Home | History | Annotate | Download | only in CodeGen
      1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
     11 // of MachineInstrs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     16 #include "llvm/ADT/MapVector.h"
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/ValueTracking.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/MachineFunctionPass.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineMemOperand.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/PseudoSourceValue.h"
     27 #include "llvm/CodeGen/RegisterPressure.h"
     28 #include "llvm/CodeGen/ScheduleDFS.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/MC/MCInstrItineraries.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/Format.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetInstrInfo.h"
     36 #include "llvm/Target/TargetMachine.h"
     37 #include "llvm/Target/TargetRegisterInfo.h"
     38 #include "llvm/Target/TargetSubtargetInfo.h"
     39 #include <queue>
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "misched"
     44 
     45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
     46     cl::ZeroOrMore, cl::init(false),
     47     cl::desc("Enable use of AA during MI GAD construction"));
     48 
     49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
     50     cl::init(true), cl::desc("Enable use of TBAA during MI GAD construction"));
     51 
     52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
     53                                      const MachineLoopInfo &mli,
     54                                      const MachineDominatorTree &mdt,
     55                                      bool IsPostRAFlag,
     56                                      bool RemoveKillFlags,
     57                                      LiveIntervals *lis)
     58   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
     59     IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
     60     CanHandleTerminators(false), FirstDbgValue(nullptr) {
     61   assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
     62   DbgValues.clear();
     63   assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
     64          "Virtual registers must be removed prior to PostRA scheduling");
     65 
     66   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
     67   SchedModel.init(*ST.getSchedModel(), &ST, TII);
     68 }
     69 
     70 /// getUnderlyingObjectFromInt - This is the function that does the work of
     71 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
     72 static const Value *getUnderlyingObjectFromInt(const Value *V) {
     73   do {
     74     if (const Operator *U = dyn_cast<Operator>(V)) {
     75       // If we find a ptrtoint, we can transfer control back to the
     76       // regular getUnderlyingObjectFromInt.
     77       if (U->getOpcode() == Instruction::PtrToInt)
     78         return U->getOperand(0);
     79       // If we find an add of a constant, a multiplied value, or a phi, it's
     80       // likely that the other operand will lead us to the base
     81       // object. We don't have to worry about the case where the
     82       // object address is somehow being computed by the multiply,
     83       // because our callers only care when the result is an
     84       // identifiable object.
     85       if (U->getOpcode() != Instruction::Add ||
     86           (!isa<ConstantInt>(U->getOperand(1)) &&
     87            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
     88            !isa<PHINode>(U->getOperand(1))))
     89         return V;
     90       V = U->getOperand(0);
     91     } else {
     92       return V;
     93     }
     94     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
     95   } while (1);
     96 }
     97 
     98 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
     99 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
    100 static void getUnderlyingObjects(const Value *V,
    101                                  SmallVectorImpl<Value *> &Objects) {
    102   SmallPtrSet<const Value *, 16> Visited;
    103   SmallVector<const Value *, 4> Working(1, V);
    104   do {
    105     V = Working.pop_back_val();
    106 
    107     SmallVector<Value *, 4> Objs;
    108     GetUnderlyingObjects(const_cast<Value *>(V), Objs);
    109 
    110     for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
    111          I != IE; ++I) {
    112       V = *I;
    113       if (!Visited.insert(V))
    114         continue;
    115       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
    116         const Value *O =
    117           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
    118         if (O->getType()->isPointerTy()) {
    119           Working.push_back(O);
    120           continue;
    121         }
    122       }
    123       Objects.push_back(const_cast<Value *>(V));
    124     }
    125   } while (!Working.empty());
    126 }
    127 
    128 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
    129 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
    130 UnderlyingObjectsVector;
    131 
    132 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
    133 /// information and it can be tracked to a normal reference to a known
    134 /// object, return the Value for that object.
    135 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
    136                                          const MachineFrameInfo *MFI,
    137                                          UnderlyingObjectsVector &Objects) {
    138   if (!MI->hasOneMemOperand() ||
    139       (!(*MI->memoperands_begin())->getValue() &&
    140        !(*MI->memoperands_begin())->getPseudoValue()) ||
    141       (*MI->memoperands_begin())->isVolatile())
    142     return;
    143 
    144   if (const PseudoSourceValue *PSV =
    145       (*MI->memoperands_begin())->getPseudoValue()) {
    146     // For now, ignore PseudoSourceValues which may alias LLVM IR values
    147     // because the code that uses this function has no way to cope with
    148     // such aliases.
    149     if (!PSV->isAliased(MFI)) {
    150       bool MayAlias = PSV->mayAlias(MFI);
    151       Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
    152     }
    153     return;
    154   }
    155 
    156   const Value *V = (*MI->memoperands_begin())->getValue();
    157   if (!V)
    158     return;
    159 
    160   SmallVector<Value *, 4> Objs;
    161   getUnderlyingObjects(V, Objs);
    162 
    163   for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
    164          I != IE; ++I) {
    165     V = *I;
    166 
    167     if (!isIdentifiedObject(V)) {
    168       Objects.clear();
    169       return;
    170     }
    171 
    172     Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
    173   }
    174 }
    175 
    176 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
    177   BB = bb;
    178 }
    179 
    180 void ScheduleDAGInstrs::finishBlock() {
    181   // Subclasses should no longer refer to the old block.
    182   BB = nullptr;
    183 }
    184 
    185 /// Initialize the DAG and common scheduler state for the current scheduling
    186 /// region. This does not actually create the DAG, only clears it. The
    187 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
    188 /// region.
    189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
    190                                     MachineBasicBlock::iterator begin,
    191                                     MachineBasicBlock::iterator end,
    192                                     unsigned regioninstrs) {
    193   assert(bb == BB && "startBlock should set BB");
    194   RegionBegin = begin;
    195   RegionEnd = end;
    196   NumRegionInstrs = regioninstrs;
    197 }
    198 
    199 /// Close the current scheduling region. Don't clear any state in case the
    200 /// driver wants to refer to the previous scheduling region.
    201 void ScheduleDAGInstrs::exitRegion() {
    202   // Nothing to do.
    203 }
    204 
    205 /// addSchedBarrierDeps - Add dependencies from instructions in the current
    206 /// list of instructions being scheduled to scheduling barrier by adding
    207 /// the exit SU to the register defs and use list. This is because we want to
    208 /// make sure instructions which define registers that are either used by
    209 /// the terminator or are live-out are properly scheduled. This is
    210 /// especially important when the definition latency of the return value(s)
    211 /// are too high to be hidden by the branch or when the liveout registers
    212 /// used by instructions in the fallthrough block.
