1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "mark_sweep.h" 18 19 #include <functional> 20 #include <numeric> 21 #include <climits> 22 #include <vector> 23 24 #include "base/bounded_fifo.h" 25 #include "base/logging.h" 26 #include "base/macros.h" 27 #include "base/mutex-inl.h" 28 #include "base/timing_logger.h" 29 #include "gc/accounting/card_table-inl.h" 30 #include "gc/accounting/heap_bitmap-inl.h" 31 #include "gc/accounting/mod_union_table.h" 32 #include "gc/accounting/space_bitmap-inl.h" 33 #include "gc/heap.h" 34 #include "gc/reference_processor.h" 35 #include "gc/space/image_space.h" 36 #include "gc/space/large_object_space.h" 37 #include "gc/space/space-inl.h" 38 #include "mark_sweep-inl.h" 39 #include "mirror/art_field-inl.h" 40 #include "mirror/object-inl.h" 41 #include "runtime.h" 42 #include "scoped_thread_state_change.h" 43 #include "thread-inl.h" 44 #include "thread_list.h" 45 46 using ::art::mirror::Object; 47 48 namespace art { 49 namespace gc { 50 namespace collector { 51 52 // Performance options. 53 static constexpr bool kUseRecursiveMark = false; 54 static constexpr bool kUseMarkStackPrefetch = true; 55 static constexpr size_t kSweepArrayChunkFreeSize = 1024; 56 static constexpr bool kPreCleanCards = true; 57 58 // Parallelism options. 59 static constexpr bool kParallelCardScan = true; 60 static constexpr bool kParallelRecursiveMark = true; 61 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n 62 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not 63 // having this can add overhead in ProcessReferences since we may end up doing many calls of 64 // ProcessMarkStack with very small mark stacks. 65 static constexpr size_t kMinimumParallelMarkStackSize = 128; 66 static constexpr bool kParallelProcessMarkStack = true; 67 68 // Profiling and information flags. 69 static constexpr bool kProfileLargeObjects = false; 70 static constexpr bool kMeasureOverhead = false; 71 static constexpr bool kCountTasks = false; 72 static constexpr bool kCountJavaLangRefs = false; 73 static constexpr bool kCountMarkedObjects = false; 74 75 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. 76 static constexpr bool kCheckLocks = kDebugLocking; 77 static constexpr bool kVerifyRootsMarked = kIsDebugBuild; 78 79 // If true, revoke the rosalloc thread-local buffers at the 80 // checkpoint, as opposed to during the pause. 81 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true; 82 83 void MarkSweep::BindBitmaps() { 84 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 85 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 86 // Mark all of the spaces we never collect as immune. 87 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 88 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { 89 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space; 90 } 91 } 92 } 93 94 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) 95 : GarbageCollector(heap, 96 name_prefix + 97 (is_concurrent ? "concurrent mark sweep": "mark sweep")), 98 current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr), 99 gc_barrier_(new Barrier(0)), 100 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), 101 is_concurrent_(is_concurrent), live_stack_freeze_size_(0) { 102 std::string error_msg; 103 MemMap* mem_map = MemMap::MapAnonymous( 104 "mark sweep sweep array free buffer", nullptr, 105 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize), 106 PROT_READ | PROT_WRITE, false, &error_msg); 107 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg; 108 sweep_array_free_buffer_mem_map_.reset(mem_map); 109 } 110 111 void MarkSweep::InitializePhase() { 112 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 113 mark_stack_ = heap_->GetMarkStack(); 114 DCHECK(mark_stack_ != nullptr); 115 immune_region_.Reset(); 116 class_count_.StoreRelaxed(0); 117 array_count_.StoreRelaxed(0); 118 other_count_.StoreRelaxed(0); 119 large_object_test_.StoreRelaxed(0); 120 large_object_mark_.StoreRelaxed(0); 121 overhead_time_ .StoreRelaxed(0); 122 work_chunks_created_.StoreRelaxed(0); 123 work_chunks_deleted_.StoreRelaxed(0); 124 reference_count_.StoreRelaxed(0); 125 mark_null_count_.StoreRelaxed(0); 126 mark_immune_count_.StoreRelaxed(0); 127 mark_fastpath_count_.StoreRelaxed(0); 128 mark_slowpath_count_.StoreRelaxed(0); 129 { 130 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap. 131 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 132 mark_bitmap_ = heap_->GetMarkBitmap(); 133 } 134 if (!GetCurrentIteration()->GetClearSoftReferences()) { 135 // Always clear soft references if a non-sticky collection. 136 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky); 137 } 138 } 139 140 void MarkSweep::RunPhases() { 141 Thread* self = Thread::Current(); 142 InitializePhase(); 143 Locks::mutator_lock_->AssertNotHeld(self); 144 if (IsConcurrent()) { 145 GetHeap()->PreGcVerification(this); 146 { 147 ReaderMutexLock mu(self, *Locks::mutator_lock_); 148 MarkingPhase(); 149 } 150 ScopedPause pause(this); 151 GetHeap()->PrePauseRosAllocVerification(this); 152 PausePhase(); 153 RevokeAllThreadLocalBuffers(); 154 } else { 155 ScopedPause pause(this); 156 GetHeap()->PreGcVerificationPaused(this); 157 MarkingPhase(); 158 GetHeap()->PrePauseRosAllocVerification(this); 159 PausePhase(); 160 RevokeAllThreadLocalBuffers(); 161 } 162 { 163 // Sweeping always done concurrently, even for non concurrent mark sweep. 