Home | History | Annotate | Download | only in SelectionDAG
      1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements bottom-up and top-down register pressure reduction list
     11 // schedulers, using standard algorithms.  The basic approach uses a priority
     12 // queue of available nodes to schedule.  One at a time, nodes are taken from
     13 // the priority queue (thus in priority order), checked for legality to
     14 // schedule, and emitted if legal.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/CodeGen/SchedulerRegistry.h"
     19 #include "ScheduleDAGSDNodes.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     25 #include "llvm/CodeGen/SelectionDAGISel.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Target/TargetInstrInfo.h"
     32 #include "llvm/Target/TargetLowering.h"
     33 #include "llvm/Target/TargetMachine.h"
     34 #include "llvm/Target/TargetRegisterInfo.h"
     35 #include <climits>
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "pre-RA-sched"
     39 
     40 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
     41 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
     42 STATISTIC(NumDups,       "Number of duplicated nodes");
     43 STATISTIC(NumPRCopies,   "Number of physical register copies");
     44 
     45 static RegisterScheduler
     46   burrListDAGScheduler("list-burr",
     47                        "Bottom-up register reduction list scheduling",
     48                        createBURRListDAGScheduler);
     49 static RegisterScheduler
     50   sourceListDAGScheduler("source",
     51                          "Similar to list-burr but schedules in source "
     52                          "order when possible",
     53                          createSourceListDAGScheduler);
     54 
     55 static RegisterScheduler
     56   hybridListDAGScheduler("list-hybrid",
     57                          "Bottom-up register pressure aware list scheduling "
     58                          "which tries to balance latency and register pressure",
     59                          createHybridListDAGScheduler);
     60 
     61 static RegisterScheduler
     62   ILPListDAGScheduler("list-ilp",
     63                       "Bottom-up register pressure aware list scheduling "
     64                       "which tries to balance ILP and register pressure",
     65                       createILPListDAGScheduler);
     66 
     67 static cl::opt<bool> DisableSchedCycles(
     68   "disable-sched-cycles", cl::Hidden, cl::init(false),
     69   cl::desc("Disable cycle-level precision during preRA scheduling"));
     70 
     71 // Temporary sched=list-ilp flags until the heuristics are robust.
     72 // Some options are also available under sched=list-hybrid.
     73 static cl::opt<bool> DisableSchedRegPressure(
     74   "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
     75   cl::desc("Disable regpressure priority in sched=list-ilp"));
     76 static cl::opt<bool> DisableSchedLiveUses(
     77   "disable-sched-live-uses", cl::Hidden, cl::init(true),
     78   cl::desc("Disable live use priority in sched=list-ilp"));
     79 static cl::opt<bool> DisableSchedVRegCycle(
     80   "disable-sched-vrcycle", cl::Hidden, cl::init(false),
     81   cl::desc("Disable virtual register cycle interference checks"));
     82 static cl::opt<bool> DisableSchedPhysRegJoin(
     83   "disable-sched-physreg-join", cl::Hidden, cl::init(false),
     84   cl::desc("Disable physreg def-use affinity"));
     85 static cl::opt<bool> DisableSchedStalls(
     86   "disable-sched-stalls", cl::Hidden, cl::init(true),
     87   cl::desc("Disable no-stall priority in sched=list-ilp"));
     88 static cl::opt<bool> DisableSchedCriticalPath(
     89   "disable-sched-critical-path", cl::Hidden, cl::init(false),
     90   cl::desc("Disable critical path priority in sched=list-ilp"));
     91 static cl::opt<bool> DisableSchedHeight(
     92   "disable-sched-height", cl::Hidden, cl::init(false),
     93   cl::desc("Disable scheduled-height priority in sched=list-ilp"));
     94 static cl::opt<bool> Disable2AddrHack(
     95   "disable-2addr-hack", cl::Hidden, cl::init(true),
     96   cl::desc("Disable scheduler's two-address hack"));
     97 
     98 static cl::opt<int> MaxReorderWindow(
     99   "max-sched-reorder", cl::Hidden, cl::init(6),
    100   cl::desc("Number of instructions to allow ahead of the critical path "
    101            "in sched=list-ilp"));
    102 
    103 static cl::opt<unsigned> AvgIPC(
    104   "sched-avg-ipc", cl::Hidden, cl::init(1),
    105   cl::desc("Average inst/cycle whan no target itinerary exists."));
    106 
    107 namespace {
    108 //===----------------------------------------------------------------------===//
    109 /// ScheduleDAGRRList - The actual register reduction list scheduler
    110 /// implementation.  This supports both top-down and bottom-up scheduling.
    111 ///
    112 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
    113 private:
    114   /// NeedLatency - True if the scheduler will make use of latency information.
    115   ///
    116   bool NeedLatency;
    117 
    118   /// AvailableQueue - The priority queue to use for the available SUnits.
    119   SchedulingPriorityQueue *AvailableQueue;
    120 
    121   /// PendingQueue - This contains all of the instructions whose operands have
    122   /// been issued, but their results are not ready yet (due to the latency of
    123   /// the operation).  Once the operands becomes available, the instruction is
    124   /// added to the AvailableQueue.
    125   std::vector<SUnit*> PendingQueue;
    126 
    127   /// HazardRec - The hazard recognizer to use.
    128   ScheduleHazardRecognizer *HazardRec;
    129 
    130   /// CurCycle - The current scheduler state corresponds to this cycle.
    131   unsigned CurCycle;
    132 
    133   /// MinAvailableCycle - Cycle of the soonest available instruction.
    134   unsigned MinAvailableCycle;
    135 
    136   /// IssueCount - Count instructions issued in this cycle
    137   /// Currently valid only for bottom-up scheduling.
    138   unsigned IssueCount;
    139 
    140   /// LiveRegDefs - A set of physical registers and their definition
    141   /// that are "live". These nodes must be scheduled before any other nodes that
    142   /// modifies the registers can be scheduled.
    143   unsigned NumLiveRegs;
    144   std::vector<SUnit*> LiveRegDefs;
    145   std::vector<SUnit*> LiveRegGens;
    146 
    147   // Collect interferences between physical register use/defs.
    148   // Each interference is an SUnit and set of physical registers.
    149   SmallVector<SUnit*, 4> Interferences;
    150   typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
    151   LRegsMapT LRegsMap;
    152 
    153   /// Topo - A topological ordering for SUnits which permits fast IsReachable
    154   /// and similar queries.
    155   ScheduleDAGTopologicalSort Topo;
    156 
    157   // Hack to keep track of the inverse of FindCallSeqStart without more crazy
    158   // DAG crawling.
    159   DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
    160 
    161 public:
    162   ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
    163                     SchedulingPriorityQueue *availqueue,
    164                     CodeGenOpt::Level OptLevel)
    165     : ScheduleDAGSDNodes(mf),
    166       NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
    167       Topo(SUnits, nullptr) {
    168 
    169     const TargetMachine &tm = mf.getTarget();
    170     if (DisableSchedCycles || !NeedLatency)
    171       HazardRec = new ScheduleHazardRecognizer();
    172     else
    173       HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(
    174           tm.getSubtargetImpl(), this);
    175   }
    176 
    177   ~ScheduleDAGRRList() {
    178     delete HazardRec;
    179     delete AvailableQueue;
    180   }
    181 
    182   void Schedule() override;
    183 
    184   ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
    185 
    186   /// IsReachable - Checks if SU is reachable from TargetSU.
    187   bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
    188     return Topo.IsReachable(SU, TargetSU);
    189   }
    190 
    191   /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
    192   /// create a cycle.
    193   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    194     return Topo.WillCreateCycle(SU, TargetSU);
    195   }
    196 
    197   /// AddPred - adds a predecessor edge to SUnit SU.
    198   /// This returns true if this is a new predecessor.
    199   /// Updates the topological ordering if required.
    200   void AddPred(SUnit *SU, const SDep &D) {
    201     Topo.AddPred(SU, D.getSUnit());
    202     SU->addPred(D);
    203   }
    204 
    205   /// RemovePred - removes a predecessor edge from SUnit SU.
    206   /// This returns true if an edge was removed.
    207   /// Updates the topological ordering if required.
    208   void RemovePred(SUnit *SU, const SDep &D) {
    209     Topo.RemovePred(SU, D.getSUnit());
    210     SU->removePred(D);
    211   }
    212 
    213 private:
    214   bool isReady(SUnit *SU) {
    215     return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
    216       AvailableQueue->isReady(SU);
    217   }
    218 
    219   void ReleasePred(SUnit *SU, const SDep *PredEdge);
    220   void ReleasePredecessors(SUnit *SU);
    221   void ReleasePending();
    222   void AdvanceToCycle(unsigned NextCycle);
    223   void AdvancePastStalls(SUnit *SU);
    224   void EmitNode(SUnit *SU);
    225   void ScheduleNodeBottomUp(SUnit*);
    226   void CapturePred(SDep *PredEdge);
    227   void UnscheduleNodeBottomUp(SUnit*);
    228   void RestoreHazardCheckerBottomUp();
    229   void BacktrackBottomUp(SUnit*, SUnit*);
    230   SUnit *CopyAndMoveSuccessors(SUnit*);
    231   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
    232                                 const TargetRegisterClass*,
    233                                 const TargetRegisterClass*,
    234                                 SmallVectorImpl<SUnit*>&);
    235   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
    236 
    237   void releaseInterferences(unsigned Reg = 0);
    238 
    239   SUnit *PickNodeToScheduleBottomUp();
    240   void ListScheduleBottomUp();
    241 
    242   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
    243   /// Updates the topological ordering if required.
    244   SUnit *CreateNewSUnit(SDNode *N) {
    245     unsigned NumSUnits = SUnits.size();
    246     SUnit *NewNode = newSUnit(N);
    247     // Update the topological ordering.
    248     if (NewNode->NodeNum >= NumSUnits)
    249       Topo.InitDAGTopologicalSorting();
    250     return NewNode;
    251   }
    252 
    253   /// CreateClone - Creates a new SUnit from an existing one.
    254   /// Updates the topological ordering if required.
    255   SUnit *CreateClone(SUnit *N) {
    256     unsigned NumSUnits = SUnits.size();
    257     SUnit *NewNode = Clone(N);
    258     // Update the topological ordering.
    259     if (NewNode->NodeNum >= NumSUnits)
    260       Topo.InitDAGTopologicalSorting();
    261     return NewNode;
    262   }
    263 
    264   /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
    265   /// need actual latency information but the hybrid scheduler does.
    266   bool forceUnitLatencies() const override {
    267     return !NeedLatency;
    268   }
    269 };
    270 }  // end anonymous namespace
    271 
    272 /// GetCostForDef - Looks up the register class and cost for a given definition.
    273 /// Typically this just means looking up the representative register class,
    274 /// but for untyped values (MVT::Untyped) it means inspecting the node's
    275 /// opcode to determine what register class is being generated.
    276 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
    277                           const TargetLowering *TLI,
    278                           const TargetInstrInfo *TII,
    279                           const TargetRegisterInfo *TRI,
    280                           unsigned &RegClass, unsigned &Cost,
    281                           const MachineFunction &MF) {
    282   MVT VT = RegDefPos.GetValue();
    283 
    284   // Special handling for untyped values.  These values can only come from
    285   // the expansion of custom DAG-to-DAG patterns.
    286   if (VT == MVT::Untyped) {
    287     const SDNode *Node = RegDefPos.GetNode();
    288 
    289     // Special handling for CopyFromReg of untyped values.
    290     if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
    291       unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
    292       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
    293       RegClass = RC->getID();
    294       Cost = 1;
    295       return;
    296     }
    297 
    298     unsigned Opcode = Node->getMachineOpcode();
    299     if (Opcode == TargetOpcode::REG_SEQUENCE) {
    300       unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
    301       const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
    302       RegClass = RC->getID();
    303       Cost = 1;
    304       return;
    305     }
    306 
    307     unsigned Idx = RegDefPos.GetIdx();
    308     const MCInstrDesc Desc = TII->get(Opcode);
    309     const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
    310     RegClass = RC->getID();
    311     // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
    312     // better way to determine it.
    313     Cost = 1;
    314   } else {
    315     RegClass = TLI->getRepRegClassFor(VT)->getID();
    316     Cost = TLI->getRepRegClassCostFor(VT);
    317   }
    318 }
    319 
    320 /// Schedule - Schedule the DAG using list scheduling.
    321 void ScheduleDAGRRList::Schedule() {
    322   DEBUG(dbgs()
    323         << "********** List Scheduling BB#" << BB->getNumber()
    324         << " '" << BB->getName() << "' **********\n");
    325 
    326   CurCycle = 0;
    327   IssueCount = 0;
    328   MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
    329   NumLiveRegs = 0;
    330   // Allocate slots for each physical register, plus one for a special register
    331   // to track the virtual resource of a calling sequence.
    332   LiveRegDefs.resize(TRI->getNumRegs() + 1, nullptr);
    333   LiveRegGens.resize(TRI->getNumRegs() + 1, nullptr);
    334   CallSeqEndForStart.clear();
    335   assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
    336 
    337   // Build the scheduling graph.
    338   BuildSchedGraph(nullptr);
    339 
    340   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    341           SUnits[su].dumpAll(this));
    342   Topo.InitDAGTopologicalSorting();
    343 
    344   AvailableQueue->initNodes(SUnits);
    345 
    346   HazardRec->Reset();
    347 
    348   // Execute the actual scheduling loop.
