Home | History | Annotate | Download | only in collector
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mark_sweep.h"
     18 
     19 #include <functional>
     20 #include <numeric>
     21 #include <climits>
     22 #include <vector>
     23 
     24 #include "base/bounded_fifo.h"
     25 #include "base/logging.h"
     26 #include "base/macros.h"
     27 #include "base/mutex-inl.h"
     28 #include "base/timing_logger.h"
     29 #include "gc/accounting/card_table-inl.h"
     30 #include "gc/accounting/heap_bitmap-inl.h"
     31 #include "gc/accounting/mod_union_table.h"
     32 #include "gc/accounting/space_bitmap-inl.h"
     33 #include "gc/heap.h"
     34 #include "gc/reference_processor.h"
     35 #include "gc/space/image_space.h"
     36 #include "gc/space/large_object_space.h"
     37 #include "gc/space/space-inl.h"
     38 #include "mark_sweep-inl.h"
     39 #include "mirror/art_field-inl.h"
     40 #include "mirror/object-inl.h"
     41 #include "runtime.h"
     42 #include "scoped_thread_state_change.h"
     43 #include "thread-inl.h"
     44 #include "thread_list.h"
     45 
     46 using ::art::mirror::Object;
     47 
     48 namespace art {
     49 namespace gc {
     50 namespace collector {
     51 
     52 // Performance options.
     53 static constexpr bool kUseRecursiveMark = false;
     54 static constexpr bool kUseMarkStackPrefetch = true;
     55 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
     56 static constexpr bool kPreCleanCards = true;
     57 
     58 // Parallelism options.
     59 static constexpr bool kParallelCardScan = true;
     60 static constexpr bool kParallelRecursiveMark = true;
     61 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
     62 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
     63 // having this can add overhead in ProcessReferences since we may end up doing many calls of
     64 // ProcessMarkStack with very small mark stacks.
     65 static constexpr size_t kMinimumParallelMarkStackSize = 128;
     66 static constexpr bool kParallelProcessMarkStack = true;
     67 
     68 // Profiling and information flags.
     69 static constexpr bool kProfileLargeObjects = false;
     70 static constexpr bool kMeasureOverhead = false;
     71 static constexpr bool kCountTasks = false;
     72 static constexpr bool kCountJavaLangRefs = false;
     73 static constexpr bool kCountMarkedObjects = false;
     74 
     75 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
     76 static constexpr bool kCheckLocks = kDebugLocking;
     77 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
     78 
     79 // If true, revoke the rosalloc thread-local buffers at the
     80 // checkpoint, as opposed to during the pause.
     81 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
     82 
     83 void MarkSweep::BindBitmaps() {
     84   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
     85   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
     86   // Mark all of the spaces we never collect as immune.
     87   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
     88     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
     89       CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
     90     }
     91   }
     92 }
     93 
     94 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
     95     : GarbageCollector(heap,
     96                        name_prefix +
     97                        (is_concurrent ? "concurrent mark sweep": "mark sweep")),
     98       current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr),
     99       gc_barrier_(new Barrier(0)),
    100       mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
    101       is_concurrent_(is_concurrent), live_stack_freeze_size_(0) {
    102   std::string error_msg;
    103   MemMap* mem_map = MemMap::MapAnonymous(
    104       "mark sweep sweep array free buffer", nullptr,
    105       RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
    106       PROT_READ | PROT_WRITE, false, &error_msg);
    107   CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
    108   sweep_array_free_buffer_mem_map_.reset(mem_map);
    109 }
    110 
    111 void MarkSweep::InitializePhase() {
    112   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    113   mark_stack_ = heap_->GetMarkStack();
    114   DCHECK(mark_stack_ != nullptr);
    115   immune_region_.Reset();
    116   class_count_.StoreRelaxed(0);
    117   array_count_.StoreRelaxed(0);
    118   other_count_.StoreRelaxed(0);
    119   large_object_test_.StoreRelaxed(0);
    120   large_object_mark_.StoreRelaxed(0);
    121   overhead_time_ .StoreRelaxed(0);
    122   work_chunks_created_.StoreRelaxed(0);
    123   work_chunks_deleted_.StoreRelaxed(0);
    124   reference_count_.StoreRelaxed(0);
    125   mark_null_count_.StoreRelaxed(0);
    126   mark_immune_count_.StoreRelaxed(0);
    127   mark_fastpath_count_.StoreRelaxed(0);
    128   mark_slowpath_count_.StoreRelaxed(0);
    129   {
    130     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
    131     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    132     mark_bitmap_ = heap_->GetMarkBitmap();
    133   }
    134   if (!GetCurrentIteration()->GetClearSoftReferences()) {
    135     // Always clear soft references if a non-sticky collection.
    136     GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
    137   }
    138 }
    139 
    140 void MarkSweep::RunPhases() {
    141   Thread* self = Thread::Current();
    142   InitializePhase();
    143   Locks::mutator_lock_->AssertNotHeld(self);
    144   if (IsConcurrent()) {
    145     GetHeap()->PreGcVerification(this);
    146     {
    147       ReaderMutexLock mu(self, *Locks::mutator_lock_);
    148       MarkingPhase();
    149     }
    150     ScopedPause pause(this);
    151     GetHeap()->PrePauseRosAllocVerification(this);
    152     PausePhase();
    153     RevokeAllThreadLocalBuffers();
    154   } else {
    155     ScopedPause pause(this);
    156     GetHeap()->PreGcVerificationPaused(this);
    157     MarkingPhase();
    158     GetHeap()->PrePauseRosAllocVerification(this);
    159     PausePhase();
    160     RevokeAllThreadLocalBuffers();
    161   }
    162   {
    163     // Sweeping always done concurrently, even for non concurrent mark sweep.