    213 void ScheduleDAGInstrs::addSchedBarrierDeps() {
    214   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
    215   ExitSU.setInstr(ExitMI);
    216   bool AllDepKnown = ExitMI &&
    217     (ExitMI->isCall() || ExitMI->isBarrier());
    218   if (ExitMI && AllDepKnown) {
    219     // If it's a call or a barrier, add dependencies on the defs and uses of
    220     // instruction.
    221     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
    222       const MachineOperand &MO = ExitMI->getOperand(i);
    223       if (!MO.isReg() || MO.isDef()) continue;
    224       unsigned Reg = MO.getReg();
    225       if (Reg == 0) continue;
    226 
    227       if (TRI->isPhysicalRegister(Reg))
    228         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
    229       else {
    230         assert(!IsPostRA && "Virtual register encountered after regalloc.");
    231         if (MO.readsReg()) // ignore undef operands
    232           addVRegUseDeps(&ExitSU, i);
    233       }
    234     }
    235   } else {
    236     // For others, e.g. fallthrough, conditional branch, assume the exit
    237     // uses all the registers that are livein to the successor blocks.
    238     assert(Uses.empty() && "Uses in set before adding deps?");
    239     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    240            SE = BB->succ_end(); SI != SE; ++SI)
    241       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
    242              E = (*SI)->livein_end(); I != E; ++I) {
    243         unsigned Reg = *I;
    244         if (!Uses.contains(Reg))
    245           Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
    246       }
    247   }
    248 }
    249 
    250 /// MO is an operand of SU's instruction that defines a physical register. Add
    251 /// data dependencies from SU to any uses of the physical register.
    252 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
    253   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
    254   assert(MO.isDef() && "expect physreg def");
    255 
    256   // Ask the target if address-backscheduling is desirable, and if so how much.
    257   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    258 
    259   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    260        Alias.isValid(); ++Alias) {
    261     if (!Uses.contains(*Alias))
    262       continue;
    263     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
    264       SUnit *UseSU = I->SU;
    265       if (UseSU == SU)
    266         continue;
    267 
    268       // Adjust the dependence latency using operand def/use information,
    269       // then allow the target to perform its own adjustments.
    270       int UseOp = I->OpIdx;
    271       MachineInstr *RegUse = nullptr;
    272       SDep Dep;
    273       if (UseOp < 0)
    274         Dep = SDep(SU, SDep::Artificial);
    275       else {
    276         // Set the hasPhysRegDefs only for physreg defs that have a use within
    277         // the scheduling region.
    278         SU->hasPhysRegDefs = true;
    279         Dep = SDep(SU, SDep::Data, *Alias);
    280         RegUse = UseSU->getInstr();
    281       }
    282       Dep.setLatency(
    283         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
    284                                          UseOp));
    285 
    286       ST.adjustSchedDependency(SU, UseSU, Dep);
    287       UseSU->addPred(Dep);
    288     }
    289   }
    290 }
    291 
    292 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
    293 /// this SUnit to following instructions in the same scheduling region that
    294 /// depend the physical register referenced at OperIdx.
    295 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
    296   MachineInstr *MI = SU->getInstr();
    297   MachineOperand &MO = MI->getOperand(OperIdx);
    298 
    299   // Optionally add output and anti dependencies. For anti
    300   // dependencies we use a latency of 0 because for a multi-issue
    301   // target we want to allow the defining instruction to issue
    302   // in the same cycle as the using instruction.
    303   // TODO: Using a latency of 1 here for output dependencies assumes
    304   //       there's no cost for reusing registers.
    305   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
    306   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    307        Alias.isValid(); ++Alias) {
    308     if (!Defs.contains(*Alias))
    309       continue;
    310     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
    311       SUnit *DefSU = I->SU;
    312       if (DefSU == &ExitSU)
    313         continue;
    314       if (DefSU != SU &&
    315           (Kind != SDep::Output || !MO.isDead() ||
    316            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
    317         if (Kind == SDep::Anti)
    318           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
    319         else {
    320           SDep Dep(SU, Kind, /*Reg=*/*Alias);
    321           Dep.setLatency(
    322             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
    323           DefSU->addPred(Dep);
    324         }
    325       }
    326     }
    327   }
    328 
    329   if (!MO.isDef()) {
    330     SU->hasPhysRegUses = true;
    331     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
    332     // retrieve the existing SUnits list for this register's uses.
    333     // Push this SUnit on the use list.
    334     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
    335     if (RemoveKillFlags)
    336       MO.setIsKill(false);
    337   }
    338   else {
    339     addPhysRegDataDeps(SU, OperIdx);
    340     unsigned Reg = MO.getReg();
    341 
    342     // clear this register's use list
    343     if (Uses.contains(Reg))
    344       Uses.eraseAll(Reg);
    345 
    346     if (!MO.isDead()) {
    347       Defs.eraseAll(Reg);
    348     } else if (SU->isCall) {
    349       // Calls will not be reordered because of chain dependencies (see
    350       // below). Since call operands are dead, calls may continue to be added
    351       // to the DefList making dependence checking quadratic in the size of
    352       // the block. Instead, we leave only one call at the back of the
    353       // DefList.
    354       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
    355       Reg2SUnitsMap::iterator B = P.first;
    356       Reg2SUnitsMap::iterator I = P.second;
    357       for (bool isBegin = I == B; !isBegin; /* empty */) {
    358         isBegin = (--I) == B;
    359         if (!I->SU->isCall)
    360           break;
    361         I = Defs.erase(I);
    362       }
    363     }
    364 
    365     // Defs are pushed in the order they are visited and never reordered.
    366     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
    367   }
    368 }
    369 
    370 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
    371 /// to instructions that occur later in the same scheduling region if they read
    372 /// from or write to the virtual register defined at OperIdx.
    373 ///
    374 /// TODO: Hoist loop induction variable increments. This has to be
    375 /// reevaluated. Generally, IV scheduling should be done before coalescing.
    376 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
    377   const MachineInstr *MI = SU->getInstr();
    378   unsigned Reg = MI->getOperand(OperIdx).getReg();
    379 
    380   // Singly defined vregs do not have output/anti dependencies.
    381   // The current operand is a def, so we have at least one.
    382   // Check here if there are any others...
    383   if (MRI.hasOneDef(Reg))
    384     return;
    385 
    386   // Add output dependence to the next nearest def of this vreg.
    387   //
    388   // Unless this definition is dead, the output dependence should be
    389   // transitively redundant with antidependencies from this definition's
    390   // uses. We're conservative for now until we have a way to guarantee the uses
    391   // are not eliminated sometime during scheduling. The output dependence edge
    392   // is also useful if output latency exceeds def-use latency.
