739     if (OldDecl)
   7740       OldMD = dyn_cast<CXXMethodDecl>(OldDecl->getAsFunction());
   7741     if (!OldMD || !OldMD->isStatic()) {
   7742       const FunctionProtoType *FPT =
   7743         MD->getType()->castAs<FunctionProtoType>();
   7744       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   7745       EPI.TypeQuals |= Qualifiers::Const;
   7746       MD->setType(Context.getFunctionType(FPT->getReturnType(),
   7747                                           FPT->getParamTypes(), EPI));
   7748 
   7749       // Warn that we did this, if we're not performing template instantiation.
   7750       // In that case, we'll have warned already when the template was defined.
   7751       if (ActiveTemplateInstantiations.empty()) {
   7752         SourceLocation AddConstLoc;
   7753         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
   7754                 .IgnoreParens().getAs<FunctionTypeLoc>())
   7755           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
   7756 
   7757         Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
   7758           << FixItHint::CreateInsertion(AddConstLoc, " const");
   7759       }
   7760     }
   7761   }
   7762 
   7763   if (Redeclaration) {
   7764     // NewFD and OldDecl represent declarations that need to be
   7765     // merged.
   7766     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
   7767       NewFD->setInvalidDecl();
   7768       return Redeclaration;
   7769     }
   7770 
   7771     Previous.clear();
   7772     Previous.addDecl(OldDecl);
   7773 
   7774     if (FunctionTemplateDecl *OldTemplateDecl
   7775                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
   7776       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
   7777       FunctionTemplateDecl *NewTemplateDecl
   7778         = NewFD->getDescribedFunctionTemplate();
   7779       assert(NewTemplateDecl && "Template/non-template mismatch");
   7780       if (CXXMethodDecl *Method
   7781             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
   7782         Method->setAccess(OldTemplateDecl->getAccess());
   7783         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
   7784       }
   7785 
   7786       // If this is an explicit specialization of a member that is a function
   7787       // template, mark it as a member specialization.
   7788       if (IsExplicitSpecialization &&
   7789           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
   7790         NewTemplateDecl->setMemberSpecialization();
   7791         assert(OldTemplateDecl->isMemberSpecialization());
   7792       }
   7793 
   7794     } else {
   7795       // This needs to happen first so that 'inline' propagates.
   7796       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
   7797 
   7798       if (isa<CXXMethodDecl>(NewFD)) {
   7799         // A valid redeclaration of a C++ method must be out-of-line,
   7800         // but (unfortunately) it's not necessarily a definition
   7801         // because of templates, which means that the previous
   7802         // declaration is not necessarily from the class definition.
   7803 
   7804         // For just setting the access, that doesn't matter.
   7805         CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
   7806         NewFD->setAccess(oldMethod->getAccess());
   7807 
   7808         // Update the key-function state if necessary for this ABI.
   7809         if (NewFD->isInlined() &&
   7810             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
   7811           // setNonKeyFunction needs to work with the original
   7812           // declaration from the class definition, and isVirtual() is
   7813           // just faster in that case, so map back to that now.
   7814           oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl());
   7815           if (oldMethod->isVirtual()) {
   7816             Context.setNonKeyFunction(oldMethod);
   7817           }
   7818         }
   7819       }
   7820     }
   7821   }
   7822 
   7823   // Semantic checking for this function declaration (in isolation).
   7824   if (getLangOpts().CPlusPlus) {
   7825     // C++-specific checks.
   7826     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
   7827       CheckConstructor(Constructor);
   7828     } else if (CXXDestructorDecl *Destructor =
   7829                 dyn_cast<CXXDestructorDecl>(NewFD)) {
   7830       CXXRecordDecl *Record = Destructor->getParent();
   7831       QualType ClassType = Context.getTypeDeclType(Record);
   7832 
   7833       // FIXME: Shouldn't we be able to perform this check even when the class
   7834       // type is dependent? Both gcc and edg can handle that.
   7835       if (!ClassType->isDependentType()) {
   7836         DeclarationName Name
   7837           = Context.DeclarationNames.getCXXDestructorName(
   7838                                         Context.getCanonicalType(ClassType));
   7839         if (NewFD->getDeclName() != Name) {
   7840           Diag(NewFD->getLocation(), diag::err_destructor_name);
   7841           NewFD->setInvalidDecl();
   7842           return Redeclaration;
   7843         }
   7844       }
   7845     } else if (CXXConversionDecl *Conversion
   7846                = dyn_cast<CXXConversionDecl>(NewFD)) {
   7847       ActOnConversionDeclarator(Conversion);
   7848     }
   7849 
   7850     // Find any virtual functions that this function overrides.
   7851     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
   7852       if (!Method->isFunctionTemplateSpecialization() &&
   7853           !Method->getDescribedFunctionTemplate() &&
   7854           Method->isCanonicalDecl()) {
   7855         if (AddOverriddenMethods(Method->getParent(), Method)) {
   7856           // If the function was marked as "static", we have a problem.
   7857           if (NewFD->getStorageClass() == SC_Static) {
   7858             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
   7859           }
   7860         }
   7861       }
   7862 
   7863       if (Method->isStatic())
   7864         checkThisInStaticMemberFunctionType(Method);
   7865     }
   7866 
   7867     // Extra checking for C++ overloaded operators (C++ [over.oper]).
   7868     if (NewFD->isOverloadedOperator() &&
   7869         CheckOverloadedOperatorDeclaration(NewFD)) {
   7870       NewFD->setInvalidDecl();
   7871       return Redeclaration;
   7872     }
   7873 
   7874     // Extra checking for C++0x literal operators (C++0x [over.literal]).
   7875     if (NewFD->getLiteralIdentifier() &&
   7876         CheckLiteralOperatorDeclaration(NewFD)) {
   7877       NewFD->setInvalidDecl();
   7878       return Redeclaration;
   7879     }
   7880 
   7881     // In C++, check default arguments now that we have merged decls. Unless
   7882     // the lexical context is the class, because in this case this is done
   7883     // during delayed parsing anyway.
   7884     if (!CurContext->isRecord())
   7885       CheckCXXDefaultArguments(NewFD);
   7886 
   7887     // If this function declares a builtin function, check the type of this
   7888     // declaration against the expected type for the builtin.
   7889     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
   7890       ASTContext::GetBuiltinTypeError Error;
   7891       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
   7892       QualType T = Context.GetBuiltinType(BuiltinID, Error);
   7893       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
   7894         // The type of this function differs from the type of the builtin,
   7895         // so forget about the builtin entirely.
   7896         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
   7897       }
   7898     }
   7899 
   7900     // If this function is declared as being extern "C", then check to see if
   7901     // the function returns a UDT (class, struct, or union type) that is not C
   7902     // compatible, and if it does, warn the user.
   7903     // But, issue any diagnostic on the first declaration only.
   7904     if (NewFD->isExternC() && Previous.empty()) {
   7905       QualType R = NewFD->getReturnType();
   7906       if (R->isIncompleteType() && !R->isVoidType())
   7907         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
   7908             << NewFD << R;
   7909       else if (!R.isPODType(Context) && !R->isVoidType() &&
   7910                !R->isObjCObjectPointerType())
   7911         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
   7912     }
   7913   }
   7914   return Redeclaration;
   7915 }
   7916 
   7917 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
   7918   // C++11 [basic.start.main]p3:
   7919   //   A program that [...] declares main to be inline, static or
   7920   //   constexpr is ill-formed.
   7921   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
   7922   //   appear in a declaration of main.
   7923   // static main is not an error under C99, but we should warn about it.
   7924   // We accept _Noreturn main as an extension.
   7925   if (FD->getStorageClass() == SC_Static)
   7926     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
   7927          ? diag::err_static_main : diag::warn_static_main)
   7928       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   7929   if (FD->isInlineSpecified())
   7930     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
   7931       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
   7932   if (DS.isNoreturnSpecified()) {
   7933     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
   7934     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
   7935     Diag(NoreturnLoc, diag::ext_noreturn_main);
   7936     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
   7937       << FixItHint::CreateRemoval(NoreturnRange);
   7938   }
   7939   if (FD->isConstexpr()) {
   7940     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
   7941       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
   7942     FD->setConstexpr(false);
   7943   }
   7944 
   7945   if (getLangOpts().OpenCL) {
   7946     Diag(FD->getLocation(), diag::err_opencl_no_main)
   7947         << FD->hasAttr<OpenCLKernelAttr>();
   7948     FD->setInvalidDecl();
   7949     return;
   7950   }
   7951 
   7952   QualType T = FD->getType();
   7953   assert(T->isFunctionType() && "function decl is not of function type");
   7954   const FunctionType* FT = T->castAs<FunctionType>();
   7955 
   7956   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
   7957     // In C with GNU extensions we allow main() to have non-integer return
   7958     // type, but we should warn about the extension, and we disable the
   7959     // implicit-return-zero rule.
   7960 
   7961     // GCC in C mode accepts qualified 'int'.
   7962     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
   7963       FD->setHasImplicitReturnZero(true);
   7964     else {
   7965       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
   7966       SourceRange RTRange = FD->getReturnTypeSourceRange();
   7967       if (RTRange.isValid())
   7968         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
   7969             << FixItHint::CreateReplacement(RTRange, "int");
   7970     }
   7971   } else {
   7972     // In C and C++, main magically returns 0 if you fall off the end;
   7973     // set the flag which tells us that.
   7974     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
   7975 
   7976     // All the standards say that main() should return 'int'.
   7977     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
   7978       FD->setHasImplicitReturnZero(true);
   7979     else {
   7980       // Otherwise, this is just a flat-out error.
   7981       SourceRange RTRange = FD->getReturnTypeSourceRange();
   7982       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
   7983           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
   7984                                 : FixItHint());
   7985       FD->setInvalidDecl(true);
   7986     }
   7987   }
   7988 
   7989   // Treat protoless main() as nullary.
   7990   if (isa<FunctionNoProtoType>(FT)) return;
   7991 
   7992   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
   7993   unsigned nparams = FTP->getNumParams();
   7994   assert(FD->getNumParams() == nparams);
   7995 
   7996   bool HasExtraParameters = (nparams > 3);
   7997 
   7998   // Darwin passes an undocumented fourth argument of type char**.  If
   7999   // other platforms start sprouting these, the logic below will start
   8000   // getting shifty.
   8001   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
   8002     HasExtraParameters = false;
   8003 
   8004   if (HasExtraParameters) {
   8005     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
   8006     FD->setInvalidDecl(true);
   8007     nparams = 3;
   8008   }
   8009 
   8010   // FIXME: a lot of the following diagnostics would be improved
   8011   // if we had some location information about types.
   8012 
   8013   QualType CharPP =
   8014     Context.getPointerType(Context.getPointerType(Context.CharTy));
   8015   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
   8016 
   8017   for (unsigned i = 0; i < nparams; ++i) {
   8018     QualType AT = FTP->getParamType(i);
   8019 
   8020     bool mismatch = true;
   8021 
   8022     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
   8023       mismatch = false;
   8024     else if (Expected[i] == CharPP) {
   8025       // As an extension, the following forms are okay:
   8026       //   char const **
   8027       //   char const * const *
   8028       //   char * const *
   8029 
   8030       QualifierCollector qs;
   8031       const PointerType* PT;
   8032       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
   8033           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
   8034           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
   8035                               Context.CharTy)) {
   8036         qs.removeConst();
   8037         mismatch = !qs.empty();
   8038       }
   8039     }
   8040 
   8041     if (mismatch) {
   8042       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
   8043       // TODO: suggest replacing given type with expected type
   8044       FD->setInvalidDecl(true);
   8045     }
   8046   }
   8047 
   8048   if (nparams == 1 && !FD->isInvalidDecl()) {
   8049     Diag(FD->getLocation(), diag::warn_main_one_arg);
   8050   }
   8051 
   8052   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   8053     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
   8054     FD->setInvalidDecl();
   8055   }
   8056 }
   8057 
   8058 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
   8059   QualType T = FD->getType();
   8060   assert(T->isFunctionType() && "function decl is not of function type");
   8061   const FunctionType *FT = T->castAs<FunctionType>();
   8062 
   8063   // Set an implicit return of 'zero' if the function can return some integral,
   8064   // enumeration, pointer or nullptr type.
   8065   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
   8066       FT->getReturnType()->isAnyPointerType() ||
   8067       FT->getReturnType()->isNullPtrType())
   8068     // DllMain is exempt because a return value of zero means it failed.
   8069     if (FD->getName() != "DllMain")
   8070       FD->setHasImplicitReturnZero(true);
   8071 
   8072   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   8073     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
   8074     FD->setInvalidDecl();
   8075   }
   8076 }
   8077 
   8078 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
   8079   // FIXME: Need strict checking.  In C89, we need to check for
   8080   // any assignment, increment, decrement, function-calls, or
   8081   // commas outside of a sizeof.  In C99, it's the same list,
   8082   // except that the aforementioned are allowed in unevaluated
   8083   // expressions.  Everything else falls under the
   8084   // "may accept other forms of constant expressions" exception.
   8085   // (We never end up here for C++, so the constant expression
   8086   // rules there don't matter.)
   8087   const Expr *Culprit;
   8088   if (Init->isConstantInitializer(Context, false, &Culprit))
   8089     return false;
   8090   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
   8091     << Culprit->getSourceRange();
   8092   return true;
   8093 }
   8094 
   8095 namespace {
   8096   // Visits an initialization expression to see if OrigDecl is evaluated in
   8097   // its own initialization and throws a warning if it does.
   8098   class SelfReferenceChecker
   8099       : public EvaluatedExprVisitor<SelfReferenceChecker> {
   8100     Sema &S;
   8101     Decl *OrigDecl;
   8102     bool isRecordType;
   8103     bool isPODType;
   8104     bool isReferenceType;
   8105 
   8106   public:
   8107     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
   8108 
   8109     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
   8110                                                     S(S), OrigDecl(OrigDecl) {
   8111       isPODType = false;
   8112       isRecordType = false;
   8113       isReferenceType = false;
   8114       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
   8115         isPODType = VD->getType().isPODType(S.Context);
   8116         isRecordType = VD->getType()->isRecordType();
   8117         isReferenceType = VD->getType()->isReferenceType();
   8118       }
   8119     }
   8120 
   8121     // For most expressions, the cast is directly above the DeclRefExpr.
   8122     // For conditional operators, the cast can be outside the conditional
   8123     // operator if both expressions are DeclRefExpr's.
   8124     void HandleValue(Expr *E) {
   8125       if (isReferenceType)
   8126         return;
   8127       E = E->IgnoreParenImpCasts();
   8128       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
   8129         HandleDeclRefExpr(DRE);
   8130         return;
   8131       }
   8132 
   8133       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   8134         HandleValue(CO->getTrueExpr());
   8135         HandleValue(CO->getFalseExpr());
   8136         return;
   8137       }
   8138 
   8139       if (isa<MemberExpr>(E)) {
   8140         Expr *Base = E->IgnoreParenImpCasts();
   8141         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   8142           // Check for static member variables and don't warn on them.
   8143           if (!isa<FieldDecl>(ME->getMemberDecl()))
   8144             return;
   8145           Base = ME->getBase()->IgnoreParenImpCasts();
   8146         }
   8147         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
   8148           HandleDeclRefExpr(DRE);
   8149         return;
   8150       }
   8151     }
   8152 
   8153     // Reference types are handled here since all uses of references are
   8154     // bad, not just r-value uses.
   8155     void VisitDeclRefExpr(DeclRefExpr *E) {
   8156       if (isReferenceType)
   8157         HandleDeclRefExpr(E);
   8158     }
   8159 
   8160     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   8161       if (E->getCastKind() == CK_LValueToRValue ||
   8162           (isRecordType && E->getCastKind() == CK_NoOp))
   8163         HandleValue(E->getSubExpr());
   8164 
   8165       Inherited::VisitImplicitCastExpr(E);
   8166     }
   8167 
   8168     void VisitMemberExpr(MemberExpr *E) {
   8169       // Don't warn on arrays since they can be treated as pointers.
   8170       if (E->getType()->canDecayToPointerType()) return;
   8171 
   8172       // Warn when a non-static method call is followed by non-static member
   8173       // field accesses, which is followed by a DeclRefExpr.
   8174       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
   8175       bool Warn = (MD && !MD->isStatic());
   8176       Expr *Base = E->getBase()->IgnoreParenImpCasts();
   8177       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   8178         if (!isa<FieldDecl>(ME->getMemberDecl()))
   8179           Warn = false;
   8180         Base = ME->getBase()->IgnoreParenImpCasts();
   8181       }
   8182 
   8183       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   8184         if (Warn)
   8185           HandleDeclRefExpr(DRE);
   8186         return;
   8187       }
   8188 
   8189       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
   8190       // Visit that expression.
   8191       Visit(Base);
   8192     }
   8193 
   8194     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
   8195       if (E->getNumArgs() > 0)
   8196         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
   8197           HandleDeclRefExpr(DRE);
   8198 
   8199       Inherited::VisitCXXOperatorCallExpr(E);
   8200     }
   8201 
   8202     void VisitUnaryOperator(UnaryOperator *E) {
   8203       // For POD record types, addresses of its own members are well-defined.
   8204       if (E->getOpcode() == UO_AddrOf && isRecordType &&
   8205           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
   8206         if (!isPODType)
   8207           HandleValue(E->getSubExpr());
   8208         return;
   8209       }
   8210       Inherited::VisitUnaryOperator(E);
   8211     }
   8212 
   8213     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
   8214 
   8215     void HandleDeclRefExpr(DeclRefExpr *DRE) {
   8216       Decl* ReferenceDecl = DRE->getDecl();
   8217       if (OrigDecl != ReferenceDecl) return;
   8218       unsigned diag;
   8219       if (isReferenceType) {
   8220         diag = diag::warn_uninit_self_reference_in_reference_init;
   8221       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
   8222         diag = diag::warn_static_self_reference_in_init;
   8223       } else {
   8224         diag = diag::warn_uninit_self_reference_in_init;
   8225       }
   8226 
   8227       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
   8228                             S.PDiag(diag)
   8229                               << DRE->getNameInfo().getName()
   8230                               << OrigDecl->getLocation()
   8231                               << DRE->getSourceRange());
   8232     }
   8233   };
   8234 
   8235   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
   8236   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
   8237                                  bool DirectInit) {
   8238     // Parameters arguments are occassionially constructed with itself,
   8239     // for instance, in recursive functions.  Skip them.
   8240     if (isa<ParmVarDecl>(OrigDecl))
   8241       return;
   8242 
   8243     E = E->IgnoreParens();
   8244 
   8245     // Skip checking T a = a where T is not a record or reference type.
   8246     // Doing so is a way to silence uninitialized warnings.
   8247     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
   8248       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   8249         if (ICE->getCastKind() == CK_LValueToRValue)
   8250           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
   8251             if (DRE->getDecl() == OrigDecl)
   8252               return;
   8253 
   8254     SelfReferenceChecker(S, OrigDecl).Visit(E);
   8255   }
   8256 }
   8257 
   8258 /// AddInitializerToDecl - Adds the initializer Init to the
   8259 /// declaration dcl. If DirectInit is true, this is C++ direct
   8260 /// initialization rather than copy initialization.
   8261 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
   8262                                 bool DirectInit, bool TypeMayContainAuto) {
   8263   // If there is no declaration, there was an error parsing it.  Just ignore
   8264   // the initializer.
   8265   if (!RealDecl || RealDecl->isInvalidDecl())
   8266     return;
   8267 
   8268   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
   8269     // With declarators parsed the way they are, the parser cannot
   8270     // distinguish between a normal initializer and a pure-specifier.
   8271     // Thus this grotesque test.
   8272     IntegerLiteral *IL;
   8273     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
   8274         Context.getCanonicalType(IL->getType()) == Context.IntTy)
   8275       CheckPureMethod(Method, Init->getSourceRange());
   8276     else {
   8277       Diag(Method->getLocation(), diag::err_member_function_initialization)
   8278         << Method->getDeclName() << Init->getSourceRange();
   8279       Method->setInvalidDecl();
   8280     }
   8281     return;
   8282   }
   8283 
   8284   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
   8285   if (!VDecl) {
   8286     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
   8287     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
   8288     RealDecl->setInvalidDecl();
   8289     return;
   8290   }
   8291   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
   8292 
   8293   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   8294   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
   8295     Expr *DeduceInit = Init;
   8296     // Initializer could be a C++ direct-initializer. Deduction only works if it
   8297     // contains exactly one expression.
   8298     if (CXXDirectInit) {
   8299       if (CXXDirectInit->getNumExprs() == 0) {
   8300         // It isn't possible to write this directly, but it is possible to
   8301         // end up in this situation with "auto x(some_pack...);"
   8302         Diag(CXXDirectInit->getLocStart(),
   8303              VDecl->isInitCapture() ? diag::err_init_capture_no_expression
   8304                                     : diag::err_auto_var_init_no_expression)
   8305           << VDecl->getDeclName() << VDecl->getType()
   8306           << VDecl->getSourceRange();
   8307         RealDecl->setInvalidDecl();
   8308         return;
   8309       } else if (CXXDirectInit->getNumExprs() > 1) {
   8310         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
   8311              VDecl->isInitCapture()
   8312                  ? diag::err_init_capture_multiple_expressions
   8313                  : diag::err_auto_var_init_multiple_expressions)
   8314           << VDecl->getDeclName() << VDecl->getType()
   8315           << VDecl->getSourceRange();
   8316         RealDecl->setInvalidDecl();
   8317         return;
   8318       } else {
   8319         DeduceInit = CXXDirectInit->getExpr(0);
   8320         if (isa<InitListExpr>(DeduceInit))
   8321           Diag(CXXDirectInit->getLocStart(),
   8322                diag::err_auto_var_init_paren_braces)
   8323             << VDecl->getDeclName() << VDecl->getType()
   8324             << VDecl->getSourceRange();
   8325       }
   8326     }
   8327 
   8328     // Expressions default to 'id' when we're in a debugger.
   8329     bool DefaultedToAuto = false;
   8330     if (getLangOpts().DebuggerCastResultToId &&
   8331         Init->getType() == Context.UnknownAnyTy) {
   8332       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   8333       if (Result.isInvalid()) {
   8334         VDecl->setInvalidDecl();
   8335         return;
   8336       }
   8337       Init = Result.get();
   8338       DefaultedToAuto = true;
   8339     }
   8340 
   8341     QualType DeducedType;
   8342     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
   8343             DAR_Failed)
   8344       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
   8345     if (DeducedType.isNull()) {
   8346       RealDecl->setInvalidDecl();
   8347       return;
   8348     }
   8349     VDecl->setType(DeducedType);
   8350     assert(VDecl->isLinkageValid());
   8351 
   8352     // In ARC, infer lifetime.
   8353     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
   8354       VDecl->setInvalidDecl();
   8355 
   8356     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
   8357     // 'id' instead of a specific object type prevents most of our usual checks.
   8358     // We only want to warn outside of template instantiations, though:
   8359     // inside a template, the 'id' could have come from a parameter.
   8360     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
   8361         DeducedType->isObjCIdType()) {
   8362       SourceLocation Loc =
   8363           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
   8364       Diag(Loc, diag::warn_auto_var_is_id)
   8365         << VDecl->getDeclName() << DeduceInit->getSourceRange();
   8366     }
   8367 
   8368     // If this is a redeclaration, check that the type we just deduced matches
   8369     // the previously declared type.
   8370     if (VarDecl *Old = VDecl->getPreviousDecl()) {
   8371       // We never need to merge the type, because we cannot form an incomplete
   8372       // array of auto, nor deduce such a type.
   8373       MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
   8374     }
   8375 
   8376     // Check the deduced type is valid for a variable declaration.
   8377     CheckVariableDeclarationType(VDecl);
   8378     if (VDecl->isInvalidDecl())
   8379       return;
   8380   }
   8381 
   8382   // dllimport cannot be used on variable definitions.
   8383   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
   8384     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
   8385     VDecl->setInvalidDecl();
   8386     return;
   8387   }
   8388 
   8389   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
   8390     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
   8391     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
   8392     VDecl->setInvalidDecl();
   8393     return;
   8394   }
   8395 
   8396   if (!VDecl->getType()->isDependentType()) {
   8397     // A definition must end up with a complete type, which means it must be
   8398     // complete with the restriction that an array type might be completed by
   8399     // the initializer; note that later code assumes this restriction.
   8400     QualType BaseDeclType = VDecl->getType();
   8401     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
   8402       BaseDeclType = Array->getElementType();
   8403     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
   8404                             diag::err_typecheck_decl_incomplete_type)) {
   8405       RealDecl->setInvalidDecl();
   8406       return;
   8407     }
   8408 
   8409     // The variable can not have an abstract class type.
   8410     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
   8411                                diag::err_abstract_type_in_decl,
   8412                                AbstractVariableType))
   8413       VDecl->setInvalidDecl();
   8414   }
   8415 
   8416   const VarDecl *Def;
   8417   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
   8418     Diag(VDecl->getLocation(), diag::err_redefinition)
   8419       << VDecl->getDeclName();
   8420     Diag(Def->getLocation(), diag::note_previous_definition);
   8421     VDecl->setInvalidDecl();
   8422     return;
   8423   }
   8424 
   8425   const VarDecl *PrevInit = nullptr;
   8426   if (getLangOpts().CPlusPlus) {
   8427     // C++ [class.static.data]p4
   8428     //   If a static data member is of const integral or const
   8429     //   enumeration type, its declaration in the class definition can
   8430     //   specify a constant-initializer which shall be an integral
   8431     //   constant expression (5.19). In that case, the member can appear
   8432     //   in integral constant expressions. The member shall still be
   8433     //   defined in a namespace scope if it is used in the program and the
   8434     //   namespace scope definition shall not contain an initializer.
   8435     //
   8436     // We already performed a redefinition check above, but for static
   8437     // data members we also need to check whether there was an in-class
   8438     // declaration with an initializer.
   8439     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
   8440       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
   8441           << VDecl->getDeclName();
   8442       Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0;
   8443       return;
   8444     }
   8445 
   8446     if (VDecl->hasLocalStorage())
   8447       getCurFunction()->setHasBranchProtectedScope();
   8448 
   8449     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
   8450       VDecl->setInvalidDecl();
   8451       return;
   8452     }
   8453   }
   8454 
   8455   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
   8456   // a kernel function cannot be initialized."
   8457   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
   8458     Diag(VDecl->getLocation(), diag::err_local_cant_init);
   8459     VDecl->setInvalidDecl();
   8460     return;
   8461   }
   8462 
   8463   // Get the decls type and save a reference for later, since
   8464   // CheckInitializerTypes may change it.
   8465   QualType DclT = VDecl->getType(), SavT = DclT;
   8466 
   8467   // Expressions default to 'id' when we're in a debugger
   8468   // and we are assigning it to a variable of Objective-C pointer type.
   8469   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
   8470       Init->getType() == Context.UnknownAnyTy) {
   8471     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   8472     if (Result.isInvalid()) {
   8473       VDecl->setInvalidDecl();
   8474       return;
   8475     }
   8476     Init = Result.get();
   8477   }
   8478 
   8479   // Perform the initialization.