164 ReaderMutexLock mu(self, *Locks::mutator_lock_); 165 ReclaimPhase(); 166 } 167 GetHeap()->PostGcVerification(this); 168 FinishPhase(); 169 } 170 171 void MarkSweep::ProcessReferences(Thread* self) { 172 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 173 GetHeap()->GetReferenceProcessor()->ProcessReferences( 174 true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), 175 &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this); 176 } 177 178 void MarkSweep::PausePhase() { 179 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings()); 180 Thread* self = Thread::Current(); 181 Locks::mutator_lock_->AssertExclusiveHeld(self); 182 if (IsConcurrent()) { 183 // Handle the dirty objects if we are a concurrent GC. 184 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 185 // Re-mark root set. 186 ReMarkRoots(); 187 // Scan dirty objects, this is only required if we are not doing concurrent GC. 188 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); 189 } 190 { 191 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings()); 192 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 193 heap_->SwapStacks(self); 194 live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); 195 // Need to revoke all the thread local allocation stacks since we just swapped the allocation 196 // stacks and don't want anybody to allocate into the live stack. 197 RevokeAllThreadLocalAllocationStacks(self); 198 } 199 heap_->PreSweepingGcVerification(this); 200 // Disallow new system weaks to prevent a race which occurs when someone adds a new system 201 // weak before we sweep them. Since this new system weak may not be marked, the GC may 202 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong 203 // reference to a string that is about to be swept. 204 Runtime::Current()->DisallowNewSystemWeaks(); 205 // Enable the reference processing slow path, needs to be done with mutators paused since there 206 // is no lock in the GetReferent fast path. 207 GetHeap()->GetReferenceProcessor()->EnableSlowPath(); 208 } 209 210 void MarkSweep::PreCleanCards() { 211 // Don't do this for non concurrent GCs since they don't have any dirty cards. 212 if (kPreCleanCards && IsConcurrent()) { 213 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 214 Thread* self = Thread::Current(); 215 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)); 216 // Process dirty cards and add dirty cards to mod union tables, also ages cards. 217 heap_->ProcessCards(GetTimings(), false); 218 // The checkpoint root marking is required to avoid a race condition which occurs if the 219 // following happens during a reference write: 220 // 1. mutator dirties the card (write barrier) 221 // 2. GC ages the card (the above ProcessCards call) 222 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below) 223 // 4. mutator writes the value (corresponding to the write barrier in 1.) 224 // This causes the GC to age the card but not necessarily mark the reference which the mutator 225 // wrote into the object stored in the card. 226 // Having the checkpoint fixes this issue since it ensures that the card mark and the 227 // reference write are visible to the GC before the card is scanned (this is due to locks being 228 // acquired / released in the checkpoint code). 229 // The other roots are also marked to help reduce the pause. 230 MarkRootsCheckpoint(self, false); 231 MarkNonThreadRoots(); 232 MarkConcurrentRoots( 233 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots)); 234 // Process the newly aged cards. 235 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1); 236 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live 237 // in the next GC. 238 } 239 } 240 241 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) { 242 if (kUseThreadLocalAllocationStack) { 243 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 244 Locks::mutator_lock_->AssertExclusiveHeld(self); 245 heap_->RevokeAllThreadLocalAllocationStacks(self); 246 } 247 } 248 249 void MarkSweep::MarkingPhase() { 250 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 251 Thread* self = Thread::Current(); 252 BindBitmaps(); 253 FindDefaultSpaceBitmap(); 254 // Process dirty cards and add dirty cards to mod union tables. 255 heap_->ProcessCards(GetTimings(), false); 256 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 257 MarkRoots(self); 258 MarkReachableObjects(); 259 // Pre-clean dirtied cards to reduce pauses. 260 PreCleanCards(); 261 } 262 263 void MarkSweep::UpdateAndMarkModUnion() { 264 for (const auto& space : heap_->GetContinuousSpaces()) { 265 if (immune_region_.ContainsSpace(space)) { 266 const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" : 267 "UpdateAndMarkImageModUnionTable"; 268 TimingLogger::ScopedTiming t(name, GetTimings()); 269 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space); 270 CHECK(mod_union_table != nullptr); 271 mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this); 272 } 273 } 274 } 275 276 void MarkSweep::MarkReachableObjects() { 277 UpdateAndMarkModUnion(); 278 // Recursively mark all the non-image bits set in the mark bitmap. 279 RecursiveMark(); 280 } 281 282 void MarkSweep::ReclaimPhase() { 283 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 284 Thread* self = Thread::Current(); 285 // Process the references concurrently. 286 ProcessReferences(self); 287 SweepSystemWeaks(self); 288 Runtime::Current()->AllowNewSystemWeaks(); 289 { 290 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 291 // Reclaim unmarked objects. 292 Sweep(false); 293 // Swap the live and mark bitmaps for each space which we modified space. This is an 294 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound 295 // bitmaps. 296 SwapBitmaps(); 297 // Unbind the live and mark bitmaps. 298 GetHeap()->UnBindBitmaps(); 299 } 300 } 301 302 void MarkSweep::FindDefaultSpaceBitmap() { 303 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 304 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 305 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap(); 306 // We want to have the main space instead of non moving if possible. 307 if (bitmap != nullptr && 308 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { 309 current_space_bitmap_ = bitmap; 310 // If we are not the non moving space exit the loop early since this will be good enough. 