    393   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
    394   if (DefI == VRegDefs.end())
    395     VRegDefs.insert(VReg2SUnit(Reg, SU));
    396   else {
    397     SUnit *DefSU = DefI->SU;
    398     if (DefSU != SU && DefSU != &ExitSU) {
    399       SDep Dep(SU, SDep::Output, Reg);
    400       Dep.setLatency(
    401         SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
    402       DefSU->addPred(Dep);
    403     }
    404     DefI->SU = SU;
    405   }
    406 }
    407 
    408 /// addVRegUseDeps - Add a register data dependency if the instruction that
    409 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
    410 /// register antidependency from this SUnit to instructions that occur later in
    411 /// the same scheduling region if they write the virtual register.
    412 ///
    413 /// TODO: Handle ExitSU "uses" properly.
    414 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
    415   MachineInstr *MI = SU->getInstr();
    416   unsigned Reg = MI->getOperand(OperIdx).getReg();
    417 
    418   // Record this local VReg use.
    419   VReg2UseMap::iterator UI = VRegUses.find(Reg);
    420   for (; UI != VRegUses.end(); ++UI) {
    421     if (UI->SU == SU)
    422       break;
    423   }
    424   if (UI == VRegUses.end())
    425     VRegUses.insert(VReg2SUnit(Reg, SU));
    426 
    427   // Lookup this operand's reaching definition.
    428   assert(LIS && "vreg dependencies requires LiveIntervals");
    429   LiveQueryResult LRQ
    430     = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
    431   VNInfo *VNI = LRQ.valueIn();
    432 
    433   // VNI will be valid because MachineOperand::readsReg() is checked by caller.
    434   assert(VNI && "No value to read by operand");
    435   MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
    436   // Phis and other noninstructions (after coalescing) have a NULL Def.
    437   if (Def) {
    438     SUnit *DefSU = getSUnit(Def);
    439     if (DefSU) {
    440       // The reaching Def lives within this scheduling region.
    441       // Create a data dependence.
    442       SDep dep(DefSU, SDep::Data, Reg);
    443       // Adjust the dependence latency using operand def/use information, then
    444       // allow the target to perform its own adjustments.
    445       int DefOp = Def->findRegisterDefOperandIdx(Reg);
    446       dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
    447 
    448       const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    449       ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
    450       SU->addPred(dep);
    451     }
    452   }
    453 
    454   // Add antidependence to the following def of the vreg it uses.
    455   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
    456   if (DefI != VRegDefs.end() && DefI->SU != SU)
    457     DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
    458 }
    459 
    460 /// Return true if MI is an instruction we are unable to reason about
    461 /// (like a call or something with unmodeled side effects).
    462 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
    463   if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
    464       (MI->hasOrderedMemoryRef() &&
    465        (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
    466     return true;
    467   return false;
    468 }
    469 
    470 // This MI might have either incomplete info, or known to be unsafe
    471 // to deal with (i.e. volatile object).
    472 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
    473                                         const MachineFrameInfo *MFI) {
    474   if (!MI || MI->memoperands_empty())
    475     return true;
    476   // We purposefully do no check for hasOneMemOperand() here
    477   // in hope to trigger an assert downstream in order to
    478   // finish implementation.
    479   if ((*MI->memoperands_begin())->isVolatile() ||
    480        MI->hasUnmodeledSideEffects())
    481     return true;
    482 
    483   if ((*MI->memoperands_begin())->getPseudoValue()) {
    484     // Similarly to getUnderlyingObjectForInstr:
    485     // For now, ignore PseudoSourceValues which may alias LLVM IR values
    486     // because the code that uses this function has no way to cope with
    487     // such aliases.
    488     return true;
    489   }
    490 
    491   const Value *V = (*MI->memoperands_begin())->getValue();
    492   if (!V)
    493     return true;
    494 
    495   SmallVector<Value *, 4> Objs;
    496   getUnderlyingObjects(V, Objs);
    497   for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
    498          IE = Objs.end(); I != IE; ++I) {
    499     // Does this pointer refer to a distinct and identifiable object?
    500     if (!isIdentifiedObject(*I))
    501       return true;
    502   }
    503 
    504   return false;
    505 }
    506 
    507 /// This returns true if the two MIs need a chain edge betwee them.
    508 /// If these are not even memory operations, we still may need
    509 /// chain deps between them. The question really is - could
    510 /// these two MIs be reordered during scheduling from memory dependency
    511 /// point of view.
    512 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    513                              MachineInstr *MIa,
    514                              MachineInstr *MIb) {
    515   // Cover a trivial case - no edge is need to itself.
    516   if (MIa == MIb)
    517     return false;
    518 
    519   // FIXME: Need to handle multiple memory operands to support all targets.
    520   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
    521     return true;
    522 
    523   if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
    524     return true;
    525 
    526   // If we are dealing with two "normal" loads, we do not need an edge
    527   // between them - they could be reordered.
    528   if (!MIa->mayStore() && !MIb->mayStore())
    529     return false;
    530 
    531   // To this point analysis is generic. From here on we do need AA.
    532   if (!AA)
    533     return true;
    534 
    535   MachineMemOperand *MMOa = *MIa->memoperands_begin();
    536   MachineMemOperand *MMOb = *MIb->memoperands_begin();
    537 
    538   if (!MMOa->getValue() || !MMOb->getValue())
    539     return true;
    540 
    541   // The following interface to AA is fashioned after DAGCombiner::isAlias
    542   // and operates with MachineMemOperand offset with some important
    543   // assumptions:
    544   //   - LLVM fundamentally assumes flat address spaces.
    545   //   - MachineOperand offset can *only* result from legalization and
    546   //     cannot affect queries other than the trivial case of overlap
    547   //     checking.
    548   //   - These offsets never wrap and never step outside
    549   //     of allocated objects.
    550   //   - There should never be any negative offsets here.
    551   //
    552   // FIXME: Modify API to hide this math from "user"
    553   // FIXME: Even before we go to AA we can reason locally about some
    554   // memory objects. It can save compile time, and possibly catch some
    555   // corner cases not currently covered.
    556 
    557   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
    558   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
    559 
    560   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
    561   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
    562   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
    563 
    564   AliasAnalysis::AliasResult AAResult = AA->alias(
    565       AliasAnalysis::Location(MMOa->getValue(), Overlapa,
    566                               UseTBAA ? MMOa->getTBAAInfo() : nullptr),
    567       AliasAnalysis::Location(MMOb->getValue(), Overlapb,
    568                               UseTBAA ? MMOb->getTBAAInfo() : nullptr));
    569 
    570   return (AAResult != AliasAnalysis::NoAlias);
    571 }
    572 
    573 /// This recursive function iterates over chain deps of SUb looking for
    574 /// "latest" node that needs a chain edge to SUa.
