Home | History | Annotate | Download | only in Sema
      1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides Sema routines for C++ overloading.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/Overload.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/Expr.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "clang/AST/TypeOrdering.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "clang/Basic/DiagnosticOptions.h"
     24 #include "clang/Basic/PartialDiagnostic.h"
     25 #include "clang/Basic/TargetInfo.h"
     26 #include "clang/Sema/Initialization.h"
     27 #include "clang/Sema/Lookup.h"
     28 #include "clang/Sema/SemaInternal.h"
     29 #include "clang/Sema/Template.h"
     30 #include "clang/Sema/TemplateDeduction.h"
     31 #include "llvm/ADT/DenseSet.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/ADT/SmallPtrSet.h"
     34 #include "llvm/ADT/SmallString.h"
     35 #include <algorithm>
     36 #include <cstdlib>
     37 
     38 namespace clang {
     39 using namespace sema;
     40 
     41 /// A convenience routine for creating a decayed reference to a function.
     42 static ExprResult
     43 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
     44                       bool HadMultipleCandidates,
     45                       SourceLocation Loc = SourceLocation(),
     46                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
     47   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
     48     return ExprError();
     49   // If FoundDecl is different from Fn (such as if one is a template
     50   // and the other a specialization), make sure DiagnoseUseOfDecl is
     51   // called on both.
     52   // FIXME: This would be more comprehensively addressed by modifying
     53   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
     54   // being used.
     55   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
     56     return ExprError();
     57   DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
     58                                                  VK_LValue, Loc, LocInfo);
     59   if (HadMultipleCandidates)
     60     DRE->setHadMultipleCandidates(true);
     61 
     62   S.MarkDeclRefReferenced(DRE);
     63 
     64   ExprResult E = DRE;
     65   E = S.DefaultFunctionArrayConversion(E.get());
     66   if (E.isInvalid())
     67     return ExprError();
     68   return E;
     69 }
     70 
     71 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
     72                                  bool InOverloadResolution,
     73                                  StandardConversionSequence &SCS,
     74                                  bool CStyle,
     75                                  bool AllowObjCWritebackConversion);
     76 
     77 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
     78                                                  QualType &ToType,
     79                                                  bool InOverloadResolution,
     80                                                  StandardConversionSequence &SCS,
     81                                                  bool CStyle);
     82 static OverloadingResult
     83 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
     84                         UserDefinedConversionSequence& User,
     85                         OverloadCandidateSet& Conversions,
     86                         bool AllowExplicit,
     87                         bool AllowObjCConversionOnExplicit);
     88 
     89 
     90 static ImplicitConversionSequence::CompareKind
     91 CompareStandardConversionSequences(Sema &S,
     92                                    const StandardConversionSequence& SCS1,
     93                                    const StandardConversionSequence& SCS2);
     94 
     95 static ImplicitConversionSequence::CompareKind
     96 CompareQualificationConversions(Sema &S,
     97                                 const StandardConversionSequence& SCS1,
     98                                 const StandardConversionSequence& SCS2);
     99 
    100 static ImplicitConversionSequence::CompareKind
    101 CompareDerivedToBaseConversions(Sema &S,
    102                                 const StandardConversionSequence& SCS1,
    103                                 const StandardConversionSequence& SCS2);
    104 
    105 
    106 
    107 /// GetConversionCategory - Retrieve the implicit conversion
    108 /// category corresponding to the given implicit conversion kind.
    109 ImplicitConversionCategory
    110 GetConversionCategory(ImplicitConversionKind Kind) {
    111   static const ImplicitConversionCategory
    112     Category[(int)ICK_Num_Conversion_Kinds] = {
    113     ICC_Identity,
    114     ICC_Lvalue_Transformation,
    115     ICC_Lvalue_Transformation,
    116     ICC_Lvalue_Transformation,
    117     ICC_Identity,
    118     ICC_Qualification_Adjustment,
    119     ICC_Promotion,
    120     ICC_Promotion,
    121     ICC_Promotion,
    122     ICC_Conversion,
    123     ICC_Conversion,
    124     ICC_Conversion,
    125     ICC_Conversion,
    126     ICC_Conversion,
    127     ICC_Conversion,
    128     ICC_Conversion,
    129     ICC_Conversion,
    130     ICC_Conversion,
    131     ICC_Conversion,
    132     ICC_Conversion,
    133     ICC_Conversion,
    134     ICC_Conversion
    135   };
    136   return Category[(int)Kind];
    137 }
    138 
    139 /// GetConversionRank - Retrieve the implicit conversion rank
    140 /// corresponding to the given implicit conversion kind.
    141 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
    142   static const ImplicitConversionRank
    143     Rank[(int)ICK_Num_Conversion_Kinds] = {
    144     ICR_Exact_Match,
    145     ICR_Exact_Match,
    146     ICR_Exact_Match,
    147     ICR_Exact_Match,
    148     ICR_Exact_Match,
    149     ICR_Exact_Match,
    150     ICR_Promotion,
    151     ICR_Promotion,
    152     ICR_Promotion,
    153     ICR_Conversion,
    154     ICR_Conversion,
    155     ICR_Conversion,
    156     ICR_Conversion,
    157     ICR_Conversion,
    158     ICR_Conversion,
    159     ICR_Conversion,
    160     ICR_Conversion,
    161     ICR_Conversion,
    162     ICR_Conversion,
    163     ICR_Conversion,
    164     ICR_Complex_Real_Conversion,
    165     ICR_Conversion,
    166     ICR_Conversion,
    167     ICR_Writeback_Conversion
    168   };
    169   return Rank[(int)Kind];
    170 }
    171 
    172 /// GetImplicitConversionName - Return the name of this kind of
    173 /// implicit conversion.
    174 const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
    175   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
    176     "No conversion",
    177     "Lvalue-to-rvalue",
    178     "Array-to-pointer",
    179     "Function-to-pointer",
    180     "Noreturn adjustment",
    181     "Qualification",
    182     "Integral promotion",
    183     "Floating point promotion",
    184     "Complex promotion",
    185     "Integral conversion",
    186     "Floating conversion",
    187     "Complex conversion",
    188     "Floating-integral conversion",
    189     "Pointer conversion",
    190     "Pointer-to-member conversion",
    191     "Boolean conversion",
    192     "Compatible-types conversion",
    193     "Derived-to-base conversion",
    194     "Vector conversion",
    195     "Vector splat",
    196     "Complex-real conversion",
    197     "Block Pointer conversion",
    198     "Transparent Union Conversion"
    199     "Writeback conversion"
    200   };
    201   return Name[Kind];
    202 }
    203 
    204 /// StandardConversionSequence - Set the standard conversion
    205 /// sequence to the identity conversion.
    206 void StandardConversionSequence::setAsIdentityConversion() {
    207   First = ICK_Identity;
    208   Second = ICK_Identity;
    209   Third = ICK_Identity;
    210   DeprecatedStringLiteralToCharPtr = false;
    211   QualificationIncludesObjCLifetime = false;
    212   ReferenceBinding = false;
    213   DirectBinding = false;
    214   IsLvalueReference = true;
    215   BindsToFunctionLvalue = false;
    216   BindsToRvalue = false;
    217   BindsImplicitObjectArgumentWithoutRefQualifier = false;
    218   ObjCLifetimeConversionBinding = false;
    219   CopyConstructor = nullptr;
    220 }
    221 
    222 /// getRank - Retrieve the rank of this standard conversion sequence
    223 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
    224 /// implicit conversions.
    225 ImplicitConversionRank StandardConversionSequence::getRank() const {
    226   ImplicitConversionRank Rank = ICR_Exact_Match;
    227   if  (GetConversionRank(First) > Rank)
    228     Rank = GetConversionRank(First);
    229   if  (GetConversionRank(Second) > Rank)
    230     Rank = GetConversionRank(Second);
    231   if  (GetConversionRank(Third) > Rank)
    232     Rank = GetConversionRank(Third);
    233   return Rank;
    234 }
    235 
    236 /// isPointerConversionToBool - Determines whether this conversion is
    237 /// a conversion of a pointer or pointer-to-member to bool. This is
    238 /// used as part of the ranking of standard conversion sequences
    239 /// (C++ 13.3.3.2p4).
    240 bool StandardConversionSequence::isPointerConversionToBool() const {
    241   // Note that FromType has not necessarily been transformed by the
    242   // array-to-pointer or function-to-pointer implicit conversions, so
    243   // check for their presence as well as checking whether FromType is
    244   // a pointer.
    245   if (getToType(1)->isBooleanType() &&
    246       (getFromType()->isPointerType() ||
    247        getFromType()->isObjCObjectPointerType() ||
    248        getFromType()->isBlockPointerType() ||
    249        getFromType()->isNullPtrType() ||
    250        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
    251     return true;
    252 
    253   return false;
    254 }
    255 
    256 /// isPointerConversionToVoidPointer - Determines whether this
    257 /// conversion is a conversion of a pointer to a void pointer. This is
    258 /// used as part of the ranking of standard conversion sequences (C++
    259 /// 13.3.3.2p4).
    260 bool
    261 StandardConversionSequence::
    262 isPointerConversionToVoidPointer(ASTContext& Context) const {
    263   QualType FromType = getFromType();
    264   QualType ToType = getToType(1);
    265 
    266   // Note that FromType has not necessarily been transformed by the
    267   // array-to-pointer implicit conversion, so check for its presence
    268   // and redo the conversion to get a pointer.
    269   if (First == ICK_Array_To_Pointer)
    270     FromType = Context.getArrayDecayedType(FromType);
    271 
    272   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
    273     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
    274       return ToPtrType->getPointeeType()->isVoidType();
    275 
    276   return false;
    277 }
    278 
    279 /// Skip any implicit casts which could be either part of a narrowing conversion
    280 /// or after one in an implicit conversion.
    281 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
    282   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
    283     switch (ICE->getCastKind()) {
    284     case CK_NoOp:
    285     case CK_IntegralCast:
    286     case CK_IntegralToBoolean:
    287     case CK_IntegralToFloating:
    288     case CK_FloatingToIntegral:
    289     case CK_FloatingToBoolean:
    290     case CK_FloatingCast:
    291       Converted = ICE->getSubExpr();
    292       continue;
    293 
    294     default:
    295       return Converted;
    296     }
    297   }
    298 
    299   return Converted;
    300 }
    301 
    302 /// Check if this standard conversion sequence represents a narrowing
    303 /// conversion, according to C++11 [dcl.init.list]p7.
    304 ///
    305 /// \param Ctx  The AST context.
    306 /// \param Converted  The result of applying this standard conversion sequence.
    307 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
    308 ///        value of the expression prior to the narrowing conversion.
    309 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
    310 ///        type of the expression prior to the narrowing conversion.
    311 NarrowingKind
    312 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
    313                                              const Expr *Converted,
    314                                              APValue &ConstantValue,
    315                                              QualType &ConstantType) const {
    316   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
    317 
    318   // C++11 [dcl.init.list]p7:
    319   //   A narrowing conversion is an implicit conversion ...
    320   QualType FromType = getToType(0);
    321   QualType ToType = getToType(1);
    322   switch (Second) {
    323   // -- from a floating-point type to an integer type, or
    324   //
    325   // -- from an integer type or unscoped enumeration type to a floating-point
    326   //    type, except where the source is a constant expression and the actual
    327   //    value after conversion will fit into the target type and will produce
    328   //    the original value when converted back to the original type, or
    329   case ICK_Floating_Integral:
    330     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
    331       return NK_Type_Narrowing;
    332     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
    333       llvm::APSInt IntConstantValue;
    334       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    335       if (Initializer &&
    336           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
    337         // Convert the integer to the floating type.
    338         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
    339         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
    340                                 llvm::APFloat::rmNearestTiesToEven);
    341         // And back.
    342         llvm::APSInt ConvertedValue = IntConstantValue;
    343         bool ignored;
    344         Result.convertToInteger(ConvertedValue,
    345                                 llvm::APFloat::rmTowardZero, &ignored);
    346         // If the resulting value is different, this was a narrowing conversion.
    347         if (IntConstantValue != ConvertedValue) {
    348           ConstantValue = APValue(IntConstantValue);
    349           ConstantType = Initializer->getType();
    350           return NK_Constant_Narrowing;
    351         }
    352       } else {
    353         // Variables are always narrowings.
    354         return NK_Variable_Narrowing;
    355       }
    356     }
    357     return NK_Not_Narrowing;
    358 
    359   // -- from long double to double or float, or from double to float, except
    360   //    where the source is a constant expression and the actual value after
    361   //    conversion is within the range of values that can be represented (even
    362   //    if it cannot be represented exactly), or
    363   case ICK_Floating_Conversion:
    364     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
    365         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
    366       // FromType is larger than ToType.
    367       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    368       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
    369         // Constant!
    370         assert(ConstantValue.isFloat());
    371         llvm::APFloat FloatVal = ConstantValue.getFloat();
    372         // Convert the source value into the target type.
    373         bool ignored;
    374         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
    375           Ctx.getFloatTypeSemantics(ToType),
    376           llvm::APFloat::rmNearestTiesToEven, &ignored);
    377         // If there was no overflow, the source value is within the range of
    378         // values that can be represented.
    379         if (ConvertStatus & llvm::APFloat::opOverflow) {
    380           ConstantType = Initializer->getType();
    381           return NK_Constant_Narrowing;
    382         }
    383       } else {
    384         return NK_Variable_Narrowing;
    385       }
    386     }
    387     return NK_Not_Narrowing;
    388 
    389   // -- from an integer type or unscoped enumeration type to an integer type
    390   //    that cannot represent all the values of the original type, except where
    391   //    the source is a constant expression and the actual value after
    392   //    conversion will fit into the target type and will produce the original
    393   //    value when converted back to the original type.
    394   case ICK_Boolean_Conversion:  // Bools are integers too.
    395     if (!FromType->isIntegralOrUnscopedEnumerationType()) {
    396       // Boolean conversions can be from pointers and pointers to members
    397       // [conv.bool], and those aren't considered narrowing conversions.
    398       return NK_Not_Narrowing;
    399     }  // Otherwise, fall through to the integral case.
    400   case ICK_Integral_Conversion: {
    401     assert(FromType->isIntegralOrUnscopedEnumerationType());
    402     assert(ToType->isIntegralOrUnscopedEnumerationType());
    403     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
    404     const unsigned FromWidth = Ctx.getIntWidth(FromType);
    405     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
    406     const unsigned ToWidth = Ctx.getIntWidth(ToType);
    407 
    408     if (FromWidth > ToWidth ||
    409         (FromWidth == ToWidth && FromSigned != ToSigned) ||
    410         (FromSigned && !ToSigned)) {
    411       // Not all values of FromType can be represented in ToType.
    412       llvm::APSInt InitializerValue;
    413       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    414       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
    415         // Such conversions on variables are always narrowing.
    416         return NK_Variable_Narrowing;
    417       }
    418       bool Narrowing = false;
    419       if (FromWidth < ToWidth) {
    420         // Negative -> unsigned is narrowing. Otherwise, more bits is never
    421         // narrowing.
    422         if (InitializerValue.isSigned() && InitializerValue.isNegative())
    423           Narrowing = true;
    424       } else {
    425         // Add a bit to the InitializerValue so we don't have to worry about
    426         // signed vs. unsigned comparisons.
    427         InitializerValue = InitializerValue.extend(
    428           InitializerValue.getBitWidth() + 1);
    429         // Convert the initializer to and from the target width and signed-ness.
    430         llvm::APSInt ConvertedValue = InitializerValue;
    431         ConvertedValue = ConvertedValue.trunc(ToWidth);
    432         ConvertedValue.setIsSigned(ToSigned);
    433         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
    434         ConvertedValue.setIsSigned(InitializerValue.isSigned());
    435         // If the result is different, this was a narrowing conversion.
    436         if (ConvertedValue != InitializerValue)
    437           Narrowing = true;
    438       }
    439       if (Narrowing) {
    440         ConstantType = Initializer->getType();
    441         ConstantValue = APValue(InitializerValue);
    442         return NK_Constant_Narrowing;
    443       }
    444     }
    445     return NK_Not_Narrowing;
    446   }
    447 
    448   default:
    449     // Other kinds of conversions are not narrowings.
    450     return NK_Not_Narrowing;
    451   }
    452 }
    453 
    454 /// dump - Print this standard conversion sequence to standard
    455 /// error. Useful for debugging overloading issues.
    456 void StandardConversionSequence::dump() const {
    457   raw_ostream &OS = llvm::errs();
    458   bool PrintedSomething = false;
    459   if (First != ICK_Identity) {
    460     OS << GetImplicitConversionName(First);
    461     PrintedSomething = true;
    462   }
    463 
    464   if (Second != ICK_Identity) {
    465     if (PrintedSomething) {
    466       OS << " -> ";
    467     }
    468     OS << GetImplicitConversionName(Second);
    469 
    470     if (CopyConstructor) {
    471       OS << " (by copy constructor)";
    472     } else if (DirectBinding) {
    473       OS << " (direct reference binding)";
    474     } else if (ReferenceBinding) {
    475       OS << " (reference binding)";
    476     }
    477     PrintedSomething = true;
    478   }
    479 
    480   if (Third != ICK_Identity) {
    481     if (PrintedSomething) {
    482       OS << " -> ";
    483     }
    484     OS << GetImplicitConversionName(Third);
    485     PrintedSomething = true;
    486   }
    487 
    488   if (!PrintedSomething) {
    489     OS << "No conversions required";
    490   }
    491 }
    492 
    493 /// dump - Print this user-defined conversion sequence to standard
    494 /// error. Useful for debugging overloading issues.
    495 void UserDefinedConversionSequence::dump() const {
    496   raw_ostream &OS = llvm::errs();
    497   if (Before.First || Before.Second || Before.Third) {
    498     Before.dump();
    499     OS << " -> ";
    500   }
    501   if (ConversionFunction)
    502     OS << '\'' << *ConversionFunction << '\'';
    503   else
    504     OS << "aggregate initialization";
    505   if (After.First || After.Second || After.Third) {
    506     OS << " -> ";
    507     After.dump();
    508   }
    509 }
    510 
    511 /// dump - Print this implicit conversion sequence to standard
    512 /// error. Useful for debugging overloading issues.
    513 void ImplicitConversionSequence::dump() const {
    514   raw_ostream &OS = llvm::errs();
    515   if (isStdInitializerListElement())
    516     OS << "Worst std::initializer_list element conversion: ";
    517   switch (ConversionKind) {
    518   case StandardConversion:
    519     OS << "Standard conversion: ";
    520     Standard.dump();
    521     break;
    522   case UserDefinedConversion:
    523     OS << "User-defined conversion: ";
    524     UserDefined.dump();
    525     break;
    526   case EllipsisConversion:
    527     OS << "Ellipsis conversion";
    528     break;
    529   case AmbiguousConversion:
    530     OS << "Ambiguous conversion";
    531     break;
    532   case BadConversion:
    533     OS << "Bad conversion";
    534     break;
    535   }
    536 
    537   OS << "\n";
    538 }
    539 
    540 void AmbiguousConversionSequence::construct() {
    541   new (&conversions()) ConversionSet();
    542 }
    543 
    544 void AmbiguousConversionSequence::destruct() {
    545   conversions().~ConversionSet();
    546 }
    547 
    548 void
    549 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
    550   FromTypePtr = O.FromTypePtr;
    551   ToTypePtr = O.ToTypePtr;
    552   new (&conversions()) ConversionSet(O.conversions());
    553 }
    554 
    555 namespace {
    556   // Structure used by DeductionFailureInfo to store
    557   // template argument information.
    558   struct DFIArguments {
    559     TemplateArgument FirstArg;
    560     TemplateArgument SecondArg;
    561   };
    562   // Structure used by DeductionFailureInfo to store
    563   // template parameter and template argument information.
    564   struct DFIParamWithArguments : DFIArguments {
    565     TemplateParameter Param;
    566   };
    567 }
    568 
    569 /// \brief Convert from Sema's representation of template deduction information
    570 /// to the form used in overload-candidate information.
    571 DeductionFailureInfo MakeDeductionFailureInfo(ASTContext &Context,
    572                                               Sema::TemplateDeductionResult TDK,
    573                                               TemplateDeductionInfo &Info) {
    574   DeductionFailureInfo Result;
    575   Result.Result = static_cast<unsigned>(TDK);
    576   Result.HasDiagnostic = false;
    577   Result.Data = nullptr;
    578   switch (TDK) {
    579   case Sema::TDK_Success:
    580   case Sema::TDK_Invalid:
    581   case Sema::TDK_InstantiationDepth:
    582   case Sema::TDK_TooManyArguments:
    583   case Sema::TDK_TooFewArguments:
    584     break;
    585 
    586   case Sema::TDK_Incomplete:
    587   case Sema::TDK_InvalidExplicitArguments:
    588     Result.Data = Info.Param.getOpaqueValue();
    589     break;
    590 
    591   case Sema::TDK_NonDeducedMismatch: {
    592     // FIXME: Should allocate from normal heap so that we can free this later.
    593     DFIArguments *Saved = new (Context) DFIArguments;
    594     Saved->FirstArg = Info.FirstArg;
    595     Saved->SecondArg = Info.SecondArg;
    596     Result.Data = Saved;
    597     break;
    598   }
    599 
    600   case Sema::TDK_Inconsistent:
    601   case Sema::TDK_Underqualified: {
    602     // FIXME: Should allocate from normal heap so that we can free this later.
    603     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
    604     Saved->Param = Info.Param;
    605     Saved->FirstArg = Info.FirstArg;
    606     Saved->SecondArg = Info.SecondArg;
    607     Result.Data = Saved;
    608     break;
    609   }
    610 
    611   case Sema::TDK_SubstitutionFailure:
    612     Result.Data = Info.take();
    613     if (Info.hasSFINAEDiagnostic()) {
    614       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
    615           SourceLocation(), PartialDiagnostic::NullDiagnostic());
    616       Info.takeSFINAEDiagnostic(*Diag);
    617       Result.HasDiagnostic = true;
    618     }
    619     break;
    620 
    621   case Sema::TDK_FailedOverloadResolution:
    622     Result.Data = Info.Expression;
    623     break;
    624 
    625   case Sema::TDK_MiscellaneousDeductionFailure:
    626     break;
    627   }
    628 
    629   return Result;
    630 }
    631 
    632 void DeductionFailureInfo::Destroy() {
    633   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    634   case Sema::TDK_Success:
    635   case Sema::TDK_Invalid:
    636   case Sema::TDK_InstantiationDepth:
    637   case Sema::TDK_Incomplete:
    638   case Sema::TDK_TooManyArguments:
    639   case Sema::TDK_TooFewArguments:
    640   case Sema::TDK_InvalidExplicitArguments:
    641   case Sema::TDK_FailedOverloadResolution:
    642     break;
    643 
    644   case Sema::TDK_Inconsistent:
    645   case Sema::TDK_Underqualified:
    646   case Sema::TDK_NonDeducedMismatch:
    647     // FIXME: Destroy the data?
    648     Data = nullptr;
    649     break;
    650 
    651   case Sema::TDK_SubstitutionFailure:
    652     // FIXME: Destroy the template argument list?
    653     Data = nullptr;
    654     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
    655       Diag->~PartialDiagnosticAt();
    656       HasDiagnostic = false;
    657     }
    658     break;
    659 
    660   // Unhandled
    661   case Sema::TDK_MiscellaneousDeductionFailure:
    662     break;
    663   }
    664 }
    665 
    666 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
    667   if (HasDiagnostic)
    668     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
    669   return nullptr;
    670 }
    671 
    672 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
    673   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    674   case Sema::TDK_Success:
    675   case Sema::TDK_Invalid:
    676   case Sema::TDK_InstantiationDepth:
    677   case Sema::TDK_TooManyArguments:
    678   case Sema::TDK_TooFewArguments:
    679   case Sema::TDK_SubstitutionFailure:
    680   case Sema::TDK_NonDeducedMismatch:
    681   case Sema::TDK_FailedOverloadResolution:
    682     return TemplateParameter();
    683 
    684   case Sema::TDK_Incomplete:
    685   case Sema::TDK_InvalidExplicitArguments:
    686     return TemplateParameter::getFromOpaqueValue(Data);
    687 
    688   case Sema::TDK_Inconsistent:
    689   case Sema::TDK_Underqualified:
    690     return static_cast<DFIParamWithArguments*>(Data)->Param;
    691 
    692   // Unhandled
    693   case Sema::TDK_MiscellaneousDeductionFailure:
    694     break;
    695   }
    696 
    697   return TemplateParameter();
    698 }
    699 
    700 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
    701   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    702   case Sema::TDK_Success:
    703   case Sema::TDK_Invalid:
    704   case Sema::TDK_InstantiationDepth:
    705   case Sema::TDK_TooManyArguments:
    706   case Sema::TDK_TooFewArguments:
    707   case Sema::TDK_Incomplete:
    708   case Sema::TDK_InvalidExplicitArguments:
    709   case Sema::TDK_Inconsistent:
    710   case Sema::TDK_Underqualified:
    711   case Sema::TDK_NonDeducedMismatch:
    712   case Sema::TDK_FailedOverloadResolution:
    713     return nullptr;
    714 
    715   case Sema::TDK_SubstitutionFailure:
    716     return static_cast<TemplateArgumentList*>(Data);
    717 
    718   // Unhandled
    719   case Sema::TDK_MiscellaneousDeductionFailure:
    720     break;
    721   }
    722 
    723   return nullptr;
    724 }
    725 
    726 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
    727   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    728   case Sema::TDK_Success:
    729   case Sema::TDK_Invalid:
    730   case Sema::TDK_InstantiationDepth:
    731   case Sema::TDK_Incomplete:
    732   case Sema::TDK_TooManyArguments:
    733   case Sema::TDK_TooFewArguments:
    734   case Sema::TDK_InvalidExplicitArguments:
    735   case Sema::TDK_SubstitutionFailure:
    736   case Sema::TDK_FailedOverloadResolution:
    737     return nullptr;
    738 
    739   case Sema::TDK_Inconsistent:
    740   case Sema::TDK_Underqualified:
    741   case Sema::TDK_NonDeducedMismatch:
    742     return &static_cast<DFIArguments*>(Data)->FirstArg;
    743 
    744   // Unhandled
    745   case Sema::TDK_MiscellaneousDeductionFailure:
    746     break;
    747   }
    748 
    749   return nullptr;
    750 }
    751 
    752 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
    753   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    754   case Sema::TDK_Success:
    755   case Sema::TDK_Invalid:
    756   case Sema::TDK_InstantiationDepth:
    757   case Sema::TDK_Incomplete:
    758   case Sema::TDK_TooManyArguments:
    759   case Sema::TDK_TooFewArguments:
    760   case Sema::TDK_InvalidExplicitArguments:
    761   case Sema::TDK_SubstitutionFailure:
    762   case Sema::TDK_FailedOverloadResolution:
    763     return nullptr;
    764 
    765   case Sema::TDK_Inconsistent:
    766   case Sema::TDK_Underqualified:
    767   case Sema::TDK_NonDeducedMismatch:
    768     return &static_cast<DFIArguments*>(Data)->SecondArg;
    769 
    770   // Unhandled
    771   case Sema::TDK_MiscellaneousDeductionFailure:
    772     break;
    773   }
    774 
    775   return nullptr;
    776 }
    777 
    778 Expr *DeductionFailureInfo::getExpr() {
    779   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
    780         Sema::TDK_FailedOverloadResolution)
    781     return static_cast<Expr*>(Data);
    782 
    783   return nullptr;
    784 }
    785 
    786 void OverloadCandidateSet::destroyCandidates() {
    787   for (iterator i = begin(), e = end(); i != e; ++i) {
    788     for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
    789       i->Conversions[ii].~ImplicitConversionSequence();
    790     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
    791       i->DeductionFailure.Destroy();
    792   }
    793 }
    794 
    795 void OverloadCandidateSet::clear() {
    796   destroyCandidates();
    797   NumInlineSequences = 0;
    798   Candidates.clear();
    799   Functions.clear();
    800 }
    801 
    802 namespace {
    803   class UnbridgedCastsSet {
    804     struct Entry {
    805       Expr **Addr;
    806       Expr *Saved;
    807     };
    808     SmallVector<Entry, 2> Entries;
    809 
    810   public:
    811     void save(Sema &S, Expr *&E) {
    812       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
    813       Entry entry = { &E, E };
    814       Entries.push_back(entry);
    815       E = S.stripARCUnbridgedCast(E);
    816     }
    817 
    818     void restore() {
    819       for (SmallVectorImpl<Entry>::iterator
    820              i = Entries.begin(), e = Entries.end(); i != e; ++i)
    821         *i->Addr = i->Saved;
    822     }
    823   };
    824 }
    825 
    826 /// checkPlaceholderForOverload - Do any interesting placeholder-like
    827 /// preprocessing on the given expression.
    828 ///
    829 /// \param unbridgedCasts a collection to which to add unbridged casts;
    830 ///   without this, they will be immediately diagnosed as errors
    831 ///
    832 /// Return true on unrecoverable error.
    833 static bool
    834 checkPlaceholderForOverload(Sema &S, Expr *&E,
    835                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
    836   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
    837     // We can't handle overloaded expressions here because overload
    838     // resolution might reasonably tweak them.
    839     if (placeholder->getKind() == BuiltinType::Overload) return false;
    840 
    841     // If the context potentially accepts unbridged ARC casts, strip
    842     // the unbridged cast and add it to the collection for later restoration.
    843     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
    844         unbridgedCasts) {
    845       unbridgedCasts->save(S, E);
    846       return false;
    847     }
    848 
    849     // Go ahead and check everything else.
    850     ExprResult result = S.CheckPlaceholderExpr(E);
    851     if (result.isInvalid())
    852       return true;
    853 
    854     E = result.get();
    855     return false;
    856   }
    857 
    858   // Nothing to do.
    859   return false;
    860 }
    861 
    862 /// checkArgPlaceholdersForOverload - Check a set of call operands for
    863 /// placeholders.
    864 static bool checkArgPlaceholdersForOverload(Sema &S,
    865                                             MultiExprArg Args,
    866                                             UnbridgedCastsSet &unbridged) {
    867   for (unsigned i = 0, e = Args.size(); i != e; ++i)
    868     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
    869       return true;
    870 
    871   return false;
    872 }
    873 
    874 // IsOverload - Determine whether the given New declaration is an
    875 // overload of the declarations in Old. This routine returns false if
    876 // New and Old cannot be overloaded, e.g., if New has the same
    877 // signature as some function in Old (C++ 1.3.10) or if the Old
    878 // declarations aren't functions (or function templates) at all. When
    879 // it does return false, MatchedDecl will point to the decl that New
    880 // cannot be overloaded with.  This decl may be a UsingShadowDecl on
    881 // top of the underlying declaration.
    882 //
    883 // Example: Given the following input:
    884 //
    885 //   void f(int, float); // #1
    886 //   void f(int, int); // #2
    887 //   int f(int, int); // #3
    888 //
    889 // When we process #1, there is no previous declaration of "f",
    890 // so IsOverload will not be used.
    891 //
    892 // When we process #2, Old contains only the FunctionDecl for #1.  By
    893 // comparing the parameter types, we see that #1 and #2 are overloaded
    894 // (since they have different signatures), so this routine returns
    895 // false; MatchedDecl is unchanged.
    896 //
    897 // When we process #3, Old is an overload set containing #1 and #2. We
    898 // compare the signatures of #3 to #1 (they're overloaded, so we do
    899 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
    900 // identical (return types of functions are not part of the
    901 // signature), IsOverload returns false and MatchedDecl will be set to
    902 // point to the FunctionDecl for #2.
    903 //
    904 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
    905 // into a class by a using declaration.  The rules for whether to hide
    906 // shadow declarations ignore some properties which otherwise figure
    907 // into a function template's signature.
    908 Sema::OverloadKind
    909 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
    910                     NamedDecl *&Match, bool NewIsUsingDecl) {
    911   for (LookupResult::iterator I = Old.begin(), E = Old.end();
    912          I != E; ++I) {
    913     NamedDecl *OldD = *I;
    914 
    915     bool OldIsUsingDecl = false;
    916     if (isa<UsingShadowDecl>(OldD)) {
    917       OldIsUsingDecl = true;
    918 
    919       // We can always introduce two using declarations into the same
    920       // context, even if they have identical signatures.
    921       if (NewIsUsingDecl) continue;
    922 
    923       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
    924     }
    925 
    926     // If either declaration was introduced by a using declaration,
    927     // we'll need to use slightly different rules for matching.
    928     // Essentially, these rules are the normal rules, except that
    929     // function templates hide function templates with different
    930     // return types or template parameter lists.
    931     bool UseMemberUsingDeclRules =
    932       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
    933       !New->getFriendObjectKind();
    934 
    935     if (FunctionDecl *OldF = OldD->getAsFunction()) {
    936       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
    937         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
    938           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
    939           continue;
    940         }
    941 
    942         if (!isa<FunctionTemplateDecl>(OldD) &&
    943             !shouldLinkPossiblyHiddenDecl(*I, New))
    944           continue;
    945 
    946         Match = *I;
    947         return Ovl_Match;
    948       }
    949     } else if (isa<UsingDecl>(OldD)) {
    950       // We can overload with these, which can show up when doing
    951       // redeclaration checks for UsingDecls.
    952       assert(Old.getLookupKind() == LookupUsingDeclName);
    953     } else if (isa<TagDecl>(OldD)) {
    954       // We can always overload with tags by hiding them.
    955     } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
    956       // Optimistically assume that an unresolved using decl will
    957       // overload; if it doesn't, we'll have to diagnose during
    958       // template instantiation.
    959     } else {
    960       // (C++ 13p1):
    961       //   Only function declarations can be overloaded; object and type
    962       //   declarations cannot be overloaded.
    963       Match = *I;
    964       return Ovl_NonFunction;
    965     }
    966   }
    967 
    968   return Ovl_Overload;
    969 }
    970 
    971 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
    972                       bool UseUsingDeclRules) {
    973   // C++ [basic.start.main]p2: This function shall not be overloaded.
    974   if (New->isMain())
    975     return false;
    976 
    977   // MSVCRT user defined entry points cannot be overloaded.
    978   if (New->isMSVCRTEntryPoint())
    979     return false;
    980 
    981   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
    982   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
    983 
    984   // C++ [temp.fct]p2:
    985   //   A function template can be overloaded with other function templates
    986   //   and with normal (non-template) functions.
    987   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
    988     return true;
    989 
    990   // Is the function New an overload of the function Old?
    991   QualType OldQType = Context.getCanonicalType(Old->getType());
    992   QualType NewQType = Context.getCanonicalType(New->getType());
    993 
    994   // Compare the signatures (C++ 1.3.10) of the two functions to
    995   // determine whether they are overloads. If we find any mismatch
    996   // in the signature, they are overloads.
    997 
    998   // If either of these functions is a K&R-style function (no
    999   // prototype), then we consider them to have matching signatures.
   1000   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
   1001       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
   1002     return false;
   1003 
   1004   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
   1005   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
   1006 
   1007   // The signature of a function includes the types of its
   1008   // parameters (C++ 1.3.10), which includes the presence or absence
   1009   // of the ellipsis; see C++ DR 357).
   1010   if (OldQType != NewQType &&
   1011       (OldType->getNumParams() != NewType->getNumParams() ||
   1012        OldType->isVariadic() != NewType->isVariadic() ||
   1013        !FunctionParamTypesAreEqual(OldType, NewType)))
   1014     return true;
   1015 
   1016   // C++ [temp.over.link]p4:
   1017   //   The signature of a function template consists of its function
   1018   //   signature, its return type and its template parameter list. The names
   1019   //   of the template parameters are significant only for establishing the
   1020   //   relationship between the template parameters and the rest of the
   1021   //   signature.
   1022   //
   1023   // We check the return type and template parameter lists for function
   1024   // templates first; the remaining checks follow.
   1025   //
   1026   // However, we don't consider either of these when deciding whether
   1027   // a member introduced by a shadow declaration is hidden.
   1028   if (!UseUsingDeclRules && NewTemplate &&
   1029       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
   1030                                        OldTemplate->getTemplateParameters(),
   1031                                        false, TPL_TemplateMatch) ||
   1032        OldType->getReturnType() != NewType->getReturnType()))
   1033     return true;
   1034 
   1035   // If the function is a class member, its signature includes the
   1036   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
   1037   //
   1038   // As part of this, also check whether one of the member functions
   1039   // is static, in which case they are not overloads (C++
   1040   // 13.1p2). While not part of the definition of the signature,
   1041   // this check is important to determine whether these functions
   1042   // can be overloaded.
   1043   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
   1044   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
   1045   if (OldMethod && NewMethod &&
   1046       !OldMethod->isStatic() && !NewMethod->isStatic()) {
   1047     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
   1048       if (!UseUsingDeclRules &&
   1049           (OldMethod->getRefQualifier() == RQ_None ||
   1050            NewMethod->getRefQualifier() == RQ_None)) {
   1051         // C++0x [over.load]p2:
   1052         //   - Member function declarations with the same name and the same
   1053         //     parameter-type-list as well as member function template
   1054         //     declarations with the same name, the same parameter-type-list, and
   1055         //     the same template parameter lists cannot be overloaded if any of
   1056         //     them, but not all, have a ref-qualifier (8.3.5).
   1057         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
   1058           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
   1059         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
   1060       }
   1061       return true;
   1062     }
   1063 
   1064     // We may not have applied the implicit const for a constexpr member
   1065     // function yet (because we haven't yet resolved whether this is a static
   1066     // or non-static member function). Add it now, on the assumption that this
   1067     // is a redeclaration of OldMethod.
   1068     unsigned OldQuals = OldMethod->getTypeQualifiers();
   1069     unsigned NewQuals = NewMethod->getTypeQualifiers();
   1070     if (!getLangOpts().CPlusPlus1y && NewMethod->isConstexpr() &&
   1071         !isa<CXXConstructorDecl>(NewMethod))
   1072       NewQuals |= Qualifiers::Const;
   1073 
   1074     // We do not allow overloading based off of '__restrict'.
   1075     OldQuals &= ~Qualifiers::Restrict;
   1076     NewQuals &= ~Qualifiers::Restrict;
   1077     if (OldQuals != NewQuals)
   1078       return true;
   1079   }
   1080 
   1081   // enable_if attributes are an order-sensitive part of the signature.
   1082   for (specific_attr_iterator<EnableIfAttr>
   1083          NewI = New->specific_attr_begin<EnableIfAttr>(),
   1084          NewE = New->specific_attr_end<EnableIfAttr>(),
   1085          OldI = Old->specific_attr_begin<EnableIfAttr>(),
   1086          OldE = Old->specific_attr_end<EnableIfAttr>();
   1087        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
   1088     if (NewI == NewE || OldI == OldE)
   1089       return true;
   1090     llvm::FoldingSetNodeID NewID, OldID;
   1091     NewI->getCond()->Profile(NewID, Context, true);
   1092     OldI->getCond()->Profile(OldID, Context, true);
   1093     if (NewID != OldID)
   1094       return true;
   1095   }
   1096 
   1097   // The signatures match; this is not an overload.
   1098   return false;
   1099 }
   1100 
   1101 /// \brief Checks availability of the function depending on the current
   1102 /// function context. Inside an unavailable function, unavailability is ignored.
   1103 ///
   1104 /// \returns true if \arg FD is unavailable and current context is inside
   1105 /// an available function, false otherwise.
   1106 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
   1107   return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
   1108 }
   1109 
   1110 /// \brief Tries a user-defined conversion from From to ToType.
   1111 ///
   1112 /// Produces an implicit conversion sequence for when a standard conversion
   1113 /// is not an option. See TryImplicitConversion for more information.
   1114 static ImplicitConversionSequence
   1115 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
   1116                          bool SuppressUserConversions,
   1117                          bool AllowExplicit,
   1118                          bool InOverloadResolution,
   1119                          bool CStyle,
   1120                          bool AllowObjCWritebackConversion,
   1121                          bool AllowObjCConversionOnExplicit) {
   1122   ImplicitConversionSequence ICS;
   1123 
   1124   if (SuppressUserConversions) {
   1125     // We're not in the case above, so there is no conversion that
   1126     // we can perform.
   1127     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1128     return ICS;
   1129   }
   1130 
   1131   // Attempt user-defined conversion.
   1132   OverloadCandidateSet Conversions(From->getExprLoc(),
   1133                                    OverloadCandidateSet::CSK_Normal);
   1134   OverloadingResult UserDefResult
   1135     = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
   1136                               AllowExplicit, AllowObjCConversionOnExplicit);
   1137 
   1138   if (UserDefResult == OR_Success) {
   1139     ICS.setUserDefined();
   1140     ICS.UserDefined.Before.setAsIdentityConversion();
   1141     // C++ [over.ics.user]p4:
   1142     //   A conversion of an expression of class type to the same class
   1143     //   type is given Exact Match rank, and a conversion of an
   1144     //   expression of class type to a base class of that type is
   1145     //   given Conversion rank, in spite of the fact that a copy
   1146     //   constructor (i.e., a user-defined conversion function) is
   1147     //   called for those cases.
   1148     if (CXXConstructorDecl *Constructor
   1149           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
   1150       QualType FromCanon
   1151         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
   1152       QualType ToCanon
   1153         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
   1154       if (Constructor->isCopyConstructor() &&
   1155           (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
   1156         // Turn this into a "standard" conversion sequence, so that it
   1157         // gets ranked with standard conversion sequences.
   1158         ICS.setStandard();
   1159         ICS.Standard.setAsIdentityConversion();
   1160         ICS.Standard.setFromType(From->getType());
   1161         ICS.Standard.setAllToTypes(ToType);
   1162         ICS.Standard.CopyConstructor = Constructor;
   1163         if (ToCanon != FromCanon)
   1164           ICS.Standard.Second = ICK_Derived_To_Base;
   1165       }
   1166     }
   1167 
   1168     // C++ [over.best.ics]p4:
   1169     //   However, when considering the argument of a user-defined
   1170     //   conversion function that is a candidate by 13.3.1.3 when
   1171     //   invoked for the copying of the temporary in the second step
   1172     //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
   1173     //   13.3.1.6 in all cases, only standard conversion sequences and
   1174     //   ellipsis conversion sequences are allowed.
   1175     if (SuppressUserConversions && ICS.isUserDefined()) {
   1176       ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
   1177     }
   1178   } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
   1179     ICS.setAmbiguous();
   1180     ICS.Ambiguous.setFromType(From->getType());
   1181     ICS.Ambiguous.setToType(ToType);
   1182     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
   1183          Cand != Conversions.end(); ++Cand)
   1184       if (Cand->Viable)
   1185         ICS.Ambiguous.addConversion(Cand->Function);
   1186   } else {
   1187     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1188   }
   1189 
   1190   return ICS;
   1191 }
   1192 
   1193 /// TryImplicitConversion - Attempt to perform an implicit conversion
   1194 /// from the given expression (Expr) to the given type (ToType). This
   1195 /// function returns an implicit conversion sequence that can be used
   1196 /// to perform the initialization. Given
   1197 ///
   1198 ///   void f(float f);
   1199 ///   void g(int i) { f(i); }
   1200 ///
   1201 /// this routine would produce an implicit conversion sequence to
   1202 /// describe the initialization of f from i, which will be a standard
   1203 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
   1204 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
   1205 //
   1206 /// Note that this routine only determines how the conversion can be
   1207 /// performed; it does not actually perform the conversion. As such,
   1208 /// it will not produce any diagnostics if no conversion is available,
   1209 /// but will instead return an implicit conversion sequence of kind
   1210 /// "BadConversion".
   1211 ///
   1212 /// If @p SuppressUserConversions, then user-defined conversions are
   1213 /// not permitted.
   1214 /// If @p AllowExplicit, then explicit user-defined conversions are
   1215 /// permitted.
   1216 ///
   1217 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
   1218 /// writeback conversion, which allows __autoreleasing id* parameters to
   1219 /// be initialized with __strong id* or __weak id* arguments.
   1220 static ImplicitConversionSequence
   1221 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
   1222                       bool SuppressUserConversions,
   1223                       bool AllowExplicit,
   1224                       bool InOverloadResolution,
   1225                       bool CStyle,
   1226                       bool AllowObjCWritebackConversion,
   1227                       bool AllowObjCConversionOnExplicit) {
   1228   ImplicitConversionSequence ICS;
   1229   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
   1230                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
   1231     ICS.setStandard();
   1232     return ICS;
   1233   }
   1234 
   1235   if (!S.getLangOpts().CPlusPlus) {
   1236     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1237     return ICS;
   1238   }
   1239 
   1240   // C++ [over.ics.user]p4:
   1241   //   A conversion of an expression of class type to the same class
   1242   //   type is given Exact Match rank, and a conversion of an
   1243   //   expression of class type to a base class of that type is
   1244   //   given Conversion rank, in spite of the fact that a copy/move
   1245   //   constructor (i.e., a user-defined conversion function) is
   1246   //   called for those cases.
   1247   QualType FromType = From->getType();
   1248   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
   1249       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
   1250        S.IsDerivedFrom(FromType, ToType))) {
   1251     ICS.setStandard();
   1252     ICS.Standard.setAsIdentityConversion();
   1253     ICS.Standard.setFromType(FromType);
   1254     ICS.Standard.setAllToTypes(ToType);
   1255 
   1256     // We don't actually check at this point whether there is a valid
   1257     // copy/move constructor, since overloading just assumes that it
   1258     // exists. When we actually perform initialization, we'll find the
   1259     // appropriate constructor to copy the returned object, if needed.
   1260     ICS.Standard.CopyConstructor = nullptr;
   1261 
   1262     // Determine whether this is considered a derived-to-base conversion.
   1263     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
   1264       ICS.Standard.Second = ICK_Derived_To_Base;
   1265 
   1266     return ICS;
   1267   }
   1268 
   1269   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
   1270                                   AllowExplicit, InOverloadResolution, CStyle,
   1271                                   AllowObjCWritebackConversion,
   1272                                   AllowObjCConversionOnExplicit);
   1273 }
   1274 
   1275 ImplicitConversionSequence
   1276 Sema::TryImplicitConversion(Expr *From, QualType ToType,
   1277                             bool SuppressUserConversions,
   1278                             bool AllowExplicit,
   1279                             bool InOverloadResolution,
   1280                             bool CStyle,
   1281                             bool AllowObjCWritebackConversion) {
   1282   return clang::TryImplicitConversion(*this, From, ToType,
   1283                                       SuppressUserConversions, AllowExplicit,
   1284                                       InOverloadResolution, CStyle,
   1285                                       AllowObjCWritebackConversion,
   1286                                       /*AllowObjCConversionOnExplicit=*/false);
   1287 }
   1288 
   1289 /// PerformImplicitConversion - Perform an implicit conversion of the
   1290 /// expression From to the type ToType. Returns the
   1291 /// converted expression. Flavor is the kind of conversion we're
   1292 /// performing, used in the error message. If @p AllowExplicit,
   1293 /// explicit user-defined conversions are permitted.
   1294 ExprResult
   1295 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   1296                                 AssignmentAction Action, bool AllowExplicit) {
   1297   ImplicitConversionSequence ICS;
   1298   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
   1299 }
   1300 
   1301 ExprResult
   1302 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   1303                                 AssignmentAction Action, bool AllowExplicit,
   1304                                 ImplicitConversionSequence& ICS) {
   1305   if (checkPlaceholderForOverload(*this, From))
   1306     return ExprError();
   1307 
   1308   // Objective-C ARC: Determine whether we will allow the writeback conversion.
   1309   bool AllowObjCWritebackConversion
   1310     = getLangOpts().ObjCAutoRefCount &&
   1311       (Action == AA_Passing || Action == AA_Sending);
   1312   if (getLangOpts().ObjC1)
   1313     CheckObjCBridgeRelatedConversions(From->getLocStart(),
   1314                                       ToType, From->getType(), From);
   1315   ICS = clang::TryImplicitConversion(*this, From, ToType,
   1316                                      /*SuppressUserConversions=*/false,
   1317                                      AllowExplicit,
   1318                                      /*InOverloadResolution=*/false,
   1319                                      /*CStyle=*/false,
   1320                                      AllowObjCWritebackConversion,
   1321                                      /*AllowObjCConversionOnExplicit=*/false);
   1322   return PerformImplicitConversion(From, ToType, ICS, Action);
   1323 }
   1324 
   1325 /// \brief Determine whether the conversion from FromType to ToType is a valid
   1326 /// conversion that strips "noreturn" off the nested function type.
   1327 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
   1328                                 QualType &ResultTy) {
   1329   if (Context.hasSameUnqualifiedType(FromType, ToType))
   1330     return false;
   1331 
   1332   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
   1333   // where F adds one of the following at most once:
   1334   //   - a pointer
   1335   //   - a member pointer
   1336   //   - a block pointer
   1337   CanQualType CanTo = Context.getCanonicalType(ToType);
   1338   CanQualType CanFrom = Context.getCanonicalType(FromType);
   1339   Type::TypeClass TyClass = CanTo->getTypeClass();
   1340   if (TyClass != CanFrom->getTypeClass()) return false;
   1341   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
   1342     if (TyClass == Type::Pointer) {
   1343       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
   1344       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
   1345     } else if (TyClass == Type::BlockPointer) {
   1346       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
   1347       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
   1348     } else if (TyClass == Type::MemberPointer) {
   1349       CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
   1350       CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
   1351     } else {
   1352       return false;
   1353     }
   1354 
   1355     TyClass = CanTo->getTypeClass();
   1356     if (TyClass != CanFrom->getTypeClass()) return false;
   1357     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
   1358       return false;
   1359   }
   1360 
   1361   const FunctionType *FromFn = cast<FunctionType>(CanFrom);
   1362   FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
   1363   if (!EInfo.getNoReturn()) return false;
   1364 
   1365   FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
   1366   assert(QualType(FromFn, 0).isCanonical());
   1367   if (QualType(FromFn, 0) != CanTo) return false;
   1368 
   1369   ResultTy = ToType;
   1370   return true;
   1371 }
   1372 
   1373 /// \brief Determine whether the conversion from FromType to ToType is a valid
   1374 /// vector conversion.
   1375 ///
   1376 /// \param ICK Will be set to the vector conversion kind, if this is a vector
   1377 /// conversion.
   1378 static bool IsVectorConversion(Sema &S, QualType FromType,
   1379                                QualType ToType, ImplicitConversionKind &ICK) {
   1380   // We need at least one of these types to be a vector type to have a vector
   1381   // conversion.
   1382   if (!ToType->isVectorType() && !FromType->isVectorType())
   1383     return false;
   1384 
   1385   // Identical types require no conversions.
   1386   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
   1387     return false;
   1388 
   1389   // There are no conversions between extended vector types, only identity.
   1390   if (ToType->isExtVectorType()) {
   1391     // There are no conversions between extended vector types other than the
   1392     // identity conversion.
   1393     if (FromType->isExtVectorType())
   1394       return false;
   1395 
   1396     // Vector splat from any arithmetic type to a vector.
   1397     if (FromType->isArithmeticType()) {
   1398       ICK = ICK_Vector_Splat;
   1399       return true;
   1400     }
   1401   }
   1402 
   1403   // We can perform the conversion between vector types in the following cases:
   1404   // 1)vector types are equivalent AltiVec and GCC vector types
   1405   // 2)lax vector conversions are permitted and the vector types are of the
   1406   //   same size
   1407   if (ToType->isVectorType() && FromType->isVectorType()) {
   1408     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
   1409         S.isLaxVectorConversion(FromType, ToType)) {
   1410       ICK = ICK_Vector_Conversion;
   1411       return true;
   1412     }
   1413   }
   1414 
   1415   return false;
   1416 }
   1417 
   1418 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
   1419                                 bool InOverloadResolution,
   1420                                 StandardConversionSequence &SCS,
   1421                                 bool CStyle);
   1422 
   1423 /// IsStandardConversion - Determines whether there is a standard
   1424 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
   1425 /// expression From to the type ToType. Standard conversion sequences
   1426 /// only consider non-class types; for conversions that involve class
   1427 /// types, use TryImplicitConversion. If a conversion exists, SCS will
   1428 /// contain the standard conversion sequence required to perform this
   1429 /// conversion and this routine will return true. Otherwise, this
   1430 /// routine will return false and the value of SCS is unspecified.
   1431 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
   1432                                  bool InOverloadResolution,
   1433                                  StandardConversionSequence &SCS,
   1434                                  bool CStyle,
   1435                                  bool AllowObjCWritebackConversion) {
   1436   QualType FromType = From->getType();
   1437 
   1438   // Standard conversions (C++ [conv])
   1439   SCS.setAsIdentityConversion();
   1440   SCS.IncompatibleObjC = false;
   1441   SCS.setFromType(FromType);
   1442   SCS.CopyConstructor = nullptr;
   1443 
   1444   // There are no standard conversions for class types in C++, so
   1445   // abort early. When overloading in C, however, we do permit
   1446   if (FromType->isRecordType() || ToType->isRecordType()) {
   1447     if (S.getLangOpts().CPlusPlus)
   1448       return false;
   1449 
   1450     // When we're overloading in C, we allow, as standard conversions,
   1451   }
   1452 
   1453   // The first conversion can be an lvalue-to-rvalue conversion,
   1454   // array-to-pointer conversion, or function-to-pointer conversion
   1455   // (C++ 4p1).
   1456 
   1457   if (FromType == S.Context.OverloadTy) {
   1458     DeclAccessPair AccessPair;
   1459     if (FunctionDecl *Fn
   1460           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
   1461                                                  AccessPair)) {
   1462       // We were able to resolve the address of the overloaded function,
   1463       // so we can convert to the type of that function.
   1464       FromType = Fn->getType();
   1465 
   1466       // we can sometimes resolve &foo<int> regardless of ToType, so check
   1467       // if the type matches (identity) or we are converting to bool
   1468       if (!S.Context.hasSameUnqualifiedType(
   1469                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
   1470         QualType resultTy;
   1471         // if the function type matches except for [[noreturn]], it's ok
   1472         if (!S.IsNoReturnConversion(FromType,
   1473               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
   1474           // otherwise, only a boolean conversion is standard
   1475           if (!ToType->isBooleanType())
   1476             return false;
   1477       }
   1478 
   1479       // Check if the "from" expression is taking the address of an overloaded
   1480       // function and recompute the FromType accordingly. Take advantage of the
   1481       // fact that non-static member functions *must* have such an address-of
   1482       // expression.
   1483       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
   1484       if (Method && !Method->isStatic()) {
   1485         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
   1486                "Non-unary operator on non-static member address");
   1487         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
   1488                == UO_AddrOf &&
   1489                "Non-address-of operator on non-static member address");
   1490         const Type *ClassType
   1491           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
   1492         FromType = S.Context.getMemberPointerType(FromType, ClassType);
   1493       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
   1494         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
   1495                UO_AddrOf &&
   1496                "Non-address-of operator for overloaded function expression");
   1497         FromType = S.Context.getPointerType(FromType);
   1498       }
   1499 
   1500       // Check that we've computed the proper type after overload resolution.
   1501       assert(S.Context.hasSameType(
   1502         FromType,
   1503         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
   1504     } else {
   1505       return false;
   1506     }
   1507   }
   1508   // Lvalue-to-rvalue conversion (C++11 4.1):
   1509   //   A glvalue (3.10) of a non-function, non-array type T can
   1510   //   be converted to a prvalue.
   1511   bool argIsLValue = From->isGLValue();
   1512   if (argIsLValue &&
   1513       !FromType->isFunctionType() && !FromType->isArrayType() &&
   1514       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
   1515     SCS.First = ICK_Lvalue_To_Rvalue;
   1516 
   1517     // C11 6.3.2.1p2:
   1518     //   ... if the lvalue has atomic type, the value has the non-atomic version
   1519     //   of the type of the lvalue ...
   1520     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
   1521       FromType = Atomic->getValueType();
   1522 
   1523     // If T is a non-class type, the type of the rvalue is the
   1524     // cv-unqualified version of T. Otherwise, the type of the rvalue
   1525     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
   1526     // just strip the qualifiers because they don't matter.
   1527     FromType = FromType.getUnqualifiedType();
   1528   } else if (FromType->isArrayType()) {
   1529     // Array-to-pointer conversion (C++ 4.2)
   1530     SCS.First = ICK_Array_To_Pointer;
   1531 
   1532     // An lvalue or rvalue of type "array of N T" or "array of unknown
   1533     // bound of T" can be converted to an rvalue of type "pointer to
   1534     // T" (C++ 4.2p1).
   1535     FromType = S.Context.getArrayDecayedType(FromType);
   1536 
   1537     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
   1538       // This conversion is deprecated in C++03 (D.4)
   1539       SCS.DeprecatedStringLiteralToCharPtr = true;
   1540 
   1541       // For the purpose of ranking in overload resolution
   1542       // (13.3.3.1.1), this conversion is considered an
   1543       // array-to-pointer conversion followed by a qualification
   1544       // conversion (4.4). (C++ 4.2p2)
   1545       SCS.Second = ICK_Identity;
   1546       SCS.Third = ICK_Qualification;
   1547       SCS.QualificationIncludesObjCLifetime = false;
   1548       SCS.setAllToTypes(FromType);
   1549       return true;
   1550     }
   1551   } else if (FromType->isFunctionType() && argIsLValue) {
   1552     // Function-to-pointer conversion (C++ 4.3).
   1553     SCS.First = ICK_Function_To_Pointer;
   1554 
   1555     // An lvalue of function type T can be converted to an rvalue of
   1556     // type "pointer to T." The result is a pointer to the
   1557     // function. (C++ 4.3p1).
   1558     FromType = S.Context.getPointerType(FromType);
   1559   } else {
   1560     // We don't require any conversions for the first step.
   1561     SCS.First = ICK_Identity;
   1562   }
   1563   SCS.setToType(0, FromType);
   1564 
   1565   // The second conversion can be an integral promotion, floating
   1566   // point promotion, integral conversion, floating point conversion,
   1567   // floating-integral conversion, pointer conversion,
   1568   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
   1569   // For overloading in C, this can also be a "compatible-type"
   1570   // conversion.
