1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for declarations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTConsumer.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/ASTLambda.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/AST/CommentDiagnostic.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclTemplate.h" 25 #include "clang/AST/EvaluatedExprVisitor.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/PartialDiagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex 33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex 35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() 36 #include "clang/Parse/ParseDiagnostic.h" 37 #include "clang/Sema/CXXFieldCollector.h" 38 #include "clang/Sema/DeclSpec.h" 39 #include "clang/Sema/DelayedDiagnostic.h" 40 #include "clang/Sema/Initialization.h" 41 #include "clang/Sema/Lookup.h" 42 #include "clang/Sema/ParsedTemplate.h" 43 #include "clang/Sema/Scope.h" 44 #include "clang/Sema/ScopeInfo.h" 45 #include "clang/Sema/Template.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/Triple.h" 48 #include <algorithm> 49 #include <cstring> 50 #include <functional> 51 using namespace clang; 52 using namespace sema; 53 54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { 55 if (OwnedType) { 56 Decl *Group[2] = { OwnedType, Ptr }; 57 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); 58 } 59 60 return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); 61 } 62 63 namespace { 64 65 class TypeNameValidatorCCC : public CorrectionCandidateCallback { 66 public: 67 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false, 68 bool AllowTemplates=false) 69 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), 70 AllowClassTemplates(AllowTemplates) { 71 WantExpressionKeywords = false; 72 WantCXXNamedCasts = false; 73 WantRemainingKeywords = false; 74 } 75 76 bool ValidateCandidate(const TypoCorrection &candidate) override { 77 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 78 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); 79 bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND); 80 return (IsType || AllowedTemplate) && 81 (AllowInvalidDecl || !ND->isInvalidDecl()); 82 } 83 return !WantClassName && candidate.isKeyword(); 84 } 85 86 private: 87 bool AllowInvalidDecl; 88 bool WantClassName; 89 bool AllowClassTemplates; 90 }; 91 92 } 93 94 /// \brief Determine whether the token kind starts a simple-type-specifier. 95 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { 96 switch (Kind) { 97 // FIXME: Take into account the current language when deciding whether a 98 // token kind is a valid type specifier 99 case tok::kw_short: 100 case tok::kw_long: 101 case tok::kw___int64: 102 case tok::kw___int128: 103 case tok::kw_signed: 104 case tok::kw_unsigned: 105 case tok::kw_void: 106 case tok::kw_char: 107 case tok::kw_int: 108 case tok::kw_half: 109 case tok::kw_float: 110 case tok::kw_double: 111 case tok::kw_wchar_t: 112 case tok::kw_bool: 113 case tok::kw___underlying_type: 114 return true; 115 116 case tok::annot_typename: 117 case tok::kw_char16_t: 118 case tok::kw_char32_t: 119 case tok::kw_typeof: 120 case tok::annot_decltype: 121 case tok::kw_decltype: 122 return getLangOpts().CPlusPlus; 123 124 default: 125 break; 126 } 127 128 return false; 129 } 130 131 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, 132 const IdentifierInfo &II, 133 SourceLocation NameLoc) { 134 // Find the first parent class template context, if any. 135 // FIXME: Perform the lookup in all enclosing class templates. 136 const CXXRecordDecl *RD = nullptr; 137 for (DeclContext *DC = S.CurContext; DC; DC = DC->getParent()) { 138 RD = dyn_cast<CXXRecordDecl>(DC); 139 if (RD && RD->getDescribedClassTemplate()) 140 break; 141 } 142 if (!RD) 143 return ParsedType(); 144 145 // Look for type decls in dependent base classes that have known primary 146 // templates. 147 bool FoundTypeDecl = false; 148 for (const auto &Base : RD->bases()) { 149 auto *TST = Base.getType()->getAs<TemplateSpecializationType>(); 150 if (!TST || !TST->isDependentType()) 151 continue; 152 auto *TD = TST->getTemplateName().getAsTemplateDecl(); 153 if (!TD) 154 continue; 155 auto *BasePrimaryTemplate = cast<CXXRecordDecl>(TD->getTemplatedDecl()); 156 // FIXME: Allow lookup into non-dependent bases of dependent bases, possibly 157 // by calling or integrating with the main LookupQualifiedName mechanism. 158 for (NamedDecl *ND : BasePrimaryTemplate->lookup(&II)) { 159 if (FoundTypeDecl) 160 return ParsedType(); 161 FoundTypeDecl = isa<TypeDecl>(ND); 162 if (!FoundTypeDecl) 163 return ParsedType(); 164 } 165 } 166 if (!FoundTypeDecl) 167 return ParsedType(); 168 169 // We found some types in dependent base classes. Recover as if the user 170 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the 171 // lookup during template instantiation. 172 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II; 173 174 ASTContext &Context = S.Context; 175 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, 176 cast<Type>(Context.getRecordType(RD))); 177 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); 178 179 CXXScopeSpec SS; 180 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 181 182 TypeLocBuilder Builder; 183 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 184 DepTL.setNameLoc(NameLoc); 185 DepTL.setElaboratedKeywordLoc(SourceLocation()); 186 DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); 187 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 188 } 189 190 /// \brief If the identifier refers to a type name within this scope, 191 /// return the declaration of that type. 192 /// 193 /// This routine performs ordinary name lookup of the identifier II 194 /// within the given scope, with optional C++ scope specifier SS, to 195 /// determine whether the name refers to a type. If so, returns an 196 /// opaque pointer (actually a QualType) corresponding to that 197 /// type. Otherwise, returns NULL. 198 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, 199 Scope *S, CXXScopeSpec *SS, 200 bool isClassName, bool HasTrailingDot, 201 ParsedType ObjectTypePtr, 202 bool IsCtorOrDtorName, 203 bool WantNontrivialTypeSourceInfo, 204 IdentifierInfo **CorrectedII) { 205 // Determine where we will perform name lookup. 206 DeclContext *LookupCtx = nullptr; 207 if (ObjectTypePtr) { 208 QualType ObjectType = ObjectTypePtr.get(); 209 if (ObjectType->isRecordType()) 210 LookupCtx = computeDeclContext(ObjectType); 211 } else if (SS && SS->isNotEmpty()) { 212 LookupCtx = computeDeclContext(*SS, false); 213 214 if (!LookupCtx) { 215 if (isDependentScopeSpecifier(*SS)) { 216 // C++ [temp.res]p3: 217 // A qualified-id that refers to a type and in which the 218 // nested-name-specifier depends on a template-parameter (14.6.2) 219 // shall be prefixed by the keyword typename to indicate that the 220 // qualified-id denotes a type, forming an 221 // elaborated-type-specifier (7.1.5.3). 222 // 223 // We therefore do not perform any name lookup if the result would 224 // refer to a member of an unknown specialization. 225 if (!isClassName && !IsCtorOrDtorName) 226 return ParsedType(); 227 228 // We know from the grammar that this name refers to a type, 229 // so build a dependent node to describe the type. 230 if (WantNontrivialTypeSourceInfo) 231 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); 232 233 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); 234 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, 235 II, NameLoc); 236 return ParsedType::make(T); 237 } 238 239 return ParsedType(); 240 } 241 242 if (!LookupCtx->isDependentContext() && 243 RequireCompleteDeclContext(*SS, LookupCtx)) 244 return ParsedType(); 245 } 246 247 // FIXME: LookupNestedNameSpecifierName isn't the right kind of 248 // lookup for class-names. 249 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : 250 LookupOrdinaryName; 251 LookupResult Result(*this, &II, NameLoc, Kind); 252 if (LookupCtx) { 253 // Perform "qualified" name lookup into the declaration context we 254 // computed, which is either the type of the base of a member access 255 // expression or the declaration context associated with a prior 256 // nested-name-specifier. 257 LookupQualifiedName(Result, LookupCtx); 258 259 if (ObjectTypePtr && Result.empty()) { 260 // C++ [basic.lookup.classref]p3: 261 // If the unqualified-id is ~type-name, the type-name is looked up 262 // in the context of the entire postfix-expression. If the type T of 263 // the object expression is of a class type C, the type-name is also 264 // looked up in the scope of class C. At least one of the lookups shall 265 // find a name that refers to (possibly cv-qualified) T. 266 LookupName(Result, S); 267 } 268 } else { 269 // Perform unqualified name lookup. 270 LookupName(Result, S); 271 272 // For unqualified lookup in a class template in MSVC mode, look into 273 // dependent base classes where the primary class template is known. 274 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { 275 if (ParsedType TypeInBase = 276 recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) 277 return TypeInBase; 278 } 279 } 280 281 NamedDecl *IIDecl = nullptr; 282 switch (Result.getResultKind()) { 283 case LookupResult::NotFound: 284 case LookupResult::NotFoundInCurrentInstantiation: 285 if (CorrectedII) { 286 TypeNameValidatorCCC Validator(true, isClassName); 287 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), 288 Kind, S, SS, Validator, 289 CTK_ErrorRecovery); 290 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); 291 TemplateTy Template; 292 bool MemberOfUnknownSpecialization; 293 UnqualifiedId TemplateName; 294 TemplateName.setIdentifier(NewII, NameLoc); 295 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); 296 CXXScopeSpec NewSS, *NewSSPtr = SS; 297 if (SS && NNS) { 298 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 299 NewSSPtr = &NewSS; 300 } 301 if (Correction && (NNS || NewII != &II) && 302 // Ignore a correction to a template type as the to-be-corrected 303 // identifier is not a template (typo correction for template names 304 // is handled elsewhere). 305 !(getLangOpts().CPlusPlus && NewSSPtr && 306 isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(), 307 false, Template, MemberOfUnknownSpecialization))) { 308 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, 309 isClassName, HasTrailingDot, ObjectTypePtr, 310 IsCtorOrDtorName, 311 WantNontrivialTypeSourceInfo); 312 if (Ty) { 313 diagnoseTypo(Correction, 314 PDiag(diag::err_unknown_type_or_class_name_suggest) 315 << Result.getLookupName() << isClassName); 316 if (SS && NNS) 317 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); 318 *CorrectedII = NewII; 319 return Ty; 320 } 321 } 322 } 323 // If typo correction failed or was not performed, fall through 324 case LookupResult::FoundOverloaded: 325 case LookupResult::FoundUnresolvedValue: 326 Result.suppressDiagnostics(); 327 return ParsedType(); 328 329 case LookupResult::Ambiguous: 330 // Recover from type-hiding ambiguities by hiding the type. We'll 331 // do the lookup again when looking for an object, and we can 332 // diagnose the error then. If we don't do this, then the error 333 // about hiding the type will be immediately followed by an error 334 // that only makes sense if the identifier was treated like a type. 335 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { 336 Result.suppressDiagnostics(); 337 return ParsedType(); 338 } 339 340 // Look to see if we have a type anywhere in the list of results. 341 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); 342 Res != ResEnd; ++Res) { 343 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) { 344 if (!IIDecl || 345 (*Res)->getLocation().getRawEncoding() < 346 IIDecl->getLocation().getRawEncoding()) 347 IIDecl = *Res; 348 } 349 } 350 351 if (!IIDecl) { 352 // None of the entities we found is a type, so there is no way 353 // to even assume that the result is a type. In this case, don't 354 // complain about the ambiguity. The parser will either try to 355 // perform this lookup again (e.g., as an object name), which 356 // will produce the ambiguity, or will complain that it expected 357 // a type name. 358 Result.suppressDiagnostics(); 359 return ParsedType(); 360 } 361 362 // We found a type within the ambiguous lookup; diagnose the 363 // ambiguity and then return that type. This might be the right 364 // answer, or it might not be, but it suppresses any attempt to 365 // perform the name lookup again. 366 break; 367 368 case LookupResult::Found: 369 IIDecl = Result.getFoundDecl(); 370 break; 371 } 372 373 assert(IIDecl && "Didn't find decl"); 374 375 QualType T; 376 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { 377 DiagnoseUseOfDecl(IIDecl, NameLoc); 378 379 T = Context.getTypeDeclType(TD); 380 381 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a 382 // constructor or destructor name (in such a case, the scope specifier 383 // will be attached to the enclosing Expr or Decl node). 384 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) { 385 if (WantNontrivialTypeSourceInfo) { 386 // Construct a type with type-source information. 387 TypeLocBuilder Builder; 388 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 389 390 T = getElaboratedType(ETK_None, *SS, T); 391 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 392 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 393 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); 394 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 395 } else { 396 T = getElaboratedType(ETK_None, *SS, T); 397 } 398 } 399 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { 400 (void)DiagnoseUseOfDecl(IDecl, NameLoc); 401 if (!HasTrailingDot) 402 T = Context.getObjCInterfaceType(IDecl); 403 } 404 405 if (T.isNull()) { 406 // If it's not plausibly a type, suppress diagnostics. 407 Result.suppressDiagnostics(); 408 return ParsedType(); 409 } 410 return ParsedType::make(T); 411 } 412 413 // Builds a fake NNS for the given decl context. 414 static NestedNameSpecifier * 415 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { 416 for (;; DC = DC->getLookupParent()) { 417 DC = DC->getPrimaryContext(); 418 auto *ND = dyn_cast<NamespaceDecl>(DC); 419 if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) 420 return NestedNameSpecifier::Create(Context, nullptr, ND); 421 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 422 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 423 RD->getTypeForDecl()); 424 else if (isa<TranslationUnitDecl>(DC)) 425 return NestedNameSpecifier::GlobalSpecifier(Context); 426 } 427 llvm_unreachable("something isn't in TU scope?"); 428 } 429 430 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II, 431 SourceLocation NameLoc) { 432 // Accepting an undeclared identifier as a default argument for a template 433 // type parameter is a Microsoft extension. 434 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; 435 436 // Build a fake DependentNameType that will perform lookup into CurContext at 437 // instantiation time. The name specifier isn't dependent, so template 438 // instantiation won't transform it. It will retry the lookup, however. 439 NestedNameSpecifier *NNS = 440 synthesizeCurrentNestedNameSpecifier(Context, CurContext); 441 QualType T = Context.getDependentNameType(ETK_None, NNS, &II); 442 443 // Build type location information. We synthesized the qualifier, so we have 444 // to build a fake NestedNameSpecifierLoc. 445 NestedNameSpecifierLocBuilder NNSLocBuilder; 446 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 447 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); 448 449 TypeLocBuilder Builder; 450 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 451 DepTL.setNameLoc(NameLoc); 452 DepTL.setElaboratedKeywordLoc(SourceLocation()); 453 DepTL.setQualifierLoc(QualifierLoc); 454 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 455 } 456 457 /// isTagName() - This method is called *for error recovery purposes only* 458 /// to determine if the specified name is a valid tag name ("struct foo"). If 459 /// so, this returns the TST for the tag corresponding to it (TST_enum, 460 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose 461 /// cases in C where the user forgot to specify the tag. 462 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { 463 // Do a tag name lookup in this scope. 