    575 static unsigned
    576 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    577                  SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
    578                  SmallPtrSet<const SUnit*, 16> &Visited) {
    579   if (!SUa || !SUb || SUb == ExitSU)
    580     return *Depth;
    581 
    582   // Remember visited nodes.
    583   if (!Visited.insert(SUb))
    584       return *Depth;
    585   // If there is _some_ dependency already in place, do not
    586   // descend any further.
    587   // TODO: Need to make sure that if that dependency got eliminated or ignored
    588   // for any reason in the future, we would not violate DAG topology.
    589   // Currently it does not happen, but makes an implicit assumption about
    590   // future implementation.
    591   //
    592   // Independently, if we encounter node that is some sort of global
    593   // object (like a call) we already have full set of dependencies to it
    594   // and we can stop descending.
    595   if (SUa->isSucc(SUb) ||
    596       isGlobalMemoryObject(AA, SUb->getInstr()))
    597     return *Depth;
    598 
    599   // If we do need an edge, or we have exceeded depth budget,
    600   // add that edge to the predecessors chain of SUb,
    601   // and stop descending.
    602   if (*Depth > 200 ||
    603       MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
    604     SUb->addPred(SDep(SUa, SDep::MayAliasMem));
    605     return *Depth;
    606   }
    607   // Track current depth.
    608   (*Depth)++;
    609   // Iterate over chain dependencies only.
    610   for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
    611        I != E; ++I)
    612     if (I->isCtrl())
    613       iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
    614   return *Depth;
    615 }
    616 
    617 /// This function assumes that "downward" from SU there exist
    618 /// tail/leaf of already constructed DAG. It iterates downward and
    619 /// checks whether SU can be aliasing any node dominated
    620 /// by it.
    621 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    622                             SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
    623                             unsigned LatencyToLoad) {
    624   if (!SU)
    625     return;
    626 
    627   SmallPtrSet<const SUnit*, 16> Visited;
    628   unsigned Depth = 0;
    629 
    630   for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
    631        I != IE; ++I) {
    632     if (SU == *I)
    633       continue;
    634     if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
    635       SDep Dep(SU, SDep::MayAliasMem);
    636       Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
    637       (*I)->addPred(Dep);
    638     }
    639     // Now go through all the chain successors and iterate from them.
    640     // Keep track of visited nodes.
    641     for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
    642          JE = (*I)->Succs.end(); J != JE; ++J)
    643       if (J->isCtrl())
    644         iterateChainSucc (AA, MFI, SU, J->getSUnit(),
    645                           ExitSU, &Depth, Visited);
    646   }
    647 }
    648 
    649 /// Check whether two objects need a chain edge, if so, add it
    650 /// otherwise remember the rejected SU.
    651 static inline
    652 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
    653                          SUnit *SUa, SUnit *SUb,
    654                          std::set<SUnit *> &RejectList,
    655                          unsigned TrueMemOrderLatency = 0,
    656                          bool isNormalMemory = false) {
    657   // If this is a false dependency,
    658   // do not add the edge, but rememeber the rejected node.
    659   if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
    660     SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
    661     Dep.setLatency(TrueMemOrderLatency);
    662     SUb->addPred(Dep);
    663   }
    664   else {
    665     // Duplicate entries should be ignored.
    666     RejectList.insert(SUb);
    667     DEBUG(dbgs() << "\tReject chain dep between SU("
    668           << SUa->NodeNum << ") and SU("
    669           << SUb->NodeNum << ")\n");
    670   }
    671 }
    672 
    673 /// Create an SUnit for each real instruction, numbered in top-down toplological
    674 /// order. The instruction order A < B, implies that no edge exists from B to A.
    675 ///
    676 /// Map each real instruction to its SUnit.
    677 ///
    678 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
    679 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
    680 /// instead of pointers.
    681 ///
    682 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
    683 /// the original instruction list.
    684 void ScheduleDAGInstrs::initSUnits() {
    685   // We'll be allocating one SUnit for each real instruction in the region,
    686   // which is contained within a basic block.
    687   SUnits.reserve(NumRegionInstrs);
    688 
    689   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
    690     MachineInstr *MI = I;
    691     if (MI->isDebugValue())
    692       continue;
    693 
    694     SUnit *SU = newSUnit(MI);
    695     MISUnitMap[MI] = SU;
    696 
    697     SU->isCall = MI->isCall();
    698     SU->isCommutable = MI->isCommutable();
    699 
    700     // Assign the Latency field of SU using target-provided information.
    701     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
    702 
    703     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
    704     //
    705     // Reserved resources block an instruction from issuing and stall the
    706     // entire pipeline. These are identified by BufferSize=0.
    707     //
    708     // Unbuffered resources prevent execution of subsequent instructions that
    709     // require the same resources. This is used for in-order execution pipelines
    710     // within an out-of-order core. These are identified by BufferSize=1.
    711     if (SchedModel.hasInstrSchedModel()) {
    712       const MCSchedClassDesc *SC = getSchedClass(SU);
    713       for (TargetSchedModel::ProcResIter
    714              PI = SchedModel.getWriteProcResBegin(SC),
    715              PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
    716         switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
    717         case 0:
    718           SU->hasReservedResource = true;
    719           break;
    720         case 1:
    721           SU->isUnbuffered = true;
    722           break;
    723         default:
    724           break;
    725         }
    726       }
    727     }
    728   }
    729 }
    730 
    731 /// If RegPressure is non-null, compute register pressure as a side effect. The
    732 /// DAG builder is an efficient place to do it because it already visits
    733 /// operands.
    734 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
    735                                         RegPressureTracker *RPTracker,
    736                                         PressureDiffs *PDiffs) {
    737   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    738   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
    739                                                        : ST.useAA();
    740   AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
    741 
    742   MISUnitMap.clear();
    743   ScheduleDAG::clearDAG();
    744 
    745   // Create an SUnit for each real instruction.
    746   initSUnits();
    747 
    748   if (PDiffs)
    749     PDiffs->init(SUnits.size());
    750 
    751   // We build scheduling units by walking a block's instruction list from bottom
    752   // to top.
    753 
    754   // Remember where a generic side-effecting instruction is as we procede.
    755   SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
    756 
    757   // Memory references to specific known memory locations are tracked
    758   // so that they can be given more precise dependencies. We track
    759   // separately the known memory locations that may alias and those
    760   // that are known not to alias
    761   MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
    762   MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
    763   std::set<SUnit*> RejectMemNodes;
    764 
    765   // Remove any stale debug info; sometimes BuildSchedGraph is called again
    766   // without emitting the info from the previous call.