   8480   if (!VDecl->isInvalidDecl()) {
   8481     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
   8482     InitializationKind Kind
   8483       = DirectInit ?
   8484           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
   8485                                                            Init->getLocStart(),
   8486                                                            Init->getLocEnd())
   8487                         : InitializationKind::CreateDirectList(
   8488                                                           VDecl->getLocation())
   8489                    : InitializationKind::CreateCopy(VDecl->getLocation(),
   8490                                                     Init->getLocStart());
   8491 
   8492     MultiExprArg Args = Init;
   8493     if (CXXDirectInit)
   8494       Args = MultiExprArg(CXXDirectInit->getExprs(),
   8495                           CXXDirectInit->getNumExprs());
   8496 
   8497     InitializationSequence InitSeq(*this, Entity, Kind, Args);
   8498     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
   8499     if (Result.isInvalid()) {
   8500       VDecl->setInvalidDecl();
   8501       return;
   8502     }
   8503 
   8504     Init = Result.getAs<Expr>();
   8505   }
   8506 
   8507   // Check for self-references within variable initializers.
   8508   // Variables declared within a function/method body (except for references)
   8509   // are handled by a dataflow analysis.
   8510   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
   8511       VDecl->getType()->isReferenceType()) {
   8512     CheckSelfReference(*this, RealDecl, Init, DirectInit);
   8513   }
   8514 
   8515   // If the type changed, it means we had an incomplete type that was
   8516   // completed by the initializer. For example:
   8517   //   int ary[] = { 1, 3, 5 };
   8518   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
   8519   if (!VDecl->isInvalidDecl() && (DclT != SavT))
   8520     VDecl->setType(DclT);
   8521 
   8522   if (!VDecl->isInvalidDecl()) {
   8523     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
   8524 
   8525     if (VDecl->hasAttr<BlocksAttr>())
   8526       checkRetainCycles(VDecl, Init);
   8527 
   8528     // It is safe to assign a weak reference into a strong variable.
   8529     // Although this code can still have problems:
   8530     //   id x = self.weakProp;
   8531     //   id y = self.weakProp;
   8532     // we do not warn to warn spuriously when 'x' and 'y' are on separate
   8533     // paths through the function. This should be revisited if
   8534     // -Wrepeated-use-of-weak is made flow-sensitive.
   8535     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
   8536         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
   8537                          Init->getLocStart()))
   8538         getCurFunction()->markSafeWeakUse(Init);
   8539   }
   8540 
   8541   // The initialization is usually a full-expression.
   8542   //
   8543   // FIXME: If this is a braced initialization of an aggregate, it is not
   8544   // an expression, and each individual field initializer is a separate
   8545   // full-expression. For instance, in:
   8546   //
   8547   //   struct Temp { ~Temp(); };
   8548   //   struct S { S(Temp); };
   8549   //   struct T { S a, b; } t = { Temp(), Temp() }
   8550   //
   8551   // we should destroy the first Temp before constructing the second.
   8552   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
   8553                                           false,
   8554                                           VDecl->isConstexpr());
   8555   if (Result.isInvalid()) {
   8556     VDecl->setInvalidDecl();
   8557     return;
   8558   }
   8559   Init = Result.get();
   8560 
   8561   // Attach the initializer to the decl.
   8562   VDecl->setInit(Init);
   8563 
   8564   if (VDecl->isLocalVarDecl()) {
   8565     // C99 6.7.8p4: All the expressions in an initializer for an object that has
   8566     // static storage duration shall be constant expressions or string literals.
   8567     // C++ does not have this restriction.
   8568     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
   8569       const Expr *Culprit;
   8570       if (VDecl->getStorageClass() == SC_Static)
   8571         CheckForConstantInitializer(Init, DclT);
   8572       // C89 is stricter than C99 for non-static aggregate types.
   8573       // C89 6.5.7p3: All the expressions [...] in an initializer list
   8574       // for an object that has aggregate or union type shall be
   8575       // constant expressions.
   8576       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
   8577                isa<InitListExpr>(Init) &&
   8578                !Init->isConstantInitializer(Context, false, &Culprit))
   8579         Diag(Culprit->getExprLoc(),
   8580              diag::ext_aggregate_init_not_constant)
   8581           << Culprit->getSourceRange();
   8582     }
   8583   } else if (VDecl->isStaticDataMember() &&
   8584              VDecl->getLexicalDeclContext()->isRecord()) {
   8585     // This is an in-class initialization for a static data member, e.g.,
   8586     //
   8587     // struct S {
   8588     //   static const int value = 17;
   8589     // };
   8590 
   8591     // C++ [class.mem]p4:
   8592     //   A member-declarator can contain a constant-initializer only
   8593     //   if it declares a static member (9.4) of const integral or
   8594     //   const enumeration type, see 9.4.2.
   8595     //
   8596     // C++11 [class.static.data]p3:
   8597     //   If a non-volatile const static data member is of integral or
   8598     //   enumeration type, its declaration in the class definition can
   8599     //   specify a brace-or-equal-initializer in which every initalizer-clause
   8600     //   that is an assignment-expression is a constant expression. A static
   8601     //   data member of literal type can be declared in the class definition
   8602     //   with the constexpr specifier; if so, its declaration shall specify a
   8603     //   brace-or-equal-initializer in which every initializer-clause that is
   8604     //   an assignment-expression is a constant expression.
   8605 
   8606     // Do nothing on dependent types.
   8607     if (DclT->isDependentType()) {
   8608 
   8609     // Allow any 'static constexpr' members, whether or not they are of literal
   8610     // type. We separately check that every constexpr variable is of literal
   8611     // type.
   8612     } else if (VDecl->isConstexpr()) {
   8613 
   8614     // Require constness.
   8615     } else if (!DclT.isConstQualified()) {
   8616       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
   8617         << Init->getSourceRange();
   8618       VDecl->setInvalidDecl();
   8619 
   8620     // We allow integer constant expressions in all cases.
   8621     } else if (DclT->isIntegralOrEnumerationType()) {
   8622       // Check whether the expression is a constant expression.
   8623       SourceLocation Loc;
   8624       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
   8625         // In C++11, a non-constexpr const static data member with an
   8626         // in-class initializer cannot be volatile.
   8627         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
   8628       else if (Init->isValueDependent())
   8629         ; // Nothing to check.
   8630       else if (Init->isIntegerConstantExpr(Context, &Loc))
   8631         ; // Ok, it's an ICE!
   8632       else if (Init->isEvaluatable(Context)) {
   8633         // If we can constant fold the initializer through heroics, accept it,
   8634         // but report this as a use of an extension for -pedantic.
   8635         Diag(Loc, diag::ext_in_class_initializer_non_constant)
   8636           << Init->getSourceRange();
   8637       } else {
   8638         // Otherwise, this is some crazy unknown case.  Report the issue at the
   8639         // location provided by the isIntegerConstantExpr failed check.
   8640         Diag(Loc, diag::err_in_class_initializer_non_constant)
   8641           << Init->getSourceRange();
   8642         VDecl->setInvalidDecl();
   8643       }
   8644 
   8645     // We allow foldable floating-point constants as an extension.
   8646     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
   8647       // In C++98, this is a GNU extension. In C++11, it is not, but we support
   8648       // it anyway and provide a fixit to add the 'constexpr'.
   8649       if (getLangOpts().CPlusPlus11) {
   8650         Diag(VDecl->getLocation(),
   8651              diag::ext_in_class_initializer_float_type_cxx11)
   8652             << DclT << Init->getSourceRange();
   8653         Diag(VDecl->getLocStart(),
   8654              diag::note_in_class_initializer_float_type_cxx11)
   8655             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   8656       } else {
   8657         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
   8658           << DclT << Init->getSourceRange();
   8659 
   8660         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
   8661           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
   8662             << Init->getSourceRange();
   8663           VDecl->setInvalidDecl();
   8664         }
   8665       }
   8666 
   8667     // Suggest adding 'constexpr' in C++11 for literal types.
   8668     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
   8669       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
   8670         << DclT << Init->getSourceRange()
   8671         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   8672       VDecl->setConstexpr(true);
   8673 
   8674     } else {
   8675       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
   8676         << DclT << Init->getSourceRange();
   8677       VDecl->setInvalidDecl();
   8678     }
   8679   } else if (VDecl->isFileVarDecl()) {
   8680     if (VDecl->getStorageClass() == SC_Extern &&
   8681         (!getLangOpts().CPlusPlus ||
   8682          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
   8683            VDecl->isExternC())) &&
   8684         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
   8685       Diag(VDecl->getLocation(), diag::warn_extern_init);
   8686 
   8687     // C99 6.7.8p4. All file scoped initializers need to be constant.
   8688     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
   8689       CheckForConstantInitializer(Init, DclT);
   8690   }
   8691 
   8692   // We will represent direct-initialization similarly to copy-initialization:
   8693   //    int x(1);  -as-> int x = 1;
   8694   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
   8695   //
   8696   // Clients that want to distinguish between the two forms, can check for
   8697   // direct initializer using VarDecl::getInitStyle().
   8698   // A major benefit is that clients that don't particularly care about which
   8699   // exactly form was it (like the CodeGen) can handle both cases without
   8700   // special case code.
   8701 
   8702   // C++ 8.5p11:
   8703   // The form of initialization (using parentheses or '=') is generally
   8704   // insignificant, but does matter when the entity being initialized has a
   8705   // class type.
   8706   if (CXXDirectInit) {
   8707     assert(DirectInit && "Call-style initializer must be direct init.");
   8708     VDecl->setInitStyle(VarDecl::CallInit);
   8709   } else if (DirectInit) {
   8710     // This must be list-initialization. No other way is direct-initialization.
   8711     VDecl->setInitStyle(VarDecl::ListInit);
   8712   }
   8713 
   8714   CheckCompleteVariableDeclaration(VDecl);
   8715 }
   8716 
   8717 /// ActOnInitializerError - Given that there was an error parsing an
   8718 /// initializer for the given declaration, try to return to some form
   8719 /// of sanity.
   8720 void Sema::ActOnInitializerError(Decl *D) {
   8721   // Our main concern here is re-establishing invariants like "a
   8722   // variable's type is either dependent or complete".
   8723   if (!D || D->isInvalidDecl()) return;
   8724 
   8725   VarDecl *VD = dyn_cast<VarDecl>(D);
   8726   if (!VD) return;
   8727 
   8728   // Auto types are meaningless if we can't make sense of the initializer.
   8729   if (ParsingInitForAutoVars.count(D)) {
   8730     D->setInvalidDecl();
   8731     return;
   8732   }
   8733 
   8734   QualType Ty = VD->getType();
   8735   if (Ty->isDependentType()) return;
   8736 
   8737   // Require a complete type.
   8738   if (RequireCompleteType(VD->getLocation(),
   8739                           Context.getBaseElementType(Ty),
   8740                           diag::err_typecheck_decl_incomplete_type)) {
   8741     VD->setInvalidDecl();
   8742     return;
   8743   }
   8744 
   8745   // Require a non-abstract type.
   8746   if (RequireNonAbstractType(VD->getLocation(), Ty,
   8747                              diag::err_abstract_type_in_decl,
   8748                              AbstractVariableType)) {
   8749     VD->setInvalidDecl();
   8750     return;
   8751   }
   8752 
   8753   // Don't bother complaining about constructors or destructors,
   8754   // though.
   8755 }
   8756 
   8757 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
   8758                                   bool TypeMayContainAuto) {
   8759   // If there is no declaration, there was an error parsing it. Just ignore it.
   8760   if (!RealDecl)
   8761     return;
   8762 
   8763   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
   8764     QualType Type = Var->getType();
   8765 
   8766     // C++11 [dcl.spec.auto]p3
   8767     if (TypeMayContainAuto && Type->getContainedAutoType()) {
   8768       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
   8769         << Var->getDeclName() << Type;
   8770       Var->setInvalidDecl();
   8771       return;
   8772     }
   8773 
   8774     // C++11 [class.static.data]p3: A static data member can be declared with
   8775     // the constexpr specifier; if so, its declaration shall specify
   8776     // a brace-or-equal-initializer.
   8777     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
   8778     // the definition of a variable [...] or the declaration of a static data
   8779     // member.
   8780     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
   8781       if (Var->isStaticDataMember())
   8782         Diag(Var->getLocation(),
   8783              diag::err_constexpr_static_mem_var_requires_init)
   8784           << Var->getDeclName();
   8785       else
   8786         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
   8787       Var->setInvalidDecl();
   8788       return;
   8789     }
   8790 
   8791     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
   8792     // be initialized.
   8793     if (!Var->isInvalidDecl() &&
   8794         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
   8795         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
   8796       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
   8797       Var->setInvalidDecl();
   8798       return;
   8799     }
   8800 
   8801     switch (Var->isThisDeclarationADefinition()) {
   8802     case VarDecl::Definition:
   8803       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
   8804         break;
   8805 
   8806       // We have an out-of-line definition of a static data member
   8807       // that has an in-class initializer, so we type-check this like
   8808       // a declaration.
   8809       //
   8810       // Fall through
   8811 
   8812     case VarDecl::DeclarationOnly:
   8813       // It's only a declaration.
   8814 
   8815       // Block scope. C99 6.7p7: If an identifier for an object is
   8816       // declared with no linkage (C99 6.2.2p6), the type for the
   8817       // object shall be complete.
   8818       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
   8819           !Var->hasLinkage() && !Var->isInvalidDecl() &&
   8820           RequireCompleteType(Var->getLocation(), Type,
   8821                               diag::err_typecheck_decl_incomplete_type))
   8822         Var->setInvalidDecl();
   8823 
   8824       // Make sure that the type is not abstract.
   8825       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   8826           RequireNonAbstractType(Var->getLocation(), Type,
   8827                                  diag::err_abstract_type_in_decl,
   8828                                  AbstractVariableType))
   8829         Var->setInvalidDecl();
   8830       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   8831           Var->getStorageClass() == SC_PrivateExtern) {
   8832         Diag(Var->getLocation(), diag::warn_private_extern);
   8833         Diag(Var->getLocation(), diag::note_private_extern);
   8834       }
   8835 
   8836       return;
   8837 
   8838     case VarDecl::TentativeDefinition:
   8839       // File scope. C99 6.9.2p2: A declaration of an identifier for an
   8840       // object that has file scope without an initializer, and without a
   8841       // storage-class specifier or with the storage-class specifier "static",
   8842       // constitutes a tentative definition. Note: A tentative definition with
   8843       // external linkage is valid (C99 6.2.2p5).
   8844       if (!Var->isInvalidDecl()) {
   8845         if (const IncompleteArrayType *ArrayT
   8846                                     = Context.getAsIncompleteArrayType(Type)) {
   8847           if (RequireCompleteType(Var->getLocation(),
   8848                                   ArrayT->getElementType(),
   8849                                   diag::err_illegal_decl_array_incomplete_type))
   8850             Var->setInvalidDecl();
   8851         } else if (Var->getStorageClass() == SC_Static) {
   8852           // C99 6.9.2p3: If the declaration of an identifier for an object is
   8853           // a tentative definition and has internal linkage (C99 6.2.2p3), the
   8854           // declared type shall not be an incomplete type.
   8855           // NOTE: code such as the following
   8856           //     static struct s;
   8857           //     struct s { int a; };
   8858           // is accepted by gcc. Hence here we issue a warning instead of
   8859           // an error and we do not invalidate the static declaration.
   8860           // NOTE: to avoid multiple warnings, only check the first declaration.
   8861           if (Var->isFirstDecl())
   8862             RequireCompleteType(Var->getLocation(), Type,
   8863                                 diag::ext_typecheck_decl_incomplete_type);
   8864         }
   8865       }
   8866 
   8867       // Record the tentative definition; we're done.
   8868       if (!Var->isInvalidDecl())
   8869         TentativeDefinitions.push_back(Var);
   8870       return;
   8871     }
   8872 
   8873     // Provide a specific diagnostic for uninitialized variable
   8874     // definitions with incomplete array type.
   8875     if (Type->isIncompleteArrayType()) {
   8876       Diag(Var->getLocation(),
   8877            diag::err_typecheck_incomplete_array_needs_initializer);
   8878       Var->setInvalidDecl();
   8879       return;
   8880     }
   8881 
   8882     // Provide a specific diagnostic for uninitialized variable
   8883     // definitions with reference type.
   8884     if (Type->isReferenceType()) {
   8885       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
   8886         << Var->getDeclName()
   8887         << SourceRange(Var->getLocation(), Var->getLocation());
   8888       Var->setInvalidDecl();
   8889       return;
   8890     }
   8891 
   8892     // Do not attempt to type-check the default initializer for a
   8893     // variable with dependent type.
   8894     if (Type->isDependentType())
   8895       return;
   8896 
   8897     if (Var->isInvalidDecl())
   8898       return;
   8899 
   8900     if (!Var->hasAttr<AliasAttr>()) {
   8901       if (RequireCompleteType(Var->getLocation(),
   8902                               Context.getBaseElementType(Type),
   8903                               diag::err_typecheck_decl_incomplete_type)) {
   8904         Var->setInvalidDecl();
   8905         return;
   8906       }
   8907     }
   8908 
   8909     // The variable can not have an abstract class type.
   8910     if (RequireNonAbstractType(Var->getLocation(), Type,
   8911                                diag::err_abstract_type_in_decl,
   8912                                AbstractVariableType)) {
   8913       Var->setInvalidDecl();
   8914       return;
   8915     }
   8916 
   8917     // Check for jumps past the implicit initializer.  C++0x
   8918     // clarifies that this applies to a "variable with automatic
   8919     // storage duration", not a "local variable".
   8920     // C++11 [stmt.dcl]p3
   8921     //   A program that jumps from a point where a variable with automatic
   8922     //   storage duration is not in scope to a point where it is in scope is
   8923     //   ill-formed unless the variable has scalar type, class type with a
   8924     //   trivial default constructor and a trivial destructor, a cv-qualified
   8925     //   version of one of these types, or an array of one of the preceding
   8926     //   types and is declared without an initializer.
   8927     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
   8928       if (const RecordType *Record
   8929             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
   8930         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
   8931         // Mark the function for further checking even if the looser rules of
   8932         // C++11 do not require such checks, so that we can diagnose
   8933         // incompatibilities with C++98.
   8934         if (!CXXRecord->isPOD())
   8935           getCurFunction()->setHasBranchProtectedScope();
   8936       }
   8937     }
   8938 
   8939     // C++03 [dcl.init]p9:
   8940     //   If no initializer is specified for an object, and the
   8941     //   object is of (possibly cv-qualified) non-POD class type (or
   8942     //   array thereof), the object shall be default-initialized; if
   8943     //   the object is of const-qualified type, the underlying class
   8944     //   type shall have a user-declared default
   8945     //   constructor. Otherwise, if no initializer is specified for
   8946     //   a non- static object, the object and its subobjects, if
   8947     //   any, have an indeterminate initial value); if the object
   8948     //   or any of its subobjects are of const-qualified type, the
   8949     //   program is ill-formed.
   8950     // C++0x [dcl.init]p11:
   8951     //   If no initializer is specified for an object, the object is
   8952     //   default-initialized; [...].
   8953     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
   8954     InitializationKind Kind
   8955       = InitializationKind::CreateDefault(Var->getLocation());
   8956 
   8957     InitializationSequence InitSeq(*this, Entity, Kind, None);
   8958     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
   8959     if (Init.isInvalid())
   8960       Var->setInvalidDecl();
   8961     else if (Init.get()) {
   8962       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
   8963       // This is important for template substitution.
   8964       Var->setInitStyle(VarDecl::CallInit);
   8965     }
   8966 
   8967     CheckCompleteVariableDeclaration(Var);
   8968   }
   8969 }
   8970 
   8971 void Sema::ActOnCXXForRangeDecl(Decl *D) {
   8972   VarDecl *VD = dyn_cast<VarDecl>(D);
   8973   if (!VD) {
   8974     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
   8975     D->setInvalidDecl();
   8976     return;
   8977   }
   8978 
   8979   VD->setCXXForRangeDecl(true);
   8980 
   8981   // for-range-declaration cannot be given a storage class specifier.
   8982   int Error = -1;
   8983   switch (VD->getStorageClass()) {
   8984   case SC_None:
   8985     break;
   8986   case SC_Extern:
   8987     Error = 0;
   8988     break;
   8989   case SC_Static:
   8990     Error = 1;
   8991     break;
   8992   case SC_PrivateExtern:
   8993     Error = 2;
   8994     break;
   8995   case SC_Auto:
   8996     Error = 3;
   8997     break;
   8998   case SC_Register:
   8999     Error = 4;
   9000     break;
   9001   case SC_OpenCLWorkGroupLocal:
   9002     llvm_unreachable("Unexpected storage class");
   9003   }
   9004   if (VD->isConstexpr())
   9005     Error = 5;
   9006   if (Error != -1) {
   9007     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
   9008       << VD->getDeclName() << Error;
   9009     D->setInvalidDecl();
   9010   }
   9011 }
   9012 
   9013 StmtResult
   9014 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
   9015                                  IdentifierInfo *Ident,
   9016                                  ParsedAttributes &Attrs,
   9017                                  SourceLocation AttrEnd) {
   9018   // C++1y [stmt.iter]p1:
   9019   //   A range-based for statement of the form
   9020   //      for ( for-range-identifier : for-range-initializer ) statement
   9021   //   is equivalent to
   9022   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
   9023   DeclSpec DS(Attrs.getPool().getFactory());
   9024 
   9025   const char *PrevSpec;
   9026   unsigned DiagID;
   9027   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
   9028                      getPrintingPolicy());
   9029 
   9030   Declarator D(DS, Declarator::ForContext);
   9031   D.SetIdentifier(Ident, IdentLoc);
   9032   D.takeAttributes(Attrs, AttrEnd);
   9033 
   9034   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
   9035   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
   9036                 EmptyAttrs, IdentLoc);
   9037   Decl *Var = ActOnDeclarator(S, D);
   9038   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
   9039   FinalizeDeclaration(Var);
   9040   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
   9041                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
   9042 }
   9043 
   9044 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
   9045   if (var->isInvalidDecl()) return;
   9046 
   9047   // In ARC, don't allow jumps past the implicit initialization of a
   9048   // local retaining variable.
   9049   if (getLangOpts().ObjCAutoRefCount &&
   9050       var->hasLocalStorage()) {
   9051     switch (var->getType().getObjCLifetime()) {
   9052     case Qualifiers::OCL_None:
   9053     case Qualifiers::OCL_ExplicitNone:
   9054     case Qualifiers::OCL_Autoreleasing:
   9055       break;
   9056 
   9057     case Qualifiers::OCL_Weak:
   9058     case Qualifiers::OCL_Strong:
   9059       getCurFunction()->setHasBranchProtectedScope();
   9060       break;
   9061     }
   9062   }
   9063 
   9064   // Warn about externally-visible variables being defined without a
   9065   // prior declaration.  We only want to do this for global
   9066   // declarations, but we also specifically need to avoid doing it for
   9067   // class members because the linkage of an anonymous class can
   9068   // change if it's later given a typedef name.
   9069   if (var->isThisDeclarationADefinition() &&
   9070       var->getDeclContext()->getRedeclContext()->isFileContext() &&
   9071       var->isExternallyVisible() && var->hasLinkage() &&
   9072       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
   9073                                   var->getLocation())) {
   9074     // Find a previous declaration that's not a definition.
   9075     VarDecl *prev = var->getPreviousDecl();
   9076     while (prev && prev->isThisDeclarationADefinition())
   9077       prev = prev->getPreviousDecl();
   9078 
   9079     if (!prev)
   9080       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
   9081   }
   9082 
   9083   if (var->getTLSKind() == VarDecl::TLS_Static) {
   9084     const Expr *Culprit;
   9085     if (var->getType().isDestructedType()) {
   9086       // GNU C++98 edits for __thread, [basic.start.term]p3:
   9087       //   The type of an object with thread storage duration shall not
   9088       //   have a non-trivial destructor.
   9089       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
   9090       if (getLangOpts().CPlusPlus11)
   9091         Diag(var->getLocation(), diag::note_use_thread_local);
   9092     } else if (getLangOpts().CPlusPlus && var->hasInit() &&
   9093                !var->getInit()->isConstantInitializer(
   9094                    Context, var->getType()->isReferenceType(), &Culprit)) {
   9095       // GNU C++98 edits for __thread, [basic.start.init]p4:
   9096       //   An object of thread storage duration shall not require dynamic
   9097       //   initialization.
   9098       // FIXME: Need strict checking here.
   9099       Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
   9100         << Culprit->getSourceRange();
   9101       if (getLangOpts().CPlusPlus11)
   9102         Diag(var->getLocation(), diag::note_use_thread_local);
   9103     }
   9104 
   9105   }
   9106 
   9107   if (var->isThisDeclarationADefinition() &&
   9108       ActiveTemplateInstantiations.empty()) {
   9109     PragmaStack<StringLiteral *> *Stack = nullptr;
   9110     int SectionFlags = PSF_Implicit | PSF_Read;
   9111     if (var->getType().isConstQualified())
   9112       Stack = &ConstSegStack;
   9113     else if (!var->getInit()) {
   9114       Stack = &BSSSegStack;
   9115       SectionFlags |= PSF_Write;
   9116     } else {
   9117       Stack = &DataSegStack;
   9118       SectionFlags |= PSF_Write;
   9119     }
   9120     if (!var->hasAttr<SectionAttr>() && Stack->CurrentValue)
   9121       var->addAttr(
   9122           SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
   9123                                       Stack->CurrentValue->getString(),
   9124                                       Stack->CurrentPragmaLocation));
   9125     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
   9126       if (UnifySection(SA->getName(), SectionFlags, var))
   9127         var->dropAttr<SectionAttr>();
   9128   }
   9129 
   9130   // All the following checks are C++ only.
   9131   if (!getLangOpts().CPlusPlus) return;
   9132 
   9133   QualType type = var->getType();
   9134   if (type->isDependentType()) return;
   9135 
   9136   // __block variables might require us to capture a copy-initializer.
   9137   if (var->hasAttr<BlocksAttr>()) {
   9138     // It's currently invalid to ever have a __block variable with an
   9139     // array type; should we diagnose that here?
   9140 
   9141     // Regardless, we don't want to ignore array nesting when
   9142     // constructing this copy.
   9143     if (type->isStructureOrClassType()) {
   9144       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
   9145       SourceLocation poi = var->getLocation();
   9146       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
   9147       ExprResult result
   9148         = PerformMoveOrCopyInitialization(
   9149             InitializedEntity::InitializeBlock(poi, type, false),
   9150             var, var->getType(), varRef, /*AllowNRVO=*/true);
   9151       if (!result.isInvalid()) {
   9152         result = MaybeCreateExprWithCleanups(result);
   9153         Expr *init = result.getAs<Expr>();
   9154         Context.setBlockVarCopyInits(var, init);
   9155       }
   9156     }
   9157   }
   9158 
   9159   Expr *Init = var->getInit();
   9160   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
   9161   QualType baseType = Context.getBaseElementType(type);
   9162 
   9163   if (!var->getDeclContext()->isDependentContext() &&
   9164       Init && !Init->isValueDependent()) {
   9165     if (IsGlobal && !var->isConstexpr() &&
   9166         !getDiagnostics().isIgnored(diag::warn_global_constructor,
   9167                                     var->getLocation())) {
   9168       // Warn about globals which don't have a constant initializer.  Don't
   9169       // warn about globals with a non-trivial destructor because we already
   9170       // warned about them.