   1571   bool IncompatibleObjC = false;
   1572   ImplicitConversionKind SecondICK = ICK_Identity;
   1573   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
   1574     // The unqualified versions of the types are the same: there's no
   1575     // conversion to do.
   1576     SCS.Second = ICK_Identity;
   1577   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
   1578     // Integral promotion (C++ 4.5).
   1579     SCS.Second = ICK_Integral_Promotion;
   1580     FromType = ToType.getUnqualifiedType();
   1581   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
   1582     // Floating point promotion (C++ 4.6).
   1583     SCS.Second = ICK_Floating_Promotion;
   1584     FromType = ToType.getUnqualifiedType();
   1585   } else if (S.IsComplexPromotion(FromType, ToType)) {
   1586     // Complex promotion (Clang extension)
   1587     SCS.Second = ICK_Complex_Promotion;
   1588     FromType = ToType.getUnqualifiedType();
   1589   } else if (ToType->isBooleanType() &&
   1590              (FromType->isArithmeticType() ||
   1591               FromType->isAnyPointerType() ||
   1592               FromType->isBlockPointerType() ||
   1593               FromType->isMemberPointerType() ||
   1594               FromType->isNullPtrType())) {
   1595     // Boolean conversions (C++ 4.12).
   1596     SCS.Second = ICK_Boolean_Conversion;
   1597     FromType = S.Context.BoolTy;
   1598   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
   1599              ToType->isIntegralType(S.Context)) {
   1600     // Integral conversions (C++ 4.7).
   1601     SCS.Second = ICK_Integral_Conversion;
   1602     FromType = ToType.getUnqualifiedType();
   1603   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
   1604     // Complex conversions (C99 6.3.1.6)
   1605     SCS.Second = ICK_Complex_Conversion;
   1606     FromType = ToType.getUnqualifiedType();
   1607   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
   1608              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
   1609     // Complex-real conversions (C99 6.3.1.7)
   1610     SCS.Second = ICK_Complex_Real;
   1611     FromType = ToType.getUnqualifiedType();
   1612   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
   1613     // Floating point conversions (C++ 4.8).
   1614     SCS.Second = ICK_Floating_Conversion;
   1615     FromType = ToType.getUnqualifiedType();
   1616   } else if ((FromType->isRealFloatingType() &&
   1617               ToType->isIntegralType(S.Context)) ||
   1618              (FromType->isIntegralOrUnscopedEnumerationType() &&
   1619               ToType->isRealFloatingType())) {
   1620     // Floating-integral conversions (C++ 4.9).
   1621     SCS.Second = ICK_Floating_Integral;
   1622     FromType = ToType.getUnqualifiedType();
   1623   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
   1624     SCS.Second = ICK_Block_Pointer_Conversion;
   1625   } else if (AllowObjCWritebackConversion &&
   1626              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
   1627     SCS.Second = ICK_Writeback_Conversion;
   1628   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
   1629                                    FromType, IncompatibleObjC)) {
   1630     // Pointer conversions (C++ 4.10).
   1631     SCS.Second = ICK_Pointer_Conversion;
   1632     SCS.IncompatibleObjC = IncompatibleObjC;
   1633     FromType = FromType.getUnqualifiedType();
   1634   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
   1635                                          InOverloadResolution, FromType)) {
   1636     // Pointer to member conversions (4.11).
   1637     SCS.Second = ICK_Pointer_Member;
   1638   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
   1639     SCS.Second = SecondICK;
   1640     FromType = ToType.getUnqualifiedType();
   1641   } else if (!S.getLangOpts().CPlusPlus &&
   1642              S.Context.typesAreCompatible(ToType, FromType)) {
   1643     // Compatible conversions (Clang extension for C function overloading)
   1644     SCS.Second = ICK_Compatible_Conversion;
   1645     FromType = ToType.getUnqualifiedType();
   1646   } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
   1647     // Treat a conversion that strips "noreturn" as an identity conversion.
   1648     SCS.Second = ICK_NoReturn_Adjustment;
   1649   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
   1650                                              InOverloadResolution,
   1651                                              SCS, CStyle)) {
   1652     SCS.Second = ICK_TransparentUnionConversion;
   1653     FromType = ToType;
   1654   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
   1655                                  CStyle)) {
   1656     // tryAtomicConversion has updated the standard conversion sequence
   1657     // appropriately.
   1658     return true;
   1659   } else if (ToType->isEventT() &&
   1660              From->isIntegerConstantExpr(S.getASTContext()) &&
   1661              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
   1662     SCS.Second = ICK_Zero_Event_Conversion;
   1663     FromType = ToType;
   1664   } else {
   1665     // No second conversion required.
   1666     SCS.Second = ICK_Identity;
   1667   }
   1668   SCS.setToType(1, FromType);
   1669 
   1670   QualType CanonFrom;
   1671   QualType CanonTo;
   1672   // The third conversion can be a qualification conversion (C++ 4p1).
   1673   bool ObjCLifetimeConversion;
   1674   if (S.IsQualificationConversion(FromType, ToType, CStyle,
   1675                                   ObjCLifetimeConversion)) {
   1676     SCS.Third = ICK_Qualification;
   1677     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
   1678     FromType = ToType;
   1679     CanonFrom = S.Context.getCanonicalType(FromType);
   1680     CanonTo = S.Context.getCanonicalType(ToType);
   1681   } else {
   1682     // No conversion required
   1683     SCS.Third = ICK_Identity;
   1684 
   1685     // C++ [over.best.ics]p6:
   1686     //   [...] Any difference in top-level cv-qualification is
   1687     //   subsumed by the initialization itself and does not constitute
   1688     //   a conversion. [...]
   1689     CanonFrom = S.Context.getCanonicalType(FromType);
   1690     CanonTo = S.Context.getCanonicalType(ToType);
   1691     if (CanonFrom.getLocalUnqualifiedType()
   1692                                        == CanonTo.getLocalUnqualifiedType() &&
   1693         CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
   1694       FromType = ToType;
   1695       CanonFrom = CanonTo;
   1696     }
   1697   }
   1698   SCS.setToType(2, FromType);
   1699 
   1700   // If we have not converted the argument type to the parameter type,
   1701   // this is a bad conversion sequence.
   1702   if (CanonFrom != CanonTo)
   1703     return false;
   1704 
   1705   return true;
   1706 }
   1707 
   1708 static bool
   1709 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
   1710                                      QualType &ToType,
   1711                                      bool InOverloadResolution,
   1712                                      StandardConversionSequence &SCS,
   1713                                      bool CStyle) {
   1714 
   1715   const RecordType *UT = ToType->getAsUnionType();
   1716   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   1717     return false;
   1718   // The field to initialize within the transparent union.
   1719   RecordDecl *UD = UT->getDecl();
   1720   // It's compatible if the expression matches any of the fields.
   1721   for (const auto *it : UD->fields()) {
   1722     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
   1723                              CStyle, /*ObjCWritebackConversion=*/false)) {
   1724       ToType = it->getType();
   1725       return true;
   1726     }
   1727   }
   1728   return false;
   1729 }
   1730 
   1731 /// IsIntegralPromotion - Determines whether the conversion from the
   1732 /// expression From (whose potentially-adjusted type is FromType) to
   1733 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
   1734 /// sets PromotedType to the promoted type.
   1735 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
   1736   const BuiltinType *To = ToType->getAs<BuiltinType>();
   1737   // All integers are built-in.
   1738   if (!To) {
   1739     return false;
   1740   }
   1741 
   1742   // An rvalue of type char, signed char, unsigned char, short int, or
   1743   // unsigned short int can be converted to an rvalue of type int if
   1744   // int can represent all the values of the source type; otherwise,
   1745   // the source rvalue can be converted to an rvalue of type unsigned
   1746   // int (C++ 4.5p1).
   1747   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
   1748       !FromType->isEnumeralType()) {
   1749     if (// We can promote any signed, promotable integer type to an int
   1750         (FromType->isSignedIntegerType() ||
   1751          // We can promote any unsigned integer type whose size is
   1752          // less than int to an int.
   1753          (!FromType->isSignedIntegerType() &&
   1754           Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
   1755       return To->getKind() == BuiltinType::Int;
   1756     }
   1757 
   1758     return To->getKind() == BuiltinType::UInt;
   1759   }
   1760 
   1761   // C++11 [conv.prom]p3:
   1762   //   A prvalue of an unscoped enumeration type whose underlying type is not
   1763   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
   1764   //   following types that can represent all the values of the enumeration
   1765   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
   1766   //   unsigned int, long int, unsigned long int, long long int, or unsigned
   1767   //   long long int. If none of the types in that list can represent all the
   1768   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
   1769   //   type can be converted to an rvalue a prvalue of the extended integer type
   1770   //   with lowest integer conversion rank (4.13) greater than the rank of long
   1771   //   long in which all the values of the enumeration can be represented. If
   1772   //   there are two such extended types, the signed one is chosen.
   1773   // C++11 [conv.prom]p4:
   1774   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
   1775   //   can be converted to a prvalue of its underlying type. Moreover, if
   1776   //   integral promotion can be applied to its underlying type, a prvalue of an
   1777   //   unscoped enumeration type whose underlying type is fixed can also be
   1778   //   converted to a prvalue of the promoted underlying type.
   1779   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
   1780     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
   1781     // provided for a scoped enumeration.
   1782     if (FromEnumType->getDecl()->isScoped())
   1783       return false;
   1784 
   1785     // We can perform an integral promotion to the underlying type of the enum,
   1786     // even if that's not the promoted type.
   1787     if (FromEnumType->getDecl()->isFixed()) {
   1788       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
   1789       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
   1790              IsIntegralPromotion(From, Underlying, ToType);
   1791     }
   1792 
   1793     // We have already pre-calculated the promotion type, so this is trivial.
   1794     if (ToType->isIntegerType() &&
   1795         !RequireCompleteType(From->getLocStart(), FromType, 0))
   1796       return Context.hasSameUnqualifiedType(ToType,
   1797                                 FromEnumType->getDecl()->getPromotionType());
   1798   }
   1799 
   1800   // C++0x [conv.prom]p2:
   1801   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
   1802   //   to an rvalue a prvalue of the first of the following types that can
   1803   //   represent all the values of its underlying type: int, unsigned int,
   1804   //   long int, unsigned long int, long long int, or unsigned long long int.
   1805   //   If none of the types in that list can represent all the values of its
   1806   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
   1807   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
   1808   //   type.
   1809   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
   1810       ToType->isIntegerType()) {
   1811     // Determine whether the type we're converting from is signed or
   1812     // unsigned.
   1813     bool FromIsSigned = FromType->isSignedIntegerType();
   1814     uint64_t FromSize = Context.getTypeSize(FromType);
   1815 
   1816     // The types we'll try to promote to, in the appropriate
   1817     // order. Try each of these types.
   1818     QualType PromoteTypes[6] = {
   1819       Context.IntTy, Context.UnsignedIntTy,
   1820       Context.LongTy, Context.UnsignedLongTy ,
   1821       Context.LongLongTy, Context.UnsignedLongLongTy
   1822     };
   1823     for (int Idx = 0; Idx < 6; ++Idx) {
   1824       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
   1825       if (FromSize < ToSize ||
   1826           (FromSize == ToSize &&
   1827            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
   1828         // We found the type that we can promote to. If this is the
   1829         // type we wanted, we have a promotion. Otherwise, no
   1830         // promotion.
   1831         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
   1832       }
   1833     }
   1834   }
   1835 
   1836   // An rvalue for an integral bit-field (9.6) can be converted to an
   1837   // rvalue of type int if int can represent all the values of the
   1838   // bit-field; otherwise, it can be converted to unsigned int if
   1839   // unsigned int can represent all the values of the bit-field. If
   1840   // the bit-field is larger yet, no integral promotion applies to
   1841   // it. If the bit-field has an enumerated type, it is treated as any
   1842   // other value of that type for promotion purposes (C++ 4.5p3).
   1843   // FIXME: We should delay checking of bit-fields until we actually perform the
   1844   // conversion.
   1845   using llvm::APSInt;
   1846   if (From)
   1847     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
   1848       APSInt BitWidth;
   1849       if (FromType->isIntegralType(Context) &&
   1850           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
   1851         APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
   1852         ToSize = Context.getTypeSize(ToType);
   1853 
   1854         // Are we promoting to an int from a bitfield that fits in an int?
   1855         if (BitWidth < ToSize ||
   1856             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
   1857           return To->getKind() == BuiltinType::Int;
   1858         }
   1859 
   1860         // Are we promoting to an unsigned int from an unsigned bitfield
   1861         // that fits into an unsigned int?
   1862         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
   1863           return To->getKind() == BuiltinType::UInt;
   1864         }
   1865 
   1866         return false;
   1867       }
   1868     }
   1869 
   1870   // An rvalue of type bool can be converted to an rvalue of type int,
   1871   // with false becoming zero and true becoming one (C++ 4.5p4).
   1872   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
   1873     return true;
   1874   }
   1875 
   1876   return false;
   1877 }
   1878 
   1879 /// IsFloatingPointPromotion - Determines whether the conversion from
   1880 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
   1881 /// returns true and sets PromotedType to the promoted type.
   1882 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
   1883   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
   1884     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
   1885       /// An rvalue of type float can be converted to an rvalue of type
   1886       /// double. (C++ 4.6p1).
   1887       if (FromBuiltin->getKind() == BuiltinType::Float &&
   1888           ToBuiltin->getKind() == BuiltinType::Double)
   1889         return true;
   1890 
   1891       // C99 6.3.1.5p1:
   1892       //   When a float is promoted to double or long double, or a
   1893       //   double is promoted to long double [...].
   1894       if (!getLangOpts().CPlusPlus &&
   1895           (FromBuiltin->getKind() == BuiltinType::Float ||
   1896            FromBuiltin->getKind() == BuiltinType::Double) &&
   1897           (ToBuiltin->getKind() == BuiltinType::LongDouble))
   1898         return true;
   1899 
   1900       // Half can be promoted to float.
   1901       if (!getLangOpts().NativeHalfType &&
   1902            FromBuiltin->getKind() == BuiltinType::Half &&
   1903           ToBuiltin->getKind() == BuiltinType::Float)
   1904         return true;
   1905     }
   1906 
   1907   return false;
   1908 }
   1909 
   1910 /// \brief Determine if a conversion is a complex promotion.
   1911 ///
   1912 /// A complex promotion is defined as a complex -> complex conversion
   1913 /// where the conversion between the underlying real types is a
   1914 /// floating-point or integral promotion.
   1915 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
   1916   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
   1917   if (!FromComplex)
   1918     return false;
   1919 
   1920   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
   1921   if (!ToComplex)
   1922     return false;
   1923 
   1924   return IsFloatingPointPromotion(FromComplex->getElementType(),
   1925                                   ToComplex->getElementType()) ||
   1926     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
   1927                         ToComplex->getElementType());
   1928 }
   1929 
   1930 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
   1931 /// the pointer type FromPtr to a pointer to type ToPointee, with the
   1932 /// same type qualifiers as FromPtr has on its pointee type. ToType,
   1933 /// if non-empty, will be a pointer to ToType that may or may not have
   1934 /// the right set of qualifiers on its pointee.
   1935 ///
   1936 static QualType
   1937 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
   1938                                    QualType ToPointee, QualType ToType,
   1939                                    ASTContext &Context,
   1940                                    bool StripObjCLifetime = false) {
   1941   assert((FromPtr->getTypeClass() == Type::Pointer ||
   1942           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
   1943          "Invalid similarly-qualified pointer type");
   1944 
   1945   /// Conversions to 'id' subsume cv-qualifier conversions.
   1946   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
   1947     return ToType.getUnqualifiedType();
   1948 
   1949   QualType CanonFromPointee
   1950     = Context.getCanonicalType(FromPtr->getPointeeType());
   1951   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
   1952   Qualifiers Quals = CanonFromPointee.getQualifiers();
   1953 
   1954   if (StripObjCLifetime)
   1955     Quals.removeObjCLifetime();
   1956 
   1957   // Exact qualifier match -> return the pointer type we're converting to.
   1958   if (CanonToPointee.getLocalQualifiers() == Quals) {
   1959     // ToType is exactly what we need. Return it.
   1960     if (!ToType.isNull())
   1961       return ToType.getUnqualifiedType();
   1962 
   1963     // Build a pointer to ToPointee. It has the right qualifiers
   1964     // already.
   1965     if (isa<ObjCObjectPointerType>(ToType))
   1966       return Context.getObjCObjectPointerType(ToPointee);
   1967     return Context.getPointerType(ToPointee);
   1968   }
   1969 
   1970   // Just build a canonical type that has the right qualifiers.
   1971   QualType QualifiedCanonToPointee
   1972     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
   1973 
   1974   if (isa<ObjCObjectPointerType>(ToType))
   1975     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
   1976   return Context.getPointerType(QualifiedCanonToPointee);
   1977 }
   1978 
   1979 static bool isNullPointerConstantForConversion(Expr *Expr,
   1980                                                bool InOverloadResolution,
   1981                                                ASTContext &Context) {
   1982   // Handle value-dependent integral null pointer constants correctly.
   1983   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
   1984   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
   1985       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
   1986     return !InOverloadResolution;
   1987 
   1988   return Expr->isNullPointerConstant(Context,
   1989                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
   1990                                         : Expr::NPC_ValueDependentIsNull);
   1991 }
   1992 
   1993 /// IsPointerConversion - Determines whether the conversion of the
   1994 /// expression From, which has the (possibly adjusted) type FromType,
   1995 /// can be converted to the type ToType via a pointer conversion (C++
   1996 /// 4.10). If so, returns true and places the converted type (that
   1997 /// might differ from ToType in its cv-qualifiers at some level) into
   1998 /// ConvertedType.
   1999 ///
   2000 /// This routine also supports conversions to and from block pointers
   2001 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
   2002 /// pointers to interfaces. FIXME: Once we've determined the
   2003 /// appropriate overloading rules for Objective-C, we may want to
   2004 /// split the Objective-C checks into a different routine; however,
   2005 /// GCC seems to consider all of these conversions to be pointer
   2006 /// conversions, so for now they live here. IncompatibleObjC will be
   2007 /// set if the conversion is an allowed Objective-C conversion that
   2008 /// should result in a warning.
   2009 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
   2010                                bool InOverloadResolution,
   2011                                QualType& ConvertedType,
   2012                                bool &IncompatibleObjC) {
   2013   IncompatibleObjC = false;
   2014   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
   2015                               IncompatibleObjC))
   2016     return true;
   2017 
   2018   // Conversion from a null pointer constant to any Objective-C pointer type.
   2019   if (ToType->isObjCObjectPointerType() &&
   2020       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2021     ConvertedType = ToType;
   2022     return true;
   2023   }
   2024 
   2025   // Blocks: Block pointers can be converted to void*.
   2026   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
   2027       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
   2028     ConvertedType = ToType;
   2029     return true;
   2030   }
   2031   // Blocks: A null pointer constant can be converted to a block
   2032   // pointer type.
   2033   if (ToType->isBlockPointerType() &&
   2034       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2035     ConvertedType = ToType;
   2036     return true;
   2037   }
   2038 
   2039   // If the left-hand-side is nullptr_t, the right side can be a null
   2040   // pointer constant.
   2041   if (ToType->isNullPtrType() &&
   2042       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2043     ConvertedType = ToType;
   2044     return true;
   2045   }
   2046 
   2047   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
   2048   if (!ToTypePtr)
   2049     return false;
   2050 
   2051   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
   2052   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2053     ConvertedType = ToType;
   2054     return true;
   2055   }
   2056 
   2057   // Beyond this point, both types need to be pointers
   2058   // , including objective-c pointers.
   2059   QualType ToPointeeType = ToTypePtr->getPointeeType();
   2060   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
   2061       !getLangOpts().ObjCAutoRefCount) {
   2062     ConvertedType = BuildSimilarlyQualifiedPointerType(
   2063                                       FromType->getAs<ObjCObjectPointerType>(),
   2064                                                        ToPointeeType,
   2065                                                        ToType, Context);
   2066     return true;
   2067   }
   2068   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
   2069   if (!FromTypePtr)
   2070     return false;
   2071 
   2072   QualType FromPointeeType = FromTypePtr->getPointeeType();
   2073 
   2074   // If the unqualified pointee types are the same, this can't be a
   2075   // pointer conversion, so don't do all of the work below.
   2076   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
   2077     return false;
   2078 
   2079   // An rvalue of type "pointer to cv T," where T is an object type,
   2080   // can be converted to an rvalue of type "pointer to cv void" (C++
   2081   // 4.10p2).
   2082   if (FromPointeeType->isIncompleteOrObjectType() &&
   2083       ToPointeeType->isVoidType()) {
   2084     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2085                                                        ToPointeeType,
   2086                                                        ToType, Context,
   2087                                                    /*StripObjCLifetime=*/true);
   2088     return true;
   2089   }
   2090 
   2091   // MSVC allows implicit function to void* type conversion.
   2092   if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
   2093       ToPointeeType->isVoidType()) {
   2094     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2095                                                        ToPointeeType,
   2096                                                        ToType, Context);
   2097     return true;
   2098   }
   2099 
   2100   // When we're overloading in C, we allow a special kind of pointer
   2101   // conversion for compatible-but-not-identical pointee types.
   2102   if (!getLangOpts().CPlusPlus &&
   2103       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
   2104     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2105                                                        ToPointeeType,
   2106                                                        ToType, Context);
   2107     return true;
   2108   }
   2109 
   2110   // C++ [conv.ptr]p3:
   2111   //
   2112   //   An rvalue of type "pointer to cv D," where D is a class type,
   2113   //   can be converted to an rvalue of type "pointer to cv B," where
   2114   //   B is a base class (clause 10) of D. If B is an inaccessible
   2115   //   (clause 11) or ambiguous (10.2) base class of D, a program that
   2116   //   necessitates this conversion is ill-formed. The result of the
   2117   //   conversion is a pointer to the base class sub-object of the
   2118   //   derived class object. The null pointer value is converted to
   2119   //   the null pointer value of the destination type.
   2120   //
   2121   // Note that we do not check for ambiguity or inaccessibility
   2122   // here. That is handled by CheckPointerConversion.
   2123   if (getLangOpts().CPlusPlus &&
   2124       FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
   2125       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
   2126       !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
   2127       IsDerivedFrom(FromPointeeType, ToPointeeType)) {
   2128     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2129                                                        ToPointeeType,
   2130                                                        ToType, Context);
   2131     return true;
   2132   }
   2133 
   2134   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
   2135       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
   2136     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2137                                                        ToPointeeType,
   2138                                                        ToType, Context);
   2139     return true;
   2140   }
   2141 
   2142   return false;
   2143 }
   2144 
   2145 /// \brief Adopt the given qualifiers for the given type.
   2146 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
   2147   Qualifiers TQs = T.getQualifiers();
   2148 
   2149   // Check whether qualifiers already match.
   2150   if (TQs == Qs)
   2151     return T;
   2152 
   2153   if (Qs.compatiblyIncludes(TQs))
   2154     return Context.getQualifiedType(T, Qs);
   2155 
   2156   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
   2157 }
   2158 
   2159 /// isObjCPointerConversion - Determines whether this is an
   2160 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
   2161 /// with the same arguments and return values.
   2162 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
   2163                                    QualType& ConvertedType,
   2164                                    bool &IncompatibleObjC) {
   2165   if (!getLangOpts().ObjC1)
   2166     return false;
   2167 
   2168   // The set of qualifiers on the type we're converting from.
   2169   Qualifiers FromQualifiers = FromType.getQualifiers();
   2170 
   2171   // First, we handle all conversions on ObjC object pointer types.
   2172   const ObjCObjectPointerType* ToObjCPtr =
   2173     ToType->getAs<ObjCObjectPointerType>();
   2174   const ObjCObjectPointerType *FromObjCPtr =
   2175     FromType->getAs<ObjCObjectPointerType>();
   2176 
   2177   if (ToObjCPtr && FromObjCPtr) {
   2178     // If the pointee types are the same (ignoring qualifications),
   2179     // then this is not a pointer conversion.
   2180     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
   2181                                        FromObjCPtr->getPointeeType()))
   2182       return false;
   2183 
   2184     // Check for compatible
   2185     // Objective C++: We're able to convert between "id" or "Class" and a
   2186     // pointer to any interface (in both directions).
   2187     if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
   2188       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2189       return true;
   2190     }
   2191     // Conversions with Objective-C's id<...>.
   2192     if ((FromObjCPtr->isObjCQualifiedIdType() ||
   2193          ToObjCPtr->isObjCQualifiedIdType()) &&
   2194         Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
   2195                                                   /*compare=*/false)) {
   2196       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2197       return true;
   2198     }
   2199     // Objective C++: We're able to convert from a pointer to an
   2200     // interface to a pointer to a different interface.
   2201     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
   2202       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
   2203       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
   2204       if (getLangOpts().CPlusPlus && LHS && RHS &&
   2205           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
   2206                                                 FromObjCPtr->getPointeeType()))
   2207         return false;
   2208       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
   2209                                                    ToObjCPtr->getPointeeType(),
   2210                                                          ToType, Context);
   2211       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2212       return true;
   2213     }
   2214 
   2215     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
   2216       // Okay: this is some kind of implicit downcast of Objective-C
   2217       // interfaces, which is permitted. However, we're going to
   2218       // complain about it.
   2219       IncompatibleObjC = true;
   2220       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
   2221                                                    ToObjCPtr->getPointeeType(),
   2222                                                          ToType, Context);
   2223       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2224       return true;
   2225     }
   2226   }
   2227   // Beyond this point, both types need to be C pointers or block pointers.
   2228   QualType ToPointeeType;
   2229   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
   2230     ToPointeeType = ToCPtr->getPointeeType();
   2231   else if (const BlockPointerType *ToBlockPtr =
   2232             ToType->getAs<BlockPointerType>()) {
   2233     // Objective C++: We're able to convert from a pointer to any object
   2234     // to a block pointer type.
   2235     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
   2236       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2237       return true;
   2238     }
   2239     ToPointeeType = ToBlockPtr->getPointeeType();
   2240   }
   2241   else if (FromType->getAs<BlockPointerType>() &&
   2242            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
   2243     // Objective C++: We're able to convert from a block pointer type to a
   2244     // pointer to any object.
   2245     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2246     return true;
   2247   }
   2248   else
   2249     return false;
   2250 
   2251   QualType FromPointeeType;
   2252   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
   2253     FromPointeeType = FromCPtr->getPointeeType();
   2254   else if (const BlockPointerType *FromBlockPtr =
   2255            FromType->getAs<BlockPointerType>())
   2256     FromPointeeType = FromBlockPtr->getPointeeType();
   2257   else
   2258     return false;
   2259 
   2260   // If we have pointers to pointers, recursively check whether this
   2261   // is an Objective-C conversion.
   2262   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
   2263       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
   2264                               IncompatibleObjC)) {
   2265     // We always complain about this conversion.
   2266     IncompatibleObjC = true;
   2267     ConvertedType = Context.getPointerType(ConvertedType);
   2268     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2269     return true;
   2270   }
   2271   // Allow conversion of pointee being objective-c pointer to another one;
   2272   // as in I* to id.
   2273   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
   2274       ToPointeeType->getAs<ObjCObjectPointerType>() &&
   2275       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
   2276                               IncompatibleObjC)) {
   2277 
   2278     ConvertedType = Context.getPointerType(ConvertedType);
   2279     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2280     return true;
   2281   }
   2282 
   2283   // If we have pointers to functions or blocks, check whether the only
   2284   // differences in the argument and result types are in Objective-C
   2285   // pointer conversions. If so, we permit the conversion (but
   2286   // complain about it).
   2287   const FunctionProtoType *FromFunctionType
   2288     = FromPointeeType->getAs<FunctionProtoType>();
   2289   const FunctionProtoType *ToFunctionType
   2290     = ToPointeeType->getAs<FunctionProtoType>();
   2291   if (FromFunctionType && ToFunctionType) {
   2292     // If the function types are exactly the same, this isn't an
   2293     // Objective-C pointer conversion.
   2294     if (Context.getCanonicalType(FromPointeeType)
   2295           == Context.getCanonicalType(ToPointeeType))
   2296       return false;
   2297 
   2298     // Perform the quick checks that will tell us whether these
   2299     // function types are obviously different.
   2300     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
   2301         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
   2302         FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
   2303       return false;
   2304 
   2305     bool HasObjCConversion = false;
   2306     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
   2307         Context.getCanonicalType(ToFunctionType->getReturnType())) {
   2308       // Okay, the types match exactly. Nothing to do.
   2309     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
   2310                                        ToFunctionType->getReturnType(),
   2311                                        ConvertedType, IncompatibleObjC)) {
   2312       // Okay, we have an Objective-C pointer conversion.
   2313       HasObjCConversion = true;
   2314     } else {
   2315       // Function types are too different. Abort.
   2316       return false;
   2317     }
   2318 
   2319     // Check argument types.
   2320     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
   2321          ArgIdx != NumArgs; ++ArgIdx) {
   2322       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
   2323       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
   2324       if (Context.getCanonicalType(FromArgType)
   2325             == Context.getCanonicalType(ToArgType)) {
   2326         // Okay, the types match exactly. Nothing to do.
   2327       } else if (isObjCPointerConversion(FromArgType, ToArgType,
   2328                                          ConvertedType, IncompatibleObjC)) {
   2329         // Okay, we have an Objective-C pointer conversion.
   2330         HasObjCConversion = true;
   2331       } else {
   2332         // Argument types are too different. Abort.
   2333         return false;
   2334       }
   2335     }
   2336 
   2337     if (HasObjCConversion) {
   2338       // We had an Objective-C conversion. Allow this pointer
   2339       // conversion, but complain about it.
   2340       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2341       IncompatibleObjC = true;
   2342       return true;
   2343     }
   2344   }
   2345 
   2346   return false;
   2347 }
   2348 
   2349 /// \brief Determine whether this is an Objective-C writeback conversion,
   2350 /// used for parameter passing when performing automatic reference counting.
   2351 ///
   2352 /// \param FromType The type we're converting form.
   2353 ///
   2354 /// \param ToType The type we're converting to.
   2355 ///
   2356 /// \param ConvertedType The type that will be produced after applying
   2357 /// this conversion.
   2358 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
   2359                                      QualType &ConvertedType) {
   2360   if (!getLangOpts().ObjCAutoRefCount ||
   2361       Context.hasSameUnqualifiedType(FromType, ToType))
   2362     return false;
   2363 
   2364   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
   2365   QualType ToPointee;
   2366   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
   2367     ToPointee = ToPointer->getPointeeType();
   2368   else
   2369     return false;
   2370 
   2371   Qualifiers ToQuals = ToPointee.getQualifiers();
   2372   if (!ToPointee->isObjCLifetimeType() ||
   2373       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
   2374       !ToQuals.withoutObjCLifetime().empty())
   2375     return false;
   2376 
   2377   // Argument must be a pointer to __strong to __weak.
   2378   QualType FromPointee;
   2379   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
   2380     FromPointee = FromPointer->getPointeeType();
   2381   else
   2382     return false;
   2383 
   2384   Qualifiers FromQuals = FromPointee.getQualifiers();
   2385   if (!FromPointee->isObjCLifetimeType() ||
   2386       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
   2387        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
   2388     return false;
   2389 
   2390   // Make sure that we have compatible qualifiers.
   2391   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
   2392   if (!ToQuals.compatiblyIncludes(FromQuals))
   2393     return false;
   2394 
   2395   // Remove qualifiers from the pointee type we're converting from; they
   2396   // aren't used in the compatibility check belong, and we'll be adding back
   2397   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
   2398   FromPointee = FromPointee.getUnqualifiedType();
   2399 
   2400   // The unqualified form of the pointee types must be compatible.
   2401   ToPointee = ToPointee.getUnqualifiedType();
   2402   bool IncompatibleObjC;
   2403   if (Context.typesAreCompatible(FromPointee, ToPointee))
   2404     FromPointee = ToPointee;
   2405   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
   2406                                     IncompatibleObjC))
   2407     return false;
   2408 
   2409   /// \brief Construct the type we're converting to, which is a pointer to
   2410   /// __autoreleasing pointee.
   2411   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
   2412   ConvertedType = Context.getPointerType(FromPointee);
   2413   return true;
   2414 }
   2415 
   2416 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
   2417                                     QualType& ConvertedType) {
   2418   QualType ToPointeeType;
   2419   if (const BlockPointerType *ToBlockPtr =
   2420         ToType->getAs<BlockPointerType>())
   2421     ToPointeeType = ToBlockPtr->getPointeeType();
   2422   else
   2423     return false;
   2424 
   2425   QualType FromPointeeType;
   2426   if (const BlockPointerType *FromBlockPtr =
   2427       FromType->getAs<BlockPointerType>())
   2428     FromPointeeType = FromBlockPtr->getPointeeType();
   2429   else
   2430     return false;
   2431   // We have pointer to blocks, check whether the only
   2432   // differences in the argument and result types are in Objective-C
   2433   // pointer conversions. If so, we permit the conversion.
   2434 
   2435   const FunctionProtoType *FromFunctionType
   2436     = FromPointeeType->getAs<FunctionProtoType>();
   2437   const FunctionProtoType *ToFunctionType
   2438     = ToPointeeType->getAs<FunctionProtoType>();
   2439 
   2440   if (!FromFunctionType || !ToFunctionType)
   2441     return false;
   2442 
   2443   if (Context.hasSameType(FromPointeeType, ToPointeeType))
   2444     return true;
   2445 
   2446   // Perform the quick checks that will tell us whether these
   2447   // function types are obviously different.
   2448   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
   2449       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
   2450     return false;
   2451 
   2452   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
   2453   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
   2454   if (FromEInfo != ToEInfo)
   2455     return false;
   2456 
   2457   bool IncompatibleObjC = false;
   2458   if (Context.hasSameType(FromFunctionType->getReturnType(),
   2459                           ToFunctionType->getReturnType())) {
   2460     // Okay, the types match exactly. Nothing to do.
   2461   } else {
   2462     QualType RHS = FromFunctionType->getReturnType();
   2463     QualType LHS = ToFunctionType->getReturnType();
   2464     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
   2465         !RHS.hasQualifiers() && LHS.hasQualifiers())
   2466        LHS = LHS.getUnqualifiedType();
   2467 
   2468      if (Context.hasSameType(RHS,LHS)) {
   2469        // OK exact match.
   2470      } else if (isObjCPointerConversion(RHS, LHS,
   2471                                         ConvertedType, IncompatibleObjC)) {
   2472      if (IncompatibleObjC)
   2473        return false;
   2474      // Okay, we have an Objective-C pointer conversion.
   2475      }
   2476      else
   2477        return false;
   2478    }
   2479 
   2480    // Check argument types.
   2481    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
   2482         ArgIdx != NumArgs; ++ArgIdx) {
   2483      IncompatibleObjC = false;
   2484      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
   2485      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
   2486      if (Context.hasSameType(FromArgType, ToArgType)) {
   2487        // Okay, the types match exactly. Nothing to do.
   2488      } else if (isObjCPointerConversion(ToArgType, FromArgType,
   2489                                         ConvertedType, IncompatibleObjC)) {
   2490        if (IncompatibleObjC)
   2491          return false;
   2492        // Okay, we have an Objective-C pointer conversion.
   2493      } else
   2494        // Argument types are too different. Abort.
   2495        return false;
   2496    }
   2497    if (LangOpts.ObjCAutoRefCount &&
   2498        !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
   2499                                                     ToFunctionType))
   2500      return false;
   2501 
   2502    ConvertedType = ToType;
   2503    return true;
   2504 }
   2505 
   2506 enum {
   2507   ft_default,
   2508   ft_different_class,
   2509   ft_parameter_arity,
   2510   ft_parameter_mismatch,
   2511   ft_return_type,
   2512   ft_qualifer_mismatch
   2513 };
   2514 
   2515 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
   2516 /// function types.  Catches different number of parameter, mismatch in
   2517 /// parameter types, and different return types.
   2518 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
   2519                                       QualType FromType, QualType ToType) {
   2520   // If either type is not valid, include no extra info.
   2521   if (FromType.isNull() || ToType.isNull()) {
   2522     PDiag << ft_default;
   2523     return;
   2524   }
   2525 
   2526   // Get the function type from the pointers.
   2527   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
   2528     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
   2529                             *ToMember = ToType->getAs<MemberPointerType>();
   2530     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
   2531       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
   2532             << QualType(FromMember->getClass(), 0);
   2533       return;
   2534     }
   2535     FromType = FromMember->getPointeeType();
   2536     ToType = ToMember->getPointeeType();
   2537   }
   2538 
   2539   if (FromType->isPointerType())
   2540     FromType = FromType->getPointeeType();
   2541   if (ToType->isPointerType())
   2542     ToType = ToType->getPointeeType();
   2543 
   2544   // Remove references.
   2545   FromType = FromType.getNonReferenceType();
   2546   ToType = ToType.getNonReferenceType();
   2547 
   2548   // Don't print extra info for non-specialized template functions.
   2549   if (FromType->isInstantiationDependentType() &&
   2550       !FromType->getAs<TemplateSpecializationType>()) {
   2551     PDiag << ft_default;
   2552     return;
   2553   }
   2554 
   2555   // No extra info for same types.
   2556   if (Context.hasSameType(FromType, ToType)) {
   2557     PDiag << ft_default;
   2558     return;
   2559   }
   2560 
   2561   const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
   2562                           *ToFunction = ToType->getAs<FunctionProtoType>();
   2563 
   2564   // Both types need to be function types.
   2565   if (!FromFunction || !ToFunction) {
   2566     PDiag << ft_default;
   2567     return;
   2568   }
   2569 
   2570   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
   2571     PDiag << ft_parameter_arity << ToFunction->getNumParams()
   2572           << FromFunction->getNumParams();
   2573     return;
   2574   }
   2575 
   2576   // Handle different parameter types.
   2577   unsigned ArgPos;
   2578   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
   2579     PDiag << ft_parameter_mismatch << ArgPos + 1
   2580           << ToFunction->getParamType(ArgPos)
   2581           << FromFunction->getParamType(ArgPos);
   2582     return;
   2583   }
   2584 
   2585   // Handle different return type.
   2586   if (!Context.hasSameType(FromFunction->getReturnType(),
   2587                            ToFunction->getReturnType())) {
   2588     PDiag << ft_return_type << ToFunction->getReturnType()
   2589           << FromFunction->getReturnType();
   2590     return;
   2591   }
   2592 
   2593   unsigned FromQuals = FromFunction->getTypeQuals(),
   2594            ToQuals = ToFunction->getTypeQuals();
   2595   if (FromQuals != ToQuals) {
   2596     PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
   2597     return;
   2598   }
   2599 
   2600   // Unable to find a difference, so add no extra info.
   2601   PDiag << ft_default;
   2602 }
   2603 
   2604 /// FunctionParamTypesAreEqual - This routine checks two function proto types
   2605 /// for equality of their argument types. Caller has already checked that
   2606 /// they have same number of arguments.  If the parameters are different,
   2607 /// ArgPos will have the parameter index of the first different parameter.
   2608 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
   2609                                       const FunctionProtoType *NewType,
   2610                                       unsigned *ArgPos) {
   2611   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
   2612                                               N = NewType->param_type_begin(),
   2613                                               E = OldType->param_type_end();
   2614        O && (O != E); ++O, ++N) {
   2615     if (!Context.hasSameType(O->getUnqualifiedType(),
   2616                              N->getUnqualifiedType())) {
   2617       if (ArgPos)
   2618         *ArgPos = O - OldType->param_type_begin();
   2619       return false;
   2620     }
   2621   }
   2622   return true;
   2623 }
   2624 
   2625 /// CheckPointerConversion - Check the pointer conversion from the
   2626 /// expression From to the type ToType. This routine checks for
   2627 /// ambiguous or inaccessible derived-to-base pointer
   2628 /// conversions for which IsPointerConversion has already returned
   2629 /// true. It returns true and produces a diagnostic if there was an
   2630 /// error, or returns false otherwise.
   2631 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
   2632                                   CastKind &Kind,
   2633                                   CXXCastPath& BasePath,
   2634                                   bool IgnoreBaseAccess) {
   2635   QualType FromType = From->getType();
   2636   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
   2637 
   2638   Kind = CK_BitCast;
   2639 
   2640   if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
   2641       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
   2642       Expr::NPCK_ZeroExpression) {
   2643     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
   2644       DiagRuntimeBehavior(From->getExprLoc(), From,
   2645                           PDiag(diag::warn_impcast_bool_to_null_pointer)
   2646                             << ToType << From->getSourceRange());
   2647     else if (!isUnevaluatedContext())
   2648       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
   2649         << ToType << From->getSourceRange();
   2650   }
   2651   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
   2652     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
   2653       QualType FromPointeeType = FromPtrType->getPointeeType(),
   2654                ToPointeeType   = ToPtrType->getPointeeType();
   2655 
   2656       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
   2657           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
   2658         // We must have a derived-to-base conversion. Check an
   2659         // ambiguous or inaccessible conversion.
   2660         if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
   2661                                          From->getExprLoc(),
   2662                                          From->getSourceRange(), &BasePath,
   2663                                          IgnoreBaseAccess))
   2664           return true;
   2665 
   2666         // The conversion was successful.
   2667         Kind = CK_DerivedToBase;
   2668       }
   2669     }
   2670   } else if (const ObjCObjectPointerType *ToPtrType =
   2671                ToType->getAs<ObjCObjectPointerType>()) {
   2672     if (const ObjCObjectPointerType *FromPtrType =
   2673           FromType->getAs<ObjCObjectPointerType>()) {
   2674       // Objective-C++ conversions are always okay.
   2675       // FIXME: We should have a different class of conversions for the
   2676       // Objective-C++ implicit conversions.
   2677       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
   2678         return false;
   2679     } else if (FromType->isBlockPointerType()) {
   2680       Kind = CK_BlockPointerToObjCPointerCast;
   2681     } else {
   2682       Kind = CK_CPointerToObjCPointerCast;
   2683     }
   2684   } else if (ToType->isBlockPointerType()) {
   2685     if (!FromType->isBlockPointerType())
   2686       Kind = CK_AnyPointerToBlockPointerCast;
   2687   }
   2688 
   2689   // We shouldn't fall into this case unless it's valid for other
   2690   // reasons.
   2691   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
   2692     Kind = CK_NullToPointer;
   2693 
   2694   return false;
   2695 }
   2696 
   2697 /// IsMemberPointerConversion - Determines whether the conversion of the
   2698 /// expression From, which has the (possibly adjusted) type FromType, can be
   2699 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
   2700 /// If so, returns true and places the converted type (that might differ from
   2701 /// ToType in its cv-qualifiers at some level) into ConvertedType.
   2702 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
   2703                                      QualType ToType,
   2704                                      bool InOverloadResolution,
   2705                                      QualType &ConvertedType) {
   2706   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
   2707   if (!ToTypePtr)
   2708     return false;
   2709 
   2710   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
   2711   if (From->isNullPointerConstant(Context,
   2712                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
   2713                                         : Expr::NPC_ValueDependentIsNull)) {
   2714     ConvertedType = ToType;
   2715     return true;
   2716   }
   2717 
   2718   // Otherwise, both types have to be member pointers.
   2719   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
   2720   if (!FromTypePtr)
   2721     return false;
   2722 
   2723   // A pointer to member of B can be converted to a pointer to member of D,
   2724   // where D is derived from B (C++ 4.11p2).
   2725   QualType FromClass(FromTypePtr->getClass(), 0);
   2726   QualType ToClass(ToTypePtr->getClass(), 0);
   2727 
   2728   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
   2729       !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
   2730       IsDerivedFrom(ToClass, FromClass)) {
   2731     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
   2732                                                  ToClass.getTypePtr());
   2733     return true;
   2734   }
   2735 
   2736   return false;
   2737 }
   2738 
   2739 /// CheckMemberPointerConversion - Check the member pointer conversion from the
   2740 /// expression From to the type ToType. This routine checks for ambiguous or
   2741 /// virtual or inaccessible base-to-derived member pointer conversions
   2742 /// for which IsMemberPointerConversion has already returned true. It returns
   2743 /// true and produces a diagnostic if there was an error, or returns false
   2744 /// otherwise.
   2745 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
   2746                                         CastKind &Kind,
   2747                                         CXXCastPath &BasePath,
   2748                                         bool IgnoreBaseAccess) {
   2749   QualType FromType = From->getType();
   2750   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
   2751   if (!FromPtrType) {
   2752     // This must be a null pointer to member pointer conversion
   2753     assert(From->isNullPointerConstant(Context,
   2754                                        Expr::NPC_ValueDependentIsNull) &&
   2755            "Expr must be null pointer constant!");
   2756     Kind = CK_NullToMemberPointer;
   2757     return false;
   2758   }
   2759 
   2760   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
   2761   assert(ToPtrType && "No member pointer cast has a target type "
   2762                       "that is not a member pointer.");
   2763 
   2764   QualType FromClass = QualType(FromPtrType->getClass(), 0);
   2765   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
   2766 
   2767   // FIXME: What about dependent types?
   2768   assert(FromClass->isRecordType() && "Pointer into non-class.");
   2769   assert(ToClass->isRecordType() && "Pointer into non-class.");
   2770 
   2771   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   2772                      /*DetectVirtual=*/true);
   2773   bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
   2774   assert(DerivationOkay &&
   2775          "Should not have been called if derivation isn't OK.");
   2776   (void)DerivationOkay;
   2777 
   2778   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
   2779                                   getUnqualifiedType())) {
   2780     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
   2781     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
   2782       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
   2783     return true;
   2784   }
   2785 
   2786   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
   2787     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
   2788       << FromClass << ToClass << QualType(VBase, 0)
   2789       << From->getSourceRange();
   2790     return true;
   2791   }
   2792 
   2793   if (!IgnoreBaseAccess)
   2794     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
   2795                          Paths.front(),
   2796                          diag::err_downcast_from_inaccessible_base);
   2797 
   2798   // Must be a base to derived member conversion.
   2799   BuildBasePathArray(Paths, BasePath);
   2800   Kind = CK_BaseToDerivedMemberPointer;
   2801   return false;
   2802 }
   2803 
   2804 /// Determine whether the lifetime conversion between the two given
   2805 /// qualifiers sets is nontrivial.
   2806 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
   2807                                                Qualifiers ToQuals) {
   2808   // Converting anything to const __unsafe_unretained is trivial.
   2809   if (ToQuals.hasConst() &&
   2810       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
   2811     return false;
   2812 
   2813   return true;
   2814 }
   2815 
   2816 /// IsQualificationConversion - Determines whether the conversion from
   2817 /// an rvalue of type FromType to ToType is a qualification conversion
   2818 /// (C++ 4.4).
   2819 ///
   2820 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
   2821 /// when the qualification conversion involves a change in the Objective-C
   2822 /// object lifetime.
   2823 bool
   2824 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
   2825                                 bool CStyle, bool &ObjCLifetimeConversion) {
   2826   FromType = Context.getCanonicalType(FromType);
   2827   ToType = Context.getCanonicalType(ToType);
   2828   ObjCLifetimeConversion = false;
   2829 
   2830   // If FromType and ToType are the same type, this is not a
   2831   // qualification conversion.
   2832   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
   2833     return false;
   2834 
   2835   // (C++ 4.4p4):
   2836   //   A conversion can add cv-qualifiers at levels other than the first
   2837   //   in multi-level pointers, subject to the following rules: [...]
   2838   bool PreviousToQualsIncludeConst = true;
   2839   bool UnwrappedAnyPointer = false;
   2840   while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
   2841     // Within each iteration of the loop, we check the qualifiers to
   2842     // determine if this still looks like a qualification
   2843     // conversion. Then, if all is well, we unwrap one more level of
   2844     // pointers or pointers-to-members and do it all again
   2845     // until there are no more pointers or pointers-to-members left to
   2846     // unwrap.
   2847     UnwrappedAnyPointer = true;
   2848 
   2849     Qualifiers FromQuals = FromType.getQualifiers();
   2850     Qualifiers ToQuals = ToType.getQualifiers();
   2851 
   2852     // Objective-C ARC:
   2853     //   Check Objective-C lifetime conversions.
   2854     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
   2855         UnwrappedAnyPointer) {
   2856       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
   2857         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
   2858           ObjCLifetimeConversion = true;
   2859         FromQuals.removeObjCLifetime();
   2860         ToQuals.removeObjCLifetime();
   2861       } else {
   2862         // Qualification conversions cannot cast between different
   2863         // Objective-C lifetime qualifiers.
   2864         return false;
   2865       }
   2866     }
   2867 
   2868     // Allow addition/removal of GC attributes but not changing GC attributes.
   2869     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
   2870         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
   2871       FromQuals.removeObjCGCAttr();
   2872       ToQuals.removeObjCGCAttr();
   2873     }
   2874 
   2875     //   -- for every j > 0, if const is in cv 1,j then const is in cv
   2876     //      2,j, and similarly for volatile.
   2877     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
   2878       return false;
   2879 
   2880     //   -- if the cv 1,j and cv 2,j are different, then const is in
   2881     //      every cv for 0 < k < j.
   2882     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
   2883         && !PreviousToQualsIncludeConst)
   2884       return false;
   2885 
   2886     // Keep track of whether all prior cv-qualifiers in the "to" type
   2887     // include const.
   2888     PreviousToQualsIncludeConst
   2889       = PreviousToQualsIncludeConst && ToQuals.hasConst();
   2890   }
   2891 
   2892   // We are left with FromType and ToType being the pointee types
   2893   // after unwrapping the original FromType and ToType the same number
   2894   // of types. If we unwrapped any pointers, and if FromType and
   2895   // ToType have the same unqualified type (since we checked
   2896   // qualifiers above), then this is a qualification conversion.
   2897   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
   2898 }
   2899 
   2900 /// \brief - Determine whether this is a conversion from a scalar type to an
   2901 /// atomic type.
   2902 ///
   2903 /// If successful, updates \c SCS's second and third steps in the conversion
   2904 /// sequence to finish the conversion.
   2905 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
   2906                                 bool InOverloadResolution,
   2907                                 StandardConversionSequence &SCS,
   2908                                 bool CStyle) {
   2909   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
   2910   if (!ToAtomic)
   2911     return false;
   2912 
   2913   StandardConversionSequence InnerSCS;
   2914   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
   2915                             InOverloadResolution, InnerSCS,
   2916                             CStyle, /*AllowObjCWritebackConversion=*/false))
   2917     return false;
   2918 
   2919   SCS.Second = InnerSCS.Second;
   2920   SCS.setToType(1, InnerSCS.getToType(1));
   2921   SCS.Third = InnerSCS.Third;
   2922   SCS.QualificationIncludesObjCLifetime
   2923     = InnerSCS.QualificationIncludesObjCLifetime;
   2924   SCS.setToType(2, InnerSCS.getToType(2));
   2925   return true;
   2926 }
   2927 
   2928 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
   2929                                               CXXConstructorDecl *Constructor,
   2930                                               QualType Type) {
   2931   const FunctionProtoType *CtorType =
   2932       Constructor->getType()->getAs<FunctionProtoType>();
   2933   if (CtorType->getNumParams() > 0) {
   2934     QualType FirstArg = CtorType->getParamType(0);
   2935     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
   2936       return true;
   2937   }
   2938   return false;
   2939 }
   2940 
   2941 static OverloadingResult
   2942 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
   2943                                        CXXRecordDecl *To,
   2944                                        UserDefinedConversionSequence &User,
   2945                                        OverloadCandidateSet &CandidateSet,
   2946                                        bool AllowExplicit) {
   2947   DeclContext::lookup_result R = S.LookupConstructors(To);
   2948   for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
   2949        Con != ConEnd; ++Con) {
   2950     NamedDecl *D = *Con;
   2951     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   2952 
   2953     // Find the constructor (which may be a template).
   2954     CXXConstructorDecl *Constructor = nullptr;
   2955     FunctionTemplateDecl *ConstructorTmpl
   2956       = dyn_cast<FunctionTemplateDecl>(D);
   2957     if (ConstructorTmpl)
   2958       Constructor
   2959         = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
   2960     else
   2961       Constructor = cast<CXXConstructorDecl>(D);
   2962 
   2963     bool Usable = !Constructor->isInvalidDecl() &&
   2964                   S.isInitListConstructor(Constructor) &&
   2965                   (AllowExplicit || !Constructor->isExplicit());
   2966     if (Usable) {
   2967       // If the first argument is (a reference to) the target type,
   2968       // suppress conversions.
   2969       bool SuppressUserConversions =
   2970           isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
   2971       if (ConstructorTmpl)
   2972         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   2973                                        /*ExplicitArgs*/ nullptr,
   2974                                        From, CandidateSet,
   2975                                        SuppressUserConversions);
   2976       else
   2977         S.AddOverloadCandidate(Constructor, FoundDecl,
   2978                                From, CandidateSet,
   2979                                SuppressUserConversions);
   2980     }
   2981   }
   2982 
   2983   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   2984 
   2985   OverloadCandidateSet::iterator Best;
   2986   switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
   2987   case OR_Success: {
   2988     // Record the standard conversion we used and the conversion function.
   2989     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
   2990     QualType ThisType = Constructor->getThisType(S.Context);
   2991     // Initializer lists don't have conversions as such.
   2992     User.Before.setAsIdentityConversion();
   2993     User.HadMultipleCandidates = HadMultipleCandidates;
   2994     User.ConversionFunction = Constructor;
   2995     User.FoundConversionFunction = Best->FoundDecl;
   2996     User.After.setAsIdentityConversion();
   2997     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
   2998     User.After.setAllToTypes(ToType);
   2999     return OR_Success;
   3000   }
   3001 
   3002   case OR_No_Viable_Function:
   3003     return OR_No_Viable_Function;
   3004   case OR_Deleted:
   3005     return OR_Deleted;
   3006   case OR_Ambiguous:
   3007     return OR_Ambiguous;
   3008   }
   3009 
   3010   llvm_unreachable("Invalid OverloadResult!");
   3011 }
   3012 
   3013 /// Determines whether there is a user-defined conversion sequence
   3014 /// (C++ [over.ics.user]) that converts expression From to the type
   3015 /// ToType. If such a conversion exists, User will contain the
   3016 /// user-defined conversion sequence that performs such a conversion
   3017 /// and this routine will return true. Otherwise, this routine returns
   3018 /// false and User is unspecified.
   3019 ///
   3020 /// \param AllowExplicit  true if the conversion should consider C++0x
   3021 /// "explicit" conversion functions as well as non-explicit conversion
   3022 /// functions (C++0x [class.conv.fct]p2).
   3023 ///
   3024 /// \param AllowObjCConversionOnExplicit true if the conversion should
   3025 /// allow an extra Objective-C pointer conversion on uses of explicit
   3026 /// constructors. Requires \c AllowExplicit to also be set.
   3027 static OverloadingResult
   3028 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
   3029                         UserDefinedConversionSequence &User,
   3030                         OverloadCandidateSet &CandidateSet,
   3031                         bool AllowExplicit,
   3032                         bool AllowObjCConversionOnExplicit) {
   3033   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
   3034 
   3035   // Whether we will only visit constructors.
   3036   bool ConstructorsOnly = false;
   3037 
   3038   // If the type we are conversion to is a class type, enumerate its
   3039   // constructors.
   3040   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
   3041     // C++ [over.match.ctor]p1:
   3042     //   When objects of class type are direct-initialized (8.5), or
   3043     //   copy-initialized from an expression of the same or a
   3044     //   derived class type (8.5), overload resolution selects the
   3045     //   constructor. [...] For copy-initialization, the candidate
   3046     //   functions are all the converting constructors (12.3.1) of
   3047     //   that class. The argument list is the expression-list within
   3048     //   the parentheses of the initializer.
   3049     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
   3050         (From->getType()->getAs<RecordType>() &&
   3051          S.IsDerivedFrom(From->getType(), ToType)))
   3052       ConstructorsOnly = true;
   3053 
   3054     S.RequireCompleteType(From->getExprLoc(), ToType, 0);
   3055     // RequireCompleteType may have returned true due to some invalid decl
   3056     // during template instantiation, but ToType may be complete enough now
   3057     // to try to recover.
   3058     if (ToType->isIncompleteType()) {
   3059       // We're not going to find any constructors.
   3060     } else if (CXXRecordDecl *ToRecordDecl
   3061                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
   3062 
   3063       Expr **Args = &From;
   3064       unsigned NumArgs = 1;
   3065       bool ListInitializing = false;
   3066       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
   3067         // But first, see if there is an init-list-constructor that will work.
   3068         OverloadingResult Result = IsInitializerListConstructorConversion(
   3069             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
   3070         if (Result != OR_No_Viable_Function)
   3071           return Result;
   3072         // Never mind.
   3073         CandidateSet.clear();
   3074 
   3075         // If we're list-initializing, we pass the individual elements as
   3076         // arguments, not the entire list.
   3077         Args = InitList->getInits();
   3078         NumArgs = InitList->getNumInits();
   3079         ListInitializing = true;
   3080       }
   3081 
   3082       DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
   3083       for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
   3084            Con != ConEnd; ++Con) {
   3085         NamedDecl *D = *Con;
   3086         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   3087 
   3088         // Find the constructor (which may be a template).
   3089         CXXConstructorDecl *Constructor = nullptr;
   3090         FunctionTemplateDecl *ConstructorTmpl
   3091           = dyn_cast<FunctionTemplateDecl>(D);
   3092         if (ConstructorTmpl)
   3093           Constructor
   3094             = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
   3095         else
   3096           Constructor = cast<CXXConstructorDecl>(D);
   3097 
   3098         bool Usable = !Constructor->isInvalidDecl();
   3099         if (ListInitializing)
   3100           Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
   3101         else
   3102           Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
   3103         if (Usable) {
   3104           bool SuppressUserConversions = !ConstructorsOnly;
   3105           if (SuppressUserConversions && ListInitializing) {
   3106             SuppressUserConversions = false;
   3107             if (NumArgs == 1) {
   3108               // If the first argument is (a reference to) the target type,
   3109               // suppress conversions.