    767   DbgValues.clear();
    768   FirstDbgValue = nullptr;
    769 
    770   assert(Defs.empty() && Uses.empty() &&
    771          "Only BuildGraph should update Defs/Uses");
    772   Defs.setUniverse(TRI->getNumRegs());
    773   Uses.setUniverse(TRI->getNumRegs());
    774 
    775   assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
    776   VRegUses.clear();
    777   VRegDefs.setUniverse(MRI.getNumVirtRegs());
    778   VRegUses.setUniverse(MRI.getNumVirtRegs());
    779 
    780   // Model data dependencies between instructions being scheduled and the
    781   // ExitSU.
    782   addSchedBarrierDeps();
    783 
    784   // Walk the list of instructions, from bottom moving up.
    785   MachineInstr *DbgMI = nullptr;
    786   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
    787        MII != MIE; --MII) {
    788     MachineInstr *MI = std::prev(MII);
    789     if (MI && DbgMI) {
    790       DbgValues.push_back(std::make_pair(DbgMI, MI));
    791       DbgMI = nullptr;
    792     }
    793 
    794     if (MI->isDebugValue()) {
    795       DbgMI = MI;
    796       continue;
    797     }
    798     SUnit *SU = MISUnitMap[MI];
    799     assert(SU && "No SUnit mapped to this MI");
    800 
    801     if (RPTracker) {
    802       PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr;
    803       RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
    804       assert(RPTracker->getPos() == std::prev(MII) &&
    805              "RPTracker can't find MI");
    806     }
    807 
    808     assert(
    809         (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
    810         "Cannot schedule terminators or labels!");
    811 
    812     // Add register-based dependencies (data, anti, and output).
    813     bool HasVRegDef = false;
    814     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
    815       const MachineOperand &MO = MI->getOperand(j);
    816       if (!MO.isReg()) continue;
    817       unsigned Reg = MO.getReg();
    818       if (Reg == 0) continue;
    819 
    820       if (TRI->isPhysicalRegister(Reg))
    821         addPhysRegDeps(SU, j);
    822       else {
    823         assert(!IsPostRA && "Virtual register encountered!");
    824         if (MO.isDef()) {
    825           HasVRegDef = true;
    826           addVRegDefDeps(SU, j);
    827         }
    828         else if (MO.readsReg()) // ignore undef operands
    829           addVRegUseDeps(SU, j);
    830       }
    831     }
    832     // If we haven't seen any uses in this scheduling region, create a
    833     // dependence edge to ExitSU to model the live-out latency. This is required
    834     // for vreg defs with no in-region use, and prefetches with no vreg def.
    835     //
    836     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
    837     // check currently relies on being called before adding chain deps.
    838     if (SU->NumSuccs == 0 && SU->Latency > 1
    839         && (HasVRegDef || MI->mayLoad())) {
    840       SDep Dep(SU, SDep::Artificial);
    841       Dep.setLatency(SU->Latency - 1);
    842       ExitSU.addPred(Dep);
    843     }
    844 
    845     // Add chain dependencies.
    846     // Chain dependencies used to enforce memory order should have
    847     // latency of 0 (except for true dependency of Store followed by
    848     // aliased Load... we estimate that with a single cycle of latency
    849     // assuming the hardware will bypass)
    850     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
    851     // after stack slots are lowered to actual addresses.
    852     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
    853     // produce more precise dependence information.
    854     unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
    855     if (isGlobalMemoryObject(AA, MI)) {
    856       // Be conservative with these and add dependencies on all memory
    857       // references, even those that are known to not alias.
    858       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    859              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
    860         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
    861           I->second[i]->addPred(SDep(SU, SDep::Barrier));
    862         }
    863       }
    864       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    865              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
    866         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
    867           SDep Dep(SU, SDep::Barrier);
    868           Dep.setLatency(TrueMemOrderLatency);
    869           I->second[i]->addPred(Dep);
    870         }
    871       }
    872       // Add SU to the barrier chain.
    873       if (BarrierChain)
    874         BarrierChain->addPred(SDep(SU, SDep::Barrier));
    875       BarrierChain = SU;
    876       // This is a barrier event that acts as a pivotal node in the DAG,
    877       // so it is safe to clear list of exposed nodes.
    878       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
    879                       TrueMemOrderLatency);
    880       RejectMemNodes.clear();
    881       NonAliasMemDefs.clear();
    882       NonAliasMemUses.clear();
    883 
    884       // fall-through
    885     new_alias_chain:
    886       // Chain all possibly aliasing memory references though SU.
    887       if (AliasChain) {
    888         unsigned ChainLatency = 0;
    889         if (AliasChain->getInstr()->mayLoad())
    890           ChainLatency = TrueMemOrderLatency;
    891         addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
    892                            ChainLatency);
    893       }
    894       AliasChain = SU;
    895       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    896         addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
    897                            TrueMemOrderLatency);
    898       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    899            AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
    900         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    901           addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes);
    902       }
    903       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    904            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
    905         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    906           addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
    907                              TrueMemOrderLatency);
    908       }
    909       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
    910                       TrueMemOrderLatency);
    911       PendingLoads.clear();
    912       AliasMemDefs.clear();
    913       AliasMemUses.clear();
    914     } else if (MI->mayStore()) {
    915       UnderlyingObjectsVector Objs;
    916       getUnderlyingObjectsForInstr(MI, MFI, Objs);
    917 
    918       if (Objs.empty()) {
    919         // Treat all other stores conservatively.
    920         goto new_alias_chain;
    921       }
    922 
    923       bool MayAlias = false;
    924       for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
    925            K != KE; ++K) {
    926         ValueType V = K->getPointer();
    927         bool ThisMayAlias = K->getInt();
    928         if (ThisMayAlias)
    929           MayAlias = true;
    930 
    931         // A store to a specific PseudoSourceValue. Add precise dependencies.
    932         // Record the def in MemDefs, first adding a dep if there is
    933         // an existing def.
    934         MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    935           ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
    936         MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
    937           ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
    938         if (I != IE) {
    939           for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    940             addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
    941                                0, true);
    942 
    943           // If we're not using AA, then we only need one store per object.
    944           if (!AAForDep)
    945             I->second.clear();
    946           I->second.push_back(SU);
    947         } else {
    948           if (ThisMayAlias) {
    949             if (!AAForDep)
    950               AliasMemDefs[V].clear();
    951             AliasMemDefs[V].push_back(SU);
    952           } else {
    953             if (!AAForDep)
    954               NonAliasMemDefs[V].clear();
    955             NonAliasMemDefs[V].push_back(SU);
    956           }
    957         }
    958         // Handle the uses in MemUses, if there are any.