    349   ListScheduleBottomUp();
    350 
    351   AvailableQueue->releaseState();
    352 
    353   DEBUG({
    354       dbgs() << "*** Final schedule ***\n";
    355       dumpSchedule();
    356       dbgs() << '\n';
    357     });
    358 }
    359 
    360 //===----------------------------------------------------------------------===//
    361 //  Bottom-Up Scheduling
    362 //===----------------------------------------------------------------------===//
    363 
    364 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
    365 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
    366 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
    367   SUnit *PredSU = PredEdge->getSUnit();
    368 
    369 #ifndef NDEBUG
    370   if (PredSU->NumSuccsLeft == 0) {
    371     dbgs() << "*** Scheduling failed! ***\n";
    372     PredSU->dump(this);
    373     dbgs() << " has been released too many times!\n";
    374     llvm_unreachable(nullptr);
    375   }
    376 #endif
    377   --PredSU->NumSuccsLeft;
    378 
    379   if (!forceUnitLatencies()) {
    380     // Updating predecessor's height. This is now the cycle when the
    381     // predecessor can be scheduled without causing a pipeline stall.
    382     PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
    383   }
    384 
    385   // If all the node's successors are scheduled, this node is ready
    386   // to be scheduled. Ignore the special EntrySU node.
    387   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    388     PredSU->isAvailable = true;
    389 
    390     unsigned Height = PredSU->getHeight();
    391     if (Height < MinAvailableCycle)
    392       MinAvailableCycle = Height;
    393 
    394     if (isReady(PredSU)) {
    395       AvailableQueue->push(PredSU);
    396     }
    397     // CapturePred and others may have left the node in the pending queue, avoid
    398     // adding it twice.
    399     else if (!PredSU->isPending) {
    400       PredSU->isPending = true;
    401       PendingQueue.push_back(PredSU);
    402     }
    403   }
    404 }
    405 
    406 /// IsChainDependent - Test if Outer is reachable from Inner through
    407 /// chain dependencies.
    408 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
    409                              unsigned NestLevel,
    410                              const TargetInstrInfo *TII) {
    411   SDNode *N = Outer;
    412   for (;;) {
    413     if (N == Inner)
    414       return true;
    415     // For a TokenFactor, examine each operand. There may be multiple ways
    416     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    417     // most nesting in order to ensure that we find the corresponding match.
    418     if (N->getOpcode() == ISD::TokenFactor) {
    419       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    420         if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
    421           return true;
    422       return false;
    423     }
    424     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    425     if (N->isMachineOpcode()) {
    426       if (N->getMachineOpcode() ==
    427           (unsigned)TII->getCallFrameDestroyOpcode()) {
    428         ++NestLevel;
    429       } else if (N->getMachineOpcode() ==
    430                  (unsigned)TII->getCallFrameSetupOpcode()) {
    431         if (NestLevel == 0)
    432           return false;
    433         --NestLevel;
    434       }
    435     }
    436     // Otherwise, find the chain and continue climbing.
    437     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    438       if (N->getOperand(i).getValueType() == MVT::Other) {
    439         N = N->getOperand(i).getNode();
    440         goto found_chain_operand;
    441       }
    442     return false;
    443   found_chain_operand:;
    444     if (N->getOpcode() == ISD::EntryToken)
    445       return false;
    446   }
    447 }
    448 
    449 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
    450 /// the corresponding (lowered) CALLSEQ_BEGIN node.
    451 ///
    452 /// NestLevel and MaxNested are used in recursion to indcate the current level
    453 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
    454 /// level seen so far.
    455 ///
    456 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
    457 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
    458 static SDNode *
    459 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
    460                  const TargetInstrInfo *TII) {
    461   for (;;) {
    462     // For a TokenFactor, examine each operand. There may be multiple ways
    463     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    464     // most nesting in order to ensure that we find the corresponding match.
    465     if (N->getOpcode() == ISD::TokenFactor) {
    466       SDNode *Best = nullptr;
    467       unsigned BestMaxNest = MaxNest;
    468       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    469         unsigned MyNestLevel = NestLevel;
    470         unsigned MyMaxNest = MaxNest;
    471         if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
    472                                            MyNestLevel, MyMaxNest, TII))
    473           if (!Best || (MyMaxNest > BestMaxNest)) {
    474             Best = New;
    475             BestMaxNest = MyMaxNest;
    476           }
    477       }
    478       assert(Best);
    479       MaxNest = BestMaxNest;
    480       return Best;
    481     }
    482     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    483     if (N->isMachineOpcode()) {
    484       if (N->getMachineOpcode() ==
    485           (unsigned)TII->getCallFrameDestroyOpcode()) {
    486         ++NestLevel;
    487         MaxNest = std::max(MaxNest, NestLevel);
    488       } else if (N->getMachineOpcode() ==
    489                  (unsigned)TII->getCallFrameSetupOpcode()) {
    490         assert(NestLevel != 0);
    491         --NestLevel;
    492         if (NestLevel == 0)
    493           return N;
    494       }
    495     }
    496     // Otherwise, find the chain and continue climbing.
    497     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    498       if (N->getOperand(i).getValueType() == MVT::Other) {
    499         N = N->getOperand(i).getNode();
    500         goto found_chain_operand;
    501       }
    502     return nullptr;
    503   found_chain_operand:;
    504     if (N->getOpcode() == ISD::EntryToken)
    505       return nullptr;
    506   }
    507 }
    508 
    509 /// Call ReleasePred for each predecessor, then update register live def/gen.
    510 /// Always update LiveRegDefs for a register dependence even if the current SU
    511 /// also defines the register. This effectively create one large live range
    512 /// across a sequence of two-address node. This is important because the
    513 /// entire chain must be scheduled together. Example:
    514 ///
    515 /// flags = (3) add
    516 /// flags = (2) addc flags
    517 /// flags = (1) addc flags
    518 ///
    519 /// results in
    520 ///
    521 /// LiveRegDefs[flags] = 3
    522 /// LiveRegGens[flags] = 1
    523 ///
    524 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
    525 /// interference on flags.
    526 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
    527   // Bottom up: release predecessors
    528   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    529        I != E; ++I) {
    530     ReleasePred(SU, &*I);
    531     if (I->isAssignedRegDep()) {
    532       // This is a physical register dependency and it's impossible or
    533       // expensive to copy the register. Make sure nothing that can
    534       // clobber the register is scheduled between the predecessor and
    535       // this node.
    536       SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
    537       assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
    538              "interference on register dependence");
    539       LiveRegDefs[I->getReg()] = I->getSUnit();
    540       if (!LiveRegGens[I->getReg()]) {
    541         ++NumLiveRegs;
    542         LiveRegGens[I->getReg()] = SU;
    543       }
    544     }
    545   }
    546 
    547   // If we're scheduling a lowered CALLSEQ_END, find the corresponding
    548   // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
    549   // these nodes, to prevent other calls from being interscheduled with them.
    550   unsigned CallResource = TRI->getNumRegs();
    551   if (!LiveRegDefs[CallResource])
    552     for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
    553       if (Node->isMachineOpcode() &&
    554           Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
    555         unsigned NestLevel = 0;
    556         unsigned MaxNest = 0;
    557         SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
    558 
    559         SUnit *Def = &SUnits[N->getNodeId()];
    560         CallSeqEndForStart[Def] = SU;
    561 
    562         ++NumLiveRegs;
    563         LiveRegDefs[CallResource] = Def;
    564         LiveRegGens[CallResource] = SU;
    565         break;
    566       }
    567 }
    568 
    569 /// Check to see if any of the pending instructions are ready to issue.  If
    570 /// so, add them to the available queue.
    571 void ScheduleDAGRRList::ReleasePending() {
    572   if (DisableSchedCycles) {
    573     assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
    574     return;
    575   }
    576 
    577   // If the available queue is empty, it is safe to reset MinAvailableCycle.
    578   if (AvailableQueue->empty())
    579     MinAvailableCycle = UINT_MAX;
    580 
    581   // Check to see if any of the pending instructions are ready to issue.  If
    582   // so, add them to the available queue.
    583   for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    584     unsigned ReadyCycle = PendingQueue[i]->getHeight();
    585     if (ReadyCycle < MinAvailableCycle)
    586       MinAvailableCycle = ReadyCycle;
    587 
    588     if (PendingQueue[i]->isAvailable) {
    589       if (!isReady(PendingQueue[i]))
    590           continue;
    591       AvailableQueue->push(PendingQueue[i]);
    592     }
    593     PendingQueue[i]->isPending = false;
    594     PendingQueue[i] = PendingQueue.back();
    595     PendingQueue.pop_back();
    596     --i; --e;
    597   }
    598 }
    599 
    600 /// Move the scheduler state forward by the specified number of Cycles.
    601 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
    602   if (NextCycle <= CurCycle)
    603     return;
    604 
    605   IssueCount = 0;
    606   AvailableQueue->setCurCycle(NextCycle);
    607   if (!HazardRec->isEnabled()) {
    608     // Bypass lots of virtual calls in case of long latency.
    609     CurCycle = NextCycle;
    610   }
    611   else {
    612     for (; CurCycle != NextCycle; ++CurCycle) {
    613       HazardRec->RecedeCycle();
    614     }
    615   }
    616   // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
    617   // available Q to release pending nodes at least once before popping.
    618   ReleasePending();
    619 }
    620 
    621 /// Move the scheduler state forward until the specified node's dependents are
    622 /// ready and can be scheduled with no resource conflicts.
    623 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
    624   if (DisableSchedCycles)
    625     return;
    626 
    627   // FIXME: Nodes such as CopyFromReg probably should not advance the current
    628   // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
    629   // has predecessors the cycle will be advanced when they are scheduled.
    630   // But given the crude nature of modeling latency though such nodes, we
    631   // currently need to treat these nodes like real instructions.
    632   // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
    633 
    634   unsigned ReadyCycle = SU->getHeight();
    635 
    636   // Bump CurCycle to account for latency. We assume the latency of other
    637   // available instructions may be hidden by the stall (not a full pipe stall).
    638   // This updates the hazard recognizer's cycle before reserving resources for
    639   // this instruction.
    640   AdvanceToCycle(ReadyCycle);
    641 
    642   // Calls are scheduled in their preceding cycle, so don't conflict with
    643   // hazards from instructions after the call. EmitNode will reset the
    644   // scoreboard state before emitting the call.
    645   if (SU->isCall)
    646     return;
    647 
    648   // FIXME: For resource conflicts in very long non-pipelined stages, we
    649   // should probably skip ahead here to avoid useless scoreboard checks.
    650   int Stalls = 0;
    651   while (true) {
    652     ScheduleHazardRecognizer::HazardType HT =
    653       HazardRec->getHazardType(SU, -Stalls);
    654 
    655     if (HT == ScheduleHazardRecognizer::NoHazard)
    656       break;
    657 
    658     ++Stalls;
    659   }
    660   AdvanceToCycle(CurCycle + Stalls);
    661 }
    662 
    663 /// Record this SUnit in the HazardRecognizer.
    664 /// Does not update CurCycle.
    665 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
    666   if (!HazardRec->isEnabled())
    667     return;
    668 
    669   // Check for phys reg copy.
    670   if (!SU->getNode())
    671     return;
    672 
    673   switch (SU->getNode()->getOpcode()) {
    674   default:
    675     assert(SU->getNode()->isMachineOpcode() &&
    676            "This target-independent node should not be scheduled.");
    677     break;
    678   case ISD::MERGE_VALUES:
    679   case ISD::TokenFactor:
    680   case ISD::LIFETIME_START:
    681   case ISD::LIFETIME_END:
    682   case ISD::CopyToReg:
    683   case ISD::CopyFromReg:
    684   case ISD::EH_LABEL:
    685     // Noops don't affect the scoreboard state. Copies are likely to be
    686     // removed.
    687     return;
    688   case ISD::INLINEASM:
    689     // For inline asm, clear the pipeline state.
    690     HazardRec->Reset();
    691     return;
    692   }
    693   if (SU->isCall) {
    694     // Calls are scheduled with their preceding instructions. For bottom-up
    695     // scheduling, clear the pipeline state before emitting.
    696     HazardRec->Reset();
    697   }
    698 
    699   HazardRec->EmitInstruction(SU);
    700 }
    701 
    702 static void resetVRegCycle(SUnit *SU);
    703 
    704 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
    705 /// count of its predecessors. If a predecessor pending count is zero, add it to
    706 /// the Available queue.
    707 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
    708   DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
    709   DEBUG(SU->dump(this));
    710 
    711 #ifndef NDEBUG
    712   if (CurCycle < SU->getHeight())
    713     DEBUG(dbgs() << "   Height [" << SU->getHeight()
    714           << "] pipeline stall!\n");
    715 #endif
    716 
    717   // FIXME: Do not modify node height. It may interfere with
    718   // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
    719   // node its ready cycle can aid heuristics, and after scheduling it can
    720   // indicate the scheduled cycle.
    721   SU->setHeightToAtLeast(CurCycle);
    722 
    723   // Reserve resources for the scheduled instruction.
    724   EmitNode(SU);
    725 
    726   Sequence.push_back(SU);
    727 
    728   AvailableQueue->scheduledNode(SU);
    729 
    730   // If HazardRec is disabled, and each inst counts as one cycle, then
    731   // advance CurCycle before ReleasePredecessors to avoid useless pushes to
    732   // PendingQueue for schedulers that implement HasReadyFilter.
    733   if (!HazardRec->isEnabled() && AvgIPC < 2)
    734     AdvanceToCycle(CurCycle + 1);
    735 
    736   // Update liveness of predecessors before successors to avoid treating a
    737   // two-address node as a live range def.
    738   ReleasePredecessors(SU);
    739 
    740   // Release all the implicit physical register defs that are live.
    741   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    742        I != E; ++I) {
    743     // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
    744     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
    745       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    746       --NumLiveRegs;
    747       LiveRegDefs[I->getReg()] = nullptr;
    748       LiveRegGens[I->getReg()] = nullptr;
    749       releaseInterferences(I->getReg());
    750     }
    751   }
    752   // Release the special call resource dependence, if this is the beginning
    753   // of a call.