    164     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    165     ReclaimPhase();
    166   }
    167   GetHeap()->PostGcVerification(this);
    168   FinishPhase();
    169 }
    170 
    171 void MarkSweep::ProcessReferences(Thread* self) {
    172   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    173   GetHeap()->GetReferenceProcessor()->ProcessReferences(
    174       true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
    175       &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
    176 }
    177 
    178 void MarkSweep::PausePhase() {
    179   TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
    180   Thread* self = Thread::Current();
    181   Locks::mutator_lock_->AssertExclusiveHeld(self);
    182   if (IsConcurrent()) {
    183     // Handle the dirty objects if we are a concurrent GC.
    184     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    185     // Re-mark root set.
    186     ReMarkRoots();
    187     // Scan dirty objects, this is only required if we are not doing concurrent GC.
    188     RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
    189   }
    190   {
    191     TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
    192     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    193     heap_->SwapStacks(self);
    194     live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
    195     // Need to revoke all the thread local allocation stacks since we just swapped the allocation
    196     // stacks and don't want anybody to allocate into the live stack.
    197     RevokeAllThreadLocalAllocationStacks(self);
    198   }
    199   heap_->PreSweepingGcVerification(this);
    200   // Disallow new system weaks to prevent a race which occurs when someone adds a new system
    201   // weak before we sweep them. Since this new system weak may not be marked, the GC may
    202   // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
    203   // reference to a string that is about to be swept.
    204   Runtime::Current()->DisallowNewSystemWeaks();
    205   // Enable the reference processing slow path, needs to be done with mutators paused since there
    206   // is no lock in the GetReferent fast path.
    207   GetHeap()->GetReferenceProcessor()->EnableSlowPath();
    208 }
    209 
    210 void MarkSweep::PreCleanCards() {
    211   // Don't do this for non concurrent GCs since they don't have any dirty cards.
    212   if (kPreCleanCards && IsConcurrent()) {
    213     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    214     Thread* self = Thread::Current();
    215     CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
    216     // Process dirty cards and add dirty cards to mod union tables, also ages cards.
    217     heap_->ProcessCards(GetTimings(), false);
    218     // The checkpoint root marking is required to avoid a race condition which occurs if the
    219     // following happens during a reference write:
    220     // 1. mutator dirties the card (write barrier)
    221     // 2. GC ages the card (the above ProcessCards call)
    222     // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
    223     // 4. mutator writes the value (corresponding to the write barrier in 1.)
    224     // This causes the GC to age the card but not necessarily mark the reference which the mutator
    225     // wrote into the object stored in the card.
    226     // Having the checkpoint fixes this issue since it ensures that the card mark and the
    227     // reference write are visible to the GC before the card is scanned (this is due to locks being
    228     // acquired / released in the checkpoint code).
    229     // The other roots are also marked to help reduce the pause.
    230     MarkRootsCheckpoint(self, false);
    231     MarkNonThreadRoots();
    232     MarkConcurrentRoots(
    233         static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
    234     // Process the newly aged cards.
    235     RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
    236     // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
    237     // in the next GC.
    238   }
    239 }
    240 
    241 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
    242   if (kUseThreadLocalAllocationStack) {
    243     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    244     Locks::mutator_lock_->AssertExclusiveHeld(self);
    245     heap_->RevokeAllThreadLocalAllocationStacks(self);
    246   }
    247 }
    248 
    249 void MarkSweep::MarkingPhase() {
    250   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    251   Thread* self = Thread::Current();
    252   BindBitmaps();
    253   FindDefaultSpaceBitmap();
    254   // Process dirty cards and add dirty cards to mod union tables.
    255   heap_->ProcessCards(GetTimings(), false);
    256   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    257   MarkRoots(self);
    258   MarkReachableObjects();
    259   // Pre-clean dirtied cards to reduce pauses.
    260   PreCleanCards();
    261 }
    262 
    263 void MarkSweep::UpdateAndMarkModUnion() {
    264   for (const auto& space : heap_->GetContinuousSpaces()) {
    265     if (immune_region_.ContainsSpace(space)) {
    266       const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
    267           "UpdateAndMarkImageModUnionTable";
    268       TimingLogger::ScopedTiming t(name, GetTimings());
    269       accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
    270       CHECK(mod_union_table != nullptr);
    271       mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
    272     }
    273   }
    274 }
    275 
    276 void MarkSweep::MarkReachableObjects() {
    277   UpdateAndMarkModUnion();
    278   // Recursively mark all the non-image bits set in the mark bitmap.
    279   RecursiveMark();
    280 }
    281 
    282 void MarkSweep::ReclaimPhase() {
    283   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    284   Thread* self = Thread::Current();
    285   // Process the references concurrently.
    286   ProcessReferences(self);
    287   SweepSystemWeaks(self);
    288   Runtime::Current()->AllowNewSystemWeaks();
    289   {
    290     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    291     // Reclaim unmarked objects.
    292     Sweep(false);
    293     // Swap the live and mark bitmaps for each space which we modified space. This is an
    294     // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
    295     // bitmaps.
    296     SwapBitmaps();
    297     // Unbind the live and mark bitmaps.