   9171       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
   9172       if (!(RD && !RD->hasTrivialDestructor()) &&
   9173           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
   9174         Diag(var->getLocation(), diag::warn_global_constructor)
   9175           << Init->getSourceRange();
   9176     }
   9177 
   9178     if (var->isConstexpr()) {
   9179       SmallVector<PartialDiagnosticAt, 8> Notes;
   9180       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
   9181         SourceLocation DiagLoc = var->getLocation();
   9182         // If the note doesn't add any useful information other than a source
   9183         // location, fold it into the primary diagnostic.
   9184         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   9185               diag::note_invalid_subexpr_in_const_expr) {
   9186           DiagLoc = Notes[0].first;
   9187           Notes.clear();
   9188         }
   9189         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
   9190           << var << Init->getSourceRange();
   9191         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   9192           Diag(Notes[I].first, Notes[I].second);
   9193       }
   9194     } else if (var->isUsableInConstantExpressions(Context)) {
   9195       // Check whether the initializer of a const variable of integral or
   9196       // enumeration type is an ICE now, since we can't tell whether it was
   9197       // initialized by a constant expression if we check later.
   9198       var->checkInitIsICE();
   9199     }
   9200   }
   9201 
   9202   // Require the destructor.
   9203   if (const RecordType *recordType = baseType->getAs<RecordType>())
   9204     FinalizeVarWithDestructor(var, recordType);
   9205 }
   9206 
   9207 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
   9208 /// any semantic actions necessary after any initializer has been attached.
   9209 void
   9210 Sema::FinalizeDeclaration(Decl *ThisDecl) {
   9211   // Note that we are no longer parsing the initializer for this declaration.
   9212   ParsingInitForAutoVars.erase(ThisDecl);
   9213 
   9214   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
   9215   if (!VD)
   9216     return;
   9217 
   9218   checkAttributesAfterMerging(*this, *VD);
   9219 
   9220   // Static locals inherit dll attributes from their function.
   9221   if (VD->isStaticLocal()) {
   9222     if (FunctionDecl *FD =
   9223             dyn_cast<FunctionDecl>(VD->getParentFunctionOrMethod())) {
   9224       if (Attr *A = getDLLAttr(FD)) {
   9225         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
   9226         NewAttr->setInherited(true);
   9227         VD->addAttr(NewAttr);
   9228       }
   9229     }
   9230   }
   9231 
   9232   // Imported static data members cannot be defined out-of-line.
   9233   if (const DLLImportAttr *IA = VD->getAttr<DLLImportAttr>()) {
   9234     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
   9235         VD->isThisDeclarationADefinition()) {
   9236       // We allow definitions of dllimport class template static data members
   9237       // with a warning.
   9238       CXXRecordDecl *Context =
   9239         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
   9240       bool IsClassTemplateMember =
   9241           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
   9242           Context->getDescribedClassTemplate();
   9243 
   9244       Diag(VD->getLocation(),
   9245            IsClassTemplateMember
   9246                ? diag::warn_attribute_dllimport_static_field_definition
   9247                : diag::err_attribute_dllimport_static_field_definition);
   9248       Diag(IA->getLocation(), diag::note_attribute);
   9249       if (!IsClassTemplateMember)
   9250         VD->setInvalidDecl();
   9251     }
   9252   }
   9253 
   9254   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
   9255     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
   9256       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
   9257       VD->dropAttr<UsedAttr>();
   9258     }
   9259   }
   9260 
   9261   if (!VD->isInvalidDecl() &&
   9262       VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) {
   9263     if (const VarDecl *Def = VD->getDefinition()) {
   9264       if (Def->hasAttr<AliasAttr>()) {
   9265         Diag(VD->getLocation(), diag::err_tentative_after_alias)
   9266             << VD->getDeclName();
   9267         Diag(Def->getLocation(), diag::note_previous_definition);
   9268         VD->setInvalidDecl();
   9269       }
   9270     }
   9271   }
   9272 
   9273   const DeclContext *DC = VD->getDeclContext();
   9274   // If there's a #pragma GCC visibility in scope, and this isn't a class
   9275   // member, set the visibility of this variable.
   9276   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
   9277     AddPushedVisibilityAttribute(VD);
   9278 
   9279   // FIXME: Warn on unused templates.
   9280   if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
   9281       !isa<VarTemplatePartialSpecializationDecl>(VD))
   9282     MarkUnusedFileScopedDecl(VD);
   9283 
   9284   // Now we have parsed the initializer and can update the table of magic
   9285   // tag values.
   9286   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
   9287       !VD->getType()->isIntegralOrEnumerationType())
   9288     return;
   9289 
   9290   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
   9291     const Expr *MagicValueExpr = VD->getInit();
   9292     if (!MagicValueExpr) {
   9293       continue;
   9294     }
   9295     llvm::APSInt MagicValueInt;
   9296     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
   9297       Diag(I->getRange().getBegin(),
   9298            diag::err_type_tag_for_datatype_not_ice)
   9299         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   9300       continue;
   9301     }
   9302     if (MagicValueInt.getActiveBits() > 64) {
   9303       Diag(I->getRange().getBegin(),
   9304            diag::err_type_tag_for_datatype_too_large)
   9305         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   9306       continue;
   9307     }
   9308     uint64_t MagicValue = MagicValueInt.getZExtValue();
   9309     RegisterTypeTagForDatatype(I->getArgumentKind(),
   9310                                MagicValue,
   9311                                I->getMatchingCType(),
   9312                                I->getLayoutCompatible(),
   9313                                I->getMustBeNull());
   9314   }
   9315 }
   9316 
   9317 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
   9318                                                    ArrayRef<Decl *> Group) {
   9319   SmallVector<Decl*, 8> Decls;
   9320 
   9321   if (DS.isTypeSpecOwned())
   9322     Decls.push_back(DS.getRepAsDecl());
   9323 
   9324   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
   9325   for (unsigned i = 0, e = Group.size(); i != e; ++i)
   9326     if (Decl *D = Group[i]) {
   9327       if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
   9328         if (!FirstDeclaratorInGroup)
   9329           FirstDeclaratorInGroup = DD;
   9330       Decls.push_back(D);
   9331     }
   9332 
   9333   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
   9334     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
   9335       HandleTagNumbering(*this, Tag, S);
   9336       if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
   9337         Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
   9338     }
   9339   }
   9340 
   9341   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
   9342 }
   9343 
   9344 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
   9345 /// group, performing any necessary semantic checking.
   9346 Sema::DeclGroupPtrTy
   9347 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
   9348                            bool TypeMayContainAuto) {
   9349   // C++0x [dcl.spec.auto]p7:
   9350   //   If the type deduced for the template parameter U is not the same in each
   9351   //   deduction, the program is ill-formed.
   9352   // FIXME: When initializer-list support is added, a distinction is needed
   9353   // between the deduced type U and the deduced type which 'auto' stands for.
   9354   //   auto a = 0, b = { 1, 2, 3 };
   9355   // is legal because the deduced type U is 'int' in both cases.
   9356   if (TypeMayContainAuto && Group.size() > 1) {
   9357     QualType Deduced;
   9358     CanQualType DeducedCanon;
   9359     VarDecl *DeducedDecl = nullptr;
   9360     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
   9361       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
   9362         AutoType *AT = D->getType()->getContainedAutoType();
   9363         // Don't reissue diagnostics when instantiating a template.
   9364         if (AT && D->isInvalidDecl())
   9365           break;
   9366         QualType U = AT ? AT->getDeducedType() : QualType();
   9367         if (!U.isNull()) {
   9368           CanQualType UCanon = Context.getCanonicalType(U);
   9369           if (Deduced.isNull()) {
   9370             Deduced = U;
   9371             DeducedCanon = UCanon;
   9372             DeducedDecl = D;
   9373           } else if (DeducedCanon != UCanon) {
   9374             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
   9375                  diag::err_auto_different_deductions)
   9376               << (AT->isDecltypeAuto() ? 1 : 0)
   9377               << Deduced << DeducedDecl->getDeclName()
   9378               << U << D->getDeclName()
   9379               << DeducedDecl->getInit()->getSourceRange()
   9380               << D->getInit()->getSourceRange();
   9381             D->setInvalidDecl();
   9382             break;
   9383           }
   9384         }
   9385       }
   9386     }
   9387   }
   9388 
   9389   ActOnDocumentableDecls(Group);
   9390 
   9391   return DeclGroupPtrTy::make(
   9392       DeclGroupRef::Create(Context, Group.data(), Group.size()));
   9393 }
   9394 
   9395 void Sema::ActOnDocumentableDecl(Decl *D) {
   9396   ActOnDocumentableDecls(D);
   9397 }
   9398 
   9399 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
   9400   // Don't parse the comment if Doxygen diagnostics are ignored.
   9401   if (Group.empty() || !Group[0])
   9402    return;
   9403 
   9404   if (Diags.isIgnored(diag::warn_doc_param_not_found, Group[0]->getLocation()))
   9405     return;
   9406 
   9407   if (Group.size() >= 2) {
   9408     // This is a decl group.  Normally it will contain only declarations
   9409     // produced from declarator list.  But in case we have any definitions or
   9410     // additional declaration references:
   9411     //   'typedef struct S {} S;'
   9412     //   'typedef struct S *S;'
   9413     //   'struct S *pS;'
   9414     // FinalizeDeclaratorGroup adds these as separate declarations.
   9415     Decl *MaybeTagDecl = Group[0];
   9416     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
   9417       Group = Group.slice(1);
   9418     }
   9419   }
   9420 
   9421   // See if there are any new comments that are not attached to a decl.
   9422   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
   9423   if (!Comments.empty() &&
   9424       !Comments.back()->isAttached()) {
   9425     // There is at least one comment that not attached to a decl.
   9426     // Maybe it should be attached to one of these decls?
   9427     //
   9428     // Note that this way we pick up not only comments that precede the
   9429     // declaration, but also comments that *follow* the declaration -- thanks to
   9430     // the lookahead in the lexer: we've consumed the semicolon and looked
   9431     // ahead through comments.
   9432     for (unsigned i = 0, e = Group.size(); i != e; ++i)
   9433       Context.getCommentForDecl(Group[i], &PP);
   9434   }
   9435 }
   9436 
   9437 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
   9438 /// to introduce parameters into function prototype scope.
   9439 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
   9440   const DeclSpec &DS = D.getDeclSpec();
   9441 
   9442   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
   9443 
   9444   // C++03 [dcl.stc]p2 also permits 'auto'.
   9445   VarDecl::StorageClass StorageClass = SC_None;
   9446   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   9447     StorageClass = SC_Register;
   9448   } else if (getLangOpts().CPlusPlus &&
   9449              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
   9450     StorageClass = SC_Auto;
   9451   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   9452     Diag(DS.getStorageClassSpecLoc(),
   9453          diag::err_invalid_storage_class_in_func_decl);
   9454     D.getMutableDeclSpec().ClearStorageClassSpecs();
   9455   }
   9456 
   9457   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
   9458     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
   9459       << DeclSpec::getSpecifierName(TSCS);
   9460   if (DS.isConstexprSpecified())
   9461     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
   9462       << 0;
   9463 
   9464   DiagnoseFunctionSpecifiers(DS);
   9465 
   9466   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   9467   QualType parmDeclType = TInfo->getType();
   9468 
   9469   if (getLangOpts().CPlusPlus) {
   9470     // Check that there are no default arguments inside the type of this
   9471     // parameter.
   9472     CheckExtraCXXDefaultArguments(D);
   9473 
   9474     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   9475     if (D.getCXXScopeSpec().isSet()) {
   9476       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
   9477         << D.getCXXScopeSpec().getRange();
   9478       D.getCXXScopeSpec().clear();
   9479     }
   9480   }
   9481 
   9482   // Ensure we have a valid name
   9483   IdentifierInfo *II = nullptr;
   9484   if (D.hasName()) {
   9485     II = D.getIdentifier();
   9486     if (!II) {
   9487       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
   9488         << GetNameForDeclarator(D).getName();
   9489       D.setInvalidType(true);
   9490     }
   9491   }
   9492 
   9493   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
   9494   if (II) {
   9495     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
   9496                    ForRedeclaration);
   9497     LookupName(R, S);
   9498     if (R.isSingleResult()) {
   9499       NamedDecl *PrevDecl = R.getFoundDecl();
   9500       if (PrevDecl->isTemplateParameter()) {
   9501         // Maybe we will complain about the shadowed template parameter.
   9502         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   9503         // Just pretend that we didn't see the previous declaration.
   9504         PrevDecl = nullptr;
   9505       } else if (S->isDeclScope(PrevDecl)) {
   9506         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
   9507         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   9508 
   9509         // Recover by removing the name
   9510         II = nullptr;
   9511         D.SetIdentifier(nullptr, D.getIdentifierLoc());
   9512         D.setInvalidType(true);
   9513       }
   9514     }
   9515   }
   9516 
   9517   // Temporarily put parameter variables in the translation unit, not
   9518   // the enclosing context.  This prevents them from accidentally
   9519   // looking like class members in C++.
   9520   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
   9521                                     D.getLocStart(),
   9522                                     D.getIdentifierLoc(), II,
   9523                                     parmDeclType, TInfo,
   9524                                     StorageClass);
   9525 
   9526   if (D.isInvalidType())
   9527     New->setInvalidDecl();
   9528 
   9529   assert(S->isFunctionPrototypeScope());
   9530   assert(S->getFunctionPrototypeDepth() >= 1);
   9531   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
   9532                     S->getNextFunctionPrototypeIndex());
   9533 
   9534   // Add the parameter declaration into this scope.
   9535   S->AddDecl(New);
   9536   if (II)
   9537     IdResolver.AddDecl(New);
   9538 
   9539   ProcessDeclAttributes(S, New, D);
   9540 
   9541   if (D.getDeclSpec().isModulePrivateSpecified())
   9542     Diag(New->getLocation(), diag::err_module_private_local)
   9543       << 1 << New->getDeclName()
   9544       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   9545       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   9546 
   9547   if (New->hasAttr<BlocksAttr>()) {
   9548     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   9549   }
   9550   return New;
   9551 }
   9552 
   9553 /// \brief Synthesizes a variable for a parameter arising from a
   9554 /// typedef.
   9555 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
   9556                                               SourceLocation Loc,
   9557                                               QualType T) {
   9558   /* FIXME: setting StartLoc == Loc.
   9559      Would it be worth to modify callers so as to provide proper source
   9560      location for the unnamed parameters, embedding the parameter's type? */
   9561   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
   9562                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
   9563                                            SC_None, nullptr);
   9564   Param->setImplicit();
   9565   return Param;
   9566 }
   9567 
   9568 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
   9569                                     ParmVarDecl * const *ParamEnd) {
   9570   // Don't diagnose unused-parameter errors in template instantiations; we
   9571   // will already have done so in the template itself.
   9572   if (!ActiveTemplateInstantiations.empty())
   9573     return;
   9574 
   9575   for (; Param != ParamEnd; ++Param) {
   9576     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
   9577         !(*Param)->hasAttr<UnusedAttr>()) {
   9578       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
   9579         << (*Param)->getDeclName();
   9580     }
   9581   }
   9582 }
   9583 
   9584 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
   9585                                                   ParmVarDecl * const *ParamEnd,
   9586                                                   QualType ReturnTy,
   9587                                                   NamedDecl *D) {
   9588   if (LangOpts.NumLargeByValueCopy == 0) // No check.
   9589     return;
   9590 
   9591   // Warn if the return value is pass-by-value and larger than the specified
   9592   // threshold.
   9593   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
   9594     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
   9595     if (Size > LangOpts.NumLargeByValueCopy)
   9596       Diag(D->getLocation(), diag::warn_return_value_size)
   9597           << D->getDeclName() << Size;
   9598   }
   9599 
   9600   // Warn if any parameter is pass-by-value and larger than the specified
   9601   // threshold.
   9602   for (; Param != ParamEnd; ++Param) {
   9603     QualType T = (*Param)->getType();
   9604     if (T->isDependentType() || !T.isPODType(Context))
   9605       continue;
   9606     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
   9607     if (Size > LangOpts.NumLargeByValueCopy)
   9608       Diag((*Param)->getLocation(), diag::warn_parameter_size)
   9609           << (*Param)->getDeclName() << Size;
   9610   }
   9611 }
   9612 
   9613 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
   9614                                   SourceLocation NameLoc, IdentifierInfo *Name,
   9615                                   QualType T, TypeSourceInfo *TSInfo,
   9616                                   VarDecl::StorageClass StorageClass) {
   9617   // In ARC, infer a lifetime qualifier for appropriate parameter types.
   9618   if (getLangOpts().ObjCAutoRefCount &&
   9619       T.getObjCLifetime() == Qualifiers::OCL_None &&
   9620       T->isObjCLifetimeType()) {
   9621 
   9622     Qualifiers::ObjCLifetime lifetime;
   9623 
   9624     // Special cases for arrays:
   9625     //   - if it's const, use __unsafe_unretained
   9626     //   - otherwise, it's an error
   9627     if (T->isArrayType()) {
   9628       if (!T.isConstQualified()) {
   9629         DelayedDiagnostics.add(
   9630             sema::DelayedDiagnostic::makeForbiddenType(
   9631             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
   9632       }
   9633       lifetime = Qualifiers::OCL_ExplicitNone;
   9634     } else {
   9635       lifetime = T->getObjCARCImplicitLifetime();
   9636     }
   9637     T = Context.getLifetimeQualifiedType(T, lifetime);
   9638   }
   9639 
   9640   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
   9641                                          Context.getAdjustedParameterType(T),
   9642                                          TSInfo,
   9643                                          StorageClass, nullptr);
   9644 
   9645   // Parameters can not be abstract class types.
   9646   // For record types, this is done by the AbstractClassUsageDiagnoser once
   9647   // the class has been completely parsed.
   9648   if (!CurContext->isRecord() &&
   9649       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
   9650                              AbstractParamType))
   9651     New->setInvalidDecl();
   9652 
   9653   // Parameter declarators cannot be interface types. All ObjC objects are
   9654   // passed by reference.
   9655   if (T->isObjCObjectType()) {
   9656     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
   9657     Diag(NameLoc,
   9658          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
   9659       << FixItHint::CreateInsertion(TypeEndLoc, "*");
   9660     T = Context.getObjCObjectPointerType(T);
   9661     New->setType(T);
   9662   }
   9663 
   9664   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   9665   // duration shall not be qualified by an address-space qualifier."
   9666   // Since all parameters have automatic store duration, they can not have
   9667   // an address space.
   9668   if (T.getAddressSpace() != 0) {
   9669     // OpenCL allows function arguments declared to be an array of a type
   9670     // to be qualified with an address space.
   9671     if (!(getLangOpts().OpenCL && T->isArrayType())) {
   9672       Diag(NameLoc, diag::err_arg_with_address_space);
   9673       New->setInvalidDecl();
   9674     }
   9675   }
   9676 
   9677   return New;
   9678 }
   9679 
   9680 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
   9681                                            SourceLocation LocAfterDecls) {
   9682   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   9683 
   9684   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
   9685   // for a K&R function.
   9686   if (!FTI.hasPrototype) {
   9687     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
   9688       --i;
   9689       if (FTI.Params[i].Param == nullptr) {
   9690         SmallString<256> Code;
   9691         llvm::raw_svector_ostream(Code)
   9692             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
   9693         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
   9694             << FTI.Params[i].Ident
   9695             << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
   9696 
   9697         // Implicitly declare the argument as type 'int' for lack of a better
   9698         // type.
   9699         AttributeFactory attrs;
   9700         DeclSpec DS(attrs);
   9701         const char* PrevSpec; // unused
   9702         unsigned DiagID; // unused
   9703         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
   9704                            DiagID, Context.getPrintingPolicy());
   9705         // Use the identifier location for the type source range.
   9706         DS.SetRangeStart(FTI.Params[i].IdentLoc);
   9707         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
   9708         Declarator ParamD(DS, Declarator::KNRTypeListContext);
   9709         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
   9710         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
   9711       }
   9712     }
   9713   }
   9714 }
   9715 
   9716 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
   9717   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
   9718   assert(D.isFunctionDeclarator() && "Not a function declarator!");
   9719   Scope *ParentScope = FnBodyScope->getParent();
   9720 
   9721   D.setFunctionDefinitionKind(FDK_Definition);
   9722   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
   9723   return ActOnStartOfFunctionDef(FnBodyScope, DP);
   9724 }
   9725 
   9726 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
   9727   Consumer.HandleInlineMethodDefinition(D);
   9728 }
   9729 
   9730 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
   9731                              const FunctionDecl*& PossibleZeroParamPrototype) {
   9732   // Don't warn about invalid declarations.
   9733   if (FD->isInvalidDecl())
   9734     return false;
   9735 
   9736   // Or declarations that aren't global.
   9737   if (!FD->isGlobal())
   9738     return false;
   9739 
   9740   // Don't warn about C++ member functions.
   9741   if (isa<CXXMethodDecl>(FD))
   9742     return false;
   9743 
   9744   // Don't warn about 'main'.
   9745   if (FD->isMain())
   9746     return false;
   9747 
   9748   // Don't warn about inline functions.
   9749   if (FD->isInlined())
   9750     return false;
   9751 
   9752   // Don't warn about function templates.
   9753   if (FD->getDescribedFunctionTemplate())
   9754     return false;
   9755 
   9756   // Don't warn about function template specializations.
   9757   if (FD->isFunctionTemplateSpecialization())
   9758     return false;
   9759 
   9760   // Don't warn for OpenCL kernels.
   9761   if (FD->hasAttr<OpenCLKernelAttr>())
   9762     return false;
   9763 
   9764   bool MissingPrototype = true;
   9765   for (const FunctionDecl *Prev = FD->getPreviousDecl();
   9766        Prev; Prev = Prev->getPreviousDecl()) {
   9767     // Ignore any declarations that occur in function or method
   9768     // scope, because they aren't visible from the header.
   9769     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
   9770       continue;
   9771 
   9772     MissingPrototype = !Prev->getType()->isFunctionProtoType();
   9773     if (FD->getNumParams() == 0)
   9774       PossibleZeroParamPrototype = Prev;
   9775     break;
   9776   }
   9777 
   9778   return MissingPrototype;
   9779 }
   9780 
   9781 void
   9782 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
   9783                                    const FunctionDecl *EffectiveDefinition) {
   9784   // Don't complain if we're in GNU89 mode and the previous definition
   9785   // was an extern inline function.
   9786   const FunctionDecl *Definition = EffectiveDefinition;
   9787   if (!Definition)
   9788     if (!FD->isDefined(Definition))
   9789       return;
   9790 
   9791   if (canRedefineFunction(Definition, getLangOpts()))
   9792     return;
   9793 
   9794   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
   9795       Definition->getStorageClass() == SC_Extern)
   9796     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
   9797         << FD->getDeclName() << getLangOpts().CPlusPlus;
   9798   else
   9799     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
   9800 
   9801   Diag(Definition->getLocation(), diag::note_previous_definition);
   9802   FD->setInvalidDecl();
   9803 }
   9804 
   9805 
   9806 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
   9807                                    Sema &S) {
   9808   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
   9809 
   9810   LambdaScopeInfo *LSI = S.PushLambdaScope();
   9811   LSI->CallOperator = CallOperator;
   9812   LSI->Lambda = LambdaClass;
   9813   LSI->ReturnType = CallOperator->getReturnType();
   9814   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
   9815 
   9816   if (LCD == LCD_None)
   9817     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
   9818   else if (LCD == LCD_ByCopy)
   9819     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
   9820   else if (LCD == LCD_ByRef)
   9821     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
   9822   DeclarationNameInfo DNI = CallOperator->getNameInfo();
   9823 
   9824   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
   9825   LSI->Mutable = !CallOperator->isConst();
   9826 
   9827   // Add the captures to the LSI so they can be noted as already
   9828   // captured within tryCaptureVar.
   9829   for (const auto &C : LambdaClass->captures()) {
   9830     if (C.capturesVariable()) {
   9831       VarDecl *VD = C.getCapturedVar();
   9832       if (VD->isInitCapture())
   9833         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
   9834       QualType CaptureType = VD->getType();
   9835       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
   9836       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
   9837           /*RefersToEnclosingLocal*/true, C.getLocation(),
   9838           /*EllipsisLoc*/C.isPackExpansion()
   9839                          ? C.getEllipsisLoc() : SourceLocation(),
   9840           CaptureType, /*Expr*/ nullptr);
   9841 
   9842     } else if (C.capturesThis()) {
   9843       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
   9844                               S.getCurrentThisType(), /*Expr*/ nullptr);
   9845     }
   9846   }
   9847 }
   9848 
   9849 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
   9850   // Clear the last template instantiation error context.
   9851   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
   9852 
   9853   if (!D)
   9854     return D;
   9855   FunctionDecl *FD = nullptr;
   9856 
   9857   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
   9858     FD = FunTmpl->getTemplatedDecl();
   9859   else
   9860     FD = cast<FunctionDecl>(D);
   9861   // If we are instantiating a generic lambda call operator, push
   9862   // a LambdaScopeInfo onto the function stack.  But use the information
   9863   // that's already been calculated (ActOnLambdaExpr) to prime the current
   9864   // LambdaScopeInfo.
   9865   // When the template operator is being specialized, the LambdaScopeInfo,
   9866   // has to be properly restored so that tryCaptureVariable doesn't try
   9867   // and capture any new variables. In addition when calculating potential
   9868   // captures during transformation of nested lambdas, it is necessary to
   9869   // have the LSI properly restored.
   9870   if (isGenericLambdaCallOperatorSpecialization(FD)) {
   9871     assert(ActiveTemplateInstantiations.size() &&
   9872       "There should be an active template instantiation on the stack "
   9873       "when instantiating a generic lambda!");
   9874     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
   9875   }
   9876   else
   9877     // Enter a new function scope
   9878     PushFunctionScope();
   9879 
   9880   // See if this is a redefinition.
   9881   if (!FD->isLateTemplateParsed())
   9882     CheckForFunctionRedefinition(FD);
   9883 
   9884   // Builtin functions cannot be defined.
   9885   if (unsigned BuiltinID = FD->getBuiltinID()) {
   9886     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
   9887         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
   9888       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
   9889       FD->setInvalidDecl();
   9890     }
   9891   }
   9892 
   9893   // The return type of a function definition must be complete
   9894   // (C99 6.9.1p3, C++ [dcl.fct]p6).