    754   unsigned CallResource = TRI->getNumRegs();
    755   if (LiveRegDefs[CallResource] == SU)
    756     for (const SDNode *SUNode = SU->getNode(); SUNode;
    757          SUNode = SUNode->getGluedNode()) {
    758       if (SUNode->isMachineOpcode() &&
    759           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
    760         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    761         --NumLiveRegs;
    762         LiveRegDefs[CallResource] = nullptr;
    763         LiveRegGens[CallResource] = nullptr;
    764         releaseInterferences(CallResource);
    765       }
    766     }
    767 
    768   resetVRegCycle(SU);
    769 
    770   SU->isScheduled = true;
    771 
    772   // Conditions under which the scheduler should eagerly advance the cycle:
    773   // (1) No available instructions
    774   // (2) All pipelines full, so available instructions must have hazards.
    775   //
    776   // If HazardRec is disabled, the cycle was pre-advanced before calling
    777   // ReleasePredecessors. In that case, IssueCount should remain 0.
    778   //
    779   // Check AvailableQueue after ReleasePredecessors in case of zero latency.
    780   if (HazardRec->isEnabled() || AvgIPC > 1) {
    781     if (SU->getNode() && SU->getNode()->isMachineOpcode())
    782       ++IssueCount;
    783     if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
    784         || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
    785       AdvanceToCycle(CurCycle + 1);
    786   }
    787 }
    788 
    789 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
    790 /// unscheduled, incrcease the succ left count of its predecessors. Remove
    791 /// them from AvailableQueue if necessary.
    792 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
    793   SUnit *PredSU = PredEdge->getSUnit();
    794   if (PredSU->isAvailable) {
    795     PredSU->isAvailable = false;
    796     if (!PredSU->isPending)
    797       AvailableQueue->remove(PredSU);
    798   }
    799 
    800   assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
    801   ++PredSU->NumSuccsLeft;
    802 }
    803 
    804 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
    805 /// its predecessor states to reflect the change.
    806 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
    807   DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
    808   DEBUG(SU->dump(this));
    809 
    810   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    811        I != E; ++I) {
    812     CapturePred(&*I);
    813     if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
    814       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    815       assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
    816              "Physical register dependency violated?");
    817       --NumLiveRegs;
    818       LiveRegDefs[I->getReg()] = nullptr;
    819       LiveRegGens[I->getReg()] = nullptr;
    820       releaseInterferences(I->getReg());
    821     }
    822   }
    823 
    824   // Reclaim the special call resource dependence, if this is the beginning
    825   // of a call.
    826   unsigned CallResource = TRI->getNumRegs();
    827   for (const SDNode *SUNode = SU->getNode(); SUNode;
    828        SUNode = SUNode->getGluedNode()) {
    829     if (SUNode->isMachineOpcode() &&
    830         SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
    831       ++NumLiveRegs;
    832       LiveRegDefs[CallResource] = SU;
    833       LiveRegGens[CallResource] = CallSeqEndForStart[SU];
    834     }
    835   }
    836 
    837   // Release the special call resource dependence, if this is the end
    838   // of a call.
    839   if (LiveRegGens[CallResource] == SU)
    840     for (const SDNode *SUNode = SU->getNode(); SUNode;
    841          SUNode = SUNode->getGluedNode()) {
    842       if (SUNode->isMachineOpcode() &&
    843           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
    844         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    845         --NumLiveRegs;
    846         LiveRegDefs[CallResource] = nullptr;
    847         LiveRegGens[CallResource] = nullptr;
    848         releaseInterferences(CallResource);
    849       }
    850     }
    851 
    852   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    853        I != E; ++I) {
    854     if (I->isAssignedRegDep()) {
    855       if (!LiveRegDefs[I->getReg()])
    856         ++NumLiveRegs;
    857       // This becomes the nearest def. Note that an earlier def may still be
    858       // pending if this is a two-address node.
    859       LiveRegDefs[I->getReg()] = SU;
    860       if (LiveRegGens[I->getReg()] == nullptr ||
    861           I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
    862         LiveRegGens[I->getReg()] = I->getSUnit();
    863     }
    864   }
    865   if (SU->getHeight() < MinAvailableCycle)
    866     MinAvailableCycle = SU->getHeight();
    867 
    868   SU->setHeightDirty();
    869   SU->isScheduled = false;
    870   SU->isAvailable = true;
    871   if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
    872     // Don't make available until backtracking is complete.
    873     SU->isPending = true;
    874     PendingQueue.push_back(SU);
    875   }
    876   else {
    877     AvailableQueue->push(SU);
    878   }
    879   AvailableQueue->unscheduledNode(SU);
    880 }
    881 
    882 /// After backtracking, the hazard checker needs to be restored to a state
    883 /// corresponding the current cycle.
    884 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
    885   HazardRec->Reset();
    886 
    887   unsigned LookAhead = std::min((unsigned)Sequence.size(),
    888                                 HazardRec->getMaxLookAhead());
    889   if (LookAhead == 0)
    890     return;
    891 
    892   std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
    893   unsigned HazardCycle = (*I)->getHeight();
    894   for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
    895     SUnit *SU = *I;
    896     for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
    897       HazardRec->RecedeCycle();
    898     }
    899     EmitNode(SU);
    900   }
    901 }
    902 
    903 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
    904 /// BTCycle in order to schedule a specific node.
    905 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
    906   SUnit *OldSU = Sequence.back();
    907   while (true) {
    908     Sequence.pop_back();
    909     // FIXME: use ready cycle instead of height
    910     CurCycle = OldSU->getHeight();
    911     UnscheduleNodeBottomUp(OldSU);
    912     AvailableQueue->setCurCycle(CurCycle);
    913     if (OldSU == BtSU)
    914       break;
    915     OldSU = Sequence.back();
    916   }
    917 
    918   assert(!SU->isSucc(OldSU) && "Something is wrong!");
    919 
    920   RestoreHazardCheckerBottomUp();
    921 
    922   ReleasePending();
    923 
    924   ++NumBacktracks;
    925 }
    926 
    927 static bool isOperandOf(const SUnit *SU, SDNode *N) {
    928   for (const SDNode *SUNode = SU->getNode(); SUNode;
    929        SUNode = SUNode->getGluedNode()) {
    930     if (SUNode->isOperandOf(N))
    931       return true;
    932   }
    933   return false;
    934 }
    935 
    936 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
    937 /// successors to the newly created node.
    938 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
    939   SDNode *N = SU->getNode();
    940   if (!N)
    941     return nullptr;
    942 
    943   if (SU->getNode()->getGluedNode())
    944     return nullptr;
    945 
    946   SUnit *NewSU;
    947   bool TryUnfold = false;
    948   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    949     EVT VT = N->getValueType(i);
    950     if (VT == MVT::Glue)
    951       return nullptr;
    952     else if (VT == MVT::Other)
    953       TryUnfold = true;
    954   }
    955   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    956     const SDValue &Op = N->getOperand(i);
    957     EVT VT = Op.getNode()->getValueType(Op.getResNo());
    958     if (VT == MVT::Glue)
    959       return nullptr;
    960   }
    961 
    962   if (TryUnfold) {
    963     SmallVector<SDNode*, 2> NewNodes;
    964     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
    965       return nullptr;
    966 
    967     // unfolding an x86 DEC64m operation results in store, dec, load which
    968     // can't be handled here so quit
    969     if (NewNodes.size() == 3)
    970       return nullptr;
    971 
    972     DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
    973     assert(NewNodes.size() == 2 && "Expected a load folding node!");
    974 
    975     N = NewNodes[1];
    976     SDNode *LoadNode = NewNodes[0];
    977     unsigned NumVals = N->getNumValues();
    978     unsigned OldNumVals = SU->getNode()->getNumValues();
    979     for (unsigned i = 0; i != NumVals; ++i)
    980       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
    981     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
    982                                    SDValue(LoadNode, 1));
    983 
    984     // LoadNode may already exist. This can happen when there is another
    985     // load from the same location and producing the same type of value
    986     // but it has different alignment or volatileness.
    987     bool isNewLoad = true;
    988     SUnit *LoadSU;
    989     if (LoadNode->getNodeId() != -1) {
    990       LoadSU = &SUnits[LoadNode->getNodeId()];
    991       isNewLoad = false;
    992     } else {
    993       LoadSU = CreateNewSUnit(LoadNode);
    994       LoadNode->setNodeId(LoadSU->NodeNum);
    995 
    996       InitNumRegDefsLeft(LoadSU);
    997       computeLatency(LoadSU);
    998     }
    999 
   1000     SUnit *NewSU = CreateNewSUnit(N);
   1001     assert(N->getNodeId() == -1 && "Node already inserted!");
   1002     N->setNodeId(NewSU->NodeNum);
   1003 
   1004     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1005     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
   1006       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
   1007         NewSU->isTwoAddress = true;
   1008         break;
   1009       }
   1010     }
   1011     if (MCID.isCommutable())
   1012       NewSU->isCommutable = true;
   1013 
   1014     InitNumRegDefsLeft(NewSU);
   1015     computeLatency(NewSU);
   1016 
   1017     // Record all the edges to and from the old SU, by category.
   1018     SmallVector<SDep, 4> ChainPreds;
   1019     SmallVector<SDep, 4> ChainSuccs;
   1020     SmallVector<SDep, 4> LoadPreds;
   1021     SmallVector<SDep, 4> NodePreds;
   1022     SmallVector<SDep, 4> NodeSuccs;
   1023     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1024          I != E; ++I) {
   1025       if (I->isCtrl())
   1026         ChainPreds.push_back(*I);
   1027       else if (isOperandOf(I->getSUnit(), LoadNode))
   1028         LoadPreds.push_back(*I);
   1029       else
   1030         NodePreds.push_back(*I);
   1031     }
   1032     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1033          I != E; ++I) {
   1034       if (I->isCtrl())
   1035         ChainSuccs.push_back(*I);
   1036       else
   1037         NodeSuccs.push_back(*I);
   1038     }
   1039 
   1040     // Now assign edges to the newly-created nodes.
   1041     for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
   1042       const SDep &Pred = ChainPreds[i];
   1043       RemovePred(SU, Pred);
   1044       if (isNewLoad)
   1045         AddPred(LoadSU, Pred);
   1046     }
   1047     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
   1048       const SDep &Pred = LoadPreds[i];
   1049       RemovePred(SU, Pred);
   1050       if (isNewLoad)
   1051         AddPred(LoadSU, Pred);
   1052     }
   1053     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
   1054       const SDep &Pred = NodePreds[i];
   1055       RemovePred(SU, Pred);
   1056       AddPred(NewSU, Pred);
   1057     }
   1058     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
   1059       SDep D = NodeSuccs[i];
   1060       SUnit *SuccDep = D.getSUnit();
   1061       D.setSUnit(SU);
   1062       RemovePred(SuccDep, D);
   1063       D.setSUnit(NewSU);
   1064       AddPred(SuccDep, D);
   1065       // Balance register pressure.
   1066       if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
   1067           && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
   1068         --NewSU->NumRegDefsLeft;
   1069     }
   1070     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
   1071       SDep D = ChainSuccs[i];
   1072       SUnit *SuccDep = D.getSUnit();
   1073       D.setSUnit(SU);
   1074       RemovePred(SuccDep, D);
   1075       if (isNewLoad) {
   1076         D.setSUnit(LoadSU);
   1077         AddPred(SuccDep, D);
   1078       }
   1079     }
   1080 
   1081     // Add a data dependency to reflect that NewSU reads the value defined
   1082     // by LoadSU.
   1083     SDep D(LoadSU, SDep::Data, 0);
   1084     D.setLatency(LoadSU->Latency);
   1085     AddPred(NewSU, D);
   1086 
   1087     if (isNewLoad)
   1088       AvailableQueue->addNode(LoadSU);
   1089     AvailableQueue->addNode(NewSU);
   1090 
   1091     ++NumUnfolds;
   1092 
   1093     if (NewSU->NumSuccsLeft == 0) {
   1094       NewSU->isAvailable = true;
   1095       return NewSU;
   1096     }
   1097     SU = NewSU;
   1098   }
   1099 
   1100   DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
   1101   NewSU = CreateClone(SU);
   1102 
   1103   // New SUnit has the exact same predecessors.
   1104   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1105        I != E; ++I)
   1106     if (!I->isArtificial())
   1107       AddPred(NewSU, *I);
   1108 
   1109   // Only copy scheduled successors. Cut them from old node's successor
   1110   // list and move them over.
   1111   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
   1112   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1113        I != E; ++I) {
   1114     if (I->isArtificial())
   1115       continue;
   1116     SUnit *SuccSU = I->getSUnit();
   1117     if (SuccSU->isScheduled) {
   1118       SDep D = *I;
   1119       D.setSUnit(NewSU);
   1120       AddPred(SuccSU, D);
   1121       D.setSUnit(SU);
   1122       DelDeps.push_back(std::make_pair(SuccSU, D));
   1123     }
   1124   }
   1125   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
   1126     RemovePred(DelDeps[i].first, DelDeps[i].second);
   1127 
   1128   AvailableQueue->updateNode(SU);
   1129   AvailableQueue->addNode(NewSU);
   1130 
   1131   ++NumDups;
   1132   return NewSU;
   1133 }
   1134 
   1135 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
   1136 /// scheduled successors of the given SUnit to the last copy.
   1137 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
   1138                                               const TargetRegisterClass *DestRC,
   1139                                               const TargetRegisterClass *SrcRC,
   1140                                               SmallVectorImpl<SUnit*> &Copies) {
   1141   SUnit *CopyFromSU = CreateNewSUnit(nullptr);
   1142   CopyFromSU->CopySrcRC = SrcRC;
   1143   CopyFromSU->CopyDstRC = DestRC;
   1144 
   1145   SUnit *CopyToSU = CreateNewSUnit(nullptr);
   1146   CopyToSU->CopySrcRC = DestRC;
   1147   CopyToSU->CopyDstRC = SrcRC;
   1148 
   1149   // Only copy scheduled successors. Cut them from old node's successor
   1150   // list and move them over.