    298     GetHeap()->UnBindBitmaps();
    299   }
    300 }
    301 
    302 void MarkSweep::FindDefaultSpaceBitmap() {
    303   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    304   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    305     accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
    306     // We want to have the main space instead of non moving if possible.
    307     if (bitmap != nullptr &&
    308         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
    309       current_space_bitmap_ = bitmap;
    310       // If we are not the non moving space exit the loop early since this will be good enough.
    311       if (space != heap_->GetNonMovingSpace()) {
    312         break;
    313       }
    314     }
    315   }
    316   CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
    317       << heap_->DumpSpaces();
    318 }
    319 
    320 void MarkSweep::ExpandMarkStack() {
    321   ResizeMarkStack(mark_stack_->Capacity() * 2);
    322 }
    323 
    324 void MarkSweep::ResizeMarkStack(size_t new_size) {
    325   // Rare case, no need to have Thread::Current be a parameter.
    326   if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
    327     // Someone else acquired the lock and expanded the mark stack before us.
    328     return;
    329   }
    330   std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
    331   CHECK_LE(mark_stack_->Size(), new_size);
    332   mark_stack_->Resize(new_size);
    333   for (const auto& obj : temp) {
    334     mark_stack_->PushBack(obj);
    335   }
    336 }
    337 
    338 inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
    339   DCHECK(obj != nullptr);
    340   if (MarkObjectParallel(obj)) {
    341     MutexLock mu(Thread::Current(), mark_stack_lock_);
    342     if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    343       ExpandMarkStack();
    344     }
    345     // The object must be pushed on to the mark stack.
    346     mark_stack_->PushBack(obj);
    347   }
    348 }
    349 
    350 mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
    351   MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
    352   mark_sweep->MarkObject(obj);
    353   return obj;
    354 }
    355 
    356 void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
    357   reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
    358 }
    359 
    360 bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
    361   return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr());
    362 }
    363 
    364 class MarkSweepMarkObjectSlowPath {
    365  public:
    366   explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
    367   }
    368 
    369   void operator()(const Object* obj) const ALWAYS_INLINE {
    370     if (kProfileLargeObjects) {
    371       // TODO: Differentiate between marking and testing somehow.
    372       ++mark_sweep_->large_object_test_;
    373       ++mark_sweep_->large_object_mark_;
    374     }
    375     space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
    376     if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
    377                  (kIsDebugBuild && !large_object_space->Contains(obj)))) {
    378       LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
    379       LOG(ERROR) << "Attempting see if it's a bad root";
    380       mark_sweep_->VerifyRoots();
    381       LOG(FATAL) << "Can't mark invalid object";
    382     }
    383   }
    384 
    385  private:
    386   MarkSweep* const mark_sweep_;
    387 };
    388 
    389 inline void MarkSweep::MarkObjectNonNull(Object* obj) {
    390   DCHECK(obj != nullptr);
    391   if (kUseBakerOrBrooksReadBarrier) {
    392     // Verify all the objects have the correct pointer installed.
    393     obj->AssertReadBarrierPointer();
    394   }
    395   if (immune_region_.ContainsObject(obj)) {
    396     if (kCountMarkedObjects) {
    397       ++mark_immune_count_;
    398     }
    399     DCHECK(mark_bitmap_->Test(obj));
    400   } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
    401     if (kCountMarkedObjects) {
    402       ++mark_fastpath_count_;
    403     }
    404     if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
    405       PushOnMarkStack(obj);  // This object was not previously marked.
    406     }
    407   } else {
    408     if (kCountMarkedObjects) {
    409       ++mark_slowpath_count_;
    410     }
    411     MarkSweepMarkObjectSlowPath visitor(this);
    412     // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
    413     // will check again.
    414     if (!mark_bitmap_->Set(obj, visitor)) {
    415       PushOnMarkStack(obj);  // Was not already marked, push.
    416     }
    417   }
    418 }
    419 
    420 inline void MarkSweep::PushOnMarkStack(Object* obj) {
    421   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
    422     // Lock is not needed but is here anyways to please annotalysis.
    423     MutexLock mu(Thread::Current(), mark_stack_lock_);
    424     ExpandMarkStack();
    425   }
    426   // The object must be pushed on to the mark stack.
    427   mark_stack_->PushBack(obj);
    428 }
    429 
    430 inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
    431   DCHECK(obj != nullptr);
    432   if (kUseBakerOrBrooksReadBarrier) {
    433     // Verify all the objects have the correct pointer installed.
    434     obj->AssertReadBarrierPointer();
    435   }
    436   if (immune_region_.ContainsObject(obj)) {
    437     DCHECK(IsMarked(obj));
    438     return false;
    439   }
    440   // Try to take advantage of locality of references within a space, failing this find the space
    441   // the hard way.
    442   accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
    443   if (LIKELY(object_bitmap->HasAddress(obj))) {
    444     return !object_bitmap->AtomicTestAndSet(obj);
    445   }
    446   MarkSweepMarkObjectSlowPath visitor(this);
    447   return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
    448 }
    449 
    450 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
    451 inline void MarkSweep::MarkObject(Object* obj) {
    452   if (obj != nullptr) {
    453     MarkObjectNonNull(obj);
    454   } else if (kCountMarkedObjects) {
    455     ++mark_null_count_;
    456   }
    457 }
    458 
    459 void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, const RootInfo& /*root_info*/) {
    460   reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
    461 }
    462 
    463 void MarkSweep::VerifyRootMarked(Object** root, void* arg, const RootInfo& /*root_info*/) {
    464   CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
    465 }
    466 
    467 void MarkSweep::MarkRootCallback(Object** root, void* arg, const RootInfo& /*root_info*/) {
    468   reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
    469 }
    470 
    471 void MarkSweep::VerifyRootCallback(Object** root, void* arg, const RootInfo& root_info) {
    472   reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(*root, root_info);
    473 }
    474 
    475 void MarkSweep::VerifyRoot(const Object* root, const RootInfo& root_info) {
    476   // See if the root is on any space bitmap.