    959         MapVector<ValueType, std::vector<SUnit *> >::iterator J =
    960           ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
    961         MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
    962           ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
    963         if (J != JE) {
    964           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
    965             addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
    966                                TrueMemOrderLatency, true);
    967           J->second.clear();
    968         }
    969       }
    970       if (MayAlias) {
    971         // Add dependencies from all the PendingLoads, i.e. loads
    972         // with no underlying object.
    973         for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    974           addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
    975                              TrueMemOrderLatency);
    976         // Add dependence on alias chain, if needed.
    977         if (AliasChain)
    978           addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
    979         // But we also should check dependent instructions for the
    980         // SU in question.
    981         adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
    982                         TrueMemOrderLatency);
    983       }
    984       // Add dependence on barrier chain, if needed.
    985       // There is no point to check aliasing on barrier event. Even if
    986       // SU and barrier _could_ be reordered, they should not. In addition,
    987       // we have lost all RejectMemNodes below barrier.
    988       if (BarrierChain)
    989         BarrierChain->addPred(SDep(SU, SDep::Barrier));
    990     } else if (MI->mayLoad()) {
    991       bool MayAlias = true;
    992       if (MI->isInvariantLoad(AA)) {
    993         // Invariant load, no chain dependencies needed!
    994       } else {
    995         UnderlyingObjectsVector Objs;
    996         getUnderlyingObjectsForInstr(MI, MFI, Objs);
    997 
    998         if (Objs.empty()) {
    999           // A load with no underlying object. Depend on all
   1000           // potentially aliasing stores.
   1001           for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
   1002                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
   1003             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
   1004               addChainDependency(AAForDep, MFI, SU, I->second[i],
   1005                                  RejectMemNodes);
   1006 
   1007           PendingLoads.push_back(SU);
   1008           MayAlias = true;
   1009         } else {
   1010           MayAlias = false;
   1011         }
   1012 
   1013         for (UnderlyingObjectsVector::iterator
   1014              J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
   1015           ValueType V = J->getPointer();
   1016           bool ThisMayAlias = J->getInt();
   1017 
   1018           if (ThisMayAlias)
   1019             MayAlias = true;
   1020 
   1021           // A load from a specific PseudoSourceValue. Add precise dependencies.
   1022           MapVector<ValueType, std::vector<SUnit *> >::iterator I =
   1023             ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
   1024           MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
   1025             ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
   1026           if (I != IE)
   1027             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
   1028               addChainDependency(AAForDep, MFI, SU, I->second[i],
   1029                                  RejectMemNodes, 0, true);
   1030           if (ThisMayAlias)
   1031             AliasMemUses[V].push_back(SU);
   1032           else
   1033             NonAliasMemUses[V].push_back(SU);
   1034         }
   1035         if (MayAlias)
   1036           adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
   1037         // Add dependencies on alias and barrier chains, if needed.
   1038         if (MayAlias && AliasChain)
   1039           addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
   1040         if (BarrierChain)
   1041           BarrierChain->addPred(SDep(SU, SDep::Barrier));
   1042       }
   1043     }
   1044   }
   1045   if (DbgMI)
   1046     FirstDbgValue = DbgMI;
   1047 
   1048   Defs.clear();
   1049   Uses.clear();
   1050   VRegDefs.clear();
   1051   PendingLoads.clear();
   1052 }
   1053 
   1054 /// \brief Initialize register live-range state for updating kills.
   1055 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
   1056   // Start with no live registers.
   1057   LiveRegs.reset();
   1058 
   1059   // Examine the live-in regs of all successors.
   1060   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
   1061        SE = BB->succ_end(); SI != SE; ++SI) {
   1062     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
   1063          E = (*SI)->livein_end(); I != E; ++I) {
   1064       unsigned Reg = *I;
   1065       // Repeat, for reg and all subregs.
   1066       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1067            SubRegs.isValid(); ++SubRegs)
   1068         LiveRegs.set(*SubRegs);
   1069     }
   1070   }
   1071 }
   1072 
   1073 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
   1074   // Setting kill flag...
   1075   if (!MO.isKill()) {
   1076     MO.setIsKill(true);
   1077     return false;
   1078   }
   1079 
   1080   // If MO itself is live, clear the kill flag...
   1081   if (LiveRegs.test(MO.getReg())) {
   1082     MO.setIsKill(false);
   1083     return false;
   1084   }
   1085 
   1086   // If any subreg of MO is live, then create an imp-def for that
   1087   // subreg and keep MO marked as killed.
   1088   MO.setIsKill(false);
   1089   bool AllDead = true;
   1090   const unsigned SuperReg = MO.getReg();
   1091   MachineInstrBuilder MIB(MF, MI);
   1092   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
   1093     if (LiveRegs.test(*SubRegs)) {
   1094       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
   1095       AllDead = false;
   1096     }
   1097   }
   1098 
   1099   if(AllDead)
   1100     MO.setIsKill(true);
   1101   return false;
   1102 }
   1103 
   1104 // FIXME: Reuse the LivePhysRegs utility for this.
   1105 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
   1106   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
   1107 
   1108   LiveRegs.resize(TRI->getNumRegs());
   1109   BitVector killedRegs(TRI->getNumRegs());
   1110 
   1111   startBlockForKills(MBB);
   1112 
   1113   // Examine block from end to start...
   1114   unsigned Count = MBB->size();
   1115   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
   1116        I != E; --Count) {
   1117     MachineInstr *MI = --I;
   1118     if (MI->isDebugValue())
   1119       continue;
   1120 
   1121     // Update liveness.  Registers that are defed but not used in this
   1122     // instruction are now dead. Mark register and all subregs as they
   1123     // are completely defined.
   1124     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1125       MachineOperand &MO = MI->getOperand(i);
   1126       if (MO.isRegMask())
   1127         LiveRegs.clearBitsNotInMask(MO.getRegMask());
   1128       if (!MO.isReg()) continue;
   1129       unsigned Reg = MO.getReg();
   1130       if (Reg == 0) continue;
   1131       if (!MO.isDef()) continue;
   1132       // Ignore two-addr defs.
   1133       if (MI->isRegTiedToUseOperand(i)) continue;
   1134 
   1135       // Repeat for reg and all subregs.
   1136       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1137            SubRegs.isValid(); ++SubRegs)
   1138         LiveRegs.reset(*SubRegs);
   1139     }
   1140 
   1141     // Examine all used registers and set/clear kill flag. When a
   1142     // register is used multiple times we only set the kill flag on
   1143     // the first use. Don't set kill flags on undef operands.