   1151   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
   1152   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1153        I != E; ++I) {
   1154     if (I->isArtificial())
   1155       continue;
   1156     SUnit *SuccSU = I->getSUnit();
   1157     if (SuccSU->isScheduled) {
   1158       SDep D = *I;
   1159       D.setSUnit(CopyToSU);
   1160       AddPred(SuccSU, D);
   1161       DelDeps.push_back(std::make_pair(SuccSU, *I));
   1162     }
   1163     else {
   1164       // Avoid scheduling the def-side copy before other successors. Otherwise
   1165       // we could introduce another physreg interference on the copy and
   1166       // continue inserting copies indefinitely.
   1167       AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
   1168     }
   1169   }
   1170   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
   1171     RemovePred(DelDeps[i].first, DelDeps[i].second);
   1172 
   1173   SDep FromDep(SU, SDep::Data, Reg);
   1174   FromDep.setLatency(SU->Latency);
   1175   AddPred(CopyFromSU, FromDep);
   1176   SDep ToDep(CopyFromSU, SDep::Data, 0);
   1177   ToDep.setLatency(CopyFromSU->Latency);
   1178   AddPred(CopyToSU, ToDep);
   1179 
   1180   AvailableQueue->updateNode(SU);
   1181   AvailableQueue->addNode(CopyFromSU);
   1182   AvailableQueue->addNode(CopyToSU);
   1183   Copies.push_back(CopyFromSU);
   1184   Copies.push_back(CopyToSU);
   1185 
   1186   ++NumPRCopies;
   1187 }
   1188 
   1189 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
   1190 /// definition of the specified node.
   1191 /// FIXME: Move to SelectionDAG?
   1192 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
   1193                                  const TargetInstrInfo *TII) {
   1194   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1195   assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
   1196   unsigned NumRes = MCID.getNumDefs();
   1197   for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
   1198     if (Reg == *ImpDef)
   1199       break;
   1200     ++NumRes;
   1201   }
   1202   return N->getValueType(NumRes);
   1203 }
   1204 
   1205 /// CheckForLiveRegDef - Return true and update live register vector if the
   1206 /// specified register def of the specified SUnit clobbers any "live" registers.
   1207 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
   1208                                std::vector<SUnit*> &LiveRegDefs,
   1209                                SmallSet<unsigned, 4> &RegAdded,
   1210                                SmallVectorImpl<unsigned> &LRegs,
   1211                                const TargetRegisterInfo *TRI) {
   1212   for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
   1213 
   1214     // Check if Ref is live.
   1215     if (!LiveRegDefs[*AliasI]) continue;
   1216 
   1217     // Allow multiple uses of the same def.
   1218     if (LiveRegDefs[*AliasI] == SU) continue;
   1219 
   1220     // Add Reg to the set of interfering live regs.
   1221     if (RegAdded.insert(*AliasI)) {
   1222       LRegs.push_back(*AliasI);
   1223     }
   1224   }
   1225 }
   1226 
   1227 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
   1228 /// by RegMask, and add them to LRegs.
   1229 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
   1230                                      std::vector<SUnit*> &LiveRegDefs,
   1231                                      SmallSet<unsigned, 4> &RegAdded,
   1232                                      SmallVectorImpl<unsigned> &LRegs) {
   1233   // Look at all live registers. Skip Reg0 and the special CallResource.
   1234   for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
   1235     if (!LiveRegDefs[i]) continue;
   1236     if (LiveRegDefs[i] == SU) continue;
   1237     if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
   1238     if (RegAdded.insert(i))
   1239       LRegs.push_back(i);
   1240   }
   1241 }
   1242 
   1243 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
   1244 static const uint32_t *getNodeRegMask(const SDNode *N) {
   1245   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
   1246     if (const RegisterMaskSDNode *Op =
   1247         dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
   1248       return Op->getRegMask();
   1249   return nullptr;
   1250 }
   1251 
   1252 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
   1253 /// scheduling of the given node to satisfy live physical register dependencies.
   1254 /// If the specific node is the last one that's available to schedule, do
   1255 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
   1256 bool ScheduleDAGRRList::
   1257 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
   1258   if (NumLiveRegs == 0)
   1259     return false;
   1260 
   1261   SmallSet<unsigned, 4> RegAdded;
   1262   // If this node would clobber any "live" register, then it's not ready.
   1263   //
   1264   // If SU is the currently live definition of the same register that it uses,
   1265   // then we are free to schedule it.
   1266   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1267        I != E; ++I) {
   1268     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
   1269       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
   1270                          RegAdded, LRegs, TRI);
   1271   }
   1272 
   1273   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
   1274     if (Node->getOpcode() == ISD::INLINEASM) {
   1275       // Inline asm can clobber physical defs.
   1276       unsigned NumOps = Node->getNumOperands();
   1277       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
   1278         --NumOps;  // Ignore the glue operand.
   1279 
   1280       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
   1281         unsigned Flags =
   1282           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
   1283         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
   1284 
   1285         ++i; // Skip the ID value.
   1286         if (InlineAsm::isRegDefKind(Flags) ||
   1287             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
   1288             InlineAsm::isClobberKind(Flags)) {
   1289           // Check for def of register or earlyclobber register.
   1290           for (; NumVals; --NumVals, ++i) {
   1291             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
   1292             if (TargetRegisterInfo::isPhysicalRegister(Reg))
   1293               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
   1294           }
   1295         } else
   1296           i += NumVals;
   1297       }
   1298       continue;
   1299     }
   1300 
   1301     if (!Node->isMachineOpcode())
   1302       continue;
   1303     // If we're in the middle of scheduling a call, don't begin scheduling
   1304     // another call. Also, don't allow any physical registers to be live across
   1305     // the call.
   1306     if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
   1307       // Check the special calling-sequence resource.
   1308       unsigned CallResource = TRI->getNumRegs();
   1309       if (LiveRegDefs[CallResource]) {
   1310         SDNode *Gen = LiveRegGens[CallResource]->getNode();
   1311         while (SDNode *Glued = Gen->getGluedNode())
   1312           Gen = Glued;
   1313         if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
   1314           LRegs.push_back(CallResource);
   1315       }
   1316     }
   1317     if (const uint32_t *RegMask = getNodeRegMask(Node))
   1318       CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
   1319 
   1320     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
   1321     if (!MCID.ImplicitDefs)
   1322       continue;
   1323     for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
   1324       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
   1325   }
   1326 
   1327   return !LRegs.empty();
   1328 }
   1329 
   1330 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
   1331   // Add the nodes that aren't ready back onto the available list.
   1332   for (unsigned i = Interferences.size(); i > 0; --i) {
   1333     SUnit *SU = Interferences[i-1];
   1334     LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
   1335     if (Reg) {
   1336       SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
   1337       if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
   1338         continue;
   1339     }
   1340     SU->isPending = false;
   1341     // The interfering node may no longer be available due to backtracking.
   1342     // Furthermore, it may have been made available again, in which case it is
   1343     // now already in the AvailableQueue.
   1344     if (SU->isAvailable && !SU->NodeQueueId) {
   1345       DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
   1346       AvailableQueue->push(SU);
   1347     }
   1348     if (i < Interferences.size())
   1349       Interferences[i-1] = Interferences.back();
   1350     Interferences.pop_back();
   1351     LRegsMap.erase(LRegsPos);
   1352   }
   1353 }
   1354 
   1355 /// Return a node that can be scheduled in this cycle. Requirements:
   1356 /// (1) Ready: latency has been satisfied
   1357 /// (2) No Hazards: resources are available
   1358 /// (3) No Interferences: may unschedule to break register interferences.
   1359 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
   1360   SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
   1361   while (CurSU) {
   1362     SmallVector<unsigned, 4> LRegs;
   1363     if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
   1364       break;
   1365     DEBUG(dbgs() << "    Interfering reg " <<
   1366           (LRegs[0] == TRI->getNumRegs() ? "CallResource"
   1367            : TRI->getName(LRegs[0]))
   1368            << " SU #" << CurSU->NodeNum << '\n');
   1369     std::pair<LRegsMapT::iterator, bool> LRegsPair =
   1370       LRegsMap.insert(std::make_pair(CurSU, LRegs));
   1371     if (LRegsPair.second) {
   1372       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
   1373       Interferences.push_back(CurSU);
   1374     }
   1375     else {
   1376       assert(CurSU->isPending && "Intereferences are pending");
   1377       // Update the interference with current live regs.
   1378       LRegsPair.first->second = LRegs;
   1379     }
   1380     CurSU = AvailableQueue->pop();
   1381   }
   1382   if (CurSU)
   1383     return CurSU;
   1384 
   1385   // All candidates are delayed due to live physical reg dependencies.
   1386   // Try backtracking, code duplication, or inserting cross class copies
   1387   // to resolve it.
   1388   for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
   1389     SUnit *TrySU = Interferences[i];
   1390     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
   1391 
   1392     // Try unscheduling up to the point where it's safe to schedule
   1393     // this node.
   1394     SUnit *BtSU = nullptr;
   1395     unsigned LiveCycle = UINT_MAX;
   1396     for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
   1397       unsigned Reg = LRegs[j];
   1398       if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
   1399         BtSU = LiveRegGens[Reg];
   1400         LiveCycle = BtSU->getHeight();
   1401       }
   1402     }
   1403     if (!WillCreateCycle(TrySU, BtSU))  {
   1404       // BacktrackBottomUp mutates Interferences!
   1405       BacktrackBottomUp(TrySU, BtSU);
   1406 
   1407       // Force the current node to be scheduled before the node that
   1408       // requires the physical reg dep.
   1409       if (BtSU->isAvailable) {
   1410         BtSU->isAvailable = false;
   1411         if (!BtSU->isPending)
   1412           AvailableQueue->remove(BtSU);
   1413       }
   1414       DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
   1415             << TrySU->NodeNum << ")\n");
   1416       AddPred(TrySU, SDep(BtSU, SDep::Artificial));
   1417 
   1418       // If one or more successors has been unscheduled, then the current
   1419       // node is no longer available.
   1420       if (!TrySU->isAvailable)
   1421         CurSU = AvailableQueue->pop();
   1422       else {
   1423         AvailableQueue->remove(TrySU);
   1424         CurSU = TrySU;
   1425       }
   1426       // Interferences has been mutated. We must break.
   1427       break;
   1428     }
   1429   }
   1430 
   1431   if (!CurSU) {
   1432     // Can't backtrack. If it's too expensive to copy the value, then try
   1433     // duplicate the nodes that produces these "too expensive to copy"
   1434     // values to break the dependency. In case even that doesn't work,
   1435     // insert cross class copies.
   1436     // If it's not too expensive, i.e. cost != -1, issue copies.
   1437     SUnit *TrySU = Interferences[0];
   1438     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
   1439     assert(LRegs.size() == 1 && "Can't handle this yet!");
   1440     unsigned Reg = LRegs[0];
   1441     SUnit *LRDef = LiveRegDefs[Reg];
   1442     EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
   1443     const TargetRegisterClass *RC =
   1444       TRI->getMinimalPhysRegClass(Reg, VT);
   1445     const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
   1446 
   1447     // If cross copy register class is the same as RC, then it must be possible
   1448     // copy the value directly. Do not try duplicate the def.
   1449     // If cross copy register class is not the same as RC, then it's possible to
   1450     // copy the value but it require cross register class copies and it is
   1451     // expensive.
   1452     // If cross copy register class is null, then it's not possible to copy
   1453     // the value at all.
   1454     SUnit *NewDef = nullptr;
   1455     if (DestRC != RC) {
   1456       NewDef = CopyAndMoveSuccessors(LRDef);
   1457       if (!DestRC && !NewDef)
   1458         report_fatal_error("Can't handle live physical register dependency!");
   1459     }
   1460     if (!NewDef) {
   1461       // Issue copies, these can be expensive cross register class copies.
   1462       SmallVector<SUnit*, 2> Copies;
   1463       InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
   1464       DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
   1465             << " to SU #" << Copies.front()->NodeNum << "\n");
   1466       AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
   1467       NewDef = Copies.back();
   1468     }
   1469 
   1470     DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
   1471           << " to SU #" << TrySU->NodeNum << "\n");
   1472     LiveRegDefs[Reg] = NewDef;
   1473     AddPred(NewDef, SDep(TrySU, SDep::Artificial));
   1474     TrySU->isAvailable = false;
   1475     CurSU = NewDef;
   1476   }
   1477   assert(CurSU && "Unable to resolve live physical register dependencies!");
   1478   return CurSU;
   1479 }
   1480 
   1481 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
   1482 /// schedulers.
   1483 void ScheduleDAGRRList::ListScheduleBottomUp() {
   1484   // Release any predecessors of the special Exit node.
   1485   ReleasePredecessors(&ExitSU);
   1486 
   1487   // Add root to Available queue.
   1488   if (!SUnits.empty()) {
   1489     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
   1490     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
   1491     RootSU->isAvailable = true;
   1492     AvailableQueue->push(RootSU);
   1493   }
   1494 
   1495   // While Available queue is not empty, grab the node with the highest
   1496   // priority. If it is not ready put it back.  Schedule the node.
   1497   Sequence.reserve(SUnits.size());
   1498   while (!AvailableQueue->empty() || !Interferences.empty()) {
   1499     DEBUG(dbgs() << "\nExamining Available:\n";
   1500           AvailableQueue->dump(this));
   1501 
   1502     // Pick the best node to schedule taking all constraints into
   1503     // consideration.
   1504     SUnit *SU = PickNodeToScheduleBottomUp();
   1505 
   1506     AdvancePastStalls(SU);
   1507 
   1508     ScheduleNodeBottomUp(SU);
   1509 
   1510     while (AvailableQueue->empty() && !PendingQueue.empty()) {
   1511       // Advance the cycle to free resources. Skip ahead to the next ready SU.
   1512       assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
   1513       AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
   1514     }
   1515   }
   1516 
   1517   // Reverse the order if it is bottom up.