464 LookupResult R(*this, &II, SourceLocation(), LookupTagName); 465 LookupName(R, S, false); 466 R.suppressDiagnostics(); 467 if (R.getResultKind() == LookupResult::Found) 468 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { 469 switch (TD->getTagKind()) { 470 case TTK_Struct: return DeclSpec::TST_struct; 471 case TTK_Interface: return DeclSpec::TST_interface; 472 case TTK_Union: return DeclSpec::TST_union; 473 case TTK_Class: return DeclSpec::TST_class; 474 case TTK_Enum: return DeclSpec::TST_enum; 475 } 476 } 477 478 return DeclSpec::TST_unspecified; 479 } 480 481 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, 482 /// if a CXXScopeSpec's type is equal to the type of one of the base classes 483 /// then downgrade the missing typename error to a warning. 484 /// This is needed for MSVC compatibility; Example: 485 /// @code 486 /// template<class T> class A { 487 /// public: 488 /// typedef int TYPE; 489 /// }; 490 /// template<class T> class B : public A<T> { 491 /// public: 492 /// A<T>::TYPE a; // no typename required because A<T> is a base class. 493 /// }; 494 /// @endcode 495 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { 496 if (CurContext->isRecord()) { 497 const Type *Ty = SS->getScopeRep()->getAsType(); 498 499 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); 500 for (const auto &Base : RD->bases()) 501 if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) 502 return true; 503 return S->isFunctionPrototypeScope(); 504 } 505 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); 506 } 507 508 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, 509 SourceLocation IILoc, 510 Scope *S, 511 CXXScopeSpec *SS, 512 ParsedType &SuggestedType, 513 bool AllowClassTemplates) { 514 // We don't have anything to suggest (yet). 515 SuggestedType = ParsedType(); 516 517 // There may have been a typo in the name of the type. Look up typo 518 // results, in case we have something that we can suggest. 519 TypeNameValidatorCCC Validator(false, false, AllowClassTemplates); 520 if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc), 521 LookupOrdinaryName, S, SS, 522 Validator, CTK_ErrorRecovery)) { 523 if (Corrected.isKeyword()) { 524 // We corrected to a keyword. 525 diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II); 526 II = Corrected.getCorrectionAsIdentifierInfo(); 527 } else { 528 // We found a similarly-named type or interface; suggest that. 529 if (!SS || !SS->isSet()) { 530 diagnoseTypo(Corrected, 531 PDiag(diag::err_unknown_typename_suggest) << II); 532 } else if (DeclContext *DC = computeDeclContext(*SS, false)) { 533 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 534 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 535 II->getName().equals(CorrectedStr); 536 diagnoseTypo(Corrected, 537 PDiag(diag::err_unknown_nested_typename_suggest) 538 << II << DC << DroppedSpecifier << SS->getRange()); 539 } else { 540 llvm_unreachable("could not have corrected a typo here"); 541 } 542 543 CXXScopeSpec tmpSS; 544 if (Corrected.getCorrectionSpecifier()) 545 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 546 SourceRange(IILoc)); 547 SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), 548 IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false, 549 false, ParsedType(), 550 /*IsCtorOrDtorName=*/false, 551 /*NonTrivialTypeSourceInfo=*/true); 552 } 553 return; 554 } 555 556 if (getLangOpts().CPlusPlus) { 557 // See if II is a class template that the user forgot to pass arguments to. 558 UnqualifiedId Name; 559 Name.setIdentifier(II, IILoc); 560 CXXScopeSpec EmptySS; 561 TemplateTy TemplateResult; 562 bool MemberOfUnknownSpecialization; 563 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, 564 Name, ParsedType(), true, TemplateResult, 565 MemberOfUnknownSpecialization) == TNK_Type_template) { 566 TemplateName TplName = TemplateResult.get(); 567 Diag(IILoc, diag::err_template_missing_args) << TplName; 568 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) { 569 Diag(TplDecl->getLocation(), diag::note_template_decl_here) 570 << TplDecl->getTemplateParameters()->getSourceRange(); 571 } 572 return; 573 } 574 } 575 576 // FIXME: Should we move the logic that tries to recover from a missing tag 577 // (struct, union, enum) from Parser::ParseImplicitInt here, instead? 578 579 if (!SS || (!SS->isSet() && !SS->isInvalid())) 580 Diag(IILoc, diag::err_unknown_typename) << II; 581 else if (DeclContext *DC = computeDeclContext(*SS, false)) 582 Diag(IILoc, diag::err_typename_nested_not_found) 583 << II << DC << SS->getRange(); 584 else if (isDependentScopeSpecifier(*SS)) { 585 unsigned DiagID = diag::err_typename_missing; 586 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) 587 DiagID = diag::ext_typename_missing; 588 589 Diag(SS->getRange().getBegin(), DiagID) 590 << SS->getScopeRep() << II->getName() 591 << SourceRange(SS->getRange().getBegin(), IILoc) 592 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); 593 SuggestedType = ActOnTypenameType(S, SourceLocation(), 594 *SS, *II, IILoc).get(); 595 } else { 596 assert(SS && SS->isInvalid() && 597 "Invalid scope specifier has already been diagnosed"); 598 } 599 } 600 601 /// \brief Determine whether the given result set contains either a type name 602 /// or 603 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { 604 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && 605 NextToken.is(tok::less); 606 607 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 608 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) 609 return true; 610 611 if (CheckTemplate && isa<TemplateDecl>(*I)) 612 return true; 613 } 614 615 return false; 616 } 617 618 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, 619 Scope *S, CXXScopeSpec &SS, 620 IdentifierInfo *&Name, 621 SourceLocation NameLoc) { 622 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); 623 SemaRef.LookupParsedName(R, S, &SS); 624 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { 625 StringRef FixItTagName; 626 switch (Tag->getTagKind()) { 627 case TTK_Class: 628 FixItTagName = "class "; 629 break; 630 631 case TTK_Enum: 632 FixItTagName = "enum "; 633 break; 634 635 case TTK_Struct: 636 FixItTagName = "struct "; 637 break; 638 639 case TTK_Interface: 640 FixItTagName = "__interface "; 641 break; 642 643 case TTK_Union: 644 FixItTagName = "union "; 645 break; 646 } 647 648 StringRef TagName = FixItTagName.drop_back(); 649 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) 650 << Name << TagName << SemaRef.getLangOpts().CPlusPlus 651 << FixItHint::CreateInsertion(NameLoc, FixItTagName); 652 653 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); 654 I != IEnd; ++I) 655 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 656 << Name << TagName; 657 658 // Replace lookup results with just the tag decl. 659 Result.clear(Sema::LookupTagName); 660 SemaRef.LookupParsedName(Result, S, &SS); 661 return true; 662 } 663 664 return false; 665 } 666 667 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. 668 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, 669 QualType T, SourceLocation NameLoc) { 670 ASTContext &Context = S.Context; 671 672 TypeLocBuilder Builder; 673 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 674 675 T = S.getElaboratedType(ETK_None, SS, T); 676 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 677 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 678 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 679 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 680 } 681 682 Sema::NameClassification Sema::ClassifyName(Scope *S, 683 CXXScopeSpec &SS, 684 IdentifierInfo *&Name, 685 SourceLocation NameLoc, 686 const Token &NextToken, 687 bool IsAddressOfOperand, 688 CorrectionCandidateCallback *CCC) { 689 DeclarationNameInfo NameInfo(Name, NameLoc); 690 ObjCMethodDecl *CurMethod = getCurMethodDecl(); 691 692 if (NextToken.is(tok::coloncolon)) { 693 BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(), 694 QualType(), false, SS, nullptr, false); 695 } 696 697 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 698 LookupParsedName(Result, S, &SS, !CurMethod); 699 700 // For unqualified lookup in a class template in MSVC mode, look into 701 // dependent base classes where the primary class template is known. 702 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { 703 if (ParsedType TypeInBase = 704 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) 705 return TypeInBase; 706 } 707 708 // Perform lookup for Objective-C instance variables (including automatically 709 // synthesized instance variables), if we're in an Objective-C method. 710 // FIXME: This lookup really, really needs to be folded in to the normal 711 // unqualified lookup mechanism. 712 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { 713 ExprResult E = LookupInObjCMethod(Result, S, Name, true); 714 if (E.get() || E.isInvalid()) 715 return E; 716 } 717 718 bool SecondTry = false; 719 bool IsFilteredTemplateName = false; 720 721 Corrected: 722 switch (Result.getResultKind()) { 723 case LookupResult::NotFound: 724 // If an unqualified-id is followed by a '(', then we have a function 725 // call. 726 if (!SS.isSet() && NextToken.is(tok::l_paren)) { 727 // In C++, this is an ADL-only call. 728 // FIXME: Reference? 729 if (getLangOpts().CPlusPlus) 730 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); 731 732 // C90 6.3.2.2: 733 // If the expression that precedes the parenthesized argument list in a 734 // function call consists solely of an identifier, and if no 735 // declaration is visible for this identifier, the identifier is 736 // implicitly declared exactly as if, in the innermost block containing 737 // the function call, the declaration 738 // 739 // extern int identifier (); 740 // 741 // appeared. 742 // 743 // We also allow this in C99 as an extension. 744 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) { 745 Result.addDecl(D); 746 Result.resolveKind(); 747 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false); 748 } 749 } 750 751 // In C, we first see whether there is a tag type by the same name, in 752 // which case it's likely that the user just forget to write "enum", 753 // "struct", or "union". 754 if (!getLangOpts().CPlusPlus && !SecondTry && 755 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 756 break; 757 } 758 759 // Perform typo correction to determine if there is another name that is 760 // close to this name. 761 if (!SecondTry && CCC) { 762 SecondTry = true; 763 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), 764 Result.getLookupKind(), S, 765 &SS, *CCC, 766 CTK_ErrorRecovery)) { 767 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; 768 unsigned QualifiedDiag = diag::err_no_member_suggest; 769 770 NamedDecl *FirstDecl = Corrected.getCorrectionDecl(); 771 NamedDecl *UnderlyingFirstDecl 772 = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr; 773 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 774 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { 775 UnqualifiedDiag = diag::err_no_template_suggest; 776 QualifiedDiag = diag::err_no_member_template_suggest; 777 } else if (UnderlyingFirstDecl && 778 (isa<TypeDecl>(UnderlyingFirstDecl) || 779 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || 780 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { 781 UnqualifiedDiag = diag::err_unknown_typename_suggest; 782 QualifiedDiag = diag::err_unknown_nested_typename_suggest; 783 } 784 785 if (SS.isEmpty()) { 786 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); 787 } else {// FIXME: is this even reachable? Test it. 788 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 789 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 790 Name->getName().equals(CorrectedStr); 791 diagnoseTypo(Corrected, PDiag(QualifiedDiag) 792 << Name << computeDeclContext(SS, false) 793 << DroppedSpecifier << SS.getRange()); 794 } 795 796 // Update the name, so that the caller has the new name. 797 Name = Corrected.getCorrectionAsIdentifierInfo(); 798 799 // Typo correction corrected to a keyword. 800 if (Corrected.isKeyword()) 801 return Name; 802 803 // Also update the LookupResult... 804 // FIXME: This should probably go away at some point 805 Result.clear(); 806 Result.setLookupName(Corrected.getCorrection()); 807 if (FirstDecl) 808 Result.addDecl(FirstDecl); 809 810 // If we found an Objective-C instance variable, let 811 // LookupInObjCMethod build the appropriate expression to 812 // reference the ivar. 813 // FIXME: This is a gross hack. 814 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { 815 Result.clear(); 816 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier())); 817 return E; 818 } 819 820 goto Corrected; 821 } 822 } 823 824 // We failed to correct; just fall through and let the parser deal with it. 825 Result.suppressDiagnostics(); 826 return NameClassification::Unknown(); 827 828 case LookupResult::NotFoundInCurrentInstantiation: { 829 // We performed name lookup into the current instantiation, and there were 830 // dependent bases, so we treat this result the same way as any other 831 // dependent nested-name-specifier. 832 833 // C++ [temp.res]p2: 834 // A name used in a template declaration or definition and that is 835 // dependent on a template-parameter is assumed not to name a type 836 // unless the applicable name lookup finds a type name or the name is 837 // qualified by the keyword typename. 838 // 839 // FIXME: If the next token is '<', we might want to ask the parser to 840 // perform some heroics to see if we actually have a 841 // template-argument-list, which would indicate a missing 'template' 842 // keyword here. 843 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), 844 NameInfo, IsAddressOfOperand, 845 /*TemplateArgs=*/nullptr); 846 } 847 848 case LookupResult::Found: 849 case LookupResult::FoundOverloaded: 850 case LookupResult::FoundUnresolvedValue: 851 break; 852 853 case LookupResult::Ambiguous: 854 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 855 hasAnyAcceptableTemplateNames(Result)) { 856 // C++ [temp.local]p3: 857 // A lookup that finds an injected-class-name (10.2) can result in an 858 // ambiguity in certain cases (for example, if it is found in more than 859 // one base class). If all of the injected-class-names that are found 860 // refer to specializations of the same class template, and if the name 861 // is followed by a template-argument-list, the reference refers to the 862 // class template itself and not a specialization thereof, and is not 863 // ambiguous. 864 // 865 // This filtering can make an ambiguous result into an unambiguous one, 866 // so try again after filtering out template names. 867 FilterAcceptableTemplateNames(Result); 868 if (!Result.isAmbiguous()) { 869 IsFilteredTemplateName = true; 870 break; 871 } 872 } 873 874 // Diagnose the ambiguity and return an error. 875 return NameClassification::Error(); 876 } 877 878 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 879 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) { 880 // C++ [temp.names]p3: 881 // After name lookup (3.4) finds that a name is a template-name or that 882 // an operator-function-id or a literal- operator-id refers to a set of 883 // overloaded functions any member of which is a function template if 884 // this is followed by a <, the < is always taken as the delimiter of a 885 // template-argument-list and never as the less-than operator. 