   9895   QualType ResultType = FD->getReturnType();
   9896   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
   9897       !FD->isInvalidDecl() &&
   9898       RequireCompleteType(FD->getLocation(), ResultType,
   9899                           diag::err_func_def_incomplete_result))
   9900     FD->setInvalidDecl();
   9901 
   9902   // GNU warning -Wmissing-prototypes:
   9903   //   Warn if a global function is defined without a previous
   9904   //   prototype declaration. This warning is issued even if the
   9905   //   definition itself provides a prototype. The aim is to detect
   9906   //   global functions that fail to be declared in header files.
   9907   const FunctionDecl *PossibleZeroParamPrototype = nullptr;
   9908   if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
   9909     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
   9910 
   9911     if (PossibleZeroParamPrototype) {
   9912       // We found a declaration that is not a prototype,
   9913       // but that could be a zero-parameter prototype
   9914       if (TypeSourceInfo *TI =
   9915               PossibleZeroParamPrototype->getTypeSourceInfo()) {
   9916         TypeLoc TL = TI->getTypeLoc();
   9917         if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
   9918           Diag(PossibleZeroParamPrototype->getLocation(),
   9919                diag::note_declaration_not_a_prototype)
   9920             << PossibleZeroParamPrototype
   9921             << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
   9922       }
   9923     }
   9924   }
   9925 
   9926   if (FnBodyScope)
   9927     PushDeclContext(FnBodyScope, FD);
   9928 
   9929   // Check the validity of our function parameters
   9930   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
   9931                            /*CheckParameterNames=*/true);
   9932 
   9933   // Introduce our parameters into the function scope
   9934   for (auto Param : FD->params()) {
   9935     Param->setOwningFunction(FD);
   9936 
   9937     // If this has an identifier, add it to the scope stack.
   9938     if (Param->getIdentifier() && FnBodyScope) {
   9939       CheckShadow(FnBodyScope, Param);
   9940 
   9941       PushOnScopeChains(Param, FnBodyScope);
   9942     }
   9943   }
   9944 
   9945   // If we had any tags defined in the function prototype,
   9946   // introduce them into the function scope.
   9947   if (FnBodyScope) {
   9948     for (ArrayRef<NamedDecl *>::iterator
   9949              I = FD->getDeclsInPrototypeScope().begin(),
   9950              E = FD->getDeclsInPrototypeScope().end();
   9951          I != E; ++I) {
   9952       NamedDecl *D = *I;
   9953 
   9954       // Some of these decls (like enums) may have been pinned to the translation unit
   9955       // for lack of a real context earlier. If so, remove from the translation unit
   9956       // and reattach to the current context.
   9957       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
   9958         // Is the decl actually in the context?
   9959         for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
   9960           if (DI == D) {
   9961             Context.getTranslationUnitDecl()->removeDecl(D);
   9962             break;
   9963           }
   9964         }
   9965         // Either way, reassign the lexical decl context to our FunctionDecl.
   9966         D->setLexicalDeclContext(CurContext);
   9967       }
   9968 
   9969       // If the decl has a non-null name, make accessible in the current scope.
   9970       if (!D->getName().empty())
   9971         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
   9972 
   9973       // Similarly, dive into enums and fish their constants out, making them
   9974       // accessible in this scope.
   9975       if (auto *ED = dyn_cast<EnumDecl>(D)) {
   9976         for (auto *EI : ED->enumerators())
   9977           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
   9978       }
   9979     }
   9980   }
   9981 
   9982   // Ensure that the function's exception specification is instantiated.
   9983   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
   9984     ResolveExceptionSpec(D->getLocation(), FPT);
   9985 
   9986   // dllimport cannot be applied to non-inline function definitions.
   9987   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
   9988       !FD->isTemplateInstantiation()) {
   9989     assert(!FD->hasAttr<DLLExportAttr>());
   9990     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
   9991     FD->setInvalidDecl();
   9992     return D;
   9993   }
   9994   // We want to attach documentation to original Decl (which might be
   9995   // a function template).
   9996   ActOnDocumentableDecl(D);
   9997   if (getCurLexicalContext()->isObjCContainer() &&
   9998       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
   9999       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
   10000     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
   10001 
   10002   return D;
   10003 }
   10004 
   10005 /// \brief Given the set of return statements within a function body,
   10006 /// compute the variables that are subject to the named return value
   10007 /// optimization.
   10008 ///
   10009 /// Each of the variables that is subject to the named return value
   10010 /// optimization will be marked as NRVO variables in the AST, and any
   10011 /// return statement that has a marked NRVO variable as its NRVO candidate can
   10012 /// use the named return value optimization.
   10013 ///
   10014 /// This function applies a very simplistic algorithm for NRVO: if every return
   10015 /// statement in the scope of a variable has the same NRVO candidate, that
   10016 /// candidate is an NRVO variable.
   10017 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
   10018   ReturnStmt **Returns = Scope->Returns.data();
   10019 
   10020   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
   10021     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
   10022       if (!NRVOCandidate->isNRVOVariable())
   10023         Returns[I]->setNRVOCandidate(nullptr);
   10024     }
   10025   }
   10026 }
   10027 
   10028 bool Sema::canDelayFunctionBody(const Declarator &D) {
   10029   // We can't delay parsing the body of a constexpr function template (yet).
   10030   if (D.getDeclSpec().isConstexprSpecified())
   10031     return false;
   10032 
   10033   // We can't delay parsing the body of a function template with a deduced
   10034   // return type (yet).
   10035   if (D.getDeclSpec().containsPlaceholderType()) {
   10036     // If the placeholder introduces a non-deduced trailing return type,
   10037     // we can still delay parsing it.
   10038     if (D.getNumTypeObjects()) {
   10039       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
   10040       if (Outer.Kind == DeclaratorChunk::Function &&
   10041           Outer.Fun.hasTrailingReturnType()) {
   10042         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
   10043         return Ty.isNull() || !Ty->isUndeducedType();
   10044       }
   10045     }
   10046     return false;
   10047   }
   10048 
   10049   return true;
   10050 }
   10051 
   10052 bool Sema::canSkipFunctionBody(Decl *D) {
   10053   // We cannot skip the body of a function (or function template) which is
   10054   // constexpr, since we may need to evaluate its body in order to parse the
   10055   // rest of the file.
   10056   // We cannot skip the body of a function with an undeduced return type,
   10057   // because any callers of that function need to know the type.
   10058   if (const FunctionDecl *FD = D->getAsFunction())
   10059     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
   10060       return false;
   10061   return Consumer.shouldSkipFunctionBody(D);
   10062 }
   10063 
   10064 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
   10065   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
   10066     FD->setHasSkippedBody();
   10067   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
   10068     MD->setHasSkippedBody();
   10069   return ActOnFinishFunctionBody(Decl, nullptr);
   10070 }
   10071 
   10072 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
   10073   return ActOnFinishFunctionBody(D, BodyArg, false);
   10074 }
   10075 
   10076 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
   10077                                     bool IsInstantiation) {
   10078   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
   10079 
   10080   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   10081   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
   10082 
   10083   if (FD) {
   10084     FD->setBody(Body);
   10085 
   10086     if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
   10087         !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
   10088       // If the function has a deduced result type but contains no 'return'
   10089       // statements, the result type as written must be exactly 'auto', and
   10090       // the deduced result type is 'void'.
   10091       if (!FD->getReturnType()->getAs<AutoType>()) {
   10092         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
   10093             << FD->getReturnType();
   10094         FD->setInvalidDecl();
   10095       } else {
   10096         // Substitute 'void' for the 'auto' in the type.
   10097         TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
   10098             IgnoreParens().castAs<FunctionProtoTypeLoc>().getReturnLoc();
   10099         Context.adjustDeducedFunctionResultType(
   10100             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
   10101       }
   10102     }
   10103 
   10104     // The only way to be included in UndefinedButUsed is if there is an
   10105     // ODR use before the definition. Avoid the expensive map lookup if this
   10106     // is the first declaration.
   10107     if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
   10108       if (!FD->isExternallyVisible())
   10109         UndefinedButUsed.erase(FD);
   10110       else if (FD->isInlined() &&
   10111                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
   10112                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
   10113         UndefinedButUsed.erase(FD);
   10114     }
   10115 
   10116     // If the function implicitly returns zero (like 'main') or is naked,
   10117     // don't complain about missing return statements.
   10118     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
   10119       WP.disableCheckFallThrough();
   10120 
   10121     // MSVC permits the use of pure specifier (=0) on function definition,
   10122     // defined at class scope, warn about this non-standard construct.
   10123     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
   10124       Diag(FD->getLocation(), diag::warn_pure_function_definition);
   10125 
   10126     if (!FD->isInvalidDecl()) {
   10127       // Don't diagnose unused parameters of defaulted or deleted functions.
   10128       if (Body)
   10129         DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
   10130       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
   10131                                              FD->getReturnType(), FD);
   10132 
   10133       // If this is a constructor, we need a vtable.
   10134       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
   10135         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
   10136 
   10137       // Try to apply the named return value optimization. We have to check
   10138       // if we can do this here because lambdas keep return statements around
   10139       // to deduce an implicit return type.
   10140       if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
   10141           !FD->isDependentContext())
   10142         computeNRVO(Body, getCurFunction());
   10143     }
   10144 
   10145     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
   10146            "Function parsing confused");
   10147   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
   10148     assert(MD == getCurMethodDecl() && "Method parsing confused");
   10149     MD->setBody(Body);
   10150     if (!MD->isInvalidDecl()) {
   10151       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
   10152       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
   10153                                              MD->getReturnType(), MD);
   10154 
   10155       if (Body)
   10156         computeNRVO(Body, getCurFunction());
   10157     }
   10158     if (getCurFunction()->ObjCShouldCallSuper) {
   10159       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
   10160         << MD->getSelector().getAsString();
   10161       getCurFunction()->ObjCShouldCallSuper = false;
   10162     }
   10163     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
   10164       const ObjCMethodDecl *InitMethod = nullptr;
   10165       bool isDesignated =
   10166           MD->isDesignatedInitializerForTheInterface(&InitMethod);
   10167       assert(isDesignated && InitMethod);
   10168       (void)isDesignated;
   10169 
   10170       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
   10171         auto IFace = MD->getClassInterface();
   10172         if (!IFace)
   10173           return false;
   10174         auto SuperD = IFace->getSuperClass();
   10175         if (!SuperD)
   10176           return false;
   10177         return SuperD->getIdentifier() ==
   10178             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
   10179       };
   10180       // Don't issue this warning for unavailable inits or direct subclasses
   10181       // of NSObject.
   10182       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
   10183         Diag(MD->getLocation(),
   10184              diag::warn_objc_designated_init_missing_super_call);
   10185         Diag(InitMethod->getLocation(),
   10186              diag::note_objc_designated_init_marked_here);
   10187       }
   10188       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
   10189     }
   10190     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
   10191       // Don't issue this warning for unavaialable inits.
   10192       if (!MD->isUnavailable())
   10193         Diag(MD->getLocation(), diag::warn_objc_secondary_init_missing_init_call);
   10194       getCurFunction()->ObjCWarnForNoInitDelegation = false;
   10195     }
   10196   } else {
   10197     return nullptr;
   10198   }
   10199 
   10200   assert(!getCurFunction()->ObjCShouldCallSuper &&
   10201          "This should only be set for ObjC methods, which should have been "
   10202          "handled in the block above.");
   10203 
   10204   // Verify and clean out per-function state.
   10205   if (Body) {
   10206     // C++ constructors that have function-try-blocks can't have return
   10207     // statements in the handlers of that block. (C++ [except.handle]p14)
   10208     // Verify this.
   10209     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
   10210       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
   10211 
   10212     // Verify that gotos and switch cases don't jump into scopes illegally.
   10213     if (getCurFunction()->NeedsScopeChecking() &&
   10214         !PP.isCodeCompletionEnabled())
   10215       DiagnoseInvalidJumps(Body);
   10216 
   10217     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
   10218       if (!Destructor->getParent()->isDependentType())
   10219         CheckDestructor(Destructor);
   10220 
   10221       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   10222                                              Destructor->getParent());
   10223     }
   10224 
   10225     // If any errors have occurred, clear out any temporaries that may have
   10226     // been leftover. This ensures that these temporaries won't be picked up for
   10227     // deletion in some later function.
   10228     if (getDiagnostics().hasErrorOccurred() ||
   10229         getDiagnostics().getSuppressAllDiagnostics()) {
   10230       DiscardCleanupsInEvaluationContext();
   10231     }
   10232     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
   10233         !isa<FunctionTemplateDecl>(dcl)) {
   10234       // Since the body is valid, issue any analysis-based warnings that are
   10235       // enabled.
   10236       ActivePolicy = &WP;
   10237     }
   10238 
   10239     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
   10240         (!CheckConstexprFunctionDecl(FD) ||
   10241          !CheckConstexprFunctionBody(FD, Body)))
   10242       FD->setInvalidDecl();
   10243 
   10244     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
   10245     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
   10246     assert(MaybeODRUseExprs.empty() &&
   10247            "Leftover expressions for odr-use checking");
   10248   }
   10249 
   10250   if (!IsInstantiation)
   10251     PopDeclContext();
   10252 
   10253   PopFunctionScopeInfo(ActivePolicy, dcl);
   10254   // If any errors have occurred, clear out any temporaries that may have
   10255   // been leftover. This ensures that these temporaries won't be picked up for
   10256   // deletion in some later function.
   10257   if (getDiagnostics().hasErrorOccurred()) {
   10258     DiscardCleanupsInEvaluationContext();
   10259   }
   10260 
   10261   return dcl;
   10262 }
   10263 
   10264 
   10265 /// When we finish delayed parsing of an attribute, we must attach it to the
   10266 /// relevant Decl.
   10267 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
   10268                                        ParsedAttributes &Attrs) {
   10269   // Always attach attributes to the underlying decl.
   10270   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   10271     D = TD->getTemplatedDecl();
   10272   ProcessDeclAttributeList(S, D, Attrs.getList());
   10273 
   10274   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
   10275     if (Method->isStatic())
   10276       checkThisInStaticMemberFunctionAttributes(Method);
   10277 }
   10278 
   10279 
   10280 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
   10281 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
   10282 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
   10283                                           IdentifierInfo &II, Scope *S) {
   10284   // Before we produce a declaration for an implicitly defined
   10285   // function, see whether there was a locally-scoped declaration of
   10286   // this name as a function or variable. If so, use that
   10287   // (non-visible) declaration, and complain about it.
   10288   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
   10289     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
   10290     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
   10291     return ExternCPrev;
   10292   }
   10293 
   10294   // Extension in C99.  Legal in C90, but warn about it.
   10295   unsigned diag_id;
   10296   if (II.getName().startswith("__builtin_"))
   10297     diag_id = diag::warn_builtin_unknown;
   10298   else if (getLangOpts().C99)
   10299     diag_id = diag::ext_implicit_function_decl;
   10300   else
   10301     diag_id = diag::warn_implicit_function_decl;
   10302   Diag(Loc, diag_id) << &II;
   10303 
   10304   // Because typo correction is expensive, only do it if the implicit
   10305   // function declaration is going to be treated as an error.
   10306   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
   10307     TypoCorrection Corrected;
   10308     DeclFilterCCC<FunctionDecl> Validator;
   10309     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
   10310                                       LookupOrdinaryName, S, nullptr, Validator,
   10311                                       CTK_NonError)))
   10312       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
   10313                    /*ErrorRecovery*/false);
   10314   }
   10315 
   10316   // Set a Declarator for the implicit definition: int foo();
   10317   const char *Dummy;
   10318   AttributeFactory attrFactory;
   10319   DeclSpec DS(attrFactory);
   10320   unsigned DiagID;
   10321   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
   10322                                   Context.getPrintingPolicy());
   10323   (void)Error; // Silence warning.
   10324   assert(!Error && "Error setting up implicit decl!");
   10325   SourceLocation NoLoc;
   10326   Declarator D(DS, Declarator::BlockContext);
   10327   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
   10328                                              /*IsAmbiguous=*/false,
   10329                                              /*LParenLoc=*/NoLoc,
   10330                                              /*Params=*/nullptr,
   10331                                              /*NumParams=*/0,
   10332                                              /*EllipsisLoc=*/NoLoc,
   10333                                              /*RParenLoc=*/NoLoc,
   10334                                              /*TypeQuals=*/0,
   10335                                              /*RefQualifierIsLvalueRef=*/true,
   10336                                              /*RefQualifierLoc=*/NoLoc,
   10337                                              /*ConstQualifierLoc=*/NoLoc,
   10338                                              /*VolatileQualifierLoc=*/NoLoc,
   10339                                              /*MutableLoc=*/NoLoc,
   10340                                              EST_None,
   10341                                              /*ESpecLoc=*/NoLoc,
   10342                                              /*Exceptions=*/nullptr,
   10343                                              /*ExceptionRanges=*/nullptr,
   10344                                              /*NumExceptions=*/0,
   10345                                              /*NoexceptExpr=*/nullptr,
   10346                                              Loc, Loc, D),
   10347                 DS.getAttributes(),
   10348                 SourceLocation());
   10349   D.SetIdentifier(&II, Loc);
   10350 
   10351   // Insert this function into translation-unit scope.
   10352 
   10353   DeclContext *PrevDC = CurContext;
   10354   CurContext = Context.getTranslationUnitDecl();
   10355 
   10356   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
   10357   FD->setImplicit();
   10358 
   10359   CurContext = PrevDC;
   10360 
   10361   AddKnownFunctionAttributes(FD);
   10362 
   10363   return FD;
   10364 }
   10365 
   10366 /// \brief Adds any function attributes that we know a priori based on
   10367 /// the declaration of this function.
   10368 ///
   10369 /// These attributes can apply both to implicitly-declared builtins
   10370 /// (like __builtin___printf_chk) or to library-declared functions
   10371 /// like NSLog or printf.
   10372 ///
   10373 /// We need to check for duplicate attributes both here and where user-written
   10374 /// attributes are applied to declarations.
   10375 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
   10376   if (FD->isInvalidDecl())
   10377     return;
   10378 
   10379   // If this is a built-in function, map its builtin attributes to
   10380   // actual attributes.
   10381   if (unsigned BuiltinID = FD->getBuiltinID()) {
   10382     // Handle printf-formatting attributes.
   10383     unsigned FormatIdx;
   10384     bool HasVAListArg;
   10385     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
   10386       if (!FD->hasAttr<FormatAttr>()) {
   10387         const char *fmt = "printf";
   10388         unsigned int NumParams = FD->getNumParams();
   10389         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
   10390             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
   10391           fmt = "NSString";
   10392         FD->addAttr(FormatAttr::CreateImplicit(Context,
   10393                                                &Context.Idents.get(fmt),
   10394                                                FormatIdx+1,
   10395                                                HasVAListArg ? 0 : FormatIdx+2,
   10396                                                FD->getLocation()));
   10397       }
   10398     }
   10399     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
   10400                                              HasVAListArg)) {
   10401      if (!FD->hasAttr<FormatAttr>())
   10402        FD->addAttr(FormatAttr::CreateImplicit(Context,
   10403                                               &Context.Idents.get("scanf"),
   10404                                               FormatIdx+1,
   10405                                               HasVAListArg ? 0 : FormatIdx+2,
   10406                                               FD->getLocation()));
   10407     }
   10408 
   10409     // Mark const if we don't care about errno and that is the only
   10410     // thing preventing the function from being const. This allows
   10411     // IRgen to use LLVM intrinsics for such functions.
   10412     if (!getLangOpts().MathErrno &&
   10413         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
   10414       if (!FD->hasAttr<ConstAttr>())
   10415         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
   10416     }
   10417 
   10418     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
   10419         !FD->hasAttr<ReturnsTwiceAttr>())
   10420       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
   10421                                          FD->getLocation()));
   10422     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
   10423       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
   10424     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
   10425       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
   10426   }
   10427 
   10428   IdentifierInfo *Name = FD->getIdentifier();
   10429   if (!Name)
   10430     return;
   10431   if ((!getLangOpts().CPlusPlus &&
   10432        FD->getDeclContext()->isTranslationUnit()) ||
   10433       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
   10434        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
   10435        LinkageSpecDecl::lang_c)) {
   10436     // Okay: this could be a libc/libm/Objective-C function we know
   10437     // about.
   10438   } else
   10439     return;
   10440 
   10441   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
   10442     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
   10443     // target-specific builtins, perhaps?
   10444     if (!FD->hasAttr<FormatAttr>())
   10445       FD->addAttr(FormatAttr::CreateImplicit(Context,
   10446                                              &Context.Idents.get("printf"), 2,
   10447                                              Name->isStr("vasprintf") ? 0 : 3,
   10448                                              FD->getLocation()));
   10449   }
   10450 
   10451   if (Name->isStr("__CFStringMakeConstantString")) {
   10452     // We already have a __builtin___CFStringMakeConstantString,
   10453     // but builds that use -fno-constant-cfstrings don't go through that.
   10454     if (!FD->hasAttr<FormatArgAttr>())
   10455       FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
   10456                                                 FD->getLocation()));
   10457   }
   10458 }
   10459 
   10460 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
   10461                                     TypeSourceInfo *TInfo) {
   10462   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
   10463   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
   10464 
   10465   if (!TInfo) {
   10466     assert(D.isInvalidType() && "no declarator info for valid type");
   10467     TInfo = Context.getTrivialTypeSourceInfo(T);
   10468   }
   10469 
   10470   // Scope manipulation handled by caller.
   10471   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
   10472                                            D.getLocStart(),
   10473                                            D.getIdentifierLoc(),
   10474                                            D.getIdentifier(),
   10475                                            TInfo);
   10476 
   10477   // Bail out immediately if we have an invalid declaration.
   10478   if (D.isInvalidType()) {
   10479     NewTD->setInvalidDecl();
   10480     return NewTD;
   10481   }
   10482 
   10483   if (D.getDeclSpec().isModulePrivateSpecified()) {
   10484     if (CurContext->isFunctionOrMethod())
   10485       Diag(NewTD->getLocation(), diag::err_module_private_local)
   10486         << 2 << NewTD->getDeclName()
   10487         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   10488         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   10489     else
   10490       NewTD->setModulePrivate();
   10491   }
   10492 
   10493   // C++ [dcl.typedef]p8:
   10494   //   If the typedef declaration defines an unnamed class (or
   10495   //   enum), the first typedef-name declared by the declaration
   10496   //   to be that class type (or enum type) is used to denote the
   10497   //   class type (or enum type) for linkage purposes only.
   10498   // We need to check whether the type was declared in the declaration.
   10499   switch (D.getDeclSpec().getTypeSpecType()) {
   10500   case TST_enum:
   10501   case TST_struct:
   10502   case TST_interface:
   10503   case TST_union:
   10504   case TST_class: {
   10505     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   10506 
   10507     // Do nothing if the tag is not anonymous or already has an
   10508     // associated typedef (from an earlier typedef in this decl group).
   10509     if (tagFromDeclSpec->getIdentifier()) break;
   10510     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
   10511 
   10512     // A well-formed anonymous tag must always be a TUK_Definition.
   10513     assert(tagFromDeclSpec->isThisDeclarationADefinition());
   10514 
   10515     // The type must match the tag exactly;  no qualifiers allowed.
   10516     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
   10517       break;
   10518 
   10519     // If we've already computed linkage for the anonymous tag, then
   10520     // adding a typedef name for the anonymous decl can change that
   10521     // linkage, which might be a serious problem.  Diagnose this as
   10522     // unsupported and ignore the typedef name.  TODO: we should
   10523     // pursue this as a language defect and establish a formal rule
   10524     // for how to handle it.
   10525     if (tagFromDeclSpec->hasLinkageBeenComputed()) {
   10526       Diag(D.getIdentifierLoc(), diag::err_typedef_changes_linkage);
   10527 
   10528       SourceLocation tagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
   10529       tagLoc = getLocForEndOfToken(tagLoc);
   10530 
   10531       llvm::SmallString<40> textToInsert;
   10532       textToInsert += ' ';
   10533       textToInsert += D.getIdentifier()->getName();
   10534       Diag(tagLoc, diag::note_typedef_changes_linkage)
   10535         << FixItHint::CreateInsertion(tagLoc, textToInsert);
   10536       break;
   10537     }
   10538 
   10539     // Otherwise, set this is the anon-decl typedef for the tag.
   10540     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
   10541     break;
   10542   }
   10543 
   10544   default:
   10545     break;
   10546   }
   10547 
   10548   return NewTD;
   10549 }
   10550 
   10551 
   10552 /// \brief Check that this is a valid underlying type for an enum declaration.
   10553 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
   10554   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
   10555   QualType T = TI->getType();
   10556 
   10557   if (T->isDependentType())
   10558     return false;
   10559 
   10560   if (const BuiltinType *BT = T->getAs<BuiltinType>())
   10561     if (BT->isInteger())
   10562       return false;
   10563 
   10564   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
   10565   return true;
   10566 }
   10567 
   10568 /// Check whether this is a valid redeclaration of a previous enumeration.
   10569 /// \return true if the redeclaration was invalid.
   10570 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
   10571                                   QualType EnumUnderlyingTy,
   10572                                   const EnumDecl *Prev) {
   10573   bool IsFixed = !EnumUnderlyingTy.isNull();
   10574 
   10575   if (IsScoped != Prev->isScoped()) {
   10576     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
   10577       << Prev->isScoped();
   10578     Diag(Prev->getLocation(), diag::note_previous_declaration);
   10579     return true;
   10580   }
   10581 
   10582   if (IsFixed && Prev->isFixed()) {
   10583     if (!EnumUnderlyingTy->isDependentType() &&
   10584         !Prev->getIntegerType()->isDependentType() &&
   10585         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
   10586                                         Prev->getIntegerType())) {
   10587       // TODO: Highlight the underlying type of the redeclaration.
   10588       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
   10589         << EnumUnderlyingTy << Prev->getIntegerType();
   10590       Diag(Prev->getLocation(), diag::note_previous_declaration)
   10591           << Prev->getIntegerTypeRange();
   10592       return true;
   10593     }
   10594   } else if (IsFixed != Prev->isFixed()) {
   10595     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
   10596       << Prev->isFixed();
   10597     Diag(Prev->getLocation(), diag::note_previous_declaration);
   10598     return true;
   10599   }
   10600 
   10601   return false;
   10602 }
   10603 
   10604 /// \brief Get diagnostic %select index for tag kind for
   10605 /// redeclaration diagnostic message.
   10606 /// WARNING: Indexes apply to particular diagnostics only!
   10607 ///
   10608 /// \returns diagnostic %select index.
   10609 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
   10610   switch (Tag) {
   10611   case TTK_Struct: return 0;
   10612   case TTK_Interface: return 1;
   10613   case TTK_Class:  return 2;
   10614   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
   10615   }
   10616 }
   10617 
   10618 /// \brief Determine if tag kind is a class-key compatible with
   10619 /// class for redeclaration (class, struct, or __interface).
   10620 ///
   10621 /// \returns true iff the tag kind is compatible.
   10622 static bool isClassCompatTagKind(TagTypeKind Tag)
   10623 {
   10624   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
   10625 }
   10626 
   10627 /// \brief Determine whether a tag with a given kind is acceptable
   10628 /// as a redeclaration of the given tag declaration.