   3110               SuppressUserConversions = isFirstArgumentCompatibleWithType(
   3111                                                 S.Context, Constructor, ToType);
   3112             }
   3113           }
   3114           if (ConstructorTmpl)
   3115             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   3116                                            /*ExplicitArgs*/ nullptr,
   3117                                            llvm::makeArrayRef(Args, NumArgs),
   3118                                            CandidateSet, SuppressUserConversions);
   3119           else
   3120             // Allow one user-defined conversion when user specifies a
   3121             // From->ToType conversion via an static cast (c-style, etc).
   3122             S.AddOverloadCandidate(Constructor, FoundDecl,
   3123                                    llvm::makeArrayRef(Args, NumArgs),
   3124                                    CandidateSet, SuppressUserConversions);
   3125         }
   3126       }
   3127     }
   3128   }
   3129 
   3130   // Enumerate conversion functions, if we're allowed to.
   3131   if (ConstructorsOnly || isa<InitListExpr>(From)) {
   3132   } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
   3133     // No conversion functions from incomplete types.
   3134   } else if (const RecordType *FromRecordType
   3135                                    = From->getType()->getAs<RecordType>()) {
   3136     if (CXXRecordDecl *FromRecordDecl
   3137          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
   3138       // Add all of the conversion functions as candidates.
   3139       std::pair<CXXRecordDecl::conversion_iterator,
   3140                 CXXRecordDecl::conversion_iterator>
   3141         Conversions = FromRecordDecl->getVisibleConversionFunctions();
   3142       for (CXXRecordDecl::conversion_iterator
   3143              I = Conversions.first, E = Conversions.second; I != E; ++I) {
   3144         DeclAccessPair FoundDecl = I.getPair();
   3145         NamedDecl *D = FoundDecl.getDecl();
   3146         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   3147         if (isa<UsingShadowDecl>(D))
   3148           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   3149 
   3150         CXXConversionDecl *Conv;
   3151         FunctionTemplateDecl *ConvTemplate;
   3152         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
   3153           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   3154         else
   3155           Conv = cast<CXXConversionDecl>(D);
   3156 
   3157         if (AllowExplicit || !Conv->isExplicit()) {
   3158           if (ConvTemplate)
   3159             S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
   3160                                              ActingContext, From, ToType,
   3161                                              CandidateSet,
   3162                                              AllowObjCConversionOnExplicit);
   3163           else
   3164             S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
   3165                                      From, ToType, CandidateSet,
   3166                                      AllowObjCConversionOnExplicit);
   3167         }
   3168       }
   3169     }
   3170   }
   3171 
   3172   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   3173 
   3174   OverloadCandidateSet::iterator Best;
   3175   switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
   3176   case OR_Success:
   3177     // Record the standard conversion we used and the conversion function.
   3178     if (CXXConstructorDecl *Constructor
   3179           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
   3180       // C++ [over.ics.user]p1:
   3181       //   If the user-defined conversion is specified by a
   3182       //   constructor (12.3.1), the initial standard conversion
   3183       //   sequence converts the source type to the type required by
   3184       //   the argument of the constructor.
   3185       //
   3186       QualType ThisType = Constructor->getThisType(S.Context);
   3187       if (isa<InitListExpr>(From)) {
   3188         // Initializer lists don't have conversions as such.
   3189         User.Before.setAsIdentityConversion();
   3190       } else {
   3191         if (Best->Conversions[0].isEllipsis())
   3192           User.EllipsisConversion = true;
   3193         else {
   3194           User.Before = Best->Conversions[0].Standard;
   3195           User.EllipsisConversion = false;
   3196         }
   3197       }
   3198       User.HadMultipleCandidates = HadMultipleCandidates;
   3199       User.ConversionFunction = Constructor;
   3200       User.FoundConversionFunction = Best->FoundDecl;
   3201       User.After.setAsIdentityConversion();
   3202       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
   3203       User.After.setAllToTypes(ToType);
   3204       return OR_Success;
   3205     }
   3206     if (CXXConversionDecl *Conversion
   3207                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
   3208       // C++ [over.ics.user]p1:
   3209       //
   3210       //   [...] If the user-defined conversion is specified by a
   3211       //   conversion function (12.3.2), the initial standard
   3212       //   conversion sequence converts the source type to the
   3213       //   implicit object parameter of the conversion function.
   3214       User.Before = Best->Conversions[0].Standard;
   3215       User.HadMultipleCandidates = HadMultipleCandidates;
   3216       User.ConversionFunction = Conversion;
   3217       User.FoundConversionFunction = Best->FoundDecl;
   3218       User.EllipsisConversion = false;
   3219 
   3220       // C++ [over.ics.user]p2:
   3221       //   The second standard conversion sequence converts the
   3222       //   result of the user-defined conversion to the target type
   3223       //   for the sequence. Since an implicit conversion sequence
   3224       //   is an initialization, the special rules for
   3225       //   initialization by user-defined conversion apply when
   3226       //   selecting the best user-defined conversion for a
   3227       //   user-defined conversion sequence (see 13.3.3 and
   3228       //   13.3.3.1).
   3229       User.After = Best->FinalConversion;
   3230       return OR_Success;
   3231     }
   3232     llvm_unreachable("Not a constructor or conversion function?");
   3233 
   3234   case OR_No_Viable_Function:
   3235     return OR_No_Viable_Function;
   3236   case OR_Deleted:
   3237     // No conversion here! We're done.
   3238     return OR_Deleted;
   3239 
   3240   case OR_Ambiguous:
   3241     return OR_Ambiguous;
   3242   }
   3243 
   3244   llvm_unreachable("Invalid OverloadResult!");
   3245 }
   3246 
   3247 bool
   3248 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
   3249   ImplicitConversionSequence ICS;
   3250   OverloadCandidateSet CandidateSet(From->getExprLoc(),
   3251                                     OverloadCandidateSet::CSK_Normal);
   3252   OverloadingResult OvResult =
   3253     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
   3254                             CandidateSet, false, false);
   3255   if (OvResult == OR_Ambiguous)
   3256     Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
   3257         << From->getType() << ToType << From->getSourceRange();
   3258   else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
   3259     if (!RequireCompleteType(From->getLocStart(), ToType,
   3260                              diag::err_typecheck_nonviable_condition_incomplete,
   3261                              From->getType(), From->getSourceRange()))
   3262       Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
   3263           << From->getType() << From->getSourceRange() << ToType;
   3264   } else
   3265     return false;
   3266   CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
   3267   return true;
   3268 }
   3269 
   3270 /// \brief Compare the user-defined conversion functions or constructors
   3271 /// of two user-defined conversion sequences to determine whether any ordering
   3272 /// is possible.
   3273 static ImplicitConversionSequence::CompareKind
   3274 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
   3275                            FunctionDecl *Function2) {
   3276   if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
   3277     return ImplicitConversionSequence::Indistinguishable;
   3278 
   3279   // Objective-C++:
   3280   //   If both conversion functions are implicitly-declared conversions from
   3281   //   a lambda closure type to a function pointer and a block pointer,
   3282   //   respectively, always prefer the conversion to a function pointer,
   3283   //   because the function pointer is more lightweight and is more likely
   3284   //   to keep code working.
   3285   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
   3286   if (!Conv1)
   3287     return ImplicitConversionSequence::Indistinguishable;
   3288 
   3289   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
   3290   if (!Conv2)
   3291     return ImplicitConversionSequence::Indistinguishable;
   3292 
   3293   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
   3294     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
   3295     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
   3296     if (Block1 != Block2)
   3297       return Block1 ? ImplicitConversionSequence::Worse
   3298                     : ImplicitConversionSequence::Better;
   3299   }
   3300 
   3301   return ImplicitConversionSequence::Indistinguishable;
   3302 }
   3303 
   3304 static bool hasDeprecatedStringLiteralToCharPtrConversion(
   3305     const ImplicitConversionSequence &ICS) {
   3306   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
   3307          (ICS.isUserDefined() &&
   3308           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
   3309 }
   3310 
   3311 /// CompareImplicitConversionSequences - Compare two implicit
   3312 /// conversion sequences to determine whether one is better than the
   3313 /// other or if they are indistinguishable (C++ 13.3.3.2).
   3314 static ImplicitConversionSequence::CompareKind
   3315 CompareImplicitConversionSequences(Sema &S,
   3316                                    const ImplicitConversionSequence& ICS1,
   3317                                    const ImplicitConversionSequence& ICS2)
   3318 {
   3319   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
   3320   // conversion sequences (as defined in 13.3.3.1)
   3321   //   -- a standard conversion sequence (13.3.3.1.1) is a better
   3322   //      conversion sequence than a user-defined conversion sequence or
   3323   //      an ellipsis conversion sequence, and
   3324   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
   3325   //      conversion sequence than an ellipsis conversion sequence
   3326   //      (13.3.3.1.3).
   3327   //
   3328   // C++0x [over.best.ics]p10:
   3329   //   For the purpose of ranking implicit conversion sequences as
   3330   //   described in 13.3.3.2, the ambiguous conversion sequence is
   3331   //   treated as a user-defined sequence that is indistinguishable
   3332   //   from any other user-defined conversion sequence.
   3333 
   3334   // String literal to 'char *' conversion has been deprecated in C++03. It has
   3335   // been removed from C++11. We still accept this conversion, if it happens at
   3336   // the best viable function. Otherwise, this conversion is considered worse
   3337   // than ellipsis conversion. Consider this as an extension; this is not in the
   3338   // standard. For example:
   3339   //
   3340   // int &f(...);    // #1
   3341   // void f(char*);  // #2
   3342   // void g() { int &r = f("foo"); }
   3343   //
   3344   // In C++03, we pick #2 as the best viable function.
   3345   // In C++11, we pick #1 as the best viable function, because ellipsis
   3346   // conversion is better than string-literal to char* conversion (since there
   3347   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
   3348   // convert arguments, #2 would be the best viable function in C++11.
   3349   // If the best viable function has this conversion, a warning will be issued
   3350   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
   3351 
   3352   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
   3353       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
   3354       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
   3355     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
   3356                ? ImplicitConversionSequence::Worse
   3357                : ImplicitConversionSequence::Better;
   3358 
   3359   if (ICS1.getKindRank() < ICS2.getKindRank())
   3360     return ImplicitConversionSequence::Better;
   3361   if (ICS2.getKindRank() < ICS1.getKindRank())
   3362     return ImplicitConversionSequence::Worse;
   3363 
   3364   // The following checks require both conversion sequences to be of
   3365   // the same kind.
   3366   if (ICS1.getKind() != ICS2.getKind())
   3367     return ImplicitConversionSequence::Indistinguishable;
   3368 
   3369   ImplicitConversionSequence::CompareKind Result =
   3370       ImplicitConversionSequence::Indistinguishable;
   3371 
   3372   // Two implicit conversion sequences of the same form are
   3373   // indistinguishable conversion sequences unless one of the
   3374   // following rules apply: (C++ 13.3.3.2p3):
   3375   if (ICS1.isStandard())
   3376     Result = CompareStandardConversionSequences(S,
   3377                                                 ICS1.Standard, ICS2.Standard);
   3378   else if (ICS1.isUserDefined()) {
   3379     // User-defined conversion sequence U1 is a better conversion
   3380     // sequence than another user-defined conversion sequence U2 if
   3381     // they contain the same user-defined conversion function or
   3382     // constructor and if the second standard conversion sequence of
   3383     // U1 is better than the second standard conversion sequence of
   3384     // U2 (C++ 13.3.3.2p3).
   3385     if (ICS1.UserDefined.ConversionFunction ==
   3386           ICS2.UserDefined.ConversionFunction)
   3387       Result = CompareStandardConversionSequences(S,
   3388                                                   ICS1.UserDefined.After,
   3389                                                   ICS2.UserDefined.After);
   3390     else
   3391       Result = compareConversionFunctions(S,
   3392                                           ICS1.UserDefined.ConversionFunction,
   3393                                           ICS2.UserDefined.ConversionFunction);
   3394   }
   3395 
   3396   // List-initialization sequence L1 is a better conversion sequence than
   3397   // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
   3398   // for some X and L2 does not.
   3399   if (Result == ImplicitConversionSequence::Indistinguishable &&
   3400       !ICS1.isBad()) {
   3401     if (ICS1.isStdInitializerListElement() &&
   3402         !ICS2.isStdInitializerListElement())
   3403       return ImplicitConversionSequence::Better;
   3404     if (!ICS1.isStdInitializerListElement() &&
   3405         ICS2.isStdInitializerListElement())
   3406       return ImplicitConversionSequence::Worse;
   3407   }
   3408 
   3409   return Result;
   3410 }
   3411 
   3412 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
   3413   while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
   3414     Qualifiers Quals;
   3415     T1 = Context.getUnqualifiedArrayType(T1, Quals);
   3416     T2 = Context.getUnqualifiedArrayType(T2, Quals);
   3417   }
   3418 
   3419   return Context.hasSameUnqualifiedType(T1, T2);
   3420 }
   3421 
   3422 // Per 13.3.3.2p3, compare the given standard conversion sequences to
   3423 // determine if one is a proper subset of the other.
   3424 static ImplicitConversionSequence::CompareKind
   3425 compareStandardConversionSubsets(ASTContext &Context,
   3426                                  const StandardConversionSequence& SCS1,
   3427                                  const StandardConversionSequence& SCS2) {
   3428   ImplicitConversionSequence::CompareKind Result
   3429     = ImplicitConversionSequence::Indistinguishable;
   3430 
   3431   // the identity conversion sequence is considered to be a subsequence of
   3432   // any non-identity conversion sequence
   3433   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
   3434     return ImplicitConversionSequence::Better;
   3435   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
   3436     return ImplicitConversionSequence::Worse;
   3437 
   3438   if (SCS1.Second != SCS2.Second) {
   3439     if (SCS1.Second == ICK_Identity)
   3440       Result = ImplicitConversionSequence::Better;
   3441     else if (SCS2.Second == ICK_Identity)
   3442       Result = ImplicitConversionSequence::Worse;
   3443     else
   3444       return ImplicitConversionSequence::Indistinguishable;
   3445   } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
   3446     return ImplicitConversionSequence::Indistinguishable;
   3447 
   3448   if (SCS1.Third == SCS2.Third) {
   3449     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
   3450                              : ImplicitConversionSequence::Indistinguishable;
   3451   }
   3452 
   3453   if (SCS1.Third == ICK_Identity)
   3454     return Result == ImplicitConversionSequence::Worse
   3455              ? ImplicitConversionSequence::Indistinguishable
   3456              : ImplicitConversionSequence::Better;
   3457 
   3458   if (SCS2.Third == ICK_Identity)
   3459     return Result == ImplicitConversionSequence::Better
   3460              ? ImplicitConversionSequence::Indistinguishable
   3461              : ImplicitConversionSequence::Worse;
   3462 
   3463   return ImplicitConversionSequence::Indistinguishable;
   3464 }
   3465 
   3466 /// \brief Determine whether one of the given reference bindings is better
   3467 /// than the other based on what kind of bindings they are.
   3468 static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
   3469                                        const StandardConversionSequence &SCS2) {
   3470   // C++0x [over.ics.rank]p3b4:
   3471   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
   3472   //      implicit object parameter of a non-static member function declared
   3473   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
   3474   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
   3475   //      lvalue reference to a function lvalue and S2 binds an rvalue
   3476   //      reference*.
   3477   //
   3478   // FIXME: Rvalue references. We're going rogue with the above edits,
   3479   // because the semantics in the current C++0x working paper (N3225 at the
   3480   // time of this writing) break the standard definition of std::forward
   3481   // and std::reference_wrapper when dealing with references to functions.
   3482   // Proposed wording changes submitted to CWG for consideration.
   3483   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
   3484       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
   3485     return false;
   3486 
   3487   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
   3488           SCS2.IsLvalueReference) ||
   3489          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
   3490           !SCS2.IsLvalueReference);
   3491 }
   3492 
   3493 /// CompareStandardConversionSequences - Compare two standard
   3494 /// conversion sequences to determine whether one is better than the
   3495 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
   3496 static ImplicitConversionSequence::CompareKind
   3497 CompareStandardConversionSequences(Sema &S,
   3498                                    const StandardConversionSequence& SCS1,
   3499                                    const StandardConversionSequence& SCS2)
   3500 {
   3501   // Standard conversion sequence S1 is a better conversion sequence
   3502   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
   3503 
   3504   //  -- S1 is a proper subsequence of S2 (comparing the conversion
   3505   //     sequences in the canonical form defined by 13.3.3.1.1,
   3506   //     excluding any Lvalue Transformation; the identity conversion
   3507   //     sequence is considered to be a subsequence of any
   3508   //     non-identity conversion sequence) or, if not that,
   3509   if (ImplicitConversionSequence::CompareKind CK
   3510         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
   3511     return CK;
   3512 
   3513   //  -- the rank of S1 is better than the rank of S2 (by the rules
   3514   //     defined below), or, if not that,
   3515   ImplicitConversionRank Rank1 = SCS1.getRank();
   3516   ImplicitConversionRank Rank2 = SCS2.getRank();
   3517   if (Rank1 < Rank2)
   3518     return ImplicitConversionSequence::Better;
   3519   else if (Rank2 < Rank1)
   3520     return ImplicitConversionSequence::Worse;
   3521 
   3522   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
   3523   // are indistinguishable unless one of the following rules
   3524   // applies:
   3525 
   3526   //   A conversion that is not a conversion of a pointer, or
   3527   //   pointer to member, to bool is better than another conversion
   3528   //   that is such a conversion.
   3529   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
   3530     return SCS2.isPointerConversionToBool()
   3531              ? ImplicitConversionSequence::Better
   3532              : ImplicitConversionSequence::Worse;
   3533 
   3534   // C++ [over.ics.rank]p4b2:
   3535   //
   3536   //   If class B is derived directly or indirectly from class A,
   3537   //   conversion of B* to A* is better than conversion of B* to
   3538   //   void*, and conversion of A* to void* is better than conversion
   3539   //   of B* to void*.
   3540   bool SCS1ConvertsToVoid
   3541     = SCS1.isPointerConversionToVoidPointer(S.Context);
   3542   bool SCS2ConvertsToVoid
   3543     = SCS2.isPointerConversionToVoidPointer(S.Context);
   3544   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
   3545     // Exactly one of the conversion sequences is a conversion to
   3546     // a void pointer; it's the worse conversion.
   3547     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
   3548                               : ImplicitConversionSequence::Worse;
   3549   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
   3550     // Neither conversion sequence converts to a void pointer; compare
   3551     // their derived-to-base conversions.
   3552     if (ImplicitConversionSequence::CompareKind DerivedCK
   3553           = CompareDerivedToBaseConversions(S, SCS1, SCS2))
   3554       return DerivedCK;
   3555   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
   3556              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
   3557     // Both conversion sequences are conversions to void
   3558     // pointers. Compare the source types to determine if there's an
   3559     // inheritance relationship in their sources.
   3560     QualType FromType1 = SCS1.getFromType();
   3561     QualType FromType2 = SCS2.getFromType();
   3562 
   3563     // Adjust the types we're converting from via the array-to-pointer
   3564     // conversion, if we need to.
   3565     if (SCS1.First == ICK_Array_To_Pointer)
   3566       FromType1 = S.Context.getArrayDecayedType(FromType1);
   3567     if (SCS2.First == ICK_Array_To_Pointer)
   3568       FromType2 = S.Context.getArrayDecayedType(FromType2);
   3569 
   3570     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
   3571     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
   3572 
   3573     if (S.IsDerivedFrom(FromPointee2, FromPointee1))
   3574       return ImplicitConversionSequence::Better;
   3575     else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
   3576       return ImplicitConversionSequence::Worse;
   3577 
   3578     // Objective-C++: If one interface is more specific than the
   3579     // other, it is the better one.
   3580     const ObjCObjectPointerType* FromObjCPtr1
   3581       = FromType1->getAs<ObjCObjectPointerType>();
   3582     const ObjCObjectPointerType* FromObjCPtr2
   3583       = FromType2->getAs<ObjCObjectPointerType>();
   3584     if (FromObjCPtr1 && FromObjCPtr2) {
   3585       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
   3586                                                           FromObjCPtr2);
   3587       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
   3588                                                            FromObjCPtr1);
   3589       if (AssignLeft != AssignRight) {
   3590         return AssignLeft? ImplicitConversionSequence::Better
   3591                          : ImplicitConversionSequence::Worse;
   3592       }
   3593     }
   3594   }
   3595 
   3596   // Compare based on qualification conversions (C++ 13.3.3.2p3,
   3597   // bullet 3).
   3598   if (ImplicitConversionSequence::CompareKind QualCK
   3599         = CompareQualificationConversions(S, SCS1, SCS2))
   3600     return QualCK;
   3601 
   3602   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
   3603     // Check for a better reference binding based on the kind of bindings.
   3604     if (isBetterReferenceBindingKind(SCS1, SCS2))
   3605       return ImplicitConversionSequence::Better;
   3606     else if (isBetterReferenceBindingKind(SCS2, SCS1))
   3607       return ImplicitConversionSequence::Worse;
   3608 
   3609     // C++ [over.ics.rank]p3b4:
   3610     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
   3611     //      which the references refer are the same type except for
   3612     //      top-level cv-qualifiers, and the type to which the reference
   3613     //      initialized by S2 refers is more cv-qualified than the type
   3614     //      to which the reference initialized by S1 refers.
   3615     QualType T1 = SCS1.getToType(2);
   3616     QualType T2 = SCS2.getToType(2);
   3617     T1 = S.Context.getCanonicalType(T1);
   3618     T2 = S.Context.getCanonicalType(T2);
   3619     Qualifiers T1Quals, T2Quals;
   3620     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
   3621     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
   3622     if (UnqualT1 == UnqualT2) {
   3623       // Objective-C++ ARC: If the references refer to objects with different
   3624       // lifetimes, prefer bindings that don't change lifetime.
   3625       if (SCS1.ObjCLifetimeConversionBinding !=
   3626                                           SCS2.ObjCLifetimeConversionBinding) {
   3627         return SCS1.ObjCLifetimeConversionBinding
   3628                                            ? ImplicitConversionSequence::Worse
   3629                                            : ImplicitConversionSequence::Better;
   3630       }
   3631 
   3632       // If the type is an array type, promote the element qualifiers to the
   3633       // type for comparison.
   3634       if (isa<ArrayType>(T1) && T1Quals)
   3635         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
   3636       if (isa<ArrayType>(T2) && T2Quals)
   3637         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
   3638       if (T2.isMoreQualifiedThan(T1))
   3639         return ImplicitConversionSequence::Better;
   3640       else if (T1.isMoreQualifiedThan(T2))
   3641         return ImplicitConversionSequence::Worse;
   3642     }
   3643   }
   3644 
   3645   // In Microsoft mode, prefer an integral conversion to a
   3646   // floating-to-integral conversion if the integral conversion
   3647   // is between types of the same size.
   3648   // For example:
   3649   // void f(float);
   3650   // void f(int);
   3651   // int main {
   3652   //    long a;
   3653   //    f(a);
   3654   // }
   3655   // Here, MSVC will call f(int) instead of generating a compile error
   3656   // as clang will do in standard mode.
   3657   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
   3658       SCS2.Second == ICK_Floating_Integral &&
   3659       S.Context.getTypeSize(SCS1.getFromType()) ==
   3660           S.Context.getTypeSize(SCS1.getToType(2)))
   3661     return ImplicitConversionSequence::Better;
   3662 
   3663   return ImplicitConversionSequence::Indistinguishable;
   3664 }
   3665 
   3666 /// CompareQualificationConversions - Compares two standard conversion
   3667 /// sequences to determine whether they can be ranked based on their
   3668 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
   3669 ImplicitConversionSequence::CompareKind
   3670 CompareQualificationConversions(Sema &S,
   3671                                 const StandardConversionSequence& SCS1,
   3672                                 const StandardConversionSequence& SCS2) {
   3673   // C++ 13.3.3.2p3:
   3674   //  -- S1 and S2 differ only in their qualification conversion and
   3675   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
   3676   //     cv-qualification signature of type T1 is a proper subset of
   3677   //     the cv-qualification signature of type T2, and S1 is not the
   3678   //     deprecated string literal array-to-pointer conversion (4.2).
   3679   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
   3680       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
   3681     return ImplicitConversionSequence::Indistinguishable;
   3682 
   3683   // FIXME: the example in the standard doesn't use a qualification
   3684   // conversion (!)
   3685   QualType T1 = SCS1.getToType(2);
   3686   QualType T2 = SCS2.getToType(2);
   3687   T1 = S.Context.getCanonicalType(T1);
   3688   T2 = S.Context.getCanonicalType(T2);
   3689   Qualifiers T1Quals, T2Quals;
   3690   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
   3691   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
   3692 
   3693   // If the types are the same, we won't learn anything by unwrapped
   3694   // them.
   3695   if (UnqualT1 == UnqualT2)
   3696     return ImplicitConversionSequence::Indistinguishable;
   3697 
   3698   // If the type is an array type, promote the element qualifiers to the type
   3699   // for comparison.
   3700   if (isa<ArrayType>(T1) && T1Quals)
   3701     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
   3702   if (isa<ArrayType>(T2) && T2Quals)
   3703     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
   3704 
   3705   ImplicitConversionSequence::CompareKind Result
   3706     = ImplicitConversionSequence::Indistinguishable;
   3707 
   3708   // Objective-C++ ARC:
   3709   //   Prefer qualification conversions not involving a change in lifetime
   3710   //   to qualification conversions that do not change lifetime.
   3711   if (SCS1.QualificationIncludesObjCLifetime !=
   3712                                       SCS2.QualificationIncludesObjCLifetime) {
   3713     Result = SCS1.QualificationIncludesObjCLifetime
   3714                ? ImplicitConversionSequence::Worse
   3715                : ImplicitConversionSequence::Better;
   3716   }
   3717 
   3718   while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
   3719     // Within each iteration of the loop, we check the qualifiers to
   3720     // determine if this still looks like a qualification
   3721     // conversion. Then, if all is well, we unwrap one more level of
   3722     // pointers or pointers-to-members and do it all again
   3723     // until there are no more pointers or pointers-to-members left
   3724     // to unwrap. This essentially mimics what
   3725     // IsQualificationConversion does, but here we're checking for a
   3726     // strict subset of qualifiers.
   3727     if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
   3728       // The qualifiers are the same, so this doesn't tell us anything
   3729       // about how the sequences rank.
   3730       ;
   3731     else if (T2.isMoreQualifiedThan(T1)) {
   3732       // T1 has fewer qualifiers, so it could be the better sequence.
   3733       if (Result == ImplicitConversionSequence::Worse)
   3734         // Neither has qualifiers that are a subset of the other's
   3735         // qualifiers.
   3736         return ImplicitConversionSequence::Indistinguishable;
   3737 
   3738       Result = ImplicitConversionSequence::Better;
   3739     } else if (T1.isMoreQualifiedThan(T2)) {
   3740       // T2 has fewer qualifiers, so it could be the better sequence.
   3741       if (Result == ImplicitConversionSequence::Better)
   3742         // Neither has qualifiers that are a subset of the other's
   3743         // qualifiers.
   3744         return ImplicitConversionSequence::Indistinguishable;
   3745 
   3746       Result = ImplicitConversionSequence::Worse;
   3747     } else {
   3748       // Qualifiers are disjoint.
   3749       return ImplicitConversionSequence::Indistinguishable;
   3750     }
   3751 
   3752     // If the types after this point are equivalent, we're done.
   3753     if (S.Context.hasSameUnqualifiedType(T1, T2))
   3754       break;
   3755   }
   3756 
   3757   // Check that the winning standard conversion sequence isn't using
   3758   // the deprecated string literal array to pointer conversion.
   3759   switch (Result) {
   3760   case ImplicitConversionSequence::Better:
   3761     if (SCS1.DeprecatedStringLiteralToCharPtr)
   3762       Result = ImplicitConversionSequence::Indistinguishable;
   3763     break;
   3764 
   3765   case ImplicitConversionSequence::Indistinguishable:
   3766     break;
   3767 
   3768   case ImplicitConversionSequence::Worse:
   3769     if (SCS2.DeprecatedStringLiteralToCharPtr)
   3770       Result = ImplicitConversionSequence::Indistinguishable;
   3771     break;
   3772   }
   3773 
   3774   return Result;
   3775 }
   3776 
   3777 /// CompareDerivedToBaseConversions - Compares two standard conversion
   3778 /// sequences to determine whether they can be ranked based on their
   3779 /// various kinds of derived-to-base conversions (C++
   3780 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
   3781 /// conversions between Objective-C interface types.
   3782 ImplicitConversionSequence::CompareKind
   3783 CompareDerivedToBaseConversions(Sema &S,
   3784                                 const StandardConversionSequence& SCS1,
   3785                                 const StandardConversionSequence& SCS2) {
   3786   QualType FromType1 = SCS1.getFromType();
   3787   QualType ToType1 = SCS1.getToType(1);
   3788   QualType FromType2 = SCS2.getFromType();
   3789   QualType ToType2 = SCS2.getToType(1);
   3790 
   3791   // Adjust the types we're converting from via the array-to-pointer
   3792   // conversion, if we need to.
   3793   if (SCS1.First == ICK_Array_To_Pointer)
   3794     FromType1 = S.Context.getArrayDecayedType(FromType1);
   3795   if (SCS2.First == ICK_Array_To_Pointer)
   3796     FromType2 = S.Context.getArrayDecayedType(FromType2);
   3797 
   3798   // Canonicalize all of the types.
   3799   FromType1 = S.Context.getCanonicalType(FromType1);
   3800   ToType1 = S.Context.getCanonicalType(ToType1);
   3801   FromType2 = S.Context.getCanonicalType(FromType2);
   3802   ToType2 = S.Context.getCanonicalType(ToType2);
   3803 
   3804   // C++ [over.ics.rank]p4b3:
   3805   //
   3806   //   If class B is derived directly or indirectly from class A and
   3807   //   class C is derived directly or indirectly from B,
   3808   //
   3809   // Compare based on pointer conversions.
   3810   if (SCS1.Second == ICK_Pointer_Conversion &&
   3811       SCS2.Second == ICK_Pointer_Conversion &&
   3812       /*FIXME: Remove if Objective-C id conversions get their own rank*/
   3813       FromType1->isPointerType() && FromType2->isPointerType() &&
   3814       ToType1->isPointerType() && ToType2->isPointerType()) {
   3815     QualType FromPointee1
   3816       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3817     QualType ToPointee1
   3818       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3819     QualType FromPointee2
   3820       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3821     QualType ToPointee2
   3822       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3823 
   3824     //   -- conversion of C* to B* is better than conversion of C* to A*,
   3825     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
   3826       if (S.IsDerivedFrom(ToPointee1, ToPointee2))
   3827         return ImplicitConversionSequence::Better;
   3828       else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
   3829         return ImplicitConversionSequence::Worse;
   3830     }
   3831 
   3832     //   -- conversion of B* to A* is better than conversion of C* to A*,
   3833     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
   3834       if (S.IsDerivedFrom(FromPointee2, FromPointee1))
   3835         return ImplicitConversionSequence::Better;
   3836       else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
   3837         return ImplicitConversionSequence::Worse;
   3838     }
   3839   } else if (SCS1.Second == ICK_Pointer_Conversion &&
   3840              SCS2.Second == ICK_Pointer_Conversion) {
   3841     const ObjCObjectPointerType *FromPtr1
   3842       = FromType1->getAs<ObjCObjectPointerType>();
   3843     const ObjCObjectPointerType *FromPtr2
   3844       = FromType2->getAs<ObjCObjectPointerType>();
   3845     const ObjCObjectPointerType *ToPtr1
   3846       = ToType1->getAs<ObjCObjectPointerType>();
   3847     const ObjCObjectPointerType *ToPtr2
   3848       = ToType2->getAs<ObjCObjectPointerType>();
   3849 
   3850     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
   3851       // Apply the same conversion ranking rules for Objective-C pointer types
   3852       // that we do for C++ pointers to class types. However, we employ the
   3853       // Objective-C pseudo-subtyping relationship used for assignment of
   3854       // Objective-C pointer types.
   3855       bool FromAssignLeft
   3856         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
   3857       bool FromAssignRight
   3858         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
   3859       bool ToAssignLeft
   3860         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
   3861       bool ToAssignRight
   3862         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
   3863 
   3864       // A conversion to an a non-id object pointer type or qualified 'id'
   3865       // type is better than a conversion to 'id'.
   3866       if (ToPtr1->isObjCIdType() &&
   3867           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
   3868         return ImplicitConversionSequence::Worse;
   3869       if (ToPtr2->isObjCIdType() &&
   3870           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
   3871         return ImplicitConversionSequence::Better;
   3872 
   3873       // A conversion to a non-id object pointer type is better than a
   3874       // conversion to a qualified 'id' type
   3875       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
   3876         return ImplicitConversionSequence::Worse;
   3877       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
   3878         return ImplicitConversionSequence::Better;
   3879 
   3880       // A conversion to an a non-Class object pointer type or qualified 'Class'
   3881       // type is better than a conversion to 'Class'.
   3882       if (ToPtr1->isObjCClassType() &&
   3883           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
   3884         return ImplicitConversionSequence::Worse;
   3885       if (ToPtr2->isObjCClassType() &&
   3886           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
   3887         return ImplicitConversionSequence::Better;
   3888 
   3889       // A conversion to a non-Class object pointer type is better than a
   3890       // conversion to a qualified 'Class' type.
   3891       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
   3892         return ImplicitConversionSequence::Worse;
   3893       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
   3894         return ImplicitConversionSequence::Better;
   3895 
   3896       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
   3897       if (S.Context.hasSameType(FromType1, FromType2) &&
   3898           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
   3899           (ToAssignLeft != ToAssignRight))
   3900         return ToAssignLeft? ImplicitConversionSequence::Worse
   3901                            : ImplicitConversionSequence::Better;
   3902 
   3903       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
   3904       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
   3905           (FromAssignLeft != FromAssignRight))
   3906         return FromAssignLeft? ImplicitConversionSequence::Better
   3907         : ImplicitConversionSequence::Worse;
   3908     }
   3909   }
   3910 
   3911   // Ranking of member-pointer types.
   3912   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
   3913       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
   3914       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
   3915     const MemberPointerType * FromMemPointer1 =
   3916                                         FromType1->getAs<MemberPointerType>();
   3917     const MemberPointerType * ToMemPointer1 =
   3918                                           ToType1->getAs<MemberPointerType>();
   3919     const MemberPointerType * FromMemPointer2 =
   3920                                           FromType2->getAs<MemberPointerType>();
   3921     const MemberPointerType * ToMemPointer2 =
   3922                                           ToType2->getAs<MemberPointerType>();
   3923     const Type *FromPointeeType1 = FromMemPointer1->getClass();
   3924     const Type *ToPointeeType1 = ToMemPointer1->getClass();
   3925     const Type *FromPointeeType2 = FromMemPointer2->getClass();
   3926     const Type *ToPointeeType2 = ToMemPointer2->getClass();
   3927     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
   3928     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
   3929     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
   3930     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
   3931     // conversion of A::* to B::* is better than conversion of A::* to C::*,
   3932     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
   3933       if (S.IsDerivedFrom(ToPointee1, ToPointee2))
   3934         return ImplicitConversionSequence::Worse;
   3935       else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
   3936         return ImplicitConversionSequence::Better;
   3937     }
   3938     // conversion of B::* to C::* is better than conversion of A::* to C::*
   3939     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
   3940       if (S.IsDerivedFrom(FromPointee1, FromPointee2))
   3941         return ImplicitConversionSequence::Better;
   3942       else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
   3943         return ImplicitConversionSequence::Worse;
   3944     }
   3945   }
   3946 
   3947   if (SCS1.Second == ICK_Derived_To_Base) {
   3948     //   -- conversion of C to B is better than conversion of C to A,
   3949     //   -- binding of an expression of type C to a reference of type
   3950     //      B& is better than binding an expression of type C to a
   3951     //      reference of type A&,
   3952     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
   3953         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
   3954       if (S.IsDerivedFrom(ToType1, ToType2))
   3955         return ImplicitConversionSequence::Better;
   3956       else if (S.IsDerivedFrom(ToType2, ToType1))
   3957         return ImplicitConversionSequence::Worse;
   3958     }
   3959 
   3960     //   -- conversion of B to A is better than conversion of C to A.
   3961     //   -- binding of an expression of type B to a reference of type
   3962     //      A& is better than binding an expression of type C to a
   3963     //      reference of type A&,
   3964     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
   3965         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
   3966       if (S.IsDerivedFrom(FromType2, FromType1))
   3967         return ImplicitConversionSequence::Better;
   3968       else if (S.IsDerivedFrom(FromType1, FromType2))
   3969         return ImplicitConversionSequence::Worse;
   3970     }
   3971   }
   3972 
   3973   return ImplicitConversionSequence::Indistinguishable;
   3974 }
   3975 
   3976 /// \brief Determine whether the given type is valid, e.g., it is not an invalid
   3977 /// C++ class.
   3978 static bool isTypeValid(QualType T) {
   3979   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
   3980     return !Record->isInvalidDecl();
   3981 
   3982   return true;
   3983 }
   3984 
   3985 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
   3986 /// determine whether they are reference-related,
   3987 /// reference-compatible, reference-compatible with added
   3988 /// qualification, or incompatible, for use in C++ initialization by
   3989 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
   3990 /// type, and the first type (T1) is the pointee type of the reference
   3991 /// type being initialized.
   3992 Sema::ReferenceCompareResult
   3993 Sema::CompareReferenceRelationship(SourceLocation Loc,
   3994                                    QualType OrigT1, QualType OrigT2,
   3995                                    bool &DerivedToBase,
   3996                                    bool &ObjCConversion,
   3997                                    bool &ObjCLifetimeConversion) {
   3998   assert(!OrigT1->isReferenceType() &&
   3999     "T1 must be the pointee type of the reference type");
   4000   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
   4001 
   4002   QualType T1 = Context.getCanonicalType(OrigT1);
   4003   QualType T2 = Context.getCanonicalType(OrigT2);
   4004   Qualifiers T1Quals, T2Quals;
   4005   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
   4006   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
   4007 
   4008   // C++ [dcl.init.ref]p4:
   4009   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
   4010   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
   4011   //   T1 is a base class of T2.
   4012   DerivedToBase = false;
   4013   ObjCConversion = false;
   4014   ObjCLifetimeConversion = false;
   4015   if (UnqualT1 == UnqualT2) {
   4016     // Nothing to do.
   4017   } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
   4018              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
   4019              IsDerivedFrom(UnqualT2, UnqualT1))
   4020     DerivedToBase = true;
   4021   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
   4022            UnqualT2->isObjCObjectOrInterfaceType() &&
   4023            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
   4024     ObjCConversion = true;
   4025   else
   4026     return Ref_Incompatible;
   4027 
   4028   // At this point, we know that T1 and T2 are reference-related (at
   4029   // least).
   4030 
   4031   // If the type is an array type, promote the element qualifiers to the type
   4032   // for comparison.
   4033   if (isa<ArrayType>(T1) && T1Quals)
   4034     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
   4035   if (isa<ArrayType>(T2) && T2Quals)
   4036     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
   4037 
   4038   // C++ [dcl.init.ref]p4:
   4039   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
   4040   //   reference-related to T2 and cv1 is the same cv-qualification
   4041   //   as, or greater cv-qualification than, cv2. For purposes of
   4042   //   overload resolution, cases for which cv1 is greater
   4043   //   cv-qualification than cv2 are identified as
   4044   //   reference-compatible with added qualification (see 13.3.3.2).
   4045   //
   4046   // Note that we also require equivalence of Objective-C GC and address-space
   4047   // qualifiers when performing these computations, so that e.g., an int in
   4048   // address space 1 is not reference-compatible with an int in address
   4049   // space 2.
   4050   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
   4051       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
   4052     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
   4053       ObjCLifetimeConversion = true;
   4054 
   4055     T1Quals.removeObjCLifetime();
   4056     T2Quals.removeObjCLifetime();
   4057   }
   4058 
   4059   if (T1Quals == T2Quals)
   4060     return Ref_Compatible;
   4061   else if (T1Quals.compatiblyIncludes(T2Quals))
   4062     return Ref_Compatible_With_Added_Qualification;
   4063   else
   4064     return Ref_Related;
   4065 }
   4066 
   4067 /// \brief Look for a user-defined conversion to an value reference-compatible
   4068 ///        with DeclType. Return true if something definite is found.
   4069 static bool
   4070 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
   4071                          QualType DeclType, SourceLocation DeclLoc,
   4072                          Expr *Init, QualType T2, bool AllowRvalues,
   4073                          bool AllowExplicit) {
   4074   assert(T2->isRecordType() && "Can only find conversions of record types.");
   4075   CXXRecordDecl *T2RecordDecl
   4076     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
   4077 
   4078   OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
   4079   std::pair<CXXRecordDecl::conversion_iterator,
   4080             CXXRecordDecl::conversion_iterator>
   4081     Conversions = T2RecordDecl->getVisibleConversionFunctions();
   4082   for (CXXRecordDecl::conversion_iterator
   4083          I = Conversions.first, E = Conversions.second; I != E; ++I) {
   4084     NamedDecl *D = *I;
   4085     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
   4086     if (isa<UsingShadowDecl>(D))
   4087       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   4088 
   4089     FunctionTemplateDecl *ConvTemplate
   4090       = dyn_cast<FunctionTemplateDecl>(D);
   4091     CXXConversionDecl *Conv;
   4092     if (ConvTemplate)
   4093       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   4094     else
   4095       Conv = cast<CXXConversionDecl>(D);
   4096 
   4097     // If this is an explicit conversion, and we're not allowed to consider
   4098     // explicit conversions, skip it.
   4099     if (!AllowExplicit && Conv->isExplicit())
   4100       continue;
   4101 
   4102     if (AllowRvalues) {
   4103       bool DerivedToBase = false;
   4104       bool ObjCConversion = false;
   4105       bool ObjCLifetimeConversion = false;
   4106 
   4107       // If we are initializing an rvalue reference, don't permit conversion
   4108       // functions that return lvalues.
   4109       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
   4110         const ReferenceType *RefType
   4111           = Conv->getConversionType()->getAs<LValueReferenceType>();
   4112         if (RefType && !RefType->getPointeeType()->isFunctionType())
   4113           continue;
   4114       }
   4115 
   4116       if (!ConvTemplate &&
   4117           S.CompareReferenceRelationship(
   4118             DeclLoc,
   4119             Conv->getConversionType().getNonReferenceType()
   4120               .getUnqualifiedType(),
   4121             DeclType.getNonReferenceType().getUnqualifiedType(),
   4122             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
   4123           Sema::Ref_Incompatible)
   4124         continue;
   4125     } else {
   4126       // If the conversion function doesn't return a reference type,
   4127       // it can't be considered for this conversion. An rvalue reference
   4128       // is only acceptable if its referencee is a function type.
   4129 
   4130       const ReferenceType *RefType =
   4131         Conv->getConversionType()->getAs<ReferenceType>();
   4132       if (!RefType ||
   4133           (!RefType->isLValueReferenceType() &&
   4134            !RefType->getPointeeType()->isFunctionType()))
   4135         continue;
   4136     }
   4137 
   4138     if (ConvTemplate)
   4139       S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
   4140                                        Init, DeclType, CandidateSet,
   4141                                        /*AllowObjCConversionOnExplicit=*/false);
   4142     else
   4143       S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
   4144                                DeclType, CandidateSet,
   4145                                /*AllowObjCConversionOnExplicit=*/false);
   4146   }
   4147 
   4148   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   4149 
   4150   OverloadCandidateSet::iterator Best;
   4151   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
   4152   case OR_Success:
   4153     // C++ [over.ics.ref]p1:
   4154     //
   4155     //   [...] If the parameter binds directly to the result of
   4156     //   applying a conversion function to the argument
   4157     //   expression, the implicit conversion sequence is a
   4158     //   user-defined conversion sequence (13.3.3.1.2), with the
   4159     //   second standard conversion sequence either an identity
   4160     //   conversion or, if the conversion function returns an
   4161     //   entity of a type that is a derived class of the parameter
   4162     //   type, a derived-to-base Conversion.
   4163     if (!Best->FinalConversion.DirectBinding)
   4164       return false;
   4165 
   4166     ICS.setUserDefined();
   4167     ICS.UserDefined.Before = Best->Conversions[0].Standard;
   4168     ICS.UserDefined.After = Best->FinalConversion;
   4169     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
   4170     ICS.UserDefined.ConversionFunction = Best->Function;
   4171     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
   4172     ICS.UserDefined.EllipsisConversion = false;
   4173     assert(ICS.UserDefined.After.ReferenceBinding &&
   4174            ICS.UserDefined.After.DirectBinding &&
   4175            "Expected a direct reference binding!");
   4176     return true;
   4177 
   4178   case OR_Ambiguous:
   4179     ICS.setAmbiguous();
   4180     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
   4181          Cand != CandidateSet.end(); ++Cand)
   4182       if (Cand->Viable)
   4183         ICS.Ambiguous.addConversion(Cand->Function);
   4184     return true;
   4185 
   4186   case OR_No_Viable_Function:
   4187   case OR_Deleted:
   4188     // There was no suitable conversion, or we found a deleted
   4189     // conversion; continue with other checks.
   4190     return false;
   4191   }
   4192 
   4193   llvm_unreachable("Invalid OverloadResult!");
   4194 }
   4195 
   4196 /// \brief Compute an implicit conversion sequence for reference
   4197 /// initialization.
   4198 static ImplicitConversionSequence
   4199 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
   4200                  SourceLocation DeclLoc,
   4201                  bool SuppressUserConversions,
   4202                  bool AllowExplicit) {
   4203   assert(DeclType->isReferenceType() && "Reference init needs a reference");
   4204 
   4205   // Most paths end in a failed conversion.
   4206   ImplicitConversionSequence ICS;
   4207   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
   4208 
   4209   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
   4210   QualType T2 = Init->getType();
   4211 
   4212   // If the initializer is the address of an overloaded function, try
   4213   // to resolve the overloaded function. If all goes well, T2 is the
   4214   // type of the resulting function.
   4215   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
   4216     DeclAccessPair Found;
   4217     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
   4218                                                                 false, Found))
   4219       T2 = Fn->getType();
   4220   }
   4221 
   4222   // Compute some basic properties of the types and the initializer.
   4223   bool isRValRef = DeclType->isRValueReferenceType();
   4224   bool DerivedToBase = false;
   4225   bool ObjCConversion = false;
   4226   bool ObjCLifetimeConversion = false;
   4227   Expr::Classification InitCategory = Init->Classify(S.Context);
   4228   Sema::ReferenceCompareResult RefRelationship
   4229     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
   4230                                      ObjCConversion, ObjCLifetimeConversion);
   4231 
   4232 
   4233   // C++0x [dcl.init.ref]p5:
   4234   //   A reference to type "cv1 T1" is initialized by an expression
   4235   //   of type "cv2 T2" as follows:
   4236 
   4237   //     -- If reference is an lvalue reference and the initializer expression
   4238   if (!isRValRef) {
   4239     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
   4240     //        reference-compatible with "cv2 T2," or
   4241     //
   4242     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
   4243     if (InitCategory.isLValue() &&
   4244         RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
   4245       // C++ [over.ics.ref]p1:
   4246       //   When a parameter of reference type binds directly (8.5.3)
   4247       //   to an argument expression, the implicit conversion sequence
   4248       //   is the identity conversion, unless the argument expression
   4249       //   has a type that is a derived class of the parameter type,
   4250       //   in which case the implicit conversion sequence is a
   4251       //   derived-to-base Conversion (13.3.3.1).
   4252       ICS.setStandard();
   4253       ICS.Standard.First = ICK_Identity;
   4254       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
   4255                          : ObjCConversion? ICK_Compatible_Conversion
   4256                          : ICK_Identity;
   4257       ICS.Standard.Third = ICK_Identity;
   4258       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
   4259       ICS.Standard.setToType(0, T2);
   4260       ICS.Standard.setToType(1, T1);
   4261       ICS.Standard.setToType(2, T1);
   4262       ICS.Standard.ReferenceBinding = true;
   4263       ICS.Standard.DirectBinding = true;
   4264       ICS.Standard.IsLvalueReference = !isRValRef;
   4265       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
   4266       ICS.Standard.BindsToRvalue = false;
   4267       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4268       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
   4269       ICS.Standard.CopyConstructor = nullptr;
   4270       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
   4271 
   4272       // Nothing more to do: the inaccessibility/ambiguity check for
   4273       // derived-to-base conversions is suppressed when we're
   4274       // computing the implicit conversion sequence (C++
   4275       // [over.best.ics]p2).
   4276       return ICS;
   4277     }
   4278 
   4279     //       -- has a class type (i.e., T2 is a class type), where T1 is
   4280     //          not reference-related to T2, and can be implicitly
   4281     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
   4282     //          is reference-compatible with "cv3 T3" 92) (this
   4283     //          conversion is selected by enumerating the applicable
   4284     //          conversion functions (13.3.1.6) and choosing the best
   4285     //          one through overload resolution (13.3)),
   4286     if (!SuppressUserConversions && T2->isRecordType() &&
   4287         !S.RequireCompleteType(DeclLoc, T2, 0) &&
   4288         RefRelationship == Sema::Ref_Incompatible) {
   4289       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
   4290                                    Init, T2, /*AllowRvalues=*/false,
   4291                                    AllowExplicit))
   4292         return ICS;
   4293     }
   4294   }
   4295 
   4296   //     -- Otherwise, the reference shall be an lvalue reference to a
   4297   //        non-volatile const type (i.e., cv1 shall be const), or the reference
   4298   //        shall be an rvalue reference.
   4299   //
   4300   // We actually handle one oddity of C++ [over.ics.ref] at this
   4301   // point, which is that, due to p2 (which short-circuits reference
   4302   // binding by only attempting a simple conversion for non-direct
   4303   // bindings) and p3's strange wording, we allow a const volatile
   4304   // reference to bind to an rvalue. Hence the check for the presence
   4305   // of "const" rather than checking for "const" being the only
   4306   // qualifier.
   4307   // This is also the point where rvalue references and lvalue inits no longer
   4308   // go together.
   4309   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
   4310     return ICS;
   4311 
   4312   //       -- If the initializer expression
   4313   //
   4314   //            -- is an xvalue, class prvalue, array prvalue or function
   4315   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
   4316   if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
   4317       (InitCategory.isXValue() ||
   4318       (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
   4319       (InitCategory.isLValue() && T2->isFunctionType()))) {
   4320     ICS.setStandard();
   4321     ICS.Standard.First = ICK_Identity;
   4322     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
   4323                       : ObjCConversion? ICK_Compatible_Conversion
   4324                       : ICK_Identity;
   4325     ICS.Standard.Third = ICK_Identity;
   4326     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
   4327     ICS.Standard.setToType(0, T2);
   4328     ICS.Standard.setToType(1, T1);
   4329     ICS.Standard.setToType(2, T1);
   4330     ICS.Standard.ReferenceBinding = true;
   4331     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
   4332     // binding unless we're binding to a class prvalue.
   4333     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
   4334     // allow the use of rvalue references in C++98/03 for the benefit of
   4335     // standard library implementors; therefore, we need the xvalue check here.
   4336     ICS.Standard.DirectBinding =
   4337       S.getLangOpts().CPlusPlus11 ||
   4338       (InitCategory.isPRValue() && !T2->isRecordType());
   4339     ICS.Standard.IsLvalueReference = !isRValRef;
   4340     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
   4341     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
   4342     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4343     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
   4344     ICS.Standard.CopyConstructor = nullptr;
   4345     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
   4346     return ICS;
   4347   }
   4348 
   4349   //            -- has a class type (i.e., T2 is a class type), where T1 is not
   4350   //               reference-related to T2, and can be implicitly converted to
   4351   //               an xvalue, class prvalue, or function lvalue of type
   4352   //               "cv3 T3", where "cv1 T1" is reference-compatible with
   4353   //               "cv3 T3",
   4354   //
   4355   //          then the reference is bound to the value of the initializer
   4356   //          expression in the first case and to the result of the conversion
   4357   //          in the second case (or, in either case, to an appropriate base
   4358   //          class subobject).
   4359   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
   4360       T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
   4361       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
   4362                                Init, T2, /*AllowRvalues=*/true,
   4363                                AllowExplicit)) {
   4364     // In the second case, if the reference is an rvalue reference
   4365     // and the second standard conversion sequence of the
   4366     // user-defined conversion sequence includes an lvalue-to-rvalue
   4367     // conversion, the program is ill-formed.
   4368     if (ICS.isUserDefined() && isRValRef &&
   4369         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
   4370       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
   4371 
   4372     return ICS;
   4373   }
   4374 
   4375   //       -- Otherwise, a temporary of type "cv1 T1" is created and
   4376   //          initialized from the initializer expression using the
   4377   //          rules for a non-reference copy initialization (8.5). The
   4378   //          reference is then bound to the temporary. If T1 is
   4379   //          reference-related to T2, cv1 must be the same
   4380   //          cv-qualification as, or greater cv-qualification than,
   4381   //          cv2; otherwise, the program is ill-formed.
   4382   if (RefRelationship == Sema::Ref_Related) {
   4383     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
   4384     // we would be reference-compatible or reference-compatible with
   4385     // added qualification. But that wasn't the case, so the reference
   4386     // initialization fails.
   4387     //
   4388     // Note that we only want to check address spaces and cvr-qualifiers here.
   4389     // ObjC GC and lifetime qualifiers aren't important.
   4390     Qualifiers T1Quals = T1.getQualifiers();
   4391     Qualifiers T2Quals = T2.getQualifiers();
   4392     T1Quals.removeObjCGCAttr();
   4393     T1Quals.removeObjCLifetime();
   4394     T2Quals.removeObjCGCAttr();
   4395     T2Quals.removeObjCLifetime();
   4396     if (!T1Quals.compatiblyIncludes(T2Quals))
   4397       return ICS;
   4398   }
   4399 
   4400   // If at least one of the types is a class type, the types are not
   4401   // related, and we aren't allowed any user conversions, the
   4402   // reference binding fails. This case is important for breaking
   4403   // recursion, since TryImplicitConversion below will attempt to
   4404   // create a temporary through the use of a copy constructor.
   4405   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
   4406       (T1->isRecordType() || T2->isRecordType()))
   4407     return ICS;
   4408 
   4409   // If T1 is reference-related to T2 and the reference is an rvalue
   4410   // reference, the initializer expression shall not be an lvalue.
   4411   if (RefRelationship >= Sema::Ref_Related &&
   4412       isRValRef && Init->Classify(S.Context).isLValue())
   4413     return ICS;
   4414 
   4415   // C++ [over.ics.ref]p2:
   4416   //   When a parameter of reference type is not bound directly to
   4417   //   an argument expression, the conversion sequence is the one
   4418   //   required to convert the argument expression to the
   4419   //   underlying type of the reference according to
   4420   //   13.3.3.1. Conceptually, this conversion sequence corresponds
   4421   //   to copy-initializing a temporary of the underlying type with
   4422   //   the argument expression. Any difference in top-level
   4423   //   cv-qualification is subsumed by the initialization itself
   4424   //   and does not constitute a conversion.
   4425   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
   4426                               /*AllowExplicit=*/false,
   4427                               /*InOverloadResolution=*/false,
   4428                               /*CStyle=*/false,
   4429                               /*AllowObjCWritebackConversion=*/false,
   4430                               /*AllowObjCConversionOnExplicit=*/false);
   4431 
   4432   // Of course, that's still a reference binding.
   4433   if (ICS.isStandard()) {
   4434     ICS.Standard.ReferenceBinding = true;
   4435     ICS.Standard.IsLvalueReference = !isRValRef;
   4436     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
   4437     ICS.Standard.BindsToRvalue = true;
   4438     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4439     ICS.Standard.ObjCLifetimeConversionBinding = false;
   4440   } else if (ICS.isUserDefined()) {
   4441     // Don't allow rvalue references to bind to lvalues.
   4442     if (DeclType->isRValueReferenceType()) {
   4443       if (const ReferenceType *RefType =
   4444               ICS.UserDefined.ConversionFunction->getReturnType()
   4445                   ->getAs<LValueReferenceType>()) {
   4446         if (!RefType->getPointeeType()->isFunctionType()) {
   4447           ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
   4448                      DeclType);
   4449           return ICS;
   4450         }
   4451       }
   4452     }
   4453     ICS.UserDefined.Before.setAsIdentityConversion();
   4454     ICS.UserDefined.After.ReferenceBinding = true;
   4455     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
   4456     ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
   4457     ICS.UserDefined.After.BindsToRvalue = true;
   4458     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4459     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
   4460   }
   4461 
   4462   return ICS;
   4463 }
   4464 
   4465 static ImplicitConversionSequence
   4466 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
   4467                       bool SuppressUserConversions,
   4468                       bool InOverloadResolution,
   4469                       bool AllowObjCWritebackConversion,
   4470                       bool AllowExplicit = false);
   4471 
   4472 /// TryListConversion - Try to copy-initialize a value of type ToType from the
   4473 /// initializer list From.
   4474 static ImplicitConversionSequence
   4475 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
   4476                   bool SuppressUserConversions,
   4477                   bool InOverloadResolution,
   4478                   bool AllowObjCWritebackConversion) {
   4479   // C++11 [over.ics.list]p1:
   4480   //   When an argument is an initializer list, it is not an expression and
   4481   //   special rules apply for converting it to a parameter type.
   4482 
   4483   ImplicitConversionSequence Result;
   4484   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
   4485 
   4486   // We need a complete type for what follows. Incomplete types can never be
   4487   // initialized from init lists.
   4488   if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
   4489     return Result;
   4490 
   4491   // C++11 [over.ics.list]p2:
   4492   //   If the parameter type is std::initializer_list<X> or "array of X" and
   4493   //   all the elements can be implicitly converted to X, the implicit
   4494   //   conversion sequence is the worst conversion necessary to convert an
   4495   //   element of the list to X.