311 if (space != heap_->GetNonMovingSpace()) { 312 break; 313 } 314 } 315 } 316 CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n" 317 << heap_->DumpSpaces(); 318 } 319 320 void MarkSweep::ExpandMarkStack() { 321 ResizeMarkStack(mark_stack_->Capacity() * 2); 322 } 323 324 void MarkSweep::ResizeMarkStack(size_t new_size) { 325 // Rare case, no need to have Thread::Current be a parameter. 326 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { 327 // Someone else acquired the lock and expanded the mark stack before us. 328 return; 329 } 330 std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End()); 331 CHECK_LE(mark_stack_->Size(), new_size); 332 mark_stack_->Resize(new_size); 333 for (const auto& obj : temp) { 334 mark_stack_->PushBack(obj); 335 } 336 } 337 338 inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) { 339 DCHECK(obj != nullptr); 340 if (MarkObjectParallel(obj)) { 341 MutexLock mu(Thread::Current(), mark_stack_lock_); 342 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 343 ExpandMarkStack(); 344 } 345 // The object must be pushed on to the mark stack. 346 mark_stack_->PushBack(obj); 347 } 348 } 349 350 mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) { 351 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 352 mark_sweep->MarkObject(obj); 353 return obj; 354 } 355 356 void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) { 357 reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr()); 358 } 359 360 bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) { 361 return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr()); 362 } 363 364 class MarkSweepMarkObjectSlowPath { 365 public: 366 explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) { 367 } 368 369 void operator()(const Object* obj) const ALWAYS_INLINE { 370 if (kProfileLargeObjects) { 371 // TODO: Differentiate between marking and testing somehow. 372 ++mark_sweep_->large_object_test_; 373 ++mark_sweep_->large_object_mark_; 374 } 375 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace(); 376 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) || 377 (kIsDebugBuild && !large_object_space->Contains(obj)))) { 378 LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces"; 379 LOG(ERROR) << "Attempting see if it's a bad root"; 380 mark_sweep_->VerifyRoots(); 381 LOG(FATAL) << "Can't mark invalid object"; 382 } 383 } 384 385 private: 386 MarkSweep* const mark_sweep_; 387 }; 388 389 inline void MarkSweep::MarkObjectNonNull(Object* obj) { 390 DCHECK(obj != nullptr); 391 if (kUseBakerOrBrooksReadBarrier) { 392 // Verify all the objects have the correct pointer installed. 393 obj->AssertReadBarrierPointer(); 394 } 395 if (immune_region_.ContainsObject(obj)) { 396 if (kCountMarkedObjects) { 397 ++mark_immune_count_; 398 } 399 DCHECK(mark_bitmap_->Test(obj)); 400 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) { 401 if (kCountMarkedObjects) { 402 ++mark_fastpath_count_; 403 } 404 if (UNLIKELY(!current_space_bitmap_->Set(obj))) { 405 PushOnMarkStack(obj); // This object was not previously marked. 406 } 407 } else { 408 if (kCountMarkedObjects) { 409 ++mark_slowpath_count_; 410 } 411 MarkSweepMarkObjectSlowPath visitor(this); 412 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set 413 // will check again. 414 if (!mark_bitmap_->Set(obj, visitor)) { 415 PushOnMarkStack(obj); // Was not already marked, push. 416 } 417 } 418 } 419 420 inline void MarkSweep::PushOnMarkStack(Object* obj) { 421 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 422 // Lock is not needed but is here anyways to please annotalysis. 423 MutexLock mu(Thread::Current(), mark_stack_lock_); 424 ExpandMarkStack(); 425 } 426 // The object must be pushed on to the mark stack. 427 mark_stack_->PushBack(obj); 428 } 429 430 inline bool MarkSweep::MarkObjectParallel(const Object* obj) { 431 DCHECK(obj != nullptr); 432 if (kUseBakerOrBrooksReadBarrier) { 433 // Verify all the objects have the correct pointer installed. 434 obj->AssertReadBarrierPointer(); 435 } 436 if (immune_region_.ContainsObject(obj)) { 437 DCHECK(IsMarked(obj)); 438 return false; 439 } 440 // Try to take advantage of locality of references within a space, failing this find the space 441 // the hard way. 442 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_; 443 if (LIKELY(object_bitmap->HasAddress(obj))) { 444 return !object_bitmap->AtomicTestAndSet(obj); 445 } 446 MarkSweepMarkObjectSlowPath visitor(this); 447 return !mark_bitmap_->AtomicTestAndSet(obj, visitor); 448 } 449 450 // Used to mark objects when processing the mark stack. If an object is null, it is not marked. 451 inline void MarkSweep::MarkObject(Object* obj) { 452 if (obj != nullptr) { 453 MarkObjectNonNull(obj); 454 } else if (kCountMarkedObjects) { 455 ++mark_null_count_; 456 } 457 } 458 459 void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, const RootInfo& /*root_info*/) { 460 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root); 461 } 462 463 void MarkSweep::VerifyRootMarked(Object** root, void* arg, const RootInfo& /*root_info*/) { 464 CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root)); 465 } 466 467 void MarkSweep::MarkRootCallback(Object** root, void* arg, const RootInfo& /*root_info*/) { 468 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root); 469 } 470 471 void MarkSweep::VerifyRootCallback(Object** root, void* arg, const RootInfo& root_info) { 472 reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(*root, root_info); 473 } 474 475 void MarkSweep::VerifyRoot(const Object* root, const RootInfo& root_info) { 476 // See if the root is on any space bitmap. 