   1518   std::reverse(Sequence.begin(), Sequence.end());
   1519 
   1520 #ifndef NDEBUG
   1521   VerifyScheduledSequence(/*isBottomUp=*/true);
   1522 #endif
   1523 }
   1524 
   1525 //===----------------------------------------------------------------------===//
   1526 //                RegReductionPriorityQueue Definition
   1527 //===----------------------------------------------------------------------===//
   1528 //
   1529 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
   1530 // to reduce register pressure.
   1531 //
   1532 namespace {
   1533 class RegReductionPQBase;
   1534 
   1535 struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
   1536   bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
   1537 };
   1538 
   1539 #ifndef NDEBUG
   1540 template<class SF>
   1541 struct reverse_sort : public queue_sort {
   1542   SF &SortFunc;
   1543   reverse_sort(SF &sf) : SortFunc(sf) {}
   1544 
   1545   bool operator()(SUnit* left, SUnit* right) const {
   1546     // reverse left/right rather than simply !SortFunc(left, right)
   1547     // to expose different paths in the comparison logic.
   1548     return SortFunc(right, left);
   1549   }
   1550 };
   1551 #endif // NDEBUG
   1552 
   1553 /// bu_ls_rr_sort - Priority function for bottom up register pressure
   1554 // reduction scheduler.
   1555 struct bu_ls_rr_sort : public queue_sort {
   1556   enum {
   1557     IsBottomUp = true,
   1558     HasReadyFilter = false
   1559   };
   1560 
   1561   RegReductionPQBase *SPQ;
   1562   bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
   1563 
   1564   bool operator()(SUnit* left, SUnit* right) const;
   1565 };
   1566 
   1567 // src_ls_rr_sort - Priority function for source order scheduler.
   1568 struct src_ls_rr_sort : public queue_sort {
   1569   enum {
   1570     IsBottomUp = true,
   1571     HasReadyFilter = false
   1572   };
   1573 
   1574   RegReductionPQBase *SPQ;
   1575   src_ls_rr_sort(RegReductionPQBase *spq)
   1576     : SPQ(spq) {}
   1577 
   1578   bool operator()(SUnit* left, SUnit* right) const;
   1579 };
   1580 
   1581 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
   1582 struct hybrid_ls_rr_sort : public queue_sort {
   1583   enum {
   1584     IsBottomUp = true,
   1585     HasReadyFilter = false
   1586   };
   1587 
   1588   RegReductionPQBase *SPQ;
   1589   hybrid_ls_rr_sort(RegReductionPQBase *spq)
   1590     : SPQ(spq) {}
   1591 
   1592   bool isReady(SUnit *SU, unsigned CurCycle) const;
   1593 
   1594   bool operator()(SUnit* left, SUnit* right) const;
   1595 };
   1596 
   1597 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
   1598 // scheduler.
   1599 struct ilp_ls_rr_sort : public queue_sort {
   1600   enum {
   1601     IsBottomUp = true,
   1602     HasReadyFilter = false
   1603   };
   1604 
   1605   RegReductionPQBase *SPQ;
   1606   ilp_ls_rr_sort(RegReductionPQBase *spq)
   1607     : SPQ(spq) {}
   1608 
   1609   bool isReady(SUnit *SU, unsigned CurCycle) const;
   1610 
   1611   bool operator()(SUnit* left, SUnit* right) const;
   1612 };
   1613 
   1614 class RegReductionPQBase : public SchedulingPriorityQueue {
   1615 protected:
   1616   std::vector<SUnit*> Queue;
   1617   unsigned CurQueueId;
   1618   bool TracksRegPressure;
   1619   bool SrcOrder;
   1620 
   1621   // SUnits - The SUnits for the current graph.
   1622   std::vector<SUnit> *SUnits;
   1623 
   1624   MachineFunction &MF;
   1625   const TargetInstrInfo *TII;
   1626   const TargetRegisterInfo *TRI;
   1627   const TargetLowering *TLI;
   1628   ScheduleDAGRRList *scheduleDAG;
   1629 
   1630   // SethiUllmanNumbers - The SethiUllman number for each node.
   1631   std::vector<unsigned> SethiUllmanNumbers;
   1632 
   1633   /// RegPressure - Tracking current reg pressure per register class.
   1634   ///
   1635   std::vector<unsigned> RegPressure;
   1636 
   1637   /// RegLimit - Tracking the number of allocatable registers per register
   1638   /// class.
   1639   std::vector<unsigned> RegLimit;
   1640 
   1641 public:
   1642   RegReductionPQBase(MachineFunction &mf,
   1643                      bool hasReadyFilter,
   1644                      bool tracksrp,
   1645                      bool srcorder,
   1646                      const TargetInstrInfo *tii,
   1647                      const TargetRegisterInfo *tri,
   1648                      const TargetLowering *tli)
   1649     : SchedulingPriorityQueue(hasReadyFilter),
   1650       CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
   1651       MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(nullptr) {
   1652     if (TracksRegPressure) {
   1653       unsigned NumRC = TRI->getNumRegClasses();
   1654       RegLimit.resize(NumRC);
   1655       RegPressure.resize(NumRC);
   1656       std::fill(RegLimit.begin(), RegLimit.end(), 0);
   1657       std::fill(RegPressure.begin(), RegPressure.end(), 0);
   1658       for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
   1659              E = TRI->regclass_end(); I != E; ++I)
   1660         RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
   1661     }
   1662   }
   1663 
   1664   void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
   1665     scheduleDAG = scheduleDag;
   1666   }
   1667 
   1668   ScheduleHazardRecognizer* getHazardRec() {
   1669     return scheduleDAG->getHazardRec();
   1670   }
   1671 
   1672   void initNodes(std::vector<SUnit> &sunits) override;
   1673 
   1674   void addNode(const SUnit *SU) override;
   1675 
   1676   void updateNode(const SUnit *SU) override;
   1677 
   1678   void releaseState() override {
   1679     SUnits = nullptr;
   1680     SethiUllmanNumbers.clear();
   1681     std::fill(RegPressure.begin(), RegPressure.end(), 0);
   1682   }
   1683 
   1684   unsigned getNodePriority(const SUnit *SU) const;
   1685 
   1686   unsigned getNodeOrdering(const SUnit *SU) const {
   1687     if (!SU->getNode()) return 0;
   1688 
   1689     return SU->getNode()->getIROrder();
   1690   }
   1691 
   1692   bool empty() const override { return Queue.empty(); }
   1693 
   1694   void push(SUnit *U) override {
   1695     assert(!U->NodeQueueId && "Node in the queue already");
   1696     U->NodeQueueId = ++CurQueueId;
   1697     Queue.push_back(U);
   1698   }
   1699 
   1700   void remove(SUnit *SU) override {
   1701     assert(!Queue.empty() && "Queue is empty!");
   1702     assert(SU->NodeQueueId != 0 && "Not in queue!");
   1703     std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
   1704                                                  SU);
   1705     if (I != std::prev(Queue.end()))
   1706       std::swap(*I, Queue.back());
   1707     Queue.pop_back();
   1708     SU->NodeQueueId = 0;
   1709   }
   1710 
   1711   bool tracksRegPressure() const override { return TracksRegPressure; }
   1712 
   1713   void dumpRegPressure() const;
   1714 
   1715   bool HighRegPressure(const SUnit *SU) const;
   1716 
   1717   bool MayReduceRegPressure(SUnit *SU) const;
   1718 
   1719   int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
   1720 
   1721   void scheduledNode(SUnit *SU) override;
   1722 
   1723   void unscheduledNode(SUnit *SU) override;
   1724 
   1725 protected:
   1726   bool canClobber(const SUnit *SU, const SUnit *Op);
   1727   void AddPseudoTwoAddrDeps();
   1728   void PrescheduleNodesWithMultipleUses();
   1729   void CalculateSethiUllmanNumbers();
   1730 };
   1731 
   1732 template<class SF>
   1733 static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
   1734   std::vector<SUnit *>::iterator Best = Q.begin();
   1735   for (std::vector<SUnit *>::iterator I = std::next(Q.begin()),
   1736          E = Q.end(); I != E; ++I)
   1737     if (Picker(*Best, *I))
   1738       Best = I;
   1739   SUnit *V = *Best;
   1740   if (Best != std::prev(Q.end()))
   1741     std::swap(*Best, Q.back());
   1742   Q.pop_back();
   1743   return V;
   1744 }
   1745 
   1746 template<class SF>
   1747 SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
   1748 #ifndef NDEBUG
   1749   if (DAG->StressSched) {
   1750     reverse_sort<SF> RPicker(Picker);
   1751     return popFromQueueImpl(Q, RPicker);
   1752   }
   1753 #endif
   1754   (void)DAG;
   1755   return popFromQueueImpl(Q, Picker);
   1756 }
   1757 
   1758 template<class SF>
   1759 class RegReductionPriorityQueue : public RegReductionPQBase {
   1760   SF Picker;
   1761 
   1762 public:
   1763   RegReductionPriorityQueue(MachineFunction &mf,
   1764                             bool tracksrp,
   1765                             bool srcorder,
   1766                             const TargetInstrInfo *tii,
   1767                             const TargetRegisterInfo *tri,
   1768                             const TargetLowering *tli)
   1769     : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
   1770                          tii, tri, tli),
   1771       Picker(this) {}
   1772 
   1773   bool isBottomUp() const override { return SF::IsBottomUp; }
   1774 
   1775   bool isReady(SUnit *U) const override {
   1776     return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
   1777   }
   1778 
   1779   SUnit *pop() override {
   1780     if (Queue.empty()) return nullptr;
   1781 
   1782     SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
   1783     V->NodeQueueId = 0;
   1784     return V;
   1785   }
   1786 
   1787 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1788   void dump(ScheduleDAG *DAG) const override {
   1789     // Emulate pop() without clobbering NodeQueueIds.
   1790     std::vector<SUnit*> DumpQueue = Queue;
   1791     SF DumpPicker = Picker;
   1792     while (!DumpQueue.empty()) {
   1793       SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
   1794       dbgs() << "Height " << SU->getHeight() << ": ";
   1795       SU->dump(DAG);
   1796     }
   1797   }
   1798 #endif
   1799 };
   1800 
   1801 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
   1802 BURegReductionPriorityQueue;
   1803 
   1804 typedef RegReductionPriorityQueue<src_ls_rr_sort>
   1805 SrcRegReductionPriorityQueue;
   1806 
   1807 typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
   1808 HybridBURRPriorityQueue;
   1809 
   1810 typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
   1811 ILPBURRPriorityQueue;
   1812 } // end anonymous namespace
   1813 
   1814 //===----------------------------------------------------------------------===//
   1815 //           Static Node Priority for Register Pressure Reduction
   1816 //===----------------------------------------------------------------------===//
   1817 
   1818 // Check for special nodes that bypass scheduling heuristics.
   1819 // Currently this pushes TokenFactor nodes down, but may be used for other
   1820 // pseudo-ops as well.
   1821 //
   1822 // Return -1 to schedule right above left, 1 for left above right.
   1823 // Return 0 if no bias exists.
   1824 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
   1825   bool LSchedLow = left->isScheduleLow;
   1826   bool RSchedLow = right->isScheduleLow;
   1827   if (LSchedLow != RSchedLow)
   1828     return LSchedLow < RSchedLow ? 1 : -1;
   1829   return 0;
   1830 }
   1831 
   1832 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
   1833 /// Smaller number is the higher priority.
   1834 static unsigned
   1835 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
   1836   unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
   1837   if (SethiUllmanNumber != 0)
   1838     return SethiUllmanNumber;
   1839 
   1840   unsigned Extra = 0;
   1841   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1842        I != E; ++I) {
   1843     if (I->isCtrl()) continue;  // ignore chain preds
   1844     SUnit *PredSU = I->getSUnit();
   1845     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
   1846     if (PredSethiUllman > SethiUllmanNumber) {
   1847       SethiUllmanNumber = PredSethiUllman;
   1848       Extra = 0;
   1849     } else if (PredSethiUllman == SethiUllmanNumber)
   1850       ++Extra;
   1851   }
   1852 
   1853   SethiUllmanNumber += Extra;
   1854 
   1855   if (SethiUllmanNumber == 0)
   1856     SethiUllmanNumber = 1;
   1857 
   1858   return SethiUllmanNumber;
   1859 }
   1860 
   1861 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
   1862 /// scheduling units.
   1863 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
   1864   SethiUllmanNumbers.assign(SUnits->size(), 0);
   1865 
   1866   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
   1867     CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
   1868 }
   1869 
   1870 void RegReductionPQBase::addNode(const SUnit *SU) {
   1871   unsigned SUSize = SethiUllmanNumbers.size();
   1872   if (SUnits->size() > SUSize)
   1873     SethiUllmanNumbers.resize(SUSize*2, 0);
   1874   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
   1875 }
   1876 
   1877 void RegReductionPQBase::updateNode(const SUnit *SU) {
   1878   SethiUllmanNumbers[SU->NodeNum] = 0;
   1879   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
   1880 }
   1881 
   1882 // Lower priority means schedule further down. For bottom-up scheduling, lower
   1883 // priority SUs are scheduled before higher priority SUs.
   1884 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
   1885   assert(SU->NodeNum < SethiUllmanNumbers.size());
   1886   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
   1887   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
   1888     // CopyToReg should be close to its uses to facilitate coalescing and
   1889     // avoid spilling.
   1890     return 0;
   1891   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   1892       Opc == TargetOpcode::SUBREG_TO_REG ||
   1893       Opc == TargetOpcode::INSERT_SUBREG)
   1894     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
   1895     // close to their uses to facilitate coalescing.
   1896     return 0;
   1897   if (SU->NumSuccs == 0 && SU->NumPreds != 0)
   1898     // If SU does not have a register use, i.e. it doesn't produce a value
   1899     // that would be consumed (e.g. store), then it terminates a chain of
   1900     // computation.  Give it a large SethiUllman number so it will be
   1901     // scheduled right before its predecessors that it doesn't lengthen
   1902     // their live ranges.