   10629 ///
   10630 /// \returns true if the new tag kind is acceptable, false otherwise.
   10631 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
   10632                                         TagTypeKind NewTag, bool isDefinition,
   10633                                         SourceLocation NewTagLoc,
   10634                                         const IdentifierInfo &Name) {
   10635   // C++ [dcl.type.elab]p3:
   10636   //   The class-key or enum keyword present in the
   10637   //   elaborated-type-specifier shall agree in kind with the
   10638   //   declaration to which the name in the elaborated-type-specifier
   10639   //   refers. This rule also applies to the form of
   10640   //   elaborated-type-specifier that declares a class-name or
   10641   //   friend class since it can be construed as referring to the
   10642   //   definition of the class. Thus, in any
   10643   //   elaborated-type-specifier, the enum keyword shall be used to
   10644   //   refer to an enumeration (7.2), the union class-key shall be
   10645   //   used to refer to a union (clause 9), and either the class or
   10646   //   struct class-key shall be used to refer to a class (clause 9)
   10647   //   declared using the class or struct class-key.
   10648   TagTypeKind OldTag = Previous->getTagKind();
   10649   if (!isDefinition || !isClassCompatTagKind(NewTag))
   10650     if (OldTag == NewTag)
   10651       return true;
   10652 
   10653   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
   10654     // Warn about the struct/class tag mismatch.
   10655     bool isTemplate = false;
   10656     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
   10657       isTemplate = Record->getDescribedClassTemplate();
   10658 
   10659     if (!ActiveTemplateInstantiations.empty()) {
   10660       // In a template instantiation, do not offer fix-its for tag mismatches
   10661       // since they usually mess up the template instead of fixing the problem.
   10662       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   10663         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   10664         << getRedeclDiagFromTagKind(OldTag);
   10665       return true;
   10666     }
   10667 
   10668     if (isDefinition) {
   10669       // On definitions, check previous tags and issue a fix-it for each
   10670       // one that doesn't match the current tag.
   10671       if (Previous->getDefinition()) {
   10672         // Don't suggest fix-its for redefinitions.
   10673         return true;
   10674       }
   10675 
   10676       bool previousMismatch = false;
   10677       for (auto I : Previous->redecls()) {
   10678         if (I->getTagKind() != NewTag) {
   10679           if (!previousMismatch) {
   10680             previousMismatch = true;
   10681             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
   10682               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   10683               << getRedeclDiagFromTagKind(I->getTagKind());
   10684           }
   10685           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
   10686             << getRedeclDiagFromTagKind(NewTag)
   10687             << FixItHint::CreateReplacement(I->getInnerLocStart(),
   10688                  TypeWithKeyword::getTagTypeKindName(NewTag));
   10689         }
   10690       }
   10691       return true;
   10692     }
   10693 
   10694     // Check for a previous definition.  If current tag and definition
   10695     // are same type, do nothing.  If no definition, but disagree with
   10696     // with previous tag type, give a warning, but no fix-it.
   10697     const TagDecl *Redecl = Previous->getDefinition() ?
   10698                             Previous->getDefinition() : Previous;
   10699     if (Redecl->getTagKind() == NewTag) {
   10700       return true;
   10701     }
   10702 
   10703     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   10704       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   10705       << getRedeclDiagFromTagKind(OldTag);
   10706     Diag(Redecl->getLocation(), diag::note_previous_use);
   10707 
   10708     // If there is a previous definition, suggest a fix-it.
   10709     if (Previous->getDefinition()) {
   10710         Diag(NewTagLoc, diag::note_struct_class_suggestion)
   10711           << getRedeclDiagFromTagKind(Redecl->getTagKind())
   10712           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
   10713                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
   10714     }
   10715 
   10716     return true;
   10717   }
   10718   return false;
   10719 }
   10720 
   10721 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
   10722 /// former case, Name will be non-null.  In the later case, Name will be null.
   10723 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
   10724 /// reference/declaration/definition of a tag.
   10725 ///
   10726 /// IsTypeSpecifier is true if this is a type-specifier (or
   10727 /// trailing-type-specifier) other than one in an alias-declaration.
   10728 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   10729                      SourceLocation KWLoc, CXXScopeSpec &SS,
   10730                      IdentifierInfo *Name, SourceLocation NameLoc,
   10731                      AttributeList *Attr, AccessSpecifier AS,
   10732                      SourceLocation ModulePrivateLoc,
   10733                      MultiTemplateParamsArg TemplateParameterLists,
   10734                      bool &OwnedDecl, bool &IsDependent,
   10735                      SourceLocation ScopedEnumKWLoc,
   10736                      bool ScopedEnumUsesClassTag,
   10737                      TypeResult UnderlyingType,
   10738                      bool IsTypeSpecifier) {
   10739   // If this is not a definition, it must have a name.
   10740   IdentifierInfo *OrigName = Name;
   10741   assert((Name != nullptr || TUK == TUK_Definition) &&
   10742          "Nameless record must be a definition!");
   10743   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
   10744 
   10745   OwnedDecl = false;
   10746   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   10747   bool ScopedEnum = ScopedEnumKWLoc.isValid();
   10748 
   10749   // FIXME: Check explicit specializations more carefully.
   10750   bool isExplicitSpecialization = false;
   10751   bool Invalid = false;
   10752 
   10753   // We only need to do this matching if we have template parameters
   10754   // or a scope specifier, which also conveniently avoids this work
   10755   // for non-C++ cases.
   10756   if (TemplateParameterLists.size() > 0 ||
   10757       (SS.isNotEmpty() && TUK != TUK_Reference)) {
   10758     if (TemplateParameterList *TemplateParams =
   10759             MatchTemplateParametersToScopeSpecifier(
   10760                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
   10761                 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
   10762       if (Kind == TTK_Enum) {
   10763         Diag(KWLoc, diag::err_enum_template);
   10764         return nullptr;
   10765       }
   10766 
   10767       if (TemplateParams->size() > 0) {
   10768         // This is a declaration or definition of a class template (which may
   10769         // be a member of another template).
   10770 
   10771         if (Invalid)
   10772           return nullptr;
   10773 
   10774         OwnedDecl = false;
   10775         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
   10776                                                SS, Name, NameLoc, Attr,
   10777                                                TemplateParams, AS,
   10778                                                ModulePrivateLoc,
   10779                                                TemplateParameterLists.size()-1,
   10780                                                TemplateParameterLists.data());
   10781         return Result.get();
   10782       } else {
   10783         // The "template<>" header is extraneous.
   10784         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   10785           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   10786         isExplicitSpecialization = true;
   10787       }
   10788     }
   10789   }
   10790 
   10791   // Figure out the underlying type if this a enum declaration. We need to do
   10792   // this early, because it's needed to detect if this is an incompatible
   10793   // redeclaration.
   10794   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
   10795 
   10796   if (Kind == TTK_Enum) {
   10797     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
   10798       // No underlying type explicitly specified, or we failed to parse the
   10799       // type, default to int.
   10800       EnumUnderlying = Context.IntTy.getTypePtr();
   10801     else if (UnderlyingType.get()) {
   10802       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
   10803       // integral type; any cv-qualification is ignored.
   10804       TypeSourceInfo *TI = nullptr;
   10805       GetTypeFromParser(UnderlyingType.get(), &TI);
   10806       EnumUnderlying = TI;
   10807 
   10808       if (CheckEnumUnderlyingType(TI))
   10809         // Recover by falling back to int.
   10810         EnumUnderlying = Context.IntTy.getTypePtr();
   10811 
   10812       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
   10813                                           UPPC_FixedUnderlyingType))
   10814         EnumUnderlying = Context.IntTy.getTypePtr();
   10815 
   10816     } else if (getLangOpts().MSVCCompat)
   10817       // Microsoft enums are always of int type.
   10818       EnumUnderlying = Context.IntTy.getTypePtr();
   10819   }
   10820 
   10821   DeclContext *SearchDC = CurContext;
   10822   DeclContext *DC = CurContext;
   10823   bool isStdBadAlloc = false;
   10824 
   10825   RedeclarationKind Redecl = ForRedeclaration;
   10826   if (TUK == TUK_Friend || TUK == TUK_Reference)
   10827     Redecl = NotForRedeclaration;
   10828 
   10829   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
   10830   bool FriendSawTagOutsideEnclosingNamespace = false;
   10831   if (Name && SS.isNotEmpty()) {
   10832     // We have a nested-name tag ('struct foo::bar').
   10833 
   10834     // Check for invalid 'foo::'.
   10835     if (SS.isInvalid()) {
   10836       Name = nullptr;
   10837       goto CreateNewDecl;
   10838     }
   10839 
   10840     // If this is a friend or a reference to a class in a dependent
   10841     // context, don't try to make a decl for it.
   10842     if (TUK == TUK_Friend || TUK == TUK_Reference) {
   10843       DC = computeDeclContext(SS, false);
   10844       if (!DC) {
   10845         IsDependent = true;
   10846         return nullptr;
   10847       }
   10848     } else {
   10849       DC = computeDeclContext(SS, true);
   10850       if (!DC) {
   10851         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
   10852           << SS.getRange();
   10853         return nullptr;
   10854       }
   10855     }
   10856 
   10857     if (RequireCompleteDeclContext(SS, DC))
   10858       return nullptr;
   10859 
   10860     SearchDC = DC;
   10861     // Look-up name inside 'foo::'.
   10862     LookupQualifiedName(Previous, DC);
   10863 
   10864     if (Previous.isAmbiguous())
   10865       return nullptr;
   10866 
   10867     if (Previous.empty()) {
   10868       // Name lookup did not find anything. However, if the
   10869       // nested-name-specifier refers to the current instantiation,
   10870       // and that current instantiation has any dependent base
   10871       // classes, we might find something at instantiation time: treat
   10872       // this as a dependent elaborated-type-specifier.
   10873       // But this only makes any sense for reference-like lookups.
   10874       if (Previous.wasNotFoundInCurrentInstantiation() &&
   10875           (TUK == TUK_Reference || TUK == TUK_Friend)) {
   10876         IsDependent = true;
   10877         return nullptr;
   10878       }
   10879 
   10880       // A tag 'foo::bar' must already exist.
   10881       Diag(NameLoc, diag::err_not_tag_in_scope)
   10882         << Kind << Name << DC << SS.getRange();
   10883       Name = nullptr;
   10884       Invalid = true;
   10885       goto CreateNewDecl;
   10886     }
   10887   } else if (Name) {
   10888     // If this is a named struct, check to see if there was a previous forward
   10889     // declaration or definition.
   10890     // FIXME: We're looking into outer scopes here, even when we
   10891     // shouldn't be. Doing so can result in ambiguities that we
   10892     // shouldn't be diagnosing.
   10893     LookupName(Previous, S);
   10894 
   10895     // When declaring or defining a tag, ignore ambiguities introduced
   10896     // by types using'ed into this scope.
   10897     if (Previous.isAmbiguous() &&
   10898         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
   10899       LookupResult::Filter F = Previous.makeFilter();
   10900       while (F.hasNext()) {
   10901         NamedDecl *ND = F.next();
   10902         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
   10903           F.erase();
   10904       }
   10905       F.done();
   10906     }
   10907 
   10908     // C++11 [namespace.memdef]p3:
   10909     //   If the name in a friend declaration is neither qualified nor
   10910     //   a template-id and the declaration is a function or an
   10911     //   elaborated-type-specifier, the lookup to determine whether
   10912     //   the entity has been previously declared shall not consider
   10913     //   any scopes outside the innermost enclosing namespace.
   10914     //
   10915     // Does it matter that this should be by scope instead of by
   10916     // semantic context?
   10917     if (!Previous.empty() && TUK == TUK_Friend) {
   10918       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
   10919       LookupResult::Filter F = Previous.makeFilter();
   10920       while (F.hasNext()) {
   10921         NamedDecl *ND = F.next();
   10922         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
   10923         if (DC->isFileContext() &&
   10924             !EnclosingNS->Encloses(ND->getDeclContext())) {
   10925           F.erase();
   10926           FriendSawTagOutsideEnclosingNamespace = true;
   10927         }
   10928       }
   10929       F.done();
   10930     }
   10931 
   10932     // Note:  there used to be some attempt at recovery here.
   10933     if (Previous.isAmbiguous())
   10934       return nullptr;
   10935 
   10936     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
   10937       // FIXME: This makes sure that we ignore the contexts associated
   10938       // with C structs, unions, and enums when looking for a matching
   10939       // tag declaration or definition. See the similar lookup tweak
   10940       // in Sema::LookupName; is there a better way to deal with this?
   10941       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
   10942         SearchDC = SearchDC->getParent();
   10943     }
   10944   }
   10945 
   10946   if (Previous.isSingleResult() &&
   10947       Previous.getFoundDecl()->isTemplateParameter()) {
   10948     // Maybe we will complain about the shadowed template parameter.
   10949     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
   10950     // Just pretend that we didn't see the previous declaration.
   10951     Previous.clear();
   10952   }
   10953 
   10954   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
   10955       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
   10956     // This is a declaration of or a reference to "std::bad_alloc".
   10957     isStdBadAlloc = true;
   10958 
   10959     if (Previous.empty() && StdBadAlloc) {
   10960       // std::bad_alloc has been implicitly declared (but made invisible to
   10961       // name lookup). Fill in this implicit declaration as the previous
   10962       // declaration, so that the declarations get chained appropriately.
   10963       Previous.addDecl(getStdBadAlloc());
   10964     }
   10965   }
   10966 
   10967   // If we didn't find a previous declaration, and this is a reference
   10968   // (or friend reference), move to the correct scope.  In C++, we
   10969   // also need to do a redeclaration lookup there, just in case
   10970   // there's a shadow friend decl.
   10971   if (Name && Previous.empty() &&
   10972       (TUK == TUK_Reference || TUK == TUK_Friend)) {
   10973     if (Invalid) goto CreateNewDecl;
   10974     assert(SS.isEmpty());
   10975 
   10976     if (TUK == TUK_Reference) {
   10977       // C++ [basic.scope.pdecl]p5:
   10978       //   -- for an elaborated-type-specifier of the form
   10979       //
   10980       //          class-key identifier
   10981       //
   10982       //      if the elaborated-type-specifier is used in the
   10983       //      decl-specifier-seq or parameter-declaration-clause of a
   10984       //      function defined in namespace scope, the identifier is
   10985       //      declared as a class-name in the namespace that contains
   10986       //      the declaration; otherwise, except as a friend
   10987       //      declaration, the identifier is declared in the smallest
   10988       //      non-class, non-function-prototype scope that contains the
   10989       //      declaration.
   10990       //
   10991       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
   10992       // C structs and unions.
   10993       //
   10994       // It is an error in C++ to declare (rather than define) an enum
   10995       // type, including via an elaborated type specifier.  We'll
   10996       // diagnose that later; for now, declare the enum in the same
   10997       // scope as we would have picked for any other tag type.
   10998       //
   10999       // GNU C also supports this behavior as part of its incomplete
   11000       // enum types extension, while GNU C++ does not.
   11001       //
   11002       // Find the context where we'll be declaring the tag.
   11003       // FIXME: We would like to maintain the current DeclContext as the
   11004       // lexical context,
   11005       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
   11006         SearchDC = SearchDC->getParent();
   11007 
   11008       // Find the scope where we'll be declaring the tag.
   11009       while (S->isClassScope() ||
   11010              (getLangOpts().CPlusPlus &&
   11011               S->isFunctionPrototypeScope()) ||
   11012              ((S->getFlags() & Scope::DeclScope) == 0) ||
   11013              (S->getEntity() && S->getEntity()->isTransparentContext()))
   11014         S = S->getParent();
   11015     } else {
   11016       assert(TUK == TUK_Friend);
   11017       // C++ [namespace.memdef]p3:
   11018       //   If a friend declaration in a non-local class first declares a
   11019       //   class or function, the friend class or function is a member of
   11020       //   the innermost enclosing namespace.
   11021       SearchDC = SearchDC->getEnclosingNamespaceContext();
   11022     }
   11023 
   11024     // In C++, we need to do a redeclaration lookup to properly
   11025     // diagnose some problems.
   11026     if (getLangOpts().CPlusPlus) {
   11027       Previous.setRedeclarationKind(ForRedeclaration);
   11028       LookupQualifiedName(Previous, SearchDC);
   11029     }
   11030   }
   11031 
   11032   if (!Previous.empty()) {
   11033     NamedDecl *PrevDecl = Previous.getFoundDecl();
   11034     NamedDecl *DirectPrevDecl =
   11035         getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl;
   11036 
   11037     // It's okay to have a tag decl in the same scope as a typedef
   11038     // which hides a tag decl in the same scope.  Finding this
   11039     // insanity with a redeclaration lookup can only actually happen
   11040     // in C++.
   11041     //
   11042     // This is also okay for elaborated-type-specifiers, which is
   11043     // technically forbidden by the current standard but which is
   11044     // okay according to the likely resolution of an open issue;
   11045     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
   11046     if (getLangOpts().CPlusPlus) {
   11047       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   11048         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
   11049           TagDecl *Tag = TT->getDecl();
   11050           if (Tag->getDeclName() == Name &&
   11051               Tag->getDeclContext()->getRedeclContext()
   11052                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
   11053             PrevDecl = Tag;
   11054             Previous.clear();
   11055             Previous.addDecl(Tag);
   11056             Previous.resolveKind();
   11057           }
   11058         }
   11059       }
   11060     }
   11061 
   11062     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
   11063       // If this is a use of a previous tag, or if the tag is already declared
   11064       // in the same scope (so that the definition/declaration completes or
   11065       // rementions the tag), reuse the decl.
   11066       if (TUK == TUK_Reference || TUK == TUK_Friend ||
   11067           isDeclInScope(DirectPrevDecl, SearchDC, S,
   11068                         SS.isNotEmpty() || isExplicitSpecialization)) {
   11069         // Make sure that this wasn't declared as an enum and now used as a
   11070         // struct or something similar.
   11071         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
   11072                                           TUK == TUK_Definition, KWLoc,
   11073                                           *Name)) {
   11074           bool SafeToContinue
   11075             = (PrevTagDecl->getTagKind() != TTK_Enum &&
   11076                Kind != TTK_Enum);
   11077           if (SafeToContinue)
   11078             Diag(KWLoc, diag::err_use_with_wrong_tag)
   11079               << Name
   11080               << FixItHint::CreateReplacement(SourceRange(KWLoc),
   11081                                               PrevTagDecl->getKindName());
   11082           else
   11083             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
   11084           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   11085 
   11086           if (SafeToContinue)
   11087             Kind = PrevTagDecl->getTagKind();
   11088           else {
   11089             // Recover by making this an anonymous redefinition.
   11090             Name = nullptr;
   11091             Previous.clear();
   11092             Invalid = true;
   11093           }
   11094         }
   11095 
   11096         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
   11097           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
   11098 
   11099           // If this is an elaborated-type-specifier for a scoped enumeration,
   11100           // the 'class' keyword is not necessary and not permitted.
   11101           if (TUK == TUK_Reference || TUK == TUK_Friend) {
   11102             if (ScopedEnum)
   11103               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
   11104                 << PrevEnum->isScoped()
   11105                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
   11106             return PrevTagDecl;
   11107           }
   11108 
   11109           QualType EnumUnderlyingTy;
   11110           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   11111             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
   11112           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
   11113             EnumUnderlyingTy = QualType(T, 0);
   11114 
   11115           // All conflicts with previous declarations are recovered by
   11116           // returning the previous declaration, unless this is a definition,
   11117           // in which case we want the caller to bail out.
   11118           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
   11119                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
   11120             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
   11121         }
   11122 
   11123         // C++11 [class.mem]p1:
   11124         //   A member shall not be declared twice in the member-specification,
   11125         //   except that a nested class or member class template can be declared
   11126         //   and then later defined.
   11127         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
   11128             S->isDeclScope(PrevDecl)) {
   11129           Diag(NameLoc, diag::ext_member_redeclared);
   11130           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
   11131         }
   11132 
   11133         if (!Invalid) {
   11134           // If this is a use, just return the declaration we found, unless
   11135           // we have attributes.
   11136 
   11137           // FIXME: In the future, return a variant or some other clue
   11138           // for the consumer of this Decl to know it doesn't own it.
   11139           // For our current ASTs this shouldn't be a problem, but will
   11140           // need to be changed with DeclGroups.
   11141           if (!Attr &&
   11142               ((TUK == TUK_Reference &&
   11143                 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
   11144                || TUK == TUK_Friend))
   11145             return PrevTagDecl;
   11146 
   11147           // Diagnose attempts to redefine a tag.
   11148           if (TUK == TUK_Definition) {
   11149             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
   11150               // If we're defining a specialization and the previous definition
   11151               // is from an implicit instantiation, don't emit an error
   11152               // here; we'll catch this in the general case below.
   11153               bool IsExplicitSpecializationAfterInstantiation = false;
   11154               if (isExplicitSpecialization) {
   11155                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
   11156                   IsExplicitSpecializationAfterInstantiation =
   11157                     RD->getTemplateSpecializationKind() !=
   11158                     TSK_ExplicitSpecialization;
   11159                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
   11160                   IsExplicitSpecializationAfterInstantiation =
   11161                     ED->getTemplateSpecializationKind() !=
   11162                     TSK_ExplicitSpecialization;
   11163               }
   11164 
   11165               if (!IsExplicitSpecializationAfterInstantiation) {
   11166                 // A redeclaration in function prototype scope in C isn't
   11167                 // visible elsewhere, so merely issue a warning.
   11168                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
   11169                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
   11170                 else
   11171                   Diag(NameLoc, diag::err_redefinition) << Name;
   11172                 Diag(Def->getLocation(), diag::note_previous_definition);
   11173                 // If this is a redefinition, recover by making this
   11174                 // struct be anonymous, which will make any later
   11175                 // references get the previous definition.
   11176                 Name = nullptr;
   11177                 Previous.clear();
   11178                 Invalid = true;
   11179               }
   11180             } else {
   11181               // If the type is currently being defined, complain
   11182               // about a nested redefinition.
   11183               const TagType *Tag
   11184                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
   11185               if (Tag->isBeingDefined()) {
   11186                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
   11187                 Diag(PrevTagDecl->getLocation(),
   11188                      diag::note_previous_definition);
   11189                 Name = nullptr;
   11190                 Previous.clear();
   11191                 Invalid = true;
   11192               }
   11193             }
   11194 
   11195             // Okay, this is definition of a previously declared or referenced
   11196             // tag. We're going to create a new Decl for it.
   11197           }
   11198 
   11199           // Okay, we're going to make a redeclaration.  If this is some kind
   11200           // of reference, make sure we build the redeclaration in the same DC
   11201           // as the original, and ignore the current access specifier.
   11202           if (TUK == TUK_Friend || TUK == TUK_Reference) {
   11203             SearchDC = PrevTagDecl->getDeclContext();
   11204             AS = AS_none;
   11205           }
   11206         }
   11207         // If we get here we have (another) forward declaration or we
   11208         // have a definition.  Just create a new decl.
   11209 
   11210       } else {
   11211         // If we get here, this is a definition of a new tag type in a nested
   11212         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
   11213         // new decl/type.  We set PrevDecl to NULL so that the entities
   11214         // have distinct types.
   11215         Previous.clear();
   11216       }
   11217       // If we get here, we're going to create a new Decl. If PrevDecl
   11218       // is non-NULL, it's a definition of the tag declared by
   11219       // PrevDecl. If it's NULL, we have a new definition.
   11220 
   11221 
   11222     // Otherwise, PrevDecl is not a tag, but was found with tag
   11223     // lookup.  This is only actually possible in C++, where a few
   11224     // things like templates still live in the tag namespace.
   11225     } else {
   11226       // Use a better diagnostic if an elaborated-type-specifier
   11227       // found the wrong kind of type on the first
   11228       // (non-redeclaration) lookup.
   11229       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
   11230           !Previous.isForRedeclaration()) {
   11231         unsigned Kind = 0;
   11232         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   11233         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   11234         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   11235         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
   11236         Diag(PrevDecl->getLocation(), diag::note_declared_at);
   11237         Invalid = true;
   11238 
   11239       // Otherwise, only diagnose if the declaration is in scope.
   11240       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
   11241                                 SS.isNotEmpty() || isExplicitSpecialization)) {
   11242         // do nothing
   11243 
   11244       // Diagnose implicit declarations introduced by elaborated types.
   11245       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
   11246         unsigned Kind = 0;
   11247         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   11248         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   11249         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   11250         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
   11251         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   11252         Invalid = true;
   11253 
   11254       // Otherwise it's a declaration.  Call out a particularly common
   11255       // case here.
   11256       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   11257         unsigned Kind = 0;
   11258         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
   11259         Diag(NameLoc, diag::err_tag_definition_of_typedef)
   11260           << Name << Kind << TND->getUnderlyingType();
   11261         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   11262         Invalid = true;
   11263 
   11264       // Otherwise, diagnose.
   11265       } else {
   11266         // The tag name clashes with something else in the target scope,
   11267         // issue an error and recover by making this tag be anonymous.
   11268         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   11269         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   11270         Name = nullptr;
   11271         Invalid = true;
   11272       }
   11273 
   11274       // The existing declaration isn't relevant to us; we're in a
   11275       // new scope, so clear out the previous declaration.
   11276       Previous.clear();
   11277     }
   11278   }
   11279 
   11280 CreateNewDecl:
   11281 
   11282   TagDecl *PrevDecl = nullptr;
   11283   if (Previous.isSingleResult())
   11284     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
   11285 
   11286   // If there is an identifier, use the location of the identifier as the
   11287   // location of the decl, otherwise use the location of the struct/union
   11288   // keyword.
   11289   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
   11290 
   11291   // Otherwise, create a new declaration. If there is a previous
   11292   // declaration of the same entity, the two will be linked via
   11293   // PrevDecl.
   11294   TagDecl *New;
   11295 
   11296   bool IsForwardReference = false;
   11297   if (Kind == TTK_Enum) {
   11298     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   11299     // enum X { A, B, C } D;    D should chain to X.
   11300     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
   11301                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
   11302                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
   11303     // If this is an undefined enum, warn.
   11304     if (TUK != TUK_Definition && !Invalid) {
   11305       TagDecl *Def;
   11306       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
   11307           cast<EnumDecl>(New)->isFixed()) {
   11308         // C++0x: 7.2p2: opaque-enum-declaration.
   11309         // Conflicts are diagnosed above. Do nothing.
   11310       }
   11311       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
   11312         Diag(Loc, diag::ext_forward_ref_enum_def)
   11313           << New;
   11314         Diag(Def->getLocation(), diag::note_previous_definition);
   11315       } else {
   11316         unsigned DiagID = diag::ext_forward_ref_enum;
   11317         if (getLangOpts().MSVCCompat)
   11318           DiagID = diag::ext_ms_forward_ref_enum;
   11319         else if (getLangOpts().CPlusPlus)
   11320           DiagID = diag::err_forward_ref_enum;
   11321         Diag(Loc, DiagID);
   11322 
   11323         // If this is a forward-declared reference to an enumeration, make a
   11324         // note of it; we won't actually be introducing the declaration into
   11325         // the declaration context.