477 if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) { 478 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 479 if (!large_object_space->Contains(root)) { 480 LOG(ERROR) << "Found invalid root: " << root << " "; 481 root_info.Describe(LOG(ERROR)); 482 } 483 } 484 } 485 486 void MarkSweep::VerifyRoots() { 487 Runtime::Current()->GetThreadList()->VisitRoots(VerifyRootCallback, this); 488 } 489 490 void MarkSweep::MarkRoots(Thread* self) { 491 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 492 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 493 // If we exclusively hold the mutator lock, all threads must be suspended. 494 Runtime::Current()->VisitRoots(MarkRootCallback, this); 495 RevokeAllThreadLocalAllocationStacks(self); 496 } else { 497 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint); 498 // At this point the live stack should no longer have any mutators which push into it. 499 MarkNonThreadRoots(); 500 MarkConcurrentRoots( 501 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots)); 502 } 503 } 504 505 void MarkSweep::MarkNonThreadRoots() { 506 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 507 Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this); 508 } 509 510 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) { 511 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 512 // Visit all runtime roots and clear dirty flags. 513 Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags); 514 } 515 516 class ScanObjectVisitor { 517 public: 518 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE 519 : mark_sweep_(mark_sweep) {} 520 521 void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 522 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 523 if (kCheckLocks) { 524 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 525 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 526 } 527 mark_sweep_->ScanObject(obj); 528 } 529 530 private: 531 MarkSweep* const mark_sweep_; 532 }; 533 534 class DelayReferenceReferentVisitor { 535 public: 536 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) { 537 } 538 539 void operator()(mirror::Class* klass, mirror::Reference* ref) const 540 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 541 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 542 collector_->DelayReferenceReferent(klass, ref); 543 } 544 545 private: 546 MarkSweep* const collector_; 547 }; 548 549 template <bool kUseFinger = false> 550 class MarkStackTask : public Task { 551 public: 552 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size, 553 Object** mark_stack) 554 : mark_sweep_(mark_sweep), 555 thread_pool_(thread_pool), 556 mark_stack_pos_(mark_stack_size) { 557 // We may have to copy part of an existing mark stack when another mark stack overflows. 558 if (mark_stack_size != 0) { 559 DCHECK(mark_stack != NULL); 560 // TODO: Check performance? 561 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); 562 } 563 if (kCountTasks) { 564 ++mark_sweep_->work_chunks_created_; 565 } 566 } 567 568 static const size_t kMaxSize = 1 * KB; 569 570 protected: 571 class MarkObjectParallelVisitor { 572 public: 573 explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task, 574 MarkSweep* mark_sweep) ALWAYS_INLINE 575 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {} 576 577 void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE 578 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 579 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); 580 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) { 581 if (kUseFinger) { 582 android_memory_barrier(); 583 if (reinterpret_cast<uintptr_t>(ref) >= 584 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) { 585 return; 586 } 587 } 588 chunk_task_->MarkStackPush(ref); 589 } 590 } 591 592 private: 593 MarkStackTask<kUseFinger>* const chunk_task_; 594 MarkSweep* const mark_sweep_; 595 }; 596 597 class ScanObjectParallelVisitor { 598 public: 599 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE 600 : chunk_task_(chunk_task) {} 601 602 // No thread safety analysis since multiple threads will use this visitor. 603 void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 604 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 605 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_; 606 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep); 607 DelayReferenceReferentVisitor ref_visitor(mark_sweep); 608 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor); 609 } 610 611 private: 612 MarkStackTask<kUseFinger>* const chunk_task_; 613 }; 614 615 virtual ~MarkStackTask() { 616 // Make sure that we have cleared our mark stack. 617 DCHECK_EQ(mark_stack_pos_, 0U); 618 if (kCountTasks) { 619 ++mark_sweep_->work_chunks_deleted_; 620 } 621 } 622 623 MarkSweep* const mark_sweep_; 624 ThreadPool* const thread_pool_; 625 // Thread local mark stack for this task. 626 Object* mark_stack_[kMaxSize]; 627 // Mark stack position. 628 size_t mark_stack_pos_; 629 630 void MarkStackPush(Object* obj) ALWAYS_INLINE { 631 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { 632 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. 