   1903     return 0xffff;
   1904   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
   1905     // If SU does not have a register def, schedule it close to its uses
   1906     // because it does not lengthen any live ranges.
   1907     return 0;
   1908 #if 1
   1909   return SethiUllmanNumbers[SU->NodeNum];
   1910 #else
   1911   unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
   1912   if (SU->isCallOp) {
   1913     // FIXME: This assumes all of the defs are used as call operands.
   1914     int NP = (int)Priority - SU->getNode()->getNumValues();
   1915     return (NP > 0) ? NP : 0;
   1916   }
   1917   return Priority;
   1918 #endif
   1919 }
   1920 
   1921 //===----------------------------------------------------------------------===//
   1922 //                     Register Pressure Tracking
   1923 //===----------------------------------------------------------------------===//
   1924 
   1925 void RegReductionPQBase::dumpRegPressure() const {
   1926 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1927   for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
   1928          E = TRI->regclass_end(); I != E; ++I) {
   1929     const TargetRegisterClass *RC = *I;
   1930     unsigned Id = RC->getID();
   1931     unsigned RP = RegPressure[Id];
   1932     if (!RP) continue;
   1933     DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
   1934           << '\n');
   1935   }
   1936 #endif
   1937 }
   1938 
   1939 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
   1940   if (!TLI)
   1941     return false;
   1942 
   1943   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   1944        I != E; ++I) {
   1945     if (I->isCtrl())
   1946       continue;
   1947     SUnit *PredSU = I->getSUnit();
   1948     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   1949     // to cover the number of registers defined (they are all live).
   1950     if (PredSU->NumRegDefsLeft == 0) {
   1951       continue;
   1952     }
   1953     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   1954          RegDefPos.IsValid(); RegDefPos.Advance()) {
   1955       unsigned RCId, Cost;
   1956       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
   1957 
   1958       if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
   1959         return true;
   1960     }
   1961   }
   1962   return false;
   1963 }
   1964 
   1965 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
   1966   const SDNode *N = SU->getNode();
   1967 
   1968   if (!N->isMachineOpcode() || !SU->NumSuccs)
   1969     return false;
   1970 
   1971   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   1972   for (unsigned i = 0; i != NumDefs; ++i) {
   1973     MVT VT = N->getSimpleValueType(i);
   1974     if (!N->hasAnyUseOfValue(i))
   1975       continue;
   1976     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   1977     if (RegPressure[RCId] >= RegLimit[RCId])
   1978       return true;
   1979   }
   1980   return false;
   1981 }
   1982 
   1983 // Compute the register pressure contribution by this instruction by count up
   1984 // for uses that are not live and down for defs. Only count register classes
   1985 // that are already under high pressure. As a side effect, compute the number of
   1986 // uses of registers that are already live.
   1987 //
   1988 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
   1989 // so could probably be factored.
   1990 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
   1991   LiveUses = 0;
   1992   int PDiff = 0;
   1993   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   1994        I != E; ++I) {
   1995     if (I->isCtrl())
   1996       continue;
   1997     SUnit *PredSU = I->getSUnit();
   1998     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   1999     // to cover the number of registers defined (they are all live).
   2000     if (PredSU->NumRegDefsLeft == 0) {
   2001       if (PredSU->getNode()->isMachineOpcode())
   2002         ++LiveUses;
   2003       continue;
   2004     }
   2005     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   2006          RegDefPos.IsValid(); RegDefPos.Advance()) {
   2007       MVT VT = RegDefPos.GetValue();
   2008       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2009       if (RegPressure[RCId] >= RegLimit[RCId])
   2010         ++PDiff;
   2011     }
   2012   }
   2013   const SDNode *N = SU->getNode();
   2014 
   2015   if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
   2016     return PDiff;
   2017 
   2018   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2019   for (unsigned i = 0; i != NumDefs; ++i) {
   2020     MVT VT = N->getSimpleValueType(i);
   2021     if (!N->hasAnyUseOfValue(i))
   2022       continue;
   2023     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2024     if (RegPressure[RCId] >= RegLimit[RCId])
   2025       --PDiff;
   2026   }
   2027   return PDiff;
   2028 }
   2029 
   2030 void RegReductionPQBase::scheduledNode(SUnit *SU) {
   2031   if (!TracksRegPressure)
   2032     return;
   2033 
   2034   if (!SU->getNode())
   2035     return;
   2036 
   2037   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2038        I != E; ++I) {
   2039     if (I->isCtrl())
   2040       continue;
   2041     SUnit *PredSU = I->getSUnit();
   2042     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   2043     // to cover the number of registers defined (they are all live).
   2044     if (PredSU->NumRegDefsLeft == 0) {
   2045       continue;
   2046     }
   2047     // FIXME: The ScheduleDAG currently loses information about which of a
   2048     // node's values is consumed by each dependence. Consequently, if the node
   2049     // defines multiple register classes, we don't know which to pressurize
   2050     // here. Instead the following loop consumes the register defs in an
   2051     // arbitrary order. At least it handles the common case of clustered loads
   2052     // to the same class. For precise liveness, each SDep needs to indicate the
   2053     // result number. But that tightly couples the ScheduleDAG with the
   2054     // SelectionDAG making updates tricky. A simpler hack would be to attach a
   2055     // value type or register class to SDep.
   2056     //
   2057     // The most important aspect of register tracking is balancing the increase
   2058     // here with the reduction further below. Note that this SU may use multiple
   2059     // defs in PredSU. The can't be determined here, but we've already
   2060     // compensated by reducing NumRegDefsLeft in PredSU during
   2061     // ScheduleDAGSDNodes::AddSchedEdges.
   2062     --PredSU->NumRegDefsLeft;
   2063     unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
   2064     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   2065          RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
   2066       if (SkipRegDefs)
   2067         continue;
   2068 
   2069       unsigned RCId, Cost;
   2070       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
   2071       RegPressure[RCId] += Cost;
   2072       break;
   2073     }
   2074   }
   2075 
   2076   // We should have this assert, but there may be dead SDNodes that never
   2077   // materialize as SUnits, so they don't appear to generate liveness.
   2078   //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
   2079   int SkipRegDefs = (int)SU->NumRegDefsLeft;
   2080   for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
   2081        RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
   2082     if (SkipRegDefs > 0)
   2083       continue;
   2084     unsigned RCId, Cost;
   2085     GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
   2086     if (RegPressure[RCId] < Cost) {
   2087       // Register pressure tracking is imprecise. This can happen. But we try
   2088       // hard not to let it happen because it likely results in poor scheduling.
   2089       DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
   2090       RegPressure[RCId] = 0;
   2091     }
   2092     else {
   2093       RegPressure[RCId] -= Cost;
   2094     }
   2095   }
   2096   dumpRegPressure();
   2097 }
   2098 
   2099 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
   2100   if (!TracksRegPressure)
   2101     return;
   2102 
   2103   const SDNode *N = SU->getNode();
   2104   if (!N) return;
   2105 
   2106   if (!N->isMachineOpcode()) {
   2107     if (N->getOpcode() != ISD::CopyToReg)
   2108       return;
   2109   } else {
   2110     unsigned Opc = N->getMachineOpcode();
   2111     if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   2112         Opc == TargetOpcode::INSERT_SUBREG ||
   2113         Opc == TargetOpcode::SUBREG_TO_REG ||
   2114         Opc == TargetOpcode::REG_SEQUENCE ||
   2115         Opc == TargetOpcode::IMPLICIT_DEF)
   2116       return;
   2117   }
   2118 
   2119   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2120        I != E; ++I) {
   2121     if (I->isCtrl())
   2122       continue;
   2123     SUnit *PredSU = I->getSUnit();
   2124     // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
   2125     // counts data deps.
   2126     if (PredSU->NumSuccsLeft != PredSU->Succs.size())
   2127       continue;
   2128     const SDNode *PN = PredSU->getNode();
   2129     if (!PN->isMachineOpcode()) {
   2130       if (PN->getOpcode() == ISD::CopyFromReg) {
   2131         MVT VT = PN->getSimpleValueType(0);
   2132         unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2133         RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2134       }
   2135       continue;
   2136     }
   2137     unsigned POpc = PN->getMachineOpcode();
   2138     if (POpc == TargetOpcode::IMPLICIT_DEF)
   2139       continue;
   2140     if (POpc == TargetOpcode::EXTRACT_SUBREG ||
   2141         POpc == TargetOpcode::INSERT_SUBREG ||
   2142         POpc == TargetOpcode::SUBREG_TO_REG) {
   2143       MVT VT = PN->getSimpleValueType(0);
   2144       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2145       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2146       continue;
   2147     }
   2148     unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
   2149     for (unsigned i = 0; i != NumDefs; ++i) {
   2150       MVT VT = PN->getSimpleValueType(i);
   2151       if (!PN->hasAnyUseOfValue(i))
   2152         continue;
   2153       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2154       if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
   2155         // Register pressure tracking is imprecise. This can happen.
   2156         RegPressure[RCId] = 0;
   2157       else
   2158         RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
   2159     }
   2160   }
   2161 
   2162   // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
   2163   // may transfer data dependencies to CopyToReg.
   2164   if (SU->NumSuccs && N->isMachineOpcode()) {
   2165     unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2166     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
   2167       MVT VT = N->getSimpleValueType(i);
   2168       if (VT == MVT::Glue || VT == MVT::Other)
   2169         continue;
   2170       if (!N->hasAnyUseOfValue(i))
   2171         continue;
   2172       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2173       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2174     }
   2175   }
   2176 
   2177   dumpRegPressure();
   2178 }
   2179 
   2180 //===----------------------------------------------------------------------===//
   2181 //           Dynamic Node Priority for Register Pressure Reduction
   2182 //===----------------------------------------------------------------------===//
   2183 
   2184 /// closestSucc - Returns the scheduled cycle of the successor which is
   2185 /// closest to the current cycle.
   2186 static unsigned closestSucc(const SUnit *SU) {
   2187   unsigned MaxHeight = 0;
   2188   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   2189        I != E; ++I) {
   2190     if (I->isCtrl()) continue;  // ignore chain succs
   2191     unsigned Height = I->getSUnit()->getHeight();
   2192     // If there are bunch of CopyToRegs stacked up, they should be considered
   2193     // to be at the same position.
   2194     if (I->getSUnit()->getNode() &&
   2195         I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
   2196       Height = closestSucc(I->getSUnit())+1;
   2197     if (Height > MaxHeight)
   2198       MaxHeight = Height;
   2199   }
   2200   return MaxHeight;
   2201 }
   2202 
   2203 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
   2204 /// for scratch registers, i.e. number of data dependencies.
   2205 static unsigned calcMaxScratches(const SUnit *SU) {
   2206   unsigned Scratches = 0;
   2207   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2208        I != E; ++I) {
   2209     if (I->isCtrl()) continue;  // ignore chain preds
   2210     Scratches++;
   2211   }
   2212   return Scratches;
   2213 }
   2214 
   2215 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
   2216 /// CopyFromReg from a virtual register.
   2217 static bool hasOnlyLiveInOpers(const SUnit *SU) {
   2218   bool RetVal = false;
   2219   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2220        I != E; ++I) {
   2221     if (I->isCtrl()) continue;
   2222     const SUnit *PredSU = I->getSUnit();
   2223     if (PredSU->getNode() &&
   2224         PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
   2225       unsigned Reg =
   2226         cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
   2227       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   2228         RetVal = true;
   2229         continue;
   2230       }
   2231     }
   2232     return false;
   2233   }
   2234   return RetVal;
   2235 }
   2236 
   2237 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
   2238 /// CopyToReg to a virtual register. This SU def is probably a liveout and
   2239 /// it has no other use. It should be scheduled closer to the terminator.
   2240 static bool hasOnlyLiveOutUses(const SUnit *SU) {
   2241   bool RetVal = false;
   2242   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   2243        I != E; ++I) {
   2244     if (I->isCtrl()) continue;
   2245     const SUnit *SuccSU = I->getSUnit();
   2246     if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
   2247       unsigned Reg =
   2248         cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
   2249       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   2250         RetVal = true;
   2251         continue;
   2252       }
   2253     }
   2254     return false;
   2255   }
   2256   return RetVal;
   2257 }
   2258 
   2259 // Set isVRegCycle for a node with only live in opers and live out uses. Also
   2260 // set isVRegCycle for its CopyFromReg operands.
   2261 //
   2262 // This is only relevant for single-block loops, in which case the VRegCycle
   2263 // node is likely an induction variable in which the operand and target virtual
   2264 // registers should be coalesced (e.g. pre/post increment values). Setting the
   2265 // isVRegCycle flag helps the scheduler prioritize other uses of the same
   2266 // CopyFromReg so that this node becomes the virtual register "kill". This
   2267 // avoids interference between the values live in and out of the block and
   2268 // eliminates a copy inside the loop.
   2269 static void initVRegCycle(SUnit *SU) {
   2270   if (DisableSchedVRegCycle)
   2271     return;
   2272 
   2273   if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
   2274     return;
   2275 
   2276   DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
   2277 
   2278   SU->isVRegCycle = true;
   2279 
   2280   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2281        I != E; ++I) {
   2282     if (I->isCtrl()) continue;
   2283     I->getSUnit()->isVRegCycle = true;
   2284   }
   2285 }
   2286 
   2287 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
   2288 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
   2289 static void resetVRegCycle(SUnit *SU) {
   2290   if (!SU->isVRegCycle)
   2291     return;
   2292 
   2293   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2294        I != E; ++I) {
   2295     if (I->isCtrl()) continue;  // ignore chain preds
   2296     SUnit *PredSU = I->getSUnit();
   2297     if (PredSU->isVRegCycle) {
   2298       assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
   2299              "VRegCycle def must be CopyFromReg");
   2300       I->getSUnit()->isVRegCycle = 0;
   2301     }
   2302   }
   2303 }
   2304 
   2305 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
   2306 // means a node that defines the VRegCycle has not been scheduled yet.