886 if (!IsFilteredTemplateName) 887 FilterAcceptableTemplateNames(Result); 888 889 if (!Result.empty()) { 890 bool IsFunctionTemplate; 891 bool IsVarTemplate; 892 TemplateName Template; 893 if (Result.end() - Result.begin() > 1) { 894 IsFunctionTemplate = true; 895 Template = Context.getOverloadedTemplateName(Result.begin(), 896 Result.end()); 897 } else { 898 TemplateDecl *TD 899 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl()); 900 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); 901 IsVarTemplate = isa<VarTemplateDecl>(TD); 902 903 if (SS.isSet() && !SS.isInvalid()) 904 Template = Context.getQualifiedTemplateName(SS.getScopeRep(), 905 /*TemplateKeyword=*/false, 906 TD); 907 else 908 Template = TemplateName(TD); 909 } 910 911 if (IsFunctionTemplate) { 912 // Function templates always go through overload resolution, at which 913 // point we'll perform the various checks (e.g., accessibility) we need 914 // to based on which function we selected. 915 Result.suppressDiagnostics(); 916 917 return NameClassification::FunctionTemplate(Template); 918 } 919 920 return IsVarTemplate ? NameClassification::VarTemplate(Template) 921 : NameClassification::TypeTemplate(Template); 922 } 923 } 924 925 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); 926 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { 927 DiagnoseUseOfDecl(Type, NameLoc); 928 QualType T = Context.getTypeDeclType(Type); 929 if (SS.isNotEmpty()) 930 return buildNestedType(*this, SS, T, NameLoc); 931 return ParsedType::make(T); 932 } 933 934 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); 935 if (!Class) { 936 // FIXME: It's unfortunate that we don't have a Type node for handling this. 937 if (ObjCCompatibleAliasDecl *Alias = 938 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) 939 Class = Alias->getClassInterface(); 940 } 941 942 if (Class) { 943 DiagnoseUseOfDecl(Class, NameLoc); 944 945 if (NextToken.is(tok::period)) { 946 // Interface. <something> is parsed as a property reference expression. 947 // Just return "unknown" as a fall-through for now. 948 Result.suppressDiagnostics(); 949 return NameClassification::Unknown(); 950 } 951 952 QualType T = Context.getObjCInterfaceType(Class); 953 return ParsedType::make(T); 954 } 955 956 // We can have a type template here if we're classifying a template argument. 957 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl)) 958 return NameClassification::TypeTemplate( 959 TemplateName(cast<TemplateDecl>(FirstDecl))); 960 961 // Check for a tag type hidden by a non-type decl in a few cases where it 962 // seems likely a type is wanted instead of the non-type that was found. 963 bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star); 964 if ((NextToken.is(tok::identifier) || 965 (NextIsOp && 966 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && 967 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 968 TypeDecl *Type = Result.getAsSingle<TypeDecl>(); 969 DiagnoseUseOfDecl(Type, NameLoc); 970 QualType T = Context.getTypeDeclType(Type); 971 if (SS.isNotEmpty()) 972 return buildNestedType(*this, SS, T, NameLoc); 973 return ParsedType::make(T); 974 } 975 976 if (FirstDecl->isCXXClassMember()) 977 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 978 nullptr); 979 980 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 981 return BuildDeclarationNameExpr(SS, Result, ADL); 982 } 983 984 // Determines the context to return to after temporarily entering a 985 // context. This depends in an unnecessarily complicated way on the 986 // exact ordering of callbacks from the parser. 987 DeclContext *Sema::getContainingDC(DeclContext *DC) { 988 989 // Functions defined inline within classes aren't parsed until we've 990 // finished parsing the top-level class, so the top-level class is 991 // the context we'll need to return to. 992 // A Lambda call operator whose parent is a class must not be treated 993 // as an inline member function. A Lambda can be used legally 994 // either as an in-class member initializer or a default argument. These 995 // are parsed once the class has been marked complete and so the containing 996 // context would be the nested class (when the lambda is defined in one); 997 // If the class is not complete, then the lambda is being used in an 998 // ill-formed fashion (such as to specify the width of a bit-field, or 999 // in an array-bound) - in which case we still want to return the 1000 // lexically containing DC (which could be a nested class). 1001 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) { 1002 DC = DC->getLexicalParent(); 1003 1004 // A function not defined within a class will always return to its 1005 // lexical context. 1006 if (!isa<CXXRecordDecl>(DC)) 1007 return DC; 1008 1009 // A C++ inline method/friend is parsed *after* the topmost class 1010 // it was declared in is fully parsed ("complete"); the topmost 1011 // class is the context we need to return to. 1012 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) 1013 DC = RD; 1014 1015 // Return the declaration context of the topmost class the inline method is 1016 // declared in. 1017 return DC; 1018 } 1019 1020 return DC->getLexicalParent(); 1021 } 1022 1023 void Sema::PushDeclContext(Scope *S, DeclContext *DC) { 1024 assert(getContainingDC(DC) == CurContext && 1025 "The next DeclContext should be lexically contained in the current one."); 1026 CurContext = DC; 1027 S->setEntity(DC); 1028 } 1029 1030 void Sema::PopDeclContext() { 1031 assert(CurContext && "DeclContext imbalance!"); 1032 1033 CurContext = getContainingDC(CurContext); 1034 assert(CurContext && "Popped translation unit!"); 1035 } 1036 1037 /// EnterDeclaratorContext - Used when we must lookup names in the context 1038 /// of a declarator's nested name specifier. 1039 /// 1040 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { 1041 // C++0x [basic.lookup.unqual]p13: 1042 // A name used in the definition of a static data member of class 1043 // X (after the qualified-id of the static member) is looked up as 1044 // if the name was used in a member function of X. 1045 // C++0x [basic.lookup.unqual]p14: 1046 // If a variable member of a namespace is defined outside of the 1047 // scope of its namespace then any name used in the definition of 1048 // the variable member (after the declarator-id) is looked up as 1049 // if the definition of the variable member occurred in its 1050 // namespace. 1051 // Both of these imply that we should push a scope whose context 1052 // is the semantic context of the declaration. We can't use 1053 // PushDeclContext here because that context is not necessarily 1054 // lexically contained in the current context. Fortunately, 1055 // the containing scope should have the appropriate information. 1056 1057 assert(!S->getEntity() && "scope already has entity"); 1058 1059 #ifndef NDEBUG 1060 Scope *Ancestor = S->getParent(); 1061 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1062 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); 1063 #endif 1064 1065 CurContext = DC; 1066 S->setEntity(DC); 1067 } 1068 1069 void Sema::ExitDeclaratorContext(Scope *S) { 1070 assert(S->getEntity() == CurContext && "Context imbalance!"); 1071 1072 // Switch back to the lexical context. The safety of this is 1073 // enforced by an assert in EnterDeclaratorContext. 1074 Scope *Ancestor = S->getParent(); 1075 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1076 CurContext = Ancestor->getEntity(); 1077 1078 // We don't need to do anything with the scope, which is going to 1079 // disappear. 1080 } 1081 1082 1083 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { 1084 // We assume that the caller has already called 1085 // ActOnReenterTemplateScope so getTemplatedDecl() works. 1086 FunctionDecl *FD = D->getAsFunction(); 1087 if (!FD) 1088 return; 1089 1090 // Same implementation as PushDeclContext, but enters the context 1091 // from the lexical parent, rather than the top-level class. 1092 assert(CurContext == FD->getLexicalParent() && 1093 "The next DeclContext should be lexically contained in the current one."); 1094 CurContext = FD; 1095 S->setEntity(CurContext); 1096 1097 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { 1098 ParmVarDecl *Param = FD->getParamDecl(P); 1099 // If the parameter has an identifier, then add it to the scope 1100 if (Param->getIdentifier()) { 1101 S->AddDecl(Param); 1102 IdResolver.AddDecl(Param); 1103 } 1104 } 1105 } 1106 1107 1108 void Sema::ActOnExitFunctionContext() { 1109 // Same implementation as PopDeclContext, but returns to the lexical parent, 1110 // rather than the top-level class. 1111 assert(CurContext && "DeclContext imbalance!"); 1112 CurContext = CurContext->getLexicalParent(); 1113 assert(CurContext && "Popped translation unit!"); 1114 } 1115 1116 1117 /// \brief Determine whether we allow overloading of the function 1118 /// PrevDecl with another declaration. 1119 /// 1120 /// This routine determines whether overloading is possible, not 1121 /// whether some new function is actually an overload. It will return 1122 /// true in C++ (where we can always provide overloads) or, as an 1123 /// extension, in C when the previous function is already an 1124 /// overloaded function declaration or has the "overloadable" 1125 /// attribute. 1126 static bool AllowOverloadingOfFunction(LookupResult &Previous, 1127 ASTContext &Context) { 1128 if (Context.getLangOpts().CPlusPlus) 1129 return true; 1130 1131 if (Previous.getResultKind() == LookupResult::FoundOverloaded) 1132 return true; 1133 1134 return (Previous.getResultKind() == LookupResult::Found 1135 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>()); 1136 } 1137 1138 /// Add this decl to the scope shadowed decl chains. 1139 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { 1140 // Move up the scope chain until we find the nearest enclosing 1141 // non-transparent context. The declaration will be introduced into this 1142 // scope. 1143 while (S->getEntity() && S->getEntity()->isTransparentContext()) 1144 S = S->getParent(); 1145 1146 // Add scoped declarations into their context, so that they can be 1147 // found later. Declarations without a context won't be inserted 1148 // into any context. 1149 if (AddToContext) 1150 CurContext->addDecl(D); 1151 1152 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they 1153 // are function-local declarations. 1154 if (getLangOpts().CPlusPlus && D->isOutOfLine() && 1155 !D->getDeclContext()->getRedeclContext()->Equals( 1156 D->getLexicalDeclContext()->getRedeclContext()) && 1157 !D->getLexicalDeclContext()->isFunctionOrMethod()) 1158 return; 1159 1160 // Template instantiations should also not be pushed into scope. 1161 if (isa<FunctionDecl>(D) && 1162 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) 1163 return; 1164 1165 // If this replaces anything in the current scope, 1166 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), 1167 IEnd = IdResolver.end(); 1168 for (; I != IEnd; ++I) { 1169 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { 1170 S->RemoveDecl(*I); 1171 IdResolver.RemoveDecl(*I); 1172 1173 // Should only need to replace one decl. 1174 break; 1175 } 1176 } 1177 1178 S->AddDecl(D); 1179 1180 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { 1181 // Implicitly-generated labels may end up getting generated in an order that 1182 // isn't strictly lexical, which breaks name lookup. Be careful to insert 1183 // the label at the appropriate place in the identifier chain. 1184 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { 1185 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); 1186 if (IDC == CurContext) { 1187 if (!S->isDeclScope(*I)) 1188 continue; 1189 } else if (IDC->Encloses(CurContext)) 1190 break; 1191 } 1192 1193 IdResolver.InsertDeclAfter(I, D); 1194 } else { 1195 IdResolver.AddDecl(D); 1196 } 1197 } 1198 1199 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) { 1200 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope) 1201 TUScope->AddDecl(D); 1202 } 1203 1204 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, 1205 bool AllowInlineNamespace) { 1206 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); 1207 } 1208 1209 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { 1210 DeclContext *TargetDC = DC->getPrimaryContext(); 1211 do { 1212 if (DeclContext *ScopeDC = S->getEntity()) 1213 if (ScopeDC->getPrimaryContext() == TargetDC) 1214 return S; 1215 } while ((S = S->getParent())); 1216 1217 return nullptr; 1218 } 1219 1220 static bool isOutOfScopePreviousDeclaration(NamedDecl *, 1221 DeclContext*, 1222 ASTContext&); 1223 1224 /// Filters out lookup results that don't fall within the given scope 1225 /// as determined by isDeclInScope. 1226 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, 1227 bool ConsiderLinkage, 1228 bool AllowInlineNamespace) { 1229 LookupResult::Filter F = R.makeFilter(); 1230 while (F.hasNext()) { 1231 NamedDecl *D = F.next(); 1232 1233 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) 1234 continue; 1235 1236 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) 1237 continue; 1238 1239 F.erase(); 1240 } 1241 1242 F.done(); 1243 } 1244 1245 static bool isUsingDecl(NamedDecl *D) { 1246 return isa<UsingShadowDecl>(D) || 1247 isa<UnresolvedUsingTypenameDecl>(D) || 1248 isa<UnresolvedUsingValueDecl>(D); 1249 } 1250 1251 /// Removes using shadow declarations from the lookup results. 1252 static void RemoveUsingDecls(LookupResult &R) { 1253 LookupResult::Filter F = R.makeFilter(); 1254 while (F.hasNext()) 1255 if (isUsingDecl(F.next())) 1256 F.erase(); 1257 1258 F.done(); 1259 } 1260 1261 /// \brief Check for this common pattern: 1262 /// @code 1263 /// class S { 1264 /// S(const S&); // DO NOT IMPLEMENT 1265 /// void operator=(const S&); // DO NOT IMPLEMENT 1266 /// }; 1267 /// @endcode 1268 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { 1269 // FIXME: Should check for private access too but access is set after we get 1270 // the decl here. 1271 if (D->doesThisDeclarationHaveABody()) 1272 return false; 1273 1274 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 1275 return CD->isCopyConstructor(); 1276 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 1277 return Method->isCopyAssignmentOperator(); 1278 return false; 1279 } 1280 1281 // We need this to handle 1282 // 1283 // typedef struct { 1284 // void *foo() { return 0; } 1285 // } A; 1286 // 1287 // When we see foo we don't know if after the typedef we will get 'A' or '*A' 1288 // for example. If 'A', foo will have external linkage. If we have '*A', 1289 // foo will have no linkage. Since we can't know until we get to the end 1290 // of the typedef, this function finds out if D might have non-external linkage. 1291 // Callers should verify at the end of the TU if it D has external linkage or 1292 // not. 1293 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { 1294 const DeclContext *DC = D->getDeclContext(); 1295 while (!DC->isTranslationUnit()) { 1296 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ 1297 if (!RD->hasNameForLinkage()) 1298 return true; 1299 } 1300 DC = DC->getParent(); 1301 } 1302 1303 return !D->isExternallyVisible(); 1304 } 1305 1306 // FIXME: This needs to be refactored; some other isInMainFile users want 1307 // these semantics. 1308 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { 1309 if (S.TUKind != TU_Complete) 1310 return false; 1311 return S.SourceMgr.isInMainFile(Loc); 1312 } 1313 1314 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { 1315 assert(D); 1316 1317 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) 1318 return false; 1319 1320 // Ignore all entities declared within templates, and out-of-line definitions 1321 // of members of class templates. 1322 if (D->getDeclContext()->isDependentContext() || 1323 D->getLexicalDeclContext()->isDependentContext()) 1324 return false; 1325 1326 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1327 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1328 return false; 1329 1330 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 1331 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) 1332 return false; 1333 } else { 1334 // 'static inline' functions are defined in headers; don't warn. 1335 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) 1336 return false; 1337 } 1338 1339 if (FD->doesThisDeclarationHaveABody() && 1340 Context.DeclMustBeEmitted(FD)) 1341 return false; 1342 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1343 // Constants and utility variables are defined in headers with internal 1344 // linkage; don't warn. (Unlike functions, there isn't a convenient marker 1345 // like "inline".) 