633 mark_stack_pos_ /= 2; 634 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_, 635 mark_stack_ + mark_stack_pos_); 636 thread_pool_->AddTask(Thread::Current(), task); 637 } 638 DCHECK(obj != nullptr); 639 DCHECK_LT(mark_stack_pos_, kMaxSize); 640 mark_stack_[mark_stack_pos_++] = obj; 641 } 642 643 virtual void Finalize() { 644 delete this; 645 } 646 647 // Scans all of the objects 648 virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 649 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 650 ScanObjectParallelVisitor visitor(this); 651 // TODO: Tune this. 652 static const size_t kFifoSize = 4; 653 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 654 for (;;) { 655 Object* obj = nullptr; 656 if (kUseMarkStackPrefetch) { 657 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { 658 Object* obj = mark_stack_[--mark_stack_pos_]; 659 DCHECK(obj != nullptr); 660 __builtin_prefetch(obj); 661 prefetch_fifo.push_back(obj); 662 } 663 if (UNLIKELY(prefetch_fifo.empty())) { 664 break; 665 } 666 obj = prefetch_fifo.front(); 667 prefetch_fifo.pop_front(); 668 } else { 669 if (UNLIKELY(mark_stack_pos_ == 0)) { 670 break; 671 } 672 obj = mark_stack_[--mark_stack_pos_]; 673 } 674 DCHECK(obj != nullptr); 675 visitor(obj); 676 } 677 } 678 }; 679 680 class CardScanTask : public MarkStackTask<false> { 681 public: 682 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 683 accounting::ContinuousSpaceBitmap* bitmap, 684 byte* begin, byte* end, byte minimum_age, size_t mark_stack_size, 685 Object** mark_stack_obj) 686 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), 687 bitmap_(bitmap), 688 begin_(begin), 689 end_(end), 690 minimum_age_(minimum_age) { 691 } 692 693 protected: 694 accounting::ContinuousSpaceBitmap* const bitmap_; 695 byte* const begin_; 696 byte* const end_; 697 const byte minimum_age_; 698 699 virtual void Finalize() { 700 delete this; 701 } 702 703 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 704 ScanObjectParallelVisitor visitor(this); 705 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); 706 size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_); 707 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - " 708 << reinterpret_cast<void*>(end_) << " = " << cards_scanned; 709 // Finish by emptying our local mark stack. 710 MarkStackTask::Run(self); 711 } 712 }; 713 714 size_t MarkSweep::GetThreadCount(bool paused) const { 715 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) { 716 return 1; 717 } 718 if (paused) { 719 return heap_->GetParallelGCThreadCount() + 1; 720 } else { 721 return heap_->GetConcGCThreadCount() + 1; 722 } 723 } 724 725 void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) { 726 accounting::CardTable* card_table = GetHeap()->GetCardTable(); 727 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 728 size_t thread_count = GetThreadCount(paused); 729 // The parallel version with only one thread is faster for card scanning, TODO: fix. 730 if (kParallelCardScan && thread_count > 1) { 731 Thread* self = Thread::Current(); 732 // Can't have a different split for each space since multiple spaces can have their cards being 733 // scanned at the same time. 734 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__, 735 GetTimings()); 736 // Try to take some of the mark stack since we can pass this off to the worker tasks. 737 Object** mark_stack_begin = mark_stack_->Begin(); 738 Object** mark_stack_end = mark_stack_->End(); 739 const size_t mark_stack_size = mark_stack_end - mark_stack_begin; 740 // Estimated number of work tasks we will create. 741 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; 742 DCHECK_NE(mark_stack_tasks, 0U); 743 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, 744 mark_stack_size / mark_stack_tasks + 1); 745 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 746 if (space->GetMarkBitmap() == nullptr) { 747 continue; 748 } 749 byte* card_begin = space->Begin(); 750 byte* card_end = space->End(); 751 // Align up the end address. For example, the image space's end 752 // may not be card-size-aligned. 753 card_end = AlignUp(card_end, accounting::CardTable::kCardSize); 754 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin)); 755 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end)); 756 // Calculate how many bytes of heap we will scan, 757 const size_t address_range = card_end - card_begin; 758 // Calculate how much address range each task gets. 759 const size_t card_delta = RoundUp(address_range / thread_count + 1, 760 accounting::CardTable::kCardSize); 761 // Create the worker tasks for this space. 762 while (card_begin != card_end) { 763 // Add a range of cards. 764 size_t addr_remaining = card_end - card_begin; 765 size_t card_increment = std::min(card_delta, addr_remaining); 766 // Take from the back of the mark stack. 767 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; 768 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); 769 mark_stack_end -= mark_stack_increment; 770 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment)); 771 DCHECK_EQ(mark_stack_end, mark_stack_->End()); 772 // Add the new task to the thread pool. 773 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin, 774 card_begin + card_increment, minimum_age, 775 mark_stack_increment, mark_stack_end); 776 thread_pool->AddTask(self, task); 777 card_begin += card_increment; 778 } 779 } 780 781 // Note: the card scan below may dirty new cards (and scan them) 782 // as a side effect when a Reference object is encountered and 783 // queued during the marking. See b/11465268. 784 thread_pool->SetMaxActiveWorkers(thread_count - 1); 785 thread_pool->StartWorkers(self); 786 thread_pool->Wait(self, true, true); 787 thread_pool->StopWorkers(self); 788 } else { 789 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 790 if (space->GetMarkBitmap() != nullptr) { 791 // Image spaces are handled properly since live == marked for them. 792 const char* name = nullptr; 793 switch (space->GetGcRetentionPolicy()) { 794 case space::kGcRetentionPolicyNeverCollect: 795 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects"; 796 break; 797 case space::kGcRetentionPolicyFullCollect: 798 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects"; 799 break; 800 case space::kGcRetentionPolicyAlwaysCollect: 801 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects"; 802 break; 803 default: 804 LOG(FATAL) << "Unreachable"; 805 } 806 TimingLogger::ScopedTiming t(name, GetTimings()); 807 ScanObjectVisitor visitor(this); 808 card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, 809 minimum_age); 810 } 811 } 812 } 813 } 814 815 class RecursiveMarkTask : public MarkStackTask<false> { 816 public: 817 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 818 accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end) 819 : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), bitmap_(bitmap), begin_(begin), 820 end_(end) { 821 } 822 823 protected: 824 accounting::ContinuousSpaceBitmap* const bitmap_; 825 const uintptr_t begin_; 826 const uintptr_t end_; 827 828 virtual void Finalize() { 829 delete this; 830 } 831 832 // Scans all of the objects 833 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 834 ScanObjectParallelVisitor visitor(this); 835 bitmap_->VisitMarkedRange(begin_, end_, visitor); 836 // Finish by emptying our local mark stack. 