   4496   bool toStdInitializerList = false;
   4497   QualType X;
   4498   if (ToType->isArrayType())
   4499     X = S.Context.getAsArrayType(ToType)->getElementType();
   4500   else
   4501     toStdInitializerList = S.isStdInitializerList(ToType, &X);
   4502   if (!X.isNull()) {
   4503     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
   4504       Expr *Init = From->getInit(i);
   4505       ImplicitConversionSequence ICS =
   4506           TryCopyInitialization(S, Init, X, SuppressUserConversions,
   4507                                 InOverloadResolution,
   4508                                 AllowObjCWritebackConversion);
   4509       // If a single element isn't convertible, fail.
   4510       if (ICS.isBad()) {
   4511         Result = ICS;
   4512         break;
   4513       }
   4514       // Otherwise, look for the worst conversion.
   4515       if (Result.isBad() ||
   4516           CompareImplicitConversionSequences(S, ICS, Result) ==
   4517               ImplicitConversionSequence::Worse)
   4518         Result = ICS;
   4519     }
   4520 
   4521     // For an empty list, we won't have computed any conversion sequence.
   4522     // Introduce the identity conversion sequence.
   4523     if (From->getNumInits() == 0) {
   4524       Result.setStandard();
   4525       Result.Standard.setAsIdentityConversion();
   4526       Result.Standard.setFromType(ToType);
   4527       Result.Standard.setAllToTypes(ToType);
   4528     }
   4529 
   4530     Result.setStdInitializerListElement(toStdInitializerList);
   4531     return Result;
   4532   }
   4533 
   4534   // C++11 [over.ics.list]p3:
   4535   //   Otherwise, if the parameter is a non-aggregate class X and overload
   4536   //   resolution chooses a single best constructor [...] the implicit
   4537   //   conversion sequence is a user-defined conversion sequence. If multiple
   4538   //   constructors are viable but none is better than the others, the
   4539   //   implicit conversion sequence is a user-defined conversion sequence.
   4540   if (ToType->isRecordType() && !ToType->isAggregateType()) {
   4541     // This function can deal with initializer lists.
   4542     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
   4543                                     /*AllowExplicit=*/false,
   4544                                     InOverloadResolution, /*CStyle=*/false,
   4545                                     AllowObjCWritebackConversion,
   4546                                     /*AllowObjCConversionOnExplicit=*/false);
   4547   }
   4548 
   4549   // C++11 [over.ics.list]p4:
   4550   //   Otherwise, if the parameter has an aggregate type which can be
   4551   //   initialized from the initializer list [...] the implicit conversion
   4552   //   sequence is a user-defined conversion sequence.
   4553   if (ToType->isAggregateType()) {
   4554     // Type is an aggregate, argument is an init list. At this point it comes
   4555     // down to checking whether the initialization works.
   4556     // FIXME: Find out whether this parameter is consumed or not.
   4557     InitializedEntity Entity =
   4558         InitializedEntity::InitializeParameter(S.Context, ToType,
   4559                                                /*Consumed=*/false);
   4560     if (S.CanPerformCopyInitialization(Entity, From)) {
   4561       Result.setUserDefined();
   4562       Result.UserDefined.Before.setAsIdentityConversion();
   4563       // Initializer lists don't have a type.
   4564       Result.UserDefined.Before.setFromType(QualType());
   4565       Result.UserDefined.Before.setAllToTypes(QualType());
   4566 
   4567       Result.UserDefined.After.setAsIdentityConversion();
   4568       Result.UserDefined.After.setFromType(ToType);
   4569       Result.UserDefined.After.setAllToTypes(ToType);
   4570       Result.UserDefined.ConversionFunction = nullptr;
   4571     }
   4572     return Result;
   4573   }
   4574 
   4575   // C++11 [over.ics.list]p5:
   4576   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
   4577   if (ToType->isReferenceType()) {
   4578     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
   4579     // mention initializer lists in any way. So we go by what list-
   4580     // initialization would do and try to extrapolate from that.
   4581 
   4582     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
   4583 
   4584     // If the initializer list has a single element that is reference-related
   4585     // to the parameter type, we initialize the reference from that.
   4586     if (From->getNumInits() == 1) {
   4587       Expr *Init = From->getInit(0);
   4588 
   4589       QualType T2 = Init->getType();
   4590 
   4591       // If the initializer is the address of an overloaded function, try
   4592       // to resolve the overloaded function. If all goes well, T2 is the
   4593       // type of the resulting function.
   4594       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
   4595         DeclAccessPair Found;
   4596         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
   4597                                    Init, ToType, false, Found))
   4598           T2 = Fn->getType();
   4599       }
   4600 
   4601       // Compute some basic properties of the types and the initializer.
   4602       bool dummy1 = false;
   4603       bool dummy2 = false;
   4604       bool dummy3 = false;
   4605       Sema::ReferenceCompareResult RefRelationship
   4606         = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
   4607                                          dummy2, dummy3);
   4608 
   4609       if (RefRelationship >= Sema::Ref_Related) {
   4610         return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
   4611                                 SuppressUserConversions,
   4612                                 /*AllowExplicit=*/false);
   4613       }
   4614     }
   4615 
   4616     // Otherwise, we bind the reference to a temporary created from the
   4617     // initializer list.
   4618     Result = TryListConversion(S, From, T1, SuppressUserConversions,
   4619                                InOverloadResolution,
   4620                                AllowObjCWritebackConversion);
   4621     if (Result.isFailure())
   4622       return Result;
   4623     assert(!Result.isEllipsis() &&
   4624            "Sub-initialization cannot result in ellipsis conversion.");
   4625 
   4626     // Can we even bind to a temporary?
   4627     if (ToType->isRValueReferenceType() ||
   4628         (T1.isConstQualified() && !T1.isVolatileQualified())) {
   4629       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
   4630                                             Result.UserDefined.After;
   4631       SCS.ReferenceBinding = true;
   4632       SCS.IsLvalueReference = ToType->isLValueReferenceType();
   4633       SCS.BindsToRvalue = true;
   4634       SCS.BindsToFunctionLvalue = false;
   4635       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4636       SCS.ObjCLifetimeConversionBinding = false;
   4637     } else
   4638       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
   4639                     From, ToType);
   4640     return Result;
   4641   }
   4642 
   4643   // C++11 [over.ics.list]p6:
   4644   //   Otherwise, if the parameter type is not a class:
   4645   if (!ToType->isRecordType()) {
   4646     //    - if the initializer list has one element, the implicit conversion
   4647     //      sequence is the one required to convert the element to the
   4648     //      parameter type.
   4649     unsigned NumInits = From->getNumInits();
   4650     if (NumInits == 1)
   4651       Result = TryCopyInitialization(S, From->getInit(0), ToType,
   4652                                      SuppressUserConversions,
   4653                                      InOverloadResolution,
   4654                                      AllowObjCWritebackConversion);
   4655     //    - if the initializer list has no elements, the implicit conversion
   4656     //      sequence is the identity conversion.
   4657     else if (NumInits == 0) {
   4658       Result.setStandard();
   4659       Result.Standard.setAsIdentityConversion();
   4660       Result.Standard.setFromType(ToType);
   4661       Result.Standard.setAllToTypes(ToType);
   4662     }
   4663     return Result;
   4664   }
   4665 
   4666   // C++11 [over.ics.list]p7:
   4667   //   In all cases other than those enumerated above, no conversion is possible
   4668   return Result;
   4669 }
   4670 
   4671 /// TryCopyInitialization - Try to copy-initialize a value of type
   4672 /// ToType from the expression From. Return the implicit conversion
   4673 /// sequence required to pass this argument, which may be a bad
   4674 /// conversion sequence (meaning that the argument cannot be passed to
   4675 /// a parameter of this type). If @p SuppressUserConversions, then we
   4676 /// do not permit any user-defined conversion sequences.
   4677 static ImplicitConversionSequence
   4678 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
   4679                       bool SuppressUserConversions,
   4680                       bool InOverloadResolution,
   4681                       bool AllowObjCWritebackConversion,
   4682                       bool AllowExplicit) {
   4683   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
   4684     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
   4685                              InOverloadResolution,AllowObjCWritebackConversion);
   4686 
   4687   if (ToType->isReferenceType())
   4688     return TryReferenceInit(S, From, ToType,
   4689                             /*FIXME:*/From->getLocStart(),
   4690                             SuppressUserConversions,
   4691                             AllowExplicit);
   4692 
   4693   return TryImplicitConversion(S, From, ToType,
   4694                                SuppressUserConversions,
   4695                                /*AllowExplicit=*/false,
   4696                                InOverloadResolution,
   4697                                /*CStyle=*/false,
   4698                                AllowObjCWritebackConversion,
   4699                                /*AllowObjCConversionOnExplicit=*/false);
   4700 }
   4701 
   4702 static bool TryCopyInitialization(const CanQualType FromQTy,
   4703                                   const CanQualType ToQTy,
   4704                                   Sema &S,
   4705                                   SourceLocation Loc,
   4706                                   ExprValueKind FromVK) {
   4707   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
   4708   ImplicitConversionSequence ICS =
   4709     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
   4710 
   4711   return !ICS.isBad();
   4712 }
   4713 
   4714 /// TryObjectArgumentInitialization - Try to initialize the object
   4715 /// parameter of the given member function (@c Method) from the
   4716 /// expression @p From.
   4717 static ImplicitConversionSequence
   4718 TryObjectArgumentInitialization(Sema &S, QualType FromType,
   4719                                 Expr::Classification FromClassification,
   4720                                 CXXMethodDecl *Method,
   4721                                 CXXRecordDecl *ActingContext) {
   4722   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
   4723   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
   4724   //                 const volatile object.
   4725   unsigned Quals = isa<CXXDestructorDecl>(Method) ?
   4726     Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
   4727   QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
   4728 
   4729   // Set up the conversion sequence as a "bad" conversion, to allow us
   4730   // to exit early.
   4731   ImplicitConversionSequence ICS;
   4732 
   4733   // We need to have an object of class type.
   4734   if (const PointerType *PT = FromType->getAs<PointerType>()) {
   4735     FromType = PT->getPointeeType();
   4736 
   4737     // When we had a pointer, it's implicitly dereferenced, so we
   4738     // better have an lvalue.
   4739     assert(FromClassification.isLValue());
   4740   }
   4741 
   4742   assert(FromType->isRecordType());
   4743 
   4744   // C++0x [over.match.funcs]p4:
   4745   //   For non-static member functions, the type of the implicit object
   4746   //   parameter is
   4747   //
   4748   //     - "lvalue reference to cv X" for functions declared without a
   4749   //        ref-qualifier or with the & ref-qualifier
   4750   //     - "rvalue reference to cv X" for functions declared with the &&
   4751   //        ref-qualifier
   4752   //
   4753   // where X is the class of which the function is a member and cv is the
   4754   // cv-qualification on the member function declaration.
   4755   //
   4756   // However, when finding an implicit conversion sequence for the argument, we
   4757   // are not allowed to create temporaries or perform user-defined conversions
   4758   // (C++ [over.match.funcs]p5). We perform a simplified version of
   4759   // reference binding here, that allows class rvalues to bind to
   4760   // non-constant references.
   4761 
   4762   // First check the qualifiers.
   4763   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
   4764   if (ImplicitParamType.getCVRQualifiers()
   4765                                     != FromTypeCanon.getLocalCVRQualifiers() &&
   4766       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
   4767     ICS.setBad(BadConversionSequence::bad_qualifiers,
   4768                FromType, ImplicitParamType);
   4769     return ICS;
   4770   }
   4771 
   4772   // Check that we have either the same type or a derived type. It
   4773   // affects the conversion rank.
   4774   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
   4775   ImplicitConversionKind SecondKind;
   4776   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
   4777     SecondKind = ICK_Identity;
   4778   } else if (S.IsDerivedFrom(FromType, ClassType))
   4779     SecondKind = ICK_Derived_To_Base;
   4780   else {
   4781     ICS.setBad(BadConversionSequence::unrelated_class,
   4782                FromType, ImplicitParamType);
   4783     return ICS;
   4784   }
   4785 
   4786   // Check the ref-qualifier.
   4787   switch (Method->getRefQualifier()) {
   4788   case RQ_None:
   4789     // Do nothing; we don't care about lvalueness or rvalueness.
   4790     break;
   4791 
   4792   case RQ_LValue:
   4793     if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
   4794       // non-const lvalue reference cannot bind to an rvalue
   4795       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
   4796                  ImplicitParamType);
   4797       return ICS;
   4798     }
   4799     break;
   4800 
   4801   case RQ_RValue:
   4802     if (!FromClassification.isRValue()) {
   4803       // rvalue reference cannot bind to an lvalue
   4804       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
   4805                  ImplicitParamType);
   4806       return ICS;
   4807     }
   4808     break;
   4809   }
   4810 
   4811   // Success. Mark this as a reference binding.
   4812   ICS.setStandard();
   4813   ICS.Standard.setAsIdentityConversion();
   4814   ICS.Standard.Second = SecondKind;
   4815   ICS.Standard.setFromType(FromType);
   4816   ICS.Standard.setAllToTypes(ImplicitParamType);
   4817   ICS.Standard.ReferenceBinding = true;
   4818   ICS.Standard.DirectBinding = true;
   4819   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
   4820   ICS.Standard.BindsToFunctionLvalue = false;
   4821   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
   4822   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
   4823     = (Method->getRefQualifier() == RQ_None);
   4824   return ICS;
   4825 }
   4826 
   4827 /// PerformObjectArgumentInitialization - Perform initialization of
   4828 /// the implicit object parameter for the given Method with the given
   4829 /// expression.
   4830 ExprResult
   4831 Sema::PerformObjectArgumentInitialization(Expr *From,
   4832                                           NestedNameSpecifier *Qualifier,
   4833                                           NamedDecl *FoundDecl,
   4834                                           CXXMethodDecl *Method) {
   4835   QualType FromRecordType, DestType;
   4836   QualType ImplicitParamRecordType  =
   4837     Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
   4838 
   4839   Expr::Classification FromClassification;
   4840   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
   4841     FromRecordType = PT->getPointeeType();
   4842     DestType = Method->getThisType(Context);
   4843     FromClassification = Expr::Classification::makeSimpleLValue();
   4844   } else {
   4845     FromRecordType = From->getType();
   4846     DestType = ImplicitParamRecordType;
   4847     FromClassification = From->Classify(Context);
   4848   }
   4849 
   4850   // Note that we always use the true parent context when performing
   4851   // the actual argument initialization.
   4852   ImplicitConversionSequence ICS
   4853     = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
   4854                                       Method, Method->getParent());
   4855   if (ICS.isBad()) {
   4856     if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
   4857       Qualifiers FromQs = FromRecordType.getQualifiers();
   4858       Qualifiers ToQs = DestType.getQualifiers();
   4859       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
   4860       if (CVR) {
   4861         Diag(From->getLocStart(),
   4862              diag::err_member_function_call_bad_cvr)
   4863           << Method->getDeclName() << FromRecordType << (CVR - 1)
   4864           << From->getSourceRange();
   4865         Diag(Method->getLocation(), diag::note_previous_decl)
   4866           << Method->getDeclName();
   4867         return ExprError();
   4868       }
   4869     }
   4870 
   4871     return Diag(From->getLocStart(),
   4872                 diag::err_implicit_object_parameter_init)
   4873        << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
   4874   }
   4875 
   4876   if (ICS.Standard.Second == ICK_Derived_To_Base) {
   4877     ExprResult FromRes =
   4878       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
   4879     if (FromRes.isInvalid())
   4880       return ExprError();
   4881     From = FromRes.get();
   4882   }
   4883 
   4884   if (!Context.hasSameType(From->getType(), DestType))
   4885     From = ImpCastExprToType(From, DestType, CK_NoOp,
   4886                              From->getValueKind()).get();
   4887   return From;
   4888 }
   4889 
   4890 /// TryContextuallyConvertToBool - Attempt to contextually convert the
   4891 /// expression From to bool (C++0x [conv]p3).
   4892 static ImplicitConversionSequence
   4893 TryContextuallyConvertToBool(Sema &S, Expr *From) {
   4894   return TryImplicitConversion(S, From, S.Context.BoolTy,
   4895                                /*SuppressUserConversions=*/false,
   4896                                /*AllowExplicit=*/true,
   4897                                /*InOverloadResolution=*/false,
   4898                                /*CStyle=*/false,
   4899                                /*AllowObjCWritebackConversion=*/false,
   4900                                /*AllowObjCConversionOnExplicit=*/false);
   4901 }
   4902 
   4903 /// PerformContextuallyConvertToBool - Perform a contextual conversion
   4904 /// of the expression From to bool (C++0x [conv]p3).
   4905 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
   4906   if (checkPlaceholderForOverload(*this, From))
   4907     return ExprError();
   4908 
   4909   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
   4910   if (!ICS.isBad())
   4911     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
   4912 
   4913   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
   4914     return Diag(From->getLocStart(),
   4915                 diag::err_typecheck_bool_condition)
   4916                   << From->getType() << From->getSourceRange();
   4917   return ExprError();
   4918 }
   4919 
   4920 /// Check that the specified conversion is permitted in a converted constant
   4921 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
   4922 /// is acceptable.
   4923 static bool CheckConvertedConstantConversions(Sema &S,
   4924                                               StandardConversionSequence &SCS) {
   4925   // Since we know that the target type is an integral or unscoped enumeration
   4926   // type, most conversion kinds are impossible. All possible First and Third
   4927   // conversions are fine.
   4928   switch (SCS.Second) {
   4929   case ICK_Identity:
   4930   case ICK_Integral_Promotion:
   4931   case ICK_Integral_Conversion:
   4932   case ICK_Zero_Event_Conversion:
   4933     return true;
   4934 
   4935   case ICK_Boolean_Conversion:
   4936     // Conversion from an integral or unscoped enumeration type to bool is
   4937     // classified as ICK_Boolean_Conversion, but it's also an integral
   4938     // conversion, so it's permitted in a converted constant expression.
   4939     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
   4940            SCS.getToType(2)->isBooleanType();
   4941 
   4942   case ICK_Floating_Integral:
   4943   case ICK_Complex_Real:
   4944     return false;
   4945 
   4946   case ICK_Lvalue_To_Rvalue:
   4947   case ICK_Array_To_Pointer:
   4948   case ICK_Function_To_Pointer:
   4949   case ICK_NoReturn_Adjustment:
   4950   case ICK_Qualification:
   4951   case ICK_Compatible_Conversion:
   4952   case ICK_Vector_Conversion:
   4953   case ICK_Vector_Splat:
   4954   case ICK_Derived_To_Base:
   4955   case ICK_Pointer_Conversion:
   4956   case ICK_Pointer_Member:
   4957   case ICK_Block_Pointer_Conversion:
   4958   case ICK_Writeback_Conversion:
   4959   case ICK_Floating_Promotion:
   4960   case ICK_Complex_Promotion:
   4961   case ICK_Complex_Conversion:
   4962   case ICK_Floating_Conversion:
   4963   case ICK_TransparentUnionConversion:
   4964     llvm_unreachable("unexpected second conversion kind");
   4965 
   4966   case ICK_Num_Conversion_Kinds:
   4967     break;
   4968   }
   4969 
   4970   llvm_unreachable("unknown conversion kind");
   4971 }
   4972 
   4973 /// CheckConvertedConstantExpression - Check that the expression From is a
   4974 /// converted constant expression of type T, perform the conversion and produce
   4975 /// the converted expression, per C++11 [expr.const]p3.
   4976 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
   4977                                                   llvm::APSInt &Value,
   4978                                                   CCEKind CCE) {
   4979   assert(LangOpts.CPlusPlus11 && "converted constant expression outside C++11");
   4980   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
   4981 
   4982   if (checkPlaceholderForOverload(*this, From))
   4983     return ExprError();
   4984 
   4985   // C++11 [expr.const]p3 with proposed wording fixes:
   4986   //  A converted constant expression of type T is a core constant expression,
   4987   //  implicitly converted to a prvalue of type T, where the converted
   4988   //  expression is a literal constant expression and the implicit conversion
   4989   //  sequence contains only user-defined conversions, lvalue-to-rvalue
   4990   //  conversions, integral promotions, and integral conversions other than
   4991   //  narrowing conversions.
   4992   ImplicitConversionSequence ICS =
   4993     TryImplicitConversion(From, T,
   4994                           /*SuppressUserConversions=*/false,
   4995                           /*AllowExplicit=*/false,
   4996                           /*InOverloadResolution=*/false,
   4997                           /*CStyle=*/false,
   4998                           /*AllowObjcWritebackConversion=*/false);
   4999   StandardConversionSequence *SCS = nullptr;
   5000   switch (ICS.getKind()) {
   5001   case ImplicitConversionSequence::StandardConversion:
   5002     if (!CheckConvertedConstantConversions(*this, ICS.Standard))
   5003       return Diag(From->getLocStart(),
   5004                   diag::err_typecheck_converted_constant_expression_disallowed)
   5005                << From->getType() << From->getSourceRange() << T;
   5006     SCS = &ICS.Standard;
   5007     break;
   5008   case ImplicitConversionSequence::UserDefinedConversion:
   5009     // We are converting from class type to an integral or enumeration type, so
   5010     // the Before sequence must be trivial.
   5011     if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
   5012       return Diag(From->getLocStart(),
   5013                   diag::err_typecheck_converted_constant_expression_disallowed)
   5014                << From->getType() << From->getSourceRange() << T;
   5015     SCS = &ICS.UserDefined.After;
   5016     break;
   5017   case ImplicitConversionSequence::AmbiguousConversion:
   5018   case ImplicitConversionSequence::BadConversion:
   5019     if (!DiagnoseMultipleUserDefinedConversion(From, T))
   5020       return Diag(From->getLocStart(),
   5021                   diag::err_typecheck_converted_constant_expression)
   5022                     << From->getType() << From->getSourceRange() << T;
   5023     return ExprError();
   5024 
   5025   case ImplicitConversionSequence::EllipsisConversion:
   5026     llvm_unreachable("ellipsis conversion in converted constant expression");
   5027   }
   5028 
   5029   ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
   5030   if (Result.isInvalid())
   5031     return Result;
   5032 
   5033   // Check for a narrowing implicit conversion.
   5034   APValue PreNarrowingValue;
   5035   QualType PreNarrowingType;
   5036   switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
   5037                                 PreNarrowingType)) {
   5038   case NK_Variable_Narrowing:
   5039     // Implicit conversion to a narrower type, and the value is not a constant
   5040     // expression. We'll diagnose this in a moment.
   5041   case NK_Not_Narrowing:
   5042     break;
   5043 
   5044   case NK_Constant_Narrowing:
   5045     Diag(From->getLocStart(), diag::ext_cce_narrowing)
   5046       << CCE << /*Constant*/1
   5047       << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
   5048     break;
   5049 
   5050   case NK_Type_Narrowing:
   5051     Diag(From->getLocStart(), diag::ext_cce_narrowing)
   5052       << CCE << /*Constant*/0 << From->getType() << T;
   5053     break;
   5054   }
   5055 
   5056   // Check the expression is a constant expression.
   5057   SmallVector<PartialDiagnosticAt, 8> Notes;
   5058   Expr::EvalResult Eval;
   5059   Eval.Diag = &Notes;
   5060 
   5061   if (!Result.get()->EvaluateAsRValue(Eval, Context) || !Eval.Val.isInt()) {
   5062     // The expression can't be folded, so we can't keep it at this position in
   5063     // the AST.
   5064     Result = ExprError();
   5065   } else {
   5066     Value = Eval.Val.getInt();
   5067 
   5068     if (Notes.empty()) {
   5069       // It's a constant expression.
   5070       return Result;
   5071     }
   5072   }
   5073 
   5074   // It's not a constant expression. Produce an appropriate diagnostic.
   5075   if (Notes.size() == 1 &&
   5076       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
   5077     Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
   5078   else {
   5079     Diag(From->getLocStart(), diag::err_expr_not_cce)
   5080       << CCE << From->getSourceRange();
   5081     for (unsigned I = 0; I < Notes.size(); ++I)
   5082       Diag(Notes[I].first, Notes[I].second);
   5083   }
   5084   return Result;
   5085 }
   5086 
   5087 /// dropPointerConversions - If the given standard conversion sequence
   5088 /// involves any pointer conversions, remove them.  This may change
   5089 /// the result type of the conversion sequence.
   5090 static void dropPointerConversion(StandardConversionSequence &SCS) {
   5091   if (SCS.Second == ICK_Pointer_Conversion) {
   5092     SCS.Second = ICK_Identity;
   5093     SCS.Third = ICK_Identity;
   5094     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
   5095   }
   5096 }
   5097 
   5098 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
   5099 /// convert the expression From to an Objective-C pointer type.
   5100 static ImplicitConversionSequence
   5101 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
   5102   // Do an implicit conversion to 'id'.
   5103   QualType Ty = S.Context.getObjCIdType();
   5104   ImplicitConversionSequence ICS
   5105     = TryImplicitConversion(S, From, Ty,
   5106                             // FIXME: Are these flags correct?
   5107                             /*SuppressUserConversions=*/false,
   5108                             /*AllowExplicit=*/true,
   5109                             /*InOverloadResolution=*/false,
   5110                             /*CStyle=*/false,
   5111                             /*AllowObjCWritebackConversion=*/false,
   5112                             /*AllowObjCConversionOnExplicit=*/true);
   5113 
   5114   // Strip off any final conversions to 'id'.
   5115   switch (ICS.getKind()) {
   5116   case ImplicitConversionSequence::BadConversion:
   5117   case ImplicitConversionSequence::AmbiguousConversion:
   5118   case ImplicitConversionSequence::EllipsisConversion:
   5119     break;
   5120 
   5121   case ImplicitConversionSequence::UserDefinedConversion:
   5122     dropPointerConversion(ICS.UserDefined.After);
   5123     break;
   5124 
   5125   case ImplicitConversionSequence::StandardConversion:
   5126     dropPointerConversion(ICS.Standard);
   5127     break;
   5128   }
   5129 
   5130   return ICS;
   5131 }
   5132 
   5133 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
   5134 /// conversion of the expression From to an Objective-C pointer type.
   5135 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
   5136   if (checkPlaceholderForOverload(*this, From))
   5137     return ExprError();
   5138 
   5139   QualType Ty = Context.getObjCIdType();
   5140   ImplicitConversionSequence ICS =
   5141     TryContextuallyConvertToObjCPointer(*this, From);
   5142   if (!ICS.isBad())
   5143     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
   5144   return ExprError();
   5145 }
   5146 
   5147 /// Determine whether the provided type is an integral type, or an enumeration
   5148 /// type of a permitted flavor.
   5149 bool Sema::ICEConvertDiagnoser::match(QualType T) {
   5150   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
   5151                                  : T->isIntegralOrUnscopedEnumerationType();
   5152 }
   5153 
   5154 static ExprResult
   5155 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
   5156                             Sema::ContextualImplicitConverter &Converter,
   5157                             QualType T, UnresolvedSetImpl &ViableConversions) {
   5158 
   5159   if (Converter.Suppress)
   5160     return ExprError();
   5161 
   5162   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
   5163   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
   5164     CXXConversionDecl *Conv =
   5165         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
   5166     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
   5167     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
   5168   }
   5169   return From;
   5170 }
   5171 
   5172 static bool
   5173 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
   5174                            Sema::ContextualImplicitConverter &Converter,
   5175                            QualType T, bool HadMultipleCandidates,
   5176                            UnresolvedSetImpl &ExplicitConversions) {
   5177   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
   5178     DeclAccessPair Found = ExplicitConversions[0];
   5179     CXXConversionDecl *Conversion =
   5180         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
   5181 
   5182     // The user probably meant to invoke the given explicit
   5183     // conversion; use it.
   5184     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
   5185     std::string TypeStr;
   5186     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
   5187 
   5188     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
   5189         << FixItHint::CreateInsertion(From->getLocStart(),
   5190                                       "static_cast<" + TypeStr + ">(")
   5191         << FixItHint::CreateInsertion(
   5192                SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
   5193     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
   5194 
   5195     // If we aren't in a SFINAE context, build a call to the
   5196     // explicit conversion function.
   5197     if (SemaRef.isSFINAEContext())
   5198       return true;
   5199 
   5200     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
   5201     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
   5202                                                        HadMultipleCandidates);
   5203     if (Result.isInvalid())
   5204       return true;
   5205     // Record usage of conversion in an implicit cast.
   5206     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
   5207                                     CK_UserDefinedConversion, Result.get(),
   5208                                     nullptr, Result.get()->getValueKind());
   5209   }
   5210   return false;
   5211 }
   5212 
   5213 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
   5214                              Sema::ContextualImplicitConverter &Converter,
   5215                              QualType T, bool HadMultipleCandidates,
   5216                              DeclAccessPair &Found) {
   5217   CXXConversionDecl *Conversion =
   5218       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
   5219   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
   5220 
   5221   QualType ToType = Conversion->getConversionType().getNonReferenceType();
   5222   if (!Converter.SuppressConversion) {
   5223     if (SemaRef.isSFINAEContext())
   5224       return true;
   5225 
   5226     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
   5227         << From->getSourceRange();
   5228   }
   5229 
   5230   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
   5231                                                      HadMultipleCandidates);
   5232   if (Result.isInvalid())
   5233     return true;
   5234   // Record usage of conversion in an implicit cast.
   5235   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
   5236                                   CK_UserDefinedConversion, Result.get(),
   5237                                   nullptr, Result.get()->getValueKind());
   5238   return false;
   5239 }
   5240 
   5241 static ExprResult finishContextualImplicitConversion(
   5242     Sema &SemaRef, SourceLocation Loc, Expr *From,
   5243     Sema::ContextualImplicitConverter &Converter) {
   5244   if (!Converter.match(From->getType()) && !Converter.Suppress)
   5245     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
   5246         << From->getSourceRange();
   5247 
   5248   return SemaRef.DefaultLvalueConversion(From);
   5249 }
   5250 
   5251 static void
   5252 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
   5253                                   UnresolvedSetImpl &ViableConversions,
   5254                                   OverloadCandidateSet &CandidateSet) {
   5255   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
   5256     DeclAccessPair FoundDecl = ViableConversions[I];
   5257     NamedDecl *D = FoundDecl.getDecl();
   5258     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   5259     if (isa<UsingShadowDecl>(D))
   5260       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   5261 
   5262     CXXConversionDecl *Conv;
   5263     FunctionTemplateDecl *ConvTemplate;
   5264     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
   5265       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   5266     else
   5267       Conv = cast<CXXConversionDecl>(D);
   5268 
   5269     if (ConvTemplate)
   5270       SemaRef.AddTemplateConversionCandidate(
   5271         ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
   5272         /*AllowObjCConversionOnExplicit=*/false);
   5273     else
   5274       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
   5275                                      ToType, CandidateSet,
   5276                                      /*AllowObjCConversionOnExplicit=*/false);
   5277   }
   5278 }
   5279 
   5280 /// \brief Attempt to convert the given expression to a type which is accepted
   5281 /// by the given converter.
   5282 ///
   5283 /// This routine will attempt to convert an expression of class type to a
   5284 /// type accepted by the specified converter. In C++11 and before, the class
   5285 /// must have a single non-explicit conversion function converting to a matching
   5286 /// type. In C++1y, there can be multiple such conversion functions, but only
   5287 /// one target type.
   5288 ///
   5289 /// \param Loc The source location of the construct that requires the
   5290 /// conversion.
   5291 ///
   5292 /// \param From The expression we're converting from.
   5293 ///
   5294 /// \param Converter Used to control and diagnose the conversion process.
   5295 ///
   5296 /// \returns The expression, converted to an integral or enumeration type if
   5297 /// successful.
   5298 ExprResult Sema::PerformContextualImplicitConversion(
   5299     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
   5300   // We can't perform any more checking for type-dependent expressions.
   5301   if (From->isTypeDependent())
   5302     return From;
   5303 
   5304   // Process placeholders immediately.
   5305   if (From->hasPlaceholderType()) {
   5306     ExprResult result = CheckPlaceholderExpr(From);
   5307     if (result.isInvalid())
   5308       return result;
   5309     From = result.get();
   5310   }
   5311 
   5312   // If the expression already has a matching type, we're golden.
   5313   QualType T = From->getType();
   5314   if (Converter.match(T))
   5315     return DefaultLvalueConversion(From);
   5316 
   5317   // FIXME: Check for missing '()' if T is a function type?
   5318 
   5319   // We can only perform contextual implicit conversions on objects of class
   5320   // type.
   5321   const RecordType *RecordTy = T->getAs<RecordType>();
   5322   if (!RecordTy || !getLangOpts().CPlusPlus) {
   5323     if (!Converter.Suppress)
   5324       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
   5325     return From;
   5326   }
   5327 
   5328   // We must have a complete class type.
   5329   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
   5330     ContextualImplicitConverter &Converter;
   5331     Expr *From;
   5332 
   5333     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
   5334         : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
   5335 
   5336     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
   5337       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
   5338     }
   5339   } IncompleteDiagnoser(Converter, From);
   5340 
   5341   if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
   5342     return From;
   5343 
   5344   // Look for a conversion to an integral or enumeration type.
   5345   UnresolvedSet<4>
   5346       ViableConversions; // These are *potentially* viable in C++1y.
   5347   UnresolvedSet<4> ExplicitConversions;
   5348   std::pair<CXXRecordDecl::conversion_iterator,
   5349             CXXRecordDecl::conversion_iterator> Conversions =
   5350       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
   5351 
   5352   bool HadMultipleCandidates =
   5353       (std::distance(Conversions.first, Conversions.second) > 1);
   5354 
   5355   // To check that there is only one target type, in C++1y:
   5356   QualType ToType;
   5357   bool HasUniqueTargetType = true;
   5358 
   5359   // Collect explicit or viable (potentially in C++1y) conversions.
   5360   for (CXXRecordDecl::conversion_iterator I = Conversions.first,
   5361                                           E = Conversions.second;
   5362        I != E; ++I) {
   5363     NamedDecl *D = (*I)->getUnderlyingDecl();
   5364     CXXConversionDecl *Conversion;
   5365     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
   5366     if (ConvTemplate) {
   5367       if (getLangOpts().CPlusPlus1y)
   5368         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   5369       else
   5370         continue; // C++11 does not consider conversion operator templates(?).
   5371     } else
   5372       Conversion = cast<CXXConversionDecl>(D);
   5373 
   5374     assert((!ConvTemplate || getLangOpts().CPlusPlus1y) &&
   5375            "Conversion operator templates are considered potentially "
   5376            "viable in C++1y");
   5377 
   5378     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
   5379     if (Converter.match(CurToType) || ConvTemplate) {
   5380 
   5381       if (Conversion->isExplicit()) {
   5382         // FIXME: For C++1y, do we need this restriction?
   5383         // cf. diagnoseNoViableConversion()
   5384         if (!ConvTemplate)
   5385           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
   5386       } else {
   5387         if (!ConvTemplate && getLangOpts().CPlusPlus1y) {
   5388           if (ToType.isNull())
   5389             ToType = CurToType.getUnqualifiedType();
   5390           else if (HasUniqueTargetType &&
   5391                    (CurToType.getUnqualifiedType() != ToType))
   5392             HasUniqueTargetType = false;
   5393         }
   5394         ViableConversions.addDecl(I.getDecl(), I.getAccess());
   5395       }
   5396     }
   5397   }
   5398 
   5399   if (getLangOpts().CPlusPlus1y) {
   5400     // C++1y [conv]p6:
   5401     // ... An expression e of class type E appearing in such a context
   5402     // is said to be contextually implicitly converted to a specified
   5403     // type T and is well-formed if and only if e can be implicitly
   5404     // converted to a type T that is determined as follows: E is searched
   5405     // for conversion functions whose return type is cv T or reference to
   5406     // cv T such that T is allowed by the context. There shall be
   5407     // exactly one such T.
   5408 
   5409     // If no unique T is found:
   5410     if (ToType.isNull()) {
   5411       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5412                                      HadMultipleCandidates,
   5413                                      ExplicitConversions))
   5414         return ExprError();
   5415       return finishContextualImplicitConversion(*this, Loc, From, Converter);
   5416     }
   5417 
   5418     // If more than one unique Ts are found:
   5419     if (!HasUniqueTargetType)
   5420       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5421                                          ViableConversions);
   5422 
   5423     // If one unique T is found:
   5424     // First, build a candidate set from the previously recorded
   5425     // potentially viable conversions.
   5426     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
   5427     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
   5428                                       CandidateSet);
   5429 
   5430     // Then, perform overload resolution over the candidate set.
   5431     OverloadCandidateSet::iterator Best;
   5432     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
   5433     case OR_Success: {
   5434       // Apply this conversion.
   5435       DeclAccessPair Found =
   5436           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
   5437       if (recordConversion(*this, Loc, From, Converter, T,
   5438                            HadMultipleCandidates, Found))
   5439         return ExprError();
   5440       break;
   5441     }
   5442     case OR_Ambiguous:
   5443       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5444                                          ViableConversions);
   5445     case OR_No_Viable_Function:
   5446       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5447                                      HadMultipleCandidates,
   5448                                      ExplicitConversions))
   5449         return ExprError();
   5450     // fall through 'OR_Deleted' case.
   5451     case OR_Deleted:
   5452       // We'll complain below about a non-integral condition type.
   5453       break;
   5454     }
   5455   } else {
   5456     switch (ViableConversions.size()) {
   5457     case 0: {
   5458       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5459                                      HadMultipleCandidates,
   5460                                      ExplicitConversions))
   5461         return ExprError();
   5462 
   5463       // We'll complain below about a non-integral condition type.
   5464       break;
   5465     }
   5466     case 1: {
   5467       // Apply this conversion.
   5468       DeclAccessPair Found = ViableConversions[0];
   5469       if (recordConversion(*this, Loc, From, Converter, T,
   5470                            HadMultipleCandidates, Found))
   5471         return ExprError();
   5472       break;
   5473     }
   5474     default:
   5475       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5476                                          ViableConversions);
   5477     }
   5478   }
   5479 
   5480   return finishContextualImplicitConversion(*this, Loc, From, Converter);
   5481 }
   5482 
   5483 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
   5484 /// an acceptable non-member overloaded operator for a call whose
   5485 /// arguments have types T1 (and, if non-empty, T2). This routine
   5486 /// implements the check in C++ [over.match.oper]p3b2 concerning
   5487 /// enumeration types.
   5488 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
   5489                                                    FunctionDecl *Fn,
   5490                                                    ArrayRef<Expr *> Args) {
   5491   QualType T1 = Args[0]->getType();
   5492   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
   5493 
   5494   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
   5495     return true;
   5496 
   5497   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
   5498     return true;
   5499 
   5500   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
   5501   if (Proto->getNumParams() < 1)
   5502     return false;
   5503 
   5504   if (T1->isEnumeralType()) {
   5505     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
   5506     if (Context.hasSameUnqualifiedType(T1, ArgType))
   5507       return true;
   5508   }
   5509 
   5510   if (Proto->getNumParams() < 2)
   5511     return false;
   5512 
   5513   if (!T2.isNull() && T2->isEnumeralType()) {
   5514     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
   5515     if (Context.hasSameUnqualifiedType(T2, ArgType))
   5516       return true;
   5517   }
   5518 
   5519   return false;
   5520 }
   5521 
   5522 /// AddOverloadCandidate - Adds the given function to the set of
   5523 /// candidate functions, using the given function call arguments.  If
   5524 /// @p SuppressUserConversions, then don't allow user-defined
   5525 /// conversions via constructors or conversion operators.
   5526 ///
   5527 /// \param PartialOverloading true if we are performing "partial" overloading
   5528 /// based on an incomplete set of function arguments. This feature is used by
   5529 /// code completion.
   5530 void
   5531 Sema::AddOverloadCandidate(FunctionDecl *Function,
   5532                            DeclAccessPair FoundDecl,
   5533                            ArrayRef<Expr *> Args,
   5534                            OverloadCandidateSet &CandidateSet,
   5535                            bool SuppressUserConversions,
   5536                            bool PartialOverloading,
   5537                            bool AllowExplicit) {
   5538   const FunctionProtoType *Proto
   5539     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
   5540   assert(Proto && "Functions without a prototype cannot be overloaded");
   5541   assert(!Function->getDescribedFunctionTemplate() &&
   5542          "Use AddTemplateOverloadCandidate for function templates");
   5543 
   5544   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   5545     if (!isa<CXXConstructorDecl>(Method)) {
   5546       // If we get here, it's because we're calling a member function
   5547       // that is named without a member access expression (e.g.,
   5548       // "this->f") that was either written explicitly or created
   5549       // implicitly. This can happen with a qualified call to a member
   5550       // function, e.g., X::f(). We use an empty type for the implied
   5551       // object argument (C++ [over.call.func]p3), and the acting context
   5552       // is irrelevant.
   5553       AddMethodCandidate(Method, FoundDecl, Method->getParent(),
   5554                          QualType(), Expr::Classification::makeSimpleLValue(),
   5555                          Args, CandidateSet, SuppressUserConversions);
   5556       return;
   5557     }
   5558     // We treat a constructor like a non-member function, since its object
   5559     // argument doesn't participate in overload resolution.
   5560   }
   5561 
   5562   if (!CandidateSet.isNewCandidate(Function))
   5563     return;
   5564 
   5565   // C++ [over.match.oper]p3:
   5566   //   if no operand has a class type, only those non-member functions in the
   5567   //   lookup set that have a first parameter of type T1 or "reference to
   5568   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
   5569   //   is a right operand) a second parameter of type T2 or "reference to
   5570   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
   5571   //   candidate functions.
   5572   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
   5573       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
   5574     return;
   5575 
   5576   // C++11 [class.copy]p11: [DR1402]
   5577   //   A defaulted move constructor that is defined as deleted is ignored by
   5578   //   overload resolution.
   5579   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
   5580   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
   5581       Constructor->isMoveConstructor())
   5582     return;
   5583 
   5584   // Overload resolution is always an unevaluated context.
   5585   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   5586 
   5587   if (Constructor) {
   5588     // C++ [class.copy]p3:
   5589     //   A member function template is never instantiated to perform the copy
   5590     //   of a class object to an object of its class type.
   5591     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
   5592     if (Args.size() == 1 &&
   5593         Constructor->isSpecializationCopyingObject() &&
   5594         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
   5595          IsDerivedFrom(Args[0]->getType(), ClassType)))
   5596       return;
   5597   }
   5598 
   5599   // Add this candidate
   5600   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
   5601   Candidate.FoundDecl = FoundDecl;
   5602   Candidate.Function = Function;
   5603   Candidate.Viable = true;
   5604   Candidate.IsSurrogate = false;
   5605   Candidate.IgnoreObjectArgument = false;
   5606   Candidate.ExplicitCallArguments = Args.size();
   5607 
   5608   unsigned NumParams = Proto->getNumParams();
   5609 
   5610   // (C++ 13.3.2p2): A candidate function having fewer than m
   5611   // parameters is viable only if it has an ellipsis in its parameter
   5612   // list (8.3.5).
   5613   if ((Args.size() + (PartialOverloading && Args.size())) > NumParams &&
   5614       !Proto->isVariadic()) {
   5615     Candidate.Viable = false;
   5616     Candidate.FailureKind = ovl_fail_too_many_arguments;
   5617     return;
   5618   }
   5619 
   5620   // (C++ 13.3.2p2): A candidate function having more than m parameters
   5621   // is viable only if the (m+1)st parameter has a default argument
   5622   // (8.3.6). For the purposes of overload resolution, the
   5623   // parameter list is truncated on the right, so that there are
   5624   // exactly m parameters.
   5625   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
   5626   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
   5627     // Not enough arguments.
   5628     Candidate.Viable = false;
   5629     Candidate.FailureKind = ovl_fail_too_few_arguments;
   5630     return;
   5631   }
   5632 
   5633   // (CUDA B.1): Check for invalid calls between targets.
   5634   if (getLangOpts().CUDA)
   5635     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   5636       if (CheckCUDATarget(Caller, Function)) {
   5637         Candidate.Viable = false;
   5638         Candidate.FailureKind = ovl_fail_bad_target;
   5639         return;
   5640       }
   5641 
   5642   // Determine the implicit conversion sequences for each of the
   5643   // arguments.
   5644   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
   5645     if (ArgIdx < NumParams) {
   5646       // (C++ 13.3.2p3): for F to be a viable function, there shall
   5647       // exist for each argument an implicit conversion sequence
   5648       // (13.3.3.1) that converts that argument to the corresponding
   5649       // parameter of F.
   5650       QualType ParamType = Proto->getParamType(ArgIdx);
   5651       Candidate.Conversions[ArgIdx]
   5652         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   5653                                 SuppressUserConversions,
   5654                                 /*InOverloadResolution=*/true,
   5655                                 /*AllowObjCWritebackConversion=*/
   5656                                   getLangOpts().ObjCAutoRefCount,
   5657                                 AllowExplicit);
   5658       if (Candidate.Conversions[ArgIdx].isBad()) {
   5659         Candidate.Viable = false;
   5660         Candidate.FailureKind = ovl_fail_bad_conversion;
   5661         return;
   5662       }
   5663     } else {
   5664       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   5665       // argument for which there is no corresponding parameter is
   5666       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
   5667       Candidate.Conversions[ArgIdx].setEllipsis();
   5668     }
   5669   }
   5670 
   5671   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
   5672     Candidate.Viable = false;
   5673     Candidate.FailureKind = ovl_fail_enable_if;
   5674     Candidate.DeductionFailure.Data = FailedAttr;
   5675     return;
   5676   }
   5677 }
   5678 
   5679 static bool IsNotEnableIfAttr(Attr *A) { return !isa<EnableIfAttr>(A); }
   5680 
   5681 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
   5682                                   bool MissingImplicitThis) {
   5683   // FIXME: specific_attr_iterator<EnableIfAttr> iterates in reverse order, but
   5684   // we need to find the first failing one.
   5685   if (!Function->hasAttrs())
   5686     return nullptr;
   5687   AttrVec Attrs = Function->getAttrs();
   5688   AttrVec::iterator E = std::remove_if(Attrs.begin(), Attrs.end(),
   5689                                        IsNotEnableIfAttr);
   5690   if (Attrs.begin() == E)
   5691     return nullptr;
   5692   std::reverse(Attrs.begin(), E);
   5693 
   5694   SFINAETrap Trap(*this);
   5695 
   5696   // Convert the arguments.
   5697   SmallVector<Expr *, 16> ConvertedArgs;
   5698   bool InitializationFailed = false;
   5699   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   5700     if (i == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
   5701         !cast<CXXMethodDecl>(Function)->isStatic() &&
   5702         !isa<CXXConstructorDecl>(Function)) {
   5703       CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
   5704       ExprResult R =
   5705         PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   5706                                             Method, Method);
   5707       if (R.isInvalid()) {
   5708         InitializationFailed = true;
   5709         break;
   5710       }
   5711       ConvertedArgs.push_back(R.get());
   5712     } else {
   5713       ExprResult R =
   5714         PerformCopyInitialization(InitializedEntity::InitializeParameter(
   5715                                                 Context,
   5716                                                 Function->getParamDecl(i)),
   5717                                   SourceLocation(),
   5718                                   Args[i]);
   5719       if (R.isInvalid()) {
   5720         InitializationFailed = true;
   5721         break;
   5722       }
   5723       ConvertedArgs.push_back(R.get());
   5724     }
   5725   }
   5726 
   5727   if (InitializationFailed || Trap.hasErrorOccurred())
   5728     return cast<EnableIfAttr>(Attrs[0]);
   5729 
   5730   for (AttrVec::iterator I = Attrs.begin(); I != E; ++I) {
   5731     APValue Result;
   5732     EnableIfAttr *EIA = cast<EnableIfAttr>(*I);
   5733     if (!EIA->getCond()->EvaluateWithSubstitution(
   5734             Result, Context, Function,
   5735             ArrayRef<const Expr*>(ConvertedArgs.data(),
   5736                                   ConvertedArgs.size())) ||
   5737         !Result.isInt() || !Result.getInt().getBoolValue()) {
   5738       return EIA;
   5739     }
   5740   }
   5741   return nullptr;
   5742 }
   5743 
   5744 /// \brief Add all of the function declarations in the given function set to
   5745 /// the overload candidate set.
   5746 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
   5747                                  ArrayRef<Expr *> Args,
   5748                                  OverloadCandidateSet& CandidateSet,
   5749                                  bool SuppressUserConversions,
   5750                                TemplateArgumentListInfo *ExplicitTemplateArgs) {
   5751   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
   5752     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
   5753     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   5754       if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
   5755         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
   5756                            cast<CXXMethodDecl>(FD)->getParent(),
   5757                            Args[0]->getType(), Args[0]->Classify(Context),
   5758                            Args.slice(1), CandidateSet,
   5759                            SuppressUserConversions);
   5760       else
   5761         AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
   5762                              SuppressUserConversions);
   5763     } else {
   5764       FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
   5765       if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
   5766           !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
   5767         AddMethodTemplateCandidate(FunTmpl, F.getPair(),
   5768                               cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
   5769                                    ExplicitTemplateArgs,
   5770                                    Args[0]->getType(),
   5771                                    Args[0]->Classify(Context), Args.slice(1),
   5772                                    CandidateSet, SuppressUserConversions);
   5773       else
   5774         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
   5775                                      ExplicitTemplateArgs, Args,
   5776                                      CandidateSet, SuppressUserConversions);
   5777     }
   5778   }
   5779 }
   5780 
   5781 /// AddMethodCandidate - Adds a named decl (which is some kind of
   5782 /// method) as a method candidate to the given overload set.
   5783 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
   5784                               QualType ObjectType,
   5785                               Expr::Classification ObjectClassification,
   5786                               ArrayRef<Expr *> Args,
   5787                               OverloadCandidateSet& CandidateSet,
   5788                               bool SuppressUserConversions) {
   5789   NamedDecl *Decl = FoundDecl.getDecl();
   5790   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
   5791 
   5792   if (isa<UsingShadowDecl>(Decl))
   5793     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
   5794 
   5795   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
   5796     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
   5797            "Expected a member function template");
   5798     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
   5799                                /*ExplicitArgs*/ nullptr,
   5800                                ObjectType, ObjectClassification,
   5801                                Args, CandidateSet,
   5802                                SuppressUserConversions);
   5803   } else {
   5804     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
   5805                        ObjectType, ObjectClassification,
   5806                        Args,
   5807                        CandidateSet, SuppressUserConversions);
   5808   }
   5809 }
   5810 
   5811 /// AddMethodCandidate - Adds the given C++ member function to the set
   5812 /// of candidate functions, using the given function call arguments
   5813 /// and the object argument (@c Object). For example, in a call
   5814 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
   5815 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
   5816 /// allow user-defined conversions via constructors or conversion
   5817 /// operators.
   5818 void
   5819 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
   5820                          CXXRecordDecl *ActingContext, QualType ObjectType,
   5821                          Expr::Classification ObjectClassification,
   5822                          ArrayRef<Expr *> Args,
   5823                          OverloadCandidateSet &CandidateSet,
   5824                          bool SuppressUserConversions) {
   5825   const FunctionProtoType *Proto
   5826     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
   5827   assert(Proto && "Methods without a prototype cannot be overloaded");
   5828   assert(!isa<CXXConstructorDecl>(Method) &&
   5829          "Use AddOverloadCandidate for constructors");
   5830 
   5831   if (!CandidateSet.isNewCandidate(Method))
   5832     return;
   5833 
   5834   // C++11 [class.copy]p23: [DR1402]
   5835   //   A defaulted move assignment operator that is defined as deleted is
   5836   //   ignored by overload resolution.
   5837   if (Method->isDefaulted() && Method->isDeleted() &&
   5838       Method->isMoveAssignmentOperator())
   5839     return;
   5840 
   5841   // Overload resolution is always an unevaluated context.
   5842   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   5843 
   5844   // Add this candidate
   5845   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
   5846   Candidate.FoundDecl = FoundDecl;
   5847   Candidate.Function = Method;
   5848   Candidate.IsSurrogate = false;
   5849   Candidate.IgnoreObjectArgument = false;
   5850   Candidate.ExplicitCallArguments = Args.size();
   5851 
   5852   unsigned NumParams = Proto->getNumParams();
   5853 
   5854   // (C++ 13.3.2p2): A candidate function having fewer than m
   5855   // parameters is viable only if it has an ellipsis in its parameter
   5856   // list (8.3.5).
   5857   if (Args.size() > NumParams && !Proto->isVariadic()) {
   5858     Candidate.Viable = false;
   5859     Candidate.FailureKind = ovl_fail_too_many_arguments;
   5860     return;
   5861   }
   5862 
   5863   // (C++ 13.3.2p2): A candidate function having more than m parameters
   5864   // is viable only if the (m+1)st parameter has a default argument
   5865   // (8.3.6). For the purposes of overload resolution, the
   5866   // parameter list is truncated on the right, so that there are
   5867   // exactly m parameters.
   5868   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
   5869   if (Args.size() < MinRequiredArgs) {
   5870     // Not enough arguments.
   5871     Candidate.Viable = false;
   5872     Candidate.FailureKind = ovl_fail_too_few_arguments;
   5873     return;
   5874   }
   5875 
   5876   Candidate.Viable = true;
   5877 
   5878   if (Method->isStatic() || ObjectType.isNull())
   5879     // The implicit object argument is ignored.
   5880     Candidate.IgnoreObjectArgument = true;
   5881   else {
   5882     // Determine the implicit conversion sequence for the object
   5883     // parameter.
   5884     Candidate.Conversions[0]
   5885       = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
   5886                                         Method, ActingContext);
   5887     if (Candidate.Conversions[0].isBad()) {
   5888       Candidate.Viable = false;
   5889       Candidate.FailureKind = ovl_fail_bad_conversion;
   5890       return;
   5891     }
   5892   }
   5893 
   5894   // Determine the implicit conversion sequences for each of the
   5895   // arguments.
   5896   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
   5897     if (ArgIdx < NumParams) {
   5898       // (C++ 13.3.2p3): for F to be a viable function, there shall
   5899       // exist for each argument an implicit conversion sequence
   5900       // (13.3.3.1) that converts that argument to the corresponding
   5901       // parameter of F.
   5902       QualType ParamType = Proto->getParamType(ArgIdx);
   5903       Candidate.Conversions[ArgIdx + 1]
   5904         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   5905                                 SuppressUserConversions,
   5906                                 /*InOverloadResolution=*/true,
   5907                                 /*AllowObjCWritebackConversion=*/
   5908                                   getLangOpts().ObjCAutoRefCount);
   5909       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
   5910         Candidate.Viable = false;
   5911         Candidate.FailureKind = ovl_fail_bad_conversion;
   5912         return;
   5913       }
   5914     } else {
   5915       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   5916       // argument for which there is no corresponding parameter is
   5917       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
   5918       Candidate.Conversions[ArgIdx + 1].setEllipsis();
   5919     }
   5920   }
   5921 
   5922   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
   5923     Candidate.Viable = false;
   5924     Candidate.FailureKind = ovl_fail_enable_if;
   5925     Candidate.DeductionFailure.Data = FailedAttr;
   5926     return;
   5927   }
   5928 }
   5929 
   5930 /// \brief Add a C++ member function template as a candidate to the candidate
   5931 /// set, using template argument deduction to produce an appropriate member
   5932 /// function template specialization.
   5933 void
   5934 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
   5935                                  DeclAccessPair FoundDecl,
   5936                                  CXXRecordDecl *ActingContext,
   5937                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   5938                                  QualType ObjectType,
   5939                                  Expr::Classification ObjectClassification,
   5940                                  ArrayRef<Expr *> Args,
   5941                                  OverloadCandidateSet& CandidateSet,
   5942                                  bool SuppressUserConversions) {
   5943   if (!CandidateSet.isNewCandidate(MethodTmpl))
   5944     return;
   5945 
   5946   // C++ [over.match.funcs]p7:
   5947   //   In each case where a candidate is a function template, candidate
   5948   //   function template specializations are generated using template argument
   5949   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
   5950   //   candidate functions in the usual way.113) A given name can refer to one
   5951   //   or more function templates and also to a set of overloaded non-template
   5952   //   functions. In such a case, the candidate functions generated from each
   5953   //   function template are combined with the set of non-template candidate
   5954   //   functions.
   5955   TemplateDeductionInfo Info(CandidateSet.getLocation());
   5956   FunctionDecl *Specialization = nullptr;
   5957   if (TemplateDeductionResult Result
   5958       = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
   5959                                 Specialization, Info)) {
   5960     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   5961     Candidate.FoundDecl = FoundDecl;
   5962     Candidate.Function = MethodTmpl->getTemplatedDecl();
   5963     Candidate.Viable = false;
   5964     Candidate.FailureKind = ovl_fail_bad_deduction;
   5965     Candidate.IsSurrogate = false;
   5966     Candidate.IgnoreObjectArgument = false;
   5967     Candidate.ExplicitCallArguments = Args.size();
   5968     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   5969                                                           Info);
   5970     return;
   5971   }
   5972 
   5973   // Add the function template specialization produced by template argument
   5974   // deduction as a candidate.
   5975   assert(Specialization && "Missing member function template specialization?");
   5976   assert(isa<CXXMethodDecl>(Specialization) &&
   5977          "Specialization is not a member function?");
   5978   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
   5979                      ActingContext, ObjectType, ObjectClassification, Args,
   5980                      CandidateSet, SuppressUserConversions);
   5981 }
   5982 
   5983 /// \brief Add a C++ function template specialization as a candidate
   5984 /// in the candidate set, using template argument deduction to produce
   5985 /// an appropriate function template specialization.
   5986 void
   5987 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
   5988                                    DeclAccessPair FoundDecl,
   5989                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   5990                                    ArrayRef<Expr *> Args,
   5991                                    OverloadCandidateSet& CandidateSet,
   5992                                    bool SuppressUserConversions) {
   5993   if (!CandidateSet.isNewCandidate(FunctionTemplate))
   5994     return;
   5995 
   5996   // C++ [over.match.funcs]p7:
   5997   //   In each case where a candidate is a function template, candidate
   5998   //   function template specializations are generated using template argument
   5999   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
   6000   //   candidate functions in the usual way.113) A given name can refer to one
   6001   //   or more function templates and also to a set of overloaded non-template
   6002   //   functions. In such a case, the candidate functions generated from each
   6003   //   function template are combined with the set of non-template candidate
   6004   //   functions.