   2307 static bool hasVRegCycleUse(const SUnit *SU) {
   2308   // If this SU also defines the VReg, don't hoist it as a "use".
   2309   if (SU->isVRegCycle)
   2310     return false;
   2311 
   2312   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2313        I != E; ++I) {
   2314     if (I->isCtrl()) continue;  // ignore chain preds
   2315     if (I->getSUnit()->isVRegCycle &&
   2316         I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
   2317       DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
   2318       return true;
   2319     }
   2320   }
   2321   return false;
   2322 }
   2323 
   2324 // Check for either a dependence (latency) or resource (hazard) stall.
   2325 //
   2326 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
   2327 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
   2328   if ((int)SPQ->getCurCycle() < Height) return true;
   2329   if (SPQ->getHazardRec()->getHazardType(SU, 0)
   2330       != ScheduleHazardRecognizer::NoHazard)
   2331     return true;
   2332   return false;
   2333 }
   2334 
   2335 // Return -1 if left has higher priority, 1 if right has higher priority.
   2336 // Return 0 if latency-based priority is equivalent.
   2337 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
   2338                             RegReductionPQBase *SPQ) {
   2339   // Scheduling an instruction that uses a VReg whose postincrement has not yet
   2340   // been scheduled will induce a copy. Model this as an extra cycle of latency.
   2341   int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
   2342   int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
   2343   int LHeight = (int)left->getHeight() + LPenalty;
   2344   int RHeight = (int)right->getHeight() + RPenalty;
   2345 
   2346   bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
   2347     BUHasStall(left, LHeight, SPQ);
   2348   bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
   2349     BUHasStall(right, RHeight, SPQ);
   2350 
   2351   // If scheduling one of the node will cause a pipeline stall, delay it.
   2352   // If scheduling either one of the node will cause a pipeline stall, sort
   2353   // them according to their height.
   2354   if (LStall) {
   2355     if (!RStall)
   2356       return 1;
   2357     if (LHeight != RHeight)
   2358       return LHeight > RHeight ? 1 : -1;
   2359   } else if (RStall)
   2360     return -1;
   2361 
   2362   // If either node is scheduling for latency, sort them by height/depth
   2363   // and latency.
   2364   if (!checkPref || (left->SchedulingPref == Sched::ILP ||
   2365                      right->SchedulingPref == Sched::ILP)) {
   2366     // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
   2367     // is enabled, grouping instructions by cycle, then its height is already
   2368     // covered so only its depth matters. We also reach this point if both stall
   2369     // but have the same height.
   2370     if (!SPQ->getHazardRec()->isEnabled()) {
   2371       if (LHeight != RHeight)
   2372         return LHeight > RHeight ? 1 : -1;
   2373     }
   2374     int LDepth = left->getDepth() - LPenalty;
   2375     int RDepth = right->getDepth() - RPenalty;
   2376     if (LDepth != RDepth) {
   2377       DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
   2378             << ") depth " << LDepth << " vs SU (" << right->NodeNum
   2379             << ") depth " << RDepth << "\n");
   2380       return LDepth < RDepth ? 1 : -1;
   2381     }
   2382     if (left->Latency != right->Latency)
   2383       return left->Latency > right->Latency ? 1 : -1;
   2384   }
   2385   return 0;
   2386 }
   2387 
   2388 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
   2389   // Schedule physical register definitions close to their use. This is
   2390   // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
   2391   // long as shortening physreg live ranges is generally good, we can defer
   2392   // creating a subtarget hook.
   2393   if (!DisableSchedPhysRegJoin) {
   2394     bool LHasPhysReg = left->hasPhysRegDefs;
   2395     bool RHasPhysReg = right->hasPhysRegDefs;
   2396     if (LHasPhysReg != RHasPhysReg) {
   2397       #ifndef NDEBUG
   2398       static const char *const PhysRegMsg[] = { " has no physreg",
   2399                                                 " defines a physreg" };
   2400       #endif
   2401       DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
   2402             << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
   2403             << PhysRegMsg[RHasPhysReg] << "\n");
   2404       return LHasPhysReg < RHasPhysReg;
   2405     }
   2406   }
   2407 
   2408   // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
   2409   unsigned LPriority = SPQ->getNodePriority(left);
   2410   unsigned RPriority = SPQ->getNodePriority(right);
   2411 
   2412   // Be really careful about hoisting call operands above previous calls.
   2413   // Only allows it if it would reduce register pressure.
   2414   if (left->isCall && right->isCallOp) {
   2415     unsigned RNumVals = right->getNode()->getNumValues();
   2416     RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
   2417   }
   2418   if (right->isCall && left->isCallOp) {
   2419     unsigned LNumVals = left->getNode()->getNumValues();
   2420     LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
   2421   }
   2422 
   2423   if (LPriority != RPriority)
   2424     return LPriority > RPriority;
   2425 
   2426   // One or both of the nodes are calls and their sethi-ullman numbers are the
   2427   // same, then keep source order.
   2428   if (left->isCall || right->isCall) {
   2429     unsigned LOrder = SPQ->getNodeOrdering(left);
   2430     unsigned ROrder = SPQ->getNodeOrdering(right);
   2431 
   2432     // Prefer an ordering where the lower the non-zero order number, the higher
   2433     // the preference.
   2434     if ((LOrder || ROrder) && LOrder != ROrder)
   2435       return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
   2436   }
   2437 
   2438   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
   2439   // e.g.
   2440   // t1 = op t2, c1
   2441   // t3 = op t4, c2
   2442   //
   2443   // and the following instructions are both ready.
   2444   // t2 = op c3
   2445   // t4 = op c4
   2446   //
   2447   // Then schedule t2 = op first.
   2448   // i.e.
   2449   // t4 = op c4
   2450   // t2 = op c3
   2451   // t1 = op t2, c1
   2452   // t3 = op t4, c2
   2453   //
   2454   // This creates more short live intervals.
   2455   unsigned LDist = closestSucc(left);
   2456   unsigned RDist = closestSucc(right);
   2457   if (LDist != RDist)
   2458     return LDist < RDist;
   2459 
   2460   // How many registers becomes live when the node is scheduled.
   2461   unsigned LScratch = calcMaxScratches(left);
   2462   unsigned RScratch = calcMaxScratches(right);
   2463   if (LScratch != RScratch)
   2464     return LScratch > RScratch;
   2465 
   2466   // Comparing latency against a call makes little sense unless the node
   2467   // is register pressure-neutral.
   2468   if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
   2469     return (left->NodeQueueId > right->NodeQueueId);
   2470 
   2471   // Do not compare latencies when one or both of the nodes are calls.
   2472   if (!DisableSchedCycles &&
   2473       !(left->isCall || right->isCall)) {
   2474     int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
   2475     if (result != 0)
   2476       return result > 0;
   2477   }
   2478   else {
   2479     if (left->getHeight() != right->getHeight())
   2480       return left->getHeight() > right->getHeight();
   2481 
   2482     if (left->getDepth() != right->getDepth())
   2483       return left->getDepth() < right->getDepth();
   2484   }
   2485 
   2486   assert(left->NodeQueueId && right->NodeQueueId &&
   2487          "NodeQueueId cannot be zero");
   2488   return (left->NodeQueueId > right->NodeQueueId);
   2489 }
   2490 
   2491 // Bottom up
   2492 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2493   if (int res = checkSpecialNodes(left, right))
   2494     return res > 0;
   2495 
   2496   return BURRSort(left, right, SPQ);
   2497 }
   2498 
   2499 // Source order, otherwise bottom up.
   2500 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2501   if (int res = checkSpecialNodes(left, right))
   2502     return res > 0;
   2503 
   2504   unsigned LOrder = SPQ->getNodeOrdering(left);
   2505   unsigned ROrder = SPQ->getNodeOrdering(right);
   2506 
   2507   // Prefer an ordering where the lower the non-zero order number, the higher
   2508   // the preference.
   2509   if ((LOrder || ROrder) && LOrder != ROrder)
   2510     return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
   2511 
   2512   return BURRSort(left, right, SPQ);
   2513 }
   2514 
   2515 // If the time between now and when the instruction will be ready can cover
   2516 // the spill code, then avoid adding it to the ready queue. This gives long
   2517 // stalls highest priority and allows hoisting across calls. It should also
   2518 // speed up processing the available queue.
   2519 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
   2520   static const unsigned ReadyDelay = 3;
   2521 
   2522   if (SPQ->MayReduceRegPressure(SU)) return true;
   2523 
   2524   if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
   2525 
   2526   if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
   2527       != ScheduleHazardRecognizer::NoHazard)
   2528     return false;
   2529 
   2530   return true;
   2531 }
   2532 
   2533 // Return true if right should be scheduled with higher priority than left.
   2534 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2535   if (int res = checkSpecialNodes(left, right))
   2536     return res > 0;
   2537 
   2538   if (left->isCall || right->isCall)
   2539     // No way to compute latency of calls.
   2540     return BURRSort(left, right, SPQ);
   2541 
   2542   bool LHigh = SPQ->HighRegPressure(left);
   2543   bool RHigh = SPQ->HighRegPressure(right);
   2544   // Avoid causing spills. If register pressure is high, schedule for
   2545   // register pressure reduction.
   2546   if (LHigh && !RHigh) {
   2547     DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
   2548           << right->NodeNum << ")\n");
   2549     return true;
   2550   }
   2551   else if (!LHigh && RHigh) {
   2552     DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
   2553           << left->NodeNum << ")\n");
   2554     return false;
   2555   }
   2556   if (!LHigh && !RHigh) {
   2557     int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
   2558     if (result != 0)
   2559       return result > 0;
   2560   }
   2561   return BURRSort(left, right, SPQ);
   2562 }
   2563 
   2564 // Schedule as many instructions in each cycle as possible. So don't make an
   2565 // instruction available unless it is ready in the current cycle.
   2566 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
   2567   if (SU->getHeight() > CurCycle) return false;
   2568 
   2569   if (SPQ->getHazardRec()->getHazardType(SU, 0)
   2570       != ScheduleHazardRecognizer::NoHazard)
   2571     return false;
   2572 
   2573   return true;
   2574 }
   2575 
   2576 static bool canEnableCoalescing(SUnit *SU) {
   2577   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
   2578   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
   2579     // CopyToReg should be close to its uses to facilitate coalescing and
   2580     // avoid spilling.
   2581     return true;
   2582 
   2583   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   2584       Opc == TargetOpcode::SUBREG_TO_REG ||
   2585       Opc == TargetOpcode::INSERT_SUBREG)
   2586     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
   2587     // close to their uses to facilitate coalescing.
   2588     return true;
   2589 
   2590   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
   2591     // If SU does not have a register def, schedule it close to its uses
   2592     // because it does not lengthen any live ranges.
   2593     return true;
   2594 
   2595   return false;
   2596 }
   2597 
   2598 // list-ilp is currently an experimental scheduler that allows various
   2599 // heuristics to be enabled prior to the normal register reduction logic.
   2600 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2601   if (int res = checkSpecialNodes(left, right))
   2602     return res > 0;
   2603 
   2604   if (left->isCall || right->isCall)
   2605     // No way to compute latency of calls.
   2606     return BURRSort(left, right, SPQ);
   2607 
   2608   unsigned LLiveUses = 0, RLiveUses = 0;
   2609   int LPDiff = 0, RPDiff = 0;
   2610   if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
   2611     LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
   2612     RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
   2613   }
   2614   if (!DisableSchedRegPressure && LPDiff != RPDiff) {
   2615     DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
   2616           << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
   2617     return LPDiff > RPDiff;
   2618   }
   2619 
   2620   if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
   2621     bool LReduce = canEnableCoalescing(left);
   2622     bool RReduce = canEnableCoalescing(right);
   2623     if (LReduce && !RReduce) return false;
   2624     if (RReduce && !LReduce) return true;
   2625   }
   2626 
   2627   if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
   2628     DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
   2629           << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
   2630     return LLiveUses < RLiveUses;
   2631   }
   2632 
   2633   if (!DisableSchedStalls) {
   2634     bool LStall = BUHasStall(left, left->getHeight(), SPQ);
   2635     bool RStall = BUHasStall(right, right->getHeight(), SPQ);
   2636     if (LStall != RStall)
   2637       return left->getHeight() > right->getHeight();
   2638   }
   2639 
   2640   if (!DisableSchedCriticalPath) {
   2641     int spread = (int)left->getDepth() - (int)right->getDepth();
   2642     if (std::abs(spread) > MaxReorderWindow) {
   2643       DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
   2644             << left->getDepth() << " != SU(" << right->NodeNum << "): "
   2645             << right->getDepth() << "\n");
   2646       return left->getDepth() < right->getDepth();
   2647     }
   2648   }
   2649 
   2650   if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
   2651     int spread = (int)left->getHeight() - (int)right->getHeight();
   2652     if (std::abs(spread) > MaxReorderWindow)
   2653       return left->getHeight() > right->getHeight();
   2654   }
   2655 
   2656   return BURRSort(left, right, SPQ);
   2657 }
   2658 
   2659 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
   2660   SUnits = &sunits;
   2661   // Add pseudo dependency edges for two-address nodes.
   2662   if (!Disable2AddrHack)
   2663     AddPseudoTwoAddrDeps();
   2664   // Reroute edges to nodes with multiple uses.
   2665   if (!TracksRegPressure && !SrcOrder)
   2666     PrescheduleNodesWithMultipleUses();
   2667   // Calculate node priorities.
   2668   CalculateSethiUllmanNumbers();
   2669 
   2670   // For single block loops, mark nodes that look like canonical IV increments.