    477   if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
    478     space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
    479     if (!large_object_space->Contains(root)) {
    480       LOG(ERROR) << "Found invalid root: " << root << " ";
    481       root_info.Describe(LOG(ERROR));
    482     }
    483   }
    484 }
    485 
    486 void MarkSweep::VerifyRoots() {
    487   Runtime::Current()->GetThreadList()->VisitRoots(VerifyRootCallback, this);
    488 }
    489 
    490 void MarkSweep::MarkRoots(Thread* self) {
    491   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    492   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
    493     // If we exclusively hold the mutator lock, all threads must be suspended.
    494     Runtime::Current()->VisitRoots(MarkRootCallback, this);
    495     RevokeAllThreadLocalAllocationStacks(self);
    496   } else {
    497     MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
    498     // At this point the live stack should no longer have any mutators which push into it.
    499     MarkNonThreadRoots();
    500     MarkConcurrentRoots(
    501         static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
    502   }
    503 }
    504 
    505 void MarkSweep::MarkNonThreadRoots() {
    506   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    507   Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
    508 }
    509 
    510 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
    511   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    512   // Visit all runtime roots and clear dirty flags.
    513   Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
    514 }
    515 
    516 class ScanObjectVisitor {
    517  public:
    518   explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
    519       : mark_sweep_(mark_sweep) {}
    520 
    521   void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
    522       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    523     if (kCheckLocks) {
    524       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
    525       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    526     }
    527     mark_sweep_->ScanObject(obj);
    528   }
    529 
    530  private:
    531   MarkSweep* const mark_sweep_;
    532 };
    533 
    534 class DelayReferenceReferentVisitor {
    535  public:
    536   explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
    537   }
    538 
    539   void operator()(mirror::Class* klass, mirror::Reference* ref) const
    540       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
    541       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    542     collector_->DelayReferenceReferent(klass, ref);
    543   }
    544 
    545  private:
    546   MarkSweep* const collector_;
    547 };
    548 
    549 template <bool kUseFinger = false>
    550 class MarkStackTask : public Task {
    551  public:
    552   MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
    553                 Object** mark_stack)
    554       : mark_sweep_(mark_sweep),
    555         thread_pool_(thread_pool),
    556         mark_stack_pos_(mark_stack_size) {
    557     // We may have to copy part of an existing mark stack when another mark stack overflows.
    558     if (mark_stack_size != 0) {
    559       DCHECK(mark_stack != NULL);
    560       // TODO: Check performance?
    561       std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
    562     }
    563     if (kCountTasks) {
    564       ++mark_sweep_->work_chunks_created_;
    565     }
    566   }
    567 
    568   static const size_t kMaxSize = 1 * KB;
    569 
    570  protected:
    571   class MarkObjectParallelVisitor {
    572    public:
    573     explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
    574                                        MarkSweep* mark_sweep) ALWAYS_INLINE
    575             : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
    576 
    577     void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
    578         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    579       mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
    580       if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
    581         if (kUseFinger) {
    582           android_memory_barrier();
    583           if (reinterpret_cast<uintptr_t>(ref) >=
    584               static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
    585             return;
    586           }
    587         }
    588         chunk_task_->MarkStackPush(ref);
    589       }
    590     }
    591 
    592    private:
    593     MarkStackTask<kUseFinger>* const chunk_task_;
    594     MarkSweep* const mark_sweep_;
    595   };
    596 
    597   class ScanObjectParallelVisitor {
    598    public:
    599     explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
    600         : chunk_task_(chunk_task) {}
    601 
    602     // No thread safety analysis since multiple threads will use this visitor.
    603     void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
    604         EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    605       MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
    606       MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
    607       DelayReferenceReferentVisitor ref_visitor(mark_sweep);
    608       mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
    609     }
    610 
    611    private:
    612     MarkStackTask<kUseFinger>* const chunk_task_;
    613   };
    614 
    615   virtual ~MarkStackTask() {
    616     // Make sure that we have cleared our mark stack.
    617     DCHECK_EQ(mark_stack_pos_, 0U);
    618     if (kCountTasks) {
    619       ++mark_sweep_->work_chunks_deleted_;
    620     }
    621   }
    622 
    623   MarkSweep* const mark_sweep_;
    624   ThreadPool* const thread_pool_;
    625   // Thread local mark stack for this task.
    626   Object* mark_stack_[kMaxSize];
    627   // Mark stack position.
    628   size_t mark_stack_pos_;
    629 
    630   void MarkStackPush(Object* obj) ALWAYS_INLINE {
    631     if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
    632       // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
    633       mark_stack_pos_ /= 2;
    634       auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
    635                                      mark_stack_ + mark_stack_pos_);
    636       thread_pool_->AddTask(Thread::Current(), task);
    637     }
    638     DCHECK(obj != nullptr);
    639     DCHECK_LT(mark_stack_pos_, kMaxSize);
    640     mark_stack_[mark_stack_pos_++] = obj;
    641   }
    642 
    643   virtual void Finalize() {
    644     delete this;
    645   }
    646 
    647   // Scans all of the objects
    648   virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
    649       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    650     ScanObjectParallelVisitor visitor(this);
    651     // TODO: Tune this.