   11326         if (TUK == TUK_Reference)
   11327           IsForwardReference = true;
   11328       }
   11329     }
   11330 
   11331     if (EnumUnderlying) {
   11332       EnumDecl *ED = cast<EnumDecl>(New);
   11333       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   11334         ED->setIntegerTypeSourceInfo(TI);
   11335       else
   11336         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
   11337       ED->setPromotionType(ED->getIntegerType());
   11338     }
   11339 
   11340   } else {
   11341     // struct/union/class
   11342 
   11343     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   11344     // struct X { int A; } D;    D should chain to X.
   11345     if (getLangOpts().CPlusPlus) {
   11346       // FIXME: Look for a way to use RecordDecl for simple structs.
   11347       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   11348                                   cast_or_null<CXXRecordDecl>(PrevDecl));
   11349 
   11350       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
   11351         StdBadAlloc = cast<CXXRecordDecl>(New);
   11352     } else
   11353       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   11354                                cast_or_null<RecordDecl>(PrevDecl));
   11355   }
   11356 
   11357   // C++11 [dcl.type]p3:
   11358   //   A type-specifier-seq shall not define a class or enumeration [...].
   11359   if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
   11360     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
   11361       << Context.getTagDeclType(New);
   11362     Invalid = true;
   11363   }
   11364 
   11365   // Maybe add qualifier info.
   11366   if (SS.isNotEmpty()) {
   11367     if (SS.isSet()) {
   11368       // If this is either a declaration or a definition, check the
   11369       // nested-name-specifier against the current context. We don't do this
   11370       // for explicit specializations, because they have similar checking
   11371       // (with more specific diagnostics) in the call to
   11372       // CheckMemberSpecialization, below.
   11373       if (!isExplicitSpecialization &&
   11374           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
   11375           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
   11376         Invalid = true;
   11377 
   11378       New->setQualifierInfo(SS.getWithLocInContext(Context));
   11379       if (TemplateParameterLists.size() > 0) {
   11380         New->setTemplateParameterListsInfo(Context,
   11381                                            TemplateParameterLists.size(),
   11382                                            TemplateParameterLists.data());
   11383       }
   11384     }
   11385     else
   11386       Invalid = true;
   11387   }
   11388 
   11389   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
   11390     // Add alignment attributes if necessary; these attributes are checked when
   11391     // the ASTContext lays out the structure.
   11392     //
   11393     // It is important for implementing the correct semantics that this
   11394     // happen here (in act on tag decl). The #pragma pack stack is
   11395     // maintained as a result of parser callbacks which can occur at
   11396     // many points during the parsing of a struct declaration (because
   11397     // the #pragma tokens are effectively skipped over during the
   11398     // parsing of the struct).
   11399     if (TUK == TUK_Definition) {
   11400       AddAlignmentAttributesForRecord(RD);
   11401       AddMsStructLayoutForRecord(RD);
   11402     }
   11403   }
   11404 
   11405   if (ModulePrivateLoc.isValid()) {
   11406     if (isExplicitSpecialization)
   11407       Diag(New->getLocation(), diag::err_module_private_specialization)
   11408         << 2
   11409         << FixItHint::CreateRemoval(ModulePrivateLoc);
   11410     // __module_private__ does not apply to local classes. However, we only
   11411     // diagnose this as an error when the declaration specifiers are
   11412     // freestanding. Here, we just ignore the __module_private__.
   11413     else if (!SearchDC->isFunctionOrMethod())
   11414       New->setModulePrivate();
   11415   }
   11416 
   11417   // If this is a specialization of a member class (of a class template),
   11418   // check the specialization.
   11419   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
   11420     Invalid = true;
   11421 
   11422   // If we're declaring or defining a tag in function prototype scope in C,
   11423   // note that this type can only be used within the function and add it to
   11424   // the list of decls to inject into the function definition scope.
   11425   if ((Name || Kind == TTK_Enum) &&
   11426       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
   11427     if (getLangOpts().CPlusPlus) {
   11428       // C++ [dcl.fct]p6:
   11429       //   Types shall not be defined in return or parameter types.
   11430       if (TUK == TUK_Definition && !IsTypeSpecifier) {
   11431         Diag(Loc, diag::err_type_defined_in_param_type)
   11432             << Name;
   11433         Invalid = true;
   11434       }
   11435     } else {
   11436       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
   11437     }
   11438     DeclsInPrototypeScope.push_back(New);
   11439   }
   11440 
   11441   if (Invalid)
   11442     New->setInvalidDecl();
   11443 
   11444   if (Attr)
   11445     ProcessDeclAttributeList(S, New, Attr);
   11446 
   11447   // Set the lexical context. If the tag has a C++ scope specifier, the
   11448   // lexical context will be different from the semantic context.
   11449   New->setLexicalDeclContext(CurContext);
   11450 
   11451   // Mark this as a friend decl if applicable.
   11452   // In Microsoft mode, a friend declaration also acts as a forward
   11453   // declaration so we always pass true to setObjectOfFriendDecl to make
   11454   // the tag name visible.
   11455   if (TUK == TUK_Friend)
   11456     New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
   11457                                getLangOpts().MicrosoftExt);
   11458 
   11459   // Set the access specifier.
   11460   if (!Invalid && SearchDC->isRecord())
   11461     SetMemberAccessSpecifier(New, PrevDecl, AS);
   11462 
   11463   if (TUK == TUK_Definition)
   11464     New->startDefinition();
   11465 
   11466   // If this has an identifier, add it to the scope stack.
   11467   if (TUK == TUK_Friend) {
   11468     // We might be replacing an existing declaration in the lookup tables;
   11469     // if so, borrow its access specifier.
   11470     if (PrevDecl)
   11471       New->setAccess(PrevDecl->getAccess());
   11472 
   11473     DeclContext *DC = New->getDeclContext()->getRedeclContext();
   11474     DC->makeDeclVisibleInContext(New);
   11475     if (Name) // can be null along some error paths
   11476       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   11477         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
   11478   } else if (Name) {
   11479     S = getNonFieldDeclScope(S);
   11480     PushOnScopeChains(New, S, !IsForwardReference);
   11481     if (IsForwardReference)
   11482       SearchDC->makeDeclVisibleInContext(New);
   11483 
   11484   } else {
   11485     CurContext->addDecl(New);
   11486   }
   11487 
   11488   // If this is the C FILE type, notify the AST context.
   11489   if (IdentifierInfo *II = New->getIdentifier())
   11490     if (!New->isInvalidDecl() &&
   11491         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
   11492         II->isStr("FILE"))
   11493       Context.setFILEDecl(New);
   11494 
   11495   if (PrevDecl)
   11496     mergeDeclAttributes(New, PrevDecl);
   11497 
   11498   // If there's a #pragma GCC visibility in scope, set the visibility of this
   11499   // record.
   11500   AddPushedVisibilityAttribute(New);
   11501 
   11502   OwnedDecl = true;
   11503   // In C++, don't return an invalid declaration. We can't recover well from
   11504   // the cases where we make the type anonymous.
   11505   return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
   11506 }
   11507 
   11508 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
   11509   AdjustDeclIfTemplate(TagD);
   11510   TagDecl *Tag = cast<TagDecl>(TagD);
   11511 
   11512   // Enter the tag context.
   11513   PushDeclContext(S, Tag);
   11514 
   11515   ActOnDocumentableDecl(TagD);
   11516 
   11517   // If there's a #pragma GCC visibility in scope, set the visibility of this
   11518   // record.
   11519   AddPushedVisibilityAttribute(Tag);
   11520 }
   11521 
   11522 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
   11523   assert(isa<ObjCContainerDecl>(IDecl) &&
   11524          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
   11525   DeclContext *OCD = cast<DeclContext>(IDecl);
   11526   assert(getContainingDC(OCD) == CurContext &&
   11527       "The next DeclContext should be lexically contained in the current one.");
   11528   CurContext = OCD;
   11529   return IDecl;
   11530 }
   11531 
   11532 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
   11533                                            SourceLocation FinalLoc,
   11534                                            bool IsFinalSpelledSealed,
   11535                                            SourceLocation LBraceLoc) {
   11536   AdjustDeclIfTemplate(TagD);
   11537   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
   11538 
   11539   FieldCollector->StartClass();
   11540 
   11541   if (!Record->getIdentifier())
   11542     return;
   11543 
   11544   if (FinalLoc.isValid())
   11545     Record->addAttr(new (Context)
   11546                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
   11547 
   11548   // C++ [class]p2:
   11549   //   [...] The class-name is also inserted into the scope of the
   11550   //   class itself; this is known as the injected-class-name. For
   11551   //   purposes of access checking, the injected-class-name is treated
   11552   //   as if it were a public member name.
   11553   CXXRecordDecl *InjectedClassName
   11554     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
   11555                             Record->getLocStart(), Record->getLocation(),
   11556                             Record->getIdentifier(),
   11557                             /*PrevDecl=*/nullptr,
   11558                             /*DelayTypeCreation=*/true);
   11559   Context.getTypeDeclType(InjectedClassName, Record);
   11560   InjectedClassName->setImplicit();
   11561   InjectedClassName->setAccess(AS_public);
   11562   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
   11563       InjectedClassName->setDescribedClassTemplate(Template);
   11564   PushOnScopeChains(InjectedClassName, S);
   11565   assert(InjectedClassName->isInjectedClassName() &&
   11566          "Broken injected-class-name");
   11567 }
   11568 
   11569 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
   11570                                     SourceLocation RBraceLoc) {
   11571   AdjustDeclIfTemplate(TagD);
   11572   TagDecl *Tag = cast<TagDecl>(TagD);
   11573   Tag->setRBraceLoc(RBraceLoc);
   11574 
   11575   // Make sure we "complete" the definition even it is invalid.
   11576   if (Tag->isBeingDefined()) {
   11577     assert(Tag->isInvalidDecl() && "We should already have completed it");
   11578     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   11579       RD->completeDefinition();
   11580   }
   11581 
   11582   if (isa<CXXRecordDecl>(Tag))
   11583     FieldCollector->FinishClass();
   11584 
   11585   // Exit this scope of this tag's definition.
   11586   PopDeclContext();
   11587 
   11588   if (getCurLexicalContext()->isObjCContainer() &&
   11589       Tag->getDeclContext()->isFileContext())
   11590     Tag->setTopLevelDeclInObjCContainer();
   11591 
   11592   // Notify the consumer that we've defined a tag.
   11593   if (!Tag->isInvalidDecl())
   11594     Consumer.HandleTagDeclDefinition(Tag);
   11595 }
   11596 
   11597 void Sema::ActOnObjCContainerFinishDefinition() {
   11598   // Exit this scope of this interface definition.
   11599   PopDeclContext();
   11600 }
   11601 
   11602 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
   11603   assert(DC == CurContext && "Mismatch of container contexts");
   11604   OriginalLexicalContext = DC;
   11605   ActOnObjCContainerFinishDefinition();
   11606 }
   11607 
   11608 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
   11609   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
   11610   OriginalLexicalContext = nullptr;
   11611 }
   11612 
   11613 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
   11614   AdjustDeclIfTemplate(TagD);
   11615   TagDecl *Tag = cast<TagDecl>(TagD);
   11616   Tag->setInvalidDecl();
   11617 
   11618   // Make sure we "complete" the definition even it is invalid.
   11619   if (Tag->isBeingDefined()) {
   11620     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   11621       RD->completeDefinition();
   11622   }
   11623 
   11624   // We're undoing ActOnTagStartDefinition here, not
   11625   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
   11626   // the FieldCollector.
   11627 
   11628   PopDeclContext();
   11629 }
   11630 
   11631 // Note that FieldName may be null for anonymous bitfields.
   11632 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
   11633                                 IdentifierInfo *FieldName,
   11634                                 QualType FieldTy, bool IsMsStruct,
   11635                                 Expr *BitWidth, bool *ZeroWidth) {
   11636   // Default to true; that shouldn't confuse checks for emptiness
   11637   if (ZeroWidth)
   11638     *ZeroWidth = true;
   11639 
   11640   // C99 6.7.2.1p4 - verify the field type.
   11641   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   11642   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
   11643     // Handle incomplete types with specific error.
   11644     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
   11645       return ExprError();
   11646     if (FieldName)
   11647       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
   11648         << FieldName << FieldTy << BitWidth->getSourceRange();
   11649     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
   11650       << FieldTy << BitWidth->getSourceRange();
   11651   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
   11652                                              UPPC_BitFieldWidth))
   11653     return ExprError();
   11654 
   11655   // If the bit-width is type- or value-dependent, don't try to check
   11656   // it now.
   11657   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
   11658     return BitWidth;
   11659 
   11660   llvm::APSInt Value;
   11661   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
   11662   if (ICE.isInvalid())
   11663     return ICE;
   11664   BitWidth = ICE.get();
   11665 
   11666   if (Value != 0 && ZeroWidth)
   11667     *ZeroWidth = false;
   11668 
   11669   // Zero-width bitfield is ok for anonymous field.
   11670   if (Value == 0 && FieldName)
   11671     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
   11672 
   11673   if (Value.isSigned() && Value.isNegative()) {
   11674     if (FieldName)
   11675       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
   11676                << FieldName << Value.toString(10);
   11677     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
   11678       << Value.toString(10);
   11679   }
   11680 
   11681   if (!FieldTy->isDependentType()) {
   11682     uint64_t TypeSize = Context.getTypeSize(FieldTy);
   11683     if (Value.getZExtValue() > TypeSize) {
   11684       if (!getLangOpts().CPlusPlus || IsMsStruct ||
   11685           Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   11686         if (FieldName)
   11687           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
   11688             << FieldName << (unsigned)Value.getZExtValue()
   11689             << (unsigned)TypeSize;
   11690 
   11691         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
   11692           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   11693       }
   11694 
   11695       if (FieldName)
   11696         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
   11697           << FieldName << (unsigned)Value.getZExtValue()
   11698           << (unsigned)TypeSize;
   11699       else
   11700         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
   11701           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   11702     }
   11703   }
   11704 
   11705   return BitWidth;
   11706 }
   11707 
   11708 /// ActOnField - Each field of a C struct/union is passed into this in order
   11709 /// to create a FieldDecl object for it.
   11710 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
   11711                        Declarator &D, Expr *BitfieldWidth) {
   11712   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
   11713                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
   11714                                /*InitStyle=*/ICIS_NoInit, AS_public);
   11715   return Res;
   11716 }
   11717 
   11718 /// HandleField - Analyze a field of a C struct or a C++ data member.
   11719 ///
   11720 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
   11721                              SourceLocation DeclStart,
   11722                              Declarator &D, Expr *BitWidth,
   11723                              InClassInitStyle InitStyle,
   11724                              AccessSpecifier AS) {
   11725   IdentifierInfo *II = D.getIdentifier();
   11726   SourceLocation Loc = DeclStart;
   11727   if (II) Loc = D.getIdentifierLoc();
   11728 
   11729   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   11730   QualType T = TInfo->getType();
   11731   if (getLangOpts().CPlusPlus) {
   11732     CheckExtraCXXDefaultArguments(D);
   11733 
   11734     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   11735                                         UPPC_DataMemberType)) {
   11736       D.setInvalidType();
   11737       T = Context.IntTy;
   11738       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   11739     }
   11740   }
   11741 
   11742   // TR 18037 does not allow fields to be declared with address spaces.
   11743   if (T.getQualifiers().hasAddressSpace()) {
   11744     Diag(Loc, diag::err_field_with_address_space);
   11745     D.setInvalidType();
   11746   }
   11747 
   11748   // OpenCL 1.2 spec, s6.9 r:
   11749   // The event type cannot be used to declare a structure or union field.
   11750   if (LangOpts.OpenCL && T->isEventT()) {
   11751     Diag(Loc, diag::err_event_t_struct_field);
   11752     D.setInvalidType();
   11753   }
   11754 
   11755   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   11756 
   11757   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   11758     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   11759          diag::err_invalid_thread)
   11760       << DeclSpec::getSpecifierName(TSCS);
   11761 
   11762   // Check to see if this name was declared as a member previously
   11763   NamedDecl *PrevDecl = nullptr;
   11764   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
   11765   LookupName(Previous, S);
   11766   switch (Previous.getResultKind()) {
   11767     case LookupResult::Found:
   11768     case LookupResult::FoundUnresolvedValue:
   11769       PrevDecl = Previous.getAsSingle<NamedDecl>();
   11770       break;
   11771 
   11772     case LookupResult::FoundOverloaded:
   11773       PrevDecl = Previous.getRepresentativeDecl();
   11774       break;
   11775 
   11776     case LookupResult::NotFound:
   11777     case LookupResult::NotFoundInCurrentInstantiation:
   11778     case LookupResult::Ambiguous:
   11779       break;
   11780   }
   11781   Previous.suppressDiagnostics();
   11782 
   11783   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   11784     // Maybe we will complain about the shadowed template parameter.
   11785     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   11786     // Just pretend that we didn't see the previous declaration.
   11787     PrevDecl = nullptr;
   11788   }
   11789 
   11790   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
   11791     PrevDecl = nullptr;
   11792 
   11793   bool Mutable
   11794     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
   11795   SourceLocation TSSL = D.getLocStart();
   11796   FieldDecl *NewFD
   11797     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
   11798                      TSSL, AS, PrevDecl, &D);
   11799 
   11800   if (NewFD->isInvalidDecl())
   11801     Record->setInvalidDecl();
   11802 
   11803   if (D.getDeclSpec().isModulePrivateSpecified())
   11804     NewFD->setModulePrivate();
   11805 
   11806   if (NewFD->isInvalidDecl() && PrevDecl) {
   11807     // Don't introduce NewFD into scope; there's already something
   11808     // with the same name in the same scope.
   11809   } else if (II) {
   11810     PushOnScopeChains(NewFD, S);
   11811   } else
   11812     Record->addDecl(NewFD);
   11813 
   11814   return NewFD;
   11815 }
   11816 
   11817 /// \brief Build a new FieldDecl and check its well-formedness.
   11818 ///
   11819 /// This routine builds a new FieldDecl given the fields name, type,
   11820 /// record, etc. \p PrevDecl should refer to any previous declaration
   11821 /// with the same name and in the same scope as the field to be
   11822 /// created.
   11823 ///
   11824 /// \returns a new FieldDecl.
   11825 ///
   11826 /// \todo The Declarator argument is a hack. It will be removed once
   11827 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
   11828                                 TypeSourceInfo *TInfo,
   11829                                 RecordDecl *Record, SourceLocation Loc,
   11830                                 bool Mutable, Expr *BitWidth,
   11831                                 InClassInitStyle InitStyle,
   11832                                 SourceLocation TSSL,
   11833                                 AccessSpecifier AS, NamedDecl *PrevDecl,
   11834                                 Declarator *D) {
   11835   IdentifierInfo *II = Name.getAsIdentifierInfo();
   11836   bool InvalidDecl = false;
   11837   if (D) InvalidDecl = D->isInvalidType();
   11838 
   11839   // If we receive a broken type, recover by assuming 'int' and
   11840   // marking this declaration as invalid.
   11841   if (T.isNull()) {
   11842     InvalidDecl = true;
   11843     T = Context.IntTy;
   11844   }
   11845 
   11846   QualType EltTy = Context.getBaseElementType(T);
   11847   if (!EltTy->isDependentType()) {
   11848     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
   11849       // Fields of incomplete type force their record to be invalid.
   11850       Record->setInvalidDecl();
   11851       InvalidDecl = true;
   11852     } else {
   11853       NamedDecl *Def;
   11854       EltTy->isIncompleteType(&Def);
   11855       if (Def && Def->isInvalidDecl()) {
   11856         Record->setInvalidDecl();
   11857         InvalidDecl = true;
   11858       }
   11859     }
   11860   }
   11861 
   11862   // OpenCL v1.2 s6.9.c: bitfields are not supported.
   11863   if (BitWidth && getLangOpts().OpenCL) {
   11864     Diag(Loc, diag::err_opencl_bitfields);
   11865     InvalidDecl = true;
   11866   }
   11867 
   11868   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   11869   // than a variably modified type.
   11870   if (!InvalidDecl && T->isVariablyModifiedType()) {
   11871     bool SizeIsNegative;
   11872     llvm::APSInt Oversized;
   11873 
   11874     TypeSourceInfo *FixedTInfo =
   11875       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   11876                                                     SizeIsNegative,
   11877                                                     Oversized);
   11878     if (FixedTInfo) {
   11879       Diag(Loc, diag::warn_illegal_constant_array_size);
   11880       TInfo = FixedTInfo;
   11881       T = FixedTInfo->getType();
   11882     } else {
   11883       if (SizeIsNegative)
   11884         Diag(Loc, diag::err_typecheck_negative_array_size);
   11885       else if (Oversized.getBoolValue())
   11886         Diag(Loc, diag::err_array_too_large)
   11887           << Oversized.toString(10);
   11888       else
   11889         Diag(Loc, diag::err_typecheck_field_variable_size);
   11890       InvalidDecl = true;
   11891     }
   11892   }
   11893 
   11894   // Fields can not have abstract class types
   11895   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
   11896                                              diag::err_abstract_type_in_decl,
   11897                                              AbstractFieldType))
   11898     InvalidDecl = true;
   11899 
   11900   bool ZeroWidth = false;
   11901   // If this is declared as a bit-field, check the bit-field.
   11902   if (!InvalidDecl && BitWidth) {
   11903     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
   11904                               &ZeroWidth).get();
   11905     if (!BitWidth) {
   11906       InvalidDecl = true;
   11907       BitWidth = nullptr;
   11908       ZeroWidth = false;
   11909     }
   11910   }
   11911 
   11912   // Check that 'mutable' is consistent with the type of the declaration.
   11913   if (!InvalidDecl && Mutable) {
   11914     unsigned DiagID = 0;
   11915     if (T->isReferenceType())
   11916       DiagID = diag::err_mutable_reference;
   11917     else if (T.isConstQualified())
   11918       DiagID = diag::err_mutable_const;
   11919 
   11920     if (DiagID) {
   11921       SourceLocation ErrLoc = Loc;
   11922       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
   11923         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
   11924       Diag(ErrLoc, DiagID);
   11925       Mutable = false;
   11926       InvalidDecl = true;
   11927     }
   11928   }
   11929 
   11930   // C++11 [class.union]p8 (DR1460):
   11931   //   At most one variant member of a union may have a
   11932   //   brace-or-equal-initializer.
   11933   if (InitStyle != ICIS_NoInit)
   11934     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
   11935 
   11936   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
   11937                                        BitWidth, Mutable, InitStyle);
   11938   if (InvalidDecl)
   11939     NewFD->setInvalidDecl();
   11940 
   11941   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
   11942     Diag(Loc, diag::err_duplicate_member) << II;
   11943     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   11944     NewFD->setInvalidDecl();
   11945   }
   11946 
   11947   if (!InvalidDecl && getLangOpts().CPlusPlus) {
   11948     if (Record->isUnion()) {
   11949       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   11950         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   11951         if (RDecl->getDefinition()) {
   11952           // C++ [class.union]p1: An object of a class with a non-trivial
   11953           // constructor, a non-trivial copy constructor, a non-trivial
   11954           // destructor, or a non-trivial copy assignment operator
   11955           // cannot be a member of a union, nor can an array of such
   11956           // objects.
   11957           if (CheckNontrivialField(NewFD))
   11958             NewFD->setInvalidDecl();
   11959         }
   11960       }
   11961 
   11962       // C++ [class.union]p1: If a union contains a member of reference type,
   11963       // the program is ill-formed, except when compiling with MSVC extensions
   11964       // enabled.
   11965       if (EltTy->isReferenceType()) {
   11966         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   11967                                     diag::ext_union_member_of_reference_type :
   11968                                     diag::err_union_member_of_reference_type)
   11969           << NewFD->getDeclName() << EltTy;
   11970         if (!getLangOpts().MicrosoftExt)
   11971           NewFD->setInvalidDecl();
   11972       }
   11973     }
   11974   }
   11975 
   11976   // FIXME: We need to pass in the attributes given an AST
   11977   // representation, not a parser representation.
   11978   if (D) {
   11979     // FIXME: The current scope is almost... but not entirely... correct here.
   11980     ProcessDeclAttributes(getCurScope(), NewFD, *D);
   11981 
   11982     if (NewFD->hasAttrs())
   11983       CheckAlignasUnderalignment(NewFD);
   11984   }
   11985 
   11986   // In auto-retain/release, infer strong retension for fields of
   11987   // retainable type.
   11988   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
   11989     NewFD->setInvalidDecl();
   11990 
   11991   if (T.isObjCGCWeak())
   11992     Diag(Loc, diag::warn_attribute_weak_on_field);
   11993 
   11994   NewFD->setAccess(AS);
   11995   return NewFD;
   11996 }
   11997 
   11998 bool Sema::CheckNontrivialField(FieldDecl *FD) {
   11999   assert(FD);
   12000   assert(getLangOpts().CPlusPlus && "valid check only for C++");
   12001 
   12002   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
   12003     return false;
   12004 
   12005   QualType EltTy = Context.getBaseElementType(FD->getType());
   12006   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   12007     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
   12008     if (RDecl->getDefinition()) {
   12009       // We check for copy constructors before constructors
   12010       // because otherwise we'll never get complaints about
   12011       // copy constructors.
   12012 
   12013       CXXSpecialMember member = CXXInvalid;
   12014       // We're required to check for any non-trivial constructors. Since the
   12015       // implicit default constructor is suppressed if there are any
   12016       // user-declared constructors, we just need to check that there is a
   12017       // trivial default constructor and a trivial copy constructor. (We don't
   12018       // worry about move constructors here, since this is a C++98 check.)
   12019       if (RDecl->hasNonTrivialCopyConstructor())
   12020         member = CXXCopyConstructor;
   12021       else if (!RDecl->hasTrivialDefaultConstructor())
   12022         member = CXXDefaultConstructor;
   12023       else if (RDecl->hasNonTrivialCopyAssignment())
   12024         member = CXXCopyAssignment;
   12025       else if (RDecl->hasNonTrivialDestructor())
   12026         member = CXXDestructor;
   12027 
   12028       if (member != CXXInvalid) {
   12029         if (!getLangOpts().CPlusPlus11 &&
   12030             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
   12031           // Objective-C++ ARC: it is an error to have a non-trivial field of
   12032           // a union. However, system headers in Objective-C programs
   12033           // occasionally have Objective-C lifetime objects within unions,
   12034           // and rather than cause the program to fail, we make those
   12035           // members unavailable.