   6005   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6006   FunctionDecl *Specialization = nullptr;
   6007   if (TemplateDeductionResult Result
   6008         = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
   6009                                   Specialization, Info)) {
   6010     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6011     Candidate.FoundDecl = FoundDecl;
   6012     Candidate.Function = FunctionTemplate->getTemplatedDecl();
   6013     Candidate.Viable = false;
   6014     Candidate.FailureKind = ovl_fail_bad_deduction;
   6015     Candidate.IsSurrogate = false;
   6016     Candidate.IgnoreObjectArgument = false;
   6017     Candidate.ExplicitCallArguments = Args.size();
   6018     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6019                                                           Info);
   6020     return;
   6021   }
   6022 
   6023   // Add the function template specialization produced by template argument
   6024   // deduction as a candidate.
   6025   assert(Specialization && "Missing function template specialization?");
   6026   AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
   6027                        SuppressUserConversions);
   6028 }
   6029 
   6030 /// Determine whether this is an allowable conversion from the result
   6031 /// of an explicit conversion operator to the expected type, per C++
   6032 /// [over.match.conv]p1 and [over.match.ref]p1.
   6033 ///
   6034 /// \param ConvType The return type of the conversion function.
   6035 ///
   6036 /// \param ToType The type we are converting to.
   6037 ///
   6038 /// \param AllowObjCPointerConversion Allow a conversion from one
   6039 /// Objective-C pointer to another.
   6040 ///
   6041 /// \returns true if the conversion is allowable, false otherwise.
   6042 static bool isAllowableExplicitConversion(Sema &S,
   6043                                           QualType ConvType, QualType ToType,
   6044                                           bool AllowObjCPointerConversion) {
   6045   QualType ToNonRefType = ToType.getNonReferenceType();
   6046 
   6047   // Easy case: the types are the same.
   6048   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
   6049     return true;
   6050 
   6051   // Allow qualification conversions.
   6052   bool ObjCLifetimeConversion;
   6053   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
   6054                                   ObjCLifetimeConversion))
   6055     return true;
   6056 
   6057   // If we're not allowed to consider Objective-C pointer conversions,
   6058   // we're done.
   6059   if (!AllowObjCPointerConversion)
   6060     return false;
   6061 
   6062   // Is this an Objective-C pointer conversion?
   6063   bool IncompatibleObjC = false;
   6064   QualType ConvertedType;
   6065   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
   6066                                    IncompatibleObjC);
   6067 }
   6068 
   6069 /// AddConversionCandidate - Add a C++ conversion function as a
   6070 /// candidate in the candidate set (C++ [over.match.conv],
   6071 /// C++ [over.match.copy]). From is the expression we're converting from,
   6072 /// and ToType is the type that we're eventually trying to convert to
   6073 /// (which may or may not be the same type as the type that the
   6074 /// conversion function produces).
   6075 void
   6076 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
   6077                              DeclAccessPair FoundDecl,
   6078                              CXXRecordDecl *ActingContext,
   6079                              Expr *From, QualType ToType,
   6080                              OverloadCandidateSet& CandidateSet,
   6081                              bool AllowObjCConversionOnExplicit) {
   6082   assert(!Conversion->getDescribedFunctionTemplate() &&
   6083          "Conversion function templates use AddTemplateConversionCandidate");
   6084   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
   6085   if (!CandidateSet.isNewCandidate(Conversion))
   6086     return;
   6087 
   6088   // If the conversion function has an undeduced return type, trigger its
   6089   // deduction now.
   6090   if (getLangOpts().CPlusPlus1y && ConvType->isUndeducedType()) {
   6091     if (DeduceReturnType(Conversion, From->getExprLoc()))
   6092       return;
   6093     ConvType = Conversion->getConversionType().getNonReferenceType();
   6094   }
   6095 
   6096   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
   6097   // operator is only a candidate if its return type is the target type or
   6098   // can be converted to the target type with a qualification conversion.
   6099   if (Conversion->isExplicit() &&
   6100       !isAllowableExplicitConversion(*this, ConvType, ToType,
   6101                                      AllowObjCConversionOnExplicit))
   6102     return;
   6103 
   6104   // Overload resolution is always an unevaluated context.
   6105   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6106 
   6107   // Add this candidate
   6108   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
   6109   Candidate.FoundDecl = FoundDecl;
   6110   Candidate.Function = Conversion;
   6111   Candidate.IsSurrogate = false;
   6112   Candidate.IgnoreObjectArgument = false;
   6113   Candidate.FinalConversion.setAsIdentityConversion();
   6114   Candidate.FinalConversion.setFromType(ConvType);
   6115   Candidate.FinalConversion.setAllToTypes(ToType);
   6116   Candidate.Viable = true;
   6117   Candidate.ExplicitCallArguments = 1;
   6118 
   6119   // C++ [over.match.funcs]p4:
   6120   //   For conversion functions, the function is considered to be a member of
   6121   //   the class of the implicit implied object argument for the purpose of
   6122   //   defining the type of the implicit object parameter.
   6123   //
   6124   // Determine the implicit conversion sequence for the implicit
   6125   // object parameter.
   6126   QualType ImplicitParamType = From->getType();
   6127   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
   6128     ImplicitParamType = FromPtrType->getPointeeType();
   6129   CXXRecordDecl *ConversionContext
   6130     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
   6131 
   6132   Candidate.Conversions[0]
   6133     = TryObjectArgumentInitialization(*this, From->getType(),
   6134                                       From->Classify(Context),
   6135                                       Conversion, ConversionContext);
   6136 
   6137   if (Candidate.Conversions[0].isBad()) {
   6138     Candidate.Viable = false;
   6139     Candidate.FailureKind = ovl_fail_bad_conversion;
   6140     return;
   6141   }
   6142 
   6143   // We won't go through a user-defined type conversion function to convert a
   6144   // derived to base as such conversions are given Conversion Rank. They only
   6145   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
   6146   QualType FromCanon
   6147     = Context.getCanonicalType(From->getType().getUnqualifiedType());
   6148   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
   6149   if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
   6150     Candidate.Viable = false;
   6151     Candidate.FailureKind = ovl_fail_trivial_conversion;
   6152     return;
   6153   }
   6154 
   6155   // To determine what the conversion from the result of calling the
   6156   // conversion function to the type we're eventually trying to
   6157   // convert to (ToType), we need to synthesize a call to the
   6158   // conversion function and attempt copy initialization from it. This
   6159   // makes sure that we get the right semantics with respect to
   6160   // lvalues/rvalues and the type. Fortunately, we can allocate this
   6161   // call on the stack and we don't need its arguments to be
   6162   // well-formed.
   6163   DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
   6164                             VK_LValue, From->getLocStart());
   6165   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
   6166                                 Context.getPointerType(Conversion->getType()),
   6167                                 CK_FunctionToPointerDecay,
   6168                                 &ConversionRef, VK_RValue);
   6169 
   6170   QualType ConversionType = Conversion->getConversionType();
   6171   if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
   6172     Candidate.Viable = false;
   6173     Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6174     return;
   6175   }
   6176 
   6177   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
   6178 
   6179   // Note that it is safe to allocate CallExpr on the stack here because
   6180   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
   6181   // allocator).
   6182   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
   6183   CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
   6184                 From->getLocStart());
   6185   ImplicitConversionSequence ICS =
   6186     TryCopyInitialization(*this, &Call, ToType,
   6187                           /*SuppressUserConversions=*/true,
   6188                           /*InOverloadResolution=*/false,
   6189                           /*AllowObjCWritebackConversion=*/false);
   6190 
   6191   switch (ICS.getKind()) {
   6192   case ImplicitConversionSequence::StandardConversion:
   6193     Candidate.FinalConversion = ICS.Standard;
   6194 
   6195     // C++ [over.ics.user]p3:
   6196     //   If the user-defined conversion is specified by a specialization of a
   6197     //   conversion function template, the second standard conversion sequence
   6198     //   shall have exact match rank.
   6199     if (Conversion->getPrimaryTemplate() &&
   6200         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
   6201       Candidate.Viable = false;
   6202       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
   6203       return;
   6204     }
   6205 
   6206     // C++0x [dcl.init.ref]p5:
   6207     //    In the second case, if the reference is an rvalue reference and
   6208     //    the second standard conversion sequence of the user-defined
   6209     //    conversion sequence includes an lvalue-to-rvalue conversion, the
   6210     //    program is ill-formed.
   6211     if (ToType->isRValueReferenceType() &&
   6212         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
   6213       Candidate.Viable = false;
   6214       Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6215       return;
   6216     }
   6217     break;
   6218 
   6219   case ImplicitConversionSequence::BadConversion:
   6220     Candidate.Viable = false;
   6221     Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6222     return;
   6223 
   6224   default:
   6225     llvm_unreachable(
   6226            "Can only end up with a standard conversion sequence or failure");
   6227   }
   6228 
   6229   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, ArrayRef<Expr*>())) {
   6230     Candidate.Viable = false;
   6231     Candidate.FailureKind = ovl_fail_enable_if;
   6232     Candidate.DeductionFailure.Data = FailedAttr;
   6233     return;
   6234   }
   6235 }
   6236 
   6237 /// \brief Adds a conversion function template specialization
   6238 /// candidate to the overload set, using template argument deduction
   6239 /// to deduce the template arguments of the conversion function
   6240 /// template from the type that we are converting to (C++
   6241 /// [temp.deduct.conv]).
   6242 void
   6243 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
   6244                                      DeclAccessPair FoundDecl,
   6245                                      CXXRecordDecl *ActingDC,
   6246                                      Expr *From, QualType ToType,
   6247                                      OverloadCandidateSet &CandidateSet,
   6248                                      bool AllowObjCConversionOnExplicit) {
   6249   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
   6250          "Only conversion function templates permitted here");
   6251 
   6252   if (!CandidateSet.isNewCandidate(FunctionTemplate))
   6253     return;
   6254 
   6255   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6256   CXXConversionDecl *Specialization = nullptr;
   6257   if (TemplateDeductionResult Result
   6258         = DeduceTemplateArguments(FunctionTemplate, ToType,
   6259                                   Specialization, Info)) {
   6260     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6261     Candidate.FoundDecl = FoundDecl;
   6262     Candidate.Function = FunctionTemplate->getTemplatedDecl();
   6263     Candidate.Viable = false;
   6264     Candidate.FailureKind = ovl_fail_bad_deduction;
   6265     Candidate.IsSurrogate = false;
   6266     Candidate.IgnoreObjectArgument = false;
   6267     Candidate.ExplicitCallArguments = 1;
   6268     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6269                                                           Info);
   6270     return;
   6271   }
   6272 
   6273   // Add the conversion function template specialization produced by
   6274   // template argument deduction as a candidate.
   6275   assert(Specialization && "Missing function template specialization?");
   6276   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
   6277                          CandidateSet, AllowObjCConversionOnExplicit);
   6278 }
   6279 
   6280 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
   6281 /// converts the given @c Object to a function pointer via the
   6282 /// conversion function @c Conversion, and then attempts to call it
   6283 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
   6284 /// the type of function that we'll eventually be calling.
   6285 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
   6286                                  DeclAccessPair FoundDecl,
   6287                                  CXXRecordDecl *ActingContext,
   6288                                  const FunctionProtoType *Proto,
   6289                                  Expr *Object,
   6290                                  ArrayRef<Expr *> Args,
   6291                                  OverloadCandidateSet& CandidateSet) {
   6292   if (!CandidateSet.isNewCandidate(Conversion))
   6293     return;
   6294 
   6295   // Overload resolution is always an unevaluated context.
   6296   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6297 
   6298   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
   6299   Candidate.FoundDecl = FoundDecl;
   6300   Candidate.Function = nullptr;
   6301   Candidate.Surrogate = Conversion;
   6302   Candidate.Viable = true;
   6303   Candidate.IsSurrogate = true;
   6304   Candidate.IgnoreObjectArgument = false;
   6305   Candidate.ExplicitCallArguments = Args.size();
   6306 
   6307   // Determine the implicit conversion sequence for the implicit
   6308   // object parameter.
   6309   ImplicitConversionSequence ObjectInit
   6310     = TryObjectArgumentInitialization(*this, Object->getType(),
   6311                                       Object->Classify(Context),
   6312                                       Conversion, ActingContext);
   6313   if (ObjectInit.isBad()) {
   6314     Candidate.Viable = false;
   6315     Candidate.FailureKind = ovl_fail_bad_conversion;
   6316     Candidate.Conversions[0] = ObjectInit;
   6317     return;
   6318   }
   6319 
   6320   // The first conversion is actually a user-defined conversion whose
   6321   // first conversion is ObjectInit's standard conversion (which is
   6322   // effectively a reference binding). Record it as such.
   6323   Candidate.Conversions[0].setUserDefined();
   6324   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
   6325   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
   6326   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
   6327   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
   6328   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
   6329   Candidate.Conversions[0].UserDefined.After
   6330     = Candidate.Conversions[0].UserDefined.Before;
   6331   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
   6332 
   6333   // Find the
   6334   unsigned NumParams = Proto->getNumParams();
   6335 
   6336   // (C++ 13.3.2p2): A candidate function having fewer than m
   6337   // parameters is viable only if it has an ellipsis in its parameter
   6338   // list (8.3.5).
   6339   if (Args.size() > NumParams && !Proto->isVariadic()) {
   6340     Candidate.Viable = false;
   6341     Candidate.FailureKind = ovl_fail_too_many_arguments;
   6342     return;
   6343   }
   6344 
   6345   // Function types don't have any default arguments, so just check if
   6346   // we have enough arguments.
   6347   if (Args.size() < NumParams) {
   6348     // Not enough arguments.
   6349     Candidate.Viable = false;
   6350     Candidate.FailureKind = ovl_fail_too_few_arguments;
   6351     return;
   6352   }
   6353 
   6354   // Determine the implicit conversion sequences for each of the
   6355   // arguments.
   6356   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   6357     if (ArgIdx < NumParams) {
   6358       // (C++ 13.3.2p3): for F to be a viable function, there shall
   6359       // exist for each argument an implicit conversion sequence
   6360       // (13.3.3.1) that converts that argument to the corresponding
   6361       // parameter of F.
   6362       QualType ParamType = Proto->getParamType(ArgIdx);
   6363       Candidate.Conversions[ArgIdx + 1]
   6364         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   6365                                 /*SuppressUserConversions=*/false,
   6366                                 /*InOverloadResolution=*/false,
   6367                                 /*AllowObjCWritebackConversion=*/
   6368                                   getLangOpts().ObjCAutoRefCount);
   6369       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
   6370         Candidate.Viable = false;
   6371         Candidate.FailureKind = ovl_fail_bad_conversion;
   6372         return;
   6373       }
   6374     } else {
   6375       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   6376       // argument for which there is no corresponding parameter is
   6377       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
   6378       Candidate.Conversions[ArgIdx + 1].setEllipsis();
   6379     }
   6380   }
   6381 
   6382   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, ArrayRef<Expr*>())) {
   6383     Candidate.Viable = false;
   6384     Candidate.FailureKind = ovl_fail_enable_if;
   6385     Candidate.DeductionFailure.Data = FailedAttr;
   6386     return;
   6387   }
   6388 }
   6389 
   6390 /// \brief Add overload candidates for overloaded operators that are
   6391 /// member functions.
   6392 ///
   6393 /// Add the overloaded operator candidates that are member functions
   6394 /// for the operator Op that was used in an operator expression such
   6395 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
   6396 /// CandidateSet will store the added overload candidates. (C++
   6397 /// [over.match.oper]).
   6398 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
   6399                                        SourceLocation OpLoc,
   6400                                        ArrayRef<Expr *> Args,
   6401                                        OverloadCandidateSet& CandidateSet,
   6402                                        SourceRange OpRange) {
   6403   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   6404 
   6405   // C++ [over.match.oper]p3:
   6406   //   For a unary operator @ with an operand of a type whose
   6407   //   cv-unqualified version is T1, and for a binary operator @ with
   6408   //   a left operand of a type whose cv-unqualified version is T1 and
   6409   //   a right operand of a type whose cv-unqualified version is T2,
   6410   //   three sets of candidate functions, designated member
   6411   //   candidates, non-member candidates and built-in candidates, are
   6412   //   constructed as follows:
   6413   QualType T1 = Args[0]->getType();
   6414 
   6415   //     -- If T1 is a complete class type or a class currently being
   6416   //        defined, the set of member candidates is the result of the
   6417   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
   6418   //        the set of member candidates is empty.
   6419   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
   6420     // Complete the type if it can be completed.
   6421     RequireCompleteType(OpLoc, T1, 0);
   6422     // If the type is neither complete nor being defined, bail out now.
   6423     if (!T1Rec->getDecl()->getDefinition())
   6424       return;
   6425 
   6426     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
   6427     LookupQualifiedName(Operators, T1Rec->getDecl());
   6428     Operators.suppressDiagnostics();
   6429 
   6430     for (LookupResult::iterator Oper = Operators.begin(),
   6431                              OperEnd = Operators.end();
   6432          Oper != OperEnd;
   6433          ++Oper)
   6434       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
   6435                          Args[0]->Classify(Context),
   6436                          Args.slice(1),
   6437                          CandidateSet,
   6438                          /* SuppressUserConversions = */ false);
   6439   }
   6440 }
   6441 
   6442 /// AddBuiltinCandidate - Add a candidate for a built-in
   6443 /// operator. ResultTy and ParamTys are the result and parameter types
   6444 /// of the built-in candidate, respectively. Args and NumArgs are the
   6445 /// arguments being passed to the candidate. IsAssignmentOperator
   6446 /// should be true when this built-in candidate is an assignment
   6447 /// operator. NumContextualBoolArguments is the number of arguments
   6448 /// (at the beginning of the argument list) that will be contextually
   6449 /// converted to bool.
   6450 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
   6451                                ArrayRef<Expr *> Args,
   6452                                OverloadCandidateSet& CandidateSet,
   6453                                bool IsAssignmentOperator,
   6454                                unsigned NumContextualBoolArguments) {
   6455   // Overload resolution is always an unevaluated context.
   6456   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6457 
   6458   // Add this candidate
   6459   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
   6460   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
   6461   Candidate.Function = nullptr;
   6462   Candidate.IsSurrogate = false;
   6463   Candidate.IgnoreObjectArgument = false;
   6464   Candidate.BuiltinTypes.ResultTy = ResultTy;
   6465   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
   6466     Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
   6467 
   6468   // Determine the implicit conversion sequences for each of the
   6469   // arguments.
   6470   Candidate.Viable = true;
   6471   Candidate.ExplicitCallArguments = Args.size();
   6472   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   6473     // C++ [over.match.oper]p4:
   6474     //   For the built-in assignment operators, conversions of the
   6475     //   left operand are restricted as follows:
   6476     //     -- no temporaries are introduced to hold the left operand, and
   6477     //     -- no user-defined conversions are applied to the left
   6478     //        operand to achieve a type match with the left-most
   6479     //        parameter of a built-in candidate.
   6480     //
   6481     // We block these conversions by turning off user-defined
   6482     // conversions, since that is the only way that initialization of
   6483     // a reference to a non-class type can occur from something that
   6484     // is not of the same type.
   6485     if (ArgIdx < NumContextualBoolArguments) {
   6486       assert(ParamTys[ArgIdx] == Context.BoolTy &&
   6487              "Contextual conversion to bool requires bool type");
   6488       Candidate.Conversions[ArgIdx]
   6489         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
   6490     } else {
   6491       Candidate.Conversions[ArgIdx]
   6492         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
   6493                                 ArgIdx == 0 && IsAssignmentOperator,
   6494                                 /*InOverloadResolution=*/false,
   6495                                 /*AllowObjCWritebackConversion=*/
   6496                                   getLangOpts().ObjCAutoRefCount);
   6497     }
   6498     if (Candidate.Conversions[ArgIdx].isBad()) {
   6499       Candidate.Viable = false;
   6500       Candidate.FailureKind = ovl_fail_bad_conversion;
   6501       break;
   6502     }
   6503   }
   6504 }
   6505 
   6506 namespace {
   6507 
   6508 /// BuiltinCandidateTypeSet - A set of types that will be used for the
   6509 /// candidate operator functions for built-in operators (C++
   6510 /// [over.built]). The types are separated into pointer types and
   6511 /// enumeration types.
   6512 class BuiltinCandidateTypeSet  {
   6513   /// TypeSet - A set of types.
   6514   typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
   6515 
   6516   /// PointerTypes - The set of pointer types that will be used in the
   6517   /// built-in candidates.
   6518   TypeSet PointerTypes;
   6519 
   6520   /// MemberPointerTypes - The set of member pointer types that will be
   6521   /// used in the built-in candidates.
   6522   TypeSet MemberPointerTypes;
   6523 
   6524   /// EnumerationTypes - The set of enumeration types that will be
   6525   /// used in the built-in candidates.
   6526   TypeSet EnumerationTypes;
   6527 
   6528   /// \brief The set of vector types that will be used in the built-in
   6529   /// candidates.
   6530   TypeSet VectorTypes;
   6531 
   6532   /// \brief A flag indicating non-record types are viable candidates
   6533   bool HasNonRecordTypes;
   6534 
   6535   /// \brief A flag indicating whether either arithmetic or enumeration types
   6536   /// were present in the candidate set.
   6537   bool HasArithmeticOrEnumeralTypes;
   6538 
   6539   /// \brief A flag indicating whether the nullptr type was present in the
   6540   /// candidate set.
   6541   bool HasNullPtrType;
   6542 
   6543   /// Sema - The semantic analysis instance where we are building the
   6544   /// candidate type set.
   6545   Sema &SemaRef;
   6546 
   6547   /// Context - The AST context in which we will build the type sets.
   6548   ASTContext &Context;
   6549 
   6550   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
   6551                                                const Qualifiers &VisibleQuals);
   6552   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
   6553 
   6554 public:
   6555   /// iterator - Iterates through the types that are part of the set.
   6556   typedef TypeSet::iterator iterator;
   6557 
   6558   BuiltinCandidateTypeSet(Sema &SemaRef)
   6559     : HasNonRecordTypes(false),
   6560       HasArithmeticOrEnumeralTypes(false),
   6561       HasNullPtrType(false),
   6562       SemaRef(SemaRef),
   6563       Context(SemaRef.Context) { }
   6564 
   6565   void AddTypesConvertedFrom(QualType Ty,
   6566                              SourceLocation Loc,
   6567                              bool AllowUserConversions,
   6568                              bool AllowExplicitConversions,
   6569                              const Qualifiers &VisibleTypeConversionsQuals);
   6570 
   6571   /// pointer_begin - First pointer type found;
   6572   iterator pointer_begin() { return PointerTypes.begin(); }
   6573 
   6574   /// pointer_end - Past the last pointer type found;
   6575   iterator pointer_end() { return PointerTypes.end(); }
   6576 
   6577   /// member_pointer_begin - First member pointer type found;
   6578   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
   6579 
   6580   /// member_pointer_end - Past the last member pointer type found;
   6581   iterator member_pointer_end() { return MemberPointerTypes.end(); }
   6582 
   6583   /// enumeration_begin - First enumeration type found;
   6584   iterator enumeration_begin() { return EnumerationTypes.begin(); }
   6585 
   6586   /// enumeration_end - Past the last enumeration type found;
   6587   iterator enumeration_end() { return EnumerationTypes.end(); }
   6588 
   6589   iterator vector_begin() { return VectorTypes.begin(); }
   6590   iterator vector_end() { return VectorTypes.end(); }
   6591 
   6592   bool hasNonRecordTypes() { return HasNonRecordTypes; }
   6593   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
   6594   bool hasNullPtrType() const { return HasNullPtrType; }
   6595 };
   6596 
   6597 } // end anonymous namespace
   6598 
   6599 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
   6600 /// the set of pointer types along with any more-qualified variants of
   6601 /// that type. For example, if @p Ty is "int const *", this routine
   6602 /// will add "int const *", "int const volatile *", "int const
   6603 /// restrict *", and "int const volatile restrict *" to the set of
   6604 /// pointer types. Returns true if the add of @p Ty itself succeeded,
   6605 /// false otherwise.
   6606 ///
   6607 /// FIXME: what to do about extended qualifiers?
   6608 bool
   6609 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
   6610                                              const Qualifiers &VisibleQuals) {
   6611 
   6612   // Insert this type.
   6613   if (!PointerTypes.insert(Ty))
   6614     return false;
   6615 
   6616   QualType PointeeTy;
   6617   const PointerType *PointerTy = Ty->getAs<PointerType>();
   6618   bool buildObjCPtr = false;
   6619   if (!PointerTy) {
   6620     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
   6621     PointeeTy = PTy->getPointeeType();
   6622     buildObjCPtr = true;
   6623   } else {
   6624     PointeeTy = PointerTy->getPointeeType();
   6625   }
   6626 
   6627   // Don't add qualified variants of arrays. For one, they're not allowed
   6628   // (the qualifier would sink to the element type), and for another, the
   6629   // only overload situation where it matters is subscript or pointer +- int,
   6630   // and those shouldn't have qualifier variants anyway.
   6631   if (PointeeTy->isArrayType())
   6632     return true;
   6633 
   6634   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
   6635   bool hasVolatile = VisibleQuals.hasVolatile();
   6636   bool hasRestrict = VisibleQuals.hasRestrict();
   6637 
   6638   // Iterate through all strict supersets of BaseCVR.
   6639   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
   6640     if ((CVR | BaseCVR) != CVR) continue;
   6641     // Skip over volatile if no volatile found anywhere in the types.
   6642     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
   6643 
   6644     // Skip over restrict if no restrict found anywhere in the types, or if
   6645     // the type cannot be restrict-qualified.
   6646     if ((CVR & Qualifiers::Restrict) &&
   6647         (!hasRestrict ||
   6648          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
   6649       continue;
   6650 
   6651     // Build qualified pointee type.
   6652     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
   6653 
   6654     // Build qualified pointer type.
   6655     QualType QPointerTy;
   6656     if (!buildObjCPtr)
   6657       QPointerTy = Context.getPointerType(QPointeeTy);
   6658     else
   6659       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
   6660 
   6661     // Insert qualified pointer type.
   6662     PointerTypes.insert(QPointerTy);
   6663   }
   6664 
   6665   return true;
   6666 }
   6667 
   6668 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
   6669 /// to the set of pointer types along with any more-qualified variants of
   6670 /// that type. For example, if @p Ty is "int const *", this routine
   6671 /// will add "int const *", "int const volatile *", "int const
   6672 /// restrict *", and "int const volatile restrict *" to the set of
   6673 /// pointer types. Returns true if the add of @p Ty itself succeeded,
   6674 /// false otherwise.
   6675 ///
   6676 /// FIXME: what to do about extended qualifiers?
   6677 bool
   6678 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
   6679     QualType Ty) {
   6680   // Insert this type.
   6681   if (!MemberPointerTypes.insert(Ty))
   6682     return false;
   6683 
   6684   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
   6685   assert(PointerTy && "type was not a member pointer type!");
   6686 
   6687   QualType PointeeTy = PointerTy->getPointeeType();
   6688   // Don't add qualified variants of arrays. For one, they're not allowed
   6689   // (the qualifier would sink to the element type), and for another, the
   6690   // only overload situation where it matters is subscript or pointer +- int,
   6691   // and those shouldn't have qualifier variants anyway.
   6692   if (PointeeTy->isArrayType())
   6693     return true;
   6694   const Type *ClassTy = PointerTy->getClass();
   6695 
   6696   // Iterate through all strict supersets of the pointee type's CVR
   6697   // qualifiers.
   6698   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
   6699   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
   6700     if ((CVR | BaseCVR) != CVR) continue;
   6701 
   6702     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
   6703     MemberPointerTypes.insert(
   6704       Context.getMemberPointerType(QPointeeTy, ClassTy));
   6705   }
   6706 
   6707   return true;
   6708 }
   6709 
   6710 /// AddTypesConvertedFrom - Add each of the types to which the type @p
   6711 /// Ty can be implicit converted to the given set of @p Types. We're
   6712 /// primarily interested in pointer types and enumeration types. We also
   6713 /// take member pointer types, for the conditional operator.
   6714 /// AllowUserConversions is true if we should look at the conversion
   6715 /// functions of a class type, and AllowExplicitConversions if we
   6716 /// should also include the explicit conversion functions of a class
   6717 /// type.
   6718 void
   6719 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
   6720                                                SourceLocation Loc,
   6721                                                bool AllowUserConversions,
   6722                                                bool AllowExplicitConversions,
   6723                                                const Qualifiers &VisibleQuals) {
   6724   // Only deal with canonical types.
   6725   Ty = Context.getCanonicalType(Ty);
   6726 
   6727   // Look through reference types; they aren't part of the type of an
   6728   // expression for the purposes of conversions.
   6729   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
   6730     Ty = RefTy->getPointeeType();
   6731 
   6732   // If we're dealing with an array type, decay to the pointer.
   6733   if (Ty->isArrayType())
   6734     Ty = SemaRef.Context.getArrayDecayedType(Ty);
   6735 
   6736   // Otherwise, we don't care about qualifiers on the type.
   6737   Ty = Ty.getLocalUnqualifiedType();
   6738 
   6739   // Flag if we ever add a non-record type.
   6740   const RecordType *TyRec = Ty->getAs<RecordType>();
   6741   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
   6742 
   6743   // Flag if we encounter an arithmetic type.
   6744   HasArithmeticOrEnumeralTypes =
   6745     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
   6746 
   6747   if (Ty->isObjCIdType() || Ty->isObjCClassType())
   6748     PointerTypes.insert(Ty);
   6749   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
   6750     // Insert our type, and its more-qualified variants, into the set
   6751     // of types.
   6752     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
   6753       return;
   6754   } else if (Ty->isMemberPointerType()) {
   6755     // Member pointers are far easier, since the pointee can't be converted.
   6756     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
   6757       return;
   6758   } else if (Ty->isEnumeralType()) {
   6759     HasArithmeticOrEnumeralTypes = true;
   6760     EnumerationTypes.insert(Ty);
   6761   } else if (Ty->isVectorType()) {
   6762     // We treat vector types as arithmetic types in many contexts as an
   6763     // extension.
   6764     HasArithmeticOrEnumeralTypes = true;
   6765     VectorTypes.insert(Ty);
   6766   } else if (Ty->isNullPtrType()) {
   6767     HasNullPtrType = true;
   6768   } else if (AllowUserConversions && TyRec) {
   6769     // No conversion functions in incomplete types.
   6770     if (SemaRef.RequireCompleteType(Loc, Ty, 0))
   6771       return;
   6772 
   6773     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
   6774     std::pair<CXXRecordDecl::conversion_iterator,
   6775               CXXRecordDecl::conversion_iterator>
   6776       Conversions = ClassDecl->getVisibleConversionFunctions();
   6777     for (CXXRecordDecl::conversion_iterator
   6778            I = Conversions.first, E = Conversions.second; I != E; ++I) {
   6779       NamedDecl *D = I.getDecl();
   6780       if (isa<UsingShadowDecl>(D))
   6781         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   6782 
   6783       // Skip conversion function templates; they don't tell us anything
   6784       // about which builtin types we can convert to.
   6785       if (isa<FunctionTemplateDecl>(D))
   6786         continue;
   6787 
   6788       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   6789       if (AllowExplicitConversions || !Conv->isExplicit()) {
   6790         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
   6791                               VisibleQuals);
   6792       }
   6793     }
   6794   }
   6795 }
   6796 
   6797 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
   6798 /// the volatile- and non-volatile-qualified assignment operators for the
   6799 /// given type to the candidate set.
   6800 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
   6801                                                    QualType T,
   6802                                                    ArrayRef<Expr *> Args,
   6803                                     OverloadCandidateSet &CandidateSet) {
   6804   QualType ParamTypes[2];
   6805 
   6806   // T& operator=(T&, T)
   6807   ParamTypes[0] = S.Context.getLValueReferenceType(T);
   6808   ParamTypes[1] = T;
   6809   S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   6810                         /*IsAssignmentOperator=*/true);
   6811 
   6812   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
   6813     // volatile T& operator=(volatile T&, T)
   6814     ParamTypes[0]
   6815       = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
   6816     ParamTypes[1] = T;
   6817     S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   6818                           /*IsAssignmentOperator=*/true);
   6819   }
   6820 }
   6821 
   6822 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
   6823 /// if any, found in visible type conversion functions found in ArgExpr's type.
   6824 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
   6825     Qualifiers VRQuals;
   6826     const RecordType *TyRec;
   6827     if (const MemberPointerType *RHSMPType =
   6828         ArgExpr->getType()->getAs<MemberPointerType>())
   6829       TyRec = RHSMPType->getClass()->getAs<RecordType>();
   6830     else
   6831       TyRec = ArgExpr->getType()->getAs<RecordType>();
   6832     if (!TyRec) {
   6833       // Just to be safe, assume the worst case.
   6834       VRQuals.addVolatile();
   6835       VRQuals.addRestrict();
   6836       return VRQuals;
   6837     }
   6838 
   6839     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
   6840     if (!ClassDecl->hasDefinition())
   6841       return VRQuals;
   6842 
   6843     std::pair<CXXRecordDecl::conversion_iterator,
   6844               CXXRecordDecl::conversion_iterator>
   6845       Conversions = ClassDecl->getVisibleConversionFunctions();
   6846 
   6847     for (CXXRecordDecl::conversion_iterator
   6848            I = Conversions.first, E = Conversions.second; I != E; ++I) {
   6849       NamedDecl *D = I.getDecl();
   6850       if (isa<UsingShadowDecl>(D))
   6851         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   6852       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
   6853         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
   6854         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
   6855           CanTy = ResTypeRef->getPointeeType();
   6856         // Need to go down the pointer/mempointer chain and add qualifiers
   6857         // as see them.
   6858         bool done = false;
   6859         while (!done) {
   6860           if (CanTy.isRestrictQualified())
   6861             VRQuals.addRestrict();
   6862           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
   6863             CanTy = ResTypePtr->getPointeeType();
   6864           else if (const MemberPointerType *ResTypeMPtr =
   6865                 CanTy->getAs<MemberPointerType>())
   6866             CanTy = ResTypeMPtr->getPointeeType();
   6867           else
   6868             done = true;
   6869           if (CanTy.isVolatileQualified())
   6870             VRQuals.addVolatile();
   6871           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
   6872             return VRQuals;
   6873         }
   6874       }
   6875     }
   6876     return VRQuals;
   6877 }
   6878 
   6879 namespace {
   6880 
   6881 /// \brief Helper class to manage the addition of builtin operator overload
   6882 /// candidates. It provides shared state and utility methods used throughout
   6883 /// the process, as well as a helper method to add each group of builtin
   6884 /// operator overloads from the standard to a candidate set.
   6885 class BuiltinOperatorOverloadBuilder {
   6886   // Common instance state available to all overload candidate addition methods.
   6887   Sema &S;
   6888   ArrayRef<Expr *> Args;
   6889   Qualifiers VisibleTypeConversionsQuals;
   6890   bool HasArithmeticOrEnumeralCandidateType;
   6891   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
   6892   OverloadCandidateSet &CandidateSet;
   6893 
   6894   // Define some constants used to index and iterate over the arithemetic types
   6895   // provided via the getArithmeticType() method below.
   6896   // The "promoted arithmetic types" are the arithmetic
   6897   // types are that preserved by promotion (C++ [over.built]p2).
   6898   static const unsigned FirstIntegralType = 3;
   6899   static const unsigned LastIntegralType = 20;
   6900   static const unsigned FirstPromotedIntegralType = 3,
   6901                         LastPromotedIntegralType = 11;
   6902   static const unsigned FirstPromotedArithmeticType = 0,
   6903                         LastPromotedArithmeticType = 11;
   6904   static const unsigned NumArithmeticTypes = 20;
   6905 
   6906   /// \brief Get the canonical type for a given arithmetic type index.
   6907   CanQualType getArithmeticType(unsigned index) {
   6908     assert(index < NumArithmeticTypes);
   6909     static CanQualType ASTContext::* const
   6910       ArithmeticTypes[NumArithmeticTypes] = {
   6911       // Start of promoted types.
   6912       &ASTContext::FloatTy,
   6913       &ASTContext::DoubleTy,
   6914       &ASTContext::LongDoubleTy,
   6915 
   6916       // Start of integral types.
   6917       &ASTContext::IntTy,
   6918       &ASTContext::LongTy,
   6919       &ASTContext::LongLongTy,
   6920       &ASTContext::Int128Ty,
   6921       &ASTContext::UnsignedIntTy,
   6922       &ASTContext::UnsignedLongTy,
   6923       &ASTContext::UnsignedLongLongTy,
   6924       &ASTContext::UnsignedInt128Ty,
   6925       // End of promoted types.
   6926 
   6927       &ASTContext::BoolTy,
   6928       &ASTContext::CharTy,
   6929       &ASTContext::WCharTy,
   6930       &ASTContext::Char16Ty,
   6931       &ASTContext::Char32Ty,
   6932       &ASTContext::SignedCharTy,
   6933       &ASTContext::ShortTy,
   6934       &ASTContext::UnsignedCharTy,
   6935       &ASTContext::UnsignedShortTy,
   6936       // End of integral types.
   6937       // FIXME: What about complex? What about half?
   6938     };
   6939     return S.Context.*ArithmeticTypes[index];
   6940   }
   6941 
   6942   /// \brief Gets the canonical type resulting from the usual arithemetic
   6943   /// converions for the given arithmetic types.
   6944   CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
   6945     // Accelerator table for performing the usual arithmetic conversions.
   6946     // The rules are basically:
   6947     //   - if either is floating-point, use the wider floating-point
   6948     //   - if same signedness, use the higher rank
   6949     //   - if same size, use unsigned of the higher rank
   6950     //   - use the larger type
   6951     // These rules, together with the axiom that higher ranks are
   6952     // never smaller, are sufficient to precompute all of these results
   6953     // *except* when dealing with signed types of higher rank.
   6954     // (we could precompute SLL x UI for all known platforms, but it's
   6955     // better not to make any assumptions).
   6956     // We assume that int128 has a higher rank than long long on all platforms.
   6957     enum PromotedType {
   6958             Dep=-1,
   6959             Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
   6960     };
   6961     static const PromotedType ConversionsTable[LastPromotedArithmeticType]
   6962                                         [LastPromotedArithmeticType] = {
   6963 /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
   6964 /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
   6965 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
   6966 /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
   6967 /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
   6968 /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
   6969 /*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
   6970 /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
   6971 /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
   6972 /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
   6973 /*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
   6974     };
   6975 
   6976     assert(L < LastPromotedArithmeticType);
   6977     assert(R < LastPromotedArithmeticType);
   6978     int Idx = ConversionsTable[L][R];
   6979 
   6980     // Fast path: the table gives us a concrete answer.
   6981     if (Idx != Dep) return getArithmeticType(Idx);
   6982 
   6983     // Slow path: we need to compare widths.
   6984     // An invariant is that the signed type has higher rank.
   6985     CanQualType LT = getArithmeticType(L),
   6986                 RT = getArithmeticType(R);
   6987     unsigned LW = S.Context.getIntWidth(LT),
   6988              RW = S.Context.getIntWidth(RT);
   6989 
   6990     // If they're different widths, use the signed type.
   6991     if (LW > RW) return LT;
   6992     else if (LW < RW) return RT;
   6993 
   6994     // Otherwise, use the unsigned type of the signed type's rank.
   6995     if (L == SL || R == SL) return S.Context.UnsignedLongTy;
   6996     assert(L == SLL || R == SLL);
   6997     return S.Context.UnsignedLongLongTy;
   6998   }
   6999 
   7000   /// \brief Helper method to factor out the common pattern of adding overloads
   7001   /// for '++' and '--' builtin operators.
   7002   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
   7003                                            bool HasVolatile,
   7004                                            bool HasRestrict) {
   7005     QualType ParamTypes[2] = {
   7006       S.Context.getLValueReferenceType(CandidateTy),
   7007       S.Context.IntTy
   7008     };
   7009 
   7010     // Non-volatile version.
   7011     if (Args.size() == 1)
   7012       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7013     else
   7014       S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7015 
   7016     // Use a heuristic to reduce number of builtin candidates in the set:
   7017     // add volatile version only if there are conversions to a volatile type.
   7018     if (HasVolatile) {
   7019       ParamTypes[0] =
   7020         S.Context.getLValueReferenceType(
   7021           S.Context.getVolatileType(CandidateTy));
   7022       if (Args.size() == 1)
   7023         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7024       else
   7025         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7026     }
   7027 
   7028     // Add restrict version only if there are conversions to a restrict type
   7029     // and our candidate type is a non-restrict-qualified pointer.
   7030     if (HasRestrict && CandidateTy->isAnyPointerType() &&
   7031         !CandidateTy.isRestrictQualified()) {
   7032       ParamTypes[0]
   7033         = S.Context.getLValueReferenceType(
   7034             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
   7035       if (Args.size() == 1)
   7036         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7037       else
   7038         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7039 
   7040       if (HasVolatile) {
   7041         ParamTypes[0]
   7042           = S.Context.getLValueReferenceType(
   7043               S.Context.getCVRQualifiedType(CandidateTy,
   7044                                             (Qualifiers::Volatile |
   7045                                              Qualifiers::Restrict)));
   7046         if (Args.size() == 1)
   7047           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7048         else
   7049           S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7050       }
   7051     }
   7052 
   7053   }
   7054 
   7055 public:
   7056   BuiltinOperatorOverloadBuilder(
   7057     Sema &S, ArrayRef<Expr *> Args,
   7058     Qualifiers VisibleTypeConversionsQuals,
   7059     bool HasArithmeticOrEnumeralCandidateType,
   7060     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
   7061     OverloadCandidateSet &CandidateSet)
   7062     : S(S), Args(Args),
   7063       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
   7064       HasArithmeticOrEnumeralCandidateType(
   7065         HasArithmeticOrEnumeralCandidateType),
   7066       CandidateTypes(CandidateTypes),
   7067       CandidateSet(CandidateSet) {
   7068     // Validate some of our static helper constants in debug builds.
   7069     assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
   7070            "Invalid first promoted integral type");
   7071     assert(getArithmeticType(LastPromotedIntegralType - 1)
   7072              == S.Context.UnsignedInt128Ty &&
   7073            "Invalid last promoted integral type");
   7074     assert(getArithmeticType(FirstPromotedArithmeticType)
   7075              == S.Context.FloatTy &&
   7076            "Invalid first promoted arithmetic type");
   7077     assert(getArithmeticType(LastPromotedArithmeticType - 1)
   7078              == S.Context.UnsignedInt128Ty &&
   7079            "Invalid last promoted arithmetic type");
   7080   }
   7081 
   7082   // C++ [over.built]p3:
   7083   //
   7084   //   For every pair (T, VQ), where T is an arithmetic type, and VQ
   7085   //   is either volatile or empty, there exist candidate operator
   7086   //   functions of the form
   7087   //
   7088   //       VQ T&      operator++(VQ T&);
   7089   //       T          operator++(VQ T&, int);
   7090   //
   7091   // C++ [over.built]p4:
   7092   //
   7093   //   For every pair (T, VQ), where T is an arithmetic type other
   7094   //   than bool, and VQ is either volatile or empty, there exist
   7095   //   candidate operator functions of the form
   7096   //
   7097   //       VQ T&      operator--(VQ T&);
   7098   //       T          operator--(VQ T&, int);
   7099   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
   7100     if (!HasArithmeticOrEnumeralCandidateType)
   7101       return;
   7102 
   7103     for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
   7104          Arith < NumArithmeticTypes; ++Arith) {
   7105       addPlusPlusMinusMinusStyleOverloads(
   7106         getArithmeticType(Arith),
   7107         VisibleTypeConversionsQuals.hasVolatile(),
   7108         VisibleTypeConversionsQuals.hasRestrict());
   7109     }
   7110   }
   7111 
   7112   // C++ [over.built]p5:
   7113   //
   7114   //   For every pair (T, VQ), where T is a cv-qualified or
   7115   //   cv-unqualified object type, and VQ is either volatile or
   7116   //   empty, there exist candidate operator functions of the form
   7117   //
   7118   //       T*VQ&      operator++(T*VQ&);
   7119   //       T*VQ&      operator--(T*VQ&);
   7120   //       T*         operator++(T*VQ&, int);
   7121   //       T*         operator--(T*VQ&, int);
   7122   void addPlusPlusMinusMinusPointerOverloads() {
   7123     for (BuiltinCandidateTypeSet::iterator
   7124               Ptr = CandidateTypes[0].pointer_begin(),
   7125            PtrEnd = CandidateTypes[0].pointer_end();
   7126          Ptr != PtrEnd; ++Ptr) {
   7127       // Skip pointer types that aren't pointers to object types.
   7128       if (!(*Ptr)->getPointeeType()->isObjectType())
   7129         continue;
   7130 
   7131       addPlusPlusMinusMinusStyleOverloads(*Ptr,
   7132         (!(*Ptr).isVolatileQualified() &&
   7133          VisibleTypeConversionsQuals.hasVolatile()),
   7134         (!(*Ptr).isRestrictQualified() &&
   7135          VisibleTypeConversionsQuals.hasRestrict()));
   7136     }
   7137   }
   7138 
   7139   // C++ [over.built]p6:
   7140   //   For every cv-qualified or cv-unqualified object type T, there
   7141   //   exist candidate operator functions of the form
   7142   //
   7143   //       T&         operator*(T*);
   7144   //
   7145   // C++ [over.built]p7:
   7146   //   For every function type T that does not have cv-qualifiers or a
   7147   //   ref-qualifier, there exist candidate operator functions of the form
   7148   //       T&         operator*(T*);
   7149   void addUnaryStarPointerOverloads() {
   7150     for (BuiltinCandidateTypeSet::iterator
   7151               Ptr = CandidateTypes[0].pointer_begin(),
   7152            PtrEnd = CandidateTypes[0].pointer_end();
   7153          Ptr != PtrEnd; ++Ptr) {
   7154       QualType ParamTy = *Ptr;
   7155       QualType PointeeTy = ParamTy->getPointeeType();
   7156       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
   7157         continue;
   7158 
   7159       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
   7160         if (Proto->getTypeQuals() || Proto->getRefQualifier())
   7161           continue;
   7162 
   7163       S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
   7164                             &ParamTy, Args, CandidateSet);
   7165     }
   7166   }
   7167 
   7168   // C++ [over.built]p9:
   7169   //  For every promoted arithmetic type T, there exist candidate
   7170   //  operator functions of the form
   7171   //
   7172   //       T         operator+(T);
   7173   //       T         operator-(T);
   7174   void addUnaryPlusOrMinusArithmeticOverloads() {
   7175     if (!HasArithmeticOrEnumeralCandidateType)
   7176       return;
   7177 
   7178     for (unsigned Arith = FirstPromotedArithmeticType;
   7179          Arith < LastPromotedArithmeticType; ++Arith) {
   7180       QualType ArithTy = getArithmeticType(Arith);
   7181       S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
   7182     }
   7183 
   7184     // Extension: We also add these operators for vector types.
   7185     for (BuiltinCandidateTypeSet::iterator
   7186               Vec = CandidateTypes[0].vector_begin(),
   7187            VecEnd = CandidateTypes[0].vector_end();
   7188          Vec != VecEnd; ++Vec) {
   7189       QualType VecTy = *Vec;
   7190       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
   7191     }
   7192   }
   7193 
   7194   // C++ [over.built]p8:
   7195   //   For every type T, there exist candidate operator functions of
   7196   //   the form
   7197   //
   7198   //       T*         operator+(T*);
   7199   void addUnaryPlusPointerOverloads() {
   7200     for (BuiltinCandidateTypeSet::iterator
   7201               Ptr = CandidateTypes[0].pointer_begin(),
   7202            PtrEnd = CandidateTypes[0].pointer_end();
   7203          Ptr != PtrEnd; ++Ptr) {
   7204       QualType ParamTy = *Ptr;
   7205       S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
   7206     }
   7207   }
   7208 
   7209   // C++ [over.built]p10:
   7210   //   For every promoted integral type T, there exist candidate
   7211   //   operator functions of the form
   7212   //
   7213   //        T         operator~(T);
   7214   void addUnaryTildePromotedIntegralOverloads() {
   7215     if (!HasArithmeticOrEnumeralCandidateType)
   7216       return;
   7217 
   7218     for (unsigned Int = FirstPromotedIntegralType;
   7219          Int < LastPromotedIntegralType; ++Int) {
   7220       QualType IntTy = getArithmeticType(Int);
   7221       S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
   7222     }
   7223 
   7224     // Extension: We also add this operator for vector types.
   7225     for (BuiltinCandidateTypeSet::iterator
   7226               Vec = CandidateTypes[0].vector_begin(),
   7227            VecEnd = CandidateTypes[0].vector_end();
   7228          Vec != VecEnd; ++Vec) {
   7229       QualType VecTy = *Vec;
   7230       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
   7231     }
   7232   }
   7233 
   7234   // C++ [over.match.oper]p16:
   7235   //   For every pointer to member type T, there exist candidate operator
   7236   //   functions of the form
   7237   //
   7238   //        bool operator==(T,T);
   7239   //        bool operator!=(T,T);
   7240   void addEqualEqualOrNotEqualMemberPointerOverloads() {
   7241     /// Set of (canonical) types that we've already handled.
   7242     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7243 
   7244     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7245       for (BuiltinCandidateTypeSet::iterator
   7246                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   7247              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   7248            MemPtr != MemPtrEnd;
   7249            ++MemPtr) {
   7250         // Don't add the same builtin candidate twice.
   7251         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
   7252           continue;
   7253 
   7254         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
   7255         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7256       }
   7257     }
   7258   }
   7259 
   7260   // C++ [over.built]p15:
   7261   //
   7262   //   For every T, where T is an enumeration type, a pointer type, or
   7263   //   std::nullptr_t, there exist candidate operator functions of the form
   7264   //
   7265   //        bool       operator<(T, T);
   7266   //        bool       operator>(T, T);
   7267   //        bool       operator<=(T, T);
   7268   //        bool       operator>=(T, T);
   7269   //        bool       operator==(T, T);
   7270   //        bool       operator!=(T, T);
   7271   void addRelationalPointerOrEnumeralOverloads() {
   7272     // C++ [over.match.oper]p3:
   7273     //   [...]the built-in candidates include all of the candidate operator
   7274     //   functions defined in 13.6 that, compared to the given operator, [...]
   7275     //   do not have the same parameter-type-list as any non-template non-member
   7276     //   candidate.
   7277     //
   7278     // Note that in practice, this only affects enumeration types because there
   7279     // aren't any built-in candidates of record type, and a user-defined operator
   7280     // must have an operand of record or enumeration type. Also, the only other
   7281     // overloaded operator with enumeration arguments, operator=,
   7282     // cannot be overloaded for enumeration types, so this is the only place
   7283     // where we must suppress candidates like this.
   7284     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
   7285       UserDefinedBinaryOperators;
   7286 
   7287     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7288       if (CandidateTypes[ArgIdx].enumeration_begin() !=
   7289           CandidateTypes[ArgIdx].enumeration_end()) {
   7290         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
   7291                                          CEnd = CandidateSet.end();
   7292              C != CEnd; ++C) {
   7293           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
   7294             continue;
   7295 
   7296           if (C->Function->isFunctionTemplateSpecialization())
   7297             continue;
   7298 
   7299           QualType FirstParamType =
   7300             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
   7301           QualType SecondParamType =
   7302             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
   7303 
   7304           // Skip if either parameter isn't of enumeral type.
   7305           if (!FirstParamType->isEnumeralType() ||
   7306               !SecondParamType->isEnumeralType())
   7307             continue;
   7308 
   7309           // Add this operator to the set of known user-defined operators.
   7310           UserDefinedBinaryOperators.insert(
   7311             std::make_pair(S.Context.getCanonicalType(FirstParamType),
   7312                            S.Context.getCanonicalType(SecondParamType)));
   7313         }
   7314       }
   7315     }
   7316 
   7317     /// Set of (canonical) types that we've already handled.
   7318     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7319 
   7320     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7321       for (BuiltinCandidateTypeSet::iterator
   7322                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
   7323              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
   7324            Ptr != PtrEnd; ++Ptr) {
   7325         // Don't add the same builtin candidate twice.
   7326         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
   7327           continue;
   7328 
   7329         QualType ParamTypes[2] = { *Ptr, *Ptr };
   7330         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7331       }
   7332       for (BuiltinCandidateTypeSet::iterator
   7333                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   7334              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   7335            Enum != EnumEnd; ++Enum) {
   7336         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
   7337 
   7338         // Don't add the same builtin candidate twice, or if a user defined
   7339         // candidate exists.
   7340         if (!AddedTypes.insert(CanonType) ||
   7341             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
   7342                                                             CanonType)))
   7343           continue;
   7344 
   7345         QualType ParamTypes[2] = { *Enum, *Enum };
   7346         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7347       }
   7348 
   7349       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
   7350         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
   7351         if (AddedTypes.insert(NullPtrTy) &&
   7352             !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
   7353                                                              NullPtrTy))) {
   7354           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
   7355           S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
   7356                                 CandidateSet);
   7357         }
   7358       }
   7359     }
   7360   }
   7361 
   7362   // C++ [over.built]p13:
   7363   //
   7364   //   For every cv-qualified or cv-unqualified object type T
   7365   //   there exist candidate operator functions of the form
   7366   //
   7367   //      T*         operator+(T*, ptrdiff_t);
   7368   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
   7369   //      T*         operator-(T*, ptrdiff_t);
   7370   //      T*         operator+(ptrdiff_t, T*);
   7371   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
   7372   //
   7373   // C++ [over.built]p14:
   7374   //
   7375   //   For every T, where T is a pointer to object type, there
   7376   //   exist candidate operator functions of the form
   7377   //
   7378   //      ptrdiff_t  operator-(T, T);
   7379   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
   7380     /// Set of (canonical) types that we've already handled.
   7381     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7382 
   7383     for (int Arg = 0; Arg < 2; ++Arg) {
   7384       QualType AsymetricParamTypes[2] = {
   7385         S.Context.getPointerDiffType(),
   7386         S.Context.getPointerDiffType(),
   7387       };
   7388       for (BuiltinCandidateTypeSet::iterator
   7389                 Ptr = CandidateTypes[Arg].pointer_begin(),
   7390              PtrEnd = CandidateTypes[Arg].pointer_end();
   7391            Ptr != PtrEnd; ++Ptr) {
   7392         QualType PointeeTy = (*Ptr)->getPointeeType();
   7393         if (!PointeeTy->isObjectType())
   7394           continue;
   7395 
   7396         AsymetricParamTypes[Arg] = *Ptr;
   7397         if (Arg == 0 || Op == OO_Plus) {
   7398           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
   7399           // T* operator+(ptrdiff_t, T*);
   7400           S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
   7401         }
   7402         if (Op == OO_Minus) {
   7403           // ptrdiff_t operator-(T, T);
   7404           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
   7405             continue;
   7406 
   7407           QualType ParamTypes[2] = { *Ptr, *Ptr };
   7408           S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
   7409                                 Args, CandidateSet);
   7410         }
   7411       }
   7412     }
   7413   }
   7414 
   7415   // C++ [over.built]p12:
   7416   //
   7417   //   For every pair of promoted arithmetic types L and R, there
   7418   //   exist candidate operator functions of the form
   7419   //
   7420   //        LR         operator*(L, R);
   7421   //        LR         operator/(L, R);
   7422   //        LR         operator+(L, R);
   7423   //        LR         operator-(L, R);
   7424   //        bool       operator<(L, R);
   7425   //        bool       operator>(L, R);
   7426   //        bool       operator<=(L, R);
   7427   //        bool       operator>=(L, R);
   7428   //        bool       operator==(L, R);
   7429   //        bool       operator!=(L, R);
   7430   //
   7431   //   where LR is the result of the usual arithmetic conversions
   7432   //   between types L and R.
   7433   //
   7434   // C++ [over.built]p24:
   7435   //
   7436   //   For every pair of promoted arithmetic types L and R, there exist
   7437   //   candidate operator functions of the form
   7438   //
   7439   //        LR       operator?(bool, L, R);
   7440   //
   7441   //   where LR is the result of the usual arithmetic conversions
   7442   //   between types L and R.
   7443   // Our candidates ignore the first parameter.
   7444   void addGenericBinaryArithmeticOverloads(bool isComparison) {
   7445     if (!HasArithmeticOrEnumeralCandidateType)
   7446       return;
   7447 
   7448     for (unsigned Left = FirstPromotedArithmeticType;
   7449          Left < LastPromotedArithmeticType; ++Left) {
   7450       for (unsigned Right = FirstPromotedArithmeticType;
   7451            Right < LastPromotedArithmeticType; ++Right) {
   7452         QualType LandR[2] = { getArithmeticType(Left),
   7453                               getArithmeticType(Right) };
   7454         QualType Result =
   7455           isComparison ? S.Context.BoolTy
   7456                        : getUsualArithmeticConversions(Left, Right);
   7457         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7458       }
   7459     }
   7460 
   7461     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
   7462     // conditional operator for vector types.
   7463     for (BuiltinCandidateTypeSet::iterator
   7464               Vec1 = CandidateTypes[0].vector_begin(),
   7465            Vec1End = CandidateTypes[0].vector_end();
   7466          Vec1 != Vec1End; ++Vec1) {
   7467       for (BuiltinCandidateTypeSet::iterator
   7468                 Vec2 = CandidateTypes[1].vector_begin(),
   7469              Vec2End = CandidateTypes[1].vector_end();
   7470            Vec2 != Vec2End; ++Vec2) {
   7471         QualType LandR[2] = { *Vec1, *Vec2 };
   7472         QualType Result = S.Context.BoolTy;
   7473         if (!isComparison) {
   7474           if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
   7475             Result = *Vec1;
   7476           else
   7477             Result = *Vec2;
   7478         }
   7479 
   7480         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7481       }
   7482     }
   7483   }
   7484 
   7485   // C++ [over.built]p17:
   7486   //
   7487   //   For every pair of promoted integral types L and R, there
   7488   //   exist candidate operator functions of the form
   7489   //
   7490   //      LR         operator%(L, R);
   7491   //      LR         operator&(L, R);
   7492   //      LR         operator^(L, R);
   7493   //      LR         operator|(L, R);
   7494   //      L          operator<<(L, R);
   7495   //      L          operator>>(L, R);
   7496   //
   7497   //   where LR is the result of the usual arithmetic conversions
   7498   //   between types L and R.