837 MarkStackTask::Run(self); 838 } 839 }; 840 841 // Populates the mark stack based on the set of marked objects and 842 // recursively marks until the mark stack is emptied. 843 void MarkSweep::RecursiveMark() { 844 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 845 // RecursiveMark will build the lists of known instances of the Reference classes. See 846 // DelayReferenceReferent for details. 847 if (kUseRecursiveMark) { 848 const bool partial = GetGcType() == kGcTypePartial; 849 ScanObjectVisitor scan_visitor(this); 850 auto* self = Thread::Current(); 851 ThreadPool* thread_pool = heap_->GetThreadPool(); 852 size_t thread_count = GetThreadCount(false); 853 const bool parallel = kParallelRecursiveMark && thread_count > 1; 854 mark_stack_->Reset(); 855 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 856 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || 857 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { 858 current_space_bitmap_ = space->GetMarkBitmap(); 859 if (current_space_bitmap_ == nullptr) { 860 continue; 861 } 862 if (parallel) { 863 // We will use the mark stack the future. 864 // CHECK(mark_stack_->IsEmpty()); 865 // This function does not handle heap end increasing, so we must use the space end. 866 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 867 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 868 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue()); 869 870 // Create a few worker tasks. 871 const size_t n = thread_count * 2; 872 while (begin != end) { 873 uintptr_t start = begin; 874 uintptr_t delta = (end - begin) / n; 875 delta = RoundUp(delta, KB); 876 if (delta < 16 * KB) delta = end - begin; 877 begin += delta; 878 auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start, 879 begin); 880 thread_pool->AddTask(self, task); 881 } 882 thread_pool->SetMaxActiveWorkers(thread_count - 1); 883 thread_pool->StartWorkers(self); 884 thread_pool->Wait(self, true, true); 885 thread_pool->StopWorkers(self); 886 } else { 887 // This function does not handle heap end increasing, so we must use the space end. 888 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 889 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 890 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor); 891 } 892 } 893 } 894 } 895 ProcessMarkStack(false); 896 } 897 898 mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) { 899 if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) { 900 return object; 901 } 902 return nullptr; 903 } 904 905 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) { 906 ScanGrayObjects(paused, minimum_age); 907 ProcessMarkStack(paused); 908 } 909 910 void MarkSweep::ReMarkRoots() { 911 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 912 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); 913 Runtime::Current()->VisitRoots( 914 MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots | 915 kVisitRootFlagStopLoggingNewRoots | 916 kVisitRootFlagClearRootLog)); 917 if (kVerifyRootsMarked) { 918 TimingLogger::ScopedTiming t("(Paused)VerifyRoots", GetTimings()); 919 Runtime::Current()->VisitRoots(VerifyRootMarked, this); 920 } 921 } 922 923 void MarkSweep::SweepSystemWeaks(Thread* self) { 924 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 925 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 926 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this); 927 } 928 929 mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) { 930 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj); 931 // We don't actually want to sweep the object, so lets return "marked" 932 return obj; 933 } 934 935 void MarkSweep::VerifyIsLive(const Object* obj) { 936 if (!heap_->GetLiveBitmap()->Test(obj)) { 937 accounting::ObjectStack* allocation_stack = heap_->allocation_stack_.get(); 938 CHECK(std::find(allocation_stack->Begin(), allocation_stack->End(), obj) != 939 allocation_stack->End()) << "Found dead object " << obj << "\n" << heap_->DumpSpaces(); 940 } 941 } 942 943 void MarkSweep::VerifySystemWeaks() { 944 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 945 // Verify system weaks, uses a special object visitor which returns the input object. 946 Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this); 947 } 948 949 class CheckpointMarkThreadRoots : public Closure { 950 public: 951 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep, 952 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) 953 : mark_sweep_(mark_sweep), 954 revoke_ros_alloc_thread_local_buffers_at_checkpoint_( 955 revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 956 } 957 958 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 959 ATRACE_BEGIN("Marking thread roots"); 960 // Note: self is not necessarily equal to thread since thread may be suspended. 