   12036           SourceLocation Loc = FD->getLocation();
   12037           if (getSourceManager().isInSystemHeader(Loc)) {
   12038             if (!FD->hasAttr<UnavailableAttr>())
   12039               FD->addAttr(UnavailableAttr::CreateImplicit(Context,
   12040                                   "this system field has retaining ownership",
   12041                                   Loc));
   12042             return false;
   12043           }
   12044         }
   12045 
   12046         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
   12047                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
   12048                diag::err_illegal_union_or_anon_struct_member)
   12049           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
   12050         DiagnoseNontrivial(RDecl, member);
   12051         return !getLangOpts().CPlusPlus11;
   12052       }
   12053     }
   12054   }
   12055 
   12056   return false;
   12057 }
   12058 
   12059 /// TranslateIvarVisibility - Translate visibility from a token ID to an
   12060 ///  AST enum value.
   12061 static ObjCIvarDecl::AccessControl
   12062 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
   12063   switch (ivarVisibility) {
   12064   default: llvm_unreachable("Unknown visitibility kind");
   12065   case tok::objc_private: return ObjCIvarDecl::Private;
   12066   case tok::objc_public: return ObjCIvarDecl::Public;
   12067   case tok::objc_protected: return ObjCIvarDecl::Protected;
   12068   case tok::objc_package: return ObjCIvarDecl::Package;
   12069   }
   12070 }
   12071 
   12072 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
   12073 /// in order to create an IvarDecl object for it.
   12074 Decl *Sema::ActOnIvar(Scope *S,
   12075                                 SourceLocation DeclStart,
   12076                                 Declarator &D, Expr *BitfieldWidth,
   12077                                 tok::ObjCKeywordKind Visibility) {
   12078 
   12079   IdentifierInfo *II = D.getIdentifier();
   12080   Expr *BitWidth = (Expr*)BitfieldWidth;
   12081   SourceLocation Loc = DeclStart;
   12082   if (II) Loc = D.getIdentifierLoc();
   12083 
   12084   // FIXME: Unnamed fields can be handled in various different ways, for
   12085   // example, unnamed unions inject all members into the struct namespace!
   12086 
   12087   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   12088   QualType T = TInfo->getType();
   12089 
   12090   if (BitWidth) {
   12091     // 6.7.2.1p3, 6.7.2.1p4
   12092     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
   12093     if (!BitWidth)
   12094       D.setInvalidType();
   12095   } else {
   12096     // Not a bitfield.
   12097 
   12098     // validate II.
   12099 
   12100   }
   12101   if (T->isReferenceType()) {
   12102     Diag(Loc, diag::err_ivar_reference_type);
   12103     D.setInvalidType();
   12104   }
   12105   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   12106   // than a variably modified type.
   12107   else if (T->isVariablyModifiedType()) {
   12108     Diag(Loc, diag::err_typecheck_ivar_variable_size);
   12109     D.setInvalidType();
   12110   }
   12111 
   12112   // Get the visibility (access control) for this ivar.
   12113   ObjCIvarDecl::AccessControl ac =
   12114     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
   12115                                         : ObjCIvarDecl::None;
   12116   // Must set ivar's DeclContext to its enclosing interface.
   12117   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
   12118   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
   12119     return nullptr;
   12120   ObjCContainerDecl *EnclosingContext;
   12121   if (ObjCImplementationDecl *IMPDecl =
   12122       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   12123     if (LangOpts.ObjCRuntime.isFragile()) {
   12124     // Case of ivar declared in an implementation. Context is that of its class.
   12125       EnclosingContext = IMPDecl->getClassInterface();
   12126       assert(EnclosingContext && "Implementation has no class interface!");
   12127     }
   12128     else
   12129       EnclosingContext = EnclosingDecl;
   12130   } else {
   12131     if (ObjCCategoryDecl *CDecl =
   12132         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   12133       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
   12134         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
   12135         return nullptr;
   12136       }
   12137     }
   12138     EnclosingContext = EnclosingDecl;
   12139   }
   12140 
   12141   // Construct the decl.
   12142   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
   12143                                              DeclStart, Loc, II, T,
   12144                                              TInfo, ac, (Expr *)BitfieldWidth);
   12145 
   12146   if (II) {
   12147     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
   12148                                            ForRedeclaration);
   12149     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
   12150         && !isa<TagDecl>(PrevDecl)) {
   12151       Diag(Loc, diag::err_duplicate_member) << II;
   12152       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   12153       NewID->setInvalidDecl();
   12154     }
   12155   }
   12156 
   12157   // Process attributes attached to the ivar.
   12158   ProcessDeclAttributes(S, NewID, D);
   12159 
   12160   if (D.isInvalidType())
   12161     NewID->setInvalidDecl();
   12162 
   12163   // In ARC, infer 'retaining' for ivars of retainable type.
   12164   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
   12165     NewID->setInvalidDecl();
   12166 
   12167   if (D.getDeclSpec().isModulePrivateSpecified())
   12168     NewID->setModulePrivate();
   12169 
   12170   if (II) {
   12171     // FIXME: When interfaces are DeclContexts, we'll need to add
   12172     // these to the interface.
   12173     S->AddDecl(NewID);
   12174     IdResolver.AddDecl(NewID);
   12175   }
   12176 
   12177   if (LangOpts.ObjCRuntime.isNonFragile() &&
   12178       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
   12179     Diag(Loc, diag::warn_ivars_in_interface);
   12180 
   12181   return NewID;
   12182 }
   12183 
   12184 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
   12185 /// class and class extensions. For every class \@interface and class
   12186 /// extension \@interface, if the last ivar is a bitfield of any type,
   12187 /// then add an implicit `char :0` ivar to the end of that interface.
   12188 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
   12189                              SmallVectorImpl<Decl *> &AllIvarDecls) {
   12190   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
   12191     return;
   12192 
   12193   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
   12194   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
   12195 
   12196   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
   12197     return;
   12198   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
   12199   if (!ID) {
   12200     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
   12201       if (!CD->IsClassExtension())
   12202         return;
   12203     }
   12204     // No need to add this to end of @implementation.
   12205     else
   12206       return;
   12207   }
   12208   // All conditions are met. Add a new bitfield to the tail end of ivars.
   12209   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
   12210   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
   12211 
   12212   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
   12213                               DeclLoc, DeclLoc, nullptr,
   12214                               Context.CharTy,
   12215                               Context.getTrivialTypeSourceInfo(Context.CharTy,
   12216                                                                DeclLoc),
   12217                               ObjCIvarDecl::Private, BW,
   12218                               true);
   12219   AllIvarDecls.push_back(Ivar);
   12220 }
   12221 
   12222 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
   12223                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
   12224                        SourceLocation RBrac, AttributeList *Attr) {
   12225   assert(EnclosingDecl && "missing record or interface decl");
   12226 
   12227   // If this is an Objective-C @implementation or category and we have
   12228   // new fields here we should reset the layout of the interface since
   12229   // it will now change.
   12230   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
   12231     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
   12232     switch (DC->getKind()) {
   12233     default: break;
   12234     case Decl::ObjCCategory:
   12235       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
   12236       break;
   12237     case Decl::ObjCImplementation:
   12238       Context.
   12239         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
   12240       break;
   12241     }
   12242   }
   12243 
   12244   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
   12245 
   12246   // Start counting up the number of named members; make sure to include
   12247   // members of anonymous structs and unions in the total.
   12248   unsigned NumNamedMembers = 0;
   12249   if (Record) {
   12250     for (const auto *I : Record->decls()) {
   12251       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
   12252         if (IFD->getDeclName())
   12253           ++NumNamedMembers;
   12254     }
   12255   }
   12256 
   12257   // Verify that all the fields are okay.
   12258   SmallVector<FieldDecl*, 32> RecFields;
   12259 
   12260   bool ARCErrReported = false;
   12261   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
   12262        i != end; ++i) {
   12263     FieldDecl *FD = cast<FieldDecl>(*i);
   12264 
   12265     // Get the type for the field.
   12266     const Type *FDTy = FD->getType().getTypePtr();
   12267 
   12268     if (!FD->isAnonymousStructOrUnion()) {
   12269       // Remember all fields written by the user.
   12270       RecFields.push_back(FD);
   12271     }
   12272 
   12273     // If the field is already invalid for some reason, don't emit more
   12274     // diagnostics about it.
   12275     if (FD->isInvalidDecl()) {
   12276       EnclosingDecl->setInvalidDecl();
   12277       continue;
   12278     }
   12279 
   12280     // C99 6.7.2.1p2:
   12281     //   A structure or union shall not contain a member with
   12282     //   incomplete or function type (hence, a structure shall not
   12283     //   contain an instance of itself, but may contain a pointer to
   12284     //   an instance of itself), except that the last member of a
   12285     //   structure with more than one named member may have incomplete
   12286     //   array type; such a structure (and any union containing,
   12287     //   possibly recursively, a member that is such a structure)
   12288     //   shall not be a member of a structure or an element of an
   12289     //   array.
   12290     if (FDTy->isFunctionType()) {
   12291       // Field declared as a function.
   12292       Diag(FD->getLocation(), diag::err_field_declared_as_function)
   12293         << FD->getDeclName();
   12294       FD->setInvalidDecl();
   12295       EnclosingDecl->setInvalidDecl();
   12296       continue;
   12297     } else if (FDTy->isIncompleteArrayType() && Record &&
   12298                ((i + 1 == Fields.end() && !Record->isUnion()) ||
   12299                 ((getLangOpts().MicrosoftExt ||
   12300                   getLangOpts().CPlusPlus) &&
   12301                  (i + 1 == Fields.end() || Record->isUnion())))) {
   12302       // Flexible array member.
   12303       // Microsoft and g++ is more permissive regarding flexible array.
   12304       // It will accept flexible array in union and also
   12305       // as the sole element of a struct/class.
   12306       unsigned DiagID = 0;
   12307       if (Record->isUnion())
   12308         DiagID = getLangOpts().MicrosoftExt
   12309                      ? diag::ext_flexible_array_union_ms
   12310                      : getLangOpts().CPlusPlus
   12311                            ? diag::ext_flexible_array_union_gnu
   12312                            : diag::err_flexible_array_union;
   12313       else if (Fields.size() == 1)
   12314         DiagID = getLangOpts().MicrosoftExt
   12315                      ? diag::ext_flexible_array_empty_aggregate_ms
   12316                      : getLangOpts().CPlusPlus
   12317                            ? diag::ext_flexible_array_empty_aggregate_gnu
   12318                            : NumNamedMembers < 1
   12319                                  ? diag::err_flexible_array_empty_aggregate
   12320                                  : 0;
   12321 
   12322       if (DiagID)
   12323         Diag(FD->getLocation(), DiagID) << FD->getDeclName()
   12324                                         << Record->getTagKind();
   12325       // While the layout of types that contain virtual bases is not specified
   12326       // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
   12327       // virtual bases after the derived members.  This would make a flexible
   12328       // array member declared at the end of an object not adjacent to the end
   12329       // of the type.
   12330       if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
   12331         if (RD->getNumVBases() != 0)
   12332           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
   12333             << FD->getDeclName() << Record->getTagKind();
   12334       if (!getLangOpts().C99)
   12335         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
   12336           << FD->getDeclName() << Record->getTagKind();
   12337 
   12338       // If the element type has a non-trivial destructor, we would not
   12339       // implicitly destroy the elements, so disallow it for now.
   12340       //
   12341       // FIXME: GCC allows this. We should probably either implicitly delete
   12342       // the destructor of the containing class, or just allow this.
   12343       QualType BaseElem = Context.getBaseElementType(FD->getType());
   12344       if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
   12345         Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
   12346           << FD->getDeclName() << FD->getType();
   12347         FD->setInvalidDecl();
   12348         EnclosingDecl->setInvalidDecl();
   12349         continue;
   12350       }
   12351       // Okay, we have a legal flexible array member at the end of the struct.
   12352       if (Record)
   12353         Record->setHasFlexibleArrayMember(true);
   12354     } else if (!FDTy->isDependentType() &&
   12355                RequireCompleteType(FD->getLocation(), FD->getType(),
   12356                                    diag::err_field_incomplete)) {
   12357       // Incomplete type
   12358       FD->setInvalidDecl();
   12359       EnclosingDecl->setInvalidDecl();
   12360       continue;
   12361     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
   12362       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
   12363         // If this is a member of a union, then entire union becomes "flexible".
   12364         if (Record && Record->isUnion()) {
   12365           Record->setHasFlexibleArrayMember(true);
   12366         } else {
   12367           // If this is a struct/class and this is not the last element, reject
   12368           // it.  Note that GCC supports variable sized arrays in the middle of
   12369           // structures.
   12370           if (i + 1 != Fields.end())
   12371             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
   12372               << FD->getDeclName() << FD->getType();
   12373           else {
   12374             // We support flexible arrays at the end of structs in
   12375             // other structs as an extension.
   12376             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
   12377               << FD->getDeclName();
   12378             if (Record)
   12379               Record->setHasFlexibleArrayMember(true);
   12380           }
   12381         }
   12382       }
   12383       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
   12384           RequireNonAbstractType(FD->getLocation(), FD->getType(),
   12385                                  diag::err_abstract_type_in_decl,
   12386                                  AbstractIvarType)) {
   12387         // Ivars can not have abstract class types
   12388         FD->setInvalidDecl();
   12389       }
   12390       if (Record && FDTTy->getDecl()->hasObjectMember())
   12391         Record->setHasObjectMember(true);
   12392       if (Record && FDTTy->getDecl()->hasVolatileMember())
   12393         Record->setHasVolatileMember(true);
   12394     } else if (FDTy->isObjCObjectType()) {
   12395       /// A field cannot be an Objective-c object
   12396       Diag(FD->getLocation(), diag::err_statically_allocated_object)
   12397         << FixItHint::CreateInsertion(FD->getLocation(), "*");
   12398       QualType T = Context.getObjCObjectPointerType(FD->getType());
   12399       FD->setType(T);
   12400     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
   12401                (!getLangOpts().CPlusPlus || Record->isUnion())) {
   12402       // It's an error in ARC if a field has lifetime.
   12403       // We don't want to report this in a system header, though,
   12404       // so we just make the field unavailable.
   12405       // FIXME: that's really not sufficient; we need to make the type
   12406       // itself invalid to, say, initialize or copy.
   12407       QualType T = FD->getType();
   12408       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
   12409       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
   12410         SourceLocation loc = FD->getLocation();
   12411         if (getSourceManager().isInSystemHeader(loc)) {
   12412           if (!FD->hasAttr<UnavailableAttr>()) {
   12413             FD->addAttr(UnavailableAttr::CreateImplicit(Context,
   12414                               "this system field has retaining ownership",
   12415                               loc));
   12416           }
   12417         } else {
   12418           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
   12419             << T->isBlockPointerType() << Record->getTagKind();
   12420         }
   12421         ARCErrReported = true;
   12422       }
   12423     } else if (getLangOpts().ObjC1 &&
   12424                getLangOpts().getGC() != LangOptions::NonGC &&
   12425                Record && !Record->hasObjectMember()) {
   12426       if (FD->getType()->isObjCObjectPointerType() ||
   12427           FD->getType().isObjCGCStrong())
   12428         Record->setHasObjectMember(true);
   12429       else if (Context.getAsArrayType(FD->getType())) {
   12430         QualType BaseType = Context.getBaseElementType(FD->getType());
   12431         if (BaseType->isRecordType() &&
   12432             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
   12433           Record->setHasObjectMember(true);
   12434         else if (BaseType->isObjCObjectPointerType() ||
   12435                  BaseType.isObjCGCStrong())
   12436                Record->setHasObjectMember(true);
   12437       }
   12438     }
   12439     if (Record && FD->getType().isVolatileQualified())
   12440       Record->setHasVolatileMember(true);
   12441     // Keep track of the number of named members.
   12442     if (FD->getIdentifier())
   12443       ++NumNamedMembers;
   12444   }
   12445 
   12446   // Okay, we successfully defined 'Record'.
   12447   if (Record) {
   12448     bool Completed = false;
   12449     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
   12450       if (!CXXRecord->isInvalidDecl()) {
   12451         // Set access bits correctly on the directly-declared conversions.
   12452         for (CXXRecordDecl::conversion_iterator
   12453                I = CXXRecord->conversion_begin(),
   12454                E = CXXRecord->conversion_end(); I != E; ++I)
   12455           I.setAccess((*I)->getAccess());
   12456 
   12457         if (!CXXRecord->isDependentType()) {
   12458           if (CXXRecord->hasUserDeclaredDestructor()) {
   12459             // Adjust user-defined destructor exception spec.
   12460             if (getLangOpts().CPlusPlus11)
   12461               AdjustDestructorExceptionSpec(CXXRecord,
   12462                                             CXXRecord->getDestructor());
   12463           }
   12464 
   12465           // Add any implicitly-declared members to this class.
   12466           AddImplicitlyDeclaredMembersToClass(CXXRecord);
   12467 
   12468           // If we have virtual base classes, we may end up finding multiple
   12469           // final overriders for a given virtual function. Check for this
   12470           // problem now.
   12471           if (CXXRecord->getNumVBases()) {
   12472             CXXFinalOverriderMap FinalOverriders;
   12473             CXXRecord->getFinalOverriders(FinalOverriders);
   12474 
   12475             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   12476                                              MEnd = FinalOverriders.end();
   12477                  M != MEnd; ++M) {
   12478               for (OverridingMethods::iterator SO = M->second.begin(),
   12479                                             SOEnd = M->second.end();
   12480                    SO != SOEnd; ++SO) {
   12481                 assert(SO->second.size() > 0 &&
   12482                        "Virtual function without overridding functions?");
   12483                 if (SO->second.size() == 1)
   12484                   continue;
   12485 
   12486                 // C++ [class.virtual]p2:
   12487                 //   In a derived class, if a virtual member function of a base
   12488                 //   class subobject has more than one final overrider the
   12489                 //   program is ill-formed.
   12490                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
   12491                   << (const NamedDecl *)M->first << Record;
   12492                 Diag(M->first->getLocation(),
   12493                      diag::note_overridden_virtual_function);
   12494                 for (OverridingMethods::overriding_iterator
   12495                           OM = SO->second.begin(),
   12496                        OMEnd = SO->second.end();
   12497                      OM != OMEnd; ++OM)
   12498                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
   12499                     << (const NamedDecl *)M->first << OM->Method->getParent();
   12500 
   12501                 Record->setInvalidDecl();
   12502               }
   12503             }
   12504             CXXRecord->completeDefinition(&FinalOverriders);
   12505             Completed = true;
   12506           }
   12507         }
   12508       }
   12509     }
   12510 
   12511     if (!Completed)
   12512       Record->completeDefinition();
   12513 
   12514     if (Record->hasAttrs()) {
   12515       CheckAlignasUnderalignment(Record);
   12516 
   12517       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
   12518         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
   12519                                            IA->getRange(), IA->getBestCase(),
   12520                                            IA->getSemanticSpelling());
   12521     }
   12522 
   12523     // Check if the structure/union declaration is a type that can have zero
   12524     // size in C. For C this is a language extension, for C++ it may cause
   12525     // compatibility problems.
   12526     bool CheckForZeroSize;
   12527     if (!getLangOpts().CPlusPlus) {
   12528       CheckForZeroSize = true;
   12529     } else {
   12530       // For C++ filter out types that cannot be referenced in C code.
   12531       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
   12532       CheckForZeroSize =
   12533           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
   12534           !CXXRecord->isDependentType() &&
   12535           CXXRecord->isCLike();
   12536     }
   12537     if (CheckForZeroSize) {
   12538       bool ZeroSize = true;
   12539       bool IsEmpty = true;
   12540       unsigned NonBitFields = 0;
   12541       for (RecordDecl::field_iterator I = Record->field_begin(),
   12542                                       E = Record->field_end();
   12543            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
   12544         IsEmpty = false;
   12545         if (I->isUnnamedBitfield()) {
   12546           if (I->getBitWidthValue(Context) > 0)
   12547             ZeroSize = false;
   12548         } else {
   12549           ++NonBitFields;
   12550           QualType FieldType = I->getType();
   12551           if (FieldType->isIncompleteType() ||
   12552               !Context.getTypeSizeInChars(FieldType).isZero())
   12553             ZeroSize = false;
   12554         }
   12555       }
   12556 
   12557       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
   12558       // allowed in C++, but warn if its declaration is inside
   12559       // extern "C" block.
   12560       if (ZeroSize) {
   12561         Diag(RecLoc, getLangOpts().CPlusPlus ?
   12562                          diag::warn_zero_size_struct_union_in_extern_c :
   12563                          diag::warn_zero_size_struct_union_compat)
   12564           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
   12565       }
   12566 
   12567       // Structs without named members are extension in C (C99 6.7.2.1p7),
   12568       // but are accepted by GCC.
   12569       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
   12570         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
   12571                                diag::ext_no_named_members_in_struct_union)
   12572           << Record->isUnion();
   12573       }
   12574     }
   12575   } else {
   12576     ObjCIvarDecl **ClsFields =
   12577       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
   12578     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
   12579       ID->setEndOfDefinitionLoc(RBrac);
   12580       // Add ivar's to class's DeclContext.
   12581       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   12582         ClsFields[i]->setLexicalDeclContext(ID);
   12583         ID->addDecl(ClsFields[i]);
   12584       }
   12585       // Must enforce the rule that ivars in the base classes may not be
   12586       // duplicates.
   12587       if (ID->getSuperClass())
   12588         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
   12589     } else if (ObjCImplementationDecl *IMPDecl =
   12590                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   12591       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
   12592       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
   12593         // Ivar declared in @implementation never belongs to the implementation.
   12594         // Only it is in implementation's lexical context.
   12595         ClsFields[I]->setLexicalDeclContext(IMPDecl);
   12596       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
   12597       IMPDecl->setIvarLBraceLoc(LBrac);
   12598       IMPDecl->setIvarRBraceLoc(RBrac);
   12599     } else if (ObjCCategoryDecl *CDecl =
   12600                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   12601       // case of ivars in class extension; all other cases have been
   12602       // reported as errors elsewhere.
   12603       // FIXME. Class extension does not have a LocEnd field.
   12604       // CDecl->setLocEnd(RBrac);
   12605       // Add ivar's to class extension's DeclContext.
   12606       // Diagnose redeclaration of private ivars.
   12607       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
   12608       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   12609         if (IDecl) {
   12610           if (const ObjCIvarDecl *ClsIvar =
   12611               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
   12612             Diag(ClsFields[i]->getLocation(),
   12613                  diag::err_duplicate_ivar_declaration);
   12614             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   12615             continue;
   12616           }
   12617           for (const auto *Ext : IDecl->known_extensions()) {
   12618             if (const ObjCIvarDecl *ClsExtIvar
   12619                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
   12620               Diag(ClsFields[i]->getLocation(),
   12621                    diag::err_duplicate_ivar_declaration);
   12622               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   12623               continue;
   12624             }
   12625           }
   12626         }
   12627         ClsFields[i]->setLexicalDeclContext(CDecl);
   12628         CDecl->addDecl(ClsFields[i]);
   12629       }
   12630       CDecl->setIvarLBraceLoc(LBrac);
   12631       CDecl->setIvarRBraceLoc(RBrac);
   12632     }
   12633   }
   12634 
   12635   if (Attr)
   12636     ProcessDeclAttributeList(S, Record, Attr);
   12637 }
   12638 
   12639 /// \brief Determine whether the given integral value is representable within
   12640 /// the given type T.
   12641 static bool isRepresentableIntegerValue(ASTContext &Context,
   12642                                         llvm::APSInt &Value,
   12643                                         QualType T) {
   12644   assert(T->isIntegralType(Context) && "Integral type required!");
   12645   unsigned BitWidth = Context.getIntWidth(T);
   12646 
   12647   if (Value.isUnsigned() || Value.isNonNegative()) {
   12648     if (T->isSignedIntegerOrEnumerationType())
   12649       --BitWidth;
   12650     return Value.getActiveBits() <= BitWidth;
   12651   }
   12652   return Value.getMinSignedBits() <= BitWidth;
   12653 }
   12654 
   12655 // \brief Given an integral type, return the next larger integral type
   12656 // (or a NULL type of no such type exists).
   12657 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
   12658   // FIXME: Int128/UInt128 support, which also needs to be introduced into
   12659   // enum checking below.
   12660   assert(T->isIntegralType(Context) && "Integral type required!");
   12661   const unsigned NumTypes = 4;
   12662   QualType SignedIntegralTypes[NumTypes] = {
   12663     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
   12664   };
   12665   QualType UnsignedIntegralTypes[NumTypes] = {
   12666     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
   12667     Context.UnsignedLongLongTy
   12668   };
   12669 
   12670   unsigned BitWidth = Context.getTypeSize(T);
   12671   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
   12672                                                         : UnsignedIntegralTypes;
   12673   for (unsigned I = 0; I != NumTypes; ++I)
   12674     if (Context.getTypeSize(Types[I]) > BitWidth)
   12675       return Types[I];
   12676 
   12677   return QualType();
   12678 }
   12679 
   12680 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
   12681                                           EnumConstantDecl *LastEnumConst,
   12682                                           SourceLocation IdLoc,
   12683                                           IdentifierInfo *Id,
   12684                                           Expr *Val) {
   12685   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   12686   llvm::APSInt EnumVal(IntWidth);
   12687   QualType EltTy;
   12688 
   12689   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
   12690     Val = nullptr;
   12691 
   12692   if (Val)
   12693     Val = DefaultLvalueConversion(Val).get();
   12694 
   12695   if (Val) {
   12696     if (Enum->isDependentType() || Val->isTypeDependent())
   12697       EltTy = Context.DependentTy;
   12698     else {
   12699       SourceLocation ExpLoc;
   12700       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
   12701           !getLangOpts().MSVCCompat) {
   12702         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
   12703         // constant-expression in the enumerator-definition shall be a converted
   12704         // constant expression of the underlying type.
   12705         EltTy = Enum->getIntegerType();
   12706         ExprResult Converted =
   12707           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
   12708                                            CCEK_Enumerator);
   12709         if (Converted.isInvalid())
   12710           Val = nullptr;
   12711         else
   12712           Val = Converted.get();
   12713       } else if (!Val->isValueDependent() &&
   12714                  !(Val = VerifyIntegerConstantExpression(Val,
   12715                                                          &EnumVal).get())) {
   12716         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
   12717       } else {
   12718         if (Enum->isFixed()) {
   12719           EltTy = Enum->getIntegerType();
   12720 
   12721           // In Obj-C and Microsoft mode, require the enumeration value to be
   12722           // representable in the underlying type of the enumeration. In C++11,
   12723           // we perform a non-narrowing conversion as part of converted constant
   12724           // expression checking.
   12725           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   12726             if (getLangOpts().MSVCCompat) {
   12727               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
   12728               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
   12729             } else
   12730               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
   12731           } else
   12732             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
   12733         } else if (getLangOpts().CPlusPlus) {
   12734           // C++11 [dcl.enum]p5:
   12735           //   If the underlying type is not fixed, the type of each enumerator
   12736           //   is the type of its initializing value:
   12737           //     - If an initializer is specified for an enumerator, the
   12738           //       initializing value has the same type as the expression.
   12739           EltTy = Val->getType();
   12740         } else {
   12741           // C99 6.7.2.2p2:
   12742           //   The expression that defines the value of an enumeration constant
   12743           //   shall be an integer constant expression that has a value
   12744           //   representable as an int.