   7499   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
   7500     if (!HasArithmeticOrEnumeralCandidateType)
   7501       return;
   7502 
   7503     for (unsigned Left = FirstPromotedIntegralType;
   7504          Left < LastPromotedIntegralType; ++Left) {
   7505       for (unsigned Right = FirstPromotedIntegralType;
   7506            Right < LastPromotedIntegralType; ++Right) {
   7507         QualType LandR[2] = { getArithmeticType(Left),
   7508                               getArithmeticType(Right) };
   7509         QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
   7510             ? LandR[0]
   7511             : getUsualArithmeticConversions(Left, Right);
   7512         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7513       }
   7514     }
   7515   }
   7516 
   7517   // C++ [over.built]p20:
   7518   //
   7519   //   For every pair (T, VQ), where T is an enumeration or
   7520   //   pointer to member type and VQ is either volatile or
   7521   //   empty, there exist candidate operator functions of the form
   7522   //
   7523   //        VQ T&      operator=(VQ T&, T);
   7524   void addAssignmentMemberPointerOrEnumeralOverloads() {
   7525     /// Set of (canonical) types that we've already handled.
   7526     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7527 
   7528     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
   7529       for (BuiltinCandidateTypeSet::iterator
   7530                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   7531              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   7532            Enum != EnumEnd; ++Enum) {
   7533         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
   7534           continue;
   7535 
   7536         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
   7537       }
   7538 
   7539       for (BuiltinCandidateTypeSet::iterator
   7540                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   7541              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   7542            MemPtr != MemPtrEnd; ++MemPtr) {
   7543         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
   7544           continue;
   7545 
   7546         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
   7547       }
   7548     }
   7549   }
   7550 
   7551   // C++ [over.built]p19:
   7552   //
   7553   //   For every pair (T, VQ), where T is any type and VQ is either
   7554   //   volatile or empty, there exist candidate operator functions
   7555   //   of the form
   7556   //
   7557   //        T*VQ&      operator=(T*VQ&, T*);
   7558   //
   7559   // C++ [over.built]p21:
   7560   //
   7561   //   For every pair (T, VQ), where T is a cv-qualified or
   7562   //   cv-unqualified object type and VQ is either volatile or
   7563   //   empty, there exist candidate operator functions of the form
   7564   //
   7565   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
   7566   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
   7567   void addAssignmentPointerOverloads(bool isEqualOp) {
   7568     /// Set of (canonical) types that we've already handled.
   7569     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7570 
   7571     for (BuiltinCandidateTypeSet::iterator
   7572               Ptr = CandidateTypes[0].pointer_begin(),
   7573            PtrEnd = CandidateTypes[0].pointer_end();
   7574          Ptr != PtrEnd; ++Ptr) {
   7575       // If this is operator=, keep track of the builtin candidates we added.
   7576       if (isEqualOp)
   7577         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
   7578       else if (!(*Ptr)->getPointeeType()->isObjectType())
   7579         continue;
   7580 
   7581       // non-volatile version
   7582       QualType ParamTypes[2] = {
   7583         S.Context.getLValueReferenceType(*Ptr),
   7584         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
   7585       };
   7586       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7587                             /*IsAssigmentOperator=*/ isEqualOp);
   7588 
   7589       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
   7590                           VisibleTypeConversionsQuals.hasVolatile();
   7591       if (NeedVolatile) {
   7592         // volatile version
   7593         ParamTypes[0] =
   7594           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
   7595         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7596                               /*IsAssigmentOperator=*/isEqualOp);
   7597       }
   7598 
   7599       if (!(*Ptr).isRestrictQualified() &&
   7600           VisibleTypeConversionsQuals.hasRestrict()) {
   7601         // restrict version
   7602         ParamTypes[0]
   7603           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
   7604         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7605                               /*IsAssigmentOperator=*/isEqualOp);
   7606 
   7607         if (NeedVolatile) {
   7608           // volatile restrict version
   7609           ParamTypes[0]
   7610             = S.Context.getLValueReferenceType(
   7611                 S.Context.getCVRQualifiedType(*Ptr,
   7612                                               (Qualifiers::Volatile |
   7613                                                Qualifiers::Restrict)));
   7614           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7615                                 /*IsAssigmentOperator=*/isEqualOp);
   7616         }
   7617       }
   7618     }
   7619 
   7620     if (isEqualOp) {
   7621       for (BuiltinCandidateTypeSet::iterator
   7622                 Ptr = CandidateTypes[1].pointer_begin(),
   7623              PtrEnd = CandidateTypes[1].pointer_end();
   7624            Ptr != PtrEnd; ++Ptr) {
   7625         // Make sure we don't add the same candidate twice.
   7626         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
   7627           continue;
   7628 
   7629         QualType ParamTypes[2] = {
   7630           S.Context.getLValueReferenceType(*Ptr),
   7631           *Ptr,
   7632         };
   7633 
   7634         // non-volatile version
   7635         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7636                               /*IsAssigmentOperator=*/true);
   7637 
   7638         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
   7639                            VisibleTypeConversionsQuals.hasVolatile();
   7640         if (NeedVolatile) {
   7641           // volatile version
   7642           ParamTypes[0] =
   7643             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
   7644           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7645                                 /*IsAssigmentOperator=*/true);
   7646         }
   7647 
   7648         if (!(*Ptr).isRestrictQualified() &&
   7649             VisibleTypeConversionsQuals.hasRestrict()) {
   7650           // restrict version
   7651           ParamTypes[0]
   7652             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
   7653           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7654                                 /*IsAssigmentOperator=*/true);
   7655 
   7656           if (NeedVolatile) {
   7657             // volatile restrict version
   7658             ParamTypes[0]
   7659               = S.Context.getLValueReferenceType(
   7660                   S.Context.getCVRQualifiedType(*Ptr,
   7661                                                 (Qualifiers::Volatile |
   7662                                                  Qualifiers::Restrict)));
   7663             S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7664                                   /*IsAssigmentOperator=*/true);
   7665           }
   7666         }
   7667       }
   7668     }
   7669   }
   7670 
   7671   // C++ [over.built]p18:
   7672   //
   7673   //   For every triple (L, VQ, R), where L is an arithmetic type,
   7674   //   VQ is either volatile or empty, and R is a promoted
   7675   //   arithmetic type, there exist candidate operator functions of
   7676   //   the form
   7677   //
   7678   //        VQ L&      operator=(VQ L&, R);
   7679   //        VQ L&      operator*=(VQ L&, R);
   7680   //        VQ L&      operator/=(VQ L&, R);
   7681   //        VQ L&      operator+=(VQ L&, R);
   7682   //        VQ L&      operator-=(VQ L&, R);
   7683   void addAssignmentArithmeticOverloads(bool isEqualOp) {
   7684     if (!HasArithmeticOrEnumeralCandidateType)
   7685       return;
   7686 
   7687     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
   7688       for (unsigned Right = FirstPromotedArithmeticType;
   7689            Right < LastPromotedArithmeticType; ++Right) {
   7690         QualType ParamTypes[2];
   7691         ParamTypes[1] = getArithmeticType(Right);
   7692 
   7693         // Add this built-in operator as a candidate (VQ is empty).
   7694         ParamTypes[0] =
   7695           S.Context.getLValueReferenceType(getArithmeticType(Left));
   7696         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7697                               /*IsAssigmentOperator=*/isEqualOp);
   7698 
   7699         // Add this built-in operator as a candidate (VQ is 'volatile').
   7700         if (VisibleTypeConversionsQuals.hasVolatile()) {
   7701           ParamTypes[0] =
   7702             S.Context.getVolatileType(getArithmeticType(Left));
   7703           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   7704           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7705                                 /*IsAssigmentOperator=*/isEqualOp);
   7706         }
   7707       }
   7708     }
   7709 
   7710     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
   7711     for (BuiltinCandidateTypeSet::iterator
   7712               Vec1 = CandidateTypes[0].vector_begin(),
   7713            Vec1End = CandidateTypes[0].vector_end();
   7714          Vec1 != Vec1End; ++Vec1) {
   7715       for (BuiltinCandidateTypeSet::iterator
   7716                 Vec2 = CandidateTypes[1].vector_begin(),
   7717              Vec2End = CandidateTypes[1].vector_end();
   7718            Vec2 != Vec2End; ++Vec2) {
   7719         QualType ParamTypes[2];
   7720         ParamTypes[1] = *Vec2;
   7721         // Add this built-in operator as a candidate (VQ is empty).
   7722         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
   7723         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7724                               /*IsAssigmentOperator=*/isEqualOp);
   7725 
   7726         // Add this built-in operator as a candidate (VQ is 'volatile').
   7727         if (VisibleTypeConversionsQuals.hasVolatile()) {
   7728           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
   7729           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   7730           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7731                                 /*IsAssigmentOperator=*/isEqualOp);
   7732         }
   7733       }
   7734     }
   7735   }
   7736 
   7737   // C++ [over.built]p22:
   7738   //
   7739   //   For every triple (L, VQ, R), where L is an integral type, VQ
   7740   //   is either volatile or empty, and R is a promoted integral
   7741   //   type, there exist candidate operator functions of the form
   7742   //
   7743   //        VQ L&       operator%=(VQ L&, R);
   7744   //        VQ L&       operator<<=(VQ L&, R);
   7745   //        VQ L&       operator>>=(VQ L&, R);
   7746   //        VQ L&       operator&=(VQ L&, R);
   7747   //        VQ L&       operator^=(VQ L&, R);
   7748   //        VQ L&       operator|=(VQ L&, R);
   7749   void addAssignmentIntegralOverloads() {
   7750     if (!HasArithmeticOrEnumeralCandidateType)
   7751       return;
   7752 
   7753     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
   7754       for (unsigned Right = FirstPromotedIntegralType;
   7755            Right < LastPromotedIntegralType; ++Right) {
   7756         QualType ParamTypes[2];
   7757         ParamTypes[1] = getArithmeticType(Right);
   7758 
   7759         // Add this built-in operator as a candidate (VQ is empty).
   7760         ParamTypes[0] =
   7761           S.Context.getLValueReferenceType(getArithmeticType(Left));
   7762         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7763         if (VisibleTypeConversionsQuals.hasVolatile()) {
   7764           // Add this built-in operator as a candidate (VQ is 'volatile').
   7765           ParamTypes[0] = getArithmeticType(Left);
   7766           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
   7767           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   7768           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7769         }
   7770       }
   7771     }
   7772   }
   7773 
   7774   // C++ [over.operator]p23:
   7775   //
   7776   //   There also exist candidate operator functions of the form
   7777   //
   7778   //        bool        operator!(bool);
   7779   //        bool        operator&&(bool, bool);
   7780   //        bool        operator||(bool, bool);
   7781   void addExclaimOverload() {
   7782     QualType ParamTy = S.Context.BoolTy;
   7783     S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
   7784                           /*IsAssignmentOperator=*/false,
   7785                           /*NumContextualBoolArguments=*/1);
   7786   }
   7787   void addAmpAmpOrPipePipeOverload() {
   7788     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
   7789     S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
   7790                           /*IsAssignmentOperator=*/false,
   7791                           /*NumContextualBoolArguments=*/2);
   7792   }
   7793 
   7794   // C++ [over.built]p13:
   7795   //
   7796   //   For every cv-qualified or cv-unqualified object type T there
   7797   //   exist candidate operator functions of the form
   7798   //
   7799   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
   7800   //        T&         operator[](T*, ptrdiff_t);
   7801   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
   7802   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
   7803   //        T&         operator[](ptrdiff_t, T*);
   7804   void addSubscriptOverloads() {
   7805     for (BuiltinCandidateTypeSet::iterator
   7806               Ptr = CandidateTypes[0].pointer_begin(),
   7807            PtrEnd = CandidateTypes[0].pointer_end();
   7808          Ptr != PtrEnd; ++Ptr) {
   7809       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
   7810       QualType PointeeType = (*Ptr)->getPointeeType();
   7811       if (!PointeeType->isObjectType())
   7812         continue;
   7813 
   7814       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
   7815 
   7816       // T& operator[](T*, ptrdiff_t)
   7817       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   7818     }
   7819 
   7820     for (BuiltinCandidateTypeSet::iterator
   7821               Ptr = CandidateTypes[1].pointer_begin(),
   7822            PtrEnd = CandidateTypes[1].pointer_end();
   7823          Ptr != PtrEnd; ++Ptr) {
   7824       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
   7825       QualType PointeeType = (*Ptr)->getPointeeType();
   7826       if (!PointeeType->isObjectType())
   7827         continue;
   7828 
   7829       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
   7830 
   7831       // T& operator[](ptrdiff_t, T*)
   7832       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   7833     }
   7834   }
   7835 
   7836   // C++ [over.built]p11:
   7837   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
   7838   //    C1 is the same type as C2 or is a derived class of C2, T is an object
   7839   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
   7840   //    there exist candidate operator functions of the form
   7841   //
   7842   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
   7843   //
   7844   //    where CV12 is the union of CV1 and CV2.
   7845   void addArrowStarOverloads() {
   7846     for (BuiltinCandidateTypeSet::iterator
   7847              Ptr = CandidateTypes[0].pointer_begin(),
   7848            PtrEnd = CandidateTypes[0].pointer_end();
   7849          Ptr != PtrEnd; ++Ptr) {
   7850       QualType C1Ty = (*Ptr);
   7851       QualType C1;
   7852       QualifierCollector Q1;
   7853       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
   7854       if (!isa<RecordType>(C1))
   7855         continue;
   7856       // heuristic to reduce number of builtin candidates in the set.
   7857       // Add volatile/restrict version only if there are conversions to a
   7858       // volatile/restrict type.
   7859       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
   7860         continue;
   7861       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
   7862         continue;
   7863       for (BuiltinCandidateTypeSet::iterator
   7864                 MemPtr = CandidateTypes[1].member_pointer_begin(),
   7865              MemPtrEnd = CandidateTypes[1].member_pointer_end();
   7866            MemPtr != MemPtrEnd; ++MemPtr) {
   7867         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
   7868         QualType C2 = QualType(mptr->getClass(), 0);
   7869         C2 = C2.getUnqualifiedType();
   7870         if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
   7871           break;
   7872         QualType ParamTypes[2] = { *Ptr, *MemPtr };
   7873         // build CV12 T&
   7874         QualType T = mptr->getPointeeType();
   7875         if (!VisibleTypeConversionsQuals.hasVolatile() &&
   7876             T.isVolatileQualified())
   7877           continue;
   7878         if (!VisibleTypeConversionsQuals.hasRestrict() &&
   7879             T.isRestrictQualified())
   7880           continue;
   7881         T = Q1.apply(S.Context, T);
   7882         QualType ResultTy = S.Context.getLValueReferenceType(T);
   7883         S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   7884       }
   7885     }
   7886   }
   7887 
   7888   // Note that we don't consider the first argument, since it has been
   7889   // contextually converted to bool long ago. The candidates below are
   7890   // therefore added as binary.
   7891   //
   7892   // C++ [over.built]p25:
   7893   //   For every type T, where T is a pointer, pointer-to-member, or scoped
   7894   //   enumeration type, there exist candidate operator functions of the form
   7895   //
   7896   //        T        operator?(bool, T, T);
   7897   //
   7898   void addConditionalOperatorOverloads() {
   7899     /// Set of (canonical) types that we've already handled.
   7900     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7901 
   7902     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
   7903       for (BuiltinCandidateTypeSet::iterator
   7904                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
   7905              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
   7906            Ptr != PtrEnd; ++Ptr) {
   7907         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
   7908           continue;
   7909 
   7910         QualType ParamTypes[2] = { *Ptr, *Ptr };
   7911         S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
   7912       }
   7913 
   7914       for (BuiltinCandidateTypeSet::iterator
   7915                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   7916              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   7917            MemPtr != MemPtrEnd; ++MemPtr) {
   7918         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
   7919           continue;
   7920 
   7921         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
   7922         S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
   7923       }
   7924 
   7925       if (S.getLangOpts().CPlusPlus11) {
   7926         for (BuiltinCandidateTypeSet::iterator
   7927                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   7928                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   7929              Enum != EnumEnd; ++Enum) {
   7930           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
   7931             continue;
   7932 
   7933           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
   7934             continue;
   7935 
   7936           QualType ParamTypes[2] = { *Enum, *Enum };
   7937           S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
   7938         }
   7939       }
   7940     }
   7941   }
   7942 };
   7943 
   7944 } // end anonymous namespace
   7945 
   7946 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
   7947 /// operator overloads to the candidate set (C++ [over.built]), based
   7948 /// on the operator @p Op and the arguments given. For example, if the
   7949 /// operator is a binary '+', this routine might add "int
   7950 /// operator+(int, int)" to cover integer addition.
   7951 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
   7952                                         SourceLocation OpLoc,
   7953                                         ArrayRef<Expr *> Args,
   7954                                         OverloadCandidateSet &CandidateSet) {
   7955   // Find all of the types that the arguments can convert to, but only
   7956   // if the operator we're looking at has built-in operator candidates
   7957   // that make use of these types. Also record whether we encounter non-record
   7958   // candidate types or either arithmetic or enumeral candidate types.
   7959   Qualifiers VisibleTypeConversionsQuals;
   7960   VisibleTypeConversionsQuals.addConst();
   7961   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
   7962     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
   7963 
   7964   bool HasNonRecordCandidateType = false;
   7965   bool HasArithmeticOrEnumeralCandidateType = false;
   7966   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
   7967   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7968     CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
   7969     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
   7970                                                  OpLoc,
   7971                                                  true,
   7972                                                  (Op == OO_Exclaim ||
   7973                                                   Op == OO_AmpAmp ||
   7974                                                   Op == OO_PipePipe),
   7975                                                  VisibleTypeConversionsQuals);
   7976     HasNonRecordCandidateType = HasNonRecordCandidateType ||
   7977         CandidateTypes[ArgIdx].hasNonRecordTypes();
   7978     HasArithmeticOrEnumeralCandidateType =
   7979         HasArithmeticOrEnumeralCandidateType ||
   7980         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
   7981   }
   7982 
   7983   // Exit early when no non-record types have been added to the candidate set
   7984   // for any of the arguments to the operator.
   7985   //
   7986   // We can't exit early for !, ||, or &&, since there we have always have
   7987   // 'bool' overloads.
   7988   if (!HasNonRecordCandidateType &&
   7989       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
   7990     return;
   7991 
   7992   // Setup an object to manage the common state for building overloads.
   7993   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
   7994                                            VisibleTypeConversionsQuals,
   7995                                            HasArithmeticOrEnumeralCandidateType,
   7996                                            CandidateTypes, CandidateSet);
   7997 
   7998   // Dispatch over the operation to add in only those overloads which apply.
   7999   switch (Op) {
   8000   case OO_None:
   8001   case NUM_OVERLOADED_OPERATORS:
   8002     llvm_unreachable("Expected an overloaded operator");
   8003 
   8004   case OO_New:
   8005   case OO_Delete:
   8006   case OO_Array_New:
   8007   case OO_Array_Delete:
   8008   case OO_Call:
   8009     llvm_unreachable(
   8010                     "Special operators don't use AddBuiltinOperatorCandidates");
   8011 
   8012   case OO_Comma:
   8013   case OO_Arrow:
   8014     // C++ [over.match.oper]p3:
   8015     //   -- For the operator ',', the unary operator '&', or the
   8016     //      operator '->', the built-in candidates set is empty.
   8017     break;
   8018 
   8019   case OO_Plus: // '+' is either unary or binary
   8020     if (Args.size() == 1)
   8021       OpBuilder.addUnaryPlusPointerOverloads();
   8022     // Fall through.
   8023 
   8024   case OO_Minus: // '-' is either unary or binary
   8025     if (Args.size() == 1) {
   8026       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
   8027     } else {
   8028       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
   8029       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8030     }
   8031     break;
   8032 
   8033   case OO_Star: // '*' is either unary or binary
   8034     if (Args.size() == 1)
   8035       OpBuilder.addUnaryStarPointerOverloads();
   8036     else
   8037       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8038     break;
   8039 
   8040   case OO_Slash:
   8041     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8042     break;
   8043 
   8044   case OO_PlusPlus:
   8045   case OO_MinusMinus:
   8046     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
   8047     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
   8048     break;
   8049 
   8050   case OO_EqualEqual:
   8051   case OO_ExclaimEqual:
   8052     OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
   8053     // Fall through.
   8054 
   8055   case OO_Less:
   8056   case OO_Greater:
   8057   case OO_LessEqual:
   8058   case OO_GreaterEqual:
   8059     OpBuilder.addRelationalPointerOrEnumeralOverloads();
   8060     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
   8061     break;
   8062 
   8063   case OO_Percent:
   8064   case OO_Caret:
   8065   case OO_Pipe:
   8066   case OO_LessLess:
   8067   case OO_GreaterGreater:
   8068     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
   8069     break;
   8070 
   8071   case OO_Amp: // '&' is either unary or binary
   8072     if (Args.size() == 1)
   8073       // C++ [over.match.oper]p3:
   8074       //   -- For the operator ',', the unary operator '&', or the
   8075       //      operator '->', the built-in candidates set is empty.
   8076       break;
   8077 
   8078     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
   8079     break;
   8080 
   8081   case OO_Tilde:
   8082     OpBuilder.addUnaryTildePromotedIntegralOverloads();
   8083     break;
   8084 
   8085   case OO_Equal:
   8086     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
   8087     // Fall through.
   8088 
   8089   case OO_PlusEqual:
   8090   case OO_MinusEqual:
   8091     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
   8092     // Fall through.
   8093 
   8094   case OO_StarEqual:
   8095   case OO_SlashEqual:
   8096     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
   8097     break;
   8098 
   8099   case OO_PercentEqual:
   8100   case OO_LessLessEqual:
   8101   case OO_GreaterGreaterEqual:
   8102   case OO_AmpEqual:
   8103   case OO_CaretEqual:
   8104   case OO_PipeEqual:
   8105     OpBuilder.addAssignmentIntegralOverloads();
   8106     break;
   8107 
   8108   case OO_Exclaim:
   8109     OpBuilder.addExclaimOverload();
   8110     break;
   8111 
   8112   case OO_AmpAmp:
   8113   case OO_PipePipe:
   8114     OpBuilder.addAmpAmpOrPipePipeOverload();
   8115     break;
   8116 
   8117   case OO_Subscript:
   8118     OpBuilder.addSubscriptOverloads();
   8119     break;
   8120 
   8121   case OO_ArrowStar:
   8122     OpBuilder.addArrowStarOverloads();
   8123     break;
   8124 
   8125   case OO_Conditional:
   8126     OpBuilder.addConditionalOperatorOverloads();
   8127     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8128     break;
   8129   }
   8130 }
   8131 
   8132 /// \brief Add function candidates found via argument-dependent lookup
   8133 /// to the set of overloading candidates.
   8134 ///
   8135 /// This routine performs argument-dependent name lookup based on the
   8136 /// given function name (which may also be an operator name) and adds
   8137 /// all of the overload candidates found by ADL to the overload
   8138 /// candidate set (C++ [basic.lookup.argdep]).
   8139 void
   8140 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
   8141                                            SourceLocation Loc,
   8142                                            ArrayRef<Expr *> Args,
   8143                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   8144                                            OverloadCandidateSet& CandidateSet,
   8145                                            bool PartialOverloading) {
   8146   ADLResult Fns;
   8147 
   8148   // FIXME: This approach for uniquing ADL results (and removing
   8149   // redundant candidates from the set) relies on pointer-equality,
   8150   // which means we need to key off the canonical decl.  However,
   8151   // always going back to the canonical decl might not get us the
   8152   // right set of default arguments.  What default arguments are
   8153   // we supposed to consider on ADL candidates, anyway?
   8154 
   8155   // FIXME: Pass in the explicit template arguments?
   8156   ArgumentDependentLookup(Name, Loc, Args, Fns);
   8157 
   8158   // Erase all of the candidates we already knew about.
   8159   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
   8160                                    CandEnd = CandidateSet.end();
   8161        Cand != CandEnd; ++Cand)
   8162     if (Cand->Function) {
   8163       Fns.erase(Cand->Function);
   8164       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
   8165         Fns.erase(FunTmpl);
   8166     }
   8167 
   8168   // For each of the ADL candidates we found, add it to the overload
   8169   // set.
   8170   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
   8171     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
   8172     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
   8173       if (ExplicitTemplateArgs)
   8174         continue;
   8175 
   8176       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
   8177                            PartialOverloading);
   8178     } else
   8179       AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
   8180                                    FoundDecl, ExplicitTemplateArgs,
   8181                                    Args, CandidateSet);
   8182   }
   8183 }
   8184 
   8185 /// isBetterOverloadCandidate - Determines whether the first overload
   8186 /// candidate is a better candidate than the second (C++ 13.3.3p1).
   8187 bool
   8188 isBetterOverloadCandidate(Sema &S,
   8189                           const OverloadCandidate &Cand1,
   8190                           const OverloadCandidate &Cand2,
   8191                           SourceLocation Loc,
   8192                           bool UserDefinedConversion) {
   8193   // Define viable functions to be better candidates than non-viable
   8194   // functions.
   8195   if (!Cand2.Viable)
   8196     return Cand1.Viable;
   8197   else if (!Cand1.Viable)
   8198     return false;
   8199 
   8200   // C++ [over.match.best]p1:
   8201   //
   8202   //   -- if F is a static member function, ICS1(F) is defined such
   8203   //      that ICS1(F) is neither better nor worse than ICS1(G) for
   8204   //      any function G, and, symmetrically, ICS1(G) is neither
   8205   //      better nor worse than ICS1(F).
   8206   unsigned StartArg = 0;
   8207   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
   8208     StartArg = 1;
   8209 
   8210   // C++ [over.match.best]p1:
   8211   //   A viable function F1 is defined to be a better function than another
   8212   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
   8213   //   conversion sequence than ICSi(F2), and then...
   8214   unsigned NumArgs = Cand1.NumConversions;
   8215   assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
   8216   bool HasBetterConversion = false;
   8217   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
   8218     switch (CompareImplicitConversionSequences(S,
   8219                                                Cand1.Conversions[ArgIdx],
   8220                                                Cand2.Conversions[ArgIdx])) {
   8221     case ImplicitConversionSequence::Better:
   8222       // Cand1 has a better conversion sequence.
   8223       HasBetterConversion = true;
   8224       break;
   8225 
   8226     case ImplicitConversionSequence::Worse:
   8227       // Cand1 can't be better than Cand2.
   8228       return false;
   8229 
   8230     case ImplicitConversionSequence::Indistinguishable:
   8231       // Do nothing.
   8232       break;
   8233     }
   8234   }
   8235 
   8236   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
   8237   //       ICSj(F2), or, if not that,
   8238   if (HasBetterConversion)
   8239     return true;
   8240 
   8241   //   -- the context is an initialization by user-defined conversion
   8242   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
   8243   //      from the return type of F1 to the destination type (i.e.,
   8244   //      the type of the entity being initialized) is a better
   8245   //      conversion sequence than the standard conversion sequence
   8246   //      from the return type of F2 to the destination type.
   8247   if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
   8248       isa<CXXConversionDecl>(Cand1.Function) &&
   8249       isa<CXXConversionDecl>(Cand2.Function)) {
   8250     // First check whether we prefer one of the conversion functions over the
   8251     // other. This only distinguishes the results in non-standard, extension
   8252     // cases such as the conversion from a lambda closure type to a function
   8253     // pointer or block.
   8254     ImplicitConversionSequence::CompareKind Result =
   8255         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
   8256     if (Result == ImplicitConversionSequence::Indistinguishable)
   8257       Result = CompareStandardConversionSequences(S,
   8258                                                   Cand1.FinalConversion,
   8259                                                   Cand2.FinalConversion);
   8260 
   8261     if (Result != ImplicitConversionSequence::Indistinguishable)
   8262       return Result == ImplicitConversionSequence::Better;
   8263 
   8264     // FIXME: Compare kind of reference binding if conversion functions
   8265     // convert to a reference type used in direct reference binding, per
   8266     // C++14 [over.match.best]p1 section 2 bullet 3.
   8267   }
   8268 
   8269   //    -- F1 is a non-template function and F2 is a function template
   8270   //       specialization, or, if not that,
   8271   bool Cand1IsSpecialization = Cand1.Function &&
   8272                                Cand1.Function->getPrimaryTemplate();
   8273   bool Cand2IsSpecialization = Cand2.Function &&
   8274                                Cand2.Function->getPrimaryTemplate();
   8275   if (Cand1IsSpecialization != Cand2IsSpecialization)
   8276     return Cand2IsSpecialization;
   8277 
   8278   //   -- F1 and F2 are function template specializations, and the function
   8279   //      template for F1 is more specialized than the template for F2
   8280   //      according to the partial ordering rules described in 14.5.5.2, or,
   8281   //      if not that,
   8282   if (Cand1IsSpecialization && Cand2IsSpecialization) {
   8283     if (FunctionTemplateDecl *BetterTemplate
   8284           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
   8285                                          Cand2.Function->getPrimaryTemplate(),
   8286                                          Loc,
   8287                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
   8288                                                              : TPOC_Call,
   8289                                          Cand1.ExplicitCallArguments,
   8290                                          Cand2.ExplicitCallArguments))
   8291       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
   8292   }
   8293 
   8294   // Check for enable_if value-based overload resolution.
   8295   if (Cand1.Function && Cand2.Function &&
   8296       (Cand1.Function->hasAttr<EnableIfAttr>() ||
   8297        Cand2.Function->hasAttr<EnableIfAttr>())) {
   8298     // FIXME: The next several lines are just
   8299     // specific_attr_iterator<EnableIfAttr> but going in declaration order,
   8300     // instead of reverse order which is how they're stored in the AST.
   8301     AttrVec Cand1Attrs;
   8302     if (Cand1.Function->hasAttrs()) {
   8303       Cand1Attrs = Cand1.Function->getAttrs();
   8304       Cand1Attrs.erase(std::remove_if(Cand1Attrs.begin(), Cand1Attrs.end(),
   8305                                       IsNotEnableIfAttr),
   8306                        Cand1Attrs.end());
   8307       std::reverse(Cand1Attrs.begin(), Cand1Attrs.end());
   8308     }
   8309 
   8310     AttrVec Cand2Attrs;
   8311     if (Cand2.Function->hasAttrs()) {
   8312       Cand2Attrs = Cand2.Function->getAttrs();
   8313       Cand2Attrs.erase(std::remove_if(Cand2Attrs.begin(), Cand2Attrs.end(),
   8314                                       IsNotEnableIfAttr),
   8315                        Cand2Attrs.end());
   8316       std::reverse(Cand2Attrs.begin(), Cand2Attrs.end());
   8317     }
   8318 
   8319     // Candidate 1 is better if it has strictly more attributes and
   8320     // the common sequence is identical.
   8321     if (Cand1Attrs.size() <= Cand2Attrs.size())
   8322       return false;
   8323 
   8324     auto Cand1I = Cand1Attrs.begin();
   8325     for (auto &Cand2A : Cand2Attrs) {
   8326       auto &Cand1A = *Cand1I++;
   8327       llvm::FoldingSetNodeID Cand1ID, Cand2ID;
   8328       cast<EnableIfAttr>(Cand1A)->getCond()->Profile(Cand1ID,
   8329                                                      S.getASTContext(), true);
   8330       cast<EnableIfAttr>(Cand2A)->getCond()->Profile(Cand2ID,
   8331                                                      S.getASTContext(), true);
   8332       if (Cand1ID != Cand2ID)
   8333         return false;
   8334     }
   8335 
   8336     return true;
   8337   }
   8338 
   8339   return false;
   8340 }
   8341 
   8342 /// \brief Computes the best viable function (C++ 13.3.3)
   8343 /// within an overload candidate set.
   8344 ///
   8345 /// \param Loc The location of the function name (or operator symbol) for
   8346 /// which overload resolution occurs.
   8347 ///
   8348 /// \param Best If overload resolution was successful or found a deleted
   8349 /// function, \p Best points to the candidate function found.
   8350 ///
   8351 /// \returns The result of overload resolution.
   8352 OverloadingResult
   8353 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
   8354                                          iterator &Best,
   8355                                          bool UserDefinedConversion) {
   8356   // Find the best viable function.
   8357   Best = end();
   8358   for (iterator Cand = begin(); Cand != end(); ++Cand) {
   8359     if (Cand->Viable)
   8360       if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
   8361                                                      UserDefinedConversion))
   8362         Best = Cand;
   8363   }
   8364 
   8365   // If we didn't find any viable functions, abort.
   8366   if (Best == end())
   8367     return OR_No_Viable_Function;
   8368 
   8369   // Make sure that this function is better than every other viable
   8370   // function. If not, we have an ambiguity.
   8371   for (iterator Cand = begin(); Cand != end(); ++Cand) {
   8372     if (Cand->Viable &&
   8373         Cand != Best &&
   8374         !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
   8375                                    UserDefinedConversion)) {
   8376       Best = end();
   8377       return OR_Ambiguous;
   8378     }
   8379   }
   8380 
   8381   // Best is the best viable function.
   8382   if (Best->Function &&
   8383       (Best->Function->isDeleted() ||
   8384        S.isFunctionConsideredUnavailable(Best->Function)))
   8385     return OR_Deleted;
   8386 
   8387   return OR_Success;
   8388 }
   8389 
   8390 namespace {
   8391 
   8392 enum OverloadCandidateKind {
   8393   oc_function,
   8394   oc_method,
   8395   oc_constructor,
   8396   oc_function_template,
   8397   oc_method_template,
   8398   oc_constructor_template,
   8399   oc_implicit_default_constructor,
   8400   oc_implicit_copy_constructor,
   8401   oc_implicit_move_constructor,
   8402   oc_implicit_copy_assignment,
   8403   oc_implicit_move_assignment,
   8404   oc_implicit_inherited_constructor
   8405 };
   8406 
   8407 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
   8408                                                 FunctionDecl *Fn,
   8409                                                 std::string &Description) {
   8410   bool isTemplate = false;
   8411 
   8412   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
   8413     isTemplate = true;
   8414     Description = S.getTemplateArgumentBindingsText(
   8415       FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
   8416   }
   8417 
   8418   if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
   8419     if (!Ctor->isImplicit())
   8420       return isTemplate ? oc_constructor_template : oc_constructor;
   8421 
   8422     if (Ctor->getInheritedConstructor())
   8423       return oc_implicit_inherited_constructor;
   8424 
   8425     if (Ctor->isDefaultConstructor())
   8426       return oc_implicit_default_constructor;
   8427 
   8428     if (Ctor->isMoveConstructor())
   8429       return oc_implicit_move_constructor;
   8430 
   8431     assert(Ctor->isCopyConstructor() &&
   8432            "unexpected sort of implicit constructor");
   8433     return oc_implicit_copy_constructor;
   8434   }
   8435 
   8436   if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
   8437     // This actually gets spelled 'candidate function' for now, but
   8438     // it doesn't hurt to split it out.
   8439     if (!Meth->isImplicit())
   8440       return isTemplate ? oc_method_template : oc_method;
   8441 
   8442     if (Meth->isMoveAssignmentOperator())
   8443       return oc_implicit_move_assignment;
   8444 
   8445     if (Meth->isCopyAssignmentOperator())
   8446       return oc_implicit_copy_assignment;
   8447 
   8448     assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
   8449     return oc_method;
   8450   }
   8451 
   8452   return isTemplate ? oc_function_template : oc_function;
   8453 }
   8454 
   8455 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
   8456   const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
   8457   if (!Ctor) return;
   8458 
   8459   Ctor = Ctor->getInheritedConstructor();
   8460   if (!Ctor) return;
   8461 
   8462   S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
   8463 }
   8464 
   8465 } // end anonymous namespace
   8466 
   8467 // Notes the location of an overload candidate.
   8468 void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
   8469   std::string FnDesc;
   8470   OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
   8471   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
   8472                              << (unsigned) K << FnDesc;
   8473   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
   8474   Diag(Fn->getLocation(), PD);
   8475   MaybeEmitInheritedConstructorNote(*this, Fn);
   8476 }
   8477 
   8478 // Notes the location of all overload candidates designated through
   8479 // OverloadedExpr
   8480 void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
   8481   assert(OverloadedExpr->getType() == Context.OverloadTy);
   8482 
   8483   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
   8484   OverloadExpr *OvlExpr = Ovl.Expression;
   8485 
   8486   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   8487                             IEnd = OvlExpr->decls_end();
   8488        I != IEnd; ++I) {
   8489     if (FunctionTemplateDecl *FunTmpl =
   8490                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
   8491       NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
   8492     } else if (FunctionDecl *Fun
   8493                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
   8494       NoteOverloadCandidate(Fun, DestType);
   8495     }
   8496   }
   8497 }
   8498 
   8499 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
   8500 /// "lead" diagnostic; it will be given two arguments, the source and
   8501 /// target types of the conversion.
   8502 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
   8503                                  Sema &S,
   8504                                  SourceLocation CaretLoc,
   8505                                  const PartialDiagnostic &PDiag) const {
   8506   S.Diag(CaretLoc, PDiag)
   8507     << Ambiguous.getFromType() << Ambiguous.getToType();
   8508   // FIXME: The note limiting machinery is borrowed from
   8509   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
   8510   // refactoring here.
   8511   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   8512   unsigned CandsShown = 0;
   8513   AmbiguousConversionSequence::const_iterator I, E;
   8514   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
   8515     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
   8516       break;
   8517     ++CandsShown;
   8518     S.NoteOverloadCandidate(*I);
   8519   }
   8520   if (I != E)
   8521     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
   8522 }
   8523 
   8524 namespace {
   8525 
   8526 void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
   8527   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
   8528   assert(Conv.isBad());
   8529   assert(Cand->Function && "for now, candidate must be a function");
   8530   FunctionDecl *Fn = Cand->Function;
   8531 
   8532   // There's a conversion slot for the object argument if this is a
   8533   // non-constructor method.  Note that 'I' corresponds the
   8534   // conversion-slot index.
   8535   bool isObjectArgument = false;
   8536   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
   8537     if (I == 0)
   8538       isObjectArgument = true;
   8539     else
   8540       I--;
   8541   }
   8542 
   8543   std::string FnDesc;
   8544   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
   8545 
   8546   Expr *FromExpr = Conv.Bad.FromExpr;
   8547   QualType FromTy = Conv.Bad.getFromType();
   8548   QualType ToTy = Conv.Bad.getToType();
   8549 
   8550   if (FromTy == S.Context.OverloadTy) {
   8551     assert(FromExpr && "overload set argument came from implicit argument?");
   8552     Expr *E = FromExpr->IgnoreParens();
   8553     if (isa<UnaryOperator>(E))
   8554       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
   8555     DeclarationName Name = cast<OverloadExpr>(E)->getName();
   8556 
   8557     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
   8558       << (unsigned) FnKind << FnDesc
   8559       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8560       << ToTy << Name << I+1;
   8561     MaybeEmitInheritedConstructorNote(S, Fn);
   8562     return;
   8563   }
   8564 
   8565   // Do some hand-waving analysis to see if the non-viability is due
   8566   // to a qualifier mismatch.
   8567   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
   8568   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
   8569   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
   8570     CToTy = RT->getPointeeType();
   8571   else {
   8572     // TODO: detect and diagnose the full richness of const mismatches.
   8573     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
   8574       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
   8575         CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
   8576   }
   8577 
   8578   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
   8579       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
   8580     Qualifiers FromQs = CFromTy.getQualifiers();
   8581     Qualifiers ToQs = CToTy.getQualifiers();
   8582 
   8583     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
   8584       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
   8585         << (unsigned) FnKind << FnDesc
   8586         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8587         << FromTy
   8588         << FromQs.getAddressSpace() << ToQs.getAddressSpace()
   8589         << (unsigned) isObjectArgument << I+1;
   8590       MaybeEmitInheritedConstructorNote(S, Fn);
   8591       return;
   8592     }
   8593 
   8594     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
   8595       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
   8596         << (unsigned) FnKind << FnDesc
   8597         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8598         << FromTy
   8599         << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
   8600         << (unsigned) isObjectArgument << I+1;
   8601       MaybeEmitInheritedConstructorNote(S, Fn);
   8602       return;
   8603     }
   8604 
   8605     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
   8606       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
   8607       << (unsigned) FnKind << FnDesc
   8608       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8609       << FromTy
   8610       << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
   8611       << (unsigned) isObjectArgument << I+1;
   8612       MaybeEmitInheritedConstructorNote(S, Fn);
   8613       return;
   8614     }
   8615 
   8616     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
   8617     assert(CVR && "unexpected qualifiers mismatch");
   8618 
   8619     if (isObjectArgument) {
   8620       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
   8621         << (unsigned) FnKind << FnDesc
   8622         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8623         << FromTy << (CVR - 1);
   8624     } else {
   8625       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
   8626         << (unsigned) FnKind << FnDesc
   8627         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8628         << FromTy << (CVR - 1) << I+1;
   8629     }
   8630     MaybeEmitInheritedConstructorNote(S, Fn);
   8631     return;
   8632   }
   8633 
   8634   // Special diagnostic for failure to convert an initializer list, since
   8635   // telling the user that it has type void is not useful.
   8636   if (FromExpr && isa<InitListExpr>(FromExpr)) {
   8637     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
   8638       << (unsigned) FnKind << FnDesc
   8639       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8640       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   8641     MaybeEmitInheritedConstructorNote(S, Fn);
   8642     return;
   8643   }
   8644 
   8645   // Diagnose references or pointers to incomplete types differently,
   8646   // since it's far from impossible that the incompleteness triggered
   8647   // the failure.
   8648   QualType TempFromTy = FromTy.getNonReferenceType();
   8649   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
   8650     TempFromTy = PTy->getPointeeType();
   8651   if (TempFromTy->isIncompleteType()) {
   8652     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
   8653       << (unsigned) FnKind << FnDesc
   8654       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8655       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   8656     MaybeEmitInheritedConstructorNote(S, Fn);
   8657     return;
   8658   }
   8659 
   8660   // Diagnose base -> derived pointer conversions.
   8661   unsigned BaseToDerivedConversion = 0;
   8662   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
   8663     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
   8664       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
   8665                                                FromPtrTy->getPointeeType()) &&
   8666           !FromPtrTy->getPointeeType()->isIncompleteType() &&
   8667           !ToPtrTy->getPointeeType()->isIncompleteType() &&
   8668           S.IsDerivedFrom(ToPtrTy->getPointeeType(),
   8669                           FromPtrTy->getPointeeType()))
   8670         BaseToDerivedConversion = 1;
   8671     }
   8672   } else if (const ObjCObjectPointerType *FromPtrTy
   8673                                     = FromTy->getAs<ObjCObjectPointerType>()) {
   8674     if (const ObjCObjectPointerType *ToPtrTy
   8675                                         = ToTy->getAs<ObjCObjectPointerType>())
   8676       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
   8677         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
   8678           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
   8679                                                 FromPtrTy->getPointeeType()) &&
   8680               FromIface->isSuperClassOf(ToIface))
   8681             BaseToDerivedConversion = 2;
   8682   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
   8683     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
   8684         !FromTy->isIncompleteType() &&
   8685         !ToRefTy->getPointeeType()->isIncompleteType() &&
   8686         S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
   8687       BaseToDerivedConversion = 3;
   8688     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
   8689                ToTy.getNonReferenceType().getCanonicalType() ==
   8690                FromTy.getNonReferenceType().getCanonicalType()) {
   8691       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
   8692         << (unsigned) FnKind << FnDesc
   8693         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8694         << (unsigned) isObjectArgument << I + 1;
   8695       MaybeEmitInheritedConstructorNote(S, Fn);
   8696       return;
   8697     }
   8698   }
   8699 
   8700   if (BaseToDerivedConversion) {
   8701     S.Diag(Fn->getLocation(),
   8702            diag::note_ovl_candidate_bad_base_to_derived_conv)
   8703       << (unsigned) FnKind << FnDesc
   8704       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8705       << (BaseToDerivedConversion - 1)
   8706       << FromTy << ToTy << I+1;
   8707     MaybeEmitInheritedConstructorNote(S, Fn);
   8708     return;
   8709   }
   8710 
   8711   if (isa<ObjCObjectPointerType>(CFromTy) &&
   8712       isa<PointerType>(CToTy)) {
   8713       Qualifiers FromQs = CFromTy.getQualifiers();
   8714       Qualifiers ToQs = CToTy.getQualifiers();
   8715       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
   8716         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
   8717         << (unsigned) FnKind << FnDesc
   8718         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8719         << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   8720         MaybeEmitInheritedConstructorNote(S, Fn);
   8721         return;
   8722       }
   8723   }
   8724 
   8725   // Emit the generic diagnostic and, optionally, add the hints to it.
   8726   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
   8727   FDiag << (unsigned) FnKind << FnDesc
   8728     << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8729     << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
   8730     << (unsigned) (Cand->Fix.Kind);
   8731 
   8732   // If we can fix the conversion, suggest the FixIts.
   8733   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
   8734        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
   8735     FDiag << *HI;
   8736   S.Diag(Fn->getLocation(), FDiag);
   8737 
   8738   MaybeEmitInheritedConstructorNote(S, Fn);
   8739 }
   8740 
   8741 /// Additional arity mismatch diagnosis specific to a function overload
   8742 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
   8743 /// over a candidate in any candidate set.
   8744 bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
   8745                         unsigned NumArgs) {
   8746   FunctionDecl *Fn = Cand->Function;
   8747   unsigned MinParams = Fn->getMinRequiredArguments();
   8748 
   8749   // With invalid overloaded operators, it's possible that we think we
   8750   // have an arity mismatch when in fact it looks like we have the
   8751   // right number of arguments, because only overloaded operators have
   8752   // the weird behavior of overloading member and non-member functions.
   8753   // Just don't report anything.
   8754   if (Fn->isInvalidDecl() &&
   8755       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
   8756     return true;
   8757 
   8758   if (NumArgs < MinParams) {
   8759     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
   8760            (Cand->FailureKind == ovl_fail_bad_deduction &&
   8761             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
   8762   } else {
   8763     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
   8764            (Cand->FailureKind == ovl_fail_bad_deduction &&
   8765             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
   8766   }
   8767 
   8768   return false;
   8769 }
   8770 
   8771 /// General arity mismatch diagnosis over a candidate in a candidate set.
   8772 void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
   8773   assert(isa<FunctionDecl>(D) &&
   8774       "The templated declaration should at least be a function"
   8775       " when diagnosing bad template argument deduction due to too many"
   8776       " or too few arguments");
   8777 
   8778   FunctionDecl *Fn = cast<FunctionDecl>(D);
   8779 
   8780   // TODO: treat calls to a missing default constructor as a special case
   8781   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
   8782   unsigned MinParams = Fn->getMinRequiredArguments();
   8783 
   8784   // at least / at most / exactly
   8785   unsigned mode, modeCount;
   8786   if (NumFormalArgs < MinParams) {
   8787     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
   8788         FnTy->isTemplateVariadic())
   8789       mode = 0; // "at least"
   8790     else
   8791       mode = 2; // "exactly"
   8792     modeCount = MinParams;
   8793   } else {
   8794     if (MinParams != FnTy->getNumParams())
   8795       mode = 1; // "at most"
   8796     else
   8797       mode = 2; // "exactly"
   8798     modeCount = FnTy->getNumParams();
   8799   }
   8800 
   8801   std::string Description;
   8802   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
   8803 
   8804   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
   8805     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
   8806       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
   8807       << mode << Fn->getParamDecl(0) << NumFormalArgs;
   8808   else
   8809     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
   8810       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
   8811       << mode << modeCount << NumFormalArgs;
   8812   MaybeEmitInheritedConstructorNote(S, Fn);
   8813 }
   8814 
   8815 /// Arity mismatch diagnosis specific to a function overload candidate.
   8816 void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
   8817                            unsigned NumFormalArgs) {
   8818   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
   8819     DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
   8820 }
   8821 
   8822 TemplateDecl *getDescribedTemplate(Decl *Templated) {
   8823   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
   8824     return FD->getDescribedFunctionTemplate();
   8825   else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
   8826     return RD->getDescribedClassTemplate();
   8827 
   8828   llvm_unreachable("Unsupported: Getting the described template declaration"
   8829                    " for bad deduction diagnosis");
   8830 }
   8831 
   8832 /// Diagnose a failed template-argument deduction.
   8833 void DiagnoseBadDeduction(Sema &S, Decl *Templated,
   8834                           DeductionFailureInfo &DeductionFailure,
   8835                           unsigned NumArgs) {
   8836   TemplateParameter Param = DeductionFailure.getTemplateParameter();
   8837   NamedDecl *ParamD;
   8838   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
   8839   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
   8840   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
   8841   switch (DeductionFailure.Result) {
   8842   case Sema::TDK_Success:
   8843     llvm_unreachable("TDK_success while diagnosing bad deduction");
   8844 
   8845   case Sema::TDK_Incomplete: {
   8846     assert(ParamD && "no parameter found for incomplete deduction result");
   8847     S.Diag(Templated->getLocation(),
   8848            diag::note_ovl_candidate_incomplete_deduction)
   8849         << ParamD->getDeclName();
   8850     MaybeEmitInheritedConstructorNote(S, Templated);
   8851     return;
   8852   }
   8853 
   8854   case Sema::TDK_Underqualified: {
   8855     assert(ParamD && "no parameter found for bad qualifiers deduction result");
   8856     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
   8857 
   8858     QualType Param = DeductionFailure.getFirstArg()->getAsType();
   8859 
   8860     // Param will have been canonicalized, but it should just be a
   8861     // qualified version of ParamD, so move the qualifiers to that.
   8862     QualifierCollector Qs;
   8863     Qs.strip(Param);
   8864     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
   8865     assert(S.Context.hasSameType(Param, NonCanonParam));
   8866 
   8867     // Arg has also been canonicalized, but there's nothing we can do
   8868     // about that.  It also doesn't matter as much, because it won't
   8869     // have any template parameters in it (because deduction isn't
   8870     // done on dependent types).
   8871     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
   8872 
   8873     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
   8874         << ParamD->getDeclName() << Arg << NonCanonParam;
   8875     MaybeEmitInheritedConstructorNote(S, Templated);
   8876     return;
   8877   }
   8878 
   8879   case Sema::TDK_Inconsistent: {
   8880     assert(ParamD && "no parameter found for inconsistent deduction result");
   8881     int which = 0;
   8882     if (isa<TemplateTypeParmDecl>(ParamD))
   8883       which = 0;
   8884     else if (isa<NonTypeTemplateParmDecl>(ParamD))
   8885       which = 1;
   8886     else {
   8887       which = 2;
   8888     }
   8889 
   8890     S.Diag(Templated->getLocation(),
   8891            diag::note_ovl_candidate_inconsistent_deduction)
   8892         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
   8893         << *DeductionFailure.getSecondArg();
   8894     MaybeEmitInheritedConstructorNote(S, Templated);
   8895     return;
   8896   }
   8897 
   8898   case Sema::TDK_InvalidExplicitArguments:
   8899     assert(ParamD && "no parameter found for invalid explicit arguments");
   8900     if (ParamD->getDeclName())
   8901       S.Diag(Templated->getLocation(),
   8902              diag::note_ovl_candidate_explicit_arg_mismatch_named)
   8903           << ParamD->getDeclName();
   8904     else {
   8905       int index = 0;
   8906       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
   8907         index = TTP->getIndex();
   8908       else if (NonTypeTemplateParmDecl *NTTP
   8909                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
   8910         index = NTTP->getIndex();
   8911       else
   8912         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
   8913       S.Diag(Templated->getLocation(),
   8914              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
   8915           << (index + 1);
   8916     }
   8917     MaybeEmitInheritedConstructorNote(S, Templated);
   8918     return;
   8919 
   8920   case Sema::TDK_TooManyArguments:
   8921   case Sema::TDK_TooFewArguments:
   8922     DiagnoseArityMismatch(S, Templated, NumArgs);
   8923     return;
   8924 
   8925   case Sema::TDK_InstantiationDepth:
   8926     S.Diag(Templated->getLocation(),
   8927            diag::note_ovl_candidate_instantiation_depth);
   8928     MaybeEmitInheritedConstructorNote(S, Templated);
   8929     return;
   8930 
   8931   case Sema::TDK_SubstitutionFailure: {
   8932     // Format the template argument list into the argument string.
   8933     SmallString<128> TemplateArgString;
   8934     if (TemplateArgumentList *Args =
   8935             DeductionFailure.getTemplateArgumentList()) {
   8936       TemplateArgString = " ";
   8937       TemplateArgString += S.getTemplateArgumentBindingsText(
   8938           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
   8939     }
   8940 
   8941     // If this candidate was disabled by enable_if, say so.
   8942     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
   8943     if (PDiag && PDiag->second.getDiagID() ==
   8944           diag::err_typename_nested_not_found_enable_if) {
   8945       // FIXME: Use the source range of the condition, and the fully-qualified
   8946       //        name of the enable_if template. These are both present in PDiag.
   8947       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
   8948         << "'enable_if'" << TemplateArgString;
   8949       return;
   8950     }
   8951 
   8952     // Format the SFINAE diagnostic into the argument string.
   8953     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
   8954     //        formatted message in another diagnostic.
   8955     SmallString<128> SFINAEArgString;
   8956     SourceRange R;
   8957     if (PDiag) {
   8958       SFINAEArgString = ": ";
   8959       R = SourceRange(PDiag->first, PDiag->first);
   8960       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
   8961     }
   8962 
   8963     S.Diag(Templated->getLocation(),
   8964            diag::note_ovl_candidate_substitution_failure)
   8965         << TemplateArgString << SFINAEArgString << R;
   8966     MaybeEmitInheritedConstructorNote(S, Templated);
   8967     return;
   8968   }
   8969 
   8970   case Sema::TDK_FailedOverloadResolution: {
   8971     OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
   8972     S.Diag(Templated->getLocation(),
   8973            diag::note_ovl_candidate_failed_overload_resolution)
   8974         << R.Expression->getName();
   8975     return;
   8976   }
   8977 
   8978   case Sema::TDK_NonDeducedMismatch: {
   8979     // FIXME: Provide a source location to indicate what we couldn't match.
   8980     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
   8981     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
   8982     if (FirstTA.getKind() == TemplateArgument::Template &&
   8983         SecondTA.getKind() == TemplateArgument::Template) {
   8984       TemplateName FirstTN = FirstTA.getAsTemplate();
   8985       TemplateName SecondTN = SecondTA.getAsTemplate();
   8986       if (FirstTN.getKind() == TemplateName::Template &&
   8987           SecondTN.getKind() == TemplateName::Template) {
   8988         if (FirstTN.getAsTemplateDecl()->getName() ==
   8989             SecondTN.getAsTemplateDecl()->getName()) {
   8990           // FIXME: This fixes a bad diagnostic where both templates are named
   8991           // the same.  This particular case is a bit difficult since:
   8992           // 1) It is passed as a string to the diagnostic printer.
   8993           // 2) The diagnostic printer only attempts to find a better
   8994           //    name for types, not decls.
   8995           // Ideally, this should folded into the diagnostic printer.
   8996           S.Diag(Templated->getLocation(),
   8997                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
   8998               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
   8999           return;
   9000         }
   9001       }
   9002     }
   9003     // FIXME: For generic lambda parameters, check if the function is a lambda
   9004     // call operator, and if so, emit a prettier and more informative
   9005     // diagnostic that mentions 'auto' and lambda in addition to
   9006     // (or instead of?) the canonical template type parameters.
   9007     S.Diag(Templated->getLocation(),
   9008            diag::note_ovl_candidate_non_deduced_mismatch)
   9009         << FirstTA << SecondTA;
   9010     return;
   9011   }
   9012   // TODO: diagnose these individually, then kill off
   9013   // note_ovl_candidate_bad_deduction, which is uselessly vague.
   9014   case Sema::TDK_MiscellaneousDeductionFailure:
   9015     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
   9016     MaybeEmitInheritedConstructorNote(S, Templated);
   9017     return;
   9018   }
   9019 }
   9020 
   9021 /// Diagnose a failed template-argument deduction, for function calls.
   9022 void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, unsigned NumArgs) {
   9023   unsigned TDK = Cand->DeductionFailure.Result;
   9024   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
   9025     if (CheckArityMismatch(S, Cand, NumArgs))
   9026       return;
   9027   }
   9028   DiagnoseBadDeduction(S, Cand->Function, // pattern
   9029                        Cand->DeductionFailure, NumArgs);
   9030 }
   9031 
   9032 /// CUDA: diagnose an invalid call across targets.
   9033 void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
   9034   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
   9035   FunctionDecl *Callee = Cand->Function;
   9036 
   9037   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
   9038                            CalleeTarget = S.IdentifyCUDATarget(Callee);
   9039 
   9040   std::string FnDesc;
   9041   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
   9042 
   9043   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
   9044       << (unsigned) FnKind << CalleeTarget << CallerTarget;
   9045 }
   9046 
   9047 void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
   9048   FunctionDecl *Callee = Cand->Function;
   9049   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
   9050 
   9051   S.Diag(Callee->getLocation(),
   9052          diag::note_ovl_candidate_disabled_by_enable_if_attr)
   9053       << Attr->getCond()->getSourceRange() << Attr->getMessage();
   9054 }
   9055 
   9056 /// Generates a 'note' diagnostic for an overload candidate.  We've
   9057 /// already generated a primary error at the call site.
   9058 ///
   9059 /// It really does need to be a single diagnostic with its caret
   9060 /// pointed at the candidate declaration.  Yes, this creates some
   9061 /// major challenges of technical writing.  Yes, this makes pointing
   9062 /// out problems with specific arguments quite awkward.  It's still
   9063 /// better than generating twenty screens of text for every failed
   9064 /// overload.