961 Thread* self = Thread::Current(); 962 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 963 << thread->GetState() << " thread " << thread << " self " << self; 964 thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_); 965 ATRACE_END(); 966 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) { 967 ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers"); 968 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread); 969 ATRACE_END(); 970 } 971 mark_sweep_->GetBarrier().Pass(self); 972 } 973 974 private: 975 MarkSweep* const mark_sweep_; 976 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_; 977 }; 978 979 void MarkSweep::MarkRootsCheckpoint(Thread* self, 980 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 981 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 982 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint); 983 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 984 // Request the check point is run on all threads returning a count of the threads that must 985 // run through the barrier including self. 986 size_t barrier_count = thread_list->RunCheckpoint(&check_point); 987 // Release locks then wait for all mutator threads to pass the barrier. 988 // TODO: optimize to not release locks when there are no threads to wait for. 989 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 990 Locks::mutator_lock_->SharedUnlock(self); 991 { 992 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 993 gc_barrier_->Increment(self, barrier_count); 994 } 995 Locks::mutator_lock_->SharedLock(self); 996 Locks::heap_bitmap_lock_->ExclusiveLock(self); 997 } 998 999 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { 1000 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1001 Thread* self = Thread::Current(); 1002 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>( 1003 sweep_array_free_buffer_mem_map_->BaseBegin()); 1004 size_t chunk_free_pos = 0; 1005 ObjectBytePair freed; 1006 ObjectBytePair freed_los; 1007 // How many objects are left in the array, modified after each space is swept. 1008 Object** objects = allocations->Begin(); 1009 size_t count = allocations->Size(); 1010 // Change the order to ensure that the non-moving space last swept as an optimization. 1011 std::vector<space::ContinuousSpace*> sweep_spaces; 1012 space::ContinuousSpace* non_moving_space = nullptr; 1013 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { 1014 if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) && 1015 space->GetLiveBitmap() != nullptr) { 1016 if (space == heap_->GetNonMovingSpace()) { 1017 non_moving_space = space; 1018 } else { 1019 sweep_spaces.push_back(space); 1020 } 1021 } 1022 } 1023 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after 1024 // the other alloc spaces as an optimization. 1025 if (non_moving_space != nullptr) { 1026 sweep_spaces.push_back(non_moving_space); 1027 } 1028 // Start by sweeping the continuous spaces. 1029 for (space::ContinuousSpace* space : sweep_spaces) { 1030 space::AllocSpace* alloc_space = space->AsAllocSpace(); 1031 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1032 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1033 if (swap_bitmaps) { 1034 std::swap(live_bitmap, mark_bitmap); 1035 } 1036 Object** out = objects; 1037 for (size_t i = 0; i < count; ++i) { 1038 Object* obj = objects[i]; 1039 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1040 continue; 1041 } 1042 if (space->HasAddress(obj)) { 1043 // This object is in the space, remove it from the array and add it to the sweep buffer 1044 // if needed. 1045 if (!mark_bitmap->Test(obj)) { 1046 if (chunk_free_pos >= kSweepArrayChunkFreeSize) { 1047 TimingLogger::ScopedTiming t("FreeList", GetTimings()); 1048 freed.objects += chunk_free_pos; 1049 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1050 chunk_free_pos = 0; 1051 } 1052 chunk_free_buffer[chunk_free_pos++] = obj; 1053 } 1054 } else { 1055 *(out++) = obj; 1056 } 1057 } 1058 if (chunk_free_pos > 0) { 1059 TimingLogger::ScopedTiming t("FreeList", GetTimings()); 1060 freed.objects += chunk_free_pos; 1061 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1062 chunk_free_pos = 0; 1063 } 1064 // All of the references which space contained are no longer in the allocation stack, update 1065 // the count. 1066 count = out - objects; 1067 } 1068 // Handle the large object space. 1069 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1070 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap(); 1071 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap(); 1072 if (swap_bitmaps) { 1073 std::swap(large_live_objects, large_mark_objects); 1074 } 1075 for (size_t i = 0; i < count; ++i) { 1076 Object* obj = objects[i]; 1077 // Handle large objects. 1078 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1079 continue; 1080 } 1081 if (!large_mark_objects->Test(obj)) { 1082 ++freed_los.objects; 1083 freed_los.bytes += large_object_space->Free(self, obj); 1084 } 1085 } 1086 { 1087 TimingLogger::ScopedTiming t("RecordFree", GetTimings()); 1088 RecordFree(freed); 1089 RecordFreeLOS(freed_los); 1090 t.NewTiming("ResetStack"); 1091 allocations->Reset(); 1092 } 1093 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero(); 1094 } 1095 1096 void MarkSweep::Sweep(bool swap_bitmaps) { 1097 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1098 // Ensure that nobody inserted items in the live stack after we swapped the stacks. 1099 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); 1100 { 1101 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings()); 1102 // Mark everything allocated since the last as GC live so that we can sweep concurrently, 1103 // knowing that new allocations won't be marked as live. 1104 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 1105 heap_->MarkAllocStackAsLive(live_stack); 1106 live_stack->Reset(); 1107 DCHECK(mark_stack_->IsEmpty()); 1108 } 1109 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1110 if (space->IsContinuousMemMapAllocSpace()) { 1111 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); 1112 TimingLogger::ScopedTiming split( 1113 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings()); 1114 RecordFree(alloc_space->Sweep(swap_bitmaps)); 1115 } 1116 } 1117 SweepLargeObjects(swap_bitmaps); 1118 } 1119 1120 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { 1121 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); 1122 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps)); 1123 } 1124 1125 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 1126 // marked, put it on the appropriate list in the heap for later processing. 