   12745 
   12746           // Complain if the value is not representable in an int.
   12747           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
   12748             Diag(IdLoc, diag::ext_enum_value_not_int)
   12749               << EnumVal.toString(10) << Val->getSourceRange()
   12750               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
   12751           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
   12752             // Force the type of the expression to 'int'.
   12753             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
   12754           }
   12755           EltTy = Val->getType();
   12756         }
   12757       }
   12758     }
   12759   }
   12760 
   12761   if (!Val) {
   12762     if (Enum->isDependentType())
   12763       EltTy = Context.DependentTy;
   12764     else if (!LastEnumConst) {
   12765       // C++0x [dcl.enum]p5:
   12766       //   If the underlying type is not fixed, the type of each enumerator
   12767       //   is the type of its initializing value:
   12768       //     - If no initializer is specified for the first enumerator, the
   12769       //       initializing value has an unspecified integral type.
   12770       //
   12771       // GCC uses 'int' for its unspecified integral type, as does
   12772       // C99 6.7.2.2p3.
   12773       if (Enum->isFixed()) {
   12774         EltTy = Enum->getIntegerType();
   12775       }
   12776       else {
   12777         EltTy = Context.IntTy;
   12778       }
   12779     } else {
   12780       // Assign the last value + 1.
   12781       EnumVal = LastEnumConst->getInitVal();
   12782       ++EnumVal;
   12783       EltTy = LastEnumConst->getType();
   12784 
   12785       // Check for overflow on increment.
   12786       if (EnumVal < LastEnumConst->getInitVal()) {
   12787         // C++0x [dcl.enum]p5:
   12788         //   If the underlying type is not fixed, the type of each enumerator
   12789         //   is the type of its initializing value:
   12790         //
   12791         //     - Otherwise the type of the initializing value is the same as
   12792         //       the type of the initializing value of the preceding enumerator
   12793         //       unless the incremented value is not representable in that type,
   12794         //       in which case the type is an unspecified integral type
   12795         //       sufficient to contain the incremented value. If no such type
   12796         //       exists, the program is ill-formed.
   12797         QualType T = getNextLargerIntegralType(Context, EltTy);
   12798         if (T.isNull() || Enum->isFixed()) {
   12799           // There is no integral type larger enough to represent this
   12800           // value. Complain, then allow the value to wrap around.
   12801           EnumVal = LastEnumConst->getInitVal();
   12802           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
   12803           ++EnumVal;
   12804           if (Enum->isFixed())
   12805             // When the underlying type is fixed, this is ill-formed.
   12806             Diag(IdLoc, diag::err_enumerator_wrapped)
   12807               << EnumVal.toString(10)
   12808               << EltTy;
   12809           else
   12810             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
   12811               << EnumVal.toString(10);
   12812         } else {
   12813           EltTy = T;
   12814         }
   12815 
   12816         // Retrieve the last enumerator's value, extent that type to the
   12817         // type that is supposed to be large enough to represent the incremented
   12818         // value, then increment.
   12819         EnumVal = LastEnumConst->getInitVal();
   12820         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   12821         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   12822         ++EnumVal;
   12823 
   12824         // If we're not in C++, diagnose the overflow of enumerator values,
   12825         // which in C99 means that the enumerator value is not representable in
   12826         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
   12827         // permits enumerator values that are representable in some larger
   12828         // integral type.
   12829         if (!getLangOpts().CPlusPlus && !T.isNull())
   12830           Diag(IdLoc, diag::warn_enum_value_overflow);
   12831       } else if (!getLangOpts().CPlusPlus &&
   12832                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   12833         // Enforce C99 6.7.2.2p2 even when we compute the next value.
   12834         Diag(IdLoc, diag::ext_enum_value_not_int)
   12835           << EnumVal.toString(10) << 1;
   12836       }
   12837     }
   12838   }
   12839 
   12840   if (!EltTy->isDependentType()) {
   12841     // Make the enumerator value match the signedness and size of the
   12842     // enumerator's type.
   12843     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
   12844     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   12845   }
   12846 
   12847   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
   12848                                   Val, EnumVal);
   12849 }
   12850 
   12851 
   12852 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
   12853                               SourceLocation IdLoc, IdentifierInfo *Id,
   12854                               AttributeList *Attr,
   12855                               SourceLocation EqualLoc, Expr *Val) {
   12856   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
   12857   EnumConstantDecl *LastEnumConst =
   12858     cast_or_null<EnumConstantDecl>(lastEnumConst);
   12859 
   12860   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   12861   // we find one that is.
   12862   S = getNonFieldDeclScope(S);
   12863 
   12864   // Verify that there isn't already something declared with this name in this
   12865   // scope.
   12866   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
   12867                                          ForRedeclaration);
   12868   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   12869     // Maybe we will complain about the shadowed template parameter.
   12870     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
   12871     // Just pretend that we didn't see the previous declaration.
   12872     PrevDecl = nullptr;
   12873   }
   12874 
   12875   if (PrevDecl) {
   12876     // When in C++, we may get a TagDecl with the same name; in this case the
   12877     // enum constant will 'hide' the tag.
   12878     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
   12879            "Received TagDecl when not in C++!");
   12880     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
   12881       if (isa<EnumConstantDecl>(PrevDecl))
   12882         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
   12883       else
   12884         Diag(IdLoc, diag::err_redefinition) << Id;
   12885       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   12886       return nullptr;
   12887     }
   12888   }
   12889 
   12890   // C++ [class.mem]p15:
   12891   // If T is the name of a class, then each of the following shall have a name
   12892   // different from T:
   12893   // - every enumerator of every member of class T that is an unscoped
   12894   // enumerated type
   12895   if (CXXRecordDecl *Record
   12896                       = dyn_cast<CXXRecordDecl>(
   12897                              TheEnumDecl->getDeclContext()->getRedeclContext()))
   12898     if (!TheEnumDecl->isScoped() &&
   12899         Record->getIdentifier() && Record->getIdentifier() == Id)
   12900       Diag(IdLoc, diag::err_member_name_of_class) << Id;
   12901 
   12902   EnumConstantDecl *New =
   12903     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
   12904 
   12905   if (New) {
   12906     // Process attributes.
   12907     if (Attr) ProcessDeclAttributeList(S, New, Attr);
   12908 
   12909     // Register this decl in the current scope stack.
   12910     New->setAccess(TheEnumDecl->getAccess());
   12911     PushOnScopeChains(New, S);
   12912   }
   12913 
   12914   ActOnDocumentableDecl(New);
   12915 
   12916   return New;
   12917 }
   12918 
   12919 // Returns true when the enum initial expression does not trigger the
   12920 // duplicate enum warning.  A few common cases are exempted as follows:
   12921 // Element2 = Element1
   12922 // Element2 = Element1 + 1
   12923 // Element2 = Element1 - 1
   12924 // Where Element2 and Element1 are from the same enum.
   12925 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
   12926   Expr *InitExpr = ECD->getInitExpr();
   12927   if (!InitExpr)
   12928     return true;
   12929   InitExpr = InitExpr->IgnoreImpCasts();
   12930 
   12931   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
   12932     if (!BO->isAdditiveOp())
   12933       return true;
   12934     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
   12935     if (!IL)
   12936       return true;
   12937     if (IL->getValue() != 1)
   12938       return true;
   12939 
   12940     InitExpr = BO->getLHS();
   12941   }
   12942 
   12943   // This checks if the elements are from the same enum.
   12944   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
   12945   if (!DRE)
   12946     return true;
   12947 
   12948   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
   12949   if (!EnumConstant)
   12950     return true;
   12951 
   12952   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
   12953       Enum)
   12954     return true;
   12955 
   12956   return false;
   12957 }
   12958 
   12959 struct DupKey {
   12960   int64_t val;
   12961   bool isTombstoneOrEmptyKey;
   12962   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
   12963     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
   12964 };
   12965 
   12966 static DupKey GetDupKey(const llvm::APSInt& Val) {
   12967   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
   12968                 false);
   12969 }
   12970 
   12971 struct DenseMapInfoDupKey {
   12972   static DupKey getEmptyKey() { return DupKey(0, true); }
   12973   static DupKey getTombstoneKey() { return DupKey(1, true); }
   12974   static unsigned getHashValue(const DupKey Key) {
   12975     return (unsigned)(Key.val * 37);
   12976   }
   12977   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
   12978     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
   12979            LHS.val == RHS.val;
   12980   }
   12981 };
   12982 
   12983 // Emits a warning when an element is implicitly set a value that
   12984 // a previous element has already been set to.
   12985 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
   12986                                         EnumDecl *Enum,
   12987                                         QualType EnumType) {
   12988   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
   12989     return;
   12990   // Avoid anonymous enums
   12991   if (!Enum->getIdentifier())
   12992     return;
   12993 
   12994   // Only check for small enums.
   12995   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
   12996     return;
   12997 
   12998   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
   12999   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
   13000 
   13001   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
   13002   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
   13003           ValueToVectorMap;
   13004 
   13005   DuplicatesVector DupVector;
   13006   ValueToVectorMap EnumMap;
   13007 
   13008   // Populate the EnumMap with all values represented by enum constants without
   13009   // an initialier.
   13010   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   13011     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   13012 
   13013     // Null EnumConstantDecl means a previous diagnostic has been emitted for
   13014     // this constant.  Skip this enum since it may be ill-formed.
   13015     if (!ECD) {
   13016       return;
   13017     }
   13018 
   13019     if (ECD->getInitExpr())
   13020       continue;
   13021 
   13022     DupKey Key = GetDupKey(ECD->getInitVal());
   13023     DeclOrVector &Entry = EnumMap[Key];
   13024 
   13025     // First time encountering this value.
   13026     if (Entry.isNull())
   13027       Entry = ECD;
   13028   }
   13029 
   13030   // Create vectors for any values that has duplicates.
   13031   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   13032     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
   13033     if (!ValidDuplicateEnum(ECD, Enum))
   13034       continue;
   13035 
   13036     DupKey Key = GetDupKey(ECD->getInitVal());
   13037 
   13038     DeclOrVector& Entry = EnumMap[Key];
   13039     if (Entry.isNull())
   13040       continue;
   13041 
   13042     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
   13043       // Ensure constants are different.
   13044       if (D == ECD)
   13045         continue;
   13046 
   13047       // Create new vector and push values onto it.
   13048       ECDVector *Vec = new ECDVector();
   13049       Vec->push_back(D);
   13050       Vec->push_back(ECD);
   13051 
   13052       // Update entry to point to the duplicates vector.
   13053       Entry = Vec;
   13054 
   13055       // Store the vector somewhere we can consult later for quick emission of
   13056       // diagnostics.
   13057       DupVector.push_back(Vec);
   13058       continue;
   13059     }
   13060 
   13061     ECDVector *Vec = Entry.get<ECDVector*>();
   13062     // Make sure constants are not added more than once.
   13063     if (*Vec->begin() == ECD)
   13064       continue;
   13065 
   13066     Vec->push_back(ECD);
   13067   }
   13068 
   13069   // Emit diagnostics.
   13070   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
   13071                                   DupVectorEnd = DupVector.end();
   13072        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
   13073     ECDVector *Vec = *DupVectorIter;
   13074     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
   13075 
   13076     // Emit warning for one enum constant.
   13077     ECDVector::iterator I = Vec->begin();
   13078     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
   13079       << (*I)->getName() << (*I)->getInitVal().toString(10)
   13080       << (*I)->getSourceRange();
   13081     ++I;
   13082 
   13083     // Emit one note for each of the remaining enum constants with
   13084     // the same value.
   13085     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
   13086       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
   13087         << (*I)->getName() << (*I)->getInitVal().toString(10)
   13088         << (*I)->getSourceRange();
   13089     delete Vec;
   13090   }
   13091 }
   13092 
   13093 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
   13094                          SourceLocation RBraceLoc, Decl *EnumDeclX,
   13095                          ArrayRef<Decl *> Elements,
   13096                          Scope *S, AttributeList *Attr) {
   13097   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
   13098   QualType EnumType = Context.getTypeDeclType(Enum);
   13099 
   13100   if (Attr)
   13101     ProcessDeclAttributeList(S, Enum, Attr);
   13102 
   13103   if (Enum->isDependentType()) {
   13104     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   13105       EnumConstantDecl *ECD =
   13106         cast_or_null<EnumConstantDecl>(Elements[i]);
   13107       if (!ECD) continue;
   13108 
   13109       ECD->setType(EnumType);
   13110     }
   13111 
   13112     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
   13113     return;
   13114   }
   13115 
   13116   // TODO: If the result value doesn't fit in an int, it must be a long or long
   13117   // long value.  ISO C does not support this, but GCC does as an extension,
   13118   // emit a warning.
   13119   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   13120   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
   13121   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
   13122 
   13123   // Verify that all the values are okay, compute the size of the values, and
   13124   // reverse the list.
   13125   unsigned NumNegativeBits = 0;
   13126   unsigned NumPositiveBits = 0;
   13127 
   13128   // Keep track of whether all elements have type int.
   13129   bool AllElementsInt = true;
   13130 
   13131   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   13132     EnumConstantDecl *ECD =
   13133       cast_or_null<EnumConstantDecl>(Elements[i]);
   13134     if (!ECD) continue;  // Already issued a diagnostic.
   13135 
   13136     const llvm::APSInt &InitVal = ECD->getInitVal();
   13137 
   13138     // Keep track of the size of positive and negative values.
   13139     if (InitVal.isUnsigned() || InitVal.isNonNegative())
   13140       NumPositiveBits = std::max(NumPositiveBits,
   13141                                  (unsigned)InitVal.getActiveBits());
   13142     else
   13143       NumNegativeBits = std::max(NumNegativeBits,
   13144                                  (unsigned)InitVal.getMinSignedBits());
   13145 
   13146     // Keep track of whether every enum element has type int (very commmon).
   13147     if (AllElementsInt)
   13148       AllElementsInt = ECD->getType() == Context.IntTy;
   13149   }
   13150 
   13151   // Figure out the type that should be used for this enum.
   13152   QualType BestType;
   13153   unsigned BestWidth;
   13154 
   13155   // C++0x N3000 [conv.prom]p3:
   13156   //   An rvalue of an unscoped enumeration type whose underlying
   13157   //   type is not fixed can be converted to an rvalue of the first
   13158   //   of the following types that can represent all the values of
   13159   //   the enumeration: int, unsigned int, long int, unsigned long
   13160   //   int, long long int, or unsigned long long int.
   13161   // C99 6.4.4.3p2:
   13162   //   An identifier declared as an enumeration constant has type int.
   13163   // The C99 rule is modified by a gcc extension
   13164   QualType BestPromotionType;
   13165 
   13166   bool Packed = Enum->hasAttr<PackedAttr>();
   13167   // -fshort-enums is the equivalent to specifying the packed attribute on all
   13168   // enum definitions.
   13169   if (LangOpts.ShortEnums)
   13170     Packed = true;
   13171 
   13172   if (Enum->isFixed()) {
   13173     BestType = Enum->getIntegerType();
   13174     if (BestType->isPromotableIntegerType())
   13175       BestPromotionType = Context.getPromotedIntegerType(BestType);
   13176     else
   13177       BestPromotionType = BestType;
   13178     // We don't need to set BestWidth, because BestType is going to be the type
   13179     // of the enumerators, but we do anyway because otherwise some compilers
   13180     // warn that it might be used uninitialized.
   13181     BestWidth = CharWidth;
   13182   }
   13183   else if (NumNegativeBits) {
   13184     // If there is a negative value, figure out the smallest integer type (of
   13185     // int/long/longlong) that fits.
   13186     // If it's packed, check also if it fits a char or a short.
   13187     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
   13188       BestType = Context.SignedCharTy;
   13189       BestWidth = CharWidth;
   13190     } else if (Packed && NumNegativeBits <= ShortWidth &&
   13191                NumPositiveBits < ShortWidth) {
   13192       BestType = Context.ShortTy;
   13193       BestWidth = ShortWidth;
   13194     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
   13195       BestType = Context.IntTy;
   13196       BestWidth = IntWidth;
   13197     } else {
   13198       BestWidth = Context.getTargetInfo().getLongWidth();
   13199 
   13200       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
   13201         BestType = Context.LongTy;
   13202       } else {
   13203         BestWidth = Context.getTargetInfo().getLongLongWidth();
   13204 
   13205         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
   13206           Diag(Enum->getLocation(), diag::ext_enum_too_large);
   13207         BestType = Context.LongLongTy;
   13208       }
   13209     }
   13210     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
   13211   } else {
   13212     // If there is no negative value, figure out the smallest type that fits
   13213     // all of the enumerator values.
   13214     // If it's packed, check also if it fits a char or a short.
   13215     if (Packed && NumPositiveBits <= CharWidth) {
   13216       BestType = Context.UnsignedCharTy;
   13217       BestPromotionType = Context.IntTy;
   13218       BestWidth = CharWidth;
   13219     } else if (Packed && NumPositiveBits <= ShortWidth) {
   13220       BestType = Context.UnsignedShortTy;
   13221       BestPromotionType = Context.IntTy;
   13222       BestWidth = ShortWidth;
   13223     } else if (NumPositiveBits <= IntWidth) {
   13224       BestType = Context.UnsignedIntTy;
   13225       BestWidth = IntWidth;
   13226       BestPromotionType
   13227         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   13228                            ? Context.UnsignedIntTy : Context.IntTy;
   13229     } else if (NumPositiveBits <=
   13230                (BestWidth = Context.getTargetInfo().getLongWidth())) {
   13231       BestType = Context.UnsignedLongTy;
   13232       BestPromotionType
   13233         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   13234                            ? Context.UnsignedLongTy : Context.LongTy;
   13235     } else {
   13236       BestWidth = Context.getTargetInfo().getLongLongWidth();
   13237       assert(NumPositiveBits <= BestWidth &&
   13238              "How could an initializer get larger than ULL?");
   13239       BestType = Context.UnsignedLongLongTy;
   13240       BestPromotionType
   13241         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   13242                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
   13243     }
   13244   }
   13245 
   13246   // Loop over all of the enumerator constants, changing their types to match
   13247   // the type of the enum if needed.
   13248   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   13249     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   13250     if (!ECD) continue;  // Already issued a diagnostic.
   13251 
   13252     // Standard C says the enumerators have int type, but we allow, as an
   13253     // extension, the enumerators to be larger than int size.  If each
   13254     // enumerator value fits in an int, type it as an int, otherwise type it the
   13255     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
   13256     // that X has type 'int', not 'unsigned'.
   13257 
   13258     // Determine whether the value fits into an int.
   13259     llvm::APSInt InitVal = ECD->getInitVal();
   13260 
   13261     // If it fits into an integer type, force it.  Otherwise force it to match
   13262     // the enum decl type.
   13263     QualType NewTy;
   13264     unsigned NewWidth;
   13265     bool NewSign;
   13266     if (!getLangOpts().CPlusPlus &&
   13267         !Enum->isFixed() &&
   13268         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
   13269       NewTy = Context.IntTy;
   13270       NewWidth = IntWidth;
   13271       NewSign = true;
   13272     } else if (ECD->getType() == BestType) {
   13273       // Already the right type!
   13274       if (getLangOpts().CPlusPlus)
   13275         // C++ [dcl.enum]p4: Following the closing brace of an
   13276         // enum-specifier, each enumerator has the type of its
   13277         // enumeration.
   13278         ECD->setType(EnumType);
   13279       continue;
   13280     } else {
   13281       NewTy = BestType;
   13282       NewWidth = BestWidth;
   13283       NewSign = BestType->isSignedIntegerOrEnumerationType();
   13284     }
   13285 
   13286     // Adjust the APSInt value.
   13287     InitVal = InitVal.extOrTrunc(NewWidth);
   13288     InitVal.setIsSigned(NewSign);
   13289     ECD->setInitVal(InitVal);
   13290 
   13291     // Adjust the Expr initializer and type.
   13292     if (ECD->getInitExpr() &&
   13293         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
   13294       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
   13295                                                 CK_IntegralCast,
   13296                                                 ECD->getInitExpr(),
   13297                                                 /*base paths*/ nullptr,
   13298                                                 VK_RValue));
   13299     if (getLangOpts().CPlusPlus)
   13300       // C++ [dcl.enum]p4: Following the closing brace of an
   13301       // enum-specifier, each enumerator has the type of its
   13302       // enumeration.
   13303       ECD->setType(EnumType);
   13304     else
   13305       ECD->setType(NewTy);
   13306   }
   13307 
   13308   Enum->completeDefinition(BestType, BestPromotionType,
   13309                            NumPositiveBits, NumNegativeBits);
   13310 
   13311   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
   13312 
   13313   // Now that the enum type is defined, ensure it's not been underaligned.
   13314   if (Enum->hasAttrs())
   13315     CheckAlignasUnderalignment(Enum);
   13316 }
   13317 
   13318 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
   13319                                   SourceLocation StartLoc,
   13320                                   SourceLocation EndLoc) {
   13321   StringLiteral *AsmString = cast<StringLiteral>(expr);
   13322 
   13323   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
   13324                                                    AsmString, StartLoc,
   13325                                                    EndLoc);
   13326   CurContext->addDecl(New);
   13327   return New;
   13328 }
   13329 
   13330 static void checkModuleImportContext(Sema &S, Module *M,
   13331                                      SourceLocation ImportLoc,
   13332                                      DeclContext *DC) {
   13333   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
   13334     switch (LSD->getLanguage()) {
   13335     case LinkageSpecDecl::lang_c:
   13336       if (!M->IsExternC) {
   13337         S.Diag(ImportLoc, diag::err_module_import_in_extern_c)
   13338           << M->getFullModuleName();
   13339         S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c);
   13340         return;
   13341       }
   13342       break;
   13343     case LinkageSpecDecl::lang_cxx:
   13344       break;
   13345     }
   13346     DC = LSD->getParent();
   13347   }
   13348 
   13349   while (isa<LinkageSpecDecl>(DC))
   13350     DC = DC->getParent();
   13351   if (!isa<TranslationUnitDecl>(DC)) {
   13352     S.Diag(ImportLoc, diag::err_module_import_not_at_top_level)
   13353       << M->getFullModuleName() << DC;
   13354     S.Diag(cast<Decl>(DC)->getLocStart(),
   13355            diag::note_module_import_not_at_top_level)
   13356       << DC;
   13357   }
   13358 }
   13359 
   13360 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
   13361                                    SourceLocation ImportLoc,
   13362                                    ModuleIdPath Path) {
   13363   Module *Mod =
   13364       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
   13365                                    /*IsIncludeDirective=*/false);
   13366   if (!Mod)
   13367     return true;
   13368 
   13369   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
   13370 
   13371   // FIXME: we should support importing a submodule within a different submodule
   13372   // of the same top-level module. Until we do, make it an error rather than
   13373   // silently ignoring the import.
   13374   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
   13375     Diag(ImportLoc, diag::err_module_self_import)
   13376         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
   13377 
   13378   SmallVector<SourceLocation, 2> IdentifierLocs;
   13379   Module *ModCheck = Mod;
   13380   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
   13381     // If we've run out of module parents, just drop the remaining identifiers.
   13382     // We need the length to be consistent.
   13383     if (!ModCheck)
   13384       break;
   13385     ModCheck = ModCheck->Parent;
   13386 
   13387     IdentifierLocs.push_back(Path[I].second);
   13388   }
   13389 
   13390   ImportDecl *Import = ImportDecl::Create(Context,
   13391                                           Context.getTranslationUnitDecl(),
   13392                                           AtLoc.isValid()? AtLoc : ImportLoc,
   13393                                           Mod, IdentifierLocs);
   13394   Context.getTranslationUnitDecl()->addDecl(Import);
   13395   return Import;
   13396 }
   13397 
   13398 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
   13399   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
   13400 
   13401   // FIXME: Should we synthesize an ImportDecl here?
   13402   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
   13403                                       /*Complain=*/true);
   13404 }
   13405 
   13406 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
   13407                                                       Module *Mod) {
   13408   // Bail if we're not allowed to implicitly import a module here.
   13409   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
   13410     return;
   13411 
   13412   // Create the implicit import declaration.
   13413   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
   13414   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
   13415                                                    Loc, Mod, Loc);
   13416   TU->addDecl(ImportD);
   13417   Consumer.HandleImplicitImportDecl(ImportD);
   13418 
   13419   // Make the module visible.
   13420   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
   13421                                       /*Complain=*/false);
   13422 }
   13423 
   13424 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
   13425                                       IdentifierInfo* AliasName,
   13426                                       SourceLocation PragmaLoc,
   13427                                       SourceLocation NameLoc,
   13428                                       SourceLocation AliasNameLoc) {
   13429   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
   13430                                     LookupOrdinaryName);
   13431   AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context,
   13432                                                     AliasName->getName(), 0);
   13433 
   13434   if (PrevDecl)
   13435     PrevDecl->addAttr(Attr);
   13436   else
   13437     (void)ExtnameUndeclaredIdentifiers.insert(
   13438       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
   13439 }
   13440 
   13441 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
   13442                              SourceLocation PragmaLoc,
   13443                              SourceLocation NameLoc) {
   13444   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
   13445 
   13446   if (PrevDecl) {
   13447     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
   13448   } else {
   13449     (void)WeakUndeclaredIdentifiers.insert(
   13450       std::pair<IdentifierInfo*,WeakInfo>
   13451         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
   13452   }
   13453 }
   13454 
   13455 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
   13456                                 IdentifierInfo* AliasName,
   13457                                 SourceLocation PragmaLoc,
   13458                                 SourceLocation NameLoc,
   13459                                 SourceLocation AliasNameLoc) {
   13460   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
   13461                                     LookupOrdinaryName);
   13462   WeakInfo W = WeakInfo(Name, NameLoc);
   13463 
   13464   if (PrevDecl) {
   13465     if (!PrevDecl->hasAttr<AliasAttr>())
   13466       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
   13467         DeclApplyPragmaWeak(TUScope, ND, W);
   13468   } else {
   13469     (void)WeakUndeclaredIdentifiers.insert(
   13470       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
   13471   }
   13472 }
   13473 
   13474 Decl *Sema::getObjCDeclContext() const {
   13475   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
   13476 }
   13477 
   13478 AvailabilityResult Sema::getCurContextAvailability() const {
   13479   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
   13480   // If we are within an Objective-C method, we should consult
   13481   // both the availability of the method as well as the
   13482   // enclosing class.  If the class is (say) deprecated,
   13483   // the entire method is considered deprecated from the
   13484   // purpose of checking if the current context is deprecated.
   13485   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
   13486     AvailabilityResult R = MD->getAvailability();
   13487     if (R != AR_Available)
   13488       return R;
   13489     D = MD->getClassInterface();
   13490   }
   13491   // If we are within an Objective-c @implementation, it
   13492   // gets the same availability context as the @interface.
   13493   else if (const ObjCImplementationDecl *ID =
   13494             dyn_cast<ObjCImplementationDecl>(D)) {
   13495     D = ID->getClassInterface();
   13496   }
   13497   return D->getAvailability();
   13498 }
   13499