   9065 ///
   9066 /// It would be great to be able to express per-candidate problems
   9067 /// more richly for those diagnostic clients that cared, but we'd
   9068 /// still have to be just as careful with the default diagnostics.
   9069 void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
   9070                            unsigned NumArgs) {
   9071   FunctionDecl *Fn = Cand->Function;
   9072 
   9073   // Note deleted candidates, but only if they're viable.
   9074   if (Cand->Viable && (Fn->isDeleted() ||
   9075       S.isFunctionConsideredUnavailable(Fn))) {
   9076     std::string FnDesc;
   9077     OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
   9078 
   9079     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
   9080       << FnKind << FnDesc
   9081       << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
   9082     MaybeEmitInheritedConstructorNote(S, Fn);
   9083     return;
   9084   }
   9085 
   9086   // We don't really have anything else to say about viable candidates.
   9087   if (Cand->Viable) {
   9088     S.NoteOverloadCandidate(Fn);
   9089     return;
   9090   }
   9091 
   9092   switch (Cand->FailureKind) {
   9093   case ovl_fail_too_many_arguments:
   9094   case ovl_fail_too_few_arguments:
   9095     return DiagnoseArityMismatch(S, Cand, NumArgs);
   9096 
   9097   case ovl_fail_bad_deduction:
   9098     return DiagnoseBadDeduction(S, Cand, NumArgs);
   9099 
   9100   case ovl_fail_trivial_conversion:
   9101   case ovl_fail_bad_final_conversion:
   9102   case ovl_fail_final_conversion_not_exact:
   9103     return S.NoteOverloadCandidate(Fn);
   9104 
   9105   case ovl_fail_bad_conversion: {
   9106     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
   9107     for (unsigned N = Cand->NumConversions; I != N; ++I)
   9108       if (Cand->Conversions[I].isBad())
   9109         return DiagnoseBadConversion(S, Cand, I);
   9110 
   9111     // FIXME: this currently happens when we're called from SemaInit
   9112     // when user-conversion overload fails.  Figure out how to handle
   9113     // those conditions and diagnose them well.
   9114     return S.NoteOverloadCandidate(Fn);
   9115   }
   9116 
   9117   case ovl_fail_bad_target:
   9118     return DiagnoseBadTarget(S, Cand);
   9119 
   9120   case ovl_fail_enable_if:
   9121     return DiagnoseFailedEnableIfAttr(S, Cand);
   9122   }
   9123 }
   9124 
   9125 void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
   9126   // Desugar the type of the surrogate down to a function type,
   9127   // retaining as many typedefs as possible while still showing
   9128   // the function type (and, therefore, its parameter types).
   9129   QualType FnType = Cand->Surrogate->getConversionType();
   9130   bool isLValueReference = false;
   9131   bool isRValueReference = false;
   9132   bool isPointer = false;
   9133   if (const LValueReferenceType *FnTypeRef =
   9134         FnType->getAs<LValueReferenceType>()) {
   9135     FnType = FnTypeRef->getPointeeType();
   9136     isLValueReference = true;
   9137   } else if (const RValueReferenceType *FnTypeRef =
   9138                FnType->getAs<RValueReferenceType>()) {
   9139     FnType = FnTypeRef->getPointeeType();
   9140     isRValueReference = true;
   9141   }
   9142   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
   9143     FnType = FnTypePtr->getPointeeType();
   9144     isPointer = true;
   9145   }
   9146   // Desugar down to a function type.
   9147   FnType = QualType(FnType->getAs<FunctionType>(), 0);
   9148   // Reconstruct the pointer/reference as appropriate.
   9149   if (isPointer) FnType = S.Context.getPointerType(FnType);
   9150   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
   9151   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
   9152 
   9153   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
   9154     << FnType;
   9155   MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
   9156 }
   9157 
   9158 void NoteBuiltinOperatorCandidate(Sema &S,
   9159                                   StringRef Opc,
   9160                                   SourceLocation OpLoc,
   9161                                   OverloadCandidate *Cand) {
   9162   assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
   9163   std::string TypeStr("operator");
   9164   TypeStr += Opc;
   9165   TypeStr += "(";
   9166   TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
   9167   if (Cand->NumConversions == 1) {
   9168     TypeStr += ")";
   9169     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
   9170   } else {
   9171     TypeStr += ", ";
   9172     TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
   9173     TypeStr += ")";
   9174     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
   9175   }
   9176 }
   9177 
   9178 void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
   9179                                   OverloadCandidate *Cand) {
   9180   unsigned NoOperands = Cand->NumConversions;
   9181   for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
   9182     const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
   9183     if (ICS.isBad()) break; // all meaningless after first invalid
   9184     if (!ICS.isAmbiguous()) continue;
   9185 
   9186     ICS.DiagnoseAmbiguousConversion(S, OpLoc,
   9187                               S.PDiag(diag::note_ambiguous_type_conversion));
   9188   }
   9189 }
   9190 
   9191 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
   9192   if (Cand->Function)
   9193     return Cand->Function->getLocation();
   9194   if (Cand->IsSurrogate)
   9195     return Cand->Surrogate->getLocation();
   9196   return SourceLocation();
   9197 }
   9198 
   9199 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
   9200   switch ((Sema::TemplateDeductionResult)DFI.Result) {
   9201   case Sema::TDK_Success:
   9202     llvm_unreachable("TDK_success while diagnosing bad deduction");
   9203 
   9204   case Sema::TDK_Invalid:
   9205   case Sema::TDK_Incomplete:
   9206     return 1;
   9207 
   9208   case Sema::TDK_Underqualified:
   9209   case Sema::TDK_Inconsistent:
   9210     return 2;
   9211 
   9212   case Sema::TDK_SubstitutionFailure:
   9213   case Sema::TDK_NonDeducedMismatch:
   9214   case Sema::TDK_MiscellaneousDeductionFailure:
   9215     return 3;
   9216 
   9217   case Sema::TDK_InstantiationDepth:
   9218   case Sema::TDK_FailedOverloadResolution:
   9219     return 4;
   9220 
   9221   case Sema::TDK_InvalidExplicitArguments:
   9222     return 5;
   9223 
   9224   case Sema::TDK_TooManyArguments:
   9225   case Sema::TDK_TooFewArguments:
   9226     return 6;
   9227   }
   9228   llvm_unreachable("Unhandled deduction result");
   9229 }
   9230 
   9231 struct CompareOverloadCandidatesForDisplay {
   9232   Sema &S;
   9233   size_t NumArgs;
   9234 
   9235   CompareOverloadCandidatesForDisplay(Sema &S, size_t nArgs)
   9236       : S(S), NumArgs(nArgs) {}
   9237 
   9238   bool operator()(const OverloadCandidate *L,
   9239                   const OverloadCandidate *R) {
   9240     // Fast-path this check.
   9241     if (L == R) return false;
   9242 
   9243     // Order first by viability.
   9244     if (L->Viable) {
   9245       if (!R->Viable) return true;
   9246 
   9247       // TODO: introduce a tri-valued comparison for overload
   9248       // candidates.  Would be more worthwhile if we had a sort
   9249       // that could exploit it.
   9250       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
   9251       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
   9252     } else if (R->Viable)
   9253       return false;
   9254 
   9255     assert(L->Viable == R->Viable);
   9256 
   9257     // Criteria by which we can sort non-viable candidates:
   9258     if (!L->Viable) {
   9259       // 1. Arity mismatches come after other candidates.
   9260       if (L->FailureKind == ovl_fail_too_many_arguments ||
   9261           L->FailureKind == ovl_fail_too_few_arguments) {
   9262         if (R->FailureKind == ovl_fail_too_many_arguments ||
   9263             R->FailureKind == ovl_fail_too_few_arguments) {
   9264           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
   9265           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
   9266           if (LDist == RDist) {
   9267             if (L->FailureKind == R->FailureKind)
   9268               // Sort non-surrogates before surrogates.
   9269               return !L->IsSurrogate && R->IsSurrogate;
   9270             // Sort candidates requiring fewer parameters than there were
   9271             // arguments given after candidates requiring more parameters
   9272             // than there were arguments given.
   9273             return L->FailureKind == ovl_fail_too_many_arguments;
   9274           }
   9275           return LDist < RDist;
   9276         }
   9277         return false;
   9278       }
   9279       if (R->FailureKind == ovl_fail_too_many_arguments ||
   9280           R->FailureKind == ovl_fail_too_few_arguments)
   9281         return true;
   9282 
   9283       // 2. Bad conversions come first and are ordered by the number
   9284       // of bad conversions and quality of good conversions.
   9285       if (L->FailureKind == ovl_fail_bad_conversion) {
   9286         if (R->FailureKind != ovl_fail_bad_conversion)
   9287           return true;
   9288 
   9289         // The conversion that can be fixed with a smaller number of changes,
   9290         // comes first.
   9291         unsigned numLFixes = L->Fix.NumConversionsFixed;
   9292         unsigned numRFixes = R->Fix.NumConversionsFixed;
   9293         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
   9294         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
   9295         if (numLFixes != numRFixes) {
   9296           if (numLFixes < numRFixes)
   9297             return true;
   9298           else
   9299             return false;
   9300         }
   9301 
   9302         // If there's any ordering between the defined conversions...
   9303         // FIXME: this might not be transitive.
   9304         assert(L->NumConversions == R->NumConversions);
   9305 
   9306         int leftBetter = 0;
   9307         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
   9308         for (unsigned E = L->NumConversions; I != E; ++I) {
   9309           switch (CompareImplicitConversionSequences(S,
   9310                                                      L->Conversions[I],
   9311                                                      R->Conversions[I])) {
   9312           case ImplicitConversionSequence::Better:
   9313             leftBetter++;
   9314             break;
   9315 
   9316           case ImplicitConversionSequence::Worse:
   9317             leftBetter--;
   9318             break;
   9319 
   9320           case ImplicitConversionSequence::Indistinguishable:
   9321             break;
   9322           }
   9323         }
   9324         if (leftBetter > 0) return true;
   9325         if (leftBetter < 0) return false;
   9326 
   9327       } else if (R->FailureKind == ovl_fail_bad_conversion)
   9328         return false;
   9329 
   9330       if (L->FailureKind == ovl_fail_bad_deduction) {
   9331         if (R->FailureKind != ovl_fail_bad_deduction)
   9332           return true;
   9333 
   9334         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
   9335           return RankDeductionFailure(L->DeductionFailure)
   9336                < RankDeductionFailure(R->DeductionFailure);
   9337       } else if (R->FailureKind == ovl_fail_bad_deduction)
   9338         return false;
   9339 
   9340       // TODO: others?
   9341     }
   9342 
   9343     // Sort everything else by location.
   9344     SourceLocation LLoc = GetLocationForCandidate(L);
   9345     SourceLocation RLoc = GetLocationForCandidate(R);
   9346 
   9347     // Put candidates without locations (e.g. builtins) at the end.
   9348     if (LLoc.isInvalid()) return false;
   9349     if (RLoc.isInvalid()) return true;
   9350 
   9351     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
   9352   }
   9353 };
   9354 
   9355 /// CompleteNonViableCandidate - Normally, overload resolution only
   9356 /// computes up to the first. Produces the FixIt set if possible.
   9357 void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
   9358                                 ArrayRef<Expr *> Args) {
   9359   assert(!Cand->Viable);
   9360 
   9361   // Don't do anything on failures other than bad conversion.
   9362   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
   9363 
   9364   // We only want the FixIts if all the arguments can be corrected.
   9365   bool Unfixable = false;
   9366   // Use a implicit copy initialization to check conversion fixes.
   9367   Cand->Fix.setConversionChecker(TryCopyInitialization);
   9368 
   9369   // Skip forward to the first bad conversion.
   9370   unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
   9371   unsigned ConvCount = Cand->NumConversions;
   9372   while (true) {
   9373     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
   9374     ConvIdx++;
   9375     if (Cand->Conversions[ConvIdx - 1].isBad()) {
   9376       Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
   9377       break;
   9378     }
   9379   }
   9380 
   9381   if (ConvIdx == ConvCount)
   9382     return;
   9383 
   9384   assert(!Cand->Conversions[ConvIdx].isInitialized() &&
   9385          "remaining conversion is initialized?");
   9386 
   9387   // FIXME: this should probably be preserved from the overload
   9388   // operation somehow.
   9389   bool SuppressUserConversions = false;
   9390 
   9391   const FunctionProtoType* Proto;
   9392   unsigned ArgIdx = ConvIdx;
   9393 
   9394   if (Cand->IsSurrogate) {
   9395     QualType ConvType
   9396       = Cand->Surrogate->getConversionType().getNonReferenceType();
   9397     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   9398       ConvType = ConvPtrType->getPointeeType();
   9399     Proto = ConvType->getAs<FunctionProtoType>();
   9400     ArgIdx--;
   9401   } else if (Cand->Function) {
   9402     Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
   9403     if (isa<CXXMethodDecl>(Cand->Function) &&
   9404         !isa<CXXConstructorDecl>(Cand->Function))
   9405       ArgIdx--;
   9406   } else {
   9407     // Builtin binary operator with a bad first conversion.
   9408     assert(ConvCount <= 3);
   9409     for (; ConvIdx != ConvCount; ++ConvIdx)
   9410       Cand->Conversions[ConvIdx]
   9411         = TryCopyInitialization(S, Args[ConvIdx],
   9412                                 Cand->BuiltinTypes.ParamTypes[ConvIdx],
   9413                                 SuppressUserConversions,
   9414                                 /*InOverloadResolution*/ true,
   9415                                 /*AllowObjCWritebackConversion=*/
   9416                                   S.getLangOpts().ObjCAutoRefCount);
   9417     return;
   9418   }
   9419 
   9420   // Fill in the rest of the conversions.
   9421   unsigned NumParams = Proto->getNumParams();
   9422   for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
   9423     if (ArgIdx < NumParams) {
   9424       Cand->Conversions[ConvIdx] = TryCopyInitialization(
   9425           S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
   9426           /*InOverloadResolution=*/true,
   9427           /*AllowObjCWritebackConversion=*/
   9428           S.getLangOpts().ObjCAutoRefCount);
   9429       // Store the FixIt in the candidate if it exists.
   9430       if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
   9431         Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
   9432     }
   9433     else
   9434       Cand->Conversions[ConvIdx].setEllipsis();
   9435   }
   9436 }
   9437 
   9438 } // end anonymous namespace
   9439 
   9440 /// PrintOverloadCandidates - When overload resolution fails, prints
   9441 /// diagnostic messages containing the candidates in the candidate
   9442 /// set.
   9443 void OverloadCandidateSet::NoteCandidates(Sema &S,
   9444                                           OverloadCandidateDisplayKind OCD,
   9445                                           ArrayRef<Expr *> Args,
   9446                                           StringRef Opc,
   9447                                           SourceLocation OpLoc) {
   9448   // Sort the candidates by viability and position.  Sorting directly would
   9449   // be prohibitive, so we make a set of pointers and sort those.
   9450   SmallVector<OverloadCandidate*, 32> Cands;
   9451   if (OCD == OCD_AllCandidates) Cands.reserve(size());
   9452   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
   9453     if (Cand->Viable)
   9454       Cands.push_back(Cand);
   9455     else if (OCD == OCD_AllCandidates) {
   9456       CompleteNonViableCandidate(S, Cand, Args);
   9457       if (Cand->Function || Cand->IsSurrogate)
   9458         Cands.push_back(Cand);
   9459       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
   9460       // want to list every possible builtin candidate.
   9461     }
   9462   }
   9463 
   9464   std::sort(Cands.begin(), Cands.end(),
   9465             CompareOverloadCandidatesForDisplay(S, Args.size()));
   9466 
   9467   bool ReportedAmbiguousConversions = false;
   9468 
   9469   SmallVectorImpl<OverloadCandidate*>::iterator I, E;
   9470   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   9471   unsigned CandsShown = 0;
   9472   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
   9473     OverloadCandidate *Cand = *I;
   9474 
   9475     // Set an arbitrary limit on the number of candidate functions we'll spam
   9476     // the user with.  FIXME: This limit should depend on details of the
   9477     // candidate list.
   9478     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
   9479       break;
   9480     }
   9481     ++CandsShown;
   9482 
   9483     if (Cand->Function)
   9484       NoteFunctionCandidate(S, Cand, Args.size());
   9485     else if (Cand->IsSurrogate)
   9486       NoteSurrogateCandidate(S, Cand);
   9487     else {
   9488       assert(Cand->Viable &&
   9489              "Non-viable built-in candidates are not added to Cands.");
   9490       // Generally we only see ambiguities including viable builtin
   9491       // operators if overload resolution got screwed up by an
   9492       // ambiguous user-defined conversion.
   9493       //
   9494       // FIXME: It's quite possible for different conversions to see
   9495       // different ambiguities, though.
   9496       if (!ReportedAmbiguousConversions) {
   9497         NoteAmbiguousUserConversions(S, OpLoc, Cand);
   9498         ReportedAmbiguousConversions = true;
   9499       }
   9500 
   9501       // If this is a viable builtin, print it.
   9502       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
   9503     }
   9504   }
   9505 
   9506   if (I != E)
   9507     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
   9508 }
   9509 
   9510 static SourceLocation
   9511 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
   9512   return Cand->Specialization ? Cand->Specialization->getLocation()
   9513                               : SourceLocation();
   9514 }
   9515 
   9516 struct CompareTemplateSpecCandidatesForDisplay {
   9517   Sema &S;
   9518   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
   9519 
   9520   bool operator()(const TemplateSpecCandidate *L,
   9521                   const TemplateSpecCandidate *R) {
   9522     // Fast-path this check.
   9523     if (L == R)
   9524       return false;
   9525 
   9526     // Assuming that both candidates are not matches...
   9527 
   9528     // Sort by the ranking of deduction failures.
   9529     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
   9530       return RankDeductionFailure(L->DeductionFailure) <
   9531              RankDeductionFailure(R->DeductionFailure);
   9532 
   9533     // Sort everything else by location.
   9534     SourceLocation LLoc = GetLocationForCandidate(L);
   9535     SourceLocation RLoc = GetLocationForCandidate(R);
   9536 
   9537     // Put candidates without locations (e.g. builtins) at the end.
   9538     if (LLoc.isInvalid())
   9539       return false;
   9540     if (RLoc.isInvalid())
   9541       return true;
   9542 
   9543     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
   9544   }
   9545 };
   9546 
   9547 /// Diagnose a template argument deduction failure.
   9548 /// We are treating these failures as overload failures due to bad
   9549 /// deductions.
   9550 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) {
   9551   DiagnoseBadDeduction(S, Specialization, // pattern
   9552                        DeductionFailure, /*NumArgs=*/0);
   9553 }
   9554 
   9555 void TemplateSpecCandidateSet::destroyCandidates() {
   9556   for (iterator i = begin(), e = end(); i != e; ++i) {
   9557     i->DeductionFailure.Destroy();
   9558   }
   9559 }
   9560 
   9561 void TemplateSpecCandidateSet::clear() {
   9562   destroyCandidates();
   9563   Candidates.clear();
   9564 }
   9565 
   9566 /// NoteCandidates - When no template specialization match is found, prints
   9567 /// diagnostic messages containing the non-matching specializations that form
   9568 /// the candidate set.
   9569 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
   9570 /// OCD == OCD_AllCandidates and Cand->Viable == false.
   9571 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
   9572   // Sort the candidates by position (assuming no candidate is a match).
   9573   // Sorting directly would be prohibitive, so we make a set of pointers
   9574   // and sort those.
   9575   SmallVector<TemplateSpecCandidate *, 32> Cands;
   9576   Cands.reserve(size());
   9577   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
   9578     if (Cand->Specialization)
   9579       Cands.push_back(Cand);
   9580     // Otherwise, this is a non-matching builtin candidate.  We do not,
   9581     // in general, want to list every possible builtin candidate.
   9582   }
   9583 
   9584   std::sort(Cands.begin(), Cands.end(),
   9585             CompareTemplateSpecCandidatesForDisplay(S));
   9586 
   9587   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
   9588   // for generalization purposes (?).
   9589   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   9590 
   9591   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
   9592   unsigned CandsShown = 0;
   9593   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
   9594     TemplateSpecCandidate *Cand = *I;
   9595 
   9596     // Set an arbitrary limit on the number of candidates we'll spam
   9597     // the user with.  FIXME: This limit should depend on details of the
   9598     // candidate list.
   9599     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
   9600       break;
   9601     ++CandsShown;
   9602 
   9603     assert(Cand->Specialization &&
   9604            "Non-matching built-in candidates are not added to Cands.");
   9605     Cand->NoteDeductionFailure(S);
   9606   }
   9607 
   9608   if (I != E)
   9609     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
   9610 }
   9611 
   9612 // [PossiblyAFunctionType]  -->   [Return]
   9613 // NonFunctionType --> NonFunctionType
   9614 // R (A) --> R(A)
   9615 // R (*)(A) --> R (A)
   9616 // R (&)(A) --> R (A)
   9617 // R (S::*)(A) --> R (A)
   9618 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
   9619   QualType Ret = PossiblyAFunctionType;
   9620   if (const PointerType *ToTypePtr =
   9621     PossiblyAFunctionType->getAs<PointerType>())
   9622     Ret = ToTypePtr->getPointeeType();
   9623   else if (const ReferenceType *ToTypeRef =
   9624     PossiblyAFunctionType->getAs<ReferenceType>())
   9625     Ret = ToTypeRef->getPointeeType();
   9626   else if (const MemberPointerType *MemTypePtr =
   9627     PossiblyAFunctionType->getAs<MemberPointerType>())
   9628     Ret = MemTypePtr->getPointeeType();
   9629   Ret =
   9630     Context.getCanonicalType(Ret).getUnqualifiedType();
   9631   return Ret;
   9632 }
   9633 
   9634 // A helper class to help with address of function resolution
   9635 // - allows us to avoid passing around all those ugly parameters
   9636 class AddressOfFunctionResolver
   9637 {
   9638   Sema& S;
   9639   Expr* SourceExpr;
   9640   const QualType& TargetType;
   9641   QualType TargetFunctionType; // Extracted function type from target type
   9642 
   9643   bool Complain;
   9644   //DeclAccessPair& ResultFunctionAccessPair;
   9645   ASTContext& Context;
   9646 
   9647   bool TargetTypeIsNonStaticMemberFunction;
   9648   bool FoundNonTemplateFunction;
   9649   bool StaticMemberFunctionFromBoundPointer;
   9650 
   9651   OverloadExpr::FindResult OvlExprInfo;
   9652   OverloadExpr *OvlExpr;
   9653   TemplateArgumentListInfo OvlExplicitTemplateArgs;
   9654   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
   9655   TemplateSpecCandidateSet FailedCandidates;
   9656 
   9657 public:
   9658   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
   9659                             const QualType &TargetType, bool Complain)
   9660       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
   9661         Complain(Complain), Context(S.getASTContext()),
   9662         TargetTypeIsNonStaticMemberFunction(
   9663             !!TargetType->getAs<MemberPointerType>()),
   9664         FoundNonTemplateFunction(false),
   9665         StaticMemberFunctionFromBoundPointer(false),
   9666         OvlExprInfo(OverloadExpr::find(SourceExpr)),
   9667         OvlExpr(OvlExprInfo.Expression),
   9668         FailedCandidates(OvlExpr->getNameLoc()) {
   9669     ExtractUnqualifiedFunctionTypeFromTargetType();
   9670 
   9671     if (TargetFunctionType->isFunctionType()) {
   9672       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
   9673         if (!UME->isImplicitAccess() &&
   9674             !S.ResolveSingleFunctionTemplateSpecialization(UME))
   9675           StaticMemberFunctionFromBoundPointer = true;
   9676     } else if (OvlExpr->hasExplicitTemplateArgs()) {
   9677       DeclAccessPair dap;
   9678       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
   9679               OvlExpr, false, &dap)) {
   9680         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   9681           if (!Method->isStatic()) {
   9682             // If the target type is a non-function type and the function found
   9683             // is a non-static member function, pretend as if that was the
   9684             // target, it's the only possible type to end up with.
   9685             TargetTypeIsNonStaticMemberFunction = true;
   9686 
   9687             // And skip adding the function if its not in the proper form.
   9688             // We'll diagnose this due to an empty set of functions.
   9689             if (!OvlExprInfo.HasFormOfMemberPointer)
   9690               return;
   9691           }
   9692 
   9693         Matches.push_back(std::make_pair(dap, Fn));
   9694       }
   9695       return;
   9696     }
   9697 
   9698     if (OvlExpr->hasExplicitTemplateArgs())
   9699       OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
   9700 
   9701     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
   9702       // C++ [over.over]p4:
   9703       //   If more than one function is selected, [...]
   9704       if (Matches.size() > 1) {
   9705         if (FoundNonTemplateFunction)
   9706           EliminateAllTemplateMatches();
   9707         else
   9708           EliminateAllExceptMostSpecializedTemplate();
   9709       }
   9710     }
   9711   }
   9712 
   9713 private:
   9714   bool isTargetTypeAFunction() const {
   9715     return TargetFunctionType->isFunctionType();
   9716   }
   9717 
   9718   // [ToType]     [Return]
   9719 
   9720   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
   9721   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
   9722   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
   9723   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
   9724     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
   9725   }
   9726 
   9727   // return true if any matching specializations were found
   9728   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
   9729                                    const DeclAccessPair& CurAccessFunPair) {
   9730     if (CXXMethodDecl *Method
   9731               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
   9732       // Skip non-static function templates when converting to pointer, and
   9733       // static when converting to member pointer.
   9734       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
   9735         return false;
   9736     }
   9737     else if (TargetTypeIsNonStaticMemberFunction)
   9738       return false;
   9739 
   9740     // C++ [over.over]p2:
   9741     //   If the name is a function template, template argument deduction is
   9742     //   done (14.8.2.2), and if the argument deduction succeeds, the
   9743     //   resulting template argument list is used to generate a single
   9744     //   function template specialization, which is added to the set of
   9745     //   overloaded functions considered.
   9746     FunctionDecl *Specialization = nullptr;
   9747     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   9748     if (Sema::TemplateDeductionResult Result
   9749           = S.DeduceTemplateArguments(FunctionTemplate,
   9750                                       &OvlExplicitTemplateArgs,
   9751                                       TargetFunctionType, Specialization,
   9752                                       Info, /*InOverloadResolution=*/true)) {
   9753       // Make a note of the failed deduction for diagnostics.
   9754       FailedCandidates.addCandidate()
   9755           .set(FunctionTemplate->getTemplatedDecl(),
   9756                MakeDeductionFailureInfo(Context, Result, Info));
   9757       return false;
   9758     }
   9759 
   9760     // Template argument deduction ensures that we have an exact match or
   9761     // compatible pointer-to-function arguments that would be adjusted by ICS.
   9762     // This function template specicalization works.
   9763     Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
   9764     assert(S.isSameOrCompatibleFunctionType(
   9765               Context.getCanonicalType(Specialization->getType()),
   9766               Context.getCanonicalType(TargetFunctionType)));
   9767     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
   9768     return true;
   9769   }
   9770 
   9771   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
   9772                                       const DeclAccessPair& CurAccessFunPair) {
   9773     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
   9774       // Skip non-static functions when converting to pointer, and static
   9775       // when converting to member pointer.
   9776       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
   9777         return false;
   9778     }
   9779     else if (TargetTypeIsNonStaticMemberFunction)
   9780       return false;
   9781 
   9782     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
   9783       if (S.getLangOpts().CUDA)
   9784         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
   9785           if (S.CheckCUDATarget(Caller, FunDecl))
   9786             return false;
   9787 
   9788       // If any candidate has a placeholder return type, trigger its deduction
   9789       // now.
   9790       if (S.getLangOpts().CPlusPlus1y &&
   9791           FunDecl->getReturnType()->isUndeducedType() &&
   9792           S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
   9793         return false;
   9794 
   9795       QualType ResultTy;
   9796       if (Context.hasSameUnqualifiedType(TargetFunctionType,
   9797                                          FunDecl->getType()) ||
   9798           S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
   9799                                  ResultTy)) {
   9800         Matches.push_back(std::make_pair(CurAccessFunPair,
   9801           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
   9802         FoundNonTemplateFunction = true;
   9803         return true;
   9804       }
   9805     }
   9806 
   9807     return false;
   9808   }
   9809 
   9810   bool FindAllFunctionsThatMatchTargetTypeExactly() {
   9811     bool Ret = false;
   9812 
   9813     // If the overload expression doesn't have the form of a pointer to
   9814     // member, don't try to convert it to a pointer-to-member type.
   9815     if (IsInvalidFormOfPointerToMemberFunction())
   9816       return false;
   9817 
   9818     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   9819                                E = OvlExpr->decls_end();
   9820          I != E; ++I) {
   9821       // Look through any using declarations to find the underlying function.
   9822       NamedDecl *Fn = (*I)->getUnderlyingDecl();
   9823 
   9824       // C++ [over.over]p3:
   9825       //   Non-member functions and static member functions match
   9826       //   targets of type "pointer-to-function" or "reference-to-function."
   9827       //   Nonstatic member functions match targets of
   9828       //   type "pointer-to-member-function."
   9829       // Note that according to DR 247, the containing class does not matter.
   9830       if (FunctionTemplateDecl *FunctionTemplate
   9831                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
   9832         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
   9833           Ret = true;
   9834       }
   9835       // If we have explicit template arguments supplied, skip non-templates.
   9836       else if (!OvlExpr->hasExplicitTemplateArgs() &&
   9837                AddMatchingNonTemplateFunction(Fn, I.getPair()))
   9838         Ret = true;
   9839     }
   9840     assert(Ret || Matches.empty());
   9841     return Ret;
   9842   }
   9843 
   9844   void EliminateAllExceptMostSpecializedTemplate() {
   9845     //   [...] and any given function template specialization F1 is
   9846     //   eliminated if the set contains a second function template
   9847     //   specialization whose function template is more specialized
   9848     //   than the function template of F1 according to the partial
   9849     //   ordering rules of 14.5.5.2.
   9850 
   9851     // The algorithm specified above is quadratic. We instead use a
   9852     // two-pass algorithm (similar to the one used to identify the
   9853     // best viable function in an overload set) that identifies the
   9854     // best function template (if it exists).
   9855 
   9856     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
   9857     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
   9858       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
   9859 
   9860     // TODO: It looks like FailedCandidates does not serve much purpose
   9861     // here, since the no_viable diagnostic has index 0.
   9862     UnresolvedSetIterator Result = S.getMostSpecialized(
   9863         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
   9864         SourceExpr->getLocStart(), S.PDiag(),
   9865         S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
   9866                                                      .second->getDeclName(),
   9867         S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
   9868         Complain, TargetFunctionType);
   9869 
   9870     if (Result != MatchesCopy.end()) {
   9871       // Make it the first and only element
   9872       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
   9873       Matches[0].second = cast<FunctionDecl>(*Result);
   9874       Matches.resize(1);
   9875     }
   9876   }
   9877 
   9878   void EliminateAllTemplateMatches() {
   9879     //   [...] any function template specializations in the set are
   9880     //   eliminated if the set also contains a non-template function, [...]
   9881     for (unsigned I = 0, N = Matches.size(); I != N; ) {
   9882       if (Matches[I].second->getPrimaryTemplate() == nullptr)
   9883         ++I;
   9884       else {
   9885         Matches[I] = Matches[--N];
   9886         Matches.set_size(N);
   9887       }
   9888     }
   9889   }
   9890 
   9891 public:
   9892   void ComplainNoMatchesFound() const {
   9893     assert(Matches.empty());
   9894     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
   9895         << OvlExpr->getName() << TargetFunctionType
   9896         << OvlExpr->getSourceRange();
   9897     if (FailedCandidates.empty())
   9898       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
   9899     else {
   9900       // We have some deduction failure messages. Use them to diagnose
   9901       // the function templates, and diagnose the non-template candidates
   9902       // normally.
   9903       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   9904                                  IEnd = OvlExpr->decls_end();
   9905            I != IEnd; ++I)
   9906         if (FunctionDecl *Fun =
   9907                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
   9908           S.NoteOverloadCandidate(Fun, TargetFunctionType);
   9909       FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
   9910     }
   9911   }
   9912 
   9913   bool IsInvalidFormOfPointerToMemberFunction() const {
   9914     return TargetTypeIsNonStaticMemberFunction &&
   9915       !OvlExprInfo.HasFormOfMemberPointer;
   9916   }
   9917 
   9918   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
   9919       // TODO: Should we condition this on whether any functions might
   9920       // have matched, or is it more appropriate to do that in callers?
   9921       // TODO: a fixit wouldn't hurt.
   9922       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
   9923         << TargetType << OvlExpr->getSourceRange();
   9924   }
   9925 
   9926   bool IsStaticMemberFunctionFromBoundPointer() const {
   9927     return StaticMemberFunctionFromBoundPointer;
   9928   }
   9929 
   9930   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
   9931     S.Diag(OvlExpr->getLocStart(),
   9932            diag::err_invalid_form_pointer_member_function)
   9933       << OvlExpr->getSourceRange();
   9934   }
   9935 
   9936   void ComplainOfInvalidConversion() const {
   9937     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
   9938       << OvlExpr->getName() << TargetType;
   9939   }
   9940 
   9941   void ComplainMultipleMatchesFound() const {
   9942     assert(Matches.size() > 1);
   9943     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
   9944       << OvlExpr->getName()
   9945       << OvlExpr->getSourceRange();
   9946     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
   9947   }
   9948 
   9949   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
   9950 
   9951   int getNumMatches() const { return Matches.size(); }
   9952 
   9953   FunctionDecl* getMatchingFunctionDecl() const {
   9954     if (Matches.size() != 1) return nullptr;
   9955     return Matches[0].second;
   9956   }
   9957 
   9958   const DeclAccessPair* getMatchingFunctionAccessPair() const {
   9959     if (Matches.size() != 1) return nullptr;
   9960     return &Matches[0].first;
   9961   }
   9962 };
   9963 
   9964 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
   9965 /// an overloaded function (C++ [over.over]), where @p From is an
   9966 /// expression with overloaded function type and @p ToType is the type
   9967 /// we're trying to resolve to. For example:
   9968 ///
   9969 /// @code
   9970 /// int f(double);
   9971 /// int f(int);
   9972 ///
   9973 /// int (*pfd)(double) = f; // selects f(double)
   9974 /// @endcode
   9975 ///
   9976 /// This routine returns the resulting FunctionDecl if it could be
   9977 /// resolved, and NULL otherwise. When @p Complain is true, this
   9978 /// routine will emit diagnostics if there is an error.
   9979 FunctionDecl *
   9980 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
   9981                                          QualType TargetType,
   9982                                          bool Complain,
   9983                                          DeclAccessPair &FoundResult,
   9984                                          bool *pHadMultipleCandidates) {
   9985   assert(AddressOfExpr->getType() == Context.OverloadTy);
   9986 
   9987   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
   9988                                      Complain);
   9989   int NumMatches = Resolver.getNumMatches();
   9990   FunctionDecl *Fn = nullptr;
   9991   if (NumMatches == 0 && Complain) {
   9992     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
   9993       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
   9994     else
   9995       Resolver.ComplainNoMatchesFound();
   9996   }
   9997   else if (NumMatches > 1 && Complain)
   9998     Resolver.ComplainMultipleMatchesFound();
   9999   else if (NumMatches == 1) {
   10000     Fn = Resolver.getMatchingFunctionDecl();
   10001     assert(Fn);
   10002     FoundResult = *Resolver.getMatchingFunctionAccessPair();
   10003     if (Complain) {
   10004       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
   10005         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
   10006       else
   10007         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
   10008     }
   10009   }
   10010 
   10011   if (pHadMultipleCandidates)
   10012     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
   10013   return Fn;
   10014 }
   10015 
   10016 /// \brief Given an expression that refers to an overloaded function, try to
   10017 /// resolve that overloaded function expression down to a single function.
   10018 ///
   10019 /// This routine can only resolve template-ids that refer to a single function
   10020 /// template, where that template-id refers to a single template whose template
   10021 /// arguments are either provided by the template-id or have defaults,
   10022 /// as described in C++0x [temp.arg.explicit]p3.
   10023 ///
   10024 /// If no template-ids are found, no diagnostics are emitted and NULL is
   10025 /// returned.
   10026 FunctionDecl *
   10027 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
   10028                                                   bool Complain,
   10029                                                   DeclAccessPair *FoundResult) {
   10030   // C++ [over.over]p1:
   10031   //   [...] [Note: any redundant set of parentheses surrounding the
   10032   //   overloaded function name is ignored (5.1). ]
   10033   // C++ [over.over]p1:
   10034   //   [...] The overloaded function name can be preceded by the &
   10035   //   operator.
   10036 
   10037   // If we didn't actually find any template-ids, we're done.
   10038   if (!ovl->hasExplicitTemplateArgs())
   10039     return nullptr;
   10040 
   10041   TemplateArgumentListInfo ExplicitTemplateArgs;
   10042   ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
   10043   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
   10044 
   10045   // Look through all of the overloaded functions, searching for one
   10046   // whose type matches exactly.
   10047   FunctionDecl *Matched = nullptr;
   10048   for (UnresolvedSetIterator I = ovl->decls_begin(),
   10049          E = ovl->decls_end(); I != E; ++I) {
   10050     // C++0x [temp.arg.explicit]p3:
   10051     //   [...] In contexts where deduction is done and fails, or in contexts
   10052     //   where deduction is not done, if a template argument list is
   10053     //   specified and it, along with any default template arguments,
   10054     //   identifies a single function template specialization, then the
   10055     //   template-id is an lvalue for the function template specialization.
   10056     FunctionTemplateDecl *FunctionTemplate
   10057       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
   10058 
   10059     // C++ [over.over]p2:
   10060     //   If the name is a function template, template argument deduction is
   10061     //   done (14.8.2.2), and if the argument deduction succeeds, the
   10062     //   resulting template argument list is used to generate a single
   10063     //   function template specialization, which is added to the set of
   10064     //   overloaded functions considered.
   10065     FunctionDecl *Specialization = nullptr;
   10066     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   10067     if (TemplateDeductionResult Result
   10068           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
   10069                                     Specialization, Info,
   10070                                     /*InOverloadResolution=*/true)) {
   10071       // Make a note of the failed deduction for diagnostics.
   10072       // TODO: Actually use the failed-deduction info?
   10073       FailedCandidates.addCandidate()
   10074           .set(FunctionTemplate->getTemplatedDecl(),
   10075                MakeDeductionFailureInfo(Context, Result, Info));
   10076       continue;
   10077     }
   10078 
   10079     assert(Specialization && "no specialization and no error?");
   10080 
   10081     // Multiple matches; we can't resolve to a single declaration.
   10082     if (Matched) {
   10083       if (Complain) {
   10084         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
   10085           << ovl->getName();
   10086         NoteAllOverloadCandidates(ovl);
   10087       }
   10088       return nullptr;
   10089     }
   10090 
   10091     Matched = Specialization;
   10092     if (FoundResult) *FoundResult = I.getPair();
   10093   }
   10094 
   10095   if (Matched && getLangOpts().CPlusPlus1y &&
   10096       Matched->getReturnType()->isUndeducedType() &&
   10097       DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
   10098     return nullptr;
   10099 
   10100   return Matched;
   10101 }
   10102 
   10103 
   10104 
   10105 
   10106 // Resolve and fix an overloaded expression that can be resolved
   10107 // because it identifies a single function template specialization.
   10108 //
   10109 // Last three arguments should only be supplied if Complain = true
   10110 //
   10111 // Return true if it was logically possible to so resolve the
   10112 // expression, regardless of whether or not it succeeded.  Always
   10113 // returns true if 'complain' is set.
   10114 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
   10115                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
   10116                    bool complain, const SourceRange& OpRangeForComplaining,
   10117                                            QualType DestTypeForComplaining,
   10118                                             unsigned DiagIDForComplaining) {
   10119   assert(SrcExpr.get()->getType() == Context.OverloadTy);
   10120 
   10121   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
   10122 
   10123   DeclAccessPair found;
   10124   ExprResult SingleFunctionExpression;
   10125   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
   10126                            ovl.Expression, /*complain*/ false, &found)) {
   10127     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
   10128       SrcExpr = ExprError();
   10129       return true;
   10130     }
   10131 
   10132     // It is only correct to resolve to an instance method if we're
   10133     // resolving a form that's permitted to be a pointer to member.
   10134     // Otherwise we'll end up making a bound member expression, which
   10135     // is illegal in all the contexts we resolve like this.
   10136     if (!ovl.HasFormOfMemberPointer &&
   10137         isa<CXXMethodDecl>(fn) &&
   10138         cast<CXXMethodDecl>(fn)->isInstance()) {
   10139       if (!complain) return false;
   10140 
   10141       Diag(ovl.Expression->getExprLoc(),
   10142            diag::err_bound_member_function)
   10143         << 0 << ovl.Expression->getSourceRange();
   10144 
   10145       // TODO: I believe we only end up here if there's a mix of
   10146       // static and non-static candidates (otherwise the expression
   10147       // would have 'bound member' type, not 'overload' type).
   10148       // Ideally we would note which candidate was chosen and why
   10149       // the static candidates were rejected.
   10150       SrcExpr = ExprError();
   10151       return true;
   10152     }
   10153 
   10154     // Fix the expression to refer to 'fn'.
   10155     SingleFunctionExpression =
   10156         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
   10157 
   10158     // If desired, do function-to-pointer decay.
   10159     if (doFunctionPointerConverion) {
   10160       SingleFunctionExpression =
   10161         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
   10162       if (SingleFunctionExpression.isInvalid()) {
   10163         SrcExpr = ExprError();
   10164         return true;
   10165       }
   10166     }
   10167   }
   10168 
   10169   if (!SingleFunctionExpression.isUsable()) {
   10170     if (complain) {
   10171       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
   10172         << ovl.Expression->getName()
   10173         << DestTypeForComplaining
   10174         << OpRangeForComplaining
   10175         << ovl.Expression->getQualifierLoc().getSourceRange();
   10176       NoteAllOverloadCandidates(SrcExpr.get());
   10177 
   10178       SrcExpr = ExprError();
   10179       return true;
   10180     }
   10181 
   10182     return false;
   10183   }
   10184 
   10185   SrcExpr = SingleFunctionExpression;
   10186   return true;
   10187 }
   10188 
   10189 /// \brief Add a single candidate to the overload set.
   10190 static void AddOverloadedCallCandidate(Sema &S,
   10191                                        DeclAccessPair FoundDecl,
   10192                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   10193                                        ArrayRef<Expr *> Args,
   10194                                        OverloadCandidateSet &CandidateSet,
   10195                                        bool PartialOverloading,
   10196                                        bool KnownValid) {
   10197   NamedDecl *Callee = FoundDecl.getDecl();
   10198   if (isa<UsingShadowDecl>(Callee))
   10199     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
   10200 
   10201   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
   10202     if (ExplicitTemplateArgs) {
   10203       assert(!KnownValid && "Explicit template arguments?");
   10204       return;
   10205     }
   10206     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
   10207                            PartialOverloading);
   10208     return;
   10209   }
   10210 
   10211   if (FunctionTemplateDecl *FuncTemplate
   10212       = dyn_cast<FunctionTemplateDecl>(Callee)) {
   10213     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
   10214                                    ExplicitTemplateArgs, Args, CandidateSet);
   10215     return;
   10216   }
   10217 
   10218   assert(!KnownValid && "unhandled case in overloaded call candidate");
   10219 }
   10220 
   10221 /// \brief Add the overload candidates named by callee and/or found by argument
   10222 /// dependent lookup to the given overload set.
   10223 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
   10224                                        ArrayRef<Expr *> Args,
   10225                                        OverloadCandidateSet &CandidateSet,
   10226                                        bool PartialOverloading) {
   10227 
   10228 #ifndef NDEBUG
   10229   // Verify that ArgumentDependentLookup is consistent with the rules
   10230   // in C++0x [basic.lookup.argdep]p3:
   10231   //
   10232   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
   10233   //   and let Y be the lookup set produced by argument dependent
   10234   //   lookup (defined as follows). If X contains
   10235   //
   10236   //     -- a declaration of a class member, or
   10237   //
   10238   //     -- a block-scope function declaration that is not a
   10239   //        using-declaration, or
   10240   //
   10241   //     -- a declaration that is neither a function or a function
   10242   //        template
   10243   //
   10244   //   then Y is empty.
   10245 
   10246   if (ULE->requiresADL()) {
   10247     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
   10248            E = ULE->decls_end(); I != E; ++I) {
   10249       assert(!(*I)->getDeclContext()->isRecord());
   10250       assert(isa<UsingShadowDecl>(*I) ||
   10251              !(*I)->getDeclContext()->isFunctionOrMethod());
   10252       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
   10253     }
   10254   }
   10255 #endif
   10256 
   10257   // It would be nice to avoid this copy.
   10258   TemplateArgumentListInfo TABuffer;
   10259   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
   10260   if (ULE->hasExplicitTemplateArgs()) {
   10261     ULE->copyTemplateArgumentsInto(TABuffer);
   10262     ExplicitTemplateArgs = &TABuffer;
   10263   }
   10264 
   10265   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
   10266          E = ULE->decls_end(); I != E; ++I)
   10267     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
   10268                                CandidateSet, PartialOverloading,
   10269                                /*KnownValid*/ true);
   10270 
   10271   if (ULE->requiresADL())
   10272     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
   10273                                          Args, ExplicitTemplateArgs,
   10274                                          CandidateSet, PartialOverloading);
   10275 }
   10276 
   10277 /// Determine whether a declaration with the specified name could be moved into
   10278 /// a different namespace.
   10279 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
   10280   switch (Name.getCXXOverloadedOperator()) {
   10281   case OO_New: case OO_Array_New:
   10282   case OO_Delete: case OO_Array_Delete:
   10283     return false;
   10284 
   10285   default:
   10286     return true;
   10287   }
   10288 }
   10289 
   10290 /// Attempt to recover from an ill-formed use of a non-dependent name in a
   10291 /// template, where the non-dependent name was declared after the template
   10292 /// was defined. This is common in code written for a compilers which do not
   10293 /// correctly implement two-stage name lookup.
   10294 ///
   10295 /// Returns true if a viable candidate was found and a diagnostic was issued.
   10296 static bool
   10297 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
   10298                        const CXXScopeSpec &SS, LookupResult &R,
   10299                        OverloadCandidateSet::CandidateSetKind CSK,
   10300                        TemplateArgumentListInfo *ExplicitTemplateArgs,
   10301                        ArrayRef<Expr *> Args) {
   10302   if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
   10303     return false;
   10304 
   10305   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
   10306     if (DC->isTransparentContext())
   10307       continue;
   10308 
   10309     SemaRef.LookupQualifiedName(R, DC);
   10310 
   10311     if (!R.empty()) {
   10312       R.suppressDiagnostics();
   10313 
   10314       if (isa<CXXRecordDecl>(DC)) {
   10315         // Don't diagnose names we find in classes; we get much better
   10316         // diagnostics for these from DiagnoseEmptyLookup.
   10317         R.clear();
   10318         return false;
   10319       }
   10320 
   10321       OverloadCandidateSet Candidates(FnLoc, CSK);
   10322       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   10323         AddOverloadedCallCandidate(SemaRef, I.getPair(),
   10324                                    ExplicitTemplateArgs, Args,
   10325                                    Candidates, false, /*KnownValid*/ false);
   10326 
   10327       OverloadCandidateSet::iterator Best;
   10328       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
   10329         // No viable functions. Don't bother the user with notes for functions
   10330         // which don't work and shouldn't be found anyway.
   10331         R.clear();
   10332         return false;
   10333       }
   10334 
   10335       // Find the namespaces where ADL would have looked, and suggest
   10336       // declaring the function there instead.
   10337       Sema::AssociatedNamespaceSet AssociatedNamespaces;
   10338       Sema::AssociatedClassSet AssociatedClasses;
   10339       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
   10340                                                  AssociatedNamespaces,
   10341                                                  AssociatedClasses);
   10342       Sema::AssociatedNamespaceSet SuggestedNamespaces;
   10343       if (canBeDeclaredInNamespace(R.getLookupName())) {
   10344         DeclContext *Std = SemaRef.getStdNamespace();
   10345         for (Sema::AssociatedNamespaceSet::iterator
   10346                it = AssociatedNamespaces.begin(),
   10347                end = AssociatedNamespaces.end(); it != end; ++it) {
   10348           // Never suggest declaring a function within namespace 'std'.
   10349           if (Std && Std->Encloses(*it))
   10350             continue;
   10351 
   10352           // Never suggest declaring a function within a namespace with a
   10353           // reserved name, like __gnu_cxx.
   10354           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
   10355           if (NS &&
   10356               NS->getQualifiedNameAsString().find("__") != std::string::npos)
   10357             continue;
   10358 
   10359           SuggestedNamespaces.insert(*it);
   10360         }
   10361       }
   10362 
   10363       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
   10364         << R.getLookupName();
   10365       if (SuggestedNamespaces.empty()) {
   10366         SemaRef.Diag(Best->Function->getLocation(),
   10367                      diag::note_not_found_by_two_phase_lookup)
   10368           << R.getLookupName() << 0;
   10369       } else if (SuggestedNamespaces.size() == 1) {
   10370         SemaRef.Diag(Best->Function->getLocation(),
   10371                      diag::note_not_found_by_two_phase_lookup)
   10372           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
   10373       } else {
   10374         // FIXME: It would be useful to list the associated namespaces here,
   10375         // but the diagnostics infrastructure doesn't provide a way to produce
   10376         // a localized representation of a list of items.
   10377         SemaRef.Diag(Best->Function->getLocation(),
   10378                      diag::note_not_found_by_two_phase_lookup)
   10379           << R.getLookupName() << 2;
   10380       }
   10381 
   10382       // Try to recover by calling this function.
   10383       return true;
   10384     }
   10385 
   10386     R.clear();
   10387   }
   10388 
   10389   return false;
   10390 }
   10391 
   10392 /// Attempt to recover from ill-formed use of a non-dependent operator in a
   10393 /// template, where the non-dependent operator was declared after the template
   10394 /// was defined.
   10395 ///
   10396 /// Returns true if a viable candidate was found and a diagnostic was issued.
   10397 static bool
   10398 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
   10399                                SourceLocation OpLoc,
   10400                                ArrayRef<Expr *> Args) {
   10401   DeclarationName OpName =
   10402     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
   10403   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
   10404   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
   10405                                 OverloadCandidateSet::CSK_Operator,
   10406                                 /*ExplicitTemplateArgs=*/nullptr, Args);
   10407 }
   10408 
   10409 namespace {
   10410 class BuildRecoveryCallExprRAII {
   10411   Sema &SemaRef;
   10412 public:
   10413   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
   10414     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
   10415     SemaRef.IsBuildingRecoveryCallExpr = true;
   10416   }
   10417 
   10418   ~BuildRecoveryCallExprRAII() {
   10419     SemaRef.IsBuildingRecoveryCallExpr = false;
   10420   }
   10421 };
   10422 
   10423 }
   10424 
   10425 /// Attempts to recover from a call where no functions were found.
   10426 ///
   10427 /// Returns true if new candidates were found.
   10428 static ExprResult
   10429 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
   10430                       UnresolvedLookupExpr *ULE,
   10431                       SourceLocation LParenLoc,
   10432                       MutableArrayRef<Expr *> Args,
   10433                       SourceLocation RParenLoc,
   10434                       bool EmptyLookup, bool AllowTypoCorrection) {
   10435   // Do not try to recover if it is already building a recovery call.
   10436   // This stops infinite loops for template instantiations like
   10437   //
   10438   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
   10439   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
   10440   //
   10441   if (SemaRef.IsBuildingRecoveryCallExpr)
   10442     return ExprError();
   10443   BuildRecoveryCallExprRAII RCE(SemaRef);
   10444 
   10445   CXXScopeSpec SS;
   10446   SS.Adopt(ULE->getQualifierLoc());
   10447   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
   10448 
   10449   TemplateArgumentListInfo TABuffer;
   10450   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
   10451   if (ULE->hasExplicitTemplateArgs()) {
   10452     ULE->copyTemplateArgumentsInto(TABuffer);
   10453     ExplicitTemplateArgs = &TABuffer;
   10454   }
   10455 
   10456   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
   10457                  Sema::LookupOrdinaryName);
   10458   FunctionCallFilterCCC Validator(SemaRef, Args.size(),
   10459                                   ExplicitTemplateArgs != nullptr,
   10460                                   dyn_cast<MemberExpr>(Fn));
   10461   NoTypoCorrectionCCC RejectAll;
   10462   CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
   10463       (CorrectionCandidateCallback*)&Validator :
   10464       (CorrectionCandidateCallback*)&RejectAll;
   10465   if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
   10466                               OverloadCandidateSet::CSK_Normal,
   10467                               ExplicitTemplateArgs, Args) &&
   10468       (!EmptyLookup ||
   10469        SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
   10470                                    ExplicitTemplateArgs, Args)))
   10471     return ExprError();
   10472 
   10473   assert(!R.empty() && "lookup results empty despite recovery");
   10474 
   10475   // Build an implicit member call if appropriate.  Just drop the
   10476   // casts and such from the call, we don't really care.
   10477   ExprResult NewFn = ExprError();
   10478   if ((*R.begin())->isCXXClassMember())
   10479     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   10480                                                     R, ExplicitTemplateArgs);
   10481   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
   10482     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
   10483                                         ExplicitTemplateArgs);
   10484   else
   10485     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
   10486 
   10487   if (NewFn.isInvalid())
   10488     return ExprError();
   10489 
   10490   // This shouldn't cause an infinite loop because we're giving it
   10491   // an expression with viable lookup results, which should never
   10492   // end up here.
   10493   return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
   10494                                MultiExprArg(Args.data(), Args.size()),
   10495                                RParenLoc);
   10496 }
   10497 
   10498 /// \brief Constructs and populates an OverloadedCandidateSet from
   10499 /// the given function.
   10500 /// \returns true when an the ExprResult output parameter has been set.
   10501 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
   10502                                   UnresolvedLookupExpr *ULE,
   10503                                   MultiExprArg Args,
   10504                                   SourceLocation RParenLoc,
   10505                                   OverloadCandidateSet *CandidateSet,
   10506                                   ExprResult *Result) {
   10507 #ifndef NDEBUG
   10508   if (ULE->requiresADL()) {
   10509     // To do ADL, we must have found an unqualified name.
   10510     assert(!ULE->getQualifier() && "qualified name with ADL");
   10511 
   10512     // We don't perform ADL for implicit declarations of builtins.
   10513     // Verify that this was correctly set up.
   10514     FunctionDecl *F;
   10515     if (ULE->decls_begin() + 1 == ULE->decls_end() &&
   10516         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
   10517         F->getBuiltinID() && F->isImplicit())
   10518       llvm_unreachable("performing ADL for builtin");
   10519 
   10520     // We don't perform ADL in C.
   10521     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
   10522   }
   10523 #endif
   10524 
   10525   UnbridgedCastsSet UnbridgedCasts;
   10526   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
   10527     *Result = ExprError();
   10528     return true;
   10529   }
   10530 
   10531   // Add the functions denoted by the callee to the set of candidate
   10532   // functions, including those from argument-dependent lookup.
   10533   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
   10534 
   10535   // If we found nothing, try to recover.
   10536   // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
   10537   // out if it fails.
   10538   if (CandidateSet->empty()) {
   10539     // In Microsoft mode, if we are inside a template class member function then
   10540     // create a type dependent CallExpr. The goal is to postpone name lookup
   10541     // to instantiation time to be able to search into type dependent base
   10542     // classes.
   10543     if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
   10544         (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
   10545       CallExpr *CE = new (Context) CallExpr(Context, Fn, Args,
   10546                                             Context.DependentTy, VK_RValue,
   10547                                             RParenLoc);
   10548       CE->setTypeDependent(true);
   10549       *Result = CE;
   10550       return true;
   10551     }
   10552     return false;
   10553   }
   10554 
   10555   UnbridgedCasts.restore();
   10556   return false;
   10557 }
   10558 
   10559 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
   10560 /// the completed call expression. If overload resolution fails, emits
   10561 /// diagnostics and returns ExprError()
   10562 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
   10563                                            UnresolvedLookupExpr *ULE,
   10564                                            SourceLocation LParenLoc,
   10565                                            MultiExprArg Args,
   10566                                            SourceLocation RParenLoc,
   10567                                            Expr *ExecConfig,
   10568                                            OverloadCandidateSet *CandidateSet,
   10569                                            OverloadCandidateSet::iterator *Best,
   10570                                            OverloadingResult OverloadResult,
   10571                                            bool AllowTypoCorrection) {
   10572   if (CandidateSet->empty())
   10573     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
   10574                                  RParenLoc, /*EmptyLookup=*/true,
   10575                                  AllowTypoCorrection);
   10576 
   10577   switch (OverloadResult) {
   10578   case OR_Success: {
   10579     FunctionDecl *FDecl = (*Best)->Function;
   10580     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
   10581     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
   10582       return ExprError();
   10583     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
   10584     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
   10585                                          ExecConfig);
   10586   }
   10587 
   10588   case OR_No_Viable_Function: {
   10589     // Try to recover by looking for viable functions which the user might
   10590     // have meant to call.
   10591     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
   10592                                                 Args, RParenLoc,
   10593                                                 /*EmptyLookup=*/false,
   10594                                                 AllowTypoCorrection);
   10595     if (!Recovery.isInvalid())
   10596       return Recovery;
   10597 
   10598     SemaRef.Diag(Fn->getLocStart(),
   10599          diag::err_ovl_no_viable_function_in_call)
   10600       << ULE->getName() << Fn->getSourceRange();
   10601     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
   10602     break;
   10603   }
   10604 
   10605   case OR_Ambiguous:
   10606     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
   10607       << ULE->getName() << Fn->getSourceRange();
   10608     CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
   10609     break;
   10610 
   10611   case OR_Deleted: {
   10612     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
   10613       << (*Best)->Function->isDeleted()
   10614       << ULE->getName()
   10615       << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
   10616       << Fn->getSourceRange();
   10617     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
   10618 
   10619     // We emitted an error for the unvailable/deleted function call but keep
   10620     // the call in the AST.