    652     static const size_t kFifoSize = 4;
    653     BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
    654     for (;;) {
    655       Object* obj = nullptr;
    656       if (kUseMarkStackPrefetch) {
    657         while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
    658           Object* obj = mark_stack_[--mark_stack_pos_];
    659           DCHECK(obj != nullptr);
    660           __builtin_prefetch(obj);
    661           prefetch_fifo.push_back(obj);
    662         }
    663         if (UNLIKELY(prefetch_fifo.empty())) {
    664           break;
    665         }
    666         obj = prefetch_fifo.front();
    667         prefetch_fifo.pop_front();
    668       } else {
    669         if (UNLIKELY(mark_stack_pos_ == 0)) {
    670           break;
    671         }
    672         obj = mark_stack_[--mark_stack_pos_];
    673       }
    674       DCHECK(obj != nullptr);
    675       visitor(obj);
    676     }
    677   }
    678 };
    679 
    680 class CardScanTask : public MarkStackTask<false> {
    681  public:
    682   CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
    683                accounting::ContinuousSpaceBitmap* bitmap,
    684                byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
    685                Object** mark_stack_obj)
    686       : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
    687         bitmap_(bitmap),
    688         begin_(begin),
    689         end_(end),
    690         minimum_age_(minimum_age) {
    691   }
    692 
    693  protected:
    694   accounting::ContinuousSpaceBitmap* const bitmap_;
    695   byte* const begin_;
    696   byte* const end_;
    697   const byte minimum_age_;
    698 
    699   virtual void Finalize() {
    700     delete this;
    701   }
    702 
    703   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
    704     ScanObjectParallelVisitor visitor(this);
    705     accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
    706     size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
    707     VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
    708         << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
    709     // Finish by emptying our local mark stack.
    710     MarkStackTask::Run(self);
    711   }
    712 };
    713 
    714 size_t MarkSweep::GetThreadCount(bool paused) const {
    715   if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
    716     return 1;
    717   }
    718   if (paused) {
    719     return heap_->GetParallelGCThreadCount() + 1;
    720   } else {
    721     return heap_->GetConcGCThreadCount() + 1;
    722   }
    723 }
    724 
    725 void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
    726   accounting::CardTable* card_table = GetHeap()->GetCardTable();
    727   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
    728   size_t thread_count = GetThreadCount(paused);
    729   // The parallel version with only one thread is faster for card scanning, TODO: fix.
    730   if (kParallelCardScan && thread_count > 1) {
    731     Thread* self = Thread::Current();
    732     // Can't have a different split for each space since multiple spaces can have their cards being
    733     // scanned at the same time.
    734     TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
    735         GetTimings());
    736     // Try to take some of the mark stack since we can pass this off to the worker tasks.
    737     Object** mark_stack_begin = mark_stack_->Begin();
    738     Object** mark_stack_end = mark_stack_->End();
    739     const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
    740     // Estimated number of work tasks we will create.
    741     const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
    742     DCHECK_NE(mark_stack_tasks, 0U);
    743     const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
    744                                              mark_stack_size / mark_stack_tasks + 1);
    745     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    746       if (space->GetMarkBitmap() == nullptr) {
    747         continue;
    748       }
    749       byte* card_begin = space->Begin();
    750       byte* card_end = space->End();
    751       // Align up the end address. For example, the image space's end
    752       // may not be card-size-aligned.
    753       card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
    754       DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
    755       DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
    756       // Calculate how many bytes of heap we will scan,
    757       const size_t address_range = card_end - card_begin;
    758       // Calculate how much address range each task gets.
    759       const size_t card_delta = RoundUp(address_range / thread_count + 1,
    760                                         accounting::CardTable::kCardSize);
    761       // Create the worker tasks for this space.
    762       while (card_begin != card_end) {
    763         // Add a range of cards.
    764         size_t addr_remaining = card_end - card_begin;
    765         size_t card_increment = std::min(card_delta, addr_remaining);
    766         // Take from the back of the mark stack.
    767         size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
    768         size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
    769         mark_stack_end -= mark_stack_increment;
    770         mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
    771         DCHECK_EQ(mark_stack_end, mark_stack_->End());
    772         // Add the new task to the thread pool.
    773         auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
    774                                       card_begin + card_increment, minimum_age,
    775                                       mark_stack_increment, mark_stack_end);
    776         thread_pool->AddTask(self, task);
    777         card_begin += card_increment;
    778       }
    779     }
    780 
    781     // Note: the card scan below may dirty new cards (and scan them)
    782     // as a side effect when a Reference object is encountered and
    783     // queued during the marking. See b/11465268.
    784     thread_pool->SetMaxActiveWorkers(thread_count - 1);
    785     thread_pool->StartWorkers(self);
    786     thread_pool->Wait(self, true, true);
    787     thread_pool->StopWorkers(self);
    788   } else {
    789     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    790       if (space->GetMarkBitmap() != nullptr) {
    791         // Image spaces are handled properly since live == marked for them.
    792         const char* name = nullptr;
    793         switch (space->GetGcRetentionPolicy()) {
    794         case space::kGcRetentionPolicyNeverCollect:
    795           name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
    796           break;
    797         case space::kGcRetentionPolicyFullCollect:
    798           name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
    799           break;
    800         case space::kGcRetentionPolicyAlwaysCollect:
    801           name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
    802           break;
    803         default:
    804           LOG(FATAL) << "Unreachable";
    805         }
    806         TimingLogger::ScopedTiming t(name, GetTimings());
    807         ScanObjectVisitor visitor(this);
    808         card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
    809                          minimum_age);
    810       }
    811     }
    812   }
    813 }
    814 
    815 class RecursiveMarkTask : public MarkStackTask<false> {
    816  public:
    817   RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
    818                     accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
    819       : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), bitmap_(bitmap), begin_(begin),
    820         end_(end) {
    821   }
    822 
    823  protected:
    824   accounting::ContinuousSpaceBitmap* const bitmap_;
    825   const uintptr_t begin_;
    826   const uintptr_t end_;
    827 
    828   virtual void Finalize() {
    829     delete this;
    830   }
    831 
    832   // Scans all of the objects
    833   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
    834     ScanObjectParallelVisitor visitor(this);
    835     bitmap_->VisitMarkedRange(begin_, end_, visitor);
    836     // Finish by emptying our local mark stack.
    837     MarkStackTask::Run(self);
    838   }
    839 };
    840 
    841 // Populates the mark stack based on the set of marked objects and
    842 // recursively marks until the mark stack is emptied.
    843 void MarkSweep::RecursiveMark() {
    844   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    845   // RecursiveMark will build the lists of known instances of the Reference classes. See
    846   // DelayReferenceReferent for details.
    847   if (kUseRecursiveMark) {
    848     const bool partial = GetGcType() == kGcTypePartial;
    849     ScanObjectVisitor scan_visitor(this);
    850     auto* self = Thread::Current();
    851     ThreadPool* thread_pool = heap_->GetThreadPool();
    852     size_t thread_count = GetThreadCount(false);
    853     const bool parallel = kParallelRecursiveMark && thread_count > 1;
    854     mark_stack_->Reset();
    855     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
    856       if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
    857           (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
    858         current_space_bitmap_ = space->GetMarkBitmap();
    859         if (current_space_bitmap_ == nullptr) {
    860           continue;
    861         }
    862         if (parallel) {
    863           // We will use the mark stack the future.
    864           // CHECK(mark_stack_->IsEmpty());
    865           // This function does not handle heap end increasing, so we must use the space end.
    866           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
    867           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
    868           atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
    869 
    870           // Create a few worker tasks.
    871           const size_t n = thread_count * 2;
    872           while (begin != end) {
    873             uintptr_t start = begin;
    874             uintptr_t delta = (end - begin) / n;
    875             delta = RoundUp(delta, KB);
    876             if (delta < 16 * KB) delta = end - begin;
    877             begin += delta;
    878             auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
    879                                                begin);
    880             thread_pool->AddTask(self, task);
    881           }
    882           thread_pool->SetMaxActiveWorkers(thread_count - 1);
    883           thread_pool->StartWorkers(self);
    884           thread_pool->Wait(self, true, true);
    885           thread_pool->StopWorkers(self);
    886         } else {
    887           // This function does not handle heap end increasing, so we must use the space end.
    888           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
    889           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
    890           current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
    891         }
    892       }
    893     }
    894   }
    895   ProcessMarkStack(false);
    896 }
    897 
    898 mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
    899   if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
    900     return object;
    901   }
    902   return nullptr;
    903 }
    904 
    905 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
    906   ScanGrayObjects(paused, minimum_age);
    907   ProcessMarkStack(paused);
    908 }
    909 
    910 void MarkSweep::ReMarkRoots() {
    911   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    912   Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
    913   Runtime::Current()->VisitRoots(
    914       MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
    915                                                           kVisitRootFlagStopLoggingNewRoots |
    916                                                           kVisitRootFlagClearRootLog));
    917   if (kVerifyRootsMarked) {
    918     TimingLogger::ScopedTiming t("(Paused)VerifyRoots", GetTimings());
    919     Runtime::Current()->VisitRoots(VerifyRootMarked, this);
    920   }
    921 }
    922 
    923 void MarkSweep::SweepSystemWeaks(Thread* self) {
    924   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    925   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    926   Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
    927 }
    928 
    929 mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
    930   reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
    931   // We don't actually want to sweep the object, so lets return "marked"
    932   return obj;
    933 }
    934 
    935 void MarkSweep::VerifyIsLive(const Object* obj) {
    936   if (!heap_->GetLiveBitmap()->Test(obj)) {
    937     accounting::ObjectStack* allocation_stack = heap_->allocation_stack_.get();
    938     CHECK(std::find(allocation_stack->Begin(), allocation_stack->End(), obj) !=
    939         allocation_stack->End()) << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
    940   }
    941 }
    942 
    943 void MarkSweep::VerifySystemWeaks() {
    944   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    945   // Verify system weaks, uses a special object visitor which returns the input object.
    946   Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
    947 }
    948 
    949 class CheckpointMarkThreadRoots : public Closure {
    950  public:
    951   explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
    952                                      bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
    953       : mark_sweep_(mark_sweep),
    954         revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
    955             revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
    956   }
    957 
    958   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
    959     ATRACE_BEGIN("Marking thread roots");
    960     // Note: self is not necessarily equal to thread since thread may be suspended.
    961     Thread* self = Thread::Current();
    962     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
    963         << thread->GetState() << " thread " << thread << " self " << self;
    964     thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
    965     ATRACE_END();
    966     if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
    967       ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
    968       mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
    969       ATRACE_END();
    970     }
    971     mark_sweep_->GetBarrier().Pass(self);
    972   }
    973 
    974  private:
    975   MarkSweep* const mark_sweep_;
    976   const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
    977 };
    978 
    979 void MarkSweep::MarkRootsCheckpoint(Thread* self,
    980                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
    981   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
    982   CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
    983   ThreadList* thread_list = Runtime::Current()->GetThreadList();
    984   // Request the check point is run on all threads returning a count of the threads that must
    985   // run through the barrier including self.
    986   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
    987   // Release locks then wait for all mutator threads to pass the barrier.
    988   // TODO: optimize to not release locks when there are no threads to wait for.
    989   Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
    990   Locks::mutator_lock_->SharedUnlock(self);
    991   {
    992     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
    993     gc_barrier_->Increment(self, barrier_count);
    994   }
    995   Locks::mutator_lock_->SharedLock(self);
    996   Locks::heap_bitmap_lock_->ExclusiveLock(self);
    997 }
    998 
    999 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
   1000   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1001   Thread* self = Thread::Current();
   1002   mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
   1003       sweep_array_free_buffer_mem_map_->BaseBegin());
   1004   size_t chunk_free_pos = 0;
   1005   ObjectBytePair freed;
   1006   ObjectBytePair freed_los;
   1007   // How many objects are left in the array, modified after each space is swept.
   1008   Object** objects = allocations->Begin();
   1009   size_t count = allocations->Size();
   1010   // Change the order to ensure that the non-moving space last swept as an optimization.
   1011   std::vector<space::ContinuousSpace*> sweep_spaces;
   1012   space::ContinuousSpace* non_moving_space = nullptr;
   1013   for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
   1014     if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
   1015         space->GetLiveBitmap() != nullptr) {
   1016       if (space == heap_->GetNonMovingSpace()) {
   1017         non_moving_space = space;
   1018       } else {
   1019         sweep_spaces.push_back(space);
   1020       }
   1021     }
   1022   }
   1023   // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
   1024   // the other alloc spaces as an optimization.
   1025   if (non_moving_space != nullptr) {
   1026     sweep_spaces.push_back(non_moving_space);
   1027   }
   1028   // Start by sweeping the continuous spaces.
   1029   for (space::ContinuousSpace* space : sweep_spaces) {
   1030     space::AllocSpace* alloc_space = space->AsAllocSpace();
   1031     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1032     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1033     if (swap_bitmaps) {
   1034       std::swap(live_bitmap, mark_bitmap);
   1035     }
   1036     Object** out = objects;
   1037     for (size_t i = 0; i < count; ++i) {
   1038       Object* obj = objects[i];
   1039       if (kUseThreadLocalAllocationStack && obj == nullptr) {
   1040         continue;
   1041       }
   1042       if (space->HasAddress(obj)) {
   1043         // This object is in the space, remove it from the array and add it to the sweep buffer
   1044         // if needed.
   1045         if (!mark_bitmap->Test(obj)) {
   1046           if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
   1047             TimingLogger::ScopedTiming t("FreeList", GetTimings());
   1048             freed.objects += chunk_free_pos;
   1049             freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
   1050             chunk_free_pos = 0;
   1051           }
   1052           chunk_free_buffer[chunk_free_pos++] = obj;
   1053         }
   1054       } else {
   1055         *(out++) = obj;
   1056       }
   1057     }
   1058     if (chunk_free_pos > 0) {
   1059       TimingLogger::ScopedTiming t("FreeList", GetTimings());
   1060       freed.objects += chunk_free_pos;
   1061       freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
   1062       chunk_free_pos = 0;
   1063     }
   1064     // All of the references which space contained are no longer in the allocation stack, update
   1065     // the count.
   1066     count = out - objects;
   1067   }
   1068   // Handle the large object space.
   1069   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
   1070   accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
   1071   accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
   1072   if (swap_bitmaps) {
   1073     std::swap(large_live_objects, large_mark_objects);
   1074   }
   1075   for (size_t i = 0; i < count; ++i) {
   1076     Object* obj = objects[i];
   1077     // Handle large objects.
   1078     if (kUseThreadLocalAllocationStack && obj == nullptr) {
   1079       continue;
   1080     }
   1081     if (!large_mark_objects->Test(obj)) {
   1082       ++freed_los.objects;
   1083       freed_los.bytes += large_object_space->Free(self, obj);
   1084     }
   1085   }
   1086   {
   1087     TimingLogger::ScopedTiming t("RecordFree", GetTimings());
   1088     RecordFree(freed);
   1089     RecordFreeLOS(freed_los);
   1090     t.NewTiming("ResetStack");
   1091     allocations->Reset();
   1092   }
   1093   sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
   1094 }
   1095 
   1096 void MarkSweep::Sweep(bool swap_bitmaps) {
   1097   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1098   // Ensure that nobody inserted items in the live stack after we swapped the stacks.
   1099   CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
   1100   {
   1101     TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
   1102     // Mark everything allocated since the last as GC live so that we can sweep concurrently,
   1103     // knowing that new allocations won't be marked as live.
   1104     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
   1105     heap_->MarkAllocStackAsLive(live_stack);
   1106     live_stack->Reset();
   1107     DCHECK(mark_stack_->IsEmpty());
   1108   }
   1109   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   1110     if (space->IsContinuousMemMapAllocSpace()) {
   1111       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   1112       TimingLogger::ScopedTiming split(
   1113           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings());
   1114       RecordFree(alloc_space->Sweep(swap_bitmaps));
   1115     }
   1116   }
   1117   SweepLargeObjects(swap_bitmaps);
   1118 }
   1119 
   1120 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
   1121   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
   1122   RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
   1123 }
   1124 
   1125 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
   1126 // marked, put it on the appropriate list in the heap for later processing.
   1127 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
   1128   if (kCountJavaLangRefs) {
   1129     ++reference_count_;
   1130   }
   1131   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback,
   1132                                                          this);
   1133 }
   1134 
   1135 class MarkObjectVisitor {
   1136  public:
   1137   explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
   1138   }
   1139 
   1140   void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
   1141       ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1142       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
   1143     if (kCheckLocks) {
   1144       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
   1145       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
   1146     }
   1147     mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset));
   1148   }
   1149 
   1150  private:
   1151   MarkSweep* const mark_sweep_;
   1152 };
   1153 
   1154 // Scans an object reference.  Determines the type of the reference
   1155 // and dispatches to a specialized scanning routine.
   1156 void MarkSweep::ScanObject(Object* obj) {
   1157   MarkObjectVisitor mark_visitor(this);
   1158   DelayReferenceReferentVisitor ref_visitor(this);
   1159   ScanObjectVisit(obj, mark_visitor, ref_visitor);
   1160 }
   1161 
   1162 void MarkSweep::ProcessMarkStackCallback(void* arg) {
   1163   reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false);
   1164 }
   1165 
   1166 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
   1167   Thread* self = Thread::Current();
   1168   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
   1169   const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
   1170                                      static_cast<size_t>(MarkStackTask<false>::kMaxSize));
   1171   CHECK_GT(chunk_size, 0U);
   1172   // Split the current mark stack up into work tasks.
   1173   for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
   1174     const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
   1175     thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
   1176     it += delta;
   1177   }
   1178   thread_pool->SetMaxActiveWorkers(thread_count - 1);
   1179   thread_pool->StartWorkers(self);
   1180   thread_pool->Wait(self, true, true);
   1181   thread_pool->StopWorkers(self);
   1182   mark_stack_->Reset();
   1183   CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
   1184            work_chunks_deleted_.LoadSequentiallyConsistent())
   1185       << " some of the work chunks were leaked";
   1186 }
   1187 
   1188 // Scan anything that's on the mark stack.
   1189 void MarkSweep::ProcessMarkStack(bool paused) {
   1190   TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
   1191   size_t thread_count = GetThreadCount(paused);
   1192   if (kParallelProcessMarkStack && thread_count > 1 &&
   1193       mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
   1194     ProcessMarkStackParallel(thread_count);
   1195   } else {
   1196     // TODO: Tune this.
   1197     static const size_t kFifoSize = 4;
   1198     BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
   1199     for (;;) {
   1200       Object* obj = NULL;
   1201       if (kUseMarkStackPrefetch) {
   1202         while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
   1203           Object* obj = mark_stack_->PopBack();
   1204           DCHECK(obj != NULL);
   1205           __builtin_prefetch(obj);
   1206           prefetch_fifo.push_back(obj);
   1207         }
   1208         if (prefetch_fifo.empty()) {
   1209           break;
   1210         }
   1211         obj = prefetch_fifo.front();
   1212         prefetch_fifo.pop_front();
   1213       } else {
   1214         if (mark_stack_->IsEmpty()) {
   1215           break;
   1216         }
   1217         obj = mark_stack_->PopBack();
   1218       }
   1219       DCHECK(obj != nullptr);
   1220       ScanObject(obj);
   1221     }
   1222   }
   1223 }
   1224 
   1225 inline bool MarkSweep::IsMarked(const Object* object) const {
   1226   if (immune_region_.ContainsObject(object)) {
   1227     return true;
   1228   }
   1229   if (current_space_bitmap_->HasAddress(object)) {
   1230     return current_space_bitmap_->Test(object);
   1231   }
   1232   return mark_bitmap_->Test(object);
   1233 }
   1234 
   1235 void MarkSweep::FinishPhase() {
   1236   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1237   if (kCountScannedTypes) {
   1238     VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed()
   1239         << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed();
   1240   }
   1241   if (kCountTasks) {
   1242     VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
   1243   }
   1244   if (kMeasureOverhead) {
   1245     VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
   1246   }
   1247   if (kProfileLargeObjects) {
   1248     VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
   1249         << " marked " << large_object_mark_.LoadRelaxed();
   1250   }
   1251   if (kCountJavaLangRefs) {
   1252     VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed();
   1253   }
   1254   if (kCountMarkedObjects) {
   1255     VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
   1256         << " immune=" <<  mark_immune_count_.LoadRelaxed()
   1257         << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
   1258         << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
   1259   }
   1260   CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
   1261   mark_stack_->Reset();
   1262   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1263   heap_->ClearMarkedObjects();
   1264 }
   1265 
   1266 void MarkSweep::RevokeAllThreadLocalBuffers() {
   1267   if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
   1268     // If concurrent, rosalloc thread-local buffers are revoked at the
   1269     // thread checkpoint. Bump pointer space thread-local buffers must
   1270     // not be in use.
   1271     GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
   1272   } else {
   1273     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   1274     GetHeap()->RevokeAllThreadLocalBuffers();
   1275   }
   1276 }
   1277 
   1278 }  // namespace collector
   1279 }  // namespace gc
   1280 }  // namespace art
   1281