1346 if (!isMainFileLoc(*this, VD->getLocation())) 1347 return false; 1348 1349 if (Context.DeclMustBeEmitted(VD)) 1350 return false; 1351 1352 if (VD->isStaticDataMember() && 1353 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1354 return false; 1355 } else { 1356 return false; 1357 } 1358 1359 // Only warn for unused decls internal to the translation unit. 1360 // FIXME: This seems like a bogus check; it suppresses -Wunused-function 1361 // for inline functions defined in the main source file, for instance. 1362 return mightHaveNonExternalLinkage(D); 1363 } 1364 1365 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { 1366 if (!D) 1367 return; 1368 1369 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1370 const FunctionDecl *First = FD->getFirstDecl(); 1371 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1372 return; // First should already be in the vector. 1373 } 1374 1375 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1376 const VarDecl *First = VD->getFirstDecl(); 1377 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1378 return; // First should already be in the vector. 1379 } 1380 1381 if (ShouldWarnIfUnusedFileScopedDecl(D)) 1382 UnusedFileScopedDecls.push_back(D); 1383 } 1384 1385 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { 1386 if (D->isInvalidDecl()) 1387 return false; 1388 1389 if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() || 1390 D->hasAttr<ObjCPreciseLifetimeAttr>()) 1391 return false; 1392 1393 if (isa<LabelDecl>(D)) 1394 return true; 1395 1396 // White-list anything that isn't a local variable. 1397 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) || 1398 !D->getDeclContext()->isFunctionOrMethod()) 1399 return false; 1400 1401 // Types of valid local variables should be complete, so this should succeed. 1402 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1403 1404 // White-list anything with an __attribute__((unused)) type. 1405 QualType Ty = VD->getType(); 1406 1407 // Only look at the outermost level of typedef. 1408 if (const TypedefType *TT = Ty->getAs<TypedefType>()) { 1409 if (TT->getDecl()->hasAttr<UnusedAttr>()) 1410 return false; 1411 } 1412 1413 // If we failed to complete the type for some reason, or if the type is 1414 // dependent, don't diagnose the variable. 1415 if (Ty->isIncompleteType() || Ty->isDependentType()) 1416 return false; 1417 1418 if (const TagType *TT = Ty->getAs<TagType>()) { 1419 const TagDecl *Tag = TT->getDecl(); 1420 if (Tag->hasAttr<UnusedAttr>()) 1421 return false; 1422 1423 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 1424 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) 1425 return false; 1426 1427 if (const Expr *Init = VD->getInit()) { 1428 if (const ExprWithCleanups *Cleanups = 1429 dyn_cast<ExprWithCleanups>(Init)) 1430 Init = Cleanups->getSubExpr(); 1431 const CXXConstructExpr *Construct = 1432 dyn_cast<CXXConstructExpr>(Init); 1433 if (Construct && !Construct->isElidable()) { 1434 CXXConstructorDecl *CD = Construct->getConstructor(); 1435 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>()) 1436 return false; 1437 } 1438 } 1439 } 1440 } 1441 1442 // TODO: __attribute__((unused)) templates? 1443 } 1444 1445 return true; 1446 } 1447 1448 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, 1449 FixItHint &Hint) { 1450 if (isa<LabelDecl>(D)) { 1451 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(), 1452 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true); 1453 if (AfterColon.isInvalid()) 1454 return; 1455 Hint = FixItHint::CreateRemoval(CharSourceRange:: 1456 getCharRange(D->getLocStart(), AfterColon)); 1457 } 1458 return; 1459 } 1460 1461 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used 1462 /// unless they are marked attr(unused). 1463 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { 1464 if (!ShouldDiagnoseUnusedDecl(D)) 1465 return; 1466 1467 FixItHint Hint; 1468 GenerateFixForUnusedDecl(D, Context, Hint); 1469 1470 unsigned DiagID; 1471 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) 1472 DiagID = diag::warn_unused_exception_param; 1473 else if (isa<LabelDecl>(D)) 1474 DiagID = diag::warn_unused_label; 1475 else 1476 DiagID = diag::warn_unused_variable; 1477 1478 Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint; 1479 } 1480 1481 static void CheckPoppedLabel(LabelDecl *L, Sema &S) { 1482 // Verify that we have no forward references left. If so, there was a goto 1483 // or address of a label taken, but no definition of it. Label fwd 1484 // definitions are indicated with a null substmt. 1485 if (L->getStmt() == nullptr) 1486 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName(); 1487 } 1488 1489 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { 1490 S->mergeNRVOIntoParent(); 1491 1492 if (S->decl_empty()) return; 1493 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && 1494 "Scope shouldn't contain decls!"); 1495 1496 for (auto *TmpD : S->decls()) { 1497 assert(TmpD && "This decl didn't get pushed??"); 1498 1499 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); 1500 NamedDecl *D = cast<NamedDecl>(TmpD); 1501 1502 if (!D->getDeclName()) continue; 1503 1504 // Diagnose unused variables in this scope. 1505 if (!S->hasUnrecoverableErrorOccurred()) 1506 DiagnoseUnusedDecl(D); 1507 1508 // If this was a forward reference to a label, verify it was defined. 1509 if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) 1510 CheckPoppedLabel(LD, *this); 1511 1512 // Remove this name from our lexical scope. 1513 IdResolver.RemoveDecl(D); 1514 } 1515 } 1516 1517 /// \brief Look for an Objective-C class in the translation unit. 1518 /// 1519 /// \param Id The name of the Objective-C class we're looking for. If 1520 /// typo-correction fixes this name, the Id will be updated 1521 /// to the fixed name. 1522 /// 1523 /// \param IdLoc The location of the name in the translation unit. 1524 /// 1525 /// \param DoTypoCorrection If true, this routine will attempt typo correction 1526 /// if there is no class with the given name. 1527 /// 1528 /// \returns The declaration of the named Objective-C class, or NULL if the 1529 /// class could not be found. 1530 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, 1531 SourceLocation IdLoc, 1532 bool DoTypoCorrection) { 1533 // The third "scope" argument is 0 since we aren't enabling lazy built-in 1534 // creation from this context. 1535 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); 1536 1537 if (!IDecl && DoTypoCorrection) { 1538 // Perform typo correction at the given location, but only if we 1539 // find an Objective-C class name. 1540 DeclFilterCCC<ObjCInterfaceDecl> Validator; 1541 if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), 1542 LookupOrdinaryName, TUScope, nullptr, 1543 Validator, CTK_ErrorRecovery)) { 1544 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); 1545 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); 1546 Id = IDecl->getIdentifier(); 1547 } 1548 } 1549 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); 1550 // This routine must always return a class definition, if any. 1551 if (Def && Def->getDefinition()) 1552 Def = Def->getDefinition(); 1553 return Def; 1554 } 1555 1556 /// getNonFieldDeclScope - Retrieves the innermost scope, starting 1557 /// from S, where a non-field would be declared. This routine copes 1558 /// with the difference between C and C++ scoping rules in structs and 1559 /// unions. For example, the following code is well-formed in C but 1560 /// ill-formed in C++: 1561 /// @code 1562 /// struct S6 { 1563 /// enum { BAR } e; 1564 /// }; 1565 /// 1566 /// void test_S6() { 1567 /// struct S6 a; 1568 /// a.e = BAR; 1569 /// } 1570 /// @endcode 1571 /// For the declaration of BAR, this routine will return a different 1572 /// scope. The scope S will be the scope of the unnamed enumeration 1573 /// within S6. In C++, this routine will return the scope associated 1574 /// with S6, because the enumeration's scope is a transparent 1575 /// context but structures can contain non-field names. In C, this 1576 /// routine will return the translation unit scope, since the 1577 /// enumeration's scope is a transparent context and structures cannot 1578 /// contain non-field names. 1579 Scope *Sema::getNonFieldDeclScope(Scope *S) { 1580 while (((S->getFlags() & Scope::DeclScope) == 0) || 1581 (S->getEntity() && S->getEntity()->isTransparentContext()) || 1582 (S->isClassScope() && !getLangOpts().CPlusPlus)) 1583 S = S->getParent(); 1584 return S; 1585 } 1586 1587 /// \brief Looks up the declaration of "struct objc_super" and 1588 /// saves it for later use in building builtin declaration of 1589 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such 1590 /// pre-existing declaration exists no action takes place. 1591 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S, 1592 IdentifierInfo *II) { 1593 if (!II->isStr("objc_msgSendSuper")) 1594 return; 1595 ASTContext &Context = ThisSema.Context; 1596 1597 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"), 1598 SourceLocation(), Sema::LookupTagName); 1599 ThisSema.LookupName(Result, S); 1600 if (Result.getResultKind() == LookupResult::Found) 1601 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 1602 Context.setObjCSuperType(Context.getTagDeclType(TD)); 1603 } 1604 1605 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at 1606 /// file scope. lazily create a decl for it. ForRedeclaration is true 1607 /// if we're creating this built-in in anticipation of redeclaring the 1608 /// built-in. 1609 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, 1610 Scope *S, bool ForRedeclaration, 1611 SourceLocation Loc) { 1612 LookupPredefedObjCSuperType(*this, S, II); 1613 1614 Builtin::ID BID = (Builtin::ID)bid; 1615 1616 ASTContext::GetBuiltinTypeError Error; 1617 QualType R = Context.GetBuiltinType(BID, Error); 1618 switch (Error) { 1619 case ASTContext::GE_None: 1620 // Okay 1621 break; 1622 1623 case ASTContext::GE_Missing_stdio: 1624 if (ForRedeclaration) 1625 Diag(Loc, diag::warn_implicit_decl_requires_stdio) 1626 << Context.BuiltinInfo.GetName(BID); 1627 return nullptr; 1628 1629 case ASTContext::GE_Missing_setjmp: 1630 if (ForRedeclaration) 1631 Diag(Loc, diag::warn_implicit_decl_requires_setjmp) 1632 << Context.BuiltinInfo.GetName(BID); 1633 return nullptr; 1634 1635 case ASTContext::GE_Missing_ucontext: 1636 if (ForRedeclaration) 1637 Diag(Loc, diag::warn_implicit_decl_requires_ucontext) 1638 << Context.BuiltinInfo.GetName(BID); 1639 return nullptr; 1640 } 1641 1642 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) { 1643 Diag(Loc, diag::ext_implicit_lib_function_decl) 1644 << Context.BuiltinInfo.GetName(BID) 1645 << R; 1646 if (Context.BuiltinInfo.getHeaderName(BID) && 1647 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc)) 1648 Diag(Loc, diag::note_please_include_header) 1649 << Context.BuiltinInfo.getHeaderName(BID) 1650 << Context.BuiltinInfo.GetName(BID); 1651 } 1652 1653 DeclContext *Parent = Context.getTranslationUnitDecl(); 1654 if (getLangOpts().CPlusPlus) { 1655 LinkageSpecDecl *CLinkageDecl = 1656 LinkageSpecDecl::Create(Context, Parent, Loc, Loc, 1657 LinkageSpecDecl::lang_c, false); 1658 CLinkageDecl->setImplicit(); 1659 Parent->addDecl(CLinkageDecl); 1660 Parent = CLinkageDecl; 1661 } 1662 1663 FunctionDecl *New = FunctionDecl::Create(Context, 1664 Parent, 1665 Loc, Loc, II, R, /*TInfo=*/nullptr, 1666 SC_Extern, 1667 false, 1668 /*hasPrototype=*/true); 1669 New->setImplicit(); 1670 1671 // Create Decl objects for each parameter, adding them to the 1672 // FunctionDecl. 1673 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { 1674 SmallVector<ParmVarDecl*, 16> Params; 1675 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1676 ParmVarDecl *parm = 1677 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(), 1678 nullptr, FT->getParamType(i), /*TInfo=*/nullptr, 1679 SC_None, nullptr); 1680 parm->setScopeInfo(0, i); 1681 Params.push_back(parm); 1682 } 1683 New->setParams(Params); 1684 } 1685 1686 AddKnownFunctionAttributes(New); 1687 RegisterLocallyScopedExternCDecl(New, S); 1688 1689 // TUScope is the translation-unit scope to insert this function into. 1690 // FIXME: This is hideous. We need to teach PushOnScopeChains to 1691 // relate Scopes to DeclContexts, and probably eliminate CurContext 1692 // entirely, but we're not there yet. 1693 DeclContext *SavedContext = CurContext; 1694 CurContext = Parent; 1695 PushOnScopeChains(New, TUScope); 1696 CurContext = SavedContext; 1697 return New; 1698 } 1699 1700 /// \brief Filter out any previous declarations that the given declaration 1701 /// should not consider because they are not permitted to conflict, e.g., 1702 /// because they come from hidden sub-modules and do not refer to the same 1703 /// entity. 1704 static void filterNonConflictingPreviousDecls(ASTContext &context, 1705 NamedDecl *decl, 1706 LookupResult &previous){ 1707 // This is only interesting when modules are enabled. 1708 if (!context.getLangOpts().Modules) 1709 return; 1710 1711 // Empty sets are uninteresting. 1712 if (previous.empty()) 1713 return; 1714 1715 LookupResult::Filter filter = previous.makeFilter(); 1716 while (filter.hasNext()) { 1717 NamedDecl *old = filter.next(); 1718 1719 // Non-hidden declarations are never ignored. 1720 if (!old->isHidden()) 1721 continue; 1722 1723 if (!old->isExternallyVisible()) 1724 filter.erase(); 1725 } 1726 1727 filter.done(); 1728 } 1729 1730 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { 1731 QualType OldType; 1732 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) 1733 OldType = OldTypedef->getUnderlyingType(); 1734 else 1735 OldType = Context.getTypeDeclType(Old); 1736 QualType NewType = New->getUnderlyingType(); 1737 1738 if (NewType->isVariablyModifiedType()) { 1739 // Must not redefine a typedef with a variably-modified type. 1740 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 1741 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) 1742 << Kind << NewType; 1743 if (Old->getLocation().isValid()) 1744 Diag(Old->getLocation(), diag::note_previous_definition); 1745 New->setInvalidDecl(); 1746 return true; 1747 } 1748 1749 if (OldType != NewType && 1750 !OldType->isDependentType() && 1751 !NewType->isDependentType() && 1752 !Context.hasSameType(OldType, NewType)) { 1753 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 1754 Diag(New->getLocation(), diag::err_redefinition_different_typedef) 1755 << Kind << NewType << OldType; 1756 if (Old->getLocation().isValid()) 1757 Diag(Old->getLocation(), diag::note_previous_definition); 1758 New->setInvalidDecl(); 1759 return true; 1760 } 1761 return false; 1762 } 1763 1764 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the 1765 /// same name and scope as a previous declaration 'Old'. Figure out 1766 /// how to resolve this situation, merging decls or emitting 1767 /// diagnostics as appropriate. If there was an error, set New to be invalid. 1768 /// 1769 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) { 1770 // If the new decl is known invalid already, don't bother doing any 1771 // merging checks. 1772 if (New->isInvalidDecl()) return; 1773 1774 // Allow multiple definitions for ObjC built-in typedefs. 1775 // FIXME: Verify the underlying types are equivalent! 1776 if (getLangOpts().ObjC1) { 1777 const IdentifierInfo *TypeID = New->getIdentifier(); 1778 switch (TypeID->getLength()) { 1779 default: break; 1780 case 2: 1781 { 1782 if (!TypeID->isStr("id")) 1783 break; 1784 QualType T = New->getUnderlyingType(); 1785 if (!T->isPointerType()) 1786 break; 1787 if (!T->isVoidPointerType()) { 1788 QualType PT = T->getAs<PointerType>()->getPointeeType(); 1789 if (!PT->isStructureType()) 1790 break; 1791 } 1792 Context.setObjCIdRedefinitionType(T); 1793 // Install the built-in type for 'id', ignoring the current definition. 1794 New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); 1795 return; 1796 } 1797 case 5: 1798 if (!TypeID->isStr("Class")) 1799 break; 1800 Context.setObjCClassRedefinitionType(New->getUnderlyingType()); 1801 // Install the built-in type for 'Class', ignoring the current definition. 