   10621     FunctionDecl *FDecl = (*Best)->Function;
   10622     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
   10623     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
   10624                                          ExecConfig);
   10625   }
   10626   }
   10627 
   10628   // Overload resolution failed.
   10629   return ExprError();
   10630 }
   10631 
   10632 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
   10633 /// (which eventually refers to the declaration Func) and the call
   10634 /// arguments Args/NumArgs, attempt to resolve the function call down
   10635 /// to a specific function. If overload resolution succeeds, returns
   10636 /// the call expression produced by overload resolution.
   10637 /// Otherwise, emits diagnostics and returns ExprError.
   10638 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
   10639                                          UnresolvedLookupExpr *ULE,
   10640                                          SourceLocation LParenLoc,
   10641                                          MultiExprArg Args,
   10642                                          SourceLocation RParenLoc,
   10643                                          Expr *ExecConfig,
   10644                                          bool AllowTypoCorrection) {
   10645   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
   10646                                     OverloadCandidateSet::CSK_Normal);
   10647   ExprResult result;
   10648 
   10649   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
   10650                              &result))
   10651     return result;
   10652 
   10653   OverloadCandidateSet::iterator Best;
   10654   OverloadingResult OverloadResult =
   10655       CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
   10656 
   10657   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
   10658                                   RParenLoc, ExecConfig, &CandidateSet,
   10659                                   &Best, OverloadResult,
   10660                                   AllowTypoCorrection);
   10661 }
   10662 
   10663 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
   10664   return Functions.size() > 1 ||
   10665     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
   10666 }
   10667 
   10668 /// \brief Create a unary operation that may resolve to an overloaded
   10669 /// operator.
   10670 ///
   10671 /// \param OpLoc The location of the operator itself (e.g., '*').
   10672 ///
   10673 /// \param OpcIn The UnaryOperator::Opcode that describes this
   10674 /// operator.
   10675 ///
   10676 /// \param Fns The set of non-member functions that will be
   10677 /// considered by overload resolution. The caller needs to build this
   10678 /// set based on the context using, e.g.,
   10679 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
   10680 /// set should not contain any member functions; those will be added
   10681 /// by CreateOverloadedUnaryOp().
   10682 ///
   10683 /// \param Input The input argument.
   10684 ExprResult
   10685 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
   10686                               const UnresolvedSetImpl &Fns,
   10687                               Expr *Input) {
   10688   UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
   10689 
   10690   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
   10691   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
   10692   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   10693   // TODO: provide better source location info.
   10694   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
   10695 
   10696   if (checkPlaceholderForOverload(*this, Input))
   10697     return ExprError();
   10698 
   10699   Expr *Args[2] = { Input, nullptr };
   10700   unsigned NumArgs = 1;
   10701 
   10702   // For post-increment and post-decrement, add the implicit '0' as
   10703   // the second argument, so that we know this is a post-increment or
   10704   // post-decrement.
   10705   if (Opc == UO_PostInc || Opc == UO_PostDec) {
   10706     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
   10707     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
   10708                                      SourceLocation());
   10709     NumArgs = 2;
   10710   }
   10711 
   10712   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
   10713 
   10714   if (Input->isTypeDependent()) {
   10715     if (Fns.empty())
   10716       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
   10717                                          VK_RValue, OK_Ordinary, OpLoc);
   10718 
   10719     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   10720     UnresolvedLookupExpr *Fn
   10721       = UnresolvedLookupExpr::Create(Context, NamingClass,
   10722                                      NestedNameSpecifierLoc(), OpNameInfo,
   10723                                      /*ADL*/ true, IsOverloaded(Fns),
   10724                                      Fns.begin(), Fns.end());
   10725     return new (Context)
   10726         CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
   10727                             VK_RValue, OpLoc, false);
   10728   }
   10729 
   10730   // Build an empty overload set.
   10731   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
   10732 
   10733   // Add the candidates from the given function set.
   10734   AddFunctionCandidates(Fns, ArgsArray, CandidateSet, false);
   10735 
   10736   // Add operator candidates that are member functions.
   10737   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
   10738 
   10739   // Add candidates from ADL.
   10740   AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
   10741                                        /*ExplicitTemplateArgs*/nullptr,
   10742                                        CandidateSet);
   10743 
   10744   // Add builtin operator candidates.
   10745   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
   10746 
   10747   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   10748 
   10749   // Perform overload resolution.
   10750   OverloadCandidateSet::iterator Best;
   10751   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   10752   case OR_Success: {
   10753     // We found a built-in operator or an overloaded operator.
   10754     FunctionDecl *FnDecl = Best->Function;
   10755 
   10756     if (FnDecl) {
   10757       // We matched an overloaded operator. Build a call to that
   10758       // operator.
   10759 
   10760       // Convert the arguments.
   10761       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
   10762         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
   10763 
   10764         ExprResult InputRes =
   10765           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
   10766                                               Best->FoundDecl, Method);
   10767         if (InputRes.isInvalid())
   10768           return ExprError();
   10769         Input = InputRes.get();
   10770       } else {
   10771         // Convert the arguments.
   10772         ExprResult InputInit
   10773           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   10774                                                       Context,
   10775                                                       FnDecl->getParamDecl(0)),
   10776                                       SourceLocation(),
   10777                                       Input);
   10778         if (InputInit.isInvalid())
   10779           return ExprError();
   10780         Input = InputInit.get();
   10781       }
   10782 
   10783       // Build the actual expression node.
   10784       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
   10785                                                 HadMultipleCandidates, OpLoc);
   10786       if (FnExpr.isInvalid())
   10787         return ExprError();
   10788 
   10789       // Determine the result type.
   10790       QualType ResultTy = FnDecl->getReturnType();
   10791       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   10792       ResultTy = ResultTy.getNonLValueExprType(Context);
   10793 
   10794       Args[0] = Input;
   10795       CallExpr *TheCall =
   10796         new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
   10797                                           ResultTy, VK, OpLoc, false);
   10798 
   10799       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
   10800         return ExprError();
   10801 
   10802       return MaybeBindToTemporary(TheCall);
   10803     } else {
   10804       // We matched a built-in operator. Convert the arguments, then
   10805       // break out so that we will build the appropriate built-in
   10806       // operator node.
   10807       ExprResult InputRes =
   10808         PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
   10809                                   Best->Conversions[0], AA_Passing);
   10810       if (InputRes.isInvalid())
   10811         return ExprError();
   10812       Input = InputRes.get();
   10813       break;
   10814     }
   10815   }
   10816 
   10817   case OR_No_Viable_Function:
   10818     // This is an erroneous use of an operator which can be overloaded by
   10819     // a non-member function. Check for non-member operators which were
   10820     // defined too late to be candidates.
   10821     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
   10822       // FIXME: Recover by calling the found function.
   10823       return ExprError();
   10824 
   10825     // No viable function; fall through to handling this as a
   10826     // built-in operator, which will produce an error message for us.
   10827     break;
   10828 
   10829   case OR_Ambiguous:
   10830     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
   10831         << UnaryOperator::getOpcodeStr(Opc)
   10832         << Input->getType()
   10833         << Input->getSourceRange();
   10834     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
   10835                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
   10836     return ExprError();
   10837 
   10838   case OR_Deleted:
   10839     Diag(OpLoc, diag::err_ovl_deleted_oper)
   10840       << Best->Function->isDeleted()
   10841       << UnaryOperator::getOpcodeStr(Opc)
   10842       << getDeletedOrUnavailableSuffix(Best->Function)
   10843       << Input->getSourceRange();
   10844     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
   10845                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
   10846     return ExprError();
   10847   }
   10848 
   10849   // Either we found no viable overloaded operator or we matched a
   10850   // built-in operator. In either case, fall through to trying to
   10851   // build a built-in operation.
   10852   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   10853 }
   10854 
   10855 /// \brief Create a binary operation that may resolve to an overloaded
   10856 /// operator.
   10857 ///
   10858 /// \param OpLoc The location of the operator itself (e.g., '+').
   10859 ///
   10860 /// \param OpcIn The BinaryOperator::Opcode that describes this
   10861 /// operator.
   10862 ///
   10863 /// \param Fns The set of non-member functions that will be
   10864 /// considered by overload resolution. The caller needs to build this
   10865 /// set based on the context using, e.g.,
   10866 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
   10867 /// set should not contain any member functions; those will be added
   10868 /// by CreateOverloadedBinOp().
   10869 ///
   10870 /// \param LHS Left-hand argument.
   10871 /// \param RHS Right-hand argument.
   10872 ExprResult
   10873 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
   10874                             unsigned OpcIn,
   10875                             const UnresolvedSetImpl &Fns,
   10876                             Expr *LHS, Expr *RHS) {
   10877   Expr *Args[2] = { LHS, RHS };
   10878   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
   10879 
   10880   BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
   10881   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
   10882   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   10883 
   10884   // If either side is type-dependent, create an appropriate dependent
   10885   // expression.
   10886   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
   10887     if (Fns.empty()) {
   10888       // If there are no functions to store, just build a dependent
   10889       // BinaryOperator or CompoundAssignment.
   10890       if (Opc <= BO_Assign || Opc > BO_OrAssign)
   10891         return new (Context) BinaryOperator(
   10892             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
   10893             OpLoc, FPFeatures.fp_contract);
   10894 
   10895       return new (Context) CompoundAssignOperator(
   10896           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
   10897           Context.DependentTy, Context.DependentTy, OpLoc,
   10898           FPFeatures.fp_contract);
   10899     }
   10900 
   10901     // FIXME: save results of ADL from here?
   10902     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   10903     // TODO: provide better source location info in DNLoc component.
   10904     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
   10905     UnresolvedLookupExpr *Fn
   10906       = UnresolvedLookupExpr::Create(Context, NamingClass,
   10907                                      NestedNameSpecifierLoc(), OpNameInfo,
   10908                                      /*ADL*/ true, IsOverloaded(Fns),
   10909                                      Fns.begin(), Fns.end());
   10910     return new (Context)
   10911         CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
   10912                             VK_RValue, OpLoc, FPFeatures.fp_contract);
   10913   }
   10914 
   10915   // Always do placeholder-like conversions on the RHS.
   10916   if (checkPlaceholderForOverload(*this, Args[1]))
   10917     return ExprError();
   10918 
   10919   // Do placeholder-like conversion on the LHS; note that we should
   10920   // not get here with a PseudoObject LHS.
   10921   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
   10922   if (checkPlaceholderForOverload(*this, Args[0]))
   10923     return ExprError();
   10924 
   10925   // If this is the assignment operator, we only perform overload resolution
   10926   // if the left-hand side is a class or enumeration type. This is actually
   10927   // a hack. The standard requires that we do overload resolution between the
   10928   // various built-in candidates, but as DR507 points out, this can lead to
   10929   // problems. So we do it this way, which pretty much follows what GCC does.
   10930   // Note that we go the traditional code path for compound assignment forms.
   10931   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
   10932     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   10933 
   10934   // If this is the .* operator, which is not overloadable, just
   10935   // create a built-in binary operator.
   10936   if (Opc == BO_PtrMemD)
   10937     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   10938 
   10939   // Build an empty overload set.
   10940   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
   10941 
   10942   // Add the candidates from the given function set.
   10943   AddFunctionCandidates(Fns, Args, CandidateSet, false);
   10944 
   10945   // Add operator candidates that are member functions.
   10946   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
   10947 
   10948   // Add candidates from ADL.
   10949   AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
   10950                                        /*ExplicitTemplateArgs*/ nullptr,
   10951                                        CandidateSet);
   10952 
   10953   // Add builtin operator candidates.
   10954   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
   10955 
   10956   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   10957 
   10958   // Perform overload resolution.
   10959   OverloadCandidateSet::iterator Best;
   10960   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   10961     case OR_Success: {
   10962       // We found a built-in operator or an overloaded operator.
   10963       FunctionDecl *FnDecl = Best->Function;
   10964 
   10965       if (FnDecl) {
   10966         // We matched an overloaded operator. Build a call to that
   10967         // operator.
   10968 
   10969         // Convert the arguments.
   10970         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
   10971           // Best->Access is only meaningful for class members.
   10972           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
   10973 
   10974           ExprResult Arg1 =
   10975             PerformCopyInitialization(
   10976               InitializedEntity::InitializeParameter(Context,
   10977                                                      FnDecl->getParamDecl(0)),
   10978               SourceLocation(), Args[1]);
   10979           if (Arg1.isInvalid())
   10980             return ExprError();
   10981 
   10982           ExprResult Arg0 =
   10983             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   10984                                                 Best->FoundDecl, Method);
   10985           if (Arg0.isInvalid())
   10986             return ExprError();
   10987           Args[0] = Arg0.getAs<Expr>();
   10988           Args[1] = RHS = Arg1.getAs<Expr>();
   10989         } else {
   10990           // Convert the arguments.
   10991           ExprResult Arg0 = PerformCopyInitialization(
   10992             InitializedEntity::InitializeParameter(Context,
   10993                                                    FnDecl->getParamDecl(0)),
   10994             SourceLocation(), Args[0]);
   10995           if (Arg0.isInvalid())
   10996             return ExprError();
   10997 
   10998           ExprResult Arg1 =
   10999             PerformCopyInitialization(
   11000               InitializedEntity::InitializeParameter(Context,
   11001                                                      FnDecl->getParamDecl(1)),
   11002               SourceLocation(), Args[1]);
   11003           if (Arg1.isInvalid())
   11004             return ExprError();
   11005           Args[0] = LHS = Arg0.getAs<Expr>();
   11006           Args[1] = RHS = Arg1.getAs<Expr>();
   11007         }
   11008 
   11009         // Build the actual expression node.
   11010         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
   11011                                                   Best->FoundDecl,
   11012                                                   HadMultipleCandidates, OpLoc);
   11013         if (FnExpr.isInvalid())
   11014           return ExprError();
   11015 
   11016         // Determine the result type.
   11017         QualType ResultTy = FnDecl->getReturnType();
   11018         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11019         ResultTy = ResultTy.getNonLValueExprType(Context);
   11020 
   11021         CXXOperatorCallExpr *TheCall =
   11022           new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
   11023                                             Args, ResultTy, VK, OpLoc,
   11024                                             FPFeatures.fp_contract);
   11025 
   11026         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
   11027                                 FnDecl))
   11028           return ExprError();
   11029 
   11030         ArrayRef<const Expr *> ArgsArray(Args, 2);
   11031         // Cut off the implicit 'this'.
   11032         if (isa<CXXMethodDecl>(FnDecl))
   11033           ArgsArray = ArgsArray.slice(1);
   11034         checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc,
   11035                   TheCall->getSourceRange(), VariadicDoesNotApply);
   11036 
   11037         return MaybeBindToTemporary(TheCall);
   11038       } else {
   11039         // We matched a built-in operator. Convert the arguments, then
   11040         // break out so that we will build the appropriate built-in
   11041         // operator node.
   11042         ExprResult ArgsRes0 =
   11043           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
   11044                                     Best->Conversions[0], AA_Passing);
   11045         if (ArgsRes0.isInvalid())
   11046           return ExprError();
   11047         Args[0] = ArgsRes0.get();
   11048 
   11049         ExprResult ArgsRes1 =
   11050           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
   11051                                     Best->Conversions[1], AA_Passing);
   11052         if (ArgsRes1.isInvalid())
   11053           return ExprError();
   11054         Args[1] = ArgsRes1.get();
   11055         break;
   11056       }
   11057     }
   11058 
   11059     case OR_No_Viable_Function: {
   11060       // C++ [over.match.oper]p9:
   11061       //   If the operator is the operator , [...] and there are no
   11062       //   viable functions, then the operator is assumed to be the
   11063       //   built-in operator and interpreted according to clause 5.
   11064       if (Opc == BO_Comma)
   11065         break;
   11066 
   11067       // For class as left operand for assignment or compound assigment
   11068       // operator do not fall through to handling in built-in, but report that
   11069       // no overloaded assignment operator found
   11070       ExprResult Result = ExprError();
   11071       if (Args[0]->getType()->isRecordType() &&
   11072           Opc >= BO_Assign && Opc <= BO_OrAssign) {
   11073         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
   11074              << BinaryOperator::getOpcodeStr(Opc)
   11075              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11076         if (Args[0]->getType()->isIncompleteType()) {
   11077           Diag(OpLoc, diag::note_assign_lhs_incomplete)
   11078             << Args[0]->getType()
   11079             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11080         }
   11081       } else {
   11082         // This is an erroneous use of an operator which can be overloaded by
   11083         // a non-member function. Check for non-member operators which were
   11084         // defined too late to be candidates.
   11085         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
   11086           // FIXME: Recover by calling the found function.
   11087           return ExprError();
   11088 
   11089         // No viable function; try to create a built-in operation, which will
   11090         // produce an error. Then, show the non-viable candidates.
   11091         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11092       }
   11093       assert(Result.isInvalid() &&
   11094              "C++ binary operator overloading is missing candidates!");
   11095       if (Result.isInvalid())
   11096         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11097                                     BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11098       return Result;
   11099     }
   11100 
   11101     case OR_Ambiguous:
   11102       Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
   11103           << BinaryOperator::getOpcodeStr(Opc)
   11104           << Args[0]->getType() << Args[1]->getType()
   11105           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11106       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
   11107                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11108       return ExprError();
   11109 
   11110     case OR_Deleted:
   11111       if (isImplicitlyDeleted(Best->Function)) {
   11112         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   11113         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
   11114           << Context.getRecordType(Method->getParent())
   11115           << getSpecialMember(Method);
   11116 
   11117         // The user probably meant to call this special member. Just
   11118         // explain why it's deleted.
   11119         NoteDeletedFunction(Method);
   11120         return ExprError();
   11121       } else {
   11122         Diag(OpLoc, diag::err_ovl_deleted_oper)
   11123           << Best->Function->isDeleted()
   11124           << BinaryOperator::getOpcodeStr(Opc)
   11125           << getDeletedOrUnavailableSuffix(Best->Function)
   11126           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11127       }
   11128       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11129                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11130       return ExprError();
   11131   }
   11132 
   11133   // We matched a built-in operator; build it.
   11134   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11135 }
   11136 
   11137 ExprResult
   11138 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
   11139                                          SourceLocation RLoc,
   11140                                          Expr *Base, Expr *Idx) {
   11141   Expr *Args[2] = { Base, Idx };
   11142   DeclarationName OpName =
   11143       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
   11144 
   11145   // If either side is type-dependent, create an appropriate dependent
   11146   // expression.
   11147   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
   11148 
   11149     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   11150     // CHECKME: no 'operator' keyword?
   11151     DeclarationNameInfo OpNameInfo(OpName, LLoc);
   11152     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
   11153     UnresolvedLookupExpr *Fn
   11154       = UnresolvedLookupExpr::Create(Context, NamingClass,
   11155                                      NestedNameSpecifierLoc(), OpNameInfo,
   11156                                      /*ADL*/ true, /*Overloaded*/ false,
   11157                                      UnresolvedSetIterator(),
   11158                                      UnresolvedSetIterator());
   11159     // Can't add any actual overloads yet
   11160 
   11161     return new (Context)
   11162         CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
   11163                             Context.DependentTy, VK_RValue, RLoc, false);
   11164   }
   11165 
   11166   // Handle placeholders on both operands.
   11167   if (checkPlaceholderForOverload(*this, Args[0]))
   11168     return ExprError();
   11169   if (checkPlaceholderForOverload(*this, Args[1]))
   11170     return ExprError();
   11171 
   11172   // Build an empty overload set.
   11173   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
   11174 
   11175   // Subscript can only be overloaded as a member function.
   11176 
   11177   // Add operator candidates that are member functions.
   11178   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
   11179 
   11180   // Add builtin operator candidates.
   11181   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
   11182 
   11183   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11184 
   11185   // Perform overload resolution.
   11186   OverloadCandidateSet::iterator Best;
   11187   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
   11188     case OR_Success: {
   11189       // We found a built-in operator or an overloaded operator.
   11190       FunctionDecl *FnDecl = Best->Function;
   11191 
   11192       if (FnDecl) {
   11193         // We matched an overloaded operator. Build a call to that
   11194         // operator.
   11195 
   11196         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
   11197 
   11198         // Convert the arguments.
   11199         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
   11200         ExprResult Arg0 =
   11201           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   11202                                               Best->FoundDecl, Method);
   11203         if (Arg0.isInvalid())
   11204           return ExprError();
   11205         Args[0] = Arg0.get();
   11206 
   11207         // Convert the arguments.
   11208         ExprResult InputInit
   11209           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   11210                                                       Context,
   11211                                                       FnDecl->getParamDecl(0)),
   11212                                       SourceLocation(),
   11213                                       Args[1]);
   11214         if (InputInit.isInvalid())
   11215           return ExprError();
   11216 
   11217         Args[1] = InputInit.getAs<Expr>();
   11218 
   11219         // Build the actual expression node.
   11220         DeclarationNameInfo OpLocInfo(OpName, LLoc);
   11221         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
   11222         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
   11223                                                   Best->FoundDecl,
   11224                                                   HadMultipleCandidates,
   11225                                                   OpLocInfo.getLoc(),
   11226                                                   OpLocInfo.getInfo());
   11227         if (FnExpr.isInvalid())
   11228           return ExprError();
   11229 
   11230         // Determine the result type
   11231         QualType ResultTy = FnDecl->getReturnType();
   11232         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11233         ResultTy = ResultTy.getNonLValueExprType(Context);
   11234 
   11235         CXXOperatorCallExpr *TheCall =
   11236           new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
   11237                                             FnExpr.get(), Args,
   11238                                             ResultTy, VK, RLoc,
   11239                                             false);
   11240 
   11241         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
   11242           return ExprError();
   11243 
   11244         return MaybeBindToTemporary(TheCall);
   11245       } else {
   11246         // We matched a built-in operator. Convert the arguments, then
   11247         // break out so that we will build the appropriate built-in
   11248         // operator node.
   11249         ExprResult ArgsRes0 =
   11250           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
   11251                                     Best->Conversions[0], AA_Passing);
   11252         if (ArgsRes0.isInvalid())
   11253           return ExprError();
   11254         Args[0] = ArgsRes0.get();
   11255 
   11256         ExprResult ArgsRes1 =
   11257           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
   11258                                     Best->Conversions[1], AA_Passing);
   11259         if (ArgsRes1.isInvalid())
   11260           return ExprError();
   11261         Args[1] = ArgsRes1.get();
   11262 
   11263         break;
   11264       }
   11265     }
   11266 
   11267     case OR_No_Viable_Function: {
   11268       if (CandidateSet.empty())
   11269         Diag(LLoc, diag::err_ovl_no_oper)
   11270           << Args[0]->getType() << /*subscript*/ 0
   11271           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11272       else
   11273         Diag(LLoc, diag::err_ovl_no_viable_subscript)
   11274           << Args[0]->getType()
   11275           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11276       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11277                                   "[]", LLoc);
   11278       return ExprError();
   11279     }
   11280 
   11281     case OR_Ambiguous:
   11282       Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
   11283           << "[]"
   11284           << Args[0]->getType() << Args[1]->getType()
   11285           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11286       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
   11287                                   "[]", LLoc);
   11288       return ExprError();
   11289 
   11290     case OR_Deleted:
   11291       Diag(LLoc, diag::err_ovl_deleted_oper)
   11292         << Best->Function->isDeleted() << "[]"
   11293         << getDeletedOrUnavailableSuffix(Best->Function)
   11294         << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11295       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11296                                   "[]", LLoc);
   11297       return ExprError();
   11298     }
   11299 
   11300   // We matched a built-in operator; build it.
   11301   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
   11302 }
   11303 
   11304 /// BuildCallToMemberFunction - Build a call to a member
   11305 /// function. MemExpr is the expression that refers to the member
   11306 /// function (and includes the object parameter), Args/NumArgs are the
   11307 /// arguments to the function call (not including the object
   11308 /// parameter). The caller needs to validate that the member
   11309 /// expression refers to a non-static member function or an overloaded
   11310 /// member function.
   11311 ExprResult
   11312 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
   11313                                 SourceLocation LParenLoc,
   11314                                 MultiExprArg Args,
   11315                                 SourceLocation RParenLoc) {
   11316   assert(MemExprE->getType() == Context.BoundMemberTy ||
   11317          MemExprE->getType() == Context.OverloadTy);
   11318 
   11319   // Dig out the member expression. This holds both the object
   11320   // argument and the member function we're referring to.
   11321   Expr *NakedMemExpr = MemExprE->IgnoreParens();
   11322 
   11323   // Determine whether this is a call to a pointer-to-member function.
   11324   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
   11325     assert(op->getType() == Context.BoundMemberTy);
   11326     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
   11327 
   11328     QualType fnType =
   11329       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
   11330 
   11331     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
   11332     QualType resultType = proto->getCallResultType(Context);
   11333     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
   11334 
   11335     // Check that the object type isn't more qualified than the
   11336     // member function we're calling.
   11337     Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
   11338 
   11339     QualType objectType = op->getLHS()->getType();
   11340     if (op->getOpcode() == BO_PtrMemI)
   11341       objectType = objectType->castAs<PointerType>()->getPointeeType();
   11342     Qualifiers objectQuals = objectType.getQualifiers();
   11343 
   11344     Qualifiers difference = objectQuals - funcQuals;
   11345     difference.removeObjCGCAttr();
   11346     difference.removeAddressSpace();
   11347     if (difference) {
   11348       std::string qualsString = difference.getAsString();
   11349       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
   11350         << fnType.getUnqualifiedType()
   11351         << qualsString
   11352         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
   11353     }
   11354 
   11355     CXXMemberCallExpr *call
   11356       = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
   11357                                         resultType, valueKind, RParenLoc);
   11358 
   11359     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
   11360                             call, nullptr))
   11361       return ExprError();
   11362 
   11363     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
   11364       return ExprError();
   11365 
   11366     if (CheckOtherCall(call, proto))
   11367       return ExprError();
   11368 
   11369     return MaybeBindToTemporary(call);
   11370   }
   11371 
   11372   UnbridgedCastsSet UnbridgedCasts;
   11373   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
   11374     return ExprError();
   11375 
   11376   MemberExpr *MemExpr;
   11377   CXXMethodDecl *Method = nullptr;
   11378   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
   11379   NestedNameSpecifier *Qualifier = nullptr;
   11380   if (isa<MemberExpr>(NakedMemExpr)) {
   11381     MemExpr = cast<MemberExpr>(NakedMemExpr);
   11382     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
   11383     FoundDecl = MemExpr->getFoundDecl();
   11384     Qualifier = MemExpr->getQualifier();
   11385     UnbridgedCasts.restore();
   11386   } else {
   11387     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
   11388     Qualifier = UnresExpr->getQualifier();
   11389 
   11390     QualType ObjectType = UnresExpr->getBaseType();
   11391     Expr::Classification ObjectClassification
   11392       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
   11393                             : UnresExpr->getBase()->Classify(Context);
   11394 
   11395     // Add overload candidates
   11396     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
   11397                                       OverloadCandidateSet::CSK_Normal);
   11398 
   11399     // FIXME: avoid copy.
   11400     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   11401     if (UnresExpr->hasExplicitTemplateArgs()) {
   11402       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
   11403       TemplateArgs = &TemplateArgsBuffer;
   11404     }
   11405 
   11406     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
   11407            E = UnresExpr->decls_end(); I != E; ++I) {
   11408 
   11409       NamedDecl *Func = *I;
   11410       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
   11411       if (isa<UsingShadowDecl>(Func))
   11412         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
   11413 
   11414 
   11415       // Microsoft supports direct constructor calls.
   11416       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
   11417         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
   11418                              Args, CandidateSet);
   11419       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
   11420         // If explicit template arguments were provided, we can't call a
   11421         // non-template member function.
   11422         if (TemplateArgs)
   11423           continue;
   11424 
   11425         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
   11426                            ObjectClassification, Args, CandidateSet,
   11427                            /*SuppressUserConversions=*/false);
   11428       } else {
   11429         AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
   11430                                    I.getPair(), ActingDC, TemplateArgs,
   11431                                    ObjectType,  ObjectClassification,
   11432                                    Args, CandidateSet,
   11433                                    /*SuppressUsedConversions=*/false);
   11434       }
   11435     }
   11436 
   11437     DeclarationName DeclName = UnresExpr->getMemberName();
   11438 
   11439     UnbridgedCasts.restore();
   11440 
   11441     OverloadCandidateSet::iterator Best;
   11442     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
   11443                                             Best)) {
   11444     case OR_Success:
   11445       Method = cast<CXXMethodDecl>(Best->Function);
   11446       FoundDecl = Best->FoundDecl;
   11447       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
   11448       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
   11449         return ExprError();
   11450       // If FoundDecl is different from Method (such as if one is a template
   11451       // and the other a specialization), make sure DiagnoseUseOfDecl is
   11452       // called on both.
   11453       // FIXME: This would be more comprehensively addressed by modifying
   11454       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
   11455       // being used.
   11456       if (Method != FoundDecl.getDecl() &&
   11457                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
   11458         return ExprError();
   11459       break;
   11460 
   11461     case OR_No_Viable_Function:
   11462       Diag(UnresExpr->getMemberLoc(),
   11463            diag::err_ovl_no_viable_member_function_in_call)
   11464         << DeclName << MemExprE->getSourceRange();
   11465       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11466       // FIXME: Leaking incoming expressions!
   11467       return ExprError();
   11468 
   11469     case OR_Ambiguous:
   11470       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
   11471         << DeclName << MemExprE->getSourceRange();
   11472       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11473       // FIXME: Leaking incoming expressions!
   11474       return ExprError();
   11475 
   11476     case OR_Deleted:
   11477       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
   11478         << Best->Function->isDeleted()
   11479         << DeclName
   11480         << getDeletedOrUnavailableSuffix(Best->Function)
   11481         << MemExprE->getSourceRange();
   11482       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11483       // FIXME: Leaking incoming expressions!
   11484       return ExprError();
   11485     }
   11486 
   11487     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
   11488 
   11489     // If overload resolution picked a static member, build a
   11490     // non-member call based on that function.
   11491     if (Method->isStatic()) {
   11492       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
   11493                                    RParenLoc);
   11494     }
   11495 
   11496     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
   11497   }
   11498 
   11499   QualType ResultType = Method->getReturnType();
   11500   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   11501   ResultType = ResultType.getNonLValueExprType(Context);
   11502 
   11503   assert(Method && "Member call to something that isn't a method?");
   11504   CXXMemberCallExpr *TheCall =
   11505     new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
   11506                                     ResultType, VK, RParenLoc);
   11507 
   11508   // Check for a valid return type.
   11509   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
   11510                           TheCall, Method))
   11511     return ExprError();
   11512 
   11513   // Convert the object argument (for a non-static member function call).
   11514   // We only need to do this if there was actually an overload; otherwise
   11515   // it was done at lookup.
   11516   if (!Method->isStatic()) {
   11517     ExprResult ObjectArg =
   11518       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
   11519                                           FoundDecl, Method);
   11520     if (ObjectArg.isInvalid())
   11521       return ExprError();
   11522     MemExpr->setBase(ObjectArg.get());
   11523   }
   11524 
   11525   // Convert the rest of the arguments
   11526   const FunctionProtoType *Proto =
   11527     Method->getType()->getAs<FunctionProtoType>();
   11528   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
   11529                               RParenLoc))
   11530     return ExprError();
   11531 
   11532   DiagnoseSentinelCalls(Method, LParenLoc, Args);
   11533 
   11534   if (CheckFunctionCall(Method, TheCall, Proto))
   11535     return ExprError();
   11536 
   11537   if ((isa<CXXConstructorDecl>(CurContext) ||
   11538        isa<CXXDestructorDecl>(CurContext)) &&
   11539       TheCall->getMethodDecl()->isPure()) {
   11540     const CXXMethodDecl *MD = TheCall->getMethodDecl();
   11541 
   11542     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
   11543       Diag(MemExpr->getLocStart(),
   11544            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
   11545         << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
   11546         << MD->getParent()->getDeclName();
   11547 
   11548       Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
   11549     }
   11550   }
   11551   return MaybeBindToTemporary(TheCall);
   11552 }
   11553 
   11554 /// BuildCallToObjectOfClassType - Build a call to an object of class
   11555 /// type (C++ [over.call.object]), which can end up invoking an
   11556 /// overloaded function call operator (@c operator()) or performing a
   11557 /// user-defined conversion on the object argument.
   11558 ExprResult
   11559 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
   11560                                    SourceLocation LParenLoc,
   11561                                    MultiExprArg Args,
   11562                                    SourceLocation RParenLoc) {
   11563   if (checkPlaceholderForOverload(*this, Obj))
   11564     return ExprError();
   11565   ExprResult Object = Obj;
   11566 
   11567   UnbridgedCastsSet UnbridgedCasts;
   11568   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
   11569     return ExprError();
   11570 
   11571   assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
   11572   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
   11573 
   11574   // C++ [over.call.object]p1:
   11575   //  If the primary-expression E in the function call syntax
   11576   //  evaluates to a class object of type "cv T", then the set of
   11577   //  candidate functions includes at least the function call
   11578   //  operators of T. The function call operators of T are obtained by
   11579   //  ordinary lookup of the name operator() in the context of
   11580   //  (E).operator().
   11581   OverloadCandidateSet CandidateSet(LParenLoc,
   11582                                     OverloadCandidateSet::CSK_Operator);
   11583   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
   11584 
   11585   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
   11586                           diag::err_incomplete_object_call, Object.get()))
   11587     return true;
   11588 
   11589   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
   11590   LookupQualifiedName(R, Record->getDecl());
   11591   R.suppressDiagnostics();
   11592 
   11593   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
   11594        Oper != OperEnd; ++Oper) {
   11595     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
   11596                        Object.get()->Classify(Context),
   11597                        Args, CandidateSet,
   11598                        /*SuppressUserConversions=*/ false);
   11599   }
   11600 
   11601   // C++ [over.call.object]p2:
   11602   //   In addition, for each (non-explicit in C++0x) conversion function
   11603   //   declared in T of the form
   11604   //
   11605   //        operator conversion-type-id () cv-qualifier;
   11606   //
   11607   //   where cv-qualifier is the same cv-qualification as, or a
   11608   //   greater cv-qualification than, cv, and where conversion-type-id
   11609   //   denotes the type "pointer to function of (P1,...,Pn) returning
   11610   //   R", or the type "reference to pointer to function of
   11611   //   (P1,...,Pn) returning R", or the type "reference to function
   11612   //   of (P1,...,Pn) returning R", a surrogate call function [...]
   11613   //   is also considered as a candidate function. Similarly,
   11614   //   surrogate call functions are added to the set of candidate
   11615   //   functions for each conversion function declared in an
   11616   //   accessible base class provided the function is not hidden
   11617   //   within T by another intervening declaration.
   11618   std::pair<CXXRecordDecl::conversion_iterator,
   11619             CXXRecordDecl::conversion_iterator> Conversions
   11620     = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
   11621   for (CXXRecordDecl::conversion_iterator
   11622          I = Conversions.first, E = Conversions.second; I != E; ++I) {
   11623     NamedDecl *D = *I;
   11624     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   11625     if (isa<UsingShadowDecl>(D))
   11626       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   11627 
   11628     // Skip over templated conversion functions; they aren't
   11629     // surrogates.
   11630     if (isa<FunctionTemplateDecl>(D))
   11631       continue;
   11632 
   11633     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   11634     if (!Conv->isExplicit()) {
   11635       // Strip the reference type (if any) and then the pointer type (if
   11636       // any) to get down to what might be a function type.
   11637       QualType ConvType = Conv->getConversionType().getNonReferenceType();
   11638       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   11639         ConvType = ConvPtrType->getPointeeType();
   11640 
   11641       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
   11642       {
   11643         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
   11644                               Object.get(), Args, CandidateSet);
   11645       }
   11646     }
   11647   }
   11648 
   11649   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11650 
   11651   // Perform overload resolution.
   11652   OverloadCandidateSet::iterator Best;
   11653   switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
   11654                              Best)) {
   11655   case OR_Success:
   11656     // Overload resolution succeeded; we'll build the appropriate call
   11657     // below.
   11658     break;
   11659 
   11660   case OR_No_Viable_Function:
   11661     if (CandidateSet.empty())
   11662       Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
   11663         << Object.get()->getType() << /*call*/ 1
   11664         << Object.get()->getSourceRange();
   11665     else
   11666       Diag(Object.get()->getLocStart(),
   11667            diag::err_ovl_no_viable_object_call)
   11668         << Object.get()->getType() << Object.get()->getSourceRange();
   11669     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11670     break;
   11671 
   11672   case OR_Ambiguous:
   11673     Diag(Object.get()->getLocStart(),
   11674          diag::err_ovl_ambiguous_object_call)
   11675       << Object.get()->getType() << Object.get()->getSourceRange();
   11676     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
   11677     break;
   11678 
   11679   case OR_Deleted:
   11680     Diag(Object.get()->getLocStart(),
   11681          diag::err_ovl_deleted_object_call)
   11682       << Best->Function->isDeleted()
   11683       << Object.get()->getType()
   11684       << getDeletedOrUnavailableSuffix(Best->Function)
   11685       << Object.get()->getSourceRange();
   11686     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11687     break;
   11688   }
   11689 
   11690   if (Best == CandidateSet.end())
   11691     return true;
   11692 
   11693   UnbridgedCasts.restore();
   11694 
   11695   if (Best->Function == nullptr) {
   11696     // Since there is no function declaration, this is one of the
   11697     // surrogate candidates. Dig out the conversion function.
   11698     CXXConversionDecl *Conv
   11699       = cast<CXXConversionDecl>(
   11700                          Best->Conversions[0].UserDefined.ConversionFunction);
   11701 
   11702     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
   11703                               Best->FoundDecl);
   11704     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
   11705       return ExprError();
   11706     assert(Conv == Best->FoundDecl.getDecl() &&
   11707              "Found Decl & conversion-to-functionptr should be same, right?!");
   11708     // We selected one of the surrogate functions that converts the
   11709     // object parameter to a function pointer. Perform the conversion
   11710     // on the object argument, then let ActOnCallExpr finish the job.
   11711 
   11712     // Create an implicit member expr to refer to the conversion operator.
   11713     // and then call it.
   11714     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
   11715                                              Conv, HadMultipleCandidates);
   11716     if (Call.isInvalid())
   11717       return ExprError();
   11718     // Record usage of conversion in an implicit cast.
   11719     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
   11720                                     CK_UserDefinedConversion, Call.get(),
   11721                                     nullptr, VK_RValue);
   11722 
   11723     return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
   11724   }
   11725 
   11726   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
   11727 
   11728   // We found an overloaded operator(). Build a CXXOperatorCallExpr
   11729   // that calls this method, using Object for the implicit object
   11730   // parameter and passing along the remaining arguments.
   11731   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   11732 
   11733   // An error diagnostic has already been printed when parsing the declaration.
   11734   if (Method->isInvalidDecl())
   11735     return ExprError();
   11736 
   11737   const FunctionProtoType *Proto =
   11738     Method->getType()->getAs<FunctionProtoType>();
   11739 
   11740   unsigned NumParams = Proto->getNumParams();
   11741 
   11742   DeclarationNameInfo OpLocInfo(
   11743                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
   11744   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
   11745   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
   11746                                            HadMultipleCandidates,
   11747                                            OpLocInfo.getLoc(),
   11748                                            OpLocInfo.getInfo());
   11749   if (NewFn.isInvalid())
   11750     return true;
   11751 
   11752   // Build the full argument list for the method call (the implicit object
   11753   // parameter is placed at the beginning of the list).
   11754   std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
   11755   MethodArgs[0] = Object.get();
   11756   std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
   11757 
   11758   // Once we've built TheCall, all of the expressions are properly
   11759   // owned.
   11760   QualType ResultTy = Method->getReturnType();
   11761   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11762   ResultTy = ResultTy.getNonLValueExprType(Context);
   11763 
   11764   CXXOperatorCallExpr *TheCall = new (Context)
   11765       CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
   11766                           llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
   11767                           ResultTy, VK, RParenLoc, false);
   11768   MethodArgs.reset();
   11769 
   11770   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
   11771     return true;
   11772 
   11773   // We may have default arguments. If so, we need to allocate more
   11774   // slots in the call for them.
   11775   if (Args.size() < NumParams)
   11776     TheCall->setNumArgs(Context, NumParams + 1);
   11777 
   11778   bool IsError = false;
   11779 
   11780   // Initialize the implicit object parameter.
   11781   ExprResult ObjRes =
   11782     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
   11783                                         Best->FoundDecl, Method);
   11784   if (ObjRes.isInvalid())
   11785     IsError = true;
   11786   else
   11787     Object = ObjRes;
   11788   TheCall->setArg(0, Object.get());
   11789 
   11790   // Check the argument types.
   11791   for (unsigned i = 0; i != NumParams; i++) {
   11792     Expr *Arg;
   11793     if (i < Args.size()) {
   11794       Arg = Args[i];
   11795 
   11796       // Pass the argument.
   11797 
   11798       ExprResult InputInit
   11799         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   11800                                                     Context,
   11801                                                     Method->getParamDecl(i)),
   11802                                     SourceLocation(), Arg);
   11803 
   11804       IsError |= InputInit.isInvalid();
   11805       Arg = InputInit.getAs<Expr>();
   11806     } else {
   11807       ExprResult DefArg
   11808         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
   11809       if (DefArg.isInvalid()) {
   11810         IsError = true;
   11811         break;
   11812       }
   11813 
   11814       Arg = DefArg.getAs<Expr>();
   11815     }
   11816 
   11817     TheCall->setArg(i + 1, Arg);
   11818   }
   11819 
   11820   // If this is a variadic call, handle args passed through "...".
   11821   if (Proto->isVariadic()) {
   11822     // Promote the arguments (C99 6.5.2.2p7).
   11823     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
   11824       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
   11825                                                         nullptr);
   11826       IsError |= Arg.isInvalid();
   11827       TheCall->setArg(i + 1, Arg.get());
   11828     }
   11829   }
   11830 
   11831   if (IsError) return true;
   11832 
   11833   DiagnoseSentinelCalls(Method, LParenLoc, Args);
   11834 
   11835   if (CheckFunctionCall(Method, TheCall, Proto))
   11836     return true;
   11837 
   11838   return MaybeBindToTemporary(TheCall);
   11839 }
   11840 
   11841 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
   11842 ///  (if one exists), where @c Base is an expression of class type and
   11843 /// @c Member is the name of the member we're trying to find.
   11844 ExprResult
   11845 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
   11846                                bool *NoArrowOperatorFound) {
   11847   assert(Base->getType()->isRecordType() &&
   11848          "left-hand side must have class type");
   11849 
   11850   if (checkPlaceholderForOverload(*this, Base))
   11851     return ExprError();
   11852 
   11853   SourceLocation Loc = Base->getExprLoc();
   11854 
   11855   // C++ [over.ref]p1:
   11856   //
   11857   //   [...] An expression x->m is interpreted as (x.operator->())->m
   11858   //   for a class object x of type T if T::operator->() exists and if
   11859   //   the operator is selected as the best match function by the
   11860   //   overload resolution mechanism (13.3).
   11861   DeclarationName OpName =
   11862     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
   11863   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
   11864   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
   11865 
   11866   if (RequireCompleteType(Loc, Base->getType(),
   11867                           diag::err_typecheck_incomplete_tag, Base))
   11868     return ExprError();
   11869 
   11870   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
   11871   LookupQualifiedName(R, BaseRecord->getDecl());
   11872   R.suppressDiagnostics();
   11873 
   11874   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
   11875        Oper != OperEnd; ++Oper) {
   11876     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
   11877                        None, CandidateSet, /*SuppressUserConversions=*/false);
   11878   }
   11879 
   11880   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11881 
   11882   // Perform overload resolution.
   11883   OverloadCandidateSet::iterator Best;
   11884   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   11885   case OR_Success:
   11886     // Overload resolution succeeded; we'll build the call below.
   11887     break;
   11888 
   11889   case OR_No_Viable_Function:
   11890     if (CandidateSet.empty()) {
   11891       QualType BaseType = Base->getType();
   11892       if (NoArrowOperatorFound) {
   11893         // Report this specific error to the caller instead of emitting a
   11894         // diagnostic, as requested.
   11895         *NoArrowOperatorFound = true;
   11896         return ExprError();
   11897       }
   11898       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
   11899         << BaseType << Base->getSourceRange();
   11900       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
   11901         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
   11902           << FixItHint::CreateReplacement(OpLoc, ".");
   11903       }
   11904     } else
   11905       Diag(OpLoc, diag::err_ovl_no_viable_oper)
   11906         << "operator->" << Base->getSourceRange();
   11907     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
   11908     return ExprError();
   11909 
   11910   case OR_Ambiguous:
   11911     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
   11912       << "->" << Base->getType() << Base->getSourceRange();
   11913     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
   11914     return ExprError();
   11915 
   11916   case OR_Deleted:
   11917     Diag(OpLoc,  diag::err_ovl_deleted_oper)
   11918       << Best->Function->isDeleted()
   11919       << "->"
   11920       << getDeletedOrUnavailableSuffix(Best->Function)
   11921       << Base->getSourceRange();
   11922     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
   11923     return ExprError();
   11924   }
   11925 
   11926   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
   11927 
   11928   // Convert the object parameter.
   11929   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   11930   ExprResult BaseResult =
   11931     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
   11932                                         Best->FoundDecl, Method);
   11933   if (BaseResult.isInvalid())
   11934     return ExprError();
   11935   Base = BaseResult.get();
   11936 
   11937   // Build the operator call.
   11938   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
   11939                                             HadMultipleCandidates, OpLoc);
   11940   if (FnExpr.isInvalid())
   11941     return ExprError();
   11942 
   11943   QualType ResultTy = Method->getReturnType();
   11944   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11945   ResultTy = ResultTy.getNonLValueExprType(Context);
   11946   CXXOperatorCallExpr *TheCall =
   11947     new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
   11948                                       Base, ResultTy, VK, OpLoc, false);
   11949 
   11950   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
   11951           return ExprError();
   11952 
   11953   return MaybeBindToTemporary(TheCall);
   11954 }
   11955 
   11956 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
   11957 /// a literal operator described by the provided lookup results.
   11958 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
   11959                                           DeclarationNameInfo &SuffixInfo,
   11960                                           ArrayRef<Expr*> Args,
   11961                                           SourceLocation LitEndLoc,
   11962                                        TemplateArgumentListInfo *TemplateArgs) {
   11963   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
   11964 
   11965   OverloadCandidateSet CandidateSet(UDSuffixLoc,
   11966                                     OverloadCandidateSet::CSK_Normal);
   11967   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
   11968                         TemplateArgs);
   11969 
   11970   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11971 
   11972   // Perform overload resolution. This will usually be trivial, but might need
   11973   // to perform substitutions for a literal operator template.
   11974   OverloadCandidateSet::iterator Best;
   11975   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
   11976   case OR_Success:
   11977   case OR_Deleted:
   11978     break;
   11979 
   11980   case OR_No_Viable_Function:
   11981     Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
   11982       << R.getLookupName();
   11983     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   11984     return ExprError();
   11985 
   11986   case OR_Ambiguous:
   11987     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
   11988     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
   11989     return ExprError();
   11990   }
   11991 
   11992   FunctionDecl *FD = Best->Function;
   11993   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
   11994                                         HadMultipleCandidates,
   11995                                         SuffixInfo.getLoc(),
   11996                                         SuffixInfo.getInfo());
   11997   if (Fn.isInvalid())
   11998     return true;
   11999 
   12000   // Check the argument types. This should almost always be a no-op, except
   12001   // that array-to-pointer decay is applied to string literals.
   12002   Expr *ConvArgs[2];
   12003   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   12004     ExprResult InputInit = PerformCopyInitialization(
   12005       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
   12006       SourceLocation(), Args[ArgIdx]);
   12007     if (InputInit.isInvalid())
   12008       return true;
   12009     ConvArgs[ArgIdx] = InputInit.get();
   12010   }
   12011 
   12012   QualType ResultTy = FD->getReturnType();
   12013   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12014   ResultTy = ResultTy.getNonLValueExprType(Context);
   12015 
   12016   UserDefinedLiteral *UDL =
   12017     new (Context) UserDefinedLiteral(Context, Fn.get(),
   12018                                      llvm::makeArrayRef(ConvArgs, Args.size()),
   12019                                      ResultTy, VK, LitEndLoc, UDSuffixLoc);
   12020 
   12021   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
   12022     return ExprError();
   12023 
   12024   if (CheckFunctionCall(FD, UDL, nullptr))
   12025     return ExprError();
   12026 
   12027   return MaybeBindToTemporary(UDL);
   12028 }
   12029 
   12030 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
   12031 /// given LookupResult is non-empty, it is assumed to describe a member which
   12032 /// will be invoked. Otherwise, the function will be found via argument
   12033 /// dependent lookup.
   12034 /// CallExpr is set to a valid expression and FRS_Success returned on success,
   12035 /// otherwise CallExpr is set to ExprError() and some non-success value
   12036 /// is returned.
   12037 Sema::ForRangeStatus
   12038 Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
   12039                                 SourceLocation RangeLoc, VarDecl *Decl,
   12040                                 BeginEndFunction BEF,
   12041                                 const DeclarationNameInfo &NameInfo,
   12042                                 LookupResult &MemberLookup,
   12043                                 OverloadCandidateSet *CandidateSet,
   12044                                 Expr *Range, ExprResult *CallExpr) {
   12045   CandidateSet->clear();
   12046   if (!MemberLookup.empty()) {
   12047     ExprResult MemberRef =
   12048         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
   12049                                  /*IsPtr=*/false, CXXScopeSpec(),
   12050                                  /*TemplateKWLoc=*/SourceLocation(),
   12051                                  /*FirstQualifierInScope=*/nullptr,
   12052                                  MemberLookup,
   12053                                  /*TemplateArgs=*/nullptr);
   12054     if (MemberRef.isInvalid()) {
   12055       *CallExpr = ExprError();
   12056       Diag(Range->getLocStart(), diag::note_in_for_range)
   12057           << RangeLoc << BEF << Range->getType();
   12058       return FRS_DiagnosticIssued;
   12059     }
   12060     *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
   12061     if (CallExpr->isInvalid()) {
   12062       *CallExpr = ExprError();
   12063       Diag(Range->getLocStart(), diag::note_in_for_range)
   12064           << RangeLoc << BEF << Range->getType();
   12065       return FRS_DiagnosticIssued;
   12066     }
   12067   } else {
   12068     UnresolvedSet<0> FoundNames;
   12069     UnresolvedLookupExpr *Fn =
   12070       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
   12071                                    NestedNameSpecifierLoc(), NameInfo,
   12072                                    /*NeedsADL=*/true, /*Overloaded=*/false,
   12073                                    FoundNames.begin(), FoundNames.end());
   12074 
   12075     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
   12076                                                     CandidateSet, CallExpr);
   12077     if (CandidateSet->empty() || CandidateSetError) {
   12078       *CallExpr = ExprError();
   12079       return FRS_NoViableFunction;
   12080     }
   12081     OverloadCandidateSet::iterator Best;
   12082     OverloadingResult OverloadResult =
   12083         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
   12084 
   12085     if (OverloadResult == OR_No_Viable_Function) {
   12086       *CallExpr = ExprError();
   12087       return FRS_NoViableFunction;
   12088     }
   12089     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
   12090                                          Loc, nullptr, CandidateSet, &Best,
   12091                                          OverloadResult,
   12092                                          /*AllowTypoCorrection=*/false);
   12093     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
   12094       *CallExpr = ExprError();
   12095       Diag(Range->getLocStart(), diag::note_in_for_range)
   12096           << RangeLoc << BEF << Range->getType();
   12097       return FRS_DiagnosticIssued;
   12098     }
   12099   }
   12100   return FRS_Success;
   12101 }
   12102 
   12103 
   12104 /// FixOverloadedFunctionReference - E is an expression that refers to
   12105 /// a C++ overloaded function (possibly with some parentheses and
   12106 /// perhaps a '&' around it). We have resolved the overloaded function
   12107 /// to the function declaration Fn, so patch up the expression E to
   12108 /// refer (possibly indirectly) to Fn. Returns the new expr.
   12109 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
   12110                                            FunctionDecl *Fn) {
   12111   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   12112     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
   12113                                                    Found, Fn);
   12114     if (SubExpr == PE->getSubExpr())
   12115       return PE;
   12116 
   12117     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
   12118   }
   12119 
   12120   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   12121     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
   12122                                                    Found, Fn);
   12123     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
   12124                                SubExpr->getType()) &&
   12125            "Implicit cast type cannot be determined from overload");
   12126     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
   12127     if (SubExpr == ICE->getSubExpr())
   12128       return ICE;
   12129 
   12130     return ImplicitCastExpr::Create(Context, ICE->getType(),
   12131                                     ICE->getCastKind(),
   12132                                     SubExpr, nullptr,
   12133                                     ICE->getValueKind());
   12134   }
   12135 
   12136   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
   12137     assert(UnOp->getOpcode() == UO_AddrOf &&
   12138            "Can only take the address of an overloaded function");
   12139     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
   12140       if (Method->isStatic()) {
   12141         // Do nothing: static member functions aren't any different
   12142         // from non-member functions.
   12143       } else {
   12144         // Fix the subexpression, which really has to be an
   12145         // UnresolvedLookupExpr holding an overloaded member function
   12146         // or template.
   12147         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
   12148                                                        Found, Fn);
   12149         if (SubExpr == UnOp->getSubExpr())
   12150           return UnOp;
   12151 
   12152         assert(isa<DeclRefExpr>(SubExpr)
   12153                && "fixed to something other than a decl ref");
   12154         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
   12155                && "fixed to a member ref with no nested name qualifier");
   12156 
   12157         // We have taken the address of a pointer to member
   12158         // function. Perform the computation here so that we get the
   12159         // appropriate pointer to member type.
   12160         QualType ClassType
   12161           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
   12162         QualType MemPtrType
   12163           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
   12164 
   12165         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
   12166                                            VK_RValue, OK_Ordinary,
   12167                                            UnOp->getOperatorLoc());
   12168       }
   12169     }
   12170     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
   12171                                                    Found, Fn);
   12172     if (SubExpr == UnOp->getSubExpr())
   12173       return UnOp;
   12174 
   12175     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
   12176                                      Context.getPointerType(SubExpr->getType()),
   12177                                        VK_RValue, OK_Ordinary,
   12178                                        UnOp->getOperatorLoc());
   12179   }
   12180 
   12181   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
   12182     // FIXME: avoid copy.
   12183     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   12184     if (ULE->hasExplicitTemplateArgs()) {
   12185       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
   12186       TemplateArgs = &TemplateArgsBuffer;
   12187     }
   12188 
   12189     DeclRefExpr *DRE = DeclRefExpr::Create(Context,
   12190                                            ULE->getQualifierLoc(),
   12191                                            ULE->getTemplateKeywordLoc(),
   12192                                            Fn,
   12193                                            /*enclosing*/ false, // FIXME?
   12194                                            ULE->getNameLoc(),
   12195                                            Fn->getType(),
   12196                                            VK_LValue,
   12197                                            Found.getDecl(),
   12198                                            TemplateArgs);
   12199     MarkDeclRefReferenced(DRE);
   12200     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
   12201     return DRE;
   12202   }
   12203 
   12204   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
   12205     // FIXME: avoid copy.
   12206     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   12207     if (MemExpr->hasExplicitTemplateArgs()) {
   12208       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
   12209       TemplateArgs = &TemplateArgsBuffer;
   12210     }
   12211 
   12212     Expr *Base;
   12213 
   12214     // If we're filling in a static method where we used to have an
   12215     // implicit member access, rewrite to a simple decl ref.
   12216     if (MemExpr->isImplicitAccess()) {
   12217       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
   12218         DeclRefExpr *DRE = DeclRefExpr::Create(Context,
   12219                                                MemExpr->getQualifierLoc(),
   12220                                                MemExpr->getTemplateKeywordLoc(),
   12221                                                Fn,
   12222                                                /*enclosing*/ false,
   12223                                                MemExpr->getMemberLoc(),
   12224                                                Fn->getType(),
   12225                                                VK_LValue,
   12226                                                Found.getDecl(),
   12227                                                TemplateArgs);
   12228         MarkDeclRefReferenced(DRE);
   12229         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
   12230         return DRE;
   12231       } else {
   12232         SourceLocation Loc = MemExpr->getMemberLoc();
   12233         if (MemExpr->getQualifier())
   12234           Loc = MemExpr->getQualifierLoc().getBeginLoc();
   12235         CheckCXXThisCapture(Loc);
   12236         Base = new (Context) CXXThisExpr(Loc,
   12237                                          MemExpr->getBaseType(),
   12238                                          /*isImplicit=*/true);
   12239       }
   12240     } else
   12241       Base = MemExpr->getBase();
   12242 
   12243     ExprValueKind valueKind;
   12244     QualType type;
   12245     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
   12246       valueKind = VK_LValue;
   12247       type = Fn->getType();
   12248     } else {
   12249       valueKind = VK_RValue;
   12250       type = Context.BoundMemberTy;
   12251     }
   12252 
   12253     MemberExpr *ME = MemberExpr::Create(Context, Base,
   12254                                         MemExpr->isArrow(),
   12255                                         MemExpr->getQualifierLoc(),
   12256                                         MemExpr->getTemplateKeywordLoc(),
   12257                                         Fn,
   12258                                         Found,
   12259                                         MemExpr->getMemberNameInfo(),
   12260                                         TemplateArgs,
   12261                                         type, valueKind, OK_Ordinary);
   12262     ME->setHadMultipleCandidates(true);
   12263     MarkMemberReferenced(ME);
   12264     return ME;
   12265   }
   12266 
   12267   llvm_unreachable("Invalid reference to overloaded function");
   12268 }
   12269 
   12270 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
   12271                                                 DeclAccessPair Found,
   12272                                                 FunctionDecl *Fn) {
   12273   return FixOverloadedFunctionReference(E.get(), Found, Fn);
   12274 }
   12275 
   12276 } // end namespace clang
   12277