   2671   if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
   2672     for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
   2673       initVRegCycle(&sunits[i]);
   2674     }
   2675   }
   2676 }
   2677 
   2678 //===----------------------------------------------------------------------===//
   2679 //                    Preschedule for Register Pressure
   2680 //===----------------------------------------------------------------------===//
   2681 
   2682 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
   2683   if (SU->isTwoAddress) {
   2684     unsigned Opc = SU->getNode()->getMachineOpcode();
   2685     const MCInstrDesc &MCID = TII->get(Opc);
   2686     unsigned NumRes = MCID.getNumDefs();
   2687     unsigned NumOps = MCID.getNumOperands() - NumRes;
   2688     for (unsigned i = 0; i != NumOps; ++i) {
   2689       if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
   2690         SDNode *DU = SU->getNode()->getOperand(i).getNode();
   2691         if (DU->getNodeId() != -1 &&
   2692             Op->OrigNode == &(*SUnits)[DU->getNodeId()])
   2693           return true;
   2694       }
   2695     }
   2696   }
   2697   return false;
   2698 }
   2699 
   2700 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
   2701 /// successor's explicit physregs whose definition can reach DepSU.
   2702 /// i.e. DepSU should not be scheduled above SU.
   2703 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
   2704                                          ScheduleDAGRRList *scheduleDAG,
   2705                                          const TargetInstrInfo *TII,
   2706                                          const TargetRegisterInfo *TRI) {
   2707   const uint16_t *ImpDefs
   2708     = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
   2709   const uint32_t *RegMask = getNodeRegMask(SU->getNode());
   2710   if(!ImpDefs && !RegMask)
   2711     return false;
   2712 
   2713   for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
   2714        SI != SE; ++SI) {
   2715     SUnit *SuccSU = SI->getSUnit();
   2716     for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
   2717            PE = SuccSU->Preds.end(); PI != PE; ++PI) {
   2718       if (!PI->isAssignedRegDep())
   2719         continue;
   2720 
   2721       if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
   2722           scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
   2723         return true;
   2724 
   2725       if (ImpDefs)
   2726         for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
   2727           // Return true if SU clobbers this physical register use and the
   2728           // definition of the register reaches from DepSU. IsReachable queries
   2729           // a topological forward sort of the DAG (following the successors).
   2730           if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
   2731               scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
   2732             return true;
   2733     }
   2734   }
   2735   return false;
   2736 }
   2737 
   2738 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
   2739 /// physical register defs.
   2740 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
   2741                                   const TargetInstrInfo *TII,
   2742                                   const TargetRegisterInfo *TRI) {
   2743   SDNode *N = SuccSU->getNode();
   2744   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2745   const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
   2746   assert(ImpDefs && "Caller should check hasPhysRegDefs");
   2747   for (const SDNode *SUNode = SU->getNode(); SUNode;
   2748        SUNode = SUNode->getGluedNode()) {
   2749     if (!SUNode->isMachineOpcode())
   2750       continue;
   2751     const uint16_t *SUImpDefs =
   2752       TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
   2753     const uint32_t *SURegMask = getNodeRegMask(SUNode);
   2754     if (!SUImpDefs && !SURegMask)
   2755       continue;
   2756     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
   2757       EVT VT = N->getValueType(i);
   2758       if (VT == MVT::Glue || VT == MVT::Other)
   2759         continue;
   2760       if (!N->hasAnyUseOfValue(i))
   2761         continue;
   2762       unsigned Reg = ImpDefs[i - NumDefs];
   2763       if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
   2764         return true;
   2765       if (!SUImpDefs)
   2766         continue;
   2767       for (;*SUImpDefs; ++SUImpDefs) {
   2768         unsigned SUReg = *SUImpDefs;
   2769         if (TRI->regsOverlap(Reg, SUReg))
   2770           return true;
   2771       }
   2772     }
   2773   }
   2774   return false;
   2775 }
   2776 
   2777 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
   2778 /// are not handled well by the general register pressure reduction
   2779 /// heuristics. When presented with code like this:
   2780 ///
   2781 ///      N
   2782 ///    / |
   2783 ///   /  |
   2784 ///  U  store
   2785 ///  |
   2786 /// ...
   2787 ///
   2788 /// the heuristics tend to push the store up, but since the
   2789 /// operand of the store has another use (U), this would increase
   2790 /// the length of that other use (the U->N edge).
   2791 ///
   2792 /// This function transforms code like the above to route U's
   2793 /// dependence through the store when possible, like this:
   2794 ///
   2795 ///      N
   2796 ///      ||
   2797 ///      ||
   2798 ///     store
   2799 ///       |
   2800 ///       U
   2801 ///       |
   2802 ///      ...
   2803 ///
   2804 /// This results in the store being scheduled immediately
   2805 /// after N, which shortens the U->N live range, reducing
   2806 /// register pressure.
   2807 ///
   2808 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
   2809   // Visit all the nodes in topological order, working top-down.
   2810   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
   2811     SUnit *SU = &(*SUnits)[i];
   2812     // For now, only look at nodes with no data successors, such as stores.
   2813     // These are especially important, due to the heuristics in
   2814     // getNodePriority for nodes with no data successors.
   2815     if (SU->NumSuccs != 0)
   2816       continue;
   2817     // For now, only look at nodes with exactly one data predecessor.
   2818     if (SU->NumPreds != 1)
   2819       continue;
   2820     // Avoid prescheduling copies to virtual registers, which don't behave
   2821     // like other nodes from the perspective of scheduling heuristics.
   2822     if (SDNode *N = SU->getNode())
   2823       if (N->getOpcode() == ISD::CopyToReg &&
   2824           TargetRegisterInfo::isVirtualRegister
   2825             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
   2826         continue;
   2827 
   2828     // Locate the single data predecessor.
   2829     SUnit *PredSU = nullptr;
   2830     for (SUnit::const_pred_iterator II = SU->Preds.begin(),
   2831          EE = SU->Preds.end(); II != EE; ++II)
   2832       if (!II->isCtrl()) {
   2833         PredSU = II->getSUnit();
   2834         break;
   2835       }
   2836     assert(PredSU);
   2837 
   2838     // Don't rewrite edges that carry physregs, because that requires additional
   2839     // support infrastructure.
   2840     if (PredSU->hasPhysRegDefs)
   2841       continue;
   2842     // Short-circuit the case where SU is PredSU's only data successor.
   2843     if (PredSU->NumSuccs == 1)
   2844       continue;
   2845     // Avoid prescheduling to copies from virtual registers, which don't behave
   2846     // like other nodes from the perspective of scheduling heuristics.
   2847     if (SDNode *N = SU->getNode())
   2848       if (N->getOpcode() == ISD::CopyFromReg &&
   2849           TargetRegisterInfo::isVirtualRegister
   2850             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
   2851         continue;
   2852 
   2853     // Perform checks on the successors of PredSU.
   2854     for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
   2855          EE = PredSU->Succs.end(); II != EE; ++II) {
   2856       SUnit *PredSuccSU = II->getSUnit();
   2857       if (PredSuccSU == SU) continue;
   2858       // If PredSU has another successor with no data successors, for
   2859       // now don't attempt to choose either over the other.
   2860       if (PredSuccSU->NumSuccs == 0)
   2861         goto outer_loop_continue;
   2862       // Don't break physical register dependencies.
   2863       if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
   2864         if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
   2865           goto outer_loop_continue;
   2866       // Don't introduce graph cycles.
   2867       if (scheduleDAG->IsReachable(SU, PredSuccSU))
   2868         goto outer_loop_continue;
   2869     }
   2870 
   2871     // Ok, the transformation is safe and the heuristics suggest it is
   2872     // profitable. Update the graph.
   2873     DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
   2874                  << " next to PredSU #" << PredSU->NodeNum
   2875                  << " to guide scheduling in the presence of multiple uses\n");
   2876     for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
   2877       SDep Edge = PredSU->Succs[i];
   2878       assert(!Edge.isAssignedRegDep());
   2879       SUnit *SuccSU = Edge.getSUnit();
   2880       if (SuccSU != SU) {
   2881         Edge.setSUnit(PredSU);
   2882         scheduleDAG->RemovePred(SuccSU, Edge);
   2883         scheduleDAG->AddPred(SU, Edge);
   2884         Edge.setSUnit(SU);
   2885         scheduleDAG->AddPred(SuccSU, Edge);
   2886         --i;
   2887       }
   2888     }
   2889   outer_loop_continue:;
   2890   }
   2891 }
   2892 
   2893 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
   2894 /// it as a def&use operand. Add a pseudo control edge from it to the other
   2895 /// node (if it won't create a cycle) so the two-address one will be scheduled
   2896 /// first (lower in the schedule). If both nodes are two-address, favor the
   2897 /// one that has a CopyToReg use (more likely to be a loop induction update).
   2898 /// If both are two-address, but one is commutable while the other is not
   2899 /// commutable, favor the one that's not commutable.
   2900 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
   2901   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
   2902     SUnit *SU = &(*SUnits)[i];
   2903     if (!SU->isTwoAddress)
   2904       continue;
   2905 
   2906     SDNode *Node = SU->getNode();
   2907     if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
   2908       continue;
   2909 
   2910     bool isLiveOut = hasOnlyLiveOutUses(SU);
   2911     unsigned Opc = Node->getMachineOpcode();
   2912     const MCInstrDesc &MCID = TII->get(Opc);
   2913     unsigned NumRes = MCID.getNumDefs();
   2914     unsigned NumOps = MCID.getNumOperands() - NumRes;
   2915     for (unsigned j = 0; j != NumOps; ++j) {
   2916       if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
   2917         continue;
   2918       SDNode *DU = SU->getNode()->getOperand(j).getNode();
   2919       if (DU->getNodeId() == -1)
   2920         continue;
   2921       const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
   2922       if (!DUSU) continue;
   2923       for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
   2924            E = DUSU->Succs.end(); I != E; ++I) {
   2925         if (I->isCtrl()) continue;
   2926         SUnit *SuccSU = I->getSUnit();
   2927         if (SuccSU == SU)
   2928           continue;
   2929         // Be conservative. Ignore if nodes aren't at roughly the same
   2930         // depth and height.
   2931         if (SuccSU->getHeight() < SU->getHeight() &&
   2932             (SU->getHeight() - SuccSU->getHeight()) > 1)
   2933           continue;
   2934         // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
   2935         // constrains whatever is using the copy, instead of the copy
   2936         // itself. In the case that the copy is coalesced, this
   2937         // preserves the intent of the pseudo two-address heurietics.
   2938         while (SuccSU->Succs.size() == 1 &&
   2939                SuccSU->getNode()->isMachineOpcode() &&
   2940                SuccSU->getNode()->getMachineOpcode() ==
   2941                  TargetOpcode::COPY_TO_REGCLASS)
   2942           SuccSU = SuccSU->Succs.front().getSUnit();
   2943         // Don't constrain non-instruction nodes.
   2944         if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
   2945           continue;
   2946         // Don't constrain nodes with physical register defs if the
   2947         // predecessor can clobber them.
   2948         if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
   2949           if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
   2950             continue;
   2951         }
   2952         // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
   2953         // these may be coalesced away. We want them close to their uses.
   2954         unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
   2955         if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
   2956             SuccOpc == TargetOpcode::INSERT_SUBREG ||
   2957             SuccOpc == TargetOpcode::SUBREG_TO_REG)
   2958           continue;
   2959         if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
   2960             (!canClobber(SuccSU, DUSU) ||
   2961              (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
   2962              (!SU->isCommutable && SuccSU->isCommutable)) &&
   2963             !scheduleDAG->IsReachable(SuccSU, SU)) {
   2964           DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
   2965                        << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
   2966           scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Artificial));
   2967         }
   2968       }
   2969     }
   2970   }
   2971 }
   2972 
   2973 //===----------------------------------------------------------------------===//
   2974 //                         Public Constructor Functions
   2975 //===----------------------------------------------------------------------===//
   2976 
   2977 llvm::ScheduleDAGSDNodes *
   2978 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
   2979                                  CodeGenOpt::Level OptLevel) {
   2980   const TargetMachine &TM = IS->TM;
   2981   const TargetInstrInfo *TII = TM.getInstrInfo();
   2982   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
   2983 
   2984   BURegReductionPriorityQueue *PQ =
   2985     new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
   2986   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
   2987   PQ->setScheduleDAG(SD);
   2988   return SD;
   2989 }
   2990 
   2991 llvm::ScheduleDAGSDNodes *
   2992 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
   2993                                    CodeGenOpt::Level OptLevel) {
   2994   const TargetMachine &TM = IS->TM;
   2995   const TargetInstrInfo *TII = TM.getInstrInfo();
   2996   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
   2997 
   2998   SrcRegReductionPriorityQueue *PQ =
   2999     new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
   3000   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
   3001   PQ->setScheduleDAG(SD);
   3002   return SD;
   3003 }
   3004 
   3005 llvm::ScheduleDAGSDNodes *
   3006 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
   3007                                    CodeGenOpt::Level OptLevel) {
   3008   const TargetMachine &TM = IS->TM;
   3009   const TargetInstrInfo *TII = TM.getInstrInfo();
   3010   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
   3011   const TargetLowering *TLI = IS->getTargetLowering();
   3012 
   3013   HybridBURRPriorityQueue *PQ =
   3014     new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
   3015 
   3016   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
   3017   PQ->setScheduleDAG(SD);
   3018   return SD;
   3019 }
   3020 
   3021 llvm::ScheduleDAGSDNodes *
   3022 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
   3023                                 CodeGenOpt::Level OptLevel) {
   3024   const TargetMachine &TM = IS->TM;
   3025   const TargetInstrInfo *TII = TM.getInstrInfo();
   3026   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
   3027   const TargetLowering *TLI = IS->getTargetLowering();
   3028 
   3029   ILPBURRPriorityQueue *PQ =
   3030     new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
   3031   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
   3032   PQ->setScheduleDAG(SD);
   3033   return SD;
   3034 }
   3035