   1144     killedRegs.reset();
   1145     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1146       MachineOperand &MO = MI->getOperand(i);
   1147       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
   1148       unsigned Reg = MO.getReg();
   1149       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
   1150 
   1151       bool kill = false;
   1152       if (!killedRegs.test(Reg)) {
   1153         kill = true;
   1154         // A register is not killed if any subregs are live...
   1155         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
   1156           if (LiveRegs.test(*SubRegs)) {
   1157             kill = false;
   1158             break;
   1159           }
   1160         }
   1161 
   1162         // If subreg is not live, then register is killed if it became
   1163         // live in this instruction
   1164         if (kill)
   1165           kill = !LiveRegs.test(Reg);
   1166       }
   1167 
   1168       if (MO.isKill() != kill) {
   1169         DEBUG(dbgs() << "Fixing " << MO << " in ");
   1170         // Warning: toggleKillFlag may invalidate MO.
   1171         toggleKillFlag(MI, MO);
   1172         DEBUG(MI->dump());
   1173       }
   1174 
   1175       killedRegs.set(Reg);
   1176     }
   1177 
   1178     // Mark any used register (that is not using undef) and subregs as
   1179     // now live...
   1180     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1181       MachineOperand &MO = MI->getOperand(i);
   1182       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
   1183       unsigned Reg = MO.getReg();
   1184       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
   1185 
   1186       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1187            SubRegs.isValid(); ++SubRegs)
   1188         LiveRegs.set(*SubRegs);
   1189     }
   1190   }
   1191 }
   1192 
   1193 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
   1194 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1195   SU->getInstr()->dump();
   1196 #endif
   1197 }
   1198 
   1199 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
   1200   std::string s;
   1201   raw_string_ostream oss(s);
   1202   if (SU == &EntrySU)
   1203     oss << "<entry>";
   1204   else if (SU == &ExitSU)
   1205     oss << "<exit>";
   1206   else
   1207     SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
   1208   return oss.str();
   1209 }
   1210 
   1211 /// Return the basic block label. It is not necessarilly unique because a block
   1212 /// contains multiple scheduling regions. But it is fine for visualization.
   1213 std::string ScheduleDAGInstrs::getDAGName() const {
   1214   return "dag." + BB->getFullName();
   1215 }
   1216 
   1217 //===----------------------------------------------------------------------===//
   1218 // SchedDFSResult Implementation
   1219 //===----------------------------------------------------------------------===//
   1220 
   1221 namespace llvm {
   1222 /// \brief Internal state used to compute SchedDFSResult.
   1223 class SchedDFSImpl {
   1224   SchedDFSResult &R;
   1225 
   1226   /// Join DAG nodes into equivalence classes by their subtree.
   1227   IntEqClasses SubtreeClasses;
   1228   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
   1229   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
   1230 
   1231   struct RootData {
   1232     unsigned NodeID;
   1233     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
   1234     unsigned SubInstrCount; // Instr count in this tree only, not children.
   1235 
   1236     RootData(unsigned id): NodeID(id),
   1237                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
   1238                            SubInstrCount(0) {}
   1239 
   1240     unsigned getSparseSetIndex() const { return NodeID; }
   1241   };
   1242 
   1243   SparseSet<RootData> RootSet;
   1244 
   1245 public:
   1246   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
   1247     RootSet.setUniverse(R.DFSNodeData.size());
   1248   }
   1249 
   1250   /// Return true if this node been visited by the DFS traversal.
   1251   ///
   1252   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
   1253   /// ID. Later, SubtreeID is updated but remains valid.
   1254   bool isVisited(const SUnit *SU) const {
   1255     return R.DFSNodeData[SU->NodeNum].SubtreeID
   1256       != SchedDFSResult::InvalidSubtreeID;
   1257   }
   1258 
   1259   /// Initialize this node's instruction count. We don't need to flag the node
   1260   /// visited until visitPostorder because the DAG cannot have cycles.
   1261   void visitPreorder(const SUnit *SU) {
   1262     R.DFSNodeData[SU->NodeNum].InstrCount =
   1263       SU->getInstr()->isTransient() ? 0 : 1;
   1264   }
   1265 
   1266   /// Called once for each node after all predecessors are visited. Revisit this
   1267   /// node's predecessors and potentially join them now that we know the ILP of
   1268   /// the other predecessors.
   1269   void visitPostorderNode(const SUnit *SU) {
   1270     // Mark this node as the root of a subtree. It may be joined with its
   1271     // successors later.
   1272     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
   1273     RootData RData(SU->NodeNum);
   1274     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
   1275 
   1276     // If any predecessors are still in their own subtree, they either cannot be
   1277     // joined or are large enough to remain separate. If this parent node's
   1278     // total instruction count is not greater than a child subtree by at least
   1279     // the subtree limit, then try to join it now since splitting subtrees is
   1280     // only useful if multiple high-pressure paths are possible.
   1281     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
   1282     for (SUnit::const_pred_iterator
   1283            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
   1284       if (PI->getKind() != SDep::Data)
   1285         continue;
   1286       unsigned PredNum = PI->getSUnit()->NodeNum;
   1287       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
   1288         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
   1289 
   1290       // Either link or merge the TreeData entry from the child to the parent.
   1291       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
   1292         // If the predecessor's parent is invalid, this is a tree edge and the
   1293         // current node is the parent.
   1294         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
   1295           RootSet[PredNum].ParentNodeID = SU->NodeNum;
   1296       }
   1297       else if (RootSet.count(PredNum)) {
   1298         // The predecessor is not a root, but is still in the root set. This
   1299         // must be the new parent that it was just joined to. Note that
   1300         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
   1301         // set to the original parent.
   1302         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
   1303         RootSet.erase(PredNum);
   1304       }
   1305     }
   1306     RootSet[SU->NodeNum] = RData;
   1307   }
   1308 
   1309   /// Called once for each tree edge after calling visitPostOrderNode on the
   1310   /// predecessor. Increment the parent node's instruction count and
   1311   /// preemptively join this subtree to its parent's if it is small enough.
   1312   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
   1313     R.DFSNodeData[Succ->NodeNum].InstrCount
   1314       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
   1315     joinPredSubtree(PredDep, Succ);
   1316   }
   1317 
   1318   /// Add a connection for cross edges.
   1319   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
   1320     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
   1321   }
   1322 
   1323   /// Set each node's subtree ID to the representative ID and record connections
   1324   /// between trees.
   1325   void finalize() {
   1326     SubtreeClasses.compress();
   1327     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
   1328     assert(SubtreeClasses.getNumClasses() == RootSet.size()
   1329            && "number of roots should match trees");
   1330     for (SparseSet<RootData>::const_iterator
   1331            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
   1332       unsigned TreeID = SubtreeClasses[RI->NodeID];
   1333       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
   1334         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
   1335       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
   1336       // Note that SubInstrCount may be greater than InstrCount if we joined
   1337       // subtrees across a cross edge. InstrCount will be attributed to the
   1338       // original parent, while SubInstrCount will be attributed to the joined
   1339       // parent.
   1340     }
   1341     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
   1342     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
   1343     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
   1344     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
   1345       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
   1346       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
   1347             << R.DFSNodeData[Idx].SubtreeID << '\n');
   1348     }
   1349     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
   1350            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
   1351          I != E; ++I) {
   1352       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
   1353       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
   1354       if (PredTree == SuccTree)
   1355         continue;
   1356       unsigned Depth = I->first->getDepth();
   1357       addConnection(PredTree, SuccTree, Depth);
   1358       addConnection(SuccTree, PredTree, Depth);
   1359     }
   1360   }
   1361 
   1362 protected:
   1363   /// Join the predecessor subtree with the successor that is its DFS
   1364   /// parent. Apply some heuristics before joining.
   1365   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
   1366                        bool CheckLimit = true) {
   1367     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
   1368 
   1369     // Check if the predecessor is already joined.
   1370     const SUnit *PredSU = PredDep.getSUnit();
   1371     unsigned PredNum = PredSU->NodeNum;
   1372     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
   1373       return false;
   1374 
   1375     // Four is the magic number of successors before a node is considered a
   1376     // pinch point.
   1377     unsigned NumDataSucs = 0;
   1378     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
   1379            SE = PredSU->Succs.end(); SI != SE; ++SI) {
   1380       if (SI->getKind() == SDep::Data) {
   1381         if (++NumDataSucs >= 4)
   1382           return false;
   1383       }
   1384     }
   1385     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
   1386       return false;
   1387     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
   1388     SubtreeClasses.join(Succ->NodeNum, PredNum);
   1389     return true;
   1390   }
   1391 
   1392   /// Called by finalize() to record a connection between trees.
   1393   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
   1394     if (!Depth)
   1395       return;
   1396 
   1397     do {
   1398       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
   1399         R.SubtreeConnections[FromTree];
   1400       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
   1401              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
   1402         if (I->TreeID == ToTree) {
   1403           I->Level = std::max(I->Level, Depth);
   1404           return;
   1405         }
   1406       }
   1407       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
   1408       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
   1409     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
   1410   }
   1411 };
   1412 } // namespace llvm
   1413 
   1414 namespace {
   1415 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
   1416 class SchedDAGReverseDFS {
   1417   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
   1418 public:
   1419   bool isComplete() const { return DFSStack.empty(); }
   1420 
   1421   void follow(const SUnit *SU) {
   1422     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
   1423   }
   1424   void advance() { ++DFSStack.back().second; }
   1425 
   1426   const SDep *backtrack() {
   1427     DFSStack.pop_back();
   1428     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
   1429   }
   1430 
   1431   const SUnit *getCurr() const { return DFSStack.back().first; }
   1432 
   1433   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
   1434 
   1435   SUnit::const_pred_iterator getPredEnd() const {
   1436     return getCurr()->Preds.end();
   1437   }
   1438 };
   1439 } // anonymous
   1440 
   1441 static bool hasDataSucc(const SUnit *SU) {
   1442   for (SUnit::const_succ_iterator
   1443          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
   1444     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
   1445       return true;
   1446   }
   1447   return false;
   1448 }
   1449 
   1450 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
   1451 /// search from this root.
   1452 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
   1453   if (!IsBottomUp)
   1454     llvm_unreachable("Top-down ILP metric is unimplemnted");
   1455 
   1456   SchedDFSImpl Impl(*this);
   1457   for (ArrayRef<SUnit>::const_iterator
   1458          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
   1459     const SUnit *SU = &*SI;
   1460     if (Impl.isVisited(SU) || hasDataSucc(SU))
   1461       continue;
   1462 
   1463     SchedDAGReverseDFS DFS;
   1464     Impl.visitPreorder(SU);
   1465     DFS.follow(SU);
   1466     for (;;) {
   1467       // Traverse the leftmost path as far as possible.
   1468       while (DFS.getPred() != DFS.getPredEnd()) {
   1469         const SDep &PredDep = *DFS.getPred();
   1470         DFS.advance();
   1471         // Ignore non-data edges.
   1472         if (PredDep.getKind() != SDep::Data
   1473             || PredDep.getSUnit()->isBoundaryNode()) {
   1474           continue;
   1475         }
   1476         // An already visited edge is a cross edge, assuming an acyclic DAG.
   1477         if (Impl.isVisited(PredDep.getSUnit())) {
   1478           Impl.visitCrossEdge(PredDep, DFS.getCurr());
   1479           continue;
   1480         }
   1481         Impl.visitPreorder(PredDep.getSUnit());
   1482         DFS.follow(PredDep.getSUnit());
   1483       }
   1484       // Visit the top of the stack in postorder and backtrack.
   1485       const SUnit *Child = DFS.getCurr();
   1486       const SDep *PredDep = DFS.backtrack();
   1487       Impl.visitPostorderNode(Child);
   1488       if (PredDep)
   1489         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
   1490       if (DFS.isComplete())
   1491         break;
   1492     }
   1493   }
   1494   Impl.finalize();
   1495 }
   1496 
   1497 /// The root of the given SubtreeID was just scheduled. For all subtrees
   1498 /// connected to this tree, record the depth of the connection so that the
   1499 /// nearest connected subtrees can be prioritized.
   1500 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
   1501   for (SmallVectorImpl<Connection>::const_iterator
   1502          I = SubtreeConnections[SubtreeID].begin(),
   1503          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
   1504     SubtreeConnectLevels[I->TreeID] =
   1505       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
   1506     DEBUG(dbgs() << "  Tree: " << I->TreeID
   1507           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
   1508   }
   1509 }
   1510 
   1511 LLVM_DUMP_METHOD
   1512 void ILPValue::print(raw_ostream &OS) const {
   1513   OS << InstrCount << " / " << Length << " = ";
   1514   if (!Length)
   1515     OS << "BADILP";
   1516   else
   1517     OS << format("%g", ((double)InstrCount / Length));
   1518 }
   1519 
   1520 LLVM_DUMP_METHOD
   1521 void ILPValue::dump() const {
   1522   dbgs() << *this << '\n';
   1523 }
   1524 
   1525 namespace llvm {
   1526 
   1527 LLVM_DUMP_METHOD
   1528 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
   1529   Val.print(OS);
   1530   return OS;
   1531 }
   1532 
   1533 } // namespace llvm
   1534