1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Builtin calls as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/Basic/TargetBuiltins.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Intrinsics.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 using namespace llvm; 29 30 /// getBuiltinLibFunction - Given a builtin id for a function like 31 /// "__builtin_fabsf", return a Function* for "fabsf". 32 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 33 unsigned BuiltinID) { 34 assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); 35 36 // Get the name, skip over the __builtin_ prefix (if necessary). 37 StringRef Name; 38 GlobalDecl D(FD); 39 40 // If the builtin has been declared explicitly with an assembler label, 41 // use the mangled name. This differs from the plain label on platforms 42 // that prefix labels. 43 if (FD->hasAttr<AsmLabelAttr>()) 44 Name = getMangledName(D); 45 else 46 Name = Context.BuiltinInfo.GetName(BuiltinID) + 10; 47 48 llvm::FunctionType *Ty = 49 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 50 51 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 52 } 53 54 /// Emit the conversions required to turn the given value into an 55 /// integer of the given size. 56 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, 57 QualType T, llvm::IntegerType *IntType) { 58 V = CGF.EmitToMemory(V, T); 59 60 if (V->getType()->isPointerTy()) 61 return CGF.Builder.CreatePtrToInt(V, IntType); 62 63 assert(V->getType() == IntType); 64 return V; 65 } 66 67 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, 68 QualType T, llvm::Type *ResultType) { 69 V = CGF.EmitFromMemory(V, T); 70 71 if (ResultType->isPointerTy()) 72 return CGF.Builder.CreateIntToPtr(V, ResultType); 73 74 assert(V->getType() == ResultType); 75 return V; 76 } 77 78 /// Utility to insert an atomic instruction based on Instrinsic::ID 79 /// and the expression node. 80 static RValue EmitBinaryAtomic(CodeGenFunction &CGF, 81 llvm::AtomicRMWInst::BinOp Kind, 82 const CallExpr *E) { 83 QualType T = E->getType(); 84 assert(E->getArg(0)->getType()->isPointerType()); 85 assert(CGF.getContext().hasSameUnqualifiedType(T, 86 E->getArg(0)->getType()->getPointeeType())); 87 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 88 89 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 90 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 91 92 llvm::IntegerType *IntType = 93 llvm::IntegerType::get(CGF.getLLVMContext(), 94 CGF.getContext().getTypeSize(T)); 95 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 96 97 llvm::Value *Args[2]; 98 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 99 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 100 llvm::Type *ValueType = Args[1]->getType(); 101 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 102 103 llvm::Value *Result = 104 CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1], 105 llvm::SequentiallyConsistent); 106 Result = EmitFromInt(CGF, Result, T, ValueType); 107 return RValue::get(Result); 108 } 109 110 /// Utility to insert an atomic instruction based Instrinsic::ID and 111 /// the expression node, where the return value is the result of the 112 /// operation. 113 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, 114 llvm::AtomicRMWInst::BinOp Kind, 115 const CallExpr *E, 116 Instruction::BinaryOps Op) { 117 QualType T = E->getType(); 118 assert(E->getArg(0)->getType()->isPointerType()); 119 assert(CGF.getContext().hasSameUnqualifiedType(T, 120 E->getArg(0)->getType()->getPointeeType())); 121 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 122 123 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 124 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 125 126 llvm::IntegerType *IntType = 127 llvm::IntegerType::get(CGF.getLLVMContext(), 128 CGF.getContext().getTypeSize(T)); 129 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 130 131 llvm::Value *Args[2]; 132 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 133 llvm::Type *ValueType = Args[1]->getType(); 134 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 135 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 136 137 llvm::Value *Result = 138 CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1], 139 llvm::SequentiallyConsistent); 140 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); 141 Result = EmitFromInt(CGF, Result, T, ValueType); 142 return RValue::get(Result); 143 } 144 145 /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy, 146 /// which must be a scalar floating point type. 147 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) { 148 const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>(); 149 assert(ValTyP && "isn't scalar fp type!"); 150 151 StringRef FnName; 152 switch (ValTyP->getKind()) { 153 default: llvm_unreachable("Isn't a scalar fp type!"); 154 case BuiltinType::Float: FnName = "fabsf"; break; 155 case BuiltinType::Double: FnName = "fabs"; break; 156 case BuiltinType::LongDouble: FnName = "fabsl"; break; 157 } 158 159 // The prototype is something that takes and returns whatever V's type is. 160 llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(), 161 false); 162 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName); 163 164 return CGF.EmitNounwindRuntimeCall(Fn, V, "abs"); 165 } 166 167 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn, 168 const CallExpr *E, llvm::Value *calleeValue) { 169 return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E->getLocStart(), 170 ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn); 171 } 172 173 /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* 174 /// depending on IntrinsicID. 175 /// 176 /// \arg CGF The current codegen function. 177 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. 178 /// \arg X The first argument to the llvm.*.with.overflow.*. 179 /// \arg Y The second argument to the llvm.*.with.overflow.*. 180 /// \arg Carry The carry returned by the llvm.*.with.overflow.*. 181 /// \returns The result (i.e. sum/product) returned by the intrinsic. 182 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, 183 const llvm::Intrinsic::ID IntrinsicID, 184 llvm::Value *X, llvm::Value *Y, 185 llvm::Value *&Carry) { 186 // Make sure we have integers of the same width. 187 assert(X->getType() == Y->getType() && 188 "Arguments must be the same type. (Did you forget to make sure both " 189 "arguments have the same integer width?)"); 190 191 llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); 192 llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y); 193 Carry = CGF.Builder.CreateExtractValue(Tmp, 1); 194 return CGF.Builder.CreateExtractValue(Tmp, 0); 195 } 196 197 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD, 198 unsigned BuiltinID, const CallExpr *E) { 199 // See if we can constant fold this builtin. If so, don't emit it at all. 200 Expr::EvalResult Result; 201 if (E->EvaluateAsRValue(Result, CGM.getContext()) && 202 !Result.hasSideEffects()) { 203 if (Result.Val.isInt()) 204 return RValue::get(llvm::ConstantInt::get(getLLVMContext(), 205 Result.Val.getInt())); 206 if (Result.Val.isFloat()) 207 return RValue::get(llvm::ConstantFP::get(getLLVMContext(), 208 Result.Val.getFloat())); 209 } 210 211 switch (BuiltinID) { 212 default: break; // Handle intrinsics and libm functions below. 213 case Builtin::BI__builtin___CFStringMakeConstantString: 214 case Builtin::BI__builtin___NSStringMakeConstantString: 215 return RValue::get(CGM.EmitConstantExpr(E, E->getType(), nullptr)); 216 case Builtin::BI__builtin_stdarg_start: 217 case Builtin::BI__builtin_va_start: 218 case Builtin::BI__va_start: 219 case Builtin::BI__builtin_va_end: { 220 Value *ArgValue = (BuiltinID == Builtin::BI__va_start) 221 ? EmitScalarExpr(E->getArg(0)) 222 : EmitVAListRef(E->getArg(0)); 223 llvm::Type *DestType = Int8PtrTy; 224 if (ArgValue->getType() != DestType) 225 ArgValue = Builder.CreateBitCast(ArgValue, DestType, 226 ArgValue->getName().data()); 227 228 Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ? 229 Intrinsic::vaend : Intrinsic::vastart; 230 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue)); 231 } 232 case Builtin::BI__builtin_va_copy: { 233 Value *DstPtr = EmitVAListRef(E->getArg(0)); 234 Value *SrcPtr = EmitVAListRef(E->getArg(1)); 235 236 llvm::Type *Type = Int8PtrTy; 237 238 DstPtr = Builder.CreateBitCast(DstPtr, Type); 239 SrcPtr = Builder.CreateBitCast(SrcPtr, Type); 240 return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy), 241 DstPtr, SrcPtr)); 242 } 243 case Builtin::BI__builtin_abs: 244 case Builtin::BI__builtin_labs: 245 case Builtin::BI__builtin_llabs: { 246 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 247 248 Value *NegOp = Builder.CreateNeg(ArgValue, "neg"); 249 Value *CmpResult = 250 Builder.CreateICmpSGE(ArgValue, 251 llvm::Constant::getNullValue(ArgValue->getType()), 252 "abscond"); 253 Value *Result = 254 Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs"); 255 256 return RValue::get(Result); 257 } 258 259 case Builtin::BI__builtin_conj: 260 case Builtin::BI__builtin_conjf: 261 case Builtin::BI__builtin_conjl: { 262 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 263 Value *Real = ComplexVal.first; 264 Value *Imag = ComplexVal.second; 265 Value *Zero = 266 Imag->getType()->isFPOrFPVectorTy() 267 ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType()) 268 : llvm::Constant::getNullValue(Imag->getType()); 269 270 Imag = Builder.CreateFSub(Zero, Imag, "sub"); 271 return RValue::getComplex(std::make_pair(Real, Imag)); 272 } 273 case Builtin::BI__builtin_creal: 274 case Builtin::BI__builtin_crealf: 275 case Builtin::BI__builtin_creall: 276 case Builtin::BIcreal: 277 case Builtin::BIcrealf: 278 case Builtin::BIcreall: { 279 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 280 return RValue::get(ComplexVal.first); 281 } 282 283 case Builtin::BI__builtin_cimag: 284 case Builtin::BI__builtin_cimagf: 285 case Builtin::BI__builtin_cimagl: 286 case Builtin::BIcimag: 287 case Builtin::BIcimagf: 288 case Builtin::BIcimagl: { 289 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 290 return RValue::get(ComplexVal.second); 291 } 292 293 case Builtin::BI__builtin_ctzs: 294 case Builtin::BI__builtin_ctz: 295 case Builtin::BI__builtin_ctzl: 296 case Builtin::BI__builtin_ctzll: { 297 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 298 299 llvm::Type *ArgType = ArgValue->getType(); 300 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 301 302 llvm::Type *ResultType = ConvertType(E->getType()); 303 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 304 Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef); 305 if (Result->getType() != ResultType) 306 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 307 "cast"); 308 return RValue::get(Result); 309 } 310 case Builtin::BI__builtin_clzs: 311 case Builtin::BI__builtin_clz: 312 case Builtin::BI__builtin_clzl: 313 case Builtin::BI__builtin_clzll: { 314 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 315 316 llvm::Type *ArgType = ArgValue->getType(); 317 Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 318 319 llvm::Type *ResultType = ConvertType(E->getType()); 320 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 321 Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef); 322 if (Result->getType() != ResultType) 323 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 324 "cast"); 325 return RValue::get(Result); 326 } 327 case Builtin::BI__builtin_ffs: 328 case Builtin::BI__builtin_ffsl: 329 case Builtin::BI__builtin_ffsll: { 330 // ffs(x) -> x ? cttz(x) + 1 : 0 331 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 332 333 llvm::Type *ArgType = ArgValue->getType(); 334 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 335 336 llvm::Type *ResultType = ConvertType(E->getType()); 337 Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue, 338 Builder.getTrue()), 339 llvm::ConstantInt::get(ArgType, 1)); 340 Value *Zero = llvm::Constant::getNullValue(ArgType); 341 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); 342 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); 343 if (Result->getType() != ResultType) 344 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 345 "cast"); 346 return RValue::get(Result); 347 } 348 case Builtin::BI__builtin_parity: 349 case Builtin::BI__builtin_parityl: 350 case Builtin::BI__builtin_parityll: { 351 // parity(x) -> ctpop(x) & 1 352 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 353 354 llvm::Type *ArgType = ArgValue->getType(); 355 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 356 357 llvm::Type *ResultType = ConvertType(E->getType()); 358 Value *Tmp = Builder.CreateCall(F, ArgValue); 359 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); 360 if (Result->getType() != ResultType) 361 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 362 "cast"); 363 return RValue::get(Result); 364 } 365 case Builtin::BI__builtin_popcount: 366 case Builtin::BI__builtin_popcountl: 367 case Builtin::BI__builtin_popcountll: { 368 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 369 370 llvm::Type *ArgType = ArgValue->getType(); 371 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 372 373 llvm::Type *ResultType = ConvertType(E->getType()); 374 Value *Result = Builder.CreateCall(F, ArgValue); 375 if (Result->getType() != ResultType) 376 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 377 "cast"); 378 return RValue::get(Result); 379 } 380 case Builtin::BI__builtin_expect: { 381 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 382 llvm::Type *ArgType = ArgValue->getType(); 383 384 Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); 385 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 386 387 Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue, 388 "expval"); 389 return RValue::get(Result); 390 } 391 case Builtin::BI__builtin_bswap16: 392 case Builtin::BI__builtin_bswap32: 393 case Builtin::BI__builtin_bswap64: { 394 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 395 llvm::Type *ArgType = ArgValue->getType(); 396 Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType); 397 return RValue::get(Builder.CreateCall(F, ArgValue)); 398 } 399 case Builtin::BI__builtin_object_size: { 400 // We rely on constant folding to deal with expressions with side effects. 401 assert(!E->getArg(0)->HasSideEffects(getContext()) && 402 "should have been constant folded"); 403 404 // We pass this builtin onto the optimizer so that it can 405 // figure out the object size in more complex cases. 406 llvm::Type *ResType = ConvertType(E->getType()); 407 408 // LLVM only supports 0 and 2, make sure that we pass along that 409 // as a boolean. 410 Value *Ty = EmitScalarExpr(E->getArg(1)); 411 ConstantInt *CI = dyn_cast<ConstantInt>(Ty); 412 assert(CI); 413 uint64_t val = CI->getZExtValue(); 414 CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1); 415 // FIXME: Get right address space. 416 llvm::Type *Tys[] = { ResType, Builder.getInt8PtrTy(0) }; 417 Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys); 418 return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI)); 419 } 420 case Builtin::BI__builtin_prefetch: { 421 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); 422 // FIXME: Technically these constants should of type 'int', yes? 423 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : 424 llvm::ConstantInt::get(Int32Ty, 0); 425 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : 426 llvm::ConstantInt::get(Int32Ty, 3); 427 Value *Data = llvm::ConstantInt::get(Int32Ty, 1); 428 Value *F = CGM.getIntrinsic(Intrinsic::prefetch); 429 return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data)); 430 } 431 case Builtin::BI__builtin_readcyclecounter: { 432 Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); 433 return RValue::get(Builder.CreateCall(F)); 434 } 435 case Builtin::BI__builtin___clear_cache: { 436 Value *Begin = EmitScalarExpr(E->getArg(0)); 437 Value *End = EmitScalarExpr(E->getArg(1)); 438 Value *F = CGM.getIntrinsic(Intrinsic::clear_cache); 439 return RValue::get(Builder.CreateCall2(F, Begin, End)); 440 } 441 case Builtin::BI__builtin_trap: { 442 Value *F = CGM.getIntrinsic(Intrinsic::trap); 443 return RValue::get(Builder.CreateCall(F)); 444 } 445 case Builtin::BI__debugbreak: { 446 Value *F = CGM.getIntrinsic(Intrinsic::debugtrap); 447 return RValue::get(Builder.CreateCall(F)); 448 } 449 case Builtin::BI__builtin_unreachable: { 450 if (SanOpts->Unreachable) 451 EmitCheck(Builder.getFalse(), "builtin_unreachable", 452 EmitCheckSourceLocation(E->getExprLoc()), 453 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 454 else 455 Builder.CreateUnreachable(); 456 457 // We do need to preserve an insertion point. 458 EmitBlock(createBasicBlock("unreachable.cont")); 459 460 return RValue::get(nullptr); 461 } 462 463 case Builtin::BI__builtin_powi: 464 case Builtin::BI__builtin_powif: 465 case Builtin::BI__builtin_powil: { 466 Value *Base = EmitScalarExpr(E->getArg(0)); 467 Value *Exponent = EmitScalarExpr(E->getArg(1)); 468 llvm::Type *ArgType = Base->getType(); 469 Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType); 470 return RValue::get(Builder.CreateCall2(F, Base, Exponent)); 471 } 472 473 case Builtin::BI__builtin_isgreater: 474 case Builtin::BI__builtin_isgreaterequal: 475 case Builtin::BI__builtin_isless: 476 case Builtin::BI__builtin_islessequal: 477 case Builtin::BI__builtin_islessgreater: 478 case Builtin::BI__builtin_isunordered: { 479 // Ordered comparisons: we know the arguments to these are matching scalar 480 // floating point values. 481 Value *LHS = EmitScalarExpr(E->getArg(0)); 482 Value *RHS = EmitScalarExpr(E->getArg(1)); 483 484 switch (BuiltinID) { 485 default: llvm_unreachable("Unknown ordered comparison"); 486 case Builtin::BI__builtin_isgreater: 487 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); 488 break; 489 case Builtin::BI__builtin_isgreaterequal: 490 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); 491 break; 492 case Builtin::BI__builtin_isless: 493 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); 494 break; 495 case Builtin::BI__builtin_islessequal: 496 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); 497 break; 498 case Builtin::BI__builtin_islessgreater: 499 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); 500 break; 501 case Builtin::BI__builtin_isunordered: 502 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); 503 break; 504 } 505 // ZExt bool to int type. 506 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); 507 } 508 case Builtin::BI__builtin_isnan: { 509 Value *V = EmitScalarExpr(E->getArg(0)); 510 V = Builder.CreateFCmpUNO(V, V, "cmp"); 511 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 512 } 513 514 case Builtin::BI__builtin_isinf: { 515 // isinf(x) --> fabs(x) == infinity 516 Value *V = EmitScalarExpr(E->getArg(0)); 517 V = EmitFAbs(*this, V, E->getArg(0)->getType()); 518 519 V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf"); 520 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 521 } 522 523 // TODO: BI__builtin_isinf_sign 524 // isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0 525 526 case Builtin::BI__builtin_isnormal: { 527 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min 528 Value *V = EmitScalarExpr(E->getArg(0)); 529 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); 530 531 Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType()); 532 Value *IsLessThanInf = 533 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); 534 APFloat Smallest = APFloat::getSmallestNormalized( 535 getContext().getFloatTypeSemantics(E->getArg(0)->getType())); 536 Value *IsNormal = 537 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), 538 "isnormal"); 539 V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); 540 V = Builder.CreateAnd(V, IsNormal, "and"); 541 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 542 } 543 544 case Builtin::BI__builtin_isfinite: { 545 // isfinite(x) --> x == x && fabs(x) != infinity; 546 Value *V = EmitScalarExpr(E->getArg(0)); 547 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); 548 549 Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType()); 550 Value *IsNotInf = 551 Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); 552 553 V = Builder.CreateAnd(Eq, IsNotInf, "and"); 554 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 555 } 556 557 case Builtin::BI__builtin_fpclassify: { 558 Value *V = EmitScalarExpr(E->getArg(5)); 559 llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); 560 561 // Create Result 562 BasicBlock *Begin = Builder.GetInsertBlock(); 563 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); 564 Builder.SetInsertPoint(End); 565 PHINode *Result = 566 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, 567 "fpclassify_result"); 568 569 // if (V==0) return FP_ZERO 570 Builder.SetInsertPoint(Begin); 571 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), 572 "iszero"); 573 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); 574 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); 575 Builder.CreateCondBr(IsZero, End, NotZero); 576 Result->addIncoming(ZeroLiteral, Begin); 577 578 // if (V != V) return FP_NAN 579 Builder.SetInsertPoint(NotZero); 580 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); 581 Value *NanLiteral = EmitScalarExpr(E->getArg(0)); 582 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); 583 Builder.CreateCondBr(IsNan, End, NotNan); 584 Result->addIncoming(NanLiteral, NotZero); 585 586 // if (fabs(V) == infinity) return FP_INFINITY 587 Builder.SetInsertPoint(NotNan); 588 Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType()); 589 Value *IsInf = 590 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), 591 "isinf"); 592 Value *InfLiteral = EmitScalarExpr(E->getArg(1)); 593 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); 594 Builder.CreateCondBr(IsInf, End, NotInf); 595 Result->addIncoming(InfLiteral, NotNan); 596 597 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL 598 Builder.SetInsertPoint(NotInf); 599 APFloat Smallest = APFloat::getSmallestNormalized( 600 getContext().getFloatTypeSemantics(E->getArg(5)->getType())); 601 Value *IsNormal = 602 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), 603 "isnormal"); 604 Value *NormalResult = 605 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), 606 EmitScalarExpr(E->getArg(3))); 607 Builder.CreateBr(End); 608 Result->addIncoming(NormalResult, NotInf); 609 610 // return Result 611 Builder.SetInsertPoint(End); 612 return RValue::get(Result); 613 } 614 615 case Builtin::BIalloca: 616 case Builtin::BI_alloca: 617 case Builtin::BI__builtin_alloca: { 618 Value *Size = EmitScalarExpr(E->getArg(0)); 619 return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size)); 620 } 621 case Builtin::BIbzero: 622 case Builtin::BI__builtin_bzero: { 623 std::pair<llvm::Value*, unsigned> Dest = 624 EmitPointerWithAlignment(E->getArg(0)); 625 Value *SizeVal = EmitScalarExpr(E->getArg(1)); 626 Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal, 627 Dest.second, false); 628 return RValue::get(Dest.first); 629 } 630 case Builtin::BImemcpy: 631 case Builtin::BI__builtin_memcpy: { 632 std::pair<llvm::Value*, unsigned> Dest = 633 EmitPointerWithAlignment(E->getArg(0)); 634 std::pair<llvm::Value*, unsigned> Src = 635 EmitPointerWithAlignment(E->getArg(1)); 636 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 637 unsigned Align = std::min(Dest.second, Src.second); 638 Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false); 639 return RValue::get(Dest.first); 640 } 641 642 case Builtin::BI__builtin___memcpy_chk: { 643 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. 644 llvm::APSInt Size, DstSize; 645 if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || 646 !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) 647 break; 648 if (Size.ugt(DstSize)) 649 break; 650 std::pair<llvm::Value*, unsigned> Dest = 651 EmitPointerWithAlignment(E->getArg(0)); 652 std::pair<llvm::Value*, unsigned> Src = 653 EmitPointerWithAlignment(E->getArg(1)); 654 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 655 unsigned Align = std::min(Dest.second, Src.second); 656 Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false); 657 return RValue::get(Dest.first); 658 } 659 660 case Builtin::BI__builtin_objc_memmove_collectable: { 661 Value *Address = EmitScalarExpr(E->getArg(0)); 662 Value *SrcAddr = EmitScalarExpr(E->getArg(1)); 663 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 664 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, 665 Address, SrcAddr, SizeVal); 666 return RValue::get(Address); 667 } 668 669 case Builtin::BI__builtin___memmove_chk: { 670 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. 671 llvm::APSInt Size, DstSize; 672 if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || 673 !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) 674 break; 675 if (Size.ugt(DstSize)) 676 break; 677 std::pair<llvm::Value*, unsigned> Dest = 678 EmitPointerWithAlignment(E->getArg(0)); 679 std::pair<llvm::Value*, unsigned> Src = 680 EmitPointerWithAlignment(E->getArg(1)); 681 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 682 unsigned Align = std::min(Dest.second, Src.second); 683 Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false); 684 return RValue::get(Dest.first); 685 } 686 687 case Builtin::BImemmove: 688 case Builtin::BI__builtin_memmove: { 689 std::pair<llvm::Value*, unsigned> Dest = 690 EmitPointerWithAlignment(E->getArg(0)); 691 std::pair<llvm::Value*, unsigned> Src = 692 EmitPointerWithAlignment(E->getArg(1)); 693 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 694 unsigned Align = std::min(Dest.second, Src.second); 695 Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false); 696 return RValue::get(Dest.first); 697 } 698 case Builtin::BImemset: 699 case Builtin::BI__builtin_memset: { 700 std::pair<llvm::Value*, unsigned> Dest = 701 EmitPointerWithAlignment(E->getArg(0)); 702 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 703 Builder.getInt8Ty()); 704 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 705 Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false); 706 return RValue::get(Dest.first); 707 } 708 case Builtin::BI__builtin___memset_chk: { 709 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. 710 llvm::APSInt Size, DstSize; 711 if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || 712 !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) 713 break; 714 if (Size.ugt(DstSize)) 715 break; 716 std::pair<llvm::Value*, unsigned> Dest = 717 EmitPointerWithAlignment(E->getArg(0)); 718 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 719 Builder.getInt8Ty()); 720 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 721 Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false); 722 return RValue::get(Dest.first); 723 } 724 case Builtin::BI__builtin_dwarf_cfa: { 725 // The offset in bytes from the first argument to the CFA. 726 // 727 // Why on earth is this in the frontend? Is there any reason at 728 // all that the backend can't reasonably determine this while 729 // lowering llvm.eh.dwarf.cfa()? 730 // 731 // TODO: If there's a satisfactory reason, add a target hook for 732 // this instead of hard-coding 0, which is correct for most targets. 733 int32_t Offset = 0; 734 735 Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); 736 return RValue::get(Builder.CreateCall(F, 737 llvm::ConstantInt::get(Int32Ty, Offset))); 738 } 739 case Builtin::BI__builtin_return_address: { 740 Value *Depth = EmitScalarExpr(E->getArg(0)); 741 Depth = Builder.CreateIntCast(Depth, Int32Ty, false); 742 Value *F = CGM.getIntrinsic(Intrinsic::returnaddress); 743 return RValue::get(Builder.CreateCall(F, Depth)); 744 } 745 case Builtin::BI__builtin_frame_address: { 746 Value *Depth = EmitScalarExpr(E->getArg(0)); 747 Depth = Builder.CreateIntCast(Depth, Int32Ty, false); 748 Value *F = CGM.getIntrinsic(Intrinsic::frameaddress); 749 return RValue::get(Builder.CreateCall(F, Depth)); 750 } 751 case Builtin::BI__builtin_extract_return_addr: { 752 Value *Address = EmitScalarExpr(E->getArg(0)); 753 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); 754 return RValue::get(Result); 755 } 756 case Builtin::BI__builtin_frob_return_addr: { 757 Value *Address = EmitScalarExpr(E->getArg(0)); 758 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); 759 return RValue::get(Result); 760 } 761 case Builtin::BI__builtin_dwarf_sp_column: { 762 llvm::IntegerType *Ty 763 = cast<llvm::IntegerType>(ConvertType(E->getType())); 764 int Column = getTargetHooks().getDwarfEHStackPointer(CGM); 765 if (Column == -1) { 766 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); 767 return RValue::get(llvm::UndefValue::get(Ty)); 768 } 769 return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); 770 } 771 case Builtin::BI__builtin_init_dwarf_reg_size_table: { 772 Value *Address = EmitScalarExpr(E->getArg(0)); 773 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) 774 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); 775 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); 776 } 777 case Builtin::BI__builtin_eh_return: { 778 Value *Int = EmitScalarExpr(E->getArg(0)); 779 Value *Ptr = EmitScalarExpr(E->getArg(1)); 780 781 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); 782 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && 783 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); 784 Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32 785 ? Intrinsic::eh_return_i32 786 : Intrinsic::eh_return_i64); 787 Builder.CreateCall2(F, Int, Ptr); 788 Builder.CreateUnreachable(); 789 790 // We do need to preserve an insertion point. 791 EmitBlock(createBasicBlock("builtin_eh_return.cont")); 792 793 return RValue::get(nullptr); 794 } 795 case Builtin::BI__builtin_unwind_init: { 796 Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); 797 return RValue::get(Builder.CreateCall(F)); 798 } 799 case Builtin::BI__builtin_extend_pointer: { 800 // Extends a pointer to the size of an _Unwind_Word, which is 801 // uint64_t on all platforms. Generally this gets poked into a 802 // register and eventually used as an address, so if the 803 // addressing registers are wider than pointers and the platform 804 // doesn't implicitly ignore high-order bits when doing 805 // addressing, we need to make sure we zext / sext based on 806 // the platform's expectations. 807 // 808 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html 809 810 // Cast the pointer to intptr_t. 811 Value *Ptr = EmitScalarExpr(E->getArg(0)); 812 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); 813 814 // If that's 64 bits, we're done. 815 if (IntPtrTy->getBitWidth() == 64) 816 return RValue::get(Result); 817 818 // Otherwise, ask the codegen data what to do. 819 if (getTargetHooks().extendPointerWithSExt()) 820 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); 821 else 822 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); 823 } 824 case Builtin::BI__builtin_setjmp: { 825 // Buffer is a void**. 826 Value *Buf = EmitScalarExpr(E->getArg(0)); 827 828 // Store the frame pointer to the setjmp buffer. 829 Value *FrameAddr = 830 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress), 831 ConstantInt::get(Int32Ty, 0)); 832 Builder.CreateStore(FrameAddr, Buf); 833 834 // Store the stack pointer to the setjmp buffer. 835 Value *StackAddr = 836 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); 837 Value *StackSaveSlot = 838 Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2)); 839 Builder.CreateStore(StackAddr, StackSaveSlot); 840 841 // Call LLVM's EH setjmp, which is lightweight. 842 Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); 843 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 844 return RValue::get(Builder.CreateCall(F, Buf)); 845 } 846 case Builtin::BI__builtin_longjmp: { 847 Value *Buf = EmitScalarExpr(E->getArg(0)); 848 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 849 850 // Call LLVM's EH longjmp, which is lightweight. 851 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); 852 853 // longjmp doesn't return; mark this as unreachable. 854 Builder.CreateUnreachable(); 855 856 // We do need to preserve an insertion point. 857 EmitBlock(createBasicBlock("longjmp.cont")); 858 859 return RValue::get(nullptr); 860 } 861 case Builtin::BI__sync_fetch_and_add: 862 case Builtin::BI__sync_fetch_and_sub: 863 case Builtin::BI__sync_fetch_and_or: 864 case Builtin::BI__sync_fetch_and_and: 865 case Builtin::BI__sync_fetch_and_xor: 866 case Builtin::BI__sync_add_and_fetch: 867 case Builtin::BI__sync_sub_and_fetch: 868 case Builtin::BI__sync_and_and_fetch: 869 case Builtin::BI__sync_or_and_fetch: 870 case Builtin::BI__sync_xor_and_fetch: 871 case Builtin::BI__sync_val_compare_and_swap: 872 case Builtin::BI__sync_bool_compare_and_swap: 873 case Builtin::BI__sync_lock_test_and_set: 874 case Builtin::BI__sync_lock_release: 875 case Builtin::BI__sync_swap: 876 llvm_unreachable("Shouldn't make it through sema"); 877 case Builtin::BI__sync_fetch_and_add_1: 878 case Builtin::BI__sync_fetch_and_add_2: 879 case Builtin::BI__sync_fetch_and_add_4: 880 case Builtin::BI__sync_fetch_and_add_8: 881 case Builtin::BI__sync_fetch_and_add_16: 882 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); 883 case Builtin::BI__sync_fetch_and_sub_1: 884 case Builtin::BI__sync_fetch_and_sub_2: 885 case Builtin::BI__sync_fetch_and_sub_4: 886 case Builtin::BI__sync_fetch_and_sub_8: 887 case Builtin::BI__sync_fetch_and_sub_16: 888 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); 889 case Builtin::BI__sync_fetch_and_or_1: 890 case Builtin::BI__sync_fetch_and_or_2: 891 case Builtin::BI__sync_fetch_and_or_4: 892 case Builtin::BI__sync_fetch_and_or_8: 893 case Builtin::BI__sync_fetch_and_or_16: 894 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); 895 case Builtin::BI__sync_fetch_and_and_1: 896 case Builtin::BI__sync_fetch_and_and_2: 897 case Builtin::BI__sync_fetch_and_and_4: 898 case Builtin::BI__sync_fetch_and_and_8: 899 case Builtin::BI__sync_fetch_and_and_16: 900 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); 901 case Builtin::BI__sync_fetch_and_xor_1: 902 case Builtin::BI__sync_fetch_and_xor_2: 903 case Builtin::BI__sync_fetch_and_xor_4: 904 case Builtin::BI__sync_fetch_and_xor_8: 905 case Builtin::BI__sync_fetch_and_xor_16: 906 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); 907 908 // Clang extensions: not overloaded yet. 909 case Builtin::BI__sync_fetch_and_min: 910 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); 911 case Builtin::BI__sync_fetch_and_max: 912 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); 913 case Builtin::BI__sync_fetch_and_umin: 914 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); 915 case Builtin::BI__sync_fetch_and_umax: 916 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); 917 918 case Builtin::BI__sync_add_and_fetch_1: 919 case Builtin::BI__sync_add_and_fetch_2: 920 case Builtin::BI__sync_add_and_fetch_4: 921 case Builtin::BI__sync_add_and_fetch_8: 922 case Builtin::BI__sync_add_and_fetch_16: 923 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, 924 llvm::Instruction::Add); 925 case Builtin::BI__sync_sub_and_fetch_1: 926 case Builtin::BI__sync_sub_and_fetch_2: 927 case Builtin::BI__sync_sub_and_fetch_4: 928 case Builtin::BI__sync_sub_and_fetch_8: 929 case Builtin::BI__sync_sub_and_fetch_16: 930 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, 931 llvm::Instruction::Sub); 932 case Builtin::BI__sync_and_and_fetch_1: 933 case Builtin::BI__sync_and_and_fetch_2: 934 case Builtin::BI__sync_and_and_fetch_4: 935 case Builtin::BI__sync_and_and_fetch_8: 936 case Builtin::BI__sync_and_and_fetch_16: 937 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, 938 llvm::Instruction::And); 939 case Builtin::BI__sync_or_and_fetch_1: 940 case Builtin::BI__sync_or_and_fetch_2: 941 case Builtin::BI__sync_or_and_fetch_4: 942 case Builtin::BI__sync_or_and_fetch_8: 943 case Builtin::BI__sync_or_and_fetch_16: 944 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, 945 llvm::Instruction::Or); 946 case Builtin::BI__sync_xor_and_fetch_1: 947 case Builtin::BI__sync_xor_and_fetch_2: 948 case Builtin::BI__sync_xor_and_fetch_4: 949 case Builtin::BI__sync_xor_and_fetch_8: 950 case Builtin::BI__sync_xor_and_fetch_16: 951 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, 952 llvm::Instruction::Xor); 953 954 case Builtin::BI__sync_val_compare_and_swap_1: 955 case Builtin::BI__sync_val_compare_and_swap_2: 956 case Builtin::BI__sync_val_compare_and_swap_4: 957 case Builtin::BI__sync_val_compare_and_swap_8: 958 case Builtin::BI__sync_val_compare_and_swap_16: { 959 QualType T = E->getType(); 960 llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0)); 961 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 962 963 llvm::IntegerType *IntType = 964 llvm::IntegerType::get(getLLVMContext(), 965 getContext().getTypeSize(T)); 966 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 967 968 Value *Args[3]; 969 Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType); 970 Args[1] = EmitScalarExpr(E->getArg(1)); 971 llvm::Type *ValueType = Args[1]->getType(); 972 Args[1] = EmitToInt(*this, Args[1], T, IntType); 973 Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType); 974 975 Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2], 976 llvm::SequentiallyConsistent, 977 llvm::SequentiallyConsistent); 978 Result = Builder.CreateExtractValue(Result, 0); 979 Result = EmitFromInt(*this, Result, T, ValueType); 980 return RValue::get(Result); 981 } 982 983 case Builtin::BI__sync_bool_compare_and_swap_1: 984 case Builtin::BI__sync_bool_compare_and_swap_2: 985 case Builtin::BI__sync_bool_compare_and_swap_4: 986 case Builtin::BI__sync_bool_compare_and_swap_8: 987 case Builtin::BI__sync_bool_compare_and_swap_16: { 988 QualType T = E->getArg(1)->getType(); 989 llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0)); 990 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 991 992 llvm::IntegerType *IntType = 993 llvm::IntegerType::get(getLLVMContext(), 994 getContext().getTypeSize(T)); 995 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 996 997 Value *Args[3]; 998 Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType); 999 Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType); 1000 Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType); 1001 1002 Value *Pair = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2], 1003 llvm::SequentiallyConsistent, 1004 llvm::SequentiallyConsistent); 1005 Value *Result = Builder.CreateExtractValue(Pair, 1); 1006 // zext bool to int. 1007 Result = Builder.CreateZExt(Result, ConvertType(E->getType())); 1008 return RValue::get(Result); 1009 } 1010 1011 case Builtin::BI__sync_swap_1: 1012 case Builtin::BI__sync_swap_2: 1013 case Builtin::BI__sync_swap_4: 1014 case Builtin::BI__sync_swap_8: 1015 case Builtin::BI__sync_swap_16: 1016 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 1017 1018 case Builtin::BI__sync_lock_test_and_set_1: 1019 case Builtin::BI__sync_lock_test_and_set_2: 1020 case Builtin::BI__sync_lock_test_and_set_4: 1021 case Builtin::BI__sync_lock_test_and_set_8: 1022 case Builtin::BI__sync_lock_test_and_set_16: 1023 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 1024 1025 case Builtin::BI__sync_lock_release_1: 1026 case Builtin::BI__sync_lock_release_2: 1027 case Builtin::BI__sync_lock_release_4: 1028 case Builtin::BI__sync_lock_release_8: 1029 case Builtin::BI__sync_lock_release_16: { 1030 Value *Ptr = EmitScalarExpr(E->getArg(0)); 1031 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 1032 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); 1033 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), 1034 StoreSize.getQuantity() * 8); 1035 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 1036 llvm::StoreInst *Store = 1037 Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr); 1038 Store->setAlignment(StoreSize.getQuantity()); 1039 Store->setAtomic(llvm::Release); 1040 return RValue::get(nullptr); 1041 } 1042 1043 case Builtin::BI__sync_synchronize: { 1044 // We assume this is supposed to correspond to a C++0x-style 1045 // sequentially-consistent fence (i.e. this is only usable for 1046 // synchonization, not device I/O or anything like that). This intrinsic 1047 // is really badly designed in the sense that in theory, there isn't 1048 // any way to safely use it... but in practice, it mostly works 1049 // to use it with non-atomic loads and stores to get acquire/release 1050 // semantics. 1051 Builder.CreateFence(llvm::SequentiallyConsistent); 1052 return RValue::get(nullptr); 1053 } 1054 1055 case Builtin::BI__c11_atomic_is_lock_free: 1056 case Builtin::BI__atomic_is_lock_free: { 1057 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the 1058 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since 1059 // _Atomic(T) is always properly-aligned. 1060 const char *LibCallName = "__atomic_is_lock_free"; 1061 CallArgList Args; 1062 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), 1063 getContext().getSizeType()); 1064 if (BuiltinID == Builtin::BI__atomic_is_lock_free) 1065 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), 1066 getContext().VoidPtrTy); 1067 else 1068 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), 1069 getContext().VoidPtrTy); 1070 const CGFunctionInfo &FuncInfo = 1071 CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args, 1072 FunctionType::ExtInfo(), 1073 RequiredArgs::All); 1074 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 1075 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 1076 return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 1077 } 1078 1079 case Builtin::BI__atomic_test_and_set: { 1080 // Look at the argument type to determine whether this is a volatile 1081 // operation. The parameter type is always volatile. 1082 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 1083 bool Volatile = 1084 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 1085 1086 Value *Ptr = EmitScalarExpr(E->getArg(0)); 1087 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); 1088 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 1089 Value *NewVal = Builder.getInt8(1); 1090 Value *Order = EmitScalarExpr(E->getArg(1)); 1091 if (isa<llvm::ConstantInt>(Order)) { 1092 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 1093 AtomicRMWInst *Result = nullptr; 1094 switch (ord) { 1095 case 0: // memory_order_relaxed 1096 default: // invalid order 1097 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1098 Ptr, NewVal, 1099 llvm::Monotonic); 1100 break; 1101 case 1: // memory_order_consume 1102 case 2: // memory_order_acquire 1103 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1104 Ptr, NewVal, 1105 llvm::Acquire); 1106 break; 1107 case 3: // memory_order_release 1108 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1109 Ptr, NewVal, 1110 llvm::Release); 1111 break; 1112 case 4: // memory_order_acq_rel 1113 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1114 Ptr, NewVal, 1115 llvm::AcquireRelease); 1116 break; 1117 case 5: // memory_order_seq_cst 1118 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1119 Ptr, NewVal, 1120 llvm::SequentiallyConsistent); 1121 break; 1122 } 1123 Result->setVolatile(Volatile); 1124 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 1125 } 1126 1127 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 1128 1129 llvm::BasicBlock *BBs[5] = { 1130 createBasicBlock("monotonic", CurFn), 1131 createBasicBlock("acquire", CurFn), 1132 createBasicBlock("release", CurFn), 1133 createBasicBlock("acqrel", CurFn), 1134 createBasicBlock("seqcst", CurFn) 1135 }; 1136 llvm::AtomicOrdering Orders[5] = { 1137 llvm::Monotonic, llvm::Acquire, llvm::Release, 1138 llvm::AcquireRelease, llvm::SequentiallyConsistent 1139 }; 1140 1141 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 1142 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 1143 1144 Builder.SetInsertPoint(ContBB); 1145 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); 1146 1147 for (unsigned i = 0; i < 5; ++i) { 1148 Builder.SetInsertPoint(BBs[i]); 1149 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1150 Ptr, NewVal, Orders[i]); 1151 RMW->setVolatile(Volatile); 1152 Result->addIncoming(RMW, BBs[i]); 1153 Builder.CreateBr(ContBB); 1154 } 1155 1156 SI->addCase(Builder.getInt32(0), BBs[0]); 1157 SI->addCase(Builder.getInt32(1), BBs[1]); 1158 SI->addCase(Builder.getInt32(2), BBs[1]); 1159 SI->addCase(Builder.getInt32(3), BBs[2]); 1160 SI->addCase(Builder.getInt32(4), BBs[3]); 1161 SI->addCase(Builder.getInt32(5), BBs[4]); 1162 1163 Builder.SetInsertPoint(ContBB); 1164 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 1165 } 1166 1167 case Builtin::BI__atomic_clear: { 1168 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 1169 bool Volatile = 1170 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 1171 1172 Value *Ptr = EmitScalarExpr(E->getArg(0)); 1173 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); 1174 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 1175 Value *NewVal = Builder.getInt8(0); 1176 Value *Order = EmitScalarExpr(E->getArg(1)); 1177 if (isa<llvm::ConstantInt>(Order)) { 1178 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 1179 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 1180 Store->setAlignment(1); 1181 switch (ord) { 1182 case 0: // memory_order_relaxed 1183 default: // invalid order 1184 Store->setOrdering(llvm::Monotonic); 1185 break; 1186 case 3: // memory_order_release 1187 Store->setOrdering(llvm::Release); 1188 break; 1189 case 5: // memory_order_seq_cst 1190 Store->setOrdering(llvm::SequentiallyConsistent); 1191 break; 1192 } 1193 return RValue::get(nullptr); 1194 } 1195 1196 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 1197 1198 llvm::BasicBlock *BBs[3] = { 1199 createBasicBlock("monotonic", CurFn), 1200 createBasicBlock("release", CurFn), 1201 createBasicBlock("seqcst", CurFn) 1202 }; 1203 llvm::AtomicOrdering Orders[3] = { 1204 llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent 1205 }; 1206 1207 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 1208 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 1209 1210 for (unsigned i = 0; i < 3; ++i) { 1211 Builder.SetInsertPoint(BBs[i]); 1212 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 1213 Store->setAlignment(1); 1214 Store->setOrdering(Orders[i]); 1215 Builder.CreateBr(ContBB); 1216 } 1217 1218 SI->addCase(Builder.getInt32(0), BBs[0]); 1219 SI->addCase(Builder.getInt32(3), BBs[1]); 1220 SI->addCase(Builder.getInt32(5), BBs[2]); 1221 1222 Builder.SetInsertPoint(ContBB); 1223 return RValue::get(nullptr); 1224 } 1225 1226 case Builtin::BI__atomic_thread_fence: 1227 case Builtin::BI__atomic_signal_fence: 1228 case Builtin::BI__c11_atomic_thread_fence: 1229 case Builtin::BI__c11_atomic_signal_fence: { 1230 llvm::SynchronizationScope Scope; 1231 if (BuiltinID == Builtin::BI__atomic_signal_fence || 1232 BuiltinID == Builtin::BI__c11_atomic_signal_fence) 1233 Scope = llvm::SingleThread; 1234 else 1235 Scope = llvm::CrossThread; 1236 Value *Order = EmitScalarExpr(E->getArg(0)); 1237 if (isa<llvm::ConstantInt>(Order)) { 1238 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 1239 switch (ord) { 1240 case 0: // memory_order_relaxed 1241 default: // invalid order 1242 break; 1243 case 1: // memory_order_consume 1244 case 2: // memory_order_acquire 1245 Builder.CreateFence(llvm::Acquire, Scope); 1246 break; 1247 case 3: // memory_order_release 1248 Builder.CreateFence(llvm::Release, Scope); 1249 break; 1250 case 4: // memory_order_acq_rel 1251 Builder.CreateFence(llvm::AcquireRelease, Scope); 1252 break; 1253 case 5: // memory_order_seq_cst 1254 Builder.CreateFence(llvm::SequentiallyConsistent, Scope); 1255 break; 1256 } 1257 return RValue::get(nullptr); 1258 } 1259 1260 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; 1261 AcquireBB = createBasicBlock("acquire", CurFn); 1262 ReleaseBB = createBasicBlock("release", CurFn); 1263 AcqRelBB = createBasicBlock("acqrel", CurFn); 1264 SeqCstBB = createBasicBlock("seqcst", CurFn); 1265 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 1266 1267 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 1268 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); 1269 1270 Builder.SetInsertPoint(AcquireBB); 1271 Builder.CreateFence(llvm::Acquire, Scope); 1272 Builder.CreateBr(ContBB); 1273 SI->addCase(Builder.getInt32(1), AcquireBB); 1274 SI->addCase(Builder.getInt32(2), AcquireBB); 1275 1276 Builder.SetInsertPoint(ReleaseBB); 1277 Builder.CreateFence(llvm::Release, Scope); 1278 Builder.CreateBr(ContBB); 1279 SI->addCase(Builder.getInt32(3), ReleaseBB); 1280 1281 Builder.SetInsertPoint(AcqRelBB); 1282 Builder.CreateFence(llvm::AcquireRelease, Scope); 1283 Builder.CreateBr(ContBB); 1284 SI->addCase(Builder.getInt32(4), AcqRelBB); 1285 1286 Builder.SetInsertPoint(SeqCstBB); 1287 Builder.CreateFence(llvm::SequentiallyConsistent, Scope); 1288 Builder.CreateBr(ContBB); 1289 SI->addCase(Builder.getInt32(5), SeqCstBB); 1290 1291 Builder.SetInsertPoint(ContBB); 1292 return RValue::get(nullptr); 1293 } 1294 1295 // Library functions with special handling. 1296 case Builtin::BIsqrt: 1297 case Builtin::BIsqrtf: 1298 case Builtin::BIsqrtl: { 1299 // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only 1300 // in finite- or unsafe-math mode (the intrinsic has different semantics 1301 // for handling negative numbers compared to the library function, so 1302 // -fmath-errno=0 is not enough). 1303 if (!FD->hasAttr<ConstAttr>()) 1304 break; 1305 if (!(CGM.getCodeGenOpts().UnsafeFPMath || 1306 CGM.getCodeGenOpts().NoNaNsFPMath)) 1307 break; 1308 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 1309 llvm::Type *ArgType = Arg0->getType(); 1310 Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType); 1311 return RValue::get(Builder.CreateCall(F, Arg0)); 1312 } 1313 1314 case Builtin::BIpow: 1315 case Builtin::BIpowf: 1316 case Builtin::BIpowl: { 1317 // Transform a call to pow* into a @llvm.pow.* intrinsic call. 1318 if (!FD->hasAttr<ConstAttr>()) 1319 break; 1320 Value *Base = EmitScalarExpr(E->getArg(0)); 1321 Value *Exponent = EmitScalarExpr(E->getArg(1)); 1322 llvm::Type *ArgType = Base->getType(); 1323 Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType); 1324 return RValue::get(Builder.CreateCall2(F, Base, Exponent)); 1325 } 1326 1327 case Builtin::BIfma: 1328 case Builtin::BIfmaf: 1329 case Builtin::BIfmal: 1330 case Builtin::BI__builtin_fma: 1331 case Builtin::BI__builtin_fmaf: 1332 case Builtin::BI__builtin_fmal: { 1333 // Rewrite fma to intrinsic. 1334 Value *FirstArg = EmitScalarExpr(E->getArg(0)); 1335 llvm::Type *ArgType = FirstArg->getType(); 1336 Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType); 1337 return RValue::get(Builder.CreateCall3(F, FirstArg, 1338 EmitScalarExpr(E->getArg(1)), 1339 EmitScalarExpr(E->getArg(2)))); 1340 } 1341 1342 case Builtin::BI__builtin_signbit: 1343 case Builtin::BI__builtin_signbitf: 1344 case Builtin::BI__builtin_signbitl: { 1345 LLVMContext &C = CGM.getLLVMContext(); 1346 1347 Value *Arg = EmitScalarExpr(E->getArg(0)); 1348 llvm::Type *ArgTy = Arg->getType(); 1349 if (ArgTy->isPPC_FP128Ty()) 1350 break; // FIXME: I'm not sure what the right implementation is here. 1351 int ArgWidth = ArgTy->getPrimitiveSizeInBits(); 1352 llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth); 1353 Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy); 1354 Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy); 1355 Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp); 1356 return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType()))); 1357 } 1358 case Builtin::BI__builtin_annotation: { 1359 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); 1360 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, 1361 AnnVal->getType()); 1362 1363 // Get the annotation string, go through casts. Sema requires this to be a 1364 // non-wide string literal, potentially casted, so the cast<> is safe. 1365 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); 1366 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); 1367 return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc())); 1368 } 1369 case Builtin::BI__builtin_addcb: 1370 case Builtin::BI__builtin_addcs: 1371 case Builtin::BI__builtin_addc: 1372 case Builtin::BI__builtin_addcl: 1373 case Builtin::BI__builtin_addcll: 1374 case Builtin::BI__builtin_subcb: 1375 case Builtin::BI__builtin_subcs: 1376 case Builtin::BI__builtin_subc: 1377 case Builtin::BI__builtin_subcl: 1378 case Builtin::BI__builtin_subcll: { 1379 1380 // We translate all of these builtins from expressions of the form: 1381 // int x = ..., y = ..., carryin = ..., carryout, result; 1382 // result = __builtin_addc(x, y, carryin, &carryout); 1383 // 1384 // to LLVM IR of the form: 1385 // 1386 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) 1387 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 1388 // %carry1 = extractvalue {i32, i1} %tmp1, 1 1389 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, 1390 // i32 %carryin) 1391 // %result = extractvalue {i32, i1} %tmp2, 0 1392 // %carry2 = extractvalue {i32, i1} %tmp2, 1 1393 // %tmp3 = or i1 %carry1, %carry2 1394 // %tmp4 = zext i1 %tmp3 to i32 1395 // store i32 %tmp4, i32* %carryout 1396 1397 // Scalarize our inputs. 1398 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 1399 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 1400 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); 1401 std::pair<llvm::Value*, unsigned> CarryOutPtr = 1402 EmitPointerWithAlignment(E->getArg(3)); 1403 1404 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. 1405 llvm::Intrinsic::ID IntrinsicId; 1406 switch (BuiltinID) { 1407 default: llvm_unreachable("Unknown multiprecision builtin id."); 1408 case Builtin::BI__builtin_addcb: 1409 case Builtin::BI__builtin_addcs: 1410 case Builtin::BI__builtin_addc: 1411 case Builtin::BI__builtin_addcl: 1412 case Builtin::BI__builtin_addcll: 1413 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 1414 break; 1415 case Builtin::BI__builtin_subcb: 1416 case Builtin::BI__builtin_subcs: 1417 case Builtin::BI__builtin_subc: 1418 case Builtin::BI__builtin_subcl: 1419 case Builtin::BI__builtin_subcll: 1420 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 1421 break; 1422 } 1423 1424 // Construct our resulting LLVM IR expression. 1425 llvm::Value *Carry1; 1426 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, 1427 X, Y, Carry1); 1428 llvm::Value *Carry2; 1429 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, 1430 Sum1, Carryin, Carry2); 1431 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), 1432 X->getType()); 1433 llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut, 1434 CarryOutPtr.first); 1435 CarryOutStore->setAlignment(CarryOutPtr.second); 1436 return RValue::get(Sum2); 1437 } 1438 case Builtin::BI__builtin_uadd_overflow: 1439 case Builtin::BI__builtin_uaddl_overflow: 1440 case Builtin::BI__builtin_uaddll_overflow: 1441 case Builtin::BI__builtin_usub_overflow: 1442 case Builtin::BI__builtin_usubl_overflow: 1443 case Builtin::BI__builtin_usubll_overflow: 1444 case Builtin::BI__builtin_umul_overflow: 1445 case Builtin::BI__builtin_umull_overflow: 1446 case Builtin::BI__builtin_umulll_overflow: 1447 case Builtin::BI__builtin_sadd_overflow: 1448 case Builtin::BI__builtin_saddl_overflow: 1449 case Builtin::BI__builtin_saddll_overflow: 1450 case Builtin::BI__builtin_ssub_overflow: 1451 case Builtin::BI__builtin_ssubl_overflow: 1452 case Builtin::BI__builtin_ssubll_overflow: 1453 case Builtin::BI__builtin_smul_overflow: 1454 case Builtin::BI__builtin_smull_overflow: 1455 case Builtin::BI__builtin_smulll_overflow: { 1456 1457 // We translate all of these builtins directly to the relevant llvm IR node. 1458 1459 // Scalarize our inputs. 1460 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 1461 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 1462 std::pair<llvm::Value *, unsigned> SumOutPtr = 1463 EmitPointerWithAlignment(E->getArg(2)); 1464 1465 // Decide which of the overflow intrinsics we are lowering to: 1466 llvm::Intrinsic::ID IntrinsicId; 1467 switch (BuiltinID) { 1468 default: llvm_unreachable("Unknown security overflow builtin id."); 1469 case Builtin::BI__builtin_uadd_overflow: 1470 case Builtin::BI__builtin_uaddl_overflow: 1471 case Builtin::BI__builtin_uaddll_overflow: 1472 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 1473 break; 1474 case Builtin::BI__builtin_usub_overflow: 1475 case Builtin::BI__builtin_usubl_overflow: 1476 case Builtin::BI__builtin_usubll_overflow: 1477 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 1478 break; 1479 case Builtin::BI__builtin_umul_overflow: 1480 case Builtin::BI__builtin_umull_overflow: 1481 case Builtin::BI__builtin_umulll_overflow: 1482 IntrinsicId = llvm::Intrinsic::umul_with_overflow; 1483 break; 1484 case Builtin::BI__builtin_sadd_overflow: 1485 case Builtin::BI__builtin_saddl_overflow: 1486 case Builtin::BI__builtin_saddll_overflow: 1487 IntrinsicId = llvm::Intrinsic::sadd_with_overflow; 1488 break; 1489 case Builtin::BI__builtin_ssub_overflow: 1490 case Builtin::BI__builtin_ssubl_overflow: 1491 case Builtin::BI__builtin_ssubll_overflow: 1492 IntrinsicId = llvm::Intrinsic::ssub_with_overflow; 1493 break; 1494 case Builtin::BI__builtin_smul_overflow: 1495 case Builtin::BI__builtin_smull_overflow: 1496 case Builtin::BI__builtin_smulll_overflow: 1497 IntrinsicId = llvm::Intrinsic::smul_with_overflow; 1498 break; 1499 } 1500 1501 1502 llvm::Value *Carry; 1503 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); 1504 llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first); 1505 SumOutStore->setAlignment(SumOutPtr.second); 1506 1507 return RValue::get(Carry); 1508 } 1509 case Builtin::BI__builtin_addressof: 1510 return RValue::get(EmitLValue(E->getArg(0)).getAddress()); 1511 case Builtin::BI__builtin_operator_new: 1512 return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(), 1513 E->getArg(0), false); 1514 case Builtin::BI__builtin_operator_delete: 1515 return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(), 1516 E->getArg(0), true); 1517 case Builtin::BI__noop: 1518 return RValue::get(nullptr); 1519 case Builtin::BI_InterlockedExchange: 1520 case Builtin::BI_InterlockedExchangePointer: 1521 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 1522 case Builtin::BI_InterlockedCompareExchangePointer: { 1523 llvm::Type *RTy; 1524 llvm::IntegerType *IntType = 1525 IntegerType::get(getLLVMContext(), 1526 getContext().getTypeSize(E->getType())); 1527 llvm::Type *IntPtrType = IntType->getPointerTo(); 1528 1529 llvm::Value *Destination = 1530 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); 1531 1532 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); 1533 RTy = Exchange->getType(); 1534 Exchange = Builder.CreatePtrToInt(Exchange, IntType); 1535 1536 llvm::Value *Comparand = 1537 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); 1538 1539 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 1540 SequentiallyConsistent, 1541 SequentiallyConsistent); 1542 Result->setVolatile(true); 1543 1544 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, 1545 0), 1546 RTy)); 1547 } 1548 case Builtin::BI_InterlockedCompareExchange: { 1549 AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg( 1550 EmitScalarExpr(E->getArg(0)), 1551 EmitScalarExpr(E->getArg(2)), 1552 EmitScalarExpr(E->getArg(1)), 1553 SequentiallyConsistent, 1554 SequentiallyConsistent); 1555 CXI->setVolatile(true); 1556 return RValue::get(Builder.CreateExtractValue(CXI, 0)); 1557 } 1558 case Builtin::BI_InterlockedIncrement: { 1559 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( 1560 AtomicRMWInst::Add, 1561 EmitScalarExpr(E->getArg(0)), 1562 ConstantInt::get(Int32Ty, 1), 1563 llvm::SequentiallyConsistent); 1564 RMWI->setVolatile(true); 1565 return RValue::get(Builder.CreateAdd(RMWI, ConstantInt::get(Int32Ty, 1))); 1566 } 1567 case Builtin::BI_InterlockedDecrement: { 1568 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( 1569 AtomicRMWInst::Sub, 1570 EmitScalarExpr(E->getArg(0)), 1571 ConstantInt::get(Int32Ty, 1), 1572 llvm::SequentiallyConsistent); 1573 RMWI->setVolatile(true); 1574 return RValue::get(Builder.CreateSub(RMWI, ConstantInt::get(Int32Ty, 1))); 1575 } 1576 case Builtin::BI_InterlockedExchangeAdd: { 1577 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( 1578 AtomicRMWInst::Add, 1579 EmitScalarExpr(E->getArg(0)), 1580 EmitScalarExpr(E->getArg(1)), 1581 llvm::SequentiallyConsistent); 1582 RMWI->setVolatile(true); 1583 return RValue::get(RMWI); 1584 } 1585 } 1586 1587 // If this is an alias for a lib function (e.g. __builtin_sin), emit 1588 // the call using the normal call path, but using the unmangled 1589 // version of the function name. 1590 if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) 1591 return emitLibraryCall(*this, FD, E, 1592 CGM.getBuiltinLibFunction(FD, BuiltinID)); 1593 1594 // If this is a predefined lib function (e.g. malloc), emit the call 1595 // using exactly the normal call path. 1596 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 1597 return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee())); 1598 1599 // See if we have a target specific intrinsic. 1600 const char *Name = getContext().BuiltinInfo.GetName(BuiltinID); 1601 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; 1602 if (const char *Prefix = 1603 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch())) { 1604 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name); 1605 // NOTE we dont need to perform a compatibility flag check here since the 1606 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the 1607 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. 1608 if (IntrinsicID == Intrinsic::not_intrinsic) 1609 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix, Name); 1610 } 1611 1612 if (IntrinsicID != Intrinsic::not_intrinsic) { 1613 SmallVector<Value*, 16> Args; 1614 1615 // Find out if any arguments are required to be integer constant 1616 // expressions. 1617 unsigned ICEArguments = 0; 1618 ASTContext::GetBuiltinTypeError Error; 1619 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 1620 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 1621 1622 Function *F = CGM.getIntrinsic(IntrinsicID); 1623 llvm::FunctionType *FTy = F->getFunctionType(); 1624 1625 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { 1626 Value *ArgValue; 1627 // If this is a normal argument, just emit it as a scalar. 1628 if ((ICEArguments & (1 << i)) == 0) { 1629 ArgValue = EmitScalarExpr(E->getArg(i)); 1630 } else { 1631 // If this is required to be a constant, constant fold it so that we 1632 // know that the generated intrinsic gets a ConstantInt. 1633 llvm::APSInt Result; 1634 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext()); 1635 assert(IsConst && "Constant arg isn't actually constant?"); 1636 (void)IsConst; 1637 ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result); 1638 } 1639 1640 // If the intrinsic arg type is different from the builtin arg type 1641 // we need to do a bit cast. 1642 llvm::Type *PTy = FTy->getParamType(i); 1643 if (PTy != ArgValue->getType()) { 1644 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && 1645 "Must be able to losslessly bit cast to param"); 1646 ArgValue = Builder.CreateBitCast(ArgValue, PTy); 1647 } 1648 1649 Args.push_back(ArgValue); 1650 } 1651 1652 Value *V = Builder.CreateCall(F, Args); 1653 QualType BuiltinRetType = E->getType(); 1654 1655 llvm::Type *RetTy = VoidTy; 1656 if (!BuiltinRetType->isVoidType()) 1657 RetTy = ConvertType(BuiltinRetType); 1658 1659 if (RetTy != V->getType()) { 1660 assert(V->getType()->canLosslesslyBitCastTo(RetTy) && 1661 "Must be able to losslessly bit cast result type"); 1662 V = Builder.CreateBitCast(V, RetTy); 1663 } 1664 1665 return RValue::get(V); 1666 } 1667 1668 // See if we have a target specific builtin that needs to be lowered. 1669 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E)) 1670 return RValue::get(V); 1671 1672 ErrorUnsupported(E, "builtin function"); 1673 1674 // Unknown builtin, for now just dump it out and return undef. 1675 return GetUndefRValue(E->getType()); 1676 } 1677 1678 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, 1679 const CallExpr *E) { 1680 switch (getTarget().getTriple().getArch()) { 1681 case llvm::Triple::arm: 1682 case llvm::Triple::armeb: 1683 case llvm::Triple::thumb: 1684 case llvm::Triple::thumbeb: 1685 return EmitARMBuiltinExpr(BuiltinID, E); 1686 case llvm::Triple::aarch64: 1687 case llvm::Triple::aarch64_be: 1688 case llvm::Triple::arm64: 1689 case llvm::Triple::arm64_be: 1690 return EmitAArch64BuiltinExpr(BuiltinID, E); 1691 case llvm::Triple::x86: 1692 case llvm::Triple::x86_64: 1693 return EmitX86BuiltinExpr(BuiltinID, E); 1694 case llvm::Triple::ppc: 1695 case llvm::Triple::ppc64: 1696 case llvm::Triple::ppc64le: 1697 return EmitPPCBuiltinExpr(BuiltinID, E); 1698 case llvm::Triple::r600: 1699 return EmitR600BuiltinExpr(BuiltinID, E); 1700 default: 1701 return nullptr; 1702 } 1703 } 1704 1705 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF, 1706 NeonTypeFlags TypeFlags, 1707 bool V1Ty=false) { 1708 int IsQuad = TypeFlags.isQuad(); 1709 switch (TypeFlags.getEltType()) { 1710 case NeonTypeFlags::Int8: 1711 case NeonTypeFlags::Poly8: 1712 return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); 1713 case NeonTypeFlags::Int16: 1714 case NeonTypeFlags::Poly16: 1715 case NeonTypeFlags::Float16: 1716 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 1717 case NeonTypeFlags::Int32: 1718 return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); 1719 case NeonTypeFlags::Int64: 1720 case NeonTypeFlags::Poly64: 1721 return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); 1722 case NeonTypeFlags::Poly128: 1723 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. 1724 // There is a lot of i128 and f128 API missing. 1725 // so we use v16i8 to represent poly128 and get pattern matched. 1726 return llvm::VectorType::get(CGF->Int8Ty, 16); 1727 case NeonTypeFlags::Float32: 1728 return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); 1729 case NeonTypeFlags::Float64: 1730 return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); 1731 } 1732 llvm_unreachable("Unknown vector element type!"); 1733 } 1734 1735 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { 1736 unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements(); 1737 Value* SV = llvm::ConstantVector::getSplat(nElts, C); 1738 return Builder.CreateShuffleVector(V, V, SV, "lane"); 1739 } 1740 1741 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, 1742 const char *name, 1743 unsigned shift, bool rightshift) { 1744 unsigned j = 0; 1745 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 1746 ai != ae; ++ai, ++j) 1747 if (shift > 0 && shift == j) 1748 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); 1749 else 1750 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); 1751 1752 return Builder.CreateCall(F, Ops, name); 1753 } 1754 1755 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, 1756 bool neg) { 1757 int SV = cast<ConstantInt>(V)->getSExtValue(); 1758 1759 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); 1760 llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV); 1761 return llvm::ConstantVector::getSplat(VTy->getNumElements(), C); 1762 } 1763 1764 // \brief Right-shift a vector by a constant. 1765 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, 1766 llvm::Type *Ty, bool usgn, 1767 const char *name) { 1768 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); 1769 1770 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); 1771 int EltSize = VTy->getScalarSizeInBits(); 1772 1773 Vec = Builder.CreateBitCast(Vec, Ty); 1774 1775 // lshr/ashr are undefined when the shift amount is equal to the vector 1776 // element size. 1777 if (ShiftAmt == EltSize) { 1778 if (usgn) { 1779 // Right-shifting an unsigned value by its size yields 0. 1780 llvm::Constant *Zero = ConstantInt::get(VTy->getElementType(), 0); 1781 return llvm::ConstantVector::getSplat(VTy->getNumElements(), Zero); 1782 } else { 1783 // Right-shifting a signed value by its size is equivalent 1784 // to a shift of size-1. 1785 --ShiftAmt; 1786 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); 1787 } 1788 } 1789 1790 Shift = EmitNeonShiftVector(Shift, Ty, false); 1791 if (usgn) 1792 return Builder.CreateLShr(Vec, Shift, name); 1793 else 1794 return Builder.CreateAShr(Vec, Shift, name); 1795 } 1796 1797 /// GetPointeeAlignment - Given an expression with a pointer type, find the 1798 /// alignment of the type referenced by the pointer. Skip over implicit 1799 /// casts. 1800 std::pair<llvm::Value*, unsigned> 1801 CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) { 1802 assert(Addr->getType()->isPointerType()); 1803 Addr = Addr->IgnoreParens(); 1804 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) { 1805 if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) && 1806 ICE->getSubExpr()->getType()->isPointerType()) { 1807 std::pair<llvm::Value*, unsigned> Ptr = 1808 EmitPointerWithAlignment(ICE->getSubExpr()); 1809 Ptr.first = Builder.CreateBitCast(Ptr.first, 1810 ConvertType(Addr->getType())); 1811 return Ptr; 1812 } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1813 LValue LV = EmitLValue(ICE->getSubExpr()); 1814 unsigned Align = LV.getAlignment().getQuantity(); 1815 if (!Align) { 1816 // FIXME: Once LValues are fixed to always set alignment, 1817 // zap this code. 1818 QualType PtTy = ICE->getSubExpr()->getType(); 1819 if (!PtTy->isIncompleteType()) 1820 Align = getContext().getTypeAlignInChars(PtTy).getQuantity(); 1821 else 1822 Align = 1; 1823 } 1824 return std::make_pair(LV.getAddress(), Align); 1825 } 1826 } 1827 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) { 1828 if (UO->getOpcode() == UO_AddrOf) { 1829 LValue LV = EmitLValue(UO->getSubExpr()); 1830 unsigned Align = LV.getAlignment().getQuantity(); 1831 if (!Align) { 1832 // FIXME: Once LValues are fixed to always set alignment, 1833 // zap this code. 1834 QualType PtTy = UO->getSubExpr()->getType(); 1835 if (!PtTy->isIncompleteType()) 1836 Align = getContext().getTypeAlignInChars(PtTy).getQuantity(); 1837 else 1838 Align = 1; 1839 } 1840 return std::make_pair(LV.getAddress(), Align); 1841 } 1842 } 1843 1844 unsigned Align = 1; 1845 QualType PtTy = Addr->getType()->getPointeeType(); 1846 if (!PtTy->isIncompleteType()) 1847 Align = getContext().getTypeAlignInChars(PtTy).getQuantity(); 1848 1849 return std::make_pair(EmitScalarExpr(Addr), Align); 1850 } 1851 1852 enum { 1853 AddRetType = (1 << 0), 1854 Add1ArgType = (1 << 1), 1855 Add2ArgTypes = (1 << 2), 1856 1857 VectorizeRetType = (1 << 3), 1858 VectorizeArgTypes = (1 << 4), 1859 1860 InventFloatType = (1 << 5), 1861 UnsignedAlts = (1 << 6), 1862 1863 Use64BitVectors = (1 << 7), 1864 Use128BitVectors = (1 << 8), 1865 1866 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, 1867 VectorRet = AddRetType | VectorizeRetType, 1868 VectorRetGetArgs01 = 1869 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, 1870 FpCmpzModifiers = 1871 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType 1872 }; 1873 1874 struct NeonIntrinsicInfo { 1875 unsigned BuiltinID; 1876 unsigned LLVMIntrinsic; 1877 unsigned AltLLVMIntrinsic; 1878 const char *NameHint; 1879 unsigned TypeModifier; 1880 1881 bool operator<(unsigned RHSBuiltinID) const { 1882 return BuiltinID < RHSBuiltinID; 1883 } 1884 }; 1885 1886 #define NEONMAP0(NameBase) \ 1887 { NEON::BI__builtin_neon_ ## NameBase, 0, 0, #NameBase, 0 } 1888 1889 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 1890 { NEON:: BI__builtin_neon_ ## NameBase, \ 1891 Intrinsic::LLVMIntrinsic, 0, #NameBase, TypeModifier } 1892 1893 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ 1894 { NEON:: BI__builtin_neon_ ## NameBase, \ 1895 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ 1896 #NameBase, TypeModifier } 1897 1898 static NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = { 1899 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 1900 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 1901 NEONMAP1(vabs_v, arm_neon_vabs, 0), 1902 NEONMAP1(vabsq_v, arm_neon_vabs, 0), 1903 NEONMAP0(vaddhn_v), 1904 NEONMAP1(vaesdq_v, arm_neon_aesd, 0), 1905 NEONMAP1(vaeseq_v, arm_neon_aese, 0), 1906 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), 1907 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), 1908 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), 1909 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), 1910 NEONMAP1(vcage_v, arm_neon_vacge, 0), 1911 NEONMAP1(vcageq_v, arm_neon_vacge, 0), 1912 NEONMAP1(vcagt_v, arm_neon_vacgt, 0), 1913 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), 1914 NEONMAP1(vcale_v, arm_neon_vacge, 0), 1915 NEONMAP1(vcaleq_v, arm_neon_vacge, 0), 1916 NEONMAP1(vcalt_v, arm_neon_vacgt, 0), 1917 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), 1918 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), 1919 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), 1920 NEONMAP1(vclz_v, ctlz, Add1ArgType), 1921 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 1922 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 1923 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 1924 NEONMAP1(vcvt_f16_v, arm_neon_vcvtfp2hf, 0), 1925 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), 1926 NEONMAP0(vcvt_f32_v), 1927 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 1928 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), 1929 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), 1930 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), 1931 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), 1932 NEONMAP0(vcvt_s32_v), 1933 NEONMAP0(vcvt_s64_v), 1934 NEONMAP0(vcvt_u32_v), 1935 NEONMAP0(vcvt_u64_v), 1936 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), 1937 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), 1938 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), 1939 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), 1940 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), 1941 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), 1942 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), 1943 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), 1944 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), 1945 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), 1946 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), 1947 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), 1948 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), 1949 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), 1950 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), 1951 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), 1952 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), 1953 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), 1954 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), 1955 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), 1956 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), 1957 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), 1958 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), 1959 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), 1960 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), 1961 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), 1962 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), 1963 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), 1964 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), 1965 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), 1966 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), 1967 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), 1968 NEONMAP0(vcvtq_f32_v), 1969 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 1970 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), 1971 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), 1972 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), 1973 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), 1974 NEONMAP0(vcvtq_s32_v), 1975 NEONMAP0(vcvtq_s64_v), 1976 NEONMAP0(vcvtq_u32_v), 1977 NEONMAP0(vcvtq_u64_v), 1978 NEONMAP0(vext_v), 1979 NEONMAP0(vextq_v), 1980 NEONMAP0(vfma_v), 1981 NEONMAP0(vfmaq_v), 1982 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 1983 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 1984 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 1985 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 1986 NEONMAP0(vld1_dup_v), 1987 NEONMAP1(vld1_v, arm_neon_vld1, 0), 1988 NEONMAP0(vld1q_dup_v), 1989 NEONMAP1(vld1q_v, arm_neon_vld1, 0), 1990 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), 1991 NEONMAP1(vld2_v, arm_neon_vld2, 0), 1992 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), 1993 NEONMAP1(vld2q_v, arm_neon_vld2, 0), 1994 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), 1995 NEONMAP1(vld3_v, arm_neon_vld3, 0), 1996 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), 1997 NEONMAP1(vld3q_v, arm_neon_vld3, 0), 1998 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), 1999 NEONMAP1(vld4_v, arm_neon_vld4, 0), 2000 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), 2001 NEONMAP1(vld4q_v, arm_neon_vld4, 0), 2002 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 2003 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 2004 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 2005 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 2006 NEONMAP0(vmovl_v), 2007 NEONMAP0(vmovn_v), 2008 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), 2009 NEONMAP0(vmull_v), 2010 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), 2011 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 2012 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 2013 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), 2014 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 2015 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 2016 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), 2017 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), 2018 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), 2019 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), 2020 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), 2021 NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), 2022 NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), 2023 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0), 2024 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0), 2025 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), 2026 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), 2027 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), 2028 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), 2029 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), 2030 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), 2031 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), 2032 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), 2033 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), 2034 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 2035 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 2036 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 2037 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 2038 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 2039 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 2040 NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), 2041 NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), 2042 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), 2043 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 2044 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 2045 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), 2046 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), 2047 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 2048 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 2049 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 2050 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 2051 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 2052 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 2053 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), 2054 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), 2055 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), 2056 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), 2057 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), 2058 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), 2059 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), 2060 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), 2061 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), 2062 NEONMAP0(vshl_n_v), 2063 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 2064 NEONMAP0(vshll_n_v), 2065 NEONMAP0(vshlq_n_v), 2066 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 2067 NEONMAP0(vshr_n_v), 2068 NEONMAP0(vshrn_n_v), 2069 NEONMAP0(vshrq_n_v), 2070 NEONMAP1(vst1_v, arm_neon_vst1, 0), 2071 NEONMAP1(vst1q_v, arm_neon_vst1, 0), 2072 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), 2073 NEONMAP1(vst2_v, arm_neon_vst2, 0), 2074 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), 2075 NEONMAP1(vst2q_v, arm_neon_vst2, 0), 2076 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), 2077 NEONMAP1(vst3_v, arm_neon_vst3, 0), 2078 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), 2079 NEONMAP1(vst3q_v, arm_neon_vst3, 0), 2080 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), 2081 NEONMAP1(vst4_v, arm_neon_vst4, 0), 2082 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), 2083 NEONMAP1(vst4q_v, arm_neon_vst4, 0), 2084 NEONMAP0(vsubhn_v), 2085 NEONMAP0(vtrn_v), 2086 NEONMAP0(vtrnq_v), 2087 NEONMAP0(vtst_v), 2088 NEONMAP0(vtstq_v), 2089 NEONMAP0(vuzp_v), 2090 NEONMAP0(vuzpq_v), 2091 NEONMAP0(vzip_v), 2092 NEONMAP0(vzipq_v) 2093 }; 2094 2095 static NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = { 2096 NEONMAP1(vabs_v, aarch64_neon_abs, 0), 2097 NEONMAP1(vabsq_v, aarch64_neon_abs, 0), 2098 NEONMAP0(vaddhn_v), 2099 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), 2100 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), 2101 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), 2102 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), 2103 NEONMAP1(vcage_v, aarch64_neon_facge, 0), 2104 NEONMAP1(vcageq_v, aarch64_neon_facge, 0), 2105 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), 2106 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), 2107 NEONMAP1(vcale_v, aarch64_neon_facge, 0), 2108 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), 2109 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), 2110 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), 2111 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), 2112 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), 2113 NEONMAP1(vclz_v, ctlz, Add1ArgType), 2114 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 2115 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 2116 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 2117 NEONMAP1(vcvt_f16_v, aarch64_neon_vcvtfp2hf, 0), 2118 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), 2119 NEONMAP0(vcvt_f32_v), 2120 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 2121 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 2122 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 2123 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 2124 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 2125 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 2126 NEONMAP0(vcvtq_f32_v), 2127 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 2128 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 2129 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 2130 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 2131 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 2132 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 2133 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), 2134 NEONMAP0(vext_v), 2135 NEONMAP0(vextq_v), 2136 NEONMAP0(vfma_v), 2137 NEONMAP0(vfmaq_v), 2138 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 2139 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 2140 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 2141 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 2142 NEONMAP0(vmovl_v), 2143 NEONMAP0(vmovn_v), 2144 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), 2145 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), 2146 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), 2147 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 2148 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 2149 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), 2150 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), 2151 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), 2152 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 2153 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 2154 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), 2155 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), 2156 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), 2157 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), 2158 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), 2159 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), 2160 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), 2161 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), 2162 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), 2163 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), 2164 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), 2165 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 2166 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 2167 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), 2168 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 2169 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), 2170 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 2171 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 2172 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 2173 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), 2174 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 2175 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 2176 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), 2177 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), 2178 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 2179 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 2180 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 2181 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 2182 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 2183 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 2184 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), 2185 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), 2186 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), 2187 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), 2188 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), 2189 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), 2190 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), 2191 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), 2192 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), 2193 NEONMAP0(vshl_n_v), 2194 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 2195 NEONMAP0(vshll_n_v), 2196 NEONMAP0(vshlq_n_v), 2197 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 2198 NEONMAP0(vshr_n_v), 2199 NEONMAP0(vshrn_n_v), 2200 NEONMAP0(vshrq_n_v), 2201 NEONMAP0(vsubhn_v), 2202 NEONMAP0(vtst_v), 2203 NEONMAP0(vtstq_v), 2204 }; 2205 2206 static NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = { 2207 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), 2208 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), 2209 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), 2210 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 2211 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 2212 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 2213 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 2214 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 2215 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 2216 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 2217 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 2218 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), 2219 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 2220 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), 2221 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 2222 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 2223 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 2224 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 2225 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 2226 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 2227 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 2228 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 2229 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 2230 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 2231 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 2232 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 2233 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 2234 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 2235 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 2236 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 2237 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 2238 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 2239 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 2240 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 2241 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 2242 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 2243 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 2244 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 2245 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 2246 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 2247 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 2248 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 2249 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 2250 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 2251 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 2252 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 2253 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 2254 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 2255 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), 2256 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 2257 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 2258 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 2259 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 2260 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 2261 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 2262 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 2263 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 2264 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 2265 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 2266 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 2267 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 2268 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 2269 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 2270 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 2271 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 2272 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 2273 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 2274 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 2275 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 2276 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), 2277 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), 2278 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), 2279 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 2280 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 2281 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 2282 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 2283 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 2284 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 2285 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 2286 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 2287 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 2288 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 2289 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 2290 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), 2291 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 2292 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), 2293 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 2294 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 2295 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), 2296 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), 2297 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 2298 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 2299 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), 2300 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), 2301 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), 2302 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), 2303 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), 2304 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), 2305 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), 2306 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), 2307 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 2308 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 2309 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 2310 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 2311 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), 2312 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 2313 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 2314 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 2315 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), 2316 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 2317 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), 2318 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), 2319 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), 2320 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 2321 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 2322 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), 2323 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), 2324 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 2325 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 2326 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), 2327 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), 2328 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), 2329 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), 2330 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 2331 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 2332 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 2333 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 2334 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), 2335 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 2336 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 2337 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 2338 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 2339 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 2340 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 2341 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), 2342 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), 2343 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 2344 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 2345 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 2346 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 2347 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), 2348 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), 2349 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), 2350 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), 2351 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 2352 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 2353 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), 2354 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), 2355 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), 2356 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 2357 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 2358 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 2359 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 2360 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), 2361 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 2362 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 2363 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 2364 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 2365 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), 2366 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), 2367 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 2368 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 2369 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), 2370 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), 2371 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), 2372 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), 2373 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), 2374 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), 2375 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), 2376 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), 2377 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), 2378 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), 2379 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), 2380 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), 2381 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), 2382 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), 2383 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), 2384 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), 2385 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), 2386 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), 2387 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), 2388 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), 2389 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 2390 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), 2391 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 2392 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), 2393 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), 2394 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), 2395 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 2396 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), 2397 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 2398 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), 2399 }; 2400 2401 #undef NEONMAP0 2402 #undef NEONMAP1 2403 #undef NEONMAP2 2404 2405 static bool NEONSIMDIntrinsicsProvenSorted = false; 2406 2407 static bool AArch64SIMDIntrinsicsProvenSorted = false; 2408 static bool AArch64SISDIntrinsicsProvenSorted = false; 2409 2410 2411 static const NeonIntrinsicInfo * 2412 findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap, 2413 unsigned BuiltinID, bool &MapProvenSorted) { 2414 2415 #ifndef NDEBUG 2416 if (!MapProvenSorted) { 2417 // FIXME: use std::is_sorted once C++11 is allowed 2418 for (unsigned i = 0; i < IntrinsicMap.size() - 1; ++i) 2419 assert(IntrinsicMap[i].BuiltinID <= IntrinsicMap[i + 1].BuiltinID); 2420 MapProvenSorted = true; 2421 } 2422 #endif 2423 2424 const NeonIntrinsicInfo *Builtin = 2425 std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID); 2426 2427 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) 2428 return Builtin; 2429 2430 return nullptr; 2431 } 2432 2433 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2434 unsigned Modifier, 2435 llvm::Type *ArgType, 2436 const CallExpr *E) { 2437 int VectorSize = 0; 2438 if (Modifier & Use64BitVectors) 2439 VectorSize = 64; 2440 else if (Modifier & Use128BitVectors) 2441 VectorSize = 128; 2442 2443 // Return type. 2444 SmallVector<llvm::Type *, 3> Tys; 2445 if (Modifier & AddRetType) { 2446 llvm::Type *Ty = ConvertType(E->getCallReturnType()); 2447 if (Modifier & VectorizeRetType) 2448 Ty = llvm::VectorType::get( 2449 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); 2450 2451 Tys.push_back(Ty); 2452 } 2453 2454 // Arguments. 2455 if (Modifier & VectorizeArgTypes) { 2456 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; 2457 ArgType = llvm::VectorType::get(ArgType, Elts); 2458 } 2459 2460 if (Modifier & (Add1ArgType | Add2ArgTypes)) 2461 Tys.push_back(ArgType); 2462 2463 if (Modifier & Add2ArgTypes) 2464 Tys.push_back(ArgType); 2465 2466 if (Modifier & InventFloatType) 2467 Tys.push_back(FloatTy); 2468 2469 return CGM.getIntrinsic(IntrinsicID, Tys); 2470 } 2471 2472 static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF, 2473 const NeonIntrinsicInfo &SISDInfo, 2474 SmallVectorImpl<Value *> &Ops, 2475 const CallExpr *E) { 2476 unsigned BuiltinID = SISDInfo.BuiltinID; 2477 unsigned int Int = SISDInfo.LLVMIntrinsic; 2478 unsigned Modifier = SISDInfo.TypeModifier; 2479 const char *s = SISDInfo.NameHint; 2480 2481 switch (BuiltinID) { 2482 case NEON::BI__builtin_neon_vcled_s64: 2483 case NEON::BI__builtin_neon_vcled_u64: 2484 case NEON::BI__builtin_neon_vcles_f32: 2485 case NEON::BI__builtin_neon_vcled_f64: 2486 case NEON::BI__builtin_neon_vcltd_s64: 2487 case NEON::BI__builtin_neon_vcltd_u64: 2488 case NEON::BI__builtin_neon_vclts_f32: 2489 case NEON::BI__builtin_neon_vcltd_f64: 2490 case NEON::BI__builtin_neon_vcales_f32: 2491 case NEON::BI__builtin_neon_vcaled_f64: 2492 case NEON::BI__builtin_neon_vcalts_f32: 2493 case NEON::BI__builtin_neon_vcaltd_f64: 2494 // Only one direction of comparisons actually exist, cmle is actually a cmge 2495 // with swapped operands. The table gives us the right intrinsic but we 2496 // still need to do the swap. 2497 std::swap(Ops[0], Ops[1]); 2498 break; 2499 } 2500 2501 assert(Int && "Generic code assumes a valid intrinsic"); 2502 2503 // Determine the type(s) of this overloaded AArch64 intrinsic. 2504 const Expr *Arg = E->getArg(0); 2505 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); 2506 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); 2507 2508 int j = 0; 2509 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); 2510 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 2511 ai != ae; ++ai, ++j) { 2512 llvm::Type *ArgTy = ai->getType(); 2513 if (Ops[j]->getType()->getPrimitiveSizeInBits() == 2514 ArgTy->getPrimitiveSizeInBits()) 2515 continue; 2516 2517 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); 2518 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate 2519 // it before inserting. 2520 Ops[j] = 2521 CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType()); 2522 Ops[j] = 2523 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); 2524 } 2525 2526 Value *Result = CGF.EmitNeonCall(F, Ops, s); 2527 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 2528 if (ResultType->getPrimitiveSizeInBits() < 2529 Result->getType()->getPrimitiveSizeInBits()) 2530 return CGF.Builder.CreateExtractElement(Result, C0); 2531 2532 return CGF.Builder.CreateBitCast(Result, ResultType, s); 2533 } 2534 2535 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( 2536 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, 2537 const char *NameHint, unsigned Modifier, const CallExpr *E, 2538 SmallVectorImpl<llvm::Value *> &Ops, llvm::Value *Align) { 2539 // Get the last argument, which specifies the vector type. 2540 llvm::APSInt NeonTypeConst; 2541 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 2542 if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext())) 2543 return nullptr; 2544 2545 // Determine the type of this overloaded NEON intrinsic. 2546 NeonTypeFlags Type(NeonTypeConst.getZExtValue()); 2547 bool Usgn = Type.isUnsigned(); 2548 bool Quad = Type.isQuad(); 2549 2550 llvm::VectorType *VTy = GetNeonType(this, Type); 2551 llvm::Type *Ty = VTy; 2552 if (!Ty) 2553 return nullptr; 2554 2555 unsigned Int = LLVMIntrinsic; 2556 if ((Modifier & UnsignedAlts) && !Usgn) 2557 Int = AltLLVMIntrinsic; 2558 2559 switch (BuiltinID) { 2560 default: break; 2561 case NEON::BI__builtin_neon_vabs_v: 2562 case NEON::BI__builtin_neon_vabsq_v: 2563 if (VTy->getElementType()->isFloatingPointTy()) 2564 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); 2565 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); 2566 case NEON::BI__builtin_neon_vaddhn_v: { 2567 llvm::VectorType *SrcTy = 2568 llvm::VectorType::getExtendedElementVectorType(VTy); 2569 2570 // %sum = add <4 x i32> %lhs, %rhs 2571 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 2572 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 2573 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); 2574 2575 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 2576 Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(), 2577 SrcTy->getScalarSizeInBits() / 2); 2578 ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt); 2579 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); 2580 2581 // %res = trunc <4 x i32> %high to <4 x i16> 2582 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); 2583 } 2584 case NEON::BI__builtin_neon_vcale_v: 2585 case NEON::BI__builtin_neon_vcaleq_v: 2586 case NEON::BI__builtin_neon_vcalt_v: 2587 case NEON::BI__builtin_neon_vcaltq_v: 2588 std::swap(Ops[0], Ops[1]); 2589 case NEON::BI__builtin_neon_vcage_v: 2590 case NEON::BI__builtin_neon_vcageq_v: 2591 case NEON::BI__builtin_neon_vcagt_v: 2592 case NEON::BI__builtin_neon_vcagtq_v: { 2593 llvm::Type *VecFlt = llvm::VectorType::get( 2594 VTy->getScalarSizeInBits() == 32 ? FloatTy : DoubleTy, 2595 VTy->getNumElements()); 2596 llvm::Type *Tys[] = { VTy, VecFlt }; 2597 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 2598 return EmitNeonCall(F, Ops, NameHint); 2599 } 2600 case NEON::BI__builtin_neon_vclz_v: 2601 case NEON::BI__builtin_neon_vclzq_v: 2602 // We generate target-independent intrinsic, which needs a second argument 2603 // for whether or not clz of zero is undefined; on ARM it isn't. 2604 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); 2605 break; 2606 case NEON::BI__builtin_neon_vcvt_f32_v: 2607 case NEON::BI__builtin_neon_vcvtq_f32_v: 2608 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 2609 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad)); 2610 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 2611 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 2612 case NEON::BI__builtin_neon_vcvt_n_f32_v: 2613 case NEON::BI__builtin_neon_vcvt_n_f64_v: 2614 case NEON::BI__builtin_neon_vcvtq_n_f32_v: 2615 case NEON::BI__builtin_neon_vcvtq_n_f64_v: { 2616 bool Double = 2617 (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64); 2618 llvm::Type *FloatTy = 2619 GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64 2620 : NeonTypeFlags::Float32, 2621 false, Quad)); 2622 llvm::Type *Tys[2] = { FloatTy, Ty }; 2623 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 2624 Function *F = CGM.getIntrinsic(Int, Tys); 2625 return EmitNeonCall(F, Ops, "vcvt_n"); 2626 } 2627 case NEON::BI__builtin_neon_vcvt_n_s32_v: 2628 case NEON::BI__builtin_neon_vcvt_n_u32_v: 2629 case NEON::BI__builtin_neon_vcvt_n_s64_v: 2630 case NEON::BI__builtin_neon_vcvt_n_u64_v: 2631 case NEON::BI__builtin_neon_vcvtq_n_s32_v: 2632 case NEON::BI__builtin_neon_vcvtq_n_u32_v: 2633 case NEON::BI__builtin_neon_vcvtq_n_s64_v: 2634 case NEON::BI__builtin_neon_vcvtq_n_u64_v: { 2635 bool Double = 2636 (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64); 2637 llvm::Type *FloatTy = 2638 GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64 2639 : NeonTypeFlags::Float32, 2640 false, Quad)); 2641 llvm::Type *Tys[2] = { Ty, FloatTy }; 2642 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 2643 return EmitNeonCall(F, Ops, "vcvt_n"); 2644 } 2645 case NEON::BI__builtin_neon_vcvt_s32_v: 2646 case NEON::BI__builtin_neon_vcvt_u32_v: 2647 case NEON::BI__builtin_neon_vcvt_s64_v: 2648 case NEON::BI__builtin_neon_vcvt_u64_v: 2649 case NEON::BI__builtin_neon_vcvtq_s32_v: 2650 case NEON::BI__builtin_neon_vcvtq_u32_v: 2651 case NEON::BI__builtin_neon_vcvtq_s64_v: 2652 case NEON::BI__builtin_neon_vcvtq_u64_v: { 2653 bool Double = 2654 (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64); 2655 llvm::Type *FloatTy = 2656 GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64 2657 : NeonTypeFlags::Float32, 2658 false, Quad)); 2659 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); 2660 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") 2661 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); 2662 } 2663 case NEON::BI__builtin_neon_vcvta_s32_v: 2664 case NEON::BI__builtin_neon_vcvta_s64_v: 2665 case NEON::BI__builtin_neon_vcvta_u32_v: 2666 case NEON::BI__builtin_neon_vcvta_u64_v: 2667 case NEON::BI__builtin_neon_vcvtaq_s32_v: 2668 case NEON::BI__builtin_neon_vcvtaq_s64_v: 2669 case NEON::BI__builtin_neon_vcvtaq_u32_v: 2670 case NEON::BI__builtin_neon_vcvtaq_u64_v: 2671 case NEON::BI__builtin_neon_vcvtn_s32_v: 2672 case NEON::BI__builtin_neon_vcvtn_s64_v: 2673 case NEON::BI__builtin_neon_vcvtn_u32_v: 2674 case NEON::BI__builtin_neon_vcvtn_u64_v: 2675 case NEON::BI__builtin_neon_vcvtnq_s32_v: 2676 case NEON::BI__builtin_neon_vcvtnq_s64_v: 2677 case NEON::BI__builtin_neon_vcvtnq_u32_v: 2678 case NEON::BI__builtin_neon_vcvtnq_u64_v: 2679 case NEON::BI__builtin_neon_vcvtp_s32_v: 2680 case NEON::BI__builtin_neon_vcvtp_s64_v: 2681 case NEON::BI__builtin_neon_vcvtp_u32_v: 2682 case NEON::BI__builtin_neon_vcvtp_u64_v: 2683 case NEON::BI__builtin_neon_vcvtpq_s32_v: 2684 case NEON::BI__builtin_neon_vcvtpq_s64_v: 2685 case NEON::BI__builtin_neon_vcvtpq_u32_v: 2686 case NEON::BI__builtin_neon_vcvtpq_u64_v: 2687 case NEON::BI__builtin_neon_vcvtm_s32_v: 2688 case NEON::BI__builtin_neon_vcvtm_s64_v: 2689 case NEON::BI__builtin_neon_vcvtm_u32_v: 2690 case NEON::BI__builtin_neon_vcvtm_u64_v: 2691 case NEON::BI__builtin_neon_vcvtmq_s32_v: 2692 case NEON::BI__builtin_neon_vcvtmq_s64_v: 2693 case NEON::BI__builtin_neon_vcvtmq_u32_v: 2694 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 2695 bool Double = 2696 (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64); 2697 llvm::Type *InTy = 2698 GetNeonType(this, 2699 NeonTypeFlags(Double ? NeonTypeFlags::Float64 2700 : NeonTypeFlags::Float32, false, Quad)); 2701 llvm::Type *Tys[2] = { Ty, InTy }; 2702 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 2703 } 2704 case NEON::BI__builtin_neon_vext_v: 2705 case NEON::BI__builtin_neon_vextq_v: { 2706 int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); 2707 SmallVector<Constant*, 16> Indices; 2708 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 2709 Indices.push_back(ConstantInt::get(Int32Ty, i+CV)); 2710 2711 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 2712 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 2713 Value *SV = llvm::ConstantVector::get(Indices); 2714 return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext"); 2715 } 2716 case NEON::BI__builtin_neon_vfma_v: 2717 case NEON::BI__builtin_neon_vfmaq_v: { 2718 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); 2719 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 2720 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 2721 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 2722 2723 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 2724 return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]); 2725 } 2726 case NEON::BI__builtin_neon_vld1_v: 2727 case NEON::BI__builtin_neon_vld1q_v: 2728 Ops.push_back(Align); 2729 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vld1"); 2730 case NEON::BI__builtin_neon_vld2_v: 2731 case NEON::BI__builtin_neon_vld2q_v: 2732 case NEON::BI__builtin_neon_vld3_v: 2733 case NEON::BI__builtin_neon_vld3q_v: 2734 case NEON::BI__builtin_neon_vld4_v: 2735 case NEON::BI__builtin_neon_vld4q_v: { 2736 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Ty); 2737 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, NameHint); 2738 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 2739 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 2740 return Builder.CreateStore(Ops[1], Ops[0]); 2741 } 2742 case NEON::BI__builtin_neon_vld1_dup_v: 2743 case NEON::BI__builtin_neon_vld1q_dup_v: { 2744 Value *V = UndefValue::get(Ty); 2745 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 2746 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 2747 LoadInst *Ld = Builder.CreateLoad(Ops[0]); 2748 Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue()); 2749 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 2750 Ops[0] = Builder.CreateInsertElement(V, Ld, CI); 2751 return EmitNeonSplat(Ops[0], CI); 2752 } 2753 case NEON::BI__builtin_neon_vld2_lane_v: 2754 case NEON::BI__builtin_neon_vld2q_lane_v: 2755 case NEON::BI__builtin_neon_vld3_lane_v: 2756 case NEON::BI__builtin_neon_vld3q_lane_v: 2757 case NEON::BI__builtin_neon_vld4_lane_v: 2758 case NEON::BI__builtin_neon_vld4q_lane_v: { 2759 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Ty); 2760 for (unsigned I = 2; I < Ops.size() - 1; ++I) 2761 Ops[I] = Builder.CreateBitCast(Ops[I], Ty); 2762 Ops.push_back(Align); 2763 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); 2764 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 2765 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 2766 return Builder.CreateStore(Ops[1], Ops[0]); 2767 } 2768 case NEON::BI__builtin_neon_vmovl_v: { 2769 llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy); 2770 Ops[0] = Builder.CreateBitCast(Ops[0], DTy); 2771 if (Usgn) 2772 return Builder.CreateZExt(Ops[0], Ty, "vmovl"); 2773 return Builder.CreateSExt(Ops[0], Ty, "vmovl"); 2774 } 2775 case NEON::BI__builtin_neon_vmovn_v: { 2776 llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy); 2777 Ops[0] = Builder.CreateBitCast(Ops[0], QTy); 2778 return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); 2779 } 2780 case NEON::BI__builtin_neon_vmull_v: 2781 // FIXME: the integer vmull operations could be emitted in terms of pure 2782 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of 2783 // hoisting the exts outside loops. Until global ISel comes along that can 2784 // see through such movement this leads to bad CodeGen. So we need an 2785 // intrinsic for now. 2786 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; 2787 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; 2788 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 2789 case NEON::BI__builtin_neon_vpadal_v: 2790 case NEON::BI__builtin_neon_vpadalq_v: { 2791 // The source operand type has twice as many elements of half the size. 2792 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 2793 llvm::Type *EltTy = 2794 llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 2795 llvm::Type *NarrowTy = 2796 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); 2797 llvm::Type *Tys[2] = { Ty, NarrowTy }; 2798 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 2799 } 2800 case NEON::BI__builtin_neon_vpaddl_v: 2801 case NEON::BI__builtin_neon_vpaddlq_v: { 2802 // The source operand type has twice as many elements of half the size. 2803 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 2804 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 2805 llvm::Type *NarrowTy = 2806 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); 2807 llvm::Type *Tys[2] = { Ty, NarrowTy }; 2808 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); 2809 } 2810 case NEON::BI__builtin_neon_vqdmlal_v: 2811 case NEON::BI__builtin_neon_vqdmlsl_v: { 2812 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); 2813 Value *Mul = EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), 2814 MulOps, "vqdmlal"); 2815 2816 SmallVector<Value *, 2> AccumOps; 2817 AccumOps.push_back(Ops[0]); 2818 AccumOps.push_back(Mul); 2819 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), 2820 AccumOps, NameHint); 2821 } 2822 case NEON::BI__builtin_neon_vqshl_n_v: 2823 case NEON::BI__builtin_neon_vqshlq_n_v: 2824 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", 2825 1, false); 2826 case NEON::BI__builtin_neon_vrecpe_v: 2827 case NEON::BI__builtin_neon_vrecpeq_v: 2828 case NEON::BI__builtin_neon_vrsqrte_v: 2829 case NEON::BI__builtin_neon_vrsqrteq_v: 2830 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; 2831 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 2832 2833 case NEON::BI__builtin_neon_vshl_n_v: 2834 case NEON::BI__builtin_neon_vshlq_n_v: 2835 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); 2836 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], 2837 "vshl_n"); 2838 case NEON::BI__builtin_neon_vshll_n_v: { 2839 llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy); 2840 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 2841 if (Usgn) 2842 Ops[0] = Builder.CreateZExt(Ops[0], VTy); 2843 else 2844 Ops[0] = Builder.CreateSExt(Ops[0], VTy); 2845 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); 2846 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); 2847 } 2848 case NEON::BI__builtin_neon_vshrn_n_v: { 2849 llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); 2850 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 2851 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); 2852 if (Usgn) 2853 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); 2854 else 2855 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); 2856 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); 2857 } 2858 case NEON::BI__builtin_neon_vshr_n_v: 2859 case NEON::BI__builtin_neon_vshrq_n_v: 2860 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); 2861 case NEON::BI__builtin_neon_vst1_v: 2862 case NEON::BI__builtin_neon_vst1q_v: 2863 case NEON::BI__builtin_neon_vst2_v: 2864 case NEON::BI__builtin_neon_vst2q_v: 2865 case NEON::BI__builtin_neon_vst3_v: 2866 case NEON::BI__builtin_neon_vst3q_v: 2867 case NEON::BI__builtin_neon_vst4_v: 2868 case NEON::BI__builtin_neon_vst4q_v: 2869 case NEON::BI__builtin_neon_vst2_lane_v: 2870 case NEON::BI__builtin_neon_vst2q_lane_v: 2871 case NEON::BI__builtin_neon_vst3_lane_v: 2872 case NEON::BI__builtin_neon_vst3q_lane_v: 2873 case NEON::BI__builtin_neon_vst4_lane_v: 2874 case NEON::BI__builtin_neon_vst4q_lane_v: 2875 Ops.push_back(Align); 2876 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, ""); 2877 case NEON::BI__builtin_neon_vsubhn_v: { 2878 llvm::VectorType *SrcTy = 2879 llvm::VectorType::getExtendedElementVectorType(VTy); 2880 2881 // %sum = add <4 x i32> %lhs, %rhs 2882 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 2883 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 2884 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); 2885 2886 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 2887 Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(), 2888 SrcTy->getScalarSizeInBits() / 2); 2889 ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt); 2890 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); 2891 2892 // %res = trunc <4 x i32> %high to <4 x i16> 2893 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); 2894 } 2895 case NEON::BI__builtin_neon_vtrn_v: 2896 case NEON::BI__builtin_neon_vtrnq_v: { 2897 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 2898 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 2899 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 2900 Value *SV = nullptr; 2901 2902 for (unsigned vi = 0; vi != 2; ++vi) { 2903 SmallVector<Constant*, 16> Indices; 2904 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 2905 Indices.push_back(Builder.getInt32(i+vi)); 2906 Indices.push_back(Builder.getInt32(i+e+vi)); 2907 } 2908 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi); 2909 SV = llvm::ConstantVector::get(Indices); 2910 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn"); 2911 SV = Builder.CreateStore(SV, Addr); 2912 } 2913 return SV; 2914 } 2915 case NEON::BI__builtin_neon_vtst_v: 2916 case NEON::BI__builtin_neon_vtstq_v: { 2917 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 2918 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 2919 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 2920 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 2921 ConstantAggregateZero::get(Ty)); 2922 return Builder.CreateSExt(Ops[0], Ty, "vtst"); 2923 } 2924 case NEON::BI__builtin_neon_vuzp_v: 2925 case NEON::BI__builtin_neon_vuzpq_v: { 2926 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 2927 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 2928 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 2929 Value *SV = nullptr; 2930 2931 for (unsigned vi = 0; vi != 2; ++vi) { 2932 SmallVector<Constant*, 16> Indices; 2933 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 2934 Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi)); 2935 2936 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi); 2937 SV = llvm::ConstantVector::get(Indices); 2938 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp"); 2939 SV = Builder.CreateStore(SV, Addr); 2940 } 2941 return SV; 2942 } 2943 case NEON::BI__builtin_neon_vzip_v: 2944 case NEON::BI__builtin_neon_vzipq_v: { 2945 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 2946 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 2947 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 2948 Value *SV = nullptr; 2949 2950 for (unsigned vi = 0; vi != 2; ++vi) { 2951 SmallVector<Constant*, 16> Indices; 2952 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 2953 Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1)); 2954 Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e)); 2955 } 2956 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi); 2957 SV = llvm::ConstantVector::get(Indices); 2958 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip"); 2959 SV = Builder.CreateStore(SV, Addr); 2960 } 2961 return SV; 2962 } 2963 } 2964 2965 assert(Int && "Expected valid intrinsic number"); 2966 2967 // Determine the type(s) of this overloaded AArch64 intrinsic. 2968 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); 2969 2970 Value *Result = EmitNeonCall(F, Ops, NameHint); 2971 llvm::Type *ResultType = ConvertType(E->getType()); 2972 // AArch64 intrinsic one-element vector type cast to 2973 // scalar type expected by the builtin 2974 return Builder.CreateBitCast(Result, ResultType, NameHint); 2975 } 2976 2977 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( 2978 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, 2979 const CmpInst::Predicate Ip, const Twine &Name) { 2980 llvm::Type *OTy = Op->getType(); 2981 2982 // FIXME: this is utterly horrific. We should not be looking at previous 2983 // codegen context to find out what needs doing. Unfortunately TableGen 2984 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 2985 // (etc). 2986 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) 2987 OTy = BI->getOperand(0)->getType(); 2988 2989 Op = Builder.CreateBitCast(Op, OTy); 2990 if (OTy->getScalarType()->isFloatingPointTy()) { 2991 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); 2992 } else { 2993 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); 2994 } 2995 return Builder.CreateSExt(Op, Ty, Name); 2996 } 2997 2998 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 2999 Value *ExtOp, Value *IndexOp, 3000 llvm::Type *ResTy, unsigned IntID, 3001 const char *Name) { 3002 SmallVector<Value *, 2> TblOps; 3003 if (ExtOp) 3004 TblOps.push_back(ExtOp); 3005 3006 // Build a vector containing sequential number like (0, 1, 2, ..., 15) 3007 SmallVector<Constant*, 16> Indices; 3008 llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType()); 3009 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { 3010 Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i)); 3011 Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1)); 3012 } 3013 Value *SV = llvm::ConstantVector::get(Indices); 3014 3015 int PairPos = 0, End = Ops.size() - 1; 3016 while (PairPos < End) { 3017 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 3018 Ops[PairPos+1], SV, Name)); 3019 PairPos += 2; 3020 } 3021 3022 // If there's an odd number of 64-bit lookup table, fill the high 64-bit 3023 // of the 128-bit lookup table with zero. 3024 if (PairPos == End) { 3025 Value *ZeroTbl = ConstantAggregateZero::get(TblTy); 3026 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 3027 ZeroTbl, SV, Name)); 3028 } 3029 3030 Function *TblF; 3031 TblOps.push_back(IndexOp); 3032 TblF = CGF.CGM.getIntrinsic(IntID, ResTy); 3033 3034 return CGF.EmitNeonCall(TblF, TblOps, Name); 3035 } 3036 3037 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, 3038 const CallExpr *E) { 3039 unsigned HintID = static_cast<unsigned>(-1); 3040 switch (BuiltinID) { 3041 default: break; 3042 case ARM::BI__builtin_arm_yield: 3043 case ARM::BI__yield: 3044 HintID = 1; 3045 break; 3046 case ARM::BI__builtin_arm_wfe: 3047 case ARM::BI__wfe: 3048 HintID = 2; 3049 break; 3050 case ARM::BI__builtin_arm_wfi: 3051 case ARM::BI__wfi: 3052 HintID = 3; 3053 break; 3054 case ARM::BI__builtin_arm_sev: 3055 case ARM::BI__sev: 3056 HintID = 4; 3057 break; 3058 case ARM::BI__builtin_arm_sevl: 3059 case ARM::BI__sevl: 3060 HintID = 5; 3061 break; 3062 } 3063 3064 if (HintID != static_cast<unsigned>(-1)) { 3065 Function *F = CGM.getIntrinsic(Intrinsic::arm_hint); 3066 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); 3067 } 3068 3069 if (BuiltinID == ARM::BI__builtin_arm_rbit) { 3070 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_rbit), 3071 EmitScalarExpr(E->getArg(0)), 3072 "rbit"); 3073 } 3074 3075 if (BuiltinID == ARM::BI__clear_cache) { 3076 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 3077 const FunctionDecl *FD = E->getDirectCallee(); 3078 SmallVector<Value*, 2> Ops; 3079 for (unsigned i = 0; i < 2; i++) 3080 Ops.push_back(EmitScalarExpr(E->getArg(i))); 3081 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 3082 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 3083 StringRef Name = FD->getName(); 3084 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 3085 } 3086 3087 if (BuiltinID == ARM::BI__builtin_arm_ldrexd || 3088 ((BuiltinID == ARM::BI__builtin_arm_ldrex || 3089 BuiltinID == ARM::BI__builtin_arm_ldaex) && 3090 getContext().getTypeSize(E->getType()) == 64) || 3091 BuiltinID == ARM::BI__ldrexd) { 3092 Function *F; 3093 3094 switch (BuiltinID) { 3095 default: llvm_unreachable("unexpected builtin"); 3096 case ARM::BI__builtin_arm_ldaex: 3097 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); 3098 break; 3099 case ARM::BI__builtin_arm_ldrexd: 3100 case ARM::BI__builtin_arm_ldrex: 3101 case ARM::BI__ldrexd: 3102 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); 3103 break; 3104 } 3105 3106 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 3107 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 3108 "ldrexd"); 3109 3110 Value *Val0 = Builder.CreateExtractValue(Val, 1); 3111 Value *Val1 = Builder.CreateExtractValue(Val, 0); 3112 Val0 = Builder.CreateZExt(Val0, Int64Ty); 3113 Val1 = Builder.CreateZExt(Val1, Int64Ty); 3114 3115 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); 3116 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 3117 Val = Builder.CreateOr(Val, Val1); 3118 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 3119 } 3120 3121 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 3122 BuiltinID == ARM::BI__builtin_arm_ldaex) { 3123 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 3124 3125 QualType Ty = E->getType(); 3126 llvm::Type *RealResTy = ConvertType(Ty); 3127 llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(), 3128 getContext().getTypeSize(Ty)); 3129 LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo()); 3130 3131 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex 3132 ? Intrinsic::arm_ldaex 3133 : Intrinsic::arm_ldrex, 3134 LoadAddr->getType()); 3135 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); 3136 3137 if (RealResTy->isPointerTy()) 3138 return Builder.CreateIntToPtr(Val, RealResTy); 3139 else { 3140 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 3141 return Builder.CreateBitCast(Val, RealResTy); 3142 } 3143 } 3144 3145 if (BuiltinID == ARM::BI__builtin_arm_strexd || 3146 ((BuiltinID == ARM::BI__builtin_arm_stlex || 3147 BuiltinID == ARM::BI__builtin_arm_strex) && 3148 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { 3149 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 3150 ? Intrinsic::arm_stlexd 3151 : Intrinsic::arm_strexd); 3152 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL); 3153 3154 Value *Tmp = CreateMemTemp(E->getArg(0)->getType()); 3155 Value *Val = EmitScalarExpr(E->getArg(0)); 3156 Builder.CreateStore(Val, Tmp); 3157 3158 Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); 3159 Val = Builder.CreateLoad(LdPtr); 3160 3161 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 3162 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 3163 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); 3164 return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd"); 3165 } 3166 3167 if (BuiltinID == ARM::BI__builtin_arm_strex || 3168 BuiltinID == ARM::BI__builtin_arm_stlex) { 3169 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 3170 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 3171 3172 QualType Ty = E->getArg(0)->getType(); 3173 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 3174 getContext().getTypeSize(Ty)); 3175 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 3176 3177 if (StoreVal->getType()->isPointerTy()) 3178 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); 3179 else { 3180 StoreVal = Builder.CreateBitCast(StoreVal, StoreTy); 3181 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); 3182 } 3183 3184 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 3185 ? Intrinsic::arm_stlex 3186 : Intrinsic::arm_strex, 3187 StoreAddr->getType()); 3188 return Builder.CreateCall2(F, StoreVal, StoreAddr, "strex"); 3189 } 3190 3191 if (BuiltinID == ARM::BI__builtin_arm_clrex) { 3192 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); 3193 return Builder.CreateCall(F); 3194 } 3195 3196 // CRC32 3197 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 3198 switch (BuiltinID) { 3199 case ARM::BI__builtin_arm_crc32b: 3200 CRCIntrinsicID = Intrinsic::arm_crc32b; break; 3201 case ARM::BI__builtin_arm_crc32cb: 3202 CRCIntrinsicID = Intrinsic::arm_crc32cb; break; 3203 case ARM::BI__builtin_arm_crc32h: 3204 CRCIntrinsicID = Intrinsic::arm_crc32h; break; 3205 case ARM::BI__builtin_arm_crc32ch: 3206 CRCIntrinsicID = Intrinsic::arm_crc32ch; break; 3207 case ARM::BI__builtin_arm_crc32w: 3208 case ARM::BI__builtin_arm_crc32d: 3209 CRCIntrinsicID = Intrinsic::arm_crc32w; break; 3210 case ARM::BI__builtin_arm_crc32cw: 3211 case ARM::BI__builtin_arm_crc32cd: 3212 CRCIntrinsicID = Intrinsic::arm_crc32cw; break; 3213 } 3214 3215 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 3216 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 3217 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 3218 3219 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w 3220 // intrinsics, hence we need different codegen for these cases. 3221 if (BuiltinID == ARM::BI__builtin_arm_crc32d || 3222 BuiltinID == ARM::BI__builtin_arm_crc32cd) { 3223 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 3224 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); 3225 Value *Arg1b = Builder.CreateLShr(Arg1, C1); 3226 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); 3227 3228 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 3229 Value *Res = Builder.CreateCall2(F, Arg0, Arg1a); 3230 return Builder.CreateCall2(F, Res, Arg1b); 3231 } else { 3232 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); 3233 3234 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 3235 return Builder.CreateCall2(F, Arg0, Arg1); 3236 } 3237 } 3238 3239 SmallVector<Value*, 4> Ops; 3240 llvm::Value *Align = nullptr; 3241 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { 3242 if (i == 0) { 3243 switch (BuiltinID) { 3244 case NEON::BI__builtin_neon_vld1_v: 3245 case NEON::BI__builtin_neon_vld1q_v: 3246 case NEON::BI__builtin_neon_vld1q_lane_v: 3247 case NEON::BI__builtin_neon_vld1_lane_v: 3248 case NEON::BI__builtin_neon_vld1_dup_v: 3249 case NEON::BI__builtin_neon_vld1q_dup_v: 3250 case NEON::BI__builtin_neon_vst1_v: 3251 case NEON::BI__builtin_neon_vst1q_v: 3252 case NEON::BI__builtin_neon_vst1q_lane_v: 3253 case NEON::BI__builtin_neon_vst1_lane_v: 3254 case NEON::BI__builtin_neon_vst2_v: 3255 case NEON::BI__builtin_neon_vst2q_v: 3256 case NEON::BI__builtin_neon_vst2_lane_v: 3257 case NEON::BI__builtin_neon_vst2q_lane_v: 3258 case NEON::BI__builtin_neon_vst3_v: 3259 case NEON::BI__builtin_neon_vst3q_v: 3260 case NEON::BI__builtin_neon_vst3_lane_v: 3261 case NEON::BI__builtin_neon_vst3q_lane_v: 3262 case NEON::BI__builtin_neon_vst4_v: 3263 case NEON::BI__builtin_neon_vst4q_v: 3264 case NEON::BI__builtin_neon_vst4_lane_v: 3265 case NEON::BI__builtin_neon_vst4q_lane_v: 3266 // Get the alignment for the argument in addition to the value; 3267 // we'll use it later. 3268 std::pair<llvm::Value*, unsigned> Src = 3269 EmitPointerWithAlignment(E->getArg(0)); 3270 Ops.push_back(Src.first); 3271 Align = Builder.getInt32(Src.second); 3272 continue; 3273 } 3274 } 3275 if (i == 1) { 3276 switch (BuiltinID) { 3277 case NEON::BI__builtin_neon_vld2_v: 3278 case NEON::BI__builtin_neon_vld2q_v: 3279 case NEON::BI__builtin_neon_vld3_v: 3280 case NEON::BI__builtin_neon_vld3q_v: 3281 case NEON::BI__builtin_neon_vld4_v: 3282 case NEON::BI__builtin_neon_vld4q_v: 3283 case NEON::BI__builtin_neon_vld2_lane_v: 3284 case NEON::BI__builtin_neon_vld2q_lane_v: 3285 case NEON::BI__builtin_neon_vld3_lane_v: 3286 case NEON::BI__builtin_neon_vld3q_lane_v: 3287 case NEON::BI__builtin_neon_vld4_lane_v: 3288 case NEON::BI__builtin_neon_vld4q_lane_v: 3289 case NEON::BI__builtin_neon_vld2_dup_v: 3290 case NEON::BI__builtin_neon_vld3_dup_v: 3291 case NEON::BI__builtin_neon_vld4_dup_v: 3292 // Get the alignment for the argument in addition to the value; 3293 // we'll use it later. 3294 std::pair<llvm::Value*, unsigned> Src = 3295 EmitPointerWithAlignment(E->getArg(1)); 3296 Ops.push_back(Src.first); 3297 Align = Builder.getInt32(Src.second); 3298 continue; 3299 } 3300 } 3301 Ops.push_back(EmitScalarExpr(E->getArg(i))); 3302 } 3303 3304 switch (BuiltinID) { 3305 default: break; 3306 // vget_lane and vset_lane are not overloaded and do not have an extra 3307 // argument that specifies the vector type. 3308 case NEON::BI__builtin_neon_vget_lane_i8: 3309 case NEON::BI__builtin_neon_vget_lane_i16: 3310 case NEON::BI__builtin_neon_vget_lane_i32: 3311 case NEON::BI__builtin_neon_vget_lane_i64: 3312 case NEON::BI__builtin_neon_vget_lane_f32: 3313 case NEON::BI__builtin_neon_vgetq_lane_i8: 3314 case NEON::BI__builtin_neon_vgetq_lane_i16: 3315 case NEON::BI__builtin_neon_vgetq_lane_i32: 3316 case NEON::BI__builtin_neon_vgetq_lane_i64: 3317 case NEON::BI__builtin_neon_vgetq_lane_f32: 3318 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 3319 "vget_lane"); 3320 case NEON::BI__builtin_neon_vset_lane_i8: 3321 case NEON::BI__builtin_neon_vset_lane_i16: 3322 case NEON::BI__builtin_neon_vset_lane_i32: 3323 case NEON::BI__builtin_neon_vset_lane_i64: 3324 case NEON::BI__builtin_neon_vset_lane_f32: 3325 case NEON::BI__builtin_neon_vsetq_lane_i8: 3326 case NEON::BI__builtin_neon_vsetq_lane_i16: 3327 case NEON::BI__builtin_neon_vsetq_lane_i32: 3328 case NEON::BI__builtin_neon_vsetq_lane_i64: 3329 case NEON::BI__builtin_neon_vsetq_lane_f32: 3330 Ops.push_back(EmitScalarExpr(E->getArg(2))); 3331 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 3332 3333 // Non-polymorphic crypto instructions also not overloaded 3334 case NEON::BI__builtin_neon_vsha1h_u32: 3335 Ops.push_back(EmitScalarExpr(E->getArg(0))); 3336 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, 3337 "vsha1h"); 3338 case NEON::BI__builtin_neon_vsha1cq_u32: 3339 Ops.push_back(EmitScalarExpr(E->getArg(2))); 3340 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, 3341 "vsha1h"); 3342 case NEON::BI__builtin_neon_vsha1pq_u32: 3343 Ops.push_back(EmitScalarExpr(E->getArg(2))); 3344 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, 3345 "vsha1h"); 3346 case NEON::BI__builtin_neon_vsha1mq_u32: 3347 Ops.push_back(EmitScalarExpr(E->getArg(2))); 3348 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, 3349 "vsha1h"); 3350 } 3351 3352 // Get the last argument, which specifies the vector type. 3353 llvm::APSInt Result; 3354 const Expr *Arg = E->getArg(E->getNumArgs()-1); 3355 if (!Arg->isIntegerConstantExpr(Result, getContext())) 3356 return nullptr; 3357 3358 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || 3359 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { 3360 // Determine the overloaded type of this builtin. 3361 llvm::Type *Ty; 3362 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) 3363 Ty = FloatTy; 3364 else 3365 Ty = DoubleTy; 3366 3367 // Determine whether this is an unsigned conversion or not. 3368 bool usgn = Result.getZExtValue() == 1; 3369 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; 3370 3371 // Call the appropriate intrinsic. 3372 Function *F = CGM.getIntrinsic(Int, Ty); 3373 return Builder.CreateCall(F, Ops, "vcvtr"); 3374 } 3375 3376 // Determine the type of this overloaded NEON intrinsic. 3377 NeonTypeFlags Type(Result.getZExtValue()); 3378 bool usgn = Type.isUnsigned(); 3379 bool rightShift = false; 3380 3381 llvm::VectorType *VTy = GetNeonType(this, Type); 3382 llvm::Type *Ty = VTy; 3383 if (!Ty) 3384 return nullptr; 3385 3386 // Many NEON builtins have identical semantics and uses in ARM and 3387 // AArch64. Emit these in a single function. 3388 ArrayRef<NeonIntrinsicInfo> IntrinsicMap(ARMSIMDIntrinsicMap); 3389 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( 3390 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); 3391 if (Builtin) 3392 return EmitCommonNeonBuiltinExpr( 3393 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 3394 Builtin->NameHint, Builtin->TypeModifier, E, Ops, Align); 3395 3396 unsigned Int; 3397 switch (BuiltinID) { 3398 default: return nullptr; 3399 case NEON::BI__builtin_neon_vld1q_lane_v: 3400 // Handle 64-bit integer elements as a special case. Use shuffles of 3401 // one-element vectors to avoid poor code for i64 in the backend. 3402 if (VTy->getElementType()->isIntegerTy(64)) { 3403 // Extract the other lane. 3404 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 3405 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); 3406 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); 3407 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 3408 // Load the value as a one-element vector. 3409 Ty = llvm::VectorType::get(VTy->getElementType(), 1); 3410 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty); 3411 Value *Ld = Builder.CreateCall2(F, Ops[0], Align); 3412 // Combine them. 3413 SmallVector<Constant*, 2> Indices; 3414 Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane)); 3415 Indices.push_back(ConstantInt::get(Int32Ty, Lane)); 3416 SV = llvm::ConstantVector::get(Indices); 3417 return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane"); 3418 } 3419 // fall through 3420 case NEON::BI__builtin_neon_vld1_lane_v: { 3421 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 3422 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 3423 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 3424 LoadInst *Ld = Builder.CreateLoad(Ops[0]); 3425 Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue()); 3426 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); 3427 } 3428 case NEON::BI__builtin_neon_vld2_dup_v: 3429 case NEON::BI__builtin_neon_vld3_dup_v: 3430 case NEON::BI__builtin_neon_vld4_dup_v: { 3431 // Handle 64-bit elements as a special-case. There is no "dup" needed. 3432 if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) { 3433 switch (BuiltinID) { 3434 case NEON::BI__builtin_neon_vld2_dup_v: 3435 Int = Intrinsic::arm_neon_vld2; 3436 break; 3437 case NEON::BI__builtin_neon_vld3_dup_v: 3438 Int = Intrinsic::arm_neon_vld3; 3439 break; 3440 case NEON::BI__builtin_neon_vld4_dup_v: 3441 Int = Intrinsic::arm_neon_vld4; 3442 break; 3443 default: llvm_unreachable("unknown vld_dup intrinsic?"); 3444 } 3445 Function *F = CGM.getIntrinsic(Int, Ty); 3446 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup"); 3447 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 3448 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 3449 return Builder.CreateStore(Ops[1], Ops[0]); 3450 } 3451 switch (BuiltinID) { 3452 case NEON::BI__builtin_neon_vld2_dup_v: 3453 Int = Intrinsic::arm_neon_vld2lane; 3454 break; 3455 case NEON::BI__builtin_neon_vld3_dup_v: 3456 Int = Intrinsic::arm_neon_vld3lane; 3457 break; 3458 case NEON::BI__builtin_neon_vld4_dup_v: 3459 Int = Intrinsic::arm_neon_vld4lane; 3460 break; 3461 default: llvm_unreachable("unknown vld_dup intrinsic?"); 3462 } 3463 Function *F = CGM.getIntrinsic(Int, Ty); 3464 llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType()); 3465 3466 SmallVector<Value*, 6> Args; 3467 Args.push_back(Ops[1]); 3468 Args.append(STy->getNumElements(), UndefValue::get(Ty)); 3469 3470 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); 3471 Args.push_back(CI); 3472 Args.push_back(Align); 3473 3474 Ops[1] = Builder.CreateCall(F, Args, "vld_dup"); 3475 // splat lane 0 to all elts in each vector of the result. 3476 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3477 Value *Val = Builder.CreateExtractValue(Ops[1], i); 3478 Value *Elt = Builder.CreateBitCast(Val, Ty); 3479 Elt = EmitNeonSplat(Elt, CI); 3480 Elt = Builder.CreateBitCast(Elt, Val->getType()); 3481 Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i); 3482 } 3483 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 3484 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 3485 return Builder.CreateStore(Ops[1], Ops[0]); 3486 } 3487 case NEON::BI__builtin_neon_vqrshrn_n_v: 3488 Int = 3489 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; 3490 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", 3491 1, true); 3492 case NEON::BI__builtin_neon_vqrshrun_n_v: 3493 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), 3494 Ops, "vqrshrun_n", 1, true); 3495 case NEON::BI__builtin_neon_vqshlu_n_v: 3496 case NEON::BI__builtin_neon_vqshluq_n_v: 3497 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty), 3498 Ops, "vqshlu", 1, false); 3499 case NEON::BI__builtin_neon_vqshrn_n_v: 3500 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; 3501 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", 3502 1, true); 3503 case NEON::BI__builtin_neon_vqshrun_n_v: 3504 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), 3505 Ops, "vqshrun_n", 1, true); 3506 case NEON::BI__builtin_neon_vrecpe_v: 3507 case NEON::BI__builtin_neon_vrecpeq_v: 3508 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), 3509 Ops, "vrecpe"); 3510 case NEON::BI__builtin_neon_vrshrn_n_v: 3511 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), 3512 Ops, "vrshrn_n", 1, true); 3513 case NEON::BI__builtin_neon_vrshr_n_v: 3514 case NEON::BI__builtin_neon_vrshrq_n_v: 3515 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; 3516 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true); 3517 case NEON::BI__builtin_neon_vrsra_n_v: 3518 case NEON::BI__builtin_neon_vrsraq_n_v: 3519 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 3520 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 3521 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); 3522 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; 3523 Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]); 3524 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); 3525 case NEON::BI__builtin_neon_vsri_n_v: 3526 case NEON::BI__builtin_neon_vsriq_n_v: 3527 rightShift = true; 3528 case NEON::BI__builtin_neon_vsli_n_v: 3529 case NEON::BI__builtin_neon_vsliq_n_v: 3530 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); 3531 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), 3532 Ops, "vsli_n"); 3533 case NEON::BI__builtin_neon_vsra_n_v: 3534 case NEON::BI__builtin_neon_vsraq_n_v: 3535 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 3536 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 3537 return Builder.CreateAdd(Ops[0], Ops[1]); 3538 case NEON::BI__builtin_neon_vst1q_lane_v: 3539 // Handle 64-bit integer elements as a special case. Use a shuffle to get 3540 // a one-element vector and avoid poor code for i64 in the backend. 3541 if (VTy->getElementType()->isIntegerTy(64)) { 3542 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 3543 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); 3544 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 3545 Ops[2] = Align; 3546 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, 3547 Ops[1]->getType()), Ops); 3548 } 3549 // fall through 3550 case NEON::BI__builtin_neon_vst1_lane_v: { 3551 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 3552 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 3553 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 3554 StoreInst *St = Builder.CreateStore(Ops[1], 3555 Builder.CreateBitCast(Ops[0], Ty)); 3556 St->setAlignment(cast<ConstantInt>(Align)->getZExtValue()); 3557 return St; 3558 } 3559 case NEON::BI__builtin_neon_vtbl1_v: 3560 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), 3561 Ops, "vtbl1"); 3562 case NEON::BI__builtin_neon_vtbl2_v: 3563 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), 3564 Ops, "vtbl2"); 3565 case NEON::BI__builtin_neon_vtbl3_v: 3566 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), 3567 Ops, "vtbl3"); 3568 case NEON::BI__builtin_neon_vtbl4_v: 3569 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), 3570 Ops, "vtbl4"); 3571 case NEON::BI__builtin_neon_vtbx1_v: 3572 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), 3573 Ops, "vtbx1"); 3574 case NEON::BI__builtin_neon_vtbx2_v: 3575 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), 3576 Ops, "vtbx2"); 3577 case NEON::BI__builtin_neon_vtbx3_v: 3578 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), 3579 Ops, "vtbx3"); 3580 case NEON::BI__builtin_neon_vtbx4_v: 3581 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), 3582 Ops, "vtbx4"); 3583 } 3584 } 3585 3586 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, 3587 const CallExpr *E, 3588 SmallVectorImpl<Value *> &Ops) { 3589 unsigned int Int = 0; 3590 const char *s = nullptr; 3591 3592 switch (BuiltinID) { 3593 default: 3594 return nullptr; 3595 case NEON::BI__builtin_neon_vtbl1_v: 3596 case NEON::BI__builtin_neon_vqtbl1_v: 3597 case NEON::BI__builtin_neon_vqtbl1q_v: 3598 case NEON::BI__builtin_neon_vtbl2_v: 3599 case NEON::BI__builtin_neon_vqtbl2_v: 3600 case NEON::BI__builtin_neon_vqtbl2q_v: 3601 case NEON::BI__builtin_neon_vtbl3_v: 3602 case NEON::BI__builtin_neon_vqtbl3_v: 3603 case NEON::BI__builtin_neon_vqtbl3q_v: 3604 case NEON::BI__builtin_neon_vtbl4_v: 3605 case NEON::BI__builtin_neon_vqtbl4_v: 3606 case NEON::BI__builtin_neon_vqtbl4q_v: 3607 break; 3608 case NEON::BI__builtin_neon_vtbx1_v: 3609 case NEON::BI__builtin_neon_vqtbx1_v: 3610 case NEON::BI__builtin_neon_vqtbx1q_v: 3611 case NEON::BI__builtin_neon_vtbx2_v: 3612 case NEON::BI__builtin_neon_vqtbx2_v: 3613 case NEON::BI__builtin_neon_vqtbx2q_v: 3614 case NEON::BI__builtin_neon_vtbx3_v: 3615 case NEON::BI__builtin_neon_vqtbx3_v: 3616 case NEON::BI__builtin_neon_vqtbx3q_v: 3617 case NEON::BI__builtin_neon_vtbx4_v: 3618 case NEON::BI__builtin_neon_vqtbx4_v: 3619 case NEON::BI__builtin_neon_vqtbx4q_v: 3620 break; 3621 } 3622 3623 assert(E->getNumArgs() >= 3); 3624 3625 // Get the last argument, which specifies the vector type. 3626 llvm::APSInt Result; 3627 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 3628 if (!Arg->isIntegerConstantExpr(Result, CGF.getContext())) 3629 return nullptr; 3630 3631 // Determine the type of this overloaded NEON intrinsic. 3632 NeonTypeFlags Type(Result.getZExtValue()); 3633 llvm::VectorType *VTy = GetNeonType(&CGF, Type); 3634 llvm::Type *Ty = VTy; 3635 if (!Ty) 3636 return nullptr; 3637 3638 unsigned nElts = VTy->getNumElements(); 3639 3640 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3641 3642 // AArch64 scalar builtins are not overloaded, they do not have an extra 3643 // argument that specifies the vector type, need to handle each case. 3644 SmallVector<Value *, 2> TblOps; 3645 switch (BuiltinID) { 3646 case NEON::BI__builtin_neon_vtbl1_v: { 3647 TblOps.push_back(Ops[0]); 3648 return packTBLDVectorList(CGF, TblOps, nullptr, Ops[1], Ty, 3649 Intrinsic::aarch64_neon_tbl1, "vtbl1"); 3650 } 3651 case NEON::BI__builtin_neon_vtbl2_v: { 3652 TblOps.push_back(Ops[0]); 3653 TblOps.push_back(Ops[1]); 3654 return packTBLDVectorList(CGF, TblOps, nullptr, Ops[2], Ty, 3655 Intrinsic::aarch64_neon_tbl1, "vtbl1"); 3656 } 3657 case NEON::BI__builtin_neon_vtbl3_v: { 3658 TblOps.push_back(Ops[0]); 3659 TblOps.push_back(Ops[1]); 3660 TblOps.push_back(Ops[2]); 3661 return packTBLDVectorList(CGF, TblOps, nullptr, Ops[3], Ty, 3662 Intrinsic::aarch64_neon_tbl2, "vtbl2"); 3663 } 3664 case NEON::BI__builtin_neon_vtbl4_v: { 3665 TblOps.push_back(Ops[0]); 3666 TblOps.push_back(Ops[1]); 3667 TblOps.push_back(Ops[2]); 3668 TblOps.push_back(Ops[3]); 3669 return packTBLDVectorList(CGF, TblOps, nullptr, Ops[4], Ty, 3670 Intrinsic::aarch64_neon_tbl2, "vtbl2"); 3671 } 3672 case NEON::BI__builtin_neon_vtbx1_v: { 3673 TblOps.push_back(Ops[1]); 3674 Value *TblRes = packTBLDVectorList(CGF, TblOps, nullptr, Ops[2], Ty, 3675 Intrinsic::aarch64_neon_tbl1, "vtbl1"); 3676 3677 llvm::Constant *Eight = ConstantInt::get(VTy->getElementType(), 8); 3678 Value* EightV = llvm::ConstantVector::getSplat(nElts, Eight); 3679 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); 3680 CmpRes = Builder.CreateSExt(CmpRes, Ty); 3681 3682 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 3683 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 3684 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 3685 } 3686 case NEON::BI__builtin_neon_vtbx2_v: { 3687 TblOps.push_back(Ops[1]); 3688 TblOps.push_back(Ops[2]); 3689 return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[3], Ty, 3690 Intrinsic::aarch64_neon_tbx1, "vtbx1"); 3691 } 3692 case NEON::BI__builtin_neon_vtbx3_v: { 3693 TblOps.push_back(Ops[1]); 3694 TblOps.push_back(Ops[2]); 3695 TblOps.push_back(Ops[3]); 3696 Value *TblRes = packTBLDVectorList(CGF, TblOps, nullptr, Ops[4], Ty, 3697 Intrinsic::aarch64_neon_tbl2, "vtbl2"); 3698 3699 llvm::Constant *TwentyFour = ConstantInt::get(VTy->getElementType(), 24); 3700 Value* TwentyFourV = llvm::ConstantVector::getSplat(nElts, TwentyFour); 3701 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], 3702 TwentyFourV); 3703 CmpRes = Builder.CreateSExt(CmpRes, Ty); 3704 3705 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 3706 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 3707 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 3708 } 3709 case NEON::BI__builtin_neon_vtbx4_v: { 3710 TblOps.push_back(Ops[1]); 3711 TblOps.push_back(Ops[2]); 3712 TblOps.push_back(Ops[3]); 3713 TblOps.push_back(Ops[4]); 3714 return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[5], Ty, 3715 Intrinsic::aarch64_neon_tbx2, "vtbx2"); 3716 } 3717 case NEON::BI__builtin_neon_vqtbl1_v: 3718 case NEON::BI__builtin_neon_vqtbl1q_v: 3719 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; 3720 case NEON::BI__builtin_neon_vqtbl2_v: 3721 case NEON::BI__builtin_neon_vqtbl2q_v: { 3722 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; 3723 case NEON::BI__builtin_neon_vqtbl3_v: 3724 case NEON::BI__builtin_neon_vqtbl3q_v: 3725 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; 3726 case NEON::BI__builtin_neon_vqtbl4_v: 3727 case NEON::BI__builtin_neon_vqtbl4q_v: 3728 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; 3729 case NEON::BI__builtin_neon_vqtbx1_v: 3730 case NEON::BI__builtin_neon_vqtbx1q_v: 3731 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; 3732 case NEON::BI__builtin_neon_vqtbx2_v: 3733 case NEON::BI__builtin_neon_vqtbx2q_v: 3734 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; 3735 case NEON::BI__builtin_neon_vqtbx3_v: 3736 case NEON::BI__builtin_neon_vqtbx3q_v: 3737 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; 3738 case NEON::BI__builtin_neon_vqtbx4_v: 3739 case NEON::BI__builtin_neon_vqtbx4q_v: 3740 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; 3741 } 3742 } 3743 3744 if (!Int) 3745 return nullptr; 3746 3747 Function *F = CGF.CGM.getIntrinsic(Int, Ty); 3748 return CGF.EmitNeonCall(F, Ops, s); 3749 } 3750 3751 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { 3752 llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4); 3753 Op = Builder.CreateBitCast(Op, Int16Ty); 3754 Value *V = UndefValue::get(VTy); 3755 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 3756 Op = Builder.CreateInsertElement(V, Op, CI); 3757 return Op; 3758 } 3759 3760 Value *CodeGenFunction::vectorWrapScalar8(Value *Op) { 3761 llvm::Type *VTy = llvm::VectorType::get(Int8Ty, 8); 3762 Op = Builder.CreateBitCast(Op, Int8Ty); 3763 Value *V = UndefValue::get(VTy); 3764 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 3765 Op = Builder.CreateInsertElement(V, Op, CI); 3766 return Op; 3767 } 3768 3769 Value *CodeGenFunction:: 3770 emitVectorWrappedScalar8Intrinsic(unsigned Int, SmallVectorImpl<Value*> &Ops, 3771 const char *Name) { 3772 // i8 is not a legal types for AArch64, so we can't just use 3773 // a normal overloaded intrinsic call for these scalar types. Instead 3774 // we'll build 64-bit vectors w/ lane zero being our input values and 3775 // perform the operation on that. The back end can pattern match directly 3776 // to the scalar instruction. 3777 Ops[0] = vectorWrapScalar8(Ops[0]); 3778 Ops[1] = vectorWrapScalar8(Ops[1]); 3779 llvm::Type *VTy = llvm::VectorType::get(Int8Ty, 8); 3780 Value *V = EmitNeonCall(CGM.getIntrinsic(Int, VTy), Ops, Name); 3781 Constant *CI = ConstantInt::get(SizeTy, 0); 3782 return Builder.CreateExtractElement(V, CI, "lane0"); 3783 } 3784 3785 Value *CodeGenFunction:: 3786 emitVectorWrappedScalar16Intrinsic(unsigned Int, SmallVectorImpl<Value*> &Ops, 3787 const char *Name) { 3788 // i16 is not a legal types for AArch64, so we can't just use 3789 // a normal overloaded intrinsic call for these scalar types. Instead 3790 // we'll build 64-bit vectors w/ lane zero being our input values and 3791 // perform the operation on that. The back end can pattern match directly 3792 // to the scalar instruction. 3793 Ops[0] = vectorWrapScalar16(Ops[0]); 3794 Ops[1] = vectorWrapScalar16(Ops[1]); 3795 llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4); 3796 Value *V = EmitNeonCall(CGM.getIntrinsic(Int, VTy), Ops, Name); 3797 Constant *CI = ConstantInt::get(SizeTy, 0); 3798 return Builder.CreateExtractElement(V, CI, "lane0"); 3799 } 3800 3801 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, 3802 const CallExpr *E) { 3803 if (BuiltinID == AArch64::BI__builtin_arm_rbit) { 3804 assert((getContext().getTypeSize(E->getType()) == 32) && 3805 "rbit of unusual size!"); 3806 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 3807 return Builder.CreateCall( 3808 CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit"); 3809 } 3810 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { 3811 assert((getContext().getTypeSize(E->getType()) == 64) && 3812 "rbit of unusual size!"); 3813 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 3814 return Builder.CreateCall( 3815 CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit"); 3816 } 3817 3818 if (BuiltinID == AArch64::BI__clear_cache) { 3819 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 3820 const FunctionDecl *FD = E->getDirectCallee(); 3821 SmallVector<Value*, 2> Ops; 3822 for (unsigned i = 0; i < 2; i++) 3823 Ops.push_back(EmitScalarExpr(E->getArg(i))); 3824 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 3825 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 3826 StringRef Name = FD->getName(); 3827 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 3828 } 3829 3830 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || 3831 BuiltinID == AArch64::BI__builtin_arm_ldaex) && 3832 getContext().getTypeSize(E->getType()) == 128) { 3833 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 3834 ? Intrinsic::aarch64_ldaxp 3835 : Intrinsic::aarch64_ldxp); 3836 3837 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 3838 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 3839 "ldxp"); 3840 3841 Value *Val0 = Builder.CreateExtractValue(Val, 1); 3842 Value *Val1 = Builder.CreateExtractValue(Val, 0); 3843 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 3844 Val0 = Builder.CreateZExt(Val0, Int128Ty); 3845 Val1 = Builder.CreateZExt(Val1, Int128Ty); 3846 3847 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); 3848 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 3849 Val = Builder.CreateOr(Val, Val1); 3850 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 3851 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 3852 BuiltinID == AArch64::BI__builtin_arm_ldaex) { 3853 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 3854 3855 QualType Ty = E->getType(); 3856 llvm::Type *RealResTy = ConvertType(Ty); 3857 llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(), 3858 getContext().getTypeSize(Ty)); 3859 LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo()); 3860 3861 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 3862 ? Intrinsic::aarch64_ldaxr 3863 : Intrinsic::aarch64_ldxr, 3864 LoadAddr->getType()); 3865 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); 3866 3867 if (RealResTy->isPointerTy()) 3868 return Builder.CreateIntToPtr(Val, RealResTy); 3869 3870 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 3871 return Builder.CreateBitCast(Val, RealResTy); 3872 } 3873 3874 if ((BuiltinID == AArch64::BI__builtin_arm_strex || 3875 BuiltinID == AArch64::BI__builtin_arm_stlex) && 3876 getContext().getTypeSize(E->getArg(0)->getType()) == 128) { 3877 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 3878 ? Intrinsic::aarch64_stlxp 3879 : Intrinsic::aarch64_stxp); 3880 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty, NULL); 3881 3882 Value *One = llvm::ConstantInt::get(Int32Ty, 1); 3883 Value *Tmp = Builder.CreateAlloca(ConvertType(E->getArg(0)->getType()), 3884 One); 3885 Value *Val = EmitScalarExpr(E->getArg(0)); 3886 Builder.CreateStore(Val, Tmp); 3887 3888 Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); 3889 Val = Builder.CreateLoad(LdPtr); 3890 3891 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 3892 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 3893 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), 3894 Int8PtrTy); 3895 return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "stxp"); 3896 } else if (BuiltinID == AArch64::BI__builtin_arm_strex || 3897 BuiltinID == AArch64::BI__builtin_arm_stlex) { 3898 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 3899 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 3900 3901 QualType Ty = E->getArg(0)->getType(); 3902 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 3903 getContext().getTypeSize(Ty)); 3904 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 3905 3906 if (StoreVal->getType()->isPointerTy()) 3907 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); 3908 else { 3909 StoreVal = Builder.CreateBitCast(StoreVal, StoreTy); 3910 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); 3911 } 3912 3913 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 3914 ? Intrinsic::aarch64_stlxr 3915 : Intrinsic::aarch64_stxr, 3916 StoreAddr->getType()); 3917 return Builder.CreateCall2(F, StoreVal, StoreAddr, "stxr"); 3918 } 3919 3920 if (BuiltinID == AArch64::BI__builtin_arm_clrex) { 3921 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); 3922 return Builder.CreateCall(F); 3923 } 3924 3925 // CRC32 3926 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 3927 switch (BuiltinID) { 3928 case AArch64::BI__builtin_arm_crc32b: 3929 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; 3930 case AArch64::BI__builtin_arm_crc32cb: 3931 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; 3932 case AArch64::BI__builtin_arm_crc32h: 3933 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; 3934 case AArch64::BI__builtin_arm_crc32ch: 3935 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; 3936 case AArch64::BI__builtin_arm_crc32w: 3937 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; 3938 case AArch64::BI__builtin_arm_crc32cw: 3939 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; 3940 case AArch64::BI__builtin_arm_crc32d: 3941 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; 3942 case AArch64::BI__builtin_arm_crc32cd: 3943 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; 3944 } 3945 3946 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 3947 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 3948 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 3949 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 3950 3951 llvm::Type *DataTy = F->getFunctionType()->getParamType(1); 3952 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); 3953 3954 return Builder.CreateCall2(F, Arg0, Arg1); 3955 } 3956 3957 llvm::SmallVector<Value*, 4> Ops; 3958 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) 3959 Ops.push_back(EmitScalarExpr(E->getArg(i))); 3960 3961 ArrayRef<NeonIntrinsicInfo> SISDMap(AArch64SISDIntrinsicMap); 3962 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( 3963 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); 3964 3965 if (Builtin) { 3966 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); 3967 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); 3968 assert(Result && "SISD intrinsic should have been handled"); 3969 return Result; 3970 } 3971 3972 llvm::APSInt Result; 3973 const Expr *Arg = E->getArg(E->getNumArgs()-1); 3974 NeonTypeFlags Type(0); 3975 if (Arg->isIntegerConstantExpr(Result, getContext())) 3976 // Determine the type of this overloaded NEON intrinsic. 3977 Type = NeonTypeFlags(Result.getZExtValue()); 3978 3979 bool usgn = Type.isUnsigned(); 3980 bool quad = Type.isQuad(); 3981 3982 // Handle non-overloaded intrinsics first. 3983 switch (BuiltinID) { 3984 default: break; 3985 case NEON::BI__builtin_neon_vldrq_p128: { 3986 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); 3987 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); 3988 return Builder.CreateLoad(Ptr); 3989 } 3990 case NEON::BI__builtin_neon_vstrq_p128: { 3991 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); 3992 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); 3993 return Builder.CreateStore(EmitScalarExpr(E->getArg(1)), Ptr); 3994 } 3995 case NEON::BI__builtin_neon_vcvts_u32_f32: 3996 case NEON::BI__builtin_neon_vcvtd_u64_f64: 3997 usgn = true; 3998 // FALL THROUGH 3999 case NEON::BI__builtin_neon_vcvts_s32_f32: 4000 case NEON::BI__builtin_neon_vcvtd_s64_f64: { 4001 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4002 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; 4003 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; 4004 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; 4005 Ops[0] = Builder.CreateBitCast(Ops[0], FTy); 4006 if (usgn) 4007 return Builder.CreateFPToUI(Ops[0], InTy); 4008 return Builder.CreateFPToSI(Ops[0], InTy); 4009 } 4010 case NEON::BI__builtin_neon_vcvts_f32_u32: 4011 case NEON::BI__builtin_neon_vcvtd_f64_u64: 4012 usgn = true; 4013 // FALL THROUGH 4014 case NEON::BI__builtin_neon_vcvts_f32_s32: 4015 case NEON::BI__builtin_neon_vcvtd_f64_s64: { 4016 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4017 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; 4018 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; 4019 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; 4020 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 4021 if (usgn) 4022 return Builder.CreateUIToFP(Ops[0], FTy); 4023 return Builder.CreateSIToFP(Ops[0], FTy); 4024 } 4025 case NEON::BI__builtin_neon_vpaddd_s64: { 4026 llvm::Type *Ty = 4027 llvm::VectorType::get(llvm::Type::getInt64Ty(getLLVMContext()), 2); 4028 Value *Vec = EmitScalarExpr(E->getArg(0)); 4029 // The vector is v2f64, so make sure it's bitcast to that. 4030 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); 4031 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 4032 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 4033 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 4034 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 4035 // Pairwise addition of a v2f64 into a scalar f64. 4036 return Builder.CreateAdd(Op0, Op1, "vpaddd"); 4037 } 4038 case NEON::BI__builtin_neon_vpaddd_f64: { 4039 llvm::Type *Ty = 4040 llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2); 4041 Value *Vec = EmitScalarExpr(E->getArg(0)); 4042 // The vector is v2f64, so make sure it's bitcast to that. 4043 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); 4044 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 4045 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 4046 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 4047 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 4048 // Pairwise addition of a v2f64 into a scalar f64. 4049 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 4050 } 4051 case NEON::BI__builtin_neon_vpadds_f32: { 4052 llvm::Type *Ty = 4053 llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2); 4054 Value *Vec = EmitScalarExpr(E->getArg(0)); 4055 // The vector is v2f32, so make sure it's bitcast to that. 4056 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); 4057 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 4058 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 4059 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 4060 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 4061 // Pairwise addition of a v2f32 into a scalar f32. 4062 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 4063 } 4064 case NEON::BI__builtin_neon_vceqzd_s64: 4065 case NEON::BI__builtin_neon_vceqzd_f64: 4066 case NEON::BI__builtin_neon_vceqzs_f32: 4067 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4068 return EmitAArch64CompareBuiltinExpr( 4069 Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OEQ, 4070 ICmpInst::ICMP_EQ, "vceqz"); 4071 case NEON::BI__builtin_neon_vcgezd_s64: 4072 case NEON::BI__builtin_neon_vcgezd_f64: 4073 case NEON::BI__builtin_neon_vcgezs_f32: 4074 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4075 return EmitAArch64CompareBuiltinExpr( 4076 Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OGE, 4077 ICmpInst::ICMP_SGE, "vcgez"); 4078 case NEON::BI__builtin_neon_vclezd_s64: 4079 case NEON::BI__builtin_neon_vclezd_f64: 4080 case NEON::BI__builtin_neon_vclezs_f32: 4081 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4082 return EmitAArch64CompareBuiltinExpr( 4083 Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OLE, 4084 ICmpInst::ICMP_SLE, "vclez"); 4085 case NEON::BI__builtin_neon_vcgtzd_s64: 4086 case NEON::BI__builtin_neon_vcgtzd_f64: 4087 case NEON::BI__builtin_neon_vcgtzs_f32: 4088 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4089 return EmitAArch64CompareBuiltinExpr( 4090 Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OGT, 4091 ICmpInst::ICMP_SGT, "vcgtz"); 4092 case NEON::BI__builtin_neon_vcltzd_s64: 4093 case NEON::BI__builtin_neon_vcltzd_f64: 4094 case NEON::BI__builtin_neon_vcltzs_f32: 4095 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4096 return EmitAArch64CompareBuiltinExpr( 4097 Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OLT, 4098 ICmpInst::ICMP_SLT, "vcltz"); 4099 4100 case NEON::BI__builtin_neon_vceqzd_u64: { 4101 llvm::Type *Ty = llvm::Type::getInt64Ty(getLLVMContext()); 4102 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4103 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 4104 Ops[0] = Builder.CreateICmp(llvm::ICmpInst::ICMP_EQ, Ops[0], 4105 llvm::Constant::getNullValue(Ty)); 4106 return Builder.CreateSExt(Ops[0], Ty, "vceqzd"); 4107 } 4108 case NEON::BI__builtin_neon_vceqd_f64: 4109 case NEON::BI__builtin_neon_vcled_f64: 4110 case NEON::BI__builtin_neon_vcltd_f64: 4111 case NEON::BI__builtin_neon_vcged_f64: 4112 case NEON::BI__builtin_neon_vcgtd_f64: { 4113 llvm::CmpInst::Predicate P; 4114 switch (BuiltinID) { 4115 default: llvm_unreachable("missing builtin ID in switch!"); 4116 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; 4117 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; 4118 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; 4119 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; 4120 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; 4121 } 4122 Ops.push_back(EmitScalarExpr(E->getArg(1))); 4123 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 4124 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 4125 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 4126 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); 4127 } 4128 case NEON::BI__builtin_neon_vceqs_f32: 4129 case NEON::BI__builtin_neon_vcles_f32: 4130 case NEON::BI__builtin_neon_vclts_f32: 4131 case NEON::BI__builtin_neon_vcges_f32: 4132 case NEON::BI__builtin_neon_vcgts_f32: { 4133 llvm::CmpInst::Predicate P; 4134 switch (BuiltinID) { 4135 default: llvm_unreachable("missing builtin ID in switch!"); 4136 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; 4137 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; 4138 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; 4139 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; 4140 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; 4141 } 4142 Ops.push_back(EmitScalarExpr(E->getArg(1))); 4143 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); 4144 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); 4145 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 4146 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); 4147 } 4148 case NEON::BI__builtin_neon_vceqd_s64: 4149 case NEON::BI__builtin_neon_vceqd_u64: 4150 case NEON::BI__builtin_neon_vcgtd_s64: 4151 case NEON::BI__builtin_neon_vcgtd_u64: 4152 case NEON::BI__builtin_neon_vcltd_s64: 4153 case NEON::BI__builtin_neon_vcltd_u64: 4154 case NEON::BI__builtin_neon_vcged_u64: 4155 case NEON::BI__builtin_neon_vcged_s64: 4156 case NEON::BI__builtin_neon_vcled_u64: 4157 case NEON::BI__builtin_neon_vcled_s64: { 4158 llvm::CmpInst::Predicate P; 4159 switch (BuiltinID) { 4160 default: llvm_unreachable("missing builtin ID in switch!"); 4161 case NEON::BI__builtin_neon_vceqd_s64: 4162 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; 4163 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; 4164 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; 4165 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; 4166 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; 4167 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; 4168 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; 4169 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; 4170 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; 4171 } 4172 Ops.push_back(EmitScalarExpr(E->getArg(1))); 4173 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 4174 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 4175 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); 4176 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); 4177 } 4178 case NEON::BI__builtin_neon_vtstd_s64: 4179 case NEON::BI__builtin_neon_vtstd_u64: { 4180 llvm::Type *Ty = llvm::Type::getInt64Ty(getLLVMContext()); 4181 Ops.push_back(EmitScalarExpr(E->getArg(1))); 4182 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 4183 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 4184 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 4185 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 4186 llvm::Constant::getNullValue(Ty)); 4187 return Builder.CreateSExt(Ops[0], Ty, "vtstd"); 4188 } 4189 case NEON::BI__builtin_neon_vset_lane_i8: 4190 case NEON::BI__builtin_neon_vset_lane_i16: 4191 case NEON::BI__builtin_neon_vset_lane_i32: 4192 case NEON::BI__builtin_neon_vset_lane_i64: 4193 case NEON::BI__builtin_neon_vset_lane_f32: 4194 case NEON::BI__builtin_neon_vsetq_lane_i8: 4195 case NEON::BI__builtin_neon_vsetq_lane_i16: 4196 case NEON::BI__builtin_neon_vsetq_lane_i32: 4197 case NEON::BI__builtin_neon_vsetq_lane_i64: 4198 case NEON::BI__builtin_neon_vsetq_lane_f32: 4199 Ops.push_back(EmitScalarExpr(E->getArg(2))); 4200 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 4201 case NEON::BI__builtin_neon_vset_lane_f64: 4202 // The vector type needs a cast for the v1f64 variant. 4203 Ops[1] = Builder.CreateBitCast(Ops[1], 4204 llvm::VectorType::get(DoubleTy, 1)); 4205 Ops.push_back(EmitScalarExpr(E->getArg(2))); 4206 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 4207 case NEON::BI__builtin_neon_vsetq_lane_f64: 4208 // The vector type needs a cast for the v2f64 variant. 4209 Ops[1] = Builder.CreateBitCast(Ops[1], 4210 llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2)); 4211 Ops.push_back(EmitScalarExpr(E->getArg(2))); 4212 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 4213 4214 case NEON::BI__builtin_neon_vget_lane_i8: 4215 case NEON::BI__builtin_neon_vdupb_lane_i8: 4216 Ops[0] = Builder.CreateBitCast(Ops[0], 4217 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8)); 4218 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4219 "vget_lane"); 4220 case NEON::BI__builtin_neon_vgetq_lane_i8: 4221 case NEON::BI__builtin_neon_vdupb_laneq_i8: 4222 Ops[0] = Builder.CreateBitCast(Ops[0], 4223 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16)); 4224 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4225 "vgetq_lane"); 4226 case NEON::BI__builtin_neon_vget_lane_i16: 4227 case NEON::BI__builtin_neon_vduph_lane_i16: 4228 Ops[0] = Builder.CreateBitCast(Ops[0], 4229 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4)); 4230 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4231 "vget_lane"); 4232 case NEON::BI__builtin_neon_vgetq_lane_i16: 4233 case NEON::BI__builtin_neon_vduph_laneq_i16: 4234 Ops[0] = Builder.CreateBitCast(Ops[0], 4235 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8)); 4236 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4237 "vgetq_lane"); 4238 case NEON::BI__builtin_neon_vget_lane_i32: 4239 case NEON::BI__builtin_neon_vdups_lane_i32: 4240 Ops[0] = Builder.CreateBitCast( 4241 Ops[0], 4242 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32), 2)); 4243 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4244 "vget_lane"); 4245 case NEON::BI__builtin_neon_vdups_lane_f32: 4246 Ops[0] = Builder.CreateBitCast(Ops[0], 4247 llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2)); 4248 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4249 "vdups_lane"); 4250 case NEON::BI__builtin_neon_vgetq_lane_i32: 4251 case NEON::BI__builtin_neon_vdups_laneq_i32: 4252 Ops[0] = Builder.CreateBitCast(Ops[0], 4253 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32), 4)); 4254 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4255 "vgetq_lane"); 4256 case NEON::BI__builtin_neon_vget_lane_i64: 4257 case NEON::BI__builtin_neon_vdupd_lane_i64: 4258 Ops[0] = Builder.CreateBitCast(Ops[0], 4259 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64), 1)); 4260 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4261 "vget_lane"); 4262 case NEON::BI__builtin_neon_vdupd_lane_f64: 4263 Ops[0] = Builder.CreateBitCast(Ops[0], 4264 llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 1)); 4265 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4266 "vdupd_lane"); 4267 case NEON::BI__builtin_neon_vgetq_lane_i64: 4268 case NEON::BI__builtin_neon_vdupd_laneq_i64: 4269 Ops[0] = Builder.CreateBitCast(Ops[0], 4270 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64), 2)); 4271 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4272 "vgetq_lane"); 4273 case NEON::BI__builtin_neon_vget_lane_f32: 4274 Ops[0] = Builder.CreateBitCast(Ops[0], 4275 llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2)); 4276 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4277 "vget_lane"); 4278 case NEON::BI__builtin_neon_vget_lane_f64: 4279 Ops[0] = Builder.CreateBitCast(Ops[0], 4280 llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 1)); 4281 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4282 "vget_lane"); 4283 case NEON::BI__builtin_neon_vgetq_lane_f32: 4284 case NEON::BI__builtin_neon_vdups_laneq_f32: 4285 Ops[0] = Builder.CreateBitCast(Ops[0], 4286 llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 4)); 4287 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4288 "vgetq_lane"); 4289 case NEON::BI__builtin_neon_vgetq_lane_f64: 4290 case NEON::BI__builtin_neon_vdupd_laneq_f64: 4291 Ops[0] = Builder.CreateBitCast(Ops[0], 4292 llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2)); 4293 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 4294 "vgetq_lane"); 4295 case NEON::BI__builtin_neon_vaddd_s64: 4296 case NEON::BI__builtin_neon_vaddd_u64: 4297 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); 4298 case NEON::BI__builtin_neon_vsubd_s64: 4299 case NEON::BI__builtin_neon_vsubd_u64: 4300 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); 4301 case NEON::BI__builtin_neon_vqdmlalh_s16: 4302 case NEON::BI__builtin_neon_vqdmlslh_s16: { 4303 SmallVector<Value *, 2> ProductOps; 4304 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 4305 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); 4306 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); 4307 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 4308 ProductOps, "vqdmlXl"); 4309 Constant *CI = ConstantInt::get(SizeTy, 0); 4310 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 4311 4312 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 4313 ? Intrinsic::aarch64_neon_sqadd 4314 : Intrinsic::aarch64_neon_sqsub; 4315 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); 4316 } 4317 case NEON::BI__builtin_neon_vqshlud_n_s64: { 4318 Ops.push_back(EmitScalarExpr(E->getArg(1))); 4319 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 4320 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), 4321 Ops, "vqshlu_n"); 4322 } 4323 case NEON::BI__builtin_neon_vqshld_n_u64: 4324 case NEON::BI__builtin_neon_vqshld_n_s64: { 4325 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 4326 ? Intrinsic::aarch64_neon_uqshl 4327 : Intrinsic::aarch64_neon_sqshl; 4328 Ops.push_back(EmitScalarExpr(E->getArg(1))); 4329 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 4330 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); 4331 } 4332 case NEON::BI__builtin_neon_vrshrd_n_u64: 4333 case NEON::BI__builtin_neon_vrshrd_n_s64: { 4334 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 4335 ? Intrinsic::aarch64_neon_urshl 4336 : Intrinsic::aarch64_neon_srshl; 4337 Ops.push_back(EmitScalarExpr(E->getArg(1))); 4338 int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); 4339 Ops[1] = ConstantInt::get(Int64Ty, -SV); 4340 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); 4341 } 4342 case NEON::BI__builtin_neon_vrsrad_n_u64: 4343 case NEON::BI__builtin_neon_vrsrad_n_s64: { 4344 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 4345 ? Intrinsic::aarch64_neon_urshl 4346 : Intrinsic::aarch64_neon_srshl; 4347 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 4348 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); 4349 Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Int64Ty), Ops[1], 4350 Builder.CreateSExt(Ops[2], Int64Ty)); 4351 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); 4352 } 4353 case NEON::BI__builtin_neon_vshld_n_s64: 4354 case NEON::BI__builtin_neon_vshld_n_u64: { 4355 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 4356 return Builder.CreateShl( 4357 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); 4358 } 4359 case NEON::BI__builtin_neon_vshrd_n_s64: { 4360 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 4361 return Builder.CreateAShr( 4362 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 4363 Amt->getZExtValue())), 4364 "shrd_n"); 4365 } 4366 case NEON::BI__builtin_neon_vshrd_n_u64: { 4367 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 4368 uint64_t ShiftAmt = Amt->getZExtValue(); 4369 // Right-shifting an unsigned value by its size yields 0. 4370 if (ShiftAmt == 64) 4371 return ConstantInt::get(Int64Ty, 0); 4372 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), 4373 "shrd_n"); 4374 } 4375 case NEON::BI__builtin_neon_vsrad_n_s64: { 4376 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 4377 Ops[1] = Builder.CreateAShr( 4378 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 4379 Amt->getZExtValue())), 4380 "shrd_n"); 4381 return Builder.CreateAdd(Ops[0], Ops[1]); 4382 } 4383 case NEON::BI__builtin_neon_vsrad_n_u64: { 4384 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 4385 uint64_t ShiftAmt = Amt->getZExtValue(); 4386 // Right-shifting an unsigned value by its size yields 0. 4387 // As Op + 0 = Op, return Ops[0] directly. 4388 if (ShiftAmt == 64) 4389 return Ops[0]; 4390 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), 4391 "shrd_n"); 4392 return Builder.CreateAdd(Ops[0], Ops[1]); 4393 } 4394 case NEON::BI__builtin_neon_vqdmlalh_lane_s16: 4395 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: 4396 case NEON::BI__builtin_neon_vqdmlslh_lane_s16: 4397 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { 4398 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 4399 "lane"); 4400 SmallVector<Value *, 2> ProductOps; 4401 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 4402 ProductOps.push_back(vectorWrapScalar16(Ops[2])); 4403 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); 4404 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 4405 ProductOps, "vqdmlXl"); 4406 Constant *CI = ConstantInt::get(SizeTy, 0); 4407 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 4408 Ops.pop_back(); 4409 4410 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || 4411 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) 4412 ? Intrinsic::aarch64_neon_sqadd 4413 : Intrinsic::aarch64_neon_sqsub; 4414 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); 4415 } 4416 case NEON::BI__builtin_neon_vqdmlals_s32: 4417 case NEON::BI__builtin_neon_vqdmlsls_s32: { 4418 SmallVector<Value *, 2> ProductOps; 4419 ProductOps.push_back(Ops[1]); 4420 ProductOps.push_back(EmitScalarExpr(E->getArg(2))); 4421 Ops[1] = 4422 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 4423 ProductOps, "vqdmlXl"); 4424 4425 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 4426 ? Intrinsic::aarch64_neon_sqadd 4427 : Intrinsic::aarch64_neon_sqsub; 4428 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); 4429 } 4430 case NEON::BI__builtin_neon_vqdmlals_lane_s32: 4431 case NEON::BI__builtin_neon_vqdmlals_laneq_s32: 4432 case NEON::BI__builtin_neon_vqdmlsls_lane_s32: 4433 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { 4434 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 4435 "lane"); 4436 SmallVector<Value *, 2> ProductOps; 4437 ProductOps.push_back(Ops[1]); 4438 ProductOps.push_back(Ops[2]); 4439 Ops[1] = 4440 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 4441 ProductOps, "vqdmlXl"); 4442 Ops.pop_back(); 4443 4444 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || 4445 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) 4446 ? Intrinsic::aarch64_neon_sqadd 4447 : Intrinsic::aarch64_neon_sqsub; 4448 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); 4449 } 4450 } 4451 4452 llvm::VectorType *VTy = GetNeonType(this, Type); 4453 llvm::Type *Ty = VTy; 4454 if (!Ty) 4455 return nullptr; 4456 4457 // Not all intrinsics handled by the common case work for AArch64 yet, so only 4458 // defer to common code if it's been added to our special map. 4459 Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, 4460 AArch64SIMDIntrinsicsProvenSorted); 4461 4462 if (Builtin) 4463 return EmitCommonNeonBuiltinExpr( 4464 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 4465 Builtin->NameHint, Builtin->TypeModifier, E, Ops, nullptr); 4466 4467 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops)) 4468 return V; 4469 4470 unsigned Int; 4471 switch (BuiltinID) { 4472 default: return nullptr; 4473 case NEON::BI__builtin_neon_vbsl_v: 4474 case NEON::BI__builtin_neon_vbslq_v: { 4475 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); 4476 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); 4477 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); 4478 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); 4479 4480 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); 4481 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); 4482 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); 4483 return Builder.CreateBitCast(Ops[0], Ty); 4484 } 4485 case NEON::BI__builtin_neon_vfma_lane_v: 4486 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types 4487 // The ARM builtins (and instructions) have the addend as the first 4488 // operand, but the 'fma' intrinsics have it last. Swap it around here. 4489 Value *Addend = Ops[0]; 4490 Value *Multiplicand = Ops[1]; 4491 Value *LaneSource = Ops[2]; 4492 Ops[0] = Multiplicand; 4493 Ops[1] = LaneSource; 4494 Ops[2] = Addend; 4495 4496 // Now adjust things to handle the lane access. 4497 llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ? 4498 llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) : 4499 VTy; 4500 llvm::Constant *cst = cast<Constant>(Ops[3]); 4501 Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst); 4502 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); 4503 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); 4504 4505 Ops.pop_back(); 4506 Int = Intrinsic::fma; 4507 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); 4508 } 4509 case NEON::BI__builtin_neon_vfma_laneq_v: { 4510 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); 4511 // v1f64 fma should be mapped to Neon scalar f64 fma 4512 if (VTy && VTy->getElementType() == DoubleTy) { 4513 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 4514 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 4515 llvm::Type *VTy = GetNeonType(this, 4516 NeonTypeFlags(NeonTypeFlags::Float64, false, true)); 4517 Ops[2] = Builder.CreateBitCast(Ops[2], VTy); 4518 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 4519 Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy); 4520 Value *Result = Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]); 4521 return Builder.CreateBitCast(Result, Ty); 4522 } 4523 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); 4524 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 4525 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 4526 4527 llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(), 4528 VTy->getNumElements() * 2); 4529 Ops[2] = Builder.CreateBitCast(Ops[2], STy); 4530 Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), 4531 cast<ConstantInt>(Ops[3])); 4532 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); 4533 4534 return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]); 4535 } 4536 case NEON::BI__builtin_neon_vfmaq_laneq_v: { 4537 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); 4538 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 4539 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 4540 4541 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 4542 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); 4543 return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]); 4544 } 4545 case NEON::BI__builtin_neon_vfmas_lane_f32: 4546 case NEON::BI__builtin_neon_vfmas_laneq_f32: 4547 case NEON::BI__builtin_neon_vfmad_lane_f64: 4548 case NEON::BI__builtin_neon_vfmad_laneq_f64: { 4549 Ops.push_back(EmitScalarExpr(E->getArg(3))); 4550 llvm::Type *Ty = ConvertType(E->getCallReturnType()); 4551 Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); 4552 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 4553 return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]); 4554 } 4555 case NEON::BI__builtin_neon_vfms_v: 4556 case NEON::BI__builtin_neon_vfmsq_v: { // Only used for FP types 4557 // FIXME: probably remove when we no longer support aarch64_simd.h 4558 // (arm_neon.h delegates to vfma). 4559 4560 // The ARM builtins (and instructions) have the addend as the first 4561 // operand, but the 'fma' intrinsics have it last. Swap it around here. 4562 Value *Subtrahend = Ops[0]; 4563 Value *Multiplicand = Ops[2]; 4564 Ops[0] = Multiplicand; 4565 Ops[2] = Subtrahend; 4566 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 4567 Ops[1] = Builder.CreateFNeg(Ops[1]); 4568 Int = Intrinsic::fma; 4569 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmls"); 4570 } 4571 case NEON::BI__builtin_neon_vmull_v: 4572 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 4573 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; 4574 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; 4575 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 4576 case NEON::BI__builtin_neon_vmax_v: 4577 case NEON::BI__builtin_neon_vmaxq_v: 4578 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 4579 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; 4580 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; 4581 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); 4582 case NEON::BI__builtin_neon_vmin_v: 4583 case NEON::BI__builtin_neon_vminq_v: 4584 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 4585 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; 4586 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; 4587 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); 4588 case NEON::BI__builtin_neon_vabd_v: 4589 case NEON::BI__builtin_neon_vabdq_v: 4590 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 4591 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; 4592 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; 4593 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); 4594 case NEON::BI__builtin_neon_vpadal_v: 4595 case NEON::BI__builtin_neon_vpadalq_v: { 4596 unsigned ArgElts = VTy->getNumElements(); 4597 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); 4598 unsigned BitWidth = EltTy->getBitWidth(); 4599 llvm::Type *ArgTy = llvm::VectorType::get( 4600 llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts); 4601 llvm::Type* Tys[2] = { VTy, ArgTy }; 4602 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; 4603 SmallVector<llvm::Value*, 1> TmpOps; 4604 TmpOps.push_back(Ops[1]); 4605 Function *F = CGM.getIntrinsic(Int, Tys); 4606 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); 4607 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); 4608 return Builder.CreateAdd(tmp, addend); 4609 } 4610 case NEON::BI__builtin_neon_vpmin_v: 4611 case NEON::BI__builtin_neon_vpminq_v: 4612 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 4613 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; 4614 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; 4615 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); 4616 case NEON::BI__builtin_neon_vpmax_v: 4617 case NEON::BI__builtin_neon_vpmaxq_v: 4618 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 4619 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; 4620 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; 4621 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); 4622 case NEON::BI__builtin_neon_vminnm_v: 4623 case NEON::BI__builtin_neon_vminnmq_v: 4624 Int = Intrinsic::aarch64_neon_fminnm; 4625 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); 4626 case NEON::BI__builtin_neon_vmaxnm_v: 4627 case NEON::BI__builtin_neon_vmaxnmq_v: 4628 Int = Intrinsic::aarch64_neon_fmaxnm; 4629 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); 4630 case NEON::BI__builtin_neon_vrecpss_f32: { 4631 llvm::Type *f32Type = llvm::Type::getFloatTy(getLLVMContext()); 4632 Ops.push_back(EmitScalarExpr(E->getArg(1))); 4633 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, f32Type), 4634 Ops, "vrecps"); 4635 } 4636 case NEON::BI__builtin_neon_vrecpsd_f64: { 4637 llvm::Type *f64Type = llvm::Type::getDoubleTy(getLLVMContext()); 4638 Ops.push_back(EmitScalarExpr(E->getArg(1))); 4639 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, f64Type), 4640 Ops, "vrecps"); 4641 } 4642 case NEON::BI__builtin_neon_vrshr_n_v: 4643 case NEON::BI__builtin_neon_vrshrq_n_v: 4644 // FIXME: this can be shared with 32-bit ARM, but not AArch64 at the 4645 // moment. After the final merge it should be added to 4646 // EmitCommonNeonBuiltinExpr. 4647 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; 4648 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true); 4649 case NEON::BI__builtin_neon_vqshlu_n_v: 4650 case NEON::BI__builtin_neon_vqshluq_n_v: 4651 // FIXME: AArch64 and ARM use different intrinsics for this, but are 4652 // essentially compatible. It should be in EmitCommonNeonBuiltinExpr after 4653 // the final merge. 4654 Int = Intrinsic::aarch64_neon_sqshlu; 4655 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", 1, false); 4656 case NEON::BI__builtin_neon_vqshrun_n_v: 4657 // FIXME: as above 4658 Int = Intrinsic::aarch64_neon_sqshrun; 4659 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); 4660 case NEON::BI__builtin_neon_vqrshrun_n_v: 4661 // FIXME: and again. 4662 Int = Intrinsic::aarch64_neon_sqrshrun; 4663 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); 4664 case NEON::BI__builtin_neon_vqshrn_n_v: 4665 // FIXME: guess 4666 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; 4667 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); 4668 case NEON::BI__builtin_neon_vrshrn_n_v: 4669 // FIXME: there might be a pattern here. 4670 Int = Intrinsic::aarch64_neon_rshrn; 4671 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); 4672 case NEON::BI__builtin_neon_vqrshrn_n_v: 4673 // FIXME: another one 4674 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; 4675 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); 4676 case NEON::BI__builtin_neon_vrnda_v: 4677 case NEON::BI__builtin_neon_vrndaq_v: { 4678 Int = Intrinsic::round; 4679 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); 4680 } 4681 case NEON::BI__builtin_neon_vrndi_v: 4682 case NEON::BI__builtin_neon_vrndiq_v: { 4683 Int = Intrinsic::nearbyint; 4684 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi"); 4685 } 4686 case NEON::BI__builtin_neon_vrndm_v: 4687 case NEON::BI__builtin_neon_vrndmq_v: { 4688 Int = Intrinsic::floor; 4689 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); 4690 } 4691 case NEON::BI__builtin_neon_vrndn_v: 4692 case NEON::BI__builtin_neon_vrndnq_v: { 4693 Int = Intrinsic::aarch64_neon_frintn; 4694 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); 4695 } 4696 case NEON::BI__builtin_neon_vrndp_v: 4697 case NEON::BI__builtin_neon_vrndpq_v: { 4698 Int = Intrinsic::ceil; 4699 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); 4700 } 4701 case NEON::BI__builtin_neon_vrndx_v: 4702 case NEON::BI__builtin_neon_vrndxq_v: { 4703 Int = Intrinsic::rint; 4704 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); 4705 } 4706 case NEON::BI__builtin_neon_vrnd_v: 4707 case NEON::BI__builtin_neon_vrndq_v: { 4708 Int = Intrinsic::trunc; 4709 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); 4710 } 4711 case NEON::BI__builtin_neon_vceqz_v: 4712 case NEON::BI__builtin_neon_vceqzq_v: 4713 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, 4714 ICmpInst::ICMP_EQ, "vceqz"); 4715 case NEON::BI__builtin_neon_vcgez_v: 4716 case NEON::BI__builtin_neon_vcgezq_v: 4717 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, 4718 ICmpInst::ICMP_SGE, "vcgez"); 4719 case NEON::BI__builtin_neon_vclez_v: 4720 case NEON::BI__builtin_neon_vclezq_v: 4721 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, 4722 ICmpInst::ICMP_SLE, "vclez"); 4723 case NEON::BI__builtin_neon_vcgtz_v: 4724 case NEON::BI__builtin_neon_vcgtzq_v: 4725 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, 4726 ICmpInst::ICMP_SGT, "vcgtz"); 4727 case NEON::BI__builtin_neon_vcltz_v: 4728 case NEON::BI__builtin_neon_vcltzq_v: 4729 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, 4730 ICmpInst::ICMP_SLT, "vcltz"); 4731 case NEON::BI__builtin_neon_vcvt_f64_v: 4732 case NEON::BI__builtin_neon_vcvtq_f64_v: 4733 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 4734 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); 4735 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 4736 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 4737 case NEON::BI__builtin_neon_vcvt_f64_f32: { 4738 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && 4739 "unexpected vcvt_f64_f32 builtin"); 4740 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); 4741 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 4742 4743 return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); 4744 } 4745 case NEON::BI__builtin_neon_vcvt_f32_f64: { 4746 assert(Type.getEltType() == NeonTypeFlags::Float32 && 4747 "unexpected vcvt_f32_f64 builtin"); 4748 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); 4749 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 4750 4751 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); 4752 } 4753 case NEON::BI__builtin_neon_vcvt_s32_v: 4754 case NEON::BI__builtin_neon_vcvt_u32_v: 4755 case NEON::BI__builtin_neon_vcvt_s64_v: 4756 case NEON::BI__builtin_neon_vcvt_u64_v: 4757 case NEON::BI__builtin_neon_vcvtq_s32_v: 4758 case NEON::BI__builtin_neon_vcvtq_u32_v: 4759 case NEON::BI__builtin_neon_vcvtq_s64_v: 4760 case NEON::BI__builtin_neon_vcvtq_u64_v: { 4761 bool Double = 4762 (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64); 4763 llvm::Type *InTy = 4764 GetNeonType(this, 4765 NeonTypeFlags(Double ? NeonTypeFlags::Float64 4766 : NeonTypeFlags::Float32, false, quad)); 4767 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 4768 if (usgn) 4769 return Builder.CreateFPToUI(Ops[0], Ty); 4770 return Builder.CreateFPToSI(Ops[0], Ty); 4771 } 4772 case NEON::BI__builtin_neon_vcvta_s32_v: 4773 case NEON::BI__builtin_neon_vcvtaq_s32_v: 4774 case NEON::BI__builtin_neon_vcvta_u32_v: 4775 case NEON::BI__builtin_neon_vcvtaq_u32_v: 4776 case NEON::BI__builtin_neon_vcvta_s64_v: 4777 case NEON::BI__builtin_neon_vcvtaq_s64_v: 4778 case NEON::BI__builtin_neon_vcvta_u64_v: 4779 case NEON::BI__builtin_neon_vcvtaq_u64_v: { 4780 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; 4781 bool Double = 4782 (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64); 4783 llvm::Type *InTy = 4784 GetNeonType(this, 4785 NeonTypeFlags(Double ? NeonTypeFlags::Float64 4786 : NeonTypeFlags::Float32, false, quad)); 4787 llvm::Type *Tys[2] = { Ty, InTy }; 4788 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); 4789 } 4790 case NEON::BI__builtin_neon_vcvtm_s32_v: 4791 case NEON::BI__builtin_neon_vcvtmq_s32_v: 4792 case NEON::BI__builtin_neon_vcvtm_u32_v: 4793 case NEON::BI__builtin_neon_vcvtmq_u32_v: 4794 case NEON::BI__builtin_neon_vcvtm_s64_v: 4795 case NEON::BI__builtin_neon_vcvtmq_s64_v: 4796 case NEON::BI__builtin_neon_vcvtm_u64_v: 4797 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 4798 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; 4799 bool Double = 4800 (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64); 4801 llvm::Type *InTy = 4802 GetNeonType(this, 4803 NeonTypeFlags(Double ? NeonTypeFlags::Float64 4804 : NeonTypeFlags::Float32, false, quad)); 4805 llvm::Type *Tys[2] = { Ty, InTy }; 4806 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); 4807 } 4808 case NEON::BI__builtin_neon_vcvtn_s32_v: 4809 case NEON::BI__builtin_neon_vcvtnq_s32_v: 4810 case NEON::BI__builtin_neon_vcvtn_u32_v: 4811 case NEON::BI__builtin_neon_vcvtnq_u32_v: 4812 case NEON::BI__builtin_neon_vcvtn_s64_v: 4813 case NEON::BI__builtin_neon_vcvtnq_s64_v: 4814 case NEON::BI__builtin_neon_vcvtn_u64_v: 4815 case NEON::BI__builtin_neon_vcvtnq_u64_v: { 4816 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; 4817 bool Double = 4818 (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64); 4819 llvm::Type *InTy = 4820 GetNeonType(this, 4821 NeonTypeFlags(Double ? NeonTypeFlags::Float64 4822 : NeonTypeFlags::Float32, false, quad)); 4823 llvm::Type *Tys[2] = { Ty, InTy }; 4824 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); 4825 } 4826 case NEON::BI__builtin_neon_vcvtp_s32_v: 4827 case NEON::BI__builtin_neon_vcvtpq_s32_v: 4828 case NEON::BI__builtin_neon_vcvtp_u32_v: 4829 case NEON::BI__builtin_neon_vcvtpq_u32_v: 4830 case NEON::BI__builtin_neon_vcvtp_s64_v: 4831 case NEON::BI__builtin_neon_vcvtpq_s64_v: 4832 case NEON::BI__builtin_neon_vcvtp_u64_v: 4833 case NEON::BI__builtin_neon_vcvtpq_u64_v: { 4834 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; 4835 bool Double = 4836 (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64); 4837 llvm::Type *InTy = 4838 GetNeonType(this, 4839 NeonTypeFlags(Double ? NeonTypeFlags::Float64 4840 : NeonTypeFlags::Float32, false, quad)); 4841 llvm::Type *Tys[2] = { Ty, InTy }; 4842 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); 4843 } 4844 case NEON::BI__builtin_neon_vmulx_v: 4845 case NEON::BI__builtin_neon_vmulxq_v: { 4846 Int = Intrinsic::aarch64_neon_fmulx; 4847 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); 4848 } 4849 case NEON::BI__builtin_neon_vmul_lane_v: 4850 case NEON::BI__builtin_neon_vmul_laneq_v: { 4851 // v1f64 vmul_lane should be mapped to Neon scalar mul lane 4852 bool Quad = false; 4853 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) 4854 Quad = true; 4855 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 4856 llvm::Type *VTy = GetNeonType(this, 4857 NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); 4858 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 4859 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 4860 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); 4861 return Builder.CreateBitCast(Result, Ty); 4862 } 4863 case NEON::BI__builtin_neon_vnegd_s64: 4864 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); 4865 case NEON::BI__builtin_neon_vpmaxnm_v: 4866 case NEON::BI__builtin_neon_vpmaxnmq_v: { 4867 Int = Intrinsic::aarch64_neon_fmaxnmp; 4868 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); 4869 } 4870 case NEON::BI__builtin_neon_vpminnm_v: 4871 case NEON::BI__builtin_neon_vpminnmq_v: { 4872 Int = Intrinsic::aarch64_neon_fminnmp; 4873 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); 4874 } 4875 case NEON::BI__builtin_neon_vsqrt_v: 4876 case NEON::BI__builtin_neon_vsqrtq_v: { 4877 Int = Intrinsic::sqrt; 4878 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 4879 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); 4880 } 4881 case NEON::BI__builtin_neon_vrbit_v: 4882 case NEON::BI__builtin_neon_vrbitq_v: { 4883 Int = Intrinsic::aarch64_neon_rbit; 4884 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); 4885 } 4886 case NEON::BI__builtin_neon_vaddv_u8: 4887 // FIXME: These are handled by the AArch64 scalar code. 4888 usgn = true; 4889 // FALLTHROUGH 4890 case NEON::BI__builtin_neon_vaddv_s8: { 4891 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 4892 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 4893 VTy = 4894 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8); 4895 llvm::Type *Tys[2] = { Ty, VTy }; 4896 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4897 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 4898 return Builder.CreateTrunc(Ops[0], 4899 llvm::IntegerType::get(getLLVMContext(), 8)); 4900 } 4901 case NEON::BI__builtin_neon_vaddv_u16: 4902 usgn = true; 4903 // FALLTHROUGH 4904 case NEON::BI__builtin_neon_vaddv_s16: { 4905 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 4906 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 4907 VTy = 4908 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4); 4909 llvm::Type *Tys[2] = { Ty, VTy }; 4910 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4911 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 4912 return Builder.CreateTrunc(Ops[0], 4913 llvm::IntegerType::get(getLLVMContext(), 16)); 4914 } 4915 case NEON::BI__builtin_neon_vaddvq_u8: 4916 usgn = true; 4917 // FALLTHROUGH 4918 case NEON::BI__builtin_neon_vaddvq_s8: { 4919 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 4920 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 4921 VTy = 4922 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16); 4923 llvm::Type *Tys[2] = { Ty, VTy }; 4924 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4925 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 4926 return Builder.CreateTrunc(Ops[0], 4927 llvm::IntegerType::get(getLLVMContext(), 8)); 4928 } 4929 case NEON::BI__builtin_neon_vaddvq_u16: 4930 usgn = true; 4931 // FALLTHROUGH 4932 case NEON::BI__builtin_neon_vaddvq_s16: { 4933 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 4934 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 4935 VTy = 4936 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8); 4937 llvm::Type *Tys[2] = { Ty, VTy }; 4938 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4939 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 4940 return Builder.CreateTrunc(Ops[0], 4941 llvm::IntegerType::get(getLLVMContext(), 16)); 4942 } 4943 case NEON::BI__builtin_neon_vmaxv_u8: { 4944 Int = Intrinsic::aarch64_neon_umaxv; 4945 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 4946 VTy = 4947 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8); 4948 llvm::Type *Tys[2] = { Ty, VTy }; 4949 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4950 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 4951 return Builder.CreateTrunc(Ops[0], 4952 llvm::IntegerType::get(getLLVMContext(), 8)); 4953 } 4954 case NEON::BI__builtin_neon_vmaxv_u16: { 4955 Int = Intrinsic::aarch64_neon_umaxv; 4956 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 4957 VTy = 4958 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4); 4959 llvm::Type *Tys[2] = { Ty, VTy }; 4960 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4961 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 4962 return Builder.CreateTrunc(Ops[0], 4963 llvm::IntegerType::get(getLLVMContext(), 16)); 4964 } 4965 case NEON::BI__builtin_neon_vmaxvq_u8: { 4966 Int = Intrinsic::aarch64_neon_umaxv; 4967 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 4968 VTy = 4969 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16); 4970 llvm::Type *Tys[2] = { Ty, VTy }; 4971 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4972 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 4973 return Builder.CreateTrunc(Ops[0], 4974 llvm::IntegerType::get(getLLVMContext(), 8)); 4975 } 4976 case NEON::BI__builtin_neon_vmaxvq_u16: { 4977 Int = Intrinsic::aarch64_neon_umaxv; 4978 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 4979 VTy = 4980 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8); 4981 llvm::Type *Tys[2] = { Ty, VTy }; 4982 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4983 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 4984 return Builder.CreateTrunc(Ops[0], 4985 llvm::IntegerType::get(getLLVMContext(), 16)); 4986 } 4987 case NEON::BI__builtin_neon_vmaxv_s8: { 4988 Int = Intrinsic::aarch64_neon_smaxv; 4989 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 4990 VTy = 4991 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8); 4992 llvm::Type *Tys[2] = { Ty, VTy }; 4993 Ops.push_back(EmitScalarExpr(E->getArg(0))); 4994 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 4995 return Builder.CreateTrunc(Ops[0], 4996 llvm::IntegerType::get(getLLVMContext(), 8)); 4997 } 4998 case NEON::BI__builtin_neon_vmaxv_s16: { 4999 Int = Intrinsic::aarch64_neon_smaxv; 5000 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5001 VTy = 5002 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4); 5003 llvm::Type *Tys[2] = { Ty, VTy }; 5004 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5005 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 5006 return Builder.CreateTrunc(Ops[0], 5007 llvm::IntegerType::get(getLLVMContext(), 16)); 5008 } 5009 case NEON::BI__builtin_neon_vmaxvq_s8: { 5010 Int = Intrinsic::aarch64_neon_smaxv; 5011 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5012 VTy = 5013 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16); 5014 llvm::Type *Tys[2] = { Ty, VTy }; 5015 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5016 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 5017 return Builder.CreateTrunc(Ops[0], 5018 llvm::IntegerType::get(getLLVMContext(), 8)); 5019 } 5020 case NEON::BI__builtin_neon_vmaxvq_s16: { 5021 Int = Intrinsic::aarch64_neon_smaxv; 5022 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5023 VTy = 5024 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8); 5025 llvm::Type *Tys[2] = { Ty, VTy }; 5026 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5027 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 5028 return Builder.CreateTrunc(Ops[0], 5029 llvm::IntegerType::get(getLLVMContext(), 16)); 5030 } 5031 case NEON::BI__builtin_neon_vminv_u8: { 5032 Int = Intrinsic::aarch64_neon_uminv; 5033 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5034 VTy = 5035 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8); 5036 llvm::Type *Tys[2] = { Ty, VTy }; 5037 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5038 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 5039 return Builder.CreateTrunc(Ops[0], 5040 llvm::IntegerType::get(getLLVMContext(), 8)); 5041 } 5042 case NEON::BI__builtin_neon_vminv_u16: { 5043 Int = Intrinsic::aarch64_neon_uminv; 5044 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5045 VTy = 5046 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4); 5047 llvm::Type *Tys[2] = { Ty, VTy }; 5048 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5049 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 5050 return Builder.CreateTrunc(Ops[0], 5051 llvm::IntegerType::get(getLLVMContext(), 16)); 5052 } 5053 case NEON::BI__builtin_neon_vminvq_u8: { 5054 Int = Intrinsic::aarch64_neon_uminv; 5055 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5056 VTy = 5057 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16); 5058 llvm::Type *Tys[2] = { Ty, VTy }; 5059 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5060 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 5061 return Builder.CreateTrunc(Ops[0], 5062 llvm::IntegerType::get(getLLVMContext(), 8)); 5063 } 5064 case NEON::BI__builtin_neon_vminvq_u16: { 5065 Int = Intrinsic::aarch64_neon_uminv; 5066 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5067 VTy = 5068 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8); 5069 llvm::Type *Tys[2] = { Ty, VTy }; 5070 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5071 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 5072 return Builder.CreateTrunc(Ops[0], 5073 llvm::IntegerType::get(getLLVMContext(), 16)); 5074 } 5075 case NEON::BI__builtin_neon_vminv_s8: { 5076 Int = Intrinsic::aarch64_neon_sminv; 5077 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5078 VTy = 5079 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8); 5080 llvm::Type *Tys[2] = { Ty, VTy }; 5081 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5082 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 5083 return Builder.CreateTrunc(Ops[0], 5084 llvm::IntegerType::get(getLLVMContext(), 8)); 5085 } 5086 case NEON::BI__builtin_neon_vminv_s16: { 5087 Int = Intrinsic::aarch64_neon_sminv; 5088 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5089 VTy = 5090 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4); 5091 llvm::Type *Tys[2] = { Ty, VTy }; 5092 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5093 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 5094 return Builder.CreateTrunc(Ops[0], 5095 llvm::IntegerType::get(getLLVMContext(), 16)); 5096 } 5097 case NEON::BI__builtin_neon_vminvq_s8: { 5098 Int = Intrinsic::aarch64_neon_sminv; 5099 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5100 VTy = 5101 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16); 5102 llvm::Type *Tys[2] = { Ty, VTy }; 5103 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5104 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 5105 return Builder.CreateTrunc(Ops[0], 5106 llvm::IntegerType::get(getLLVMContext(), 8)); 5107 } 5108 case NEON::BI__builtin_neon_vminvq_s16: { 5109 Int = Intrinsic::aarch64_neon_sminv; 5110 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5111 VTy = 5112 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8); 5113 llvm::Type *Tys[2] = { Ty, VTy }; 5114 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5115 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 5116 return Builder.CreateTrunc(Ops[0], 5117 llvm::IntegerType::get(getLLVMContext(), 16)); 5118 } 5119 case NEON::BI__builtin_neon_vmul_n_f64: { 5120 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 5121 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); 5122 return Builder.CreateFMul(Ops[0], RHS); 5123 } 5124 case NEON::BI__builtin_neon_vaddlv_u8: { 5125 Int = Intrinsic::aarch64_neon_uaddlv; 5126 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5127 VTy = 5128 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8); 5129 llvm::Type *Tys[2] = { Ty, VTy }; 5130 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5131 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 5132 return Builder.CreateTrunc(Ops[0], 5133 llvm::IntegerType::get(getLLVMContext(), 16)); 5134 } 5135 case NEON::BI__builtin_neon_vaddlv_u16: { 5136 Int = Intrinsic::aarch64_neon_uaddlv; 5137 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5138 VTy = 5139 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4); 5140 llvm::Type *Tys[2] = { Ty, VTy }; 5141 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5142 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 5143 } 5144 case NEON::BI__builtin_neon_vaddlvq_u8: { 5145 Int = Intrinsic::aarch64_neon_uaddlv; 5146 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5147 VTy = 5148 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16); 5149 llvm::Type *Tys[2] = { Ty, VTy }; 5150 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5151 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 5152 return Builder.CreateTrunc(Ops[0], 5153 llvm::IntegerType::get(getLLVMContext(), 16)); 5154 } 5155 case NEON::BI__builtin_neon_vaddlvq_u16: { 5156 Int = Intrinsic::aarch64_neon_uaddlv; 5157 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5158 VTy = 5159 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8); 5160 llvm::Type *Tys[2] = { Ty, VTy }; 5161 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5162 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 5163 } 5164 case NEON::BI__builtin_neon_vaddlv_s8: { 5165 Int = Intrinsic::aarch64_neon_saddlv; 5166 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5167 VTy = 5168 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8); 5169 llvm::Type *Tys[2] = { Ty, VTy }; 5170 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5171 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 5172 return Builder.CreateTrunc(Ops[0], 5173 llvm::IntegerType::get(getLLVMContext(), 16)); 5174 } 5175 case NEON::BI__builtin_neon_vaddlv_s16: { 5176 Int = Intrinsic::aarch64_neon_saddlv; 5177 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5178 VTy = 5179 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4); 5180 llvm::Type *Tys[2] = { Ty, VTy }; 5181 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5182 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 5183 } 5184 case NEON::BI__builtin_neon_vaddlvq_s8: { 5185 Int = Intrinsic::aarch64_neon_saddlv; 5186 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5187 VTy = 5188 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16); 5189 llvm::Type *Tys[2] = { Ty, VTy }; 5190 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5191 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 5192 return Builder.CreateTrunc(Ops[0], 5193 llvm::IntegerType::get(getLLVMContext(), 16)); 5194 } 5195 case NEON::BI__builtin_neon_vaddlvq_s16: { 5196 Int = Intrinsic::aarch64_neon_saddlv; 5197 Ty = llvm::IntegerType::get(getLLVMContext(), 32); 5198 VTy = 5199 llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8); 5200 llvm::Type *Tys[2] = { Ty, VTy }; 5201 Ops.push_back(EmitScalarExpr(E->getArg(0))); 5202 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 5203 } 5204 case NEON::BI__builtin_neon_vsri_n_v: 5205 case NEON::BI__builtin_neon_vsriq_n_v: { 5206 Int = Intrinsic::aarch64_neon_vsri; 5207 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 5208 return EmitNeonCall(Intrin, Ops, "vsri_n"); 5209 } 5210 case NEON::BI__builtin_neon_vsli_n_v: 5211 case NEON::BI__builtin_neon_vsliq_n_v: { 5212 Int = Intrinsic::aarch64_neon_vsli; 5213 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 5214 return EmitNeonCall(Intrin, Ops, "vsli_n"); 5215 } 5216 case NEON::BI__builtin_neon_vsra_n_v: 5217 case NEON::BI__builtin_neon_vsraq_n_v: 5218 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5219 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 5220 return Builder.CreateAdd(Ops[0], Ops[1]); 5221 case NEON::BI__builtin_neon_vrsra_n_v: 5222 case NEON::BI__builtin_neon_vrsraq_n_v: { 5223 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; 5224 SmallVector<llvm::Value*,2> TmpOps; 5225 TmpOps.push_back(Ops[1]); 5226 TmpOps.push_back(Ops[2]); 5227 Function* F = CGM.getIntrinsic(Int, Ty); 5228 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); 5229 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 5230 return Builder.CreateAdd(Ops[0], tmp); 5231 } 5232 // FIXME: Sharing loads & stores with 32-bit is complicated by the absence 5233 // of an Align parameter here. 5234 case NEON::BI__builtin_neon_vld1_x2_v: 5235 case NEON::BI__builtin_neon_vld1q_x2_v: 5236 case NEON::BI__builtin_neon_vld1_x3_v: 5237 case NEON::BI__builtin_neon_vld1q_x3_v: 5238 case NEON::BI__builtin_neon_vld1_x4_v: 5239 case NEON::BI__builtin_neon_vld1q_x4_v: { 5240 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); 5241 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 5242 llvm::Type *Tys[2] = { VTy, PTy }; 5243 unsigned Int; 5244 switch (BuiltinID) { 5245 case NEON::BI__builtin_neon_vld1_x2_v: 5246 case NEON::BI__builtin_neon_vld1q_x2_v: 5247 Int = Intrinsic::aarch64_neon_ld1x2; 5248 break; 5249 case NEON::BI__builtin_neon_vld1_x3_v: 5250 case NEON::BI__builtin_neon_vld1q_x3_v: 5251 Int = Intrinsic::aarch64_neon_ld1x3; 5252 break; 5253 case NEON::BI__builtin_neon_vld1_x4_v: 5254 case NEON::BI__builtin_neon_vld1q_x4_v: 5255 Int = Intrinsic::aarch64_neon_ld1x4; 5256 break; 5257 } 5258 Function *F = CGM.getIntrinsic(Int, Tys); 5259 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); 5260 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 5261 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5262 return Builder.CreateStore(Ops[1], Ops[0]); 5263 } 5264 case NEON::BI__builtin_neon_vst1_x2_v: 5265 case NEON::BI__builtin_neon_vst1q_x2_v: 5266 case NEON::BI__builtin_neon_vst1_x3_v: 5267 case NEON::BI__builtin_neon_vst1q_x3_v: 5268 case NEON::BI__builtin_neon_vst1_x4_v: 5269 case NEON::BI__builtin_neon_vst1q_x4_v: { 5270 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); 5271 llvm::Type *Tys[2] = { VTy, PTy }; 5272 unsigned Int; 5273 switch (BuiltinID) { 5274 case NEON::BI__builtin_neon_vst1_x2_v: 5275 case NEON::BI__builtin_neon_vst1q_x2_v: 5276 Int = Intrinsic::aarch64_neon_st1x2; 5277 break; 5278 case NEON::BI__builtin_neon_vst1_x3_v: 5279 case NEON::BI__builtin_neon_vst1q_x3_v: 5280 Int = Intrinsic::aarch64_neon_st1x3; 5281 break; 5282 case NEON::BI__builtin_neon_vst1_x4_v: 5283 case NEON::BI__builtin_neon_vst1q_x4_v: 5284 Int = Intrinsic::aarch64_neon_st1x4; 5285 break; 5286 } 5287 SmallVector<Value *, 4> IntOps(Ops.begin()+1, Ops.end()); 5288 IntOps.push_back(Ops[0]); 5289 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), IntOps, ""); 5290 } 5291 case NEON::BI__builtin_neon_vld1_v: 5292 case NEON::BI__builtin_neon_vld1q_v: 5293 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 5294 return Builder.CreateLoad(Ops[0]); 5295 case NEON::BI__builtin_neon_vst1_v: 5296 case NEON::BI__builtin_neon_vst1q_v: 5297 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 5298 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 5299 return Builder.CreateStore(Ops[1], Ops[0]); 5300 case NEON::BI__builtin_neon_vld1_lane_v: 5301 case NEON::BI__builtin_neon_vld1q_lane_v: 5302 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5303 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 5304 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5305 Ops[0] = Builder.CreateLoad(Ops[0]); 5306 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); 5307 case NEON::BI__builtin_neon_vld1_dup_v: 5308 case NEON::BI__builtin_neon_vld1q_dup_v: { 5309 Value *V = UndefValue::get(Ty); 5310 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 5311 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5312 Ops[0] = Builder.CreateLoad(Ops[0]); 5313 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); 5314 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); 5315 return EmitNeonSplat(Ops[0], CI); 5316 } 5317 case NEON::BI__builtin_neon_vst1_lane_v: 5318 case NEON::BI__builtin_neon_vst1q_lane_v: 5319 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5320 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 5321 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 5322 return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty)); 5323 case NEON::BI__builtin_neon_vld2_v: 5324 case NEON::BI__builtin_neon_vld2q_v: { 5325 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 5326 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 5327 llvm::Type *Tys[2] = { VTy, PTy }; 5328 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); 5329 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 5330 Ops[0] = Builder.CreateBitCast(Ops[0], 5331 llvm::PointerType::getUnqual(Ops[1]->getType())); 5332 return Builder.CreateStore(Ops[1], Ops[0]); 5333 } 5334 case NEON::BI__builtin_neon_vld3_v: 5335 case NEON::BI__builtin_neon_vld3q_v: { 5336 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 5337 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 5338 llvm::Type *Tys[2] = { VTy, PTy }; 5339 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); 5340 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 5341 Ops[0] = Builder.CreateBitCast(Ops[0], 5342 llvm::PointerType::getUnqual(Ops[1]->getType())); 5343 return Builder.CreateStore(Ops[1], Ops[0]); 5344 } 5345 case NEON::BI__builtin_neon_vld4_v: 5346 case NEON::BI__builtin_neon_vld4q_v: { 5347 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 5348 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 5349 llvm::Type *Tys[2] = { VTy, PTy }; 5350 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); 5351 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 5352 Ops[0] = Builder.CreateBitCast(Ops[0], 5353 llvm::PointerType::getUnqual(Ops[1]->getType())); 5354 return Builder.CreateStore(Ops[1], Ops[0]); 5355 } 5356 case NEON::BI__builtin_neon_vld2_dup_v: 5357 case NEON::BI__builtin_neon_vld2q_dup_v: { 5358 llvm::Type *PTy = 5359 llvm::PointerType::getUnqual(VTy->getElementType()); 5360 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 5361 llvm::Type *Tys[2] = { VTy, PTy }; 5362 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); 5363 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 5364 Ops[0] = Builder.CreateBitCast(Ops[0], 5365 llvm::PointerType::getUnqual(Ops[1]->getType())); 5366 return Builder.CreateStore(Ops[1], Ops[0]); 5367 } 5368 case NEON::BI__builtin_neon_vld3_dup_v: 5369 case NEON::BI__builtin_neon_vld3q_dup_v: { 5370 llvm::Type *PTy = 5371 llvm::PointerType::getUnqual(VTy->getElementType()); 5372 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 5373 llvm::Type *Tys[2] = { VTy, PTy }; 5374 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); 5375 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 5376 Ops[0] = Builder.CreateBitCast(Ops[0], 5377 llvm::PointerType::getUnqual(Ops[1]->getType())); 5378 return Builder.CreateStore(Ops[1], Ops[0]); 5379 } 5380 case NEON::BI__builtin_neon_vld4_dup_v: 5381 case NEON::BI__builtin_neon_vld4q_dup_v: { 5382 llvm::Type *PTy = 5383 llvm::PointerType::getUnqual(VTy->getElementType()); 5384 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 5385 llvm::Type *Tys[2] = { VTy, PTy }; 5386 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); 5387 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 5388 Ops[0] = Builder.CreateBitCast(Ops[0], 5389 llvm::PointerType::getUnqual(Ops[1]->getType())); 5390 return Builder.CreateStore(Ops[1], Ops[0]); 5391 } 5392 case NEON::BI__builtin_neon_vld2_lane_v: 5393 case NEON::BI__builtin_neon_vld2q_lane_v: { 5394 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 5395 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); 5396 Ops.push_back(Ops[1]); 5397 Ops.erase(Ops.begin()+1); 5398 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5399 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5400 Ops[3] = Builder.CreateZExt(Ops[3], 5401 llvm::IntegerType::get(getLLVMContext(), 64)); 5402 Ops[1] = Builder.CreateCall(F, 5403 ArrayRef<Value*>(Ops).slice(1), "vld2_lane"); 5404 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 5405 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5406 return Builder.CreateStore(Ops[1], Ops[0]); 5407 } 5408 case NEON::BI__builtin_neon_vld3_lane_v: 5409 case NEON::BI__builtin_neon_vld3q_lane_v: { 5410 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 5411 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); 5412 Ops.push_back(Ops[1]); 5413 Ops.erase(Ops.begin()+1); 5414 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5415 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5416 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 5417 Ops[4] = Builder.CreateZExt(Ops[4], 5418 llvm::IntegerType::get(getLLVMContext(), 64)); 5419 Ops[1] = Builder.CreateCall(F, 5420 ArrayRef<Value*>(Ops).slice(1), "vld3_lane"); 5421 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 5422 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5423 return Builder.CreateStore(Ops[1], Ops[0]); 5424 } 5425 case NEON::BI__builtin_neon_vld4_lane_v: 5426 case NEON::BI__builtin_neon_vld4q_lane_v: { 5427 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 5428 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); 5429 Ops.push_back(Ops[1]); 5430 Ops.erase(Ops.begin()+1); 5431 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5432 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5433 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 5434 Ops[4] = Builder.CreateBitCast(Ops[4], Ty); 5435 Ops[5] = Builder.CreateZExt(Ops[5], 5436 llvm::IntegerType::get(getLLVMContext(), 64)); 5437 Ops[1] = Builder.CreateCall(F, 5438 ArrayRef<Value*>(Ops).slice(1), "vld4_lane"); 5439 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 5440 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5441 return Builder.CreateStore(Ops[1], Ops[0]); 5442 } 5443 case NEON::BI__builtin_neon_vst2_v: 5444 case NEON::BI__builtin_neon_vst2q_v: { 5445 Ops.push_back(Ops[0]); 5446 Ops.erase(Ops.begin()); 5447 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; 5448 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), 5449 Ops, ""); 5450 } 5451 case NEON::BI__builtin_neon_vst2_lane_v: 5452 case NEON::BI__builtin_neon_vst2q_lane_v: { 5453 Ops.push_back(Ops[0]); 5454 Ops.erase(Ops.begin()); 5455 Ops[2] = Builder.CreateZExt(Ops[2], 5456 llvm::IntegerType::get(getLLVMContext(), 64)); 5457 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 5458 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), 5459 Ops, ""); 5460 } 5461 case NEON::BI__builtin_neon_vst3_v: 5462 case NEON::BI__builtin_neon_vst3q_v: { 5463 Ops.push_back(Ops[0]); 5464 Ops.erase(Ops.begin()); 5465 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 5466 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), 5467 Ops, ""); 5468 } 5469 case NEON::BI__builtin_neon_vst3_lane_v: 5470 case NEON::BI__builtin_neon_vst3q_lane_v: { 5471 Ops.push_back(Ops[0]); 5472 Ops.erase(Ops.begin()); 5473 Ops[3] = Builder.CreateZExt(Ops[3], 5474 llvm::IntegerType::get(getLLVMContext(), 64)); 5475 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 5476 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), 5477 Ops, ""); 5478 } 5479 case NEON::BI__builtin_neon_vst4_v: 5480 case NEON::BI__builtin_neon_vst4q_v: { 5481 Ops.push_back(Ops[0]); 5482 Ops.erase(Ops.begin()); 5483 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 5484 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), 5485 Ops, ""); 5486 } 5487 case NEON::BI__builtin_neon_vst4_lane_v: 5488 case NEON::BI__builtin_neon_vst4q_lane_v: { 5489 Ops.push_back(Ops[0]); 5490 Ops.erase(Ops.begin()); 5491 Ops[4] = Builder.CreateZExt(Ops[4], 5492 llvm::IntegerType::get(getLLVMContext(), 64)); 5493 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; 5494 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), 5495 Ops, ""); 5496 } 5497 case NEON::BI__builtin_neon_vtrn_v: 5498 case NEON::BI__builtin_neon_vtrnq_v: { 5499 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 5500 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5501 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5502 Value *SV = nullptr; 5503 5504 for (unsigned vi = 0; vi != 2; ++vi) { 5505 SmallVector<Constant*, 16> Indices; 5506 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 5507 Indices.push_back(ConstantInt::get(Int32Ty, i+vi)); 5508 Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi)); 5509 } 5510 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi); 5511 SV = llvm::ConstantVector::get(Indices); 5512 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn"); 5513 SV = Builder.CreateStore(SV, Addr); 5514 } 5515 return SV; 5516 } 5517 case NEON::BI__builtin_neon_vuzp_v: 5518 case NEON::BI__builtin_neon_vuzpq_v: { 5519 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 5520 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5521 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5522 Value *SV = nullptr; 5523 5524 for (unsigned vi = 0; vi != 2; ++vi) { 5525 SmallVector<Constant*, 16> Indices; 5526 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 5527 Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi)); 5528 5529 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi); 5530 SV = llvm::ConstantVector::get(Indices); 5531 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp"); 5532 SV = Builder.CreateStore(SV, Addr); 5533 } 5534 return SV; 5535 } 5536 case NEON::BI__builtin_neon_vzip_v: 5537 case NEON::BI__builtin_neon_vzipq_v: { 5538 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 5539 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5540 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5541 Value *SV = nullptr; 5542 5543 for (unsigned vi = 0; vi != 2; ++vi) { 5544 SmallVector<Constant*, 16> Indices; 5545 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 5546 Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1)); 5547 Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e)); 5548 } 5549 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi); 5550 SV = llvm::ConstantVector::get(Indices); 5551 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip"); 5552 SV = Builder.CreateStore(SV, Addr); 5553 } 5554 return SV; 5555 } 5556 case NEON::BI__builtin_neon_vqtbl1q_v: { 5557 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), 5558 Ops, "vtbl1"); 5559 } 5560 case NEON::BI__builtin_neon_vqtbl2q_v: { 5561 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), 5562 Ops, "vtbl2"); 5563 } 5564 case NEON::BI__builtin_neon_vqtbl3q_v: { 5565 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), 5566 Ops, "vtbl3"); 5567 } 5568 case NEON::BI__builtin_neon_vqtbl4q_v: { 5569 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), 5570 Ops, "vtbl4"); 5571 } 5572 case NEON::BI__builtin_neon_vqtbx1q_v: { 5573 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), 5574 Ops, "vtbx1"); 5575 } 5576 case NEON::BI__builtin_neon_vqtbx2q_v: { 5577 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), 5578 Ops, "vtbx2"); 5579 } 5580 case NEON::BI__builtin_neon_vqtbx3q_v: { 5581 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), 5582 Ops, "vtbx3"); 5583 } 5584 case NEON::BI__builtin_neon_vqtbx4q_v: { 5585 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), 5586 Ops, "vtbx4"); 5587 } 5588 case NEON::BI__builtin_neon_vsqadd_v: 5589 case NEON::BI__builtin_neon_vsqaddq_v: { 5590 Int = Intrinsic::aarch64_neon_usqadd; 5591 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); 5592 } 5593 case NEON::BI__builtin_neon_vuqadd_v: 5594 case NEON::BI__builtin_neon_vuqaddq_v: { 5595 Int = Intrinsic::aarch64_neon_suqadd; 5596 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); 5597 } 5598 } 5599 } 5600 5601 llvm::Value *CodeGenFunction:: 5602 BuildVector(ArrayRef<llvm::Value*> Ops) { 5603 assert((Ops.size() & (Ops.size() - 1)) == 0 && 5604 "Not a power-of-two sized vector!"); 5605 bool AllConstants = true; 5606 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) 5607 AllConstants &= isa<Constant>(Ops[i]); 5608 5609 // If this is a constant vector, create a ConstantVector. 5610 if (AllConstants) { 5611 SmallVector<llvm::Constant*, 16> CstOps; 5612 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 5613 CstOps.push_back(cast<Constant>(Ops[i])); 5614 return llvm::ConstantVector::get(CstOps); 5615 } 5616 5617 // Otherwise, insertelement the values to build the vector. 5618 Value *Result = 5619 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size())); 5620 5621 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 5622 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); 5623 5624 return Result; 5625 } 5626 5627 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, 5628 const CallExpr *E) { 5629 SmallVector<Value*, 4> Ops; 5630 5631 // Find out if any arguments are required to be integer constant expressions. 5632 unsigned ICEArguments = 0; 5633 ASTContext::GetBuiltinTypeError Error; 5634 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 5635 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 5636 5637 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 5638 // If this is a normal argument, just emit it as a scalar. 5639 if ((ICEArguments & (1 << i)) == 0) { 5640 Ops.push_back(EmitScalarExpr(E->getArg(i))); 5641 continue; 5642 } 5643 5644 // If this is required to be a constant, constant fold it so that we know 5645 // that the generated intrinsic gets a ConstantInt. 5646 llvm::APSInt Result; 5647 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); 5648 assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; 5649 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); 5650 } 5651 5652 switch (BuiltinID) { 5653 default: return nullptr; 5654 case X86::BI_mm_prefetch: { 5655 Value *Address = EmitScalarExpr(E->getArg(0)); 5656 Value *RW = ConstantInt::get(Int32Ty, 0); 5657 Value *Locality = EmitScalarExpr(E->getArg(1)); 5658 Value *Data = ConstantInt::get(Int32Ty, 1); 5659 Value *F = CGM.getIntrinsic(Intrinsic::prefetch); 5660 return Builder.CreateCall4(F, Address, RW, Locality, Data); 5661 } 5662 case X86::BI__builtin_ia32_vec_init_v8qi: 5663 case X86::BI__builtin_ia32_vec_init_v4hi: 5664 case X86::BI__builtin_ia32_vec_init_v2si: 5665 return Builder.CreateBitCast(BuildVector(Ops), 5666 llvm::Type::getX86_MMXTy(getLLVMContext())); 5667 case X86::BI__builtin_ia32_vec_ext_v2si: 5668 return Builder.CreateExtractElement(Ops[0], 5669 llvm::ConstantInt::get(Ops[1]->getType(), 0)); 5670 case X86::BI__builtin_ia32_ldmxcsr: { 5671 Value *Tmp = CreateMemTemp(E->getArg(0)->getType()); 5672 Builder.CreateStore(Ops[0], Tmp); 5673 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), 5674 Builder.CreateBitCast(Tmp, Int8PtrTy)); 5675 } 5676 case X86::BI__builtin_ia32_stmxcsr: { 5677 Value *Tmp = CreateMemTemp(E->getType()); 5678 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), 5679 Builder.CreateBitCast(Tmp, Int8PtrTy)); 5680 return Builder.CreateLoad(Tmp, "stmxcsr"); 5681 } 5682 case X86::BI__builtin_ia32_storehps: 5683 case X86::BI__builtin_ia32_storelps: { 5684 llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty); 5685 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2); 5686 5687 // cast val v2i64 5688 Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast"); 5689 5690 // extract (0, 1) 5691 unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1; 5692 llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index); 5693 Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract"); 5694 5695 // cast pointer to i64 & store 5696 Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy); 5697 return Builder.CreateStore(Ops[1], Ops[0]); 5698 } 5699 case X86::BI__builtin_ia32_palignr: { 5700 unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 5701 5702 // If palignr is shifting the pair of input vectors less than 9 bytes, 5703 // emit a shuffle instruction. 5704 if (shiftVal <= 8) { 5705 SmallVector<llvm::Constant*, 8> Indices; 5706 for (unsigned i = 0; i != 8; ++i) 5707 Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i)); 5708 5709 Value* SV = llvm::ConstantVector::get(Indices); 5710 return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr"); 5711 } 5712 5713 // If palignr is shifting the pair of input vectors more than 8 but less 5714 // than 16 bytes, emit a logical right shift of the destination. 5715 if (shiftVal < 16) { 5716 // MMX has these as 1 x i64 vectors for some odd optimization reasons. 5717 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1); 5718 5719 Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 5720 Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8); 5721 5722 // create i32 constant 5723 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q); 5724 return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr"); 5725 } 5726 5727 // If palignr is shifting the pair of vectors more than 16 bytes, emit zero. 5728 return llvm::Constant::getNullValue(ConvertType(E->getType())); 5729 } 5730 case X86::BI__builtin_ia32_palignr128: { 5731 unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 5732 5733 // If palignr is shifting the pair of input vectors less than 17 bytes, 5734 // emit a shuffle instruction. 5735 if (shiftVal <= 16) { 5736 SmallVector<llvm::Constant*, 16> Indices; 5737 for (unsigned i = 0; i != 16; ++i) 5738 Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i)); 5739 5740 Value* SV = llvm::ConstantVector::get(Indices); 5741 return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr"); 5742 } 5743 5744 // If palignr is shifting the pair of input vectors more than 16 but less 5745 // than 32 bytes, emit a logical right shift of the destination. 5746 if (shiftVal < 32) { 5747 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2); 5748 5749 Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 5750 Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8); 5751 5752 // create i32 constant 5753 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq); 5754 return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr"); 5755 } 5756 5757 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. 5758 return llvm::Constant::getNullValue(ConvertType(E->getType())); 5759 } 5760 case X86::BI__builtin_ia32_palignr256: { 5761 unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 5762 5763 // If palignr is shifting the pair of input vectors less than 17 bytes, 5764 // emit a shuffle instruction. 5765 if (shiftVal <= 16) { 5766 SmallVector<llvm::Constant*, 32> Indices; 5767 // 256-bit palignr operates on 128-bit lanes so we need to handle that 5768 for (unsigned l = 0; l != 2; ++l) { 5769 unsigned LaneStart = l * 16; 5770 unsigned LaneEnd = (l+1) * 16; 5771 for (unsigned i = 0; i != 16; ++i) { 5772 unsigned Idx = shiftVal + i + LaneStart; 5773 if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand 5774 Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx)); 5775 } 5776 } 5777 5778 Value* SV = llvm::ConstantVector::get(Indices); 5779 return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr"); 5780 } 5781 5782 // If palignr is shifting the pair of input vectors more than 16 but less 5783 // than 32 bytes, emit a logical right shift of the destination. 5784 if (shiftVal < 32) { 5785 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4); 5786 5787 Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 5788 Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8); 5789 5790 // create i32 constant 5791 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq); 5792 return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr"); 5793 } 5794 5795 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. 5796 return llvm::Constant::getNullValue(ConvertType(E->getType())); 5797 } 5798 case X86::BI__builtin_ia32_movntps: 5799 case X86::BI__builtin_ia32_movntps256: 5800 case X86::BI__builtin_ia32_movntpd: 5801 case X86::BI__builtin_ia32_movntpd256: 5802 case X86::BI__builtin_ia32_movntdq: 5803 case X86::BI__builtin_ia32_movntdq256: 5804 case X86::BI__builtin_ia32_movnti: 5805 case X86::BI__builtin_ia32_movnti64: { 5806 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), 5807 Builder.getInt32(1)); 5808 5809 // Convert the type of the pointer to a pointer to the stored type. 5810 Value *BC = Builder.CreateBitCast(Ops[0], 5811 llvm::PointerType::getUnqual(Ops[1]->getType()), 5812 "cast"); 5813 StoreInst *SI = Builder.CreateStore(Ops[1], BC); 5814 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 5815 5816 // If the operand is an integer, we can't assume alignment. Otherwise, 5817 // assume natural alignment. 5818 QualType ArgTy = E->getArg(1)->getType(); 5819 unsigned Align; 5820 if (ArgTy->isIntegerType()) 5821 Align = 1; 5822 else 5823 Align = getContext().getTypeSizeInChars(ArgTy).getQuantity(); 5824 SI->setAlignment(Align); 5825 return SI; 5826 } 5827 // 3DNow! 5828 case X86::BI__builtin_ia32_pswapdsf: 5829 case X86::BI__builtin_ia32_pswapdsi: { 5830 const char *name = nullptr; 5831 Intrinsic::ID ID = Intrinsic::not_intrinsic; 5832 switch(BuiltinID) { 5833 default: llvm_unreachable("Unsupported intrinsic!"); 5834 case X86::BI__builtin_ia32_pswapdsf: 5835 case X86::BI__builtin_ia32_pswapdsi: 5836 name = "pswapd"; 5837 ID = Intrinsic::x86_3dnowa_pswapd; 5838 break; 5839 } 5840 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); 5841 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); 5842 llvm::Function *F = CGM.getIntrinsic(ID); 5843 return Builder.CreateCall(F, Ops, name); 5844 } 5845 case X86::BI__builtin_ia32_rdrand16_step: 5846 case X86::BI__builtin_ia32_rdrand32_step: 5847 case X86::BI__builtin_ia32_rdrand64_step: 5848 case X86::BI__builtin_ia32_rdseed16_step: 5849 case X86::BI__builtin_ia32_rdseed32_step: 5850 case X86::BI__builtin_ia32_rdseed64_step: { 5851 Intrinsic::ID ID; 5852 switch (BuiltinID) { 5853 default: llvm_unreachable("Unsupported intrinsic!"); 5854 case X86::BI__builtin_ia32_rdrand16_step: 5855 ID = Intrinsic::x86_rdrand_16; 5856 break; 5857 case X86::BI__builtin_ia32_rdrand32_step: 5858 ID = Intrinsic::x86_rdrand_32; 5859 break; 5860 case X86::BI__builtin_ia32_rdrand64_step: 5861 ID = Intrinsic::x86_rdrand_64; 5862 break; 5863 case X86::BI__builtin_ia32_rdseed16_step: 5864 ID = Intrinsic::x86_rdseed_16; 5865 break; 5866 case X86::BI__builtin_ia32_rdseed32_step: 5867 ID = Intrinsic::x86_rdseed_32; 5868 break; 5869 case X86::BI__builtin_ia32_rdseed64_step: 5870 ID = Intrinsic::x86_rdseed_64; 5871 break; 5872 } 5873 5874 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); 5875 Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]); 5876 return Builder.CreateExtractValue(Call, 1); 5877 } 5878 // AVX2 broadcast 5879 case X86::BI__builtin_ia32_vbroadcastsi256: { 5880 Value *VecTmp = CreateMemTemp(E->getArg(0)->getType()); 5881 Builder.CreateStore(Ops[0], VecTmp); 5882 Value *F = CGM.getIntrinsic(Intrinsic::x86_avx2_vbroadcasti128); 5883 return Builder.CreateCall(F, Builder.CreateBitCast(VecTmp, Int8PtrTy)); 5884 } 5885 } 5886 } 5887 5888 5889 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, 5890 const CallExpr *E) { 5891 SmallVector<Value*, 4> Ops; 5892 5893 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) 5894 Ops.push_back(EmitScalarExpr(E->getArg(i))); 5895 5896 Intrinsic::ID ID = Intrinsic::not_intrinsic; 5897 5898 switch (BuiltinID) { 5899 default: return nullptr; 5900 5901 // vec_ld, vec_lvsl, vec_lvsr 5902 case PPC::BI__builtin_altivec_lvx: 5903 case PPC::BI__builtin_altivec_lvxl: 5904 case PPC::BI__builtin_altivec_lvebx: 5905 case PPC::BI__builtin_altivec_lvehx: 5906 case PPC::BI__builtin_altivec_lvewx: 5907 case PPC::BI__builtin_altivec_lvsl: 5908 case PPC::BI__builtin_altivec_lvsr: 5909 { 5910 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 5911 5912 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); 5913 Ops.pop_back(); 5914 5915 switch (BuiltinID) { 5916 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); 5917 case PPC::BI__builtin_altivec_lvx: 5918 ID = Intrinsic::ppc_altivec_lvx; 5919 break; 5920 case PPC::BI__builtin_altivec_lvxl: 5921 ID = Intrinsic::ppc_altivec_lvxl; 5922 break; 5923 case PPC::BI__builtin_altivec_lvebx: 5924 ID = Intrinsic::ppc_altivec_lvebx; 5925 break; 5926 case PPC::BI__builtin_altivec_lvehx: 5927 ID = Intrinsic::ppc_altivec_lvehx; 5928 break; 5929 case PPC::BI__builtin_altivec_lvewx: 5930 ID = Intrinsic::ppc_altivec_lvewx; 5931 break; 5932 case PPC::BI__builtin_altivec_lvsl: 5933 ID = Intrinsic::ppc_altivec_lvsl; 5934 break; 5935 case PPC::BI__builtin_altivec_lvsr: 5936 ID = Intrinsic::ppc_altivec_lvsr; 5937 break; 5938 } 5939 llvm::Function *F = CGM.getIntrinsic(ID); 5940 return Builder.CreateCall(F, Ops, ""); 5941 } 5942 5943 // vec_st 5944 case PPC::BI__builtin_altivec_stvx: 5945 case PPC::BI__builtin_altivec_stvxl: 5946 case PPC::BI__builtin_altivec_stvebx: 5947 case PPC::BI__builtin_altivec_stvehx: 5948 case PPC::BI__builtin_altivec_stvewx: 5949 { 5950 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 5951 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); 5952 Ops.pop_back(); 5953 5954 switch (BuiltinID) { 5955 default: llvm_unreachable("Unsupported st intrinsic!"); 5956 case PPC::BI__builtin_altivec_stvx: 5957 ID = Intrinsic::ppc_altivec_stvx; 5958 break; 5959 case PPC::BI__builtin_altivec_stvxl: 5960 ID = Intrinsic::ppc_altivec_stvxl; 5961 break; 5962 case PPC::BI__builtin_altivec_stvebx: 5963 ID = Intrinsic::ppc_altivec_stvebx; 5964 break; 5965 case PPC::BI__builtin_altivec_stvehx: 5966 ID = Intrinsic::ppc_altivec_stvehx; 5967 break; 5968 case PPC::BI__builtin_altivec_stvewx: 5969 ID = Intrinsic::ppc_altivec_stvewx; 5970 break; 5971 } 5972 llvm::Function *F = CGM.getIntrinsic(ID); 5973 return Builder.CreateCall(F, Ops, ""); 5974 } 5975 } 5976 } 5977 5978 Value *CodeGenFunction::EmitR600BuiltinExpr(unsigned BuiltinID, 5979 const CallExpr *E) { 5980 switch (BuiltinID) { 5981 case R600::BI__builtin_amdgpu_div_scale: 5982 case R600::BI__builtin_amdgpu_div_scalef: { 5983 // Translate from the intrinsics's struct return to the builtin's out 5984 // argument. 5985 5986 std::pair<llvm::Value *, unsigned> FlagOutPtr 5987 = EmitPointerWithAlignment(E->getArg(3)); 5988 5989 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 5990 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 5991 llvm::Value *Z = EmitScalarExpr(E->getArg(2)); 5992 5993 llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::AMDGPU_div_scale, 5994 X->getType()); 5995 5996 llvm::Value *Tmp = Builder.CreateCall3(Callee, X, Y, Z); 5997 5998 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); 5999 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); 6000 6001 llvm::Type *RealFlagType 6002 = FlagOutPtr.first->getType()->getPointerElementType(); 6003 6004 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); 6005 llvm::StoreInst *FlagStore = Builder.CreateStore(FlagExt, FlagOutPtr.first); 6006 FlagStore->setAlignment(FlagOutPtr.second); 6007 return Result; 6008 } default: 6009 return nullptr; 6010 } 6011 } 6012