1127 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) { 1128 if (kCountJavaLangRefs) { 1129 ++reference_count_; 1130 } 1131 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback, 1132 this); 1133 } 1134 1135 class MarkObjectVisitor { 1136 public: 1137 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) { 1138 } 1139 1140 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const 1141 ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1142 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1143 if (kCheckLocks) { 1144 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1145 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1146 } 1147 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset)); 1148 } 1149 1150 private: 1151 MarkSweep* const mark_sweep_; 1152 }; 1153 1154 // Scans an object reference. Determines the type of the reference 1155 // and dispatches to a specialized scanning routine. 1156 void MarkSweep::ScanObject(Object* obj) { 1157 MarkObjectVisitor mark_visitor(this); 1158 DelayReferenceReferentVisitor ref_visitor(this); 1159 ScanObjectVisit(obj, mark_visitor, ref_visitor); 1160 } 1161 1162 void MarkSweep::ProcessMarkStackCallback(void* arg) { 1163 reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false); 1164 } 1165 1166 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { 1167 Thread* self = Thread::Current(); 1168 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1169 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, 1170 static_cast<size_t>(MarkStackTask<false>::kMaxSize)); 1171 CHECK_GT(chunk_size, 0U); 1172 // Split the current mark stack up into work tasks. 1173 for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) { 1174 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size); 1175 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it)); 1176 it += delta; 1177 } 1178 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1179 thread_pool->StartWorkers(self); 1180 thread_pool->Wait(self, true, true); 1181 thread_pool->StopWorkers(self); 1182 mark_stack_->Reset(); 1183 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(), 1184 work_chunks_deleted_.LoadSequentiallyConsistent()) 1185 << " some of the work chunks were leaked"; 1186 } 1187 1188 // Scan anything that's on the mark stack. 1189 void MarkSweep::ProcessMarkStack(bool paused) { 1190 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings()); 1191 size_t thread_count = GetThreadCount(paused); 1192 if (kParallelProcessMarkStack && thread_count > 1 && 1193 mark_stack_->Size() >= kMinimumParallelMarkStackSize) { 1194 ProcessMarkStackParallel(thread_count); 1195 } else { 1196 // TODO: Tune this. 1197 static const size_t kFifoSize = 4; 1198 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 1199 for (;;) { 1200 Object* obj = NULL; 1201 if (kUseMarkStackPrefetch) { 1202 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { 1203 Object* obj = mark_stack_->PopBack(); 1204 DCHECK(obj != NULL); 1205 __builtin_prefetch(obj); 1206 prefetch_fifo.push_back(obj); 1207 } 1208 if (prefetch_fifo.empty()) { 1209 break; 1210 } 1211 obj = prefetch_fifo.front(); 1212 prefetch_fifo.pop_front(); 1213 } else { 1214 if (mark_stack_->IsEmpty()) { 1215 break; 1216 } 1217 obj = mark_stack_->PopBack(); 1218 } 1219 DCHECK(obj != nullptr); 1220 ScanObject(obj); 1221 } 1222 } 1223 } 1224 1225 inline bool MarkSweep::IsMarked(const Object* object) const { 1226 if (immune_region_.ContainsObject(object)) { 1227 return true; 1228 } 1229 if (current_space_bitmap_->HasAddress(object)) { 1230 return current_space_bitmap_->Test(object); 1231 } 1232 return mark_bitmap_->Test(object); 1233 } 1234 1235 void MarkSweep::FinishPhase() { 1236 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1237 if (kCountScannedTypes) { 1238 VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed() 1239 << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed(); 1240 } 1241 if (kCountTasks) { 1242 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed(); 1243 } 1244 if (kMeasureOverhead) { 1245 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed()); 1246 } 1247 if (kProfileLargeObjects) { 1248 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed() 1249 << " marked " << large_object_mark_.LoadRelaxed(); 1250 } 1251 if (kCountJavaLangRefs) { 1252 VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed(); 1253 } 1254 if (kCountMarkedObjects) { 1255 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed() 1256 << " immune=" << mark_immune_count_.LoadRelaxed() 1257 << " fastpath=" << mark_fastpath_count_.LoadRelaxed() 1258 << " slowpath=" << mark_slowpath_count_.LoadRelaxed(); 1259 } 1260 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty. 1261 mark_stack_->Reset(); 1262 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1263 heap_->ClearMarkedObjects(); 1264 } 1265 1266 void MarkSweep::RevokeAllThreadLocalBuffers() { 1267 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) { 1268 // If concurrent, rosalloc thread-local buffers are revoked at the 1269 // thread checkpoint. Bump pointer space thread-local buffers must 1270 // not be in use. 1271 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 1272 } else { 1273 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1274 GetHeap()->RevokeAllThreadLocalBuffers(); 1275 } 1276 } 1277 1278 } // namespace collector 1279 } // namespace gc 1280 } // namespace art 1281