1802 New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); 1803 return; 1804 case 3: 1805 if (!TypeID->isStr("SEL")) 1806 break; 1807 Context.setObjCSelRedefinitionType(New->getUnderlyingType()); 1808 // Install the built-in type for 'SEL', ignoring the current definition. 1809 New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); 1810 return; 1811 } 1812 // Fall through - the typedef name was not a builtin type. 1813 } 1814 1815 // Verify the old decl was also a type. 1816 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); 1817 if (!Old) { 1818 Diag(New->getLocation(), diag::err_redefinition_different_kind) 1819 << New->getDeclName(); 1820 1821 NamedDecl *OldD = OldDecls.getRepresentativeDecl(); 1822 if (OldD->getLocation().isValid()) 1823 Diag(OldD->getLocation(), diag::note_previous_definition); 1824 1825 return New->setInvalidDecl(); 1826 } 1827 1828 // If the old declaration is invalid, just give up here. 1829 if (Old->isInvalidDecl()) 1830 return New->setInvalidDecl(); 1831 1832 // If the typedef types are not identical, reject them in all languages and 1833 // with any extensions enabled. 1834 if (isIncompatibleTypedef(Old, New)) 1835 return; 1836 1837 // The types match. Link up the redeclaration chain and merge attributes if 1838 // the old declaration was a typedef. 1839 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { 1840 New->setPreviousDecl(Typedef); 1841 mergeDeclAttributes(New, Old); 1842 } 1843 1844 if (getLangOpts().MicrosoftExt) 1845 return; 1846 1847 if (getLangOpts().CPlusPlus) { 1848 // C++ [dcl.typedef]p2: 1849 // In a given non-class scope, a typedef specifier can be used to 1850 // redefine the name of any type declared in that scope to refer 1851 // to the type to which it already refers. 1852 if (!isa<CXXRecordDecl>(CurContext)) 1853 return; 1854 1855 // C++0x [dcl.typedef]p4: 1856 // In a given class scope, a typedef specifier can be used to redefine 1857 // any class-name declared in that scope that is not also a typedef-name 1858 // to refer to the type to which it already refers. 1859 // 1860 // This wording came in via DR424, which was a correction to the 1861 // wording in DR56, which accidentally banned code like: 1862 // 1863 // struct S { 1864 // typedef struct A { } A; 1865 // }; 1866 // 1867 // in the C++03 standard. We implement the C++0x semantics, which 1868 // allow the above but disallow 1869 // 1870 // struct S { 1871 // typedef int I; 1872 // typedef int I; 1873 // }; 1874 // 1875 // since that was the intent of DR56. 1876 if (!isa<TypedefNameDecl>(Old)) 1877 return; 1878 1879 Diag(New->getLocation(), diag::err_redefinition) 1880 << New->getDeclName(); 1881 Diag(Old->getLocation(), diag::note_previous_definition); 1882 return New->setInvalidDecl(); 1883 } 1884 1885 // Modules always permit redefinition of typedefs, as does C11. 1886 if (getLangOpts().Modules || getLangOpts().C11) 1887 return; 1888 1889 // If we have a redefinition of a typedef in C, emit a warning. This warning 1890 // is normally mapped to an error, but can be controlled with 1891 // -Wtypedef-redefinition. If either the original or the redefinition is 1892 // in a system header, don't emit this for compatibility with GCC. 1893 if (getDiagnostics().getSuppressSystemWarnings() && 1894 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 1895 Context.getSourceManager().isInSystemHeader(New->getLocation()))) 1896 return; 1897 1898 Diag(New->getLocation(), diag::warn_redefinition_of_typedef) 1899 << New->getDeclName(); 1900 Diag(Old->getLocation(), diag::note_previous_definition); 1901 return; 1902 } 1903 1904 /// DeclhasAttr - returns true if decl Declaration already has the target 1905 /// attribute. 1906 static bool DeclHasAttr(const Decl *D, const Attr *A) { 1907 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); 1908 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); 1909 for (const auto *i : D->attrs()) 1910 if (i->getKind() == A->getKind()) { 1911 if (Ann) { 1912 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) 1913 return true; 1914 continue; 1915 } 1916 // FIXME: Don't hardcode this check 1917 if (OA && isa<OwnershipAttr>(i)) 1918 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); 1919 return true; 1920 } 1921 1922 return false; 1923 } 1924 1925 static bool isAttributeTargetADefinition(Decl *D) { 1926 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 1927 return VD->isThisDeclarationADefinition(); 1928 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 1929 return TD->isCompleteDefinition() || TD->isBeingDefined(); 1930 return true; 1931 } 1932 1933 /// Merge alignment attributes from \p Old to \p New, taking into account the 1934 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. 1935 /// 1936 /// \return \c true if any attributes were added to \p New. 1937 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { 1938 // Look for alignas attributes on Old, and pick out whichever attribute 1939 // specifies the strictest alignment requirement. 1940 AlignedAttr *OldAlignasAttr = nullptr; 1941 AlignedAttr *OldStrictestAlignAttr = nullptr; 1942 unsigned OldAlign = 0; 1943 for (auto *I : Old->specific_attrs<AlignedAttr>()) { 1944 // FIXME: We have no way of representing inherited dependent alignments 1945 // in a case like: 1946 // template<int A, int B> struct alignas(A) X; 1947 // template<int A, int B> struct alignas(B) X {}; 1948 // For now, we just ignore any alignas attributes which are not on the 1949 // definition in such a case. 1950 if (I->isAlignmentDependent()) 1951 return false; 1952 1953 if (I->isAlignas()) 1954 OldAlignasAttr = I; 1955 1956 unsigned Align = I->getAlignment(S.Context); 1957 if (Align > OldAlign) { 1958 OldAlign = Align; 1959 OldStrictestAlignAttr = I; 1960 } 1961 } 1962 1963 // Look for alignas attributes on New. 1964 AlignedAttr *NewAlignasAttr = nullptr; 1965 unsigned NewAlign = 0; 1966 for (auto *I : New->specific_attrs<AlignedAttr>()) { 1967 if (I->isAlignmentDependent()) 1968 return false; 1969 1970 if (I->isAlignas()) 1971 NewAlignasAttr = I; 1972 1973 unsigned Align = I->getAlignment(S.Context); 1974 if (Align > NewAlign) 1975 NewAlign = Align; 1976 } 1977 1978 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { 1979 // Both declarations have 'alignas' attributes. We require them to match. 1980 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but 1981 // fall short. (If two declarations both have alignas, they must both match 1982 // every definition, and so must match each other if there is a definition.) 1983 1984 // If either declaration only contains 'alignas(0)' specifiers, then it 1985 // specifies the natural alignment for the type. 1986 if (OldAlign == 0 || NewAlign == 0) { 1987 QualType Ty; 1988 if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) 1989 Ty = VD->getType(); 1990 else 1991 Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); 1992 1993 if (OldAlign == 0) 1994 OldAlign = S.Context.getTypeAlign(Ty); 1995 if (NewAlign == 0) 1996 NewAlign = S.Context.getTypeAlign(Ty); 1997 } 1998 1999 if (OldAlign != NewAlign) { 2000 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) 2001 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() 2002 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); 2003 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); 2004 } 2005 } 2006 2007 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { 2008 // C++11 [dcl.align]p6: 2009 // if any declaration of an entity has an alignment-specifier, 2010 // every defining declaration of that entity shall specify an 2011 // equivalent alignment. 2012 // C11 6.7.5/7: 2013 // If the definition of an object does not have an alignment 2014 // specifier, any other declaration of that object shall also 2015 // have no alignment specifier. 2016 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) 2017 << OldAlignasAttr; 2018 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) 2019 << OldAlignasAttr; 2020 } 2021 2022 bool AnyAdded = false; 2023 2024 // Ensure we have an attribute representing the strictest alignment. 2025 if (OldAlign > NewAlign) { 2026 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); 2027 Clone->setInherited(true); 2028 New->addAttr(Clone); 2029 AnyAdded = true; 2030 } 2031 2032 // Ensure we have an alignas attribute if the old declaration had one. 2033 if (OldAlignasAttr && !NewAlignasAttr && 2034 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { 2035 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); 2036 Clone->setInherited(true); 2037 New->addAttr(Clone); 2038 AnyAdded = true; 2039 } 2040 2041 return AnyAdded; 2042 } 2043 2044 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, 2045 const InheritableAttr *Attr, bool Override) { 2046 InheritableAttr *NewAttr = nullptr; 2047 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex(); 2048 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) 2049 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(), 2050 AA->getIntroduced(), AA->getDeprecated(), 2051 AA->getObsoleted(), AA->getUnavailable(), 2052 AA->getMessage(), Override, 2053 AttrSpellingListIndex); 2054 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) 2055 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), 2056 AttrSpellingListIndex); 2057 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) 2058 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), 2059 AttrSpellingListIndex); 2060 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) 2061 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(), 2062 AttrSpellingListIndex); 2063 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) 2064 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(), 2065 AttrSpellingListIndex); 2066 else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) 2067 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(), 2068 FA->getFormatIdx(), FA->getFirstArg(), 2069 AttrSpellingListIndex); 2070 else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) 2071 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(), 2072 AttrSpellingListIndex); 2073 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) 2074 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(), 2075 AttrSpellingListIndex, 2076 IA->getSemanticSpelling()); 2077 else if (isa<AlignedAttr>(Attr)) 2078 // AlignedAttrs are handled separately, because we need to handle all 2079 // such attributes on a declaration at the same time. 2080 NewAttr = nullptr; 2081 else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr)) 2082 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); 2083 2084 if (NewAttr) { 2085 NewAttr->setInherited(true); 2086 D->addAttr(NewAttr); 2087 return true; 2088 } 2089 2090 return false; 2091 } 2092 2093 static const Decl *getDefinition(const Decl *D) { 2094 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) 2095 return TD->getDefinition(); 2096 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2097 const VarDecl *Def = VD->getDefinition(); 2098 if (Def) 2099 return Def; 2100 return VD->getActingDefinition(); 2101 } 2102 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2103 const FunctionDecl* Def; 2104 if (FD->isDefined(Def)) 2105 return Def; 2106 } 2107 return nullptr; 2108 } 2109 2110 static bool hasAttribute(const Decl *D, attr::Kind Kind) { 2111 for (const auto *Attribute : D->attrs()) 2112 if (Attribute->getKind() == Kind) 2113 return true; 2114 return false; 2115 } 2116 2117 /// checkNewAttributesAfterDef - If we already have a definition, check that 2118 /// there are no new attributes in this declaration. 2119 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { 2120 if (!New->hasAttrs()) 2121 return; 2122 2123 const Decl *Def = getDefinition(Old); 2124 if (!Def || Def == New) 2125 return; 2126 2127 AttrVec &NewAttributes = New->getAttrs(); 2128 for (unsigned I = 0, E = NewAttributes.size(); I != E;) { 2129 const Attr *NewAttribute = NewAttributes[I]; 2130 2131 if (isa<AliasAttr>(NewAttribute)) { 2132 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) 2133 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def)); 2134 else { 2135 VarDecl *VD = cast<VarDecl>(New); 2136 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == 2137 VarDecl::TentativeDefinition 2138 ? diag::err_alias_after_tentative 2139 : diag::err_redefinition; 2140 S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); 2141 S.Diag(Def->getLocation(), diag::note_previous_definition); 2142 VD->setInvalidDecl(); 2143 } 2144 ++I; 2145 continue; 2146 } 2147 2148 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { 2149 // Tentative definitions are only interesting for the alias check above. 2150 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { 2151 ++I; 2152 continue; 2153 } 2154 } 2155 2156 if (hasAttribute(Def, NewAttribute->getKind())) { 2157 ++I; 2158 continue; // regular attr merging will take care of validating this. 2159 } 2160 2161 if (isa<C11NoReturnAttr>(NewAttribute)) { 2162 // C's _Noreturn is allowed to be added to a function after it is defined. 2163 ++I; 2164 continue; 2165 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { 2166 if (AA->isAlignas()) { 2167 // C++11 [dcl.align]p6: 2168 // if any declaration of an entity has an alignment-specifier, 2169 // every defining declaration of that entity shall specify an 2170 // equivalent alignment. 2171 // C11 6.7.5/7: 2172 // If the definition of an object does not have an alignment 2173 // specifier, any other declaration of that object shall also 2174 // have no alignment specifier. 2175 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) 2176 << AA; 2177 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) 2178 << AA; 2179 NewAttributes.erase(NewAttributes.begin() + I); 2180 --E; 2181 continue; 2182 } 2183 } 2184 2185 S.Diag(NewAttribute->getLocation(), 2186 diag::warn_attribute_precede_definition); 2187 S.Diag(Def->getLocation(), diag::note_previous_definition); 2188 NewAttributes.erase(NewAttributes.begin() + I); 2189 --E; 2190 } 2191 } 2192 2193 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. 2194 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, 2195 AvailabilityMergeKind AMK) { 2196 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { 2197 UsedAttr *NewAttr = OldAttr->clone(Context); 2198 NewAttr->setInherited(true); 2199 New->addAttr(NewAttr); 2200 } 2201 2202 if (!Old->hasAttrs() && !New->hasAttrs()) 2203 return; 2204 2205 // attributes declared post-definition are currently ignored 2206 checkNewAttributesAfterDef(*this, New, Old); 2207 2208 if (!Old->hasAttrs()) 2209 return; 2210 2211 bool foundAny = New->hasAttrs(); 2212 2213 // Ensure that any moving of objects within the allocated map is done before 2214 // we process them. 2215 if (!foundAny) New->setAttrs(AttrVec()); 2216 2217 for (auto *I : Old->specific_attrs<InheritableAttr>()) { 2218 bool Override = false; 2219 // Ignore deprecated/unavailable/availability attributes if requested. 2220 if (isa<DeprecatedAttr>(I) || 2221 isa<UnavailableAttr>(I) || 2222 isa<AvailabilityAttr>(I)) { 2223 switch (AMK) { 2224 case AMK_None: 2225 continue; 2226 2227 case AMK_Redeclaration: 2228 break; 2229 2230 case AMK_Override: 2231 Override = true; 2232 break; 2233 } 2234 } 2235 2236 // Already handled. 2237 if (isa<UsedAttr>(I)) 2238 continue; 2239 2240 if (mergeDeclAttribute(*this, New, I, Override)) 2241 foundAny = true; 2242 } 2243 2244 if (mergeAlignedAttrs(*this, New, Old)) 2245 foundAny = true; 2246 2247 if (!foundAny) New->dropAttrs(); 2248 } 2249 2250 /// mergeParamDeclAttributes - Copy attributes from the old parameter 2251 /// to the new one. 2252 static void mergeParamDeclAttributes(ParmVarDecl *newDecl, 2253 const ParmVarDecl *oldDecl, 2254 Sema &S) { 2255 // C++11 [dcl.attr.depend]p2: 2256 // The first declaration of a function shall specify the 2257 // carries_dependency attribute for its declarator-id if any declaration 2258 // of the function specifies the carries_dependency attribute. 2259 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); 2260 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { 2261 S.Diag(CDA->getLocation(), 2262 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; 2263 // Find the first declaration of the parameter. 2264 // FIXME: Should we build redeclaration chains for function parameters? 2265 const FunctionDecl *FirstFD = 2266 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); 2267 const ParmVarDecl *FirstVD = 2268 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); 2269 S.Diag(FirstVD->getLocation(), 2270 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; 2271 } 2272 2273 if (!oldDecl->hasAttrs()) 2274 return; 2275 2276 bool foundAny = newDecl->hasAttrs(); 2277 2278 // Ensure that any moving of objects within the allocated map is 2279 // done before we process them. 2280 if (!foundAny) newDecl->setAttrs(AttrVec()); 2281 2282 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { 2283 if (!DeclHasAttr(newDecl, I)) { 2284 InheritableAttr *newAttr = 2285 cast<InheritableParamAttr>(I->clone(S.Context)); 2286 newAttr->setInherited(true); 2287 newDecl->addAttr(newAttr); 2288 foundAny = true; 2289 } 2290 } 2291 2292 if (!foundAny) newDecl->dropAttrs(); 2293 } 2294 2295 namespace { 2296 2297 /// Used in MergeFunctionDecl to keep track of function parameters in 2298 /// C. 2299 struct GNUCompatibleParamWarning { 2300 ParmVarDecl *OldParm; 2301 ParmVarDecl *NewParm; 2302 QualType PromotedType; 2303 }; 2304 2305 } 2306 2307 /// getSpecialMember - get the special member enum for a method. 2308 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) { 2309 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 2310 if (Ctor->isDefaultConstructor()) 2311 return Sema::CXXDefaultConstructor; 2312 2313 if (Ctor->isCopyConstructor()) 2314 return Sema::CXXCopyConstructor; 2315 2316 if (Ctor->isMoveConstructor()) 2317 return Sema::CXXMoveConstructor; 2318 } else if (isa<CXXDestructorDecl>(MD)) { 2319 return Sema::CXXDestructor; 2320 } else if (MD->isCopyAssignmentOperator()) { 2321 return Sema::CXXCopyAssignment; 2322 } else if (MD->isMoveAssignmentOperator()) { 2323 return Sema::CXXMoveAssignment; 2324 } 2325 2326 return Sema::CXXInvalid; 2327 } 2328 2329 // Determine whether the previous declaration was a definition, implicit 2330 // declaration, or a declaration. 2331 template <typename T> 2332 static std::pair<diag::kind, SourceLocation> 2333 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { 2334 diag::kind PrevDiag; 2335 SourceLocation OldLocation = Old->getLocation(); 2336 if (Old->isThisDeclarationADefinition()) 2337 PrevDiag = diag::note_previous_definition; 2338 else if (Old->isImplicit()) { 2339 PrevDiag = diag::note_previous_implicit_declaration; 2340 if (OldLocation.isInvalid()) 2341 OldLocation = New->getLocation(); 2342 } else 2343 PrevDiag = diag::note_previous_declaration; 2344 return std::make_pair(PrevDiag, OldLocation); 2345 } 2346 2347 /// canRedefineFunction - checks if a function can be redefined. Currently, 2348 /// only extern inline functions can be redefined, and even then only in 2349 /// GNU89 mode. 2350 static bool canRedefineFunction(const FunctionDecl *FD, 2351 const LangOptions& LangOpts) { 2352 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && 2353 !LangOpts.CPlusPlus && 2354 FD->isInlineSpecified() && 2355 FD->getStorageClass() == SC_Extern); 2356 } 2357 2358 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { 2359 const AttributedType *AT = T->getAs<AttributedType>(); 2360 while (AT && !AT->isCallingConv()) 2361 AT = AT->getModifiedType()->getAs<AttributedType>(); 2362 return AT; 2363 } 2364 2365 template <typename T> 2366 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { 2367 const DeclContext *DC = Old->getDeclContext(); 2368 if (DC->isRecord()) 2369 return false; 2370 2371 LanguageLinkage OldLinkage = Old->getLanguageLinkage(); 2372 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) 2373 return true; 2374 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) 2375 return true; 2376 return false; 2377 } 2378 2379 /// MergeFunctionDecl - We just parsed a function 'New' from 2380 /// declarator D which has the same name and scope as a previous 2381 /// declaration 'Old'. Figure out how to resolve this situation, 2382 /// merging decls or emitting diagnostics as appropriate. 2383 /// 2384 /// In C++, New and Old must be declarations that are not 2385 /// overloaded. Use IsOverload to determine whether New and Old are 2386 /// overloaded, and to select the Old declaration that New should be 2387 /// merged with. 2388 /// 2389 /// Returns true if there was an error, false otherwise. 2390 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, 2391 Scope *S, bool MergeTypeWithOld) { 2392 // Verify the old decl was also a function. 2393 FunctionDecl *Old = OldD->getAsFunction(); 2394 if (!Old) { 2395 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { 2396 if (New->getFriendObjectKind()) { 2397 Diag(New->getLocation(), diag::err_using_decl_friend); 2398 Diag(Shadow->getTargetDecl()->getLocation(), 2399 diag::note_using_decl_target); 2400 Diag(Shadow->getUsingDecl()->getLocation(), 2401 diag::note_using_decl) << 0; 2402 return true; 2403 } 2404 2405 // C++11 [namespace.udecl]p14: 2406 // If a function declaration in namespace scope or block scope has the 2407 // same name and the same parameter-type-list as a function introduced 2408 // by a using-declaration, and the declarations do not declare the same 2409 // function, the program is ill-formed. 2410 2411 // Check whether the two declarations might declare the same function. 2412 Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl()); 2413 if (Old && 2414 !Old->getDeclContext()->getRedeclContext()->Equals( 2415 New->getDeclContext()->getRedeclContext()) && 2416 !(Old->isExternC() && New->isExternC())) 2417 Old = nullptr; 2418 2419 if (!Old) { 2420 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); 2421 Diag(Shadow->getTargetDecl()->getLocation(), 2422 diag::note_using_decl_target); 2423 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 2424 return true; 2425 } 2426 OldD = Old; 2427 } else { 2428 Diag(New->getLocation(), diag::err_redefinition_different_kind) 2429 << New->getDeclName(); 2430 Diag(OldD->getLocation(), diag::note_previous_definition); 2431 return true; 2432 } 2433 } 2434 2435 // If the old declaration is invalid, just give up here. 2436 if (Old->isInvalidDecl()) 2437 return true; 2438 2439 diag::kind PrevDiag; 2440 SourceLocation OldLocation; 2441 std::tie(PrevDiag, OldLocation) = 2442 getNoteDiagForInvalidRedeclaration(Old, New); 2443 2444 // Don't complain about this if we're in GNU89 mode and the old function 2445 // is an extern inline function. 2446 // Don't complain about specializations. They are not supposed to have 2447 // storage classes. 2448 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && 2449 New->getStorageClass() == SC_Static && 2450 Old->hasExternalFormalLinkage() && 2451 !New->getTemplateSpecializationInfo() && 2452 !canRedefineFunction(Old, getLangOpts())) { 2453 if (getLangOpts().MicrosoftExt) { 2454 Diag(New->getLocation(), diag::ext_static_non_static) << New; 2455 Diag(OldLocation, PrevDiag); 2456 } else { 2457 Diag(New->getLocation(), diag::err_static_non_static) << New; 2458 Diag(OldLocation, PrevDiag); 2459 return true; 2460 } 2461 } 2462 2463 2464 // If a function is first declared with a calling convention, but is later 2465 // declared or defined without one, all following decls assume the calling 2466 // convention of the first. 2467 // 2468 // It's OK if a function is first declared without a calling convention, 2469 // but is later declared or defined with the default calling convention. 2470 // 2471 // To test if either decl has an explicit calling convention, we look for 2472 // AttributedType sugar nodes on the type as written. If they are missing or 2473 // were canonicalized away, we assume the calling convention was implicit. 2474 // 2475 // Note also that we DO NOT return at this point, because we still have 2476 // other tests to run. 2477 QualType OldQType = Context.getCanonicalType(Old->getType()); 2478 QualType NewQType = Context.getCanonicalType(New->getType()); 2479 const FunctionType *OldType = cast<FunctionType>(OldQType); 2480 const FunctionType *NewType = cast<FunctionType>(NewQType); 2481 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 2482 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 2483 bool RequiresAdjustment = false; 2484 2485 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { 2486 FunctionDecl *First = Old->getFirstDecl(); 2487 const FunctionType *FT = 2488 First->getType().getCanonicalType()->castAs<FunctionType>(); 2489 FunctionType::ExtInfo FI = FT->getExtInfo(); 2490 bool NewCCExplicit = getCallingConvAttributedType(New->getType()); 2491 if (!NewCCExplicit) { 2492 // Inherit the CC from the previous declaration if it was specified 2493 // there but not here. 2494 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 2495 RequiresAdjustment = true; 2496 } else { 2497 // Calling conventions aren't compatible, so complain. 2498 bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); 2499 Diag(New->getLocation(), diag::err_cconv_change) 2500 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 2501 << !FirstCCExplicit 2502 << (!FirstCCExplicit ? "" : 2503 FunctionType::getNameForCallConv(FI.getCC())); 2504 2505 // Put the note on the first decl, since it is the one that matters. 2506 Diag(First->getLocation(), diag::note_previous_declaration); 2507 return true; 2508 } 2509 } 2510 2511 // FIXME: diagnose the other way around? 2512 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { 2513 NewTypeInfo = NewTypeInfo.withNoReturn(true); 2514 RequiresAdjustment = true; 2515 } 2516 2517 // Merge regparm attribute. 2518 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || 2519 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { 2520 if (NewTypeInfo.getHasRegParm()) { 2521 Diag(New->getLocation(), diag::err_regparm_mismatch) 2522 << NewType->getRegParmType() 2523 << OldType->getRegParmType(); 2524 Diag(OldLocation, diag::note_previous_declaration); 2525 return true; 2526 } 2527 2528 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); 2529 RequiresAdjustment = true; 2530 } 2531 2532 // Merge ns_returns_retained attribute. 2533 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { 2534 if (NewTypeInfo.getProducesResult()) { 2535 Diag(New->getLocation(), diag::err_returns_retained_mismatch); 2536 Diag(OldLocation, diag::note_previous_declaration); 2537 return true; 2538 } 2539 2540 NewTypeInfo = NewTypeInfo.withProducesResult(true); 2541 RequiresAdjustment = true; 2542 } 2543 2544 if (RequiresAdjustment) { 2545 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); 2546 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); 2547 New->setType(QualType(AdjustedType, 0)); 2548 NewQType = Context.getCanonicalType(New->getType()); 2549 NewType = cast<FunctionType>(NewQType); 2550 } 2551 2552 // If this redeclaration makes the function inline, we may need to add it to 2553 // UndefinedButUsed. 2554 if (!Old->isInlined() && New->isInlined() && 2555 !New->hasAttr<GNUInlineAttr>() && 2556 (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) && 2557 Old->isUsed(false) && 2558 !Old->isDefined() && !New->isThisDeclarationADefinition()) 2559 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 2560 SourceLocation())); 2561 2562 // If this redeclaration makes it newly gnu_inline, we don't want to warn 2563 // about it. 2564 if (New->hasAttr<GNUInlineAttr>() && 2565 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { 2566 UndefinedButUsed.erase(Old->getCanonicalDecl()); 2567 } 2568 2569 if (getLangOpts().CPlusPlus) { 2570 // (C++98 13.1p2): 2571 // Certain function declarations cannot be overloaded: 2572 // -- Function declarations that differ only in the return type 2573 // cannot be overloaded. 2574 2575 // Go back to the type source info to compare the declared return types, 2576 // per C++1y [dcl.type.auto]p13: 2577 // Redeclarations or specializations of a function or function template 2578 // with a declared return type that uses a placeholder type shall also 2579 // use that placeholder, not a deduced type. 2580 QualType OldDeclaredReturnType = 2581 (Old->getTypeSourceInfo() 2582 ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>() 2583 : OldType)->getReturnType(); 2584 QualType NewDeclaredReturnType = 2585 (New->getTypeSourceInfo() 2586 ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>() 2587 : NewType)->getReturnType(); 2588 QualType ResQT; 2589 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && 2590 !((NewQType->isDependentType() || OldQType->isDependentType()) && 2591 New->isLocalExternDecl())) { 2592 if (NewDeclaredReturnType->isObjCObjectPointerType() && 2593 OldDeclaredReturnType->isObjCObjectPointerType()) 2594 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); 2595 if (ResQT.isNull()) { 2596 if (New->isCXXClassMember() && New->isOutOfLine()) 2597 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) 2598 << New << New->getReturnTypeSourceRange(); 2599 else 2600 Diag(New->getLocation(), diag::err_ovl_diff_return_type) 2601 << New->getReturnTypeSourceRange(); 2602 Diag(OldLocation, PrevDiag) << Old << Old->getType() 2603 << Old->getReturnTypeSourceRange(); 2604 return true; 2605 } 2606 else 2607 NewQType = ResQT; 2608 } 2609 2610 QualType OldReturnType = OldType->getReturnType(); 2611 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); 2612 if (OldReturnType != NewReturnType) { 2613 // If this function has a deduced return type and has already been 2614 // defined, copy the deduced value from the old declaration. 2615 AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); 2616 if (OldAT && OldAT->isDeduced()) { 2617 New->setType( 2618 SubstAutoType(New->getType(), 2619 OldAT->isDependentType() ? Context.DependentTy 2620 : OldAT->getDeducedType())); 2621 NewQType = Context.getCanonicalType( 2622 SubstAutoType(NewQType, 2623 OldAT->isDependentType() ? Context.DependentTy 2624 : OldAT->getDeducedType())); 2625 } 2626 } 2627 2628 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 2629 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 2630 if (OldMethod && NewMethod) { 2631 // Preserve triviality. 2632 NewMethod->setTrivial(OldMethod->isTrivial()); 2633 2634 // MSVC allows explicit template specialization at class scope: 2635 // 2 CXXMethodDecls referring to the same function will be injected. 2636 // We don't want a redeclaration error. 2637 bool IsClassScopeExplicitSpecialization = 2638 OldMethod->isFunctionTemplateSpecialization() && 2639 NewMethod->isFunctionTemplateSpecialization(); 2640 bool isFriend = NewMethod->getFriendObjectKind(); 2641 2642 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && 2643 !IsClassScopeExplicitSpecialization) { 2644 // -- Member function declarations with the same name and the 2645 // same parameter types cannot be overloaded if any of them 2646 // is a static member function declaration. 2647 if (OldMethod->isStatic() != NewMethod->isStatic()) { 2648 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); 2649 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 2650 return true; 2651 } 2652 2653 // C++ [class.mem]p1: 2654 // [...] A member shall not be declared twice in the 2655 // member-specification, except that a nested class or member 2656 // class template can be declared and then later defined. 2657 if (ActiveTemplateInstantiations.empty()) { 2658 unsigned NewDiag; 2659 if (isa<CXXConstructorDecl>(OldMethod)) 2660 NewDiag = diag::err_constructor_redeclared; 2661 else if (isa<CXXDestructorDecl>(NewMethod)) 2662 NewDiag = diag::err_destructor_redeclared; 2663 else if (isa<CXXConversionDecl>(NewMethod)) 2664 NewDiag = diag::err_conv_function_redeclared; 2665 else 2666 NewDiag = diag::err_member_redeclared; 2667 2668 Diag(New->getLocation(), NewDiag); 2669 } else { 2670 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) 2671 << New << New->getType(); 2672 } 2673 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 2674 2675 // Complain if this is an explicit declaration of a special 2676 // member that was initially declared implicitly. 2677 // 2678 // As an exception, it's okay to befriend such methods in order 2679 // to permit the implicit constructor/destructor/operator calls. 2680 } else if (OldMethod->isImplicit()) { 2681 if (isFriend) { 2682 NewMethod->setImplicit(); 2683 } else { 2684 Diag(NewMethod->getLocation(), 2685 diag::err_definition_of_implicitly_declared_member) 2686 << New << getSpecialMember(OldMethod); 2687 return true; 2688 } 2689 } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) { 2690 Diag(NewMethod->getLocation(), 2691 diag::err_definition_of_explicitly_defaulted_member) 2692 << getSpecialMember(OldMethod); 2693 return true; 2694 } 2695 } 2696 2697 // C++11 [dcl.attr.noreturn]p1: 2698 // The first declaration of a function shall specify the noreturn 2699 // attribute if any declaration of that function specifies the noreturn 2700 // attribute. 2701 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>(); 2702 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) { 2703 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl); 2704 Diag(Old->getFirstDecl()->getLocation(), 2705 diag::note_noreturn_missing_first_decl); 2706 } 2707 2708 // C++11 [dcl.attr.depend]p2: 2709 // The first declaration of a function shall specify the 2710 // carries_dependency attribute for its declarator-id if any declaration 2711 // of the function specifies the carries_dependency attribute. 2712 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); 2713 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { 2714 Diag(CDA->getLocation(), 2715 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; 2716 Diag(Old->getFirstDecl()->getLocation(), 2717 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; 2718 } 2719 2720 // (C++98 8.3.5p3): 2721 // All declarations for a function shall agree exactly in both the 2722 // return type and the parameter-type-list. 2723 // We also want to respect all the extended bits except noreturn. 2724 2725 // noreturn should now match unless the old type info didn't have it. 2726 QualType OldQTypeForComparison = OldQType; 2727 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { 2728 assert(OldQType == QualType(OldType, 0)); 2729 const FunctionType *OldTypeForComparison 2730 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); 2731 OldQTypeForComparison = QualType(OldTypeForComparison, 0); 2732 assert(OldQTypeForComparison.isCanonical()); 2733 } 2734 2735 if (haveIncompatibleLanguageLinkages(Old, New)) { 2736 // As a special case, retain the language linkage from previous 2737 // declarations of a friend function as an extension. 2738 // 2739 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC 2740 // and is useful because there's otherwise no way to specify language 2741 // linkage within class scope. 2742 // 2743 // Check cautiously as the friend object kind isn't yet complete. 2744 if (New->getFriendObjectKind() != Decl::FOK_None) { 2745 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; 2746 Diag(OldLocation, PrevDiag); 2747 } else { 2748 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 2749 Diag(OldLocation, PrevDiag); 2750 return true; 2751 } 2752 } 2753 2754 if (OldQTypeForComparison == NewQType) 2755 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 2756 2757 if ((NewQType->isDependentType() || OldQType->isDependentType()) && 2758 New->isLocalExternDecl()) { 2759 // It's OK if we couldn't merge types for a local function declaraton 2760 // if either the old or new type is dependent. We'll merge the types 2761 // when we instantiate the function. 2762 return false; 2763 } 2764 2765 // Fall through for conflicting redeclarations and redefinitions. 2766 } 2767 2768 // C: Function types need to be compatible, not identical. This handles 2769 // duplicate function decls like "void f(int); void f(enum X);" properly. 2770 if (!getLangOpts().CPlusPlus && 2771 Context.typesAreCompatible(OldQType, NewQType)) { 2772 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); 2773 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); 2774 const FunctionProtoType *OldProto = nullptr; 2775 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && 2776 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { 2777 // The old declaration provided a function prototype, but the 2778 // new declaration does not. Merge in the prototype. 2779 assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); 2780 SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); 2781 NewQType = 2782 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, 2783 OldProto->getExtProtoInfo()); 2784 New->setType(NewQType); 2785 New->setHasInheritedPrototype(); 2786 2787 // Synthesize parameters with the same types. 2788 SmallVector<ParmVarDecl*, 16> Params; 2789 for (const auto &ParamType : OldProto->param_types()) { 2790 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), 2791 SourceLocation(), nullptr, 2792 ParamType, /*TInfo=*/nullptr, 2793 SC_None, nullptr); 2794 Param->setScopeInfo(0, Params.size()); 2795 Param->setImplicit(); 2796 Params.push_back(Param); 2797 } 2798 2799 New->setParams(Params); 2800 } 2801 2802 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 2803 } 2804 2805 // GNU C permits a K&R definition to follow a prototype declaration 2806 // if the declared types of the parameters in the K&R definition 2807 // match the types in the prototype declaration, even when the 2808 // promoted types of the parameters from the K&R definition differ 2809 // from the types in the prototype. GCC then keeps the types from 2810 // the prototype. 2811 // 2812 // If a variadic prototype is followed by a non-variadic K&R definition, 2813 // the K&R definition becomes variadic. This is sort of an edge case, but 2814 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and 2815 // C99 6.9.1p8. 2816 if (!getLangOpts().CPlusPlus && 2817 Old->hasPrototype() && !New->hasPrototype() && 2818 New->getType()->getAs<FunctionProtoType>() && 2819 Old->getNumParams() == New->getNumParams()) { 2820 SmallVector<QualType, 16> ArgTypes; 2821 SmallVector<GNUCompatibleParamWarning, 16> Warnings; 2822 const FunctionProtoType *OldProto 2823 = Old->getType()->getAs<FunctionProtoType>(); 2824 const FunctionProtoType *NewProto 2825 = New->getType()->getAs<FunctionProtoType>(); 2826 2827 // Determine whether this is the GNU C extension. 2828 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), 2829 NewProto->getReturnType()); 2830 bool LooseCompatible = !MergedReturn.isNull(); 2831 for (unsigned Idx = 0, End = Old->getNumParams(); 2832 LooseCompatible && Idx != End; ++Idx) { 2833 ParmVarDecl *OldParm = Old->getParamDecl(Idx); 2834 ParmVarDecl *NewParm = New->getParamDecl(Idx); 2835 if (Context.typesAreCompatible(OldParm->getType(), 2836 NewProto->getParamType(Idx))) { 2837 ArgTypes.push_back(NewParm->getType()); 2838 } else if (Context.typesAreCompatible(OldParm->getType(), 2839 NewParm->getType(), 2840 /*CompareUnqualified=*/true)) { 2841 GNUCompatibleParamWarning Warn = { OldParm, NewParm, 2842 NewProto->getParamType(Idx) }; 2843 Warnings.push_back(Warn); 2844 ArgTypes.push_back(NewParm->getType()); 2845 } else 2846 LooseCompatible = false; 2847 } 2848 2849 if (LooseCompatible) { 2850 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { 2851 Diag(Warnings[Warn].NewParm->getLocation(), 2852 diag::ext_param_promoted_not_compatible_with_prototype) 2853 << Warnings[Warn].PromotedType 2854 << Warnings[Warn].OldParm->getType(); 2855 if (Warnings[Warn].OldParm->getLocation().isValid()) 2856 Diag(Warnings[Warn].OldParm->getLocation(), 2857 diag::note_previous_declaration); 2858 } 2859 2860 if (MergeTypeWithOld) 2861 New->setType(Context.getFunctionType(MergedReturn, ArgTypes, 2862 OldProto->getExtProtoInfo())); 2863 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 2864 } 2865 2866 // Fall through to diagnose conflicting types. 2867 } 2868 2869 // A function that has already been declared has been redeclared or 2870 // defined with a different type; show an appropriate diagnostic. 2871 2872 // If the previous declaration was an implicitly-generated builtin 2873 // declaration, then at the very least we should use a specialized note. 2874 unsigned BuiltinID; 2875 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { 2876 // If it's actually a library-defined builtin function like 'malloc' 2877 // or 'printf', just warn about the incompatible redeclaration. 2878 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { 2879 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; 2880 Diag(OldLocation, diag::note_previous_builtin_declaration) 2881 << Old << Old->getType(); 2882 2883 // If this is a global redeclaration, just forget hereafter 2884 // about the "builtin-ness" of the function. 2885 // 2886 // Doing this for local extern declarations is problematic. If 2887 // the builtin declaration remains visible, a second invalid 2888 // local declaration will produce a hard error; if it doesn't 2889 // remain visible, a single bogus local redeclaration (which is 2890 // actually only a warning) could break all the downstream code. 2891 if (!New->getLexicalDeclContext()->isFunctionOrMethod()) 2892 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin); 2893 2894 return false; 2895 } 2896 2897 PrevDiag = diag::note_previous_builtin_declaration; 2898 } 2899 2900 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); 2901 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 2902 return true; 2903 } 2904 2905 /// \brief Completes the merge of two function declarations that are 2906 /// known to be compatible. 2907 /// 2908 /// This routine handles the merging of attributes and other 2909 /// properties of function declarations from the old declaration to 2910 /// the new declaration, once we know that New is in fact a 2911 /// redeclaration of Old. 2912 /// 2913 /// \returns false 2914 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, 2915 Scope *S, bool MergeTypeWithOld) { 2916 // Merge the attributes 2917 mergeDeclAttributes(New, Old); 2918 2919 // Merge "pure" flag. 2920 if (Old->isPure()) 2921 New->setPure(); 2922 2923 // Merge "used" flag. 2924 if (Old->getMostRecentDecl()->isUsed(false)) 2925 New->setIsUsed(); 2926 2927 // Merge attributes from the parameters. These can mismatch with K&R 2928 // declarations. 2929 if (New->getNumParams() == Old->getNumParams()) 2930 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) 2931 mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i), 2932 *this); 2933 2934 if (getLangOpts().CPlusPlus) 2935 return MergeCXXFunctionDecl(New, Old, S); 2936 2937 // Merge the function types so the we get the composite types for the return 2938 // and argument types. Per C11 6.2.7/4, only update the type if the old decl 2939 // was visible. 2940 QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); 2941 if (!Merged.isNull() && MergeTypeWithOld) 2942 New->setType(Merged); 2943 2944 return false; 2945 } 2946 2947 2948 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, 2949 ObjCMethodDecl *oldMethod) { 2950 2951 // Merge the attributes, including deprecated/unavailable 2952 AvailabilityMergeKind MergeKind = 2953 isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration 2954 : AMK_Override; 2955 mergeDeclAttributes(newMethod, oldMethod, MergeKind); 2956 2957 // Merge attributes from the parameters. 2958 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), 2959 oe = oldMethod->param_end(); 2960 for (ObjCMethodDecl::param_iterator 2961 ni = newMethod->param_begin(), ne = newMethod->param_end(); 2962 ni != ne && oi != oe; ++ni, ++oi) 2963 mergeParamDeclAttributes(*ni, *oi, *this); 2964 2965 CheckObjCMethodOverride(newMethod, oldMethod); 2966 } 2967 2968 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and 2969 /// scope as a previous declaration 'Old'. Figure out how to merge their types, 2970 /// emitting diagnostics as appropriate. 2971 /// 2972 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back 2973 /// to here in AddInitializerToDecl. We can't check them before the initializer 2974 /// is attached. 2975 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, 2976 bool MergeTypeWithOld) { 2977 if (New->isInvalidDecl() || Old->isInvalidDecl()) 2978 return; 2979 2980 QualType MergedT; 2981 if (getLangOpts().CPlusPlus) { 2982 if (New->getType()->isUndeducedType()) { 2983 // We don't know what the new type is until the initializer is attached. 2984 return; 2985 } else if (Context.hasSameType(New->getType(), Old->getType())) { 2986 // These could still be something that needs exception specs checked. 2987 return MergeVarDeclExceptionSpecs(New, Old); 2988 } 2989 // C++ [basic.link]p10: 2990 // [...] the types specified by all declarations referring to a given 2991 // object or function shall be identical, except that declarations for an 2992 // array object can specify array types that differ by the presence or 2993 // absence of a major array bound (8.3.4). 2994 else if (Old->getType()->isIncompleteArrayType() && 2995 New->getType()->isArrayType()) { 2996 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 2997 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 2998 if (Context.hasSameType(OldArray->getElementType(), 2999 NewArray->getElementType())) 3000 MergedT = New->getType(); 3001 } else if (Old->getType()->isArrayType() && 3002 New->getType()->isIncompleteArrayType()) { 3003 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 3004 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 3005 if (Context.hasSameType(OldArray->getElementType(), 3006 NewArray->getElementType())) 3007 MergedT = Old->getType(); 3008 } else if (New->getType()->isObjCObjectPointerType() && 3009 Old->getType()->isObjCObjectPointerType()) { 3010 MergedT = Context.mergeObjCGCQualifiers(New->getType(), 3011 Old->getType()); 3012 } 3013 } else { 3014 // C 6.2.7p2: 3015 // All declarations that refer to the same object or function shall have 3016 // compatible type. 3017 MergedT = Context.mergeTypes(New->getType(), Old->getType()); 3018 } 3019 if (MergedT.isNull()) { 3020 // It's OK if we couldn't merge types if either type is dependent, for a 3021 // block-scope variable. In other cases (static data members of class 3022 // templates, variable templates, ...), we require the types to be 3023 // equivalent. 3024 // FIXME: The C++ standard doesn't say anything about this. 3025 if ((New->getType()->isDependentType() || 3026 Old->getType()->isDependentType()) && New->isLocalVarDecl()) { 3027 // If the old type was dependent, we can't merge with it, so the new type 3028 // becomes dependent for now. We'll reproduce the original type when we 3029 // instantiate the TypeSourceInfo for the variable. 3030 if (!New->getType()->isDependentType() && MergeTypeWithOld) 3031 New->setType(Context.DependentTy); 3032 return; 3033 } 3034 3035 // FIXME: Even if this merging succeeds, some other non-visible declaration 3036 // of this variable might have an incompatible type. For instance: 3037 // 3038 // extern int arr[]; 3039 // void f() { extern int arr[2]; } 3040 // void g() { extern int arr[3]; } 3041 // 3042 // Neither C nor C++ requires a diagnostic for this, but we should still try 3043 // to diagnose it. 3044 Diag(New->getLocation(), diag::err_redefinition_different_type) 3045 << New->getDeclName() << New->getType() << Old->getType(); 3046 Diag(Old->getLocation(), diag::note_previous_definition); 3047 return New->setInvalidDecl(); 3048 } 3049 3050 // Don't actually update the type on the new declaration if the old 3051 // declaration was an extern declaration in a different scope. 3052 if (MergeTypeWithOld) 3053 New->setType(MergedT); 3054 } 3055 3056 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, 3057 LookupResult &Previous) { 3058 // C11 6.2.7p4: 3059 // For an identifier with internal or external linkage declared 3060 // in a scope in which a prior declaration of that identifier is 3061 // visible, if the prior declaration specifies internal or 3062 // external linkage, the type of the identifier at the later 3063 // declaration becomes the composite type. 3064 // 3065 // If the variable isn't visible, we do not merge with its type. 3066 if (Previous.isShadowed()) 3067 return false; 3068 3069 if (S.getLangOpts().CPlusPlus) { 3070 // C++11 [dcl.array]p3: 3071 // If there is a preceding declaration of the entity in the same 3072 // scope in which the bound was specified, an omitted array bound 3073 // is taken to be the same as in that earlier declaration. 3074 return NewVD->isPreviousDeclInSameBlockScope() || 3075 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && 3076 !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); 3077 } else { 3078 // If the old declaration was function-local, don't merge with its 3079 // type unless we're in the same function. 3080 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || 3081 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); 3082 } 3083 } 3084 3085 /// MergeVarDecl - We just parsed a variable 'New' which has the same name 3086 /// and scope as a previous declaration 'Old'. Figure out how to resolve this 3087 /// situation, merging decls or emitting diagnostics as appropriate. 3088 /// 3089 /// Tentative definition rules (C99 6.9.2p2) are checked by 3090 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative 3091 /// definitions here, since the initializer hasn't been attached. 3092 /// 3093 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { 3094 // If the new decl is already invalid, don't do any other checking. 3095 if (New->isInvalidDecl()) 3096 return; 3097 3098 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); 3099 3100 // Verify the old decl was also a variable or variable template. 3101 VarDecl *Old = nullptr; 3102 VarTemplateDecl *OldTemplate = nullptr; 3103 if (Previous.isSingleResult()) { 3104 if (NewTemplate) { 3105 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); 3106 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; 3107 } else 3108 Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); 3109 } 3110 if (!Old) { 3111 Diag(New->getLocation(), diag::err_redefinition_different_kind) 3112 << New->getDeclName(); 3113 Diag(Previous.getRepresentativeDecl()->getLocation(), 3114 diag::note_previous_definition); 3115 return New->setInvalidDecl(); 3116 } 3117 3118 if (!shouldLinkPossiblyHiddenDecl(Old, New)) 3119 return; 3120 3121 // Ensure the template parameters are compatible. 3122 if (NewTemplate && 3123 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 3124 OldTemplate->getTemplateParameters(), 3125 /*Complain=*/true, TPL_TemplateMatch)) 3126 return; 3127 3128 // C++ [class.mem]p1: 3129 // A member shall not be declared twice in the member-specification [...] 3130 // 3131 // Here, we need only consider static data members. 3132 if (Old->isStaticDataMember() && !New->isOutOfLine()) { 3133 Diag(New->getLocation(), diag::err_duplicate_member) 3134 << New->getIdentifier(); 3135 Diag(Old->getLocation(), diag::note_previous_declaration); 3136 New->setInvalidDecl(); 3137 } 3138 3139 mergeDeclAttributes(New, Old); 3140 // Warn if an already-declared variable is made a weak_import in a subsequent 3141 // declaration 3142 if (New->hasAttr<WeakImportAttr>() && 3143 Old->getStorageClass() == SC_None && 3144 !Old->hasAttr<WeakImportAttr>()) { 3145 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); 3146 Diag(Old->getLocation(), diag::note_previous_definition); 3147 // Remove weak_import attribute on new declaration. 3148 New->dropAttr<WeakImportAttr>(); 3149 } 3150 3151 // Merge the types. 3152 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); 3153 3154 if (New->isInvalidDecl()) 3155 return; 3156 3157 diag::kind PrevDiag; 3158 SourceLocation OldLocation; 3159 std::tie(PrevDiag, OldLocation) = 3160 getNoteDiagForInvalidRedeclaration(Old, New); 3161 3162 // [dcl.stc]p8: Check if we have a non-static decl followed by a static. 3163 if (New->getStorageClass() == SC_Static && 3164 !New->isStaticDataMember() && 3165 Old->hasExternalFormalLinkage()) { 3166 if (getLangOpts().MicrosoftExt) { 3167 Diag(New->getLocation(), diag::ext_static_non_static) 3168 << New->getDeclName(); 3169 Diag(OldLocation, PrevDiag); 3170 } else { 3171 Diag(New->getLocation(), diag::err_static_non_static) 3172 << New->getDeclName(); 3173 Diag(OldLocation, PrevDiag); 3174 return New->setInvalidDecl(); 3175 } 3176 } 3177 // C99 6.2.2p4: 3178 // For an identifier declared with the storage-class specifier 3179 // extern in a scope in which a prior declaration of that 3180 // identifier is visible,23) if the prior declaration specifies 3181 // internal or external linkage, the linkage of the identifier at 3182 // the later declaration is the same as the linkage specified at 3183 // the prior declaration. If no prior declaration is visible, or 3184 // if the prior declaration specifies no linkage, then the 3185 // identifier has external linkage. 3186 if (New->hasExternalStorage() && Old->hasLinkage()) 3187 /* Okay */; 3188 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && 3189 !New->isStaticDataMember() && 3190 Old->getCanonicalDecl()->getStorageClass() == SC_Static) { 3191 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); 3192 Diag(OldLocation, PrevDiag); 3193 return New->setInvalidDecl(); 3194 } 3195 3196 // Check if extern is followed by non-extern and vice-versa. 3197 if (New->hasExternalStorage() && 3198 !Old->hasLinkage() && Old->isLocalVarDecl()) { 3199 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); 3200 Diag(OldLocation, PrevDiag); 3201 return New->setInvalidDecl(); 3202 } 3203 if (Old->hasLinkage() && New->isLocalVarDecl() && 3204 !New->hasExternalStorage()) { 3205 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); 3206 Diag(OldLocation, PrevDiag); 3207 return New->setInvalidDecl(); 3208 } 3209 3210 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. 3211 3212 // FIXME: The test for external storage here seems wrong? We still 3213 // need to check for mismatches. 3214 if (!New->hasExternalStorage() && !New->isFileVarDecl() && 3215 // Don't complain about out-of-line definitions of static members. 3216 !(Old->getLexicalDeclContext()->isRecord() && 3217 !New->getLexicalDeclContext()->isRecord())) { 3218 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); 3219 Diag(OldLocation, PrevDiag); 3220 return New->setInvalidDecl(); 3221 } 3222 3223 if (New->getTLSKind() != Old->getTLSKind()) { 3224 if (!Old->getTLSKind()) { 3225 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); 3226 Diag(OldLocation, PrevDiag); 3227 } else if (!New->getTLSKind()) { 3228 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); 3229 Diag(OldLocation, PrevDiag); 3230 } else { 3231 // Do not allow redeclaration to change the variable between requiring 3232 // static and dynamic initialization. 3233 // FIXME: GCC allows this, but uses the TLS keyword on the first 3234 // declaration to determine the kind. Do we need to be compatible here? 3235 Diag(New->getLocation(), diag::err_thread_thread_different_kind) 3236 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); 3237 Diag(OldLocation, PrevDiag); 3238 } 3239 } 3240 3241 // C++ doesn't have tentative definitions, so go right ahead and check here. 3242 const VarDecl *Def; 3243 if (getLangOpts().CPlusPlus && 3244 New->isThisDeclarationADefinition() == VarDecl::Definition && 3245 (Def = Old->getDefinition())) { 3246 Diag(New->getLocation(), diag::err_redefinition) << New; 3247 Diag(Def->getLocation(), diag::note_previous_definition); 3248 New->setInvalidDecl(); 3249 return; 3250 } 3251 3252 if (haveIncompatibleLanguageLinkages(Old, New)) { 3253 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 3254 Diag(OldLocation, PrevDiag); 3255 New->setInvalidDecl(); 3256 return; 3257 } 3258 3259 // Merge "used" flag. 3260 if (Old->getMostRecentDecl()->isUsed(false)) 3261 New->setIsUsed(); 3262 3263 // Keep a chain of previous declarations. 3264 New->setPreviousDecl(Old); 3265 if (NewTemplate) 3266 NewTemplate->setPreviousDecl(OldTemplate); 3267 3268 // Inherit access appropriately. 3269 New->setAccess(Old->getAccess()); 3270 if (NewTemplate) 3271 NewTemplate->setAccess(New->getAccess()); 3272 } 3273 3274 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 3275 /// no declarator (e.g. "struct foo;") is parsed. 3276 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, 3277 DeclSpec &DS) { 3278 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg()); 3279 } 3280 3281 static void HandleTagNumbering(Sema &S, const TagDecl *Tag, Scope *TagScope) { 3282 if (!S.Context.getLangOpts().CPlusPlus) 3283 return; 3284 3285 if (isa<CXXRecordDecl>(Tag->getParent())) { 3286 // If this tag is the direct child of a class, number it if 3287 // it is anonymous. 3288 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) 3289 return; 3290 MangleNumberingContext &MCtx = 3291 S.Context.getManglingNumberContext(Tag->getParent()); 3292 S.Context.setManglingNumber( 3293 Tag, MCtx.getManglingNumber(Tag, TagScope->getMSLocalManglingNumber())); 3294 return; 3295 } 3296 3297 // If this tag isn't a direct child of a class, number it if it is local. 3298 Decl *ManglingContextDecl; 3299 if (MangleNumberingContext *MCtx = 3300 S.getCurrentMangleNumberContext(Tag->getDeclContext(), 3301 ManglingContextDecl)) { 3302 S.Context.setManglingNumber( 3303 Tag, 3304 MCtx->getManglingNumber(Tag, TagScope->getMSLocalManglingNumber())); 3305 } 3306 } 3307 3308 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 3309 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template 3310 /// parameters to cope with template friend declarations. 3311 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, 3312 DeclSpec &DS, 3313 MultiTemplateParamsArg TemplateParams, 3314 bool IsExplicitInstantiation) { 3315 Decl *TagD = nullptr; 3316 TagDecl *Tag = nullptr; 3317 if (DS.getTypeSpecType() == DeclSpec::TST_class || 3318 DS.getTypeSpecType() == DeclSpec::TST_struct || 3319 DS.getTypeSpecType() == DeclSpec::TST_interface || 3320 DS.getTypeSpecType() == DeclSpec::TST_union || 3321 DS.getTypeSpecType() == DeclSpec::TST_enum) { 3322 TagD = DS.getRepAsDecl(); 3323 3324 if (!TagD) // We probably had an error 3325 return nullptr; 3326 3327 // Note that the above type specs guarantee that the 3328 // type rep is a Decl, whereas in many of the others 3329 // it's a Type. 3330 if (isa<TagDecl>(TagD)) 3331 Tag = cast<TagDecl>(TagD); 3332 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) 3333 Tag = CTD->getTemplatedDecl(); 3334 } 3335 3336 if (Tag) { 3337 HandleTagNumbering(*this, Tag, S); 3338 Tag->setFreeStanding(); 3339 if (Tag->isInvalidDecl()) 3340 return Tag; 3341 } 3342 3343 if (unsigned TypeQuals = DS.getTypeQualifiers()) { 3344 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object 3345 // or incomplete types shall not be restrict-qualified." 3346 if (TypeQuals & DeclSpec::TQ_restrict) 3347 Diag(DS.getRestrictSpecLoc(), 3348 diag::err_typecheck_invalid_restrict_not_pointer_noarg) 3349 << DS.getSourceRange(); 3350 } 3351 3352 if (DS.isConstexprSpecified()) { 3353 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations 3354 // and definitions of functions and variables. 3355 if (Tag) 3356 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) 3357 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 : 3358 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 : 3359 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 : 3360 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4); 3361 else 3362 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators); 3363 // Don't emit warnings after this error. 3364 return TagD; 3365 } 3366 3367 DiagnoseFunctionSpecifiers(DS); 3368 3369 if (DS.isFriendSpecified()) { 3370 // If we're dealing with a decl but not a TagDecl, assume that 3371 // whatever routines created it handled the friendship aspect. 3372 if (TagD && !Tag) 3373 return nullptr; 3374 return ActOnFriendTypeDecl(S, DS, TemplateParams); 3375 } 3376 3377 CXXScopeSpec &SS = DS.getTypeSpecScope(); 3378 bool IsExplicitSpecialization = 3379 !TemplateParams.empty() && TemplateParams.back()->size() == 0; 3380 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && 3381 !IsExplicitInstantiation && !IsExplicitSpecialization) { 3382 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a 3383 // nested-name-specifier unless it is an explicit instantiation 3384 // or an explicit specialization. 3385 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. 3386 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) 3387 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 : 3388 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 : 3389 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 : 3390 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4) 3391 << SS.getRange(); 3392 return nullptr; 3393 } 3394 3395 // Track whether this decl-specifier declares anything. 3396 bool DeclaresAnything = true; 3397 3398 // Handle anonymous struct definitions. 3399 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { 3400 if (!Record->getDeclName() && Record->isCompleteDefinition() && 3401 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { 3402 if (getLangOpts().CPlusPlus || 3403 Record->getDeclContext()->isRecord()) 3404 return BuildAnonymousStructOrUnion(S, DS, AS, Record, Context.getPrintingPolicy()); 3405 3406 DeclaresAnything = false; 3407 } 3408 } 3409 3410 // Check for Microsoft C extension: anonymous struct member. 3411 if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus && 3412 CurContext->isRecord() && 3413 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { 3414 // Handle 2 kinds of anonymous struct: 3415 // struct STRUCT; 3416 // and 3417 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. 3418 RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag); 3419 if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) || 3420 (DS.getTypeSpecType() == DeclSpec::TST_typename && 3421 DS.getRepAsType().get()->isStructureType())) { 3422 Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct) 3423 << DS.getSourceRange(); 3424 return BuildMicrosoftCAnonymousStruct(S, DS, Record); 3425 } 3426 } 3427 3428 // Skip all the checks below if we have a type error. 3429 if (DS.getTypeSpecType() == DeclSpec::TST_error || 3430 (TagD && TagD->isInvalidDecl())) 3431 return TagD; 3432 3433 if (getLangOpts().CPlusPlus && 3434 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) 3435 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) 3436 if (Enum->enumerator_begin() == Enum->enumerator_end() && 3437 !Enum->getIdentifier() && !Enum->isInvalidDecl()) 3438 DeclaresAnything = false; 3439 3440 if (!DS.isMissingDeclaratorOk()) { 3441 // Customize diagnostic for a typedef missing a name. 3442 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 3443 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name) 3444 << DS.getSourceRange(); 3445 else 3446 DeclaresAnything = false; 3447 } 3448 3449 if (DS.isModulePrivateSpecified() && 3450 Tag && Tag->getDeclContext()->isFunctionOrMethod()) 3451 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) 3452 << Tag->getTagKind() 3453 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); 3454 3455 ActOnDocumentableDecl(TagD); 3456 3457 // C 6.7/2: 3458 // A declaration [...] shall declare at least a declarator [...], a tag, 3459 // or the members of an enumeration. 3460 // C++ [dcl.dcl]p3: 3461 // [If there are no declarators], and except for the declaration of an 3462 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 3463 // names into the program, or shall redeclare a name introduced by a 3464 // previous declaration. 3465 if (!DeclaresAnything) { 3466 // In C, we allow this as a (popular) extension / bug. Don't bother 3467 // producing further diagnostics for redundant qualifiers after this. 3468 Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange(); 3469 return TagD; 3470 } 3471 3472 // C++ [dcl.stc]p1: 3473 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the 3474 // init-declarator-list of the declaration shall not be empty. 3475 // C++ [dcl.fct.spec]p1: 3476 // If a cv-qualifier appears in a decl-specifier-seq, the 3477 // init-declarator-list of the declaration shall not be empty. 3478 // 3479 // Spurious qualifiers here appear to be valid in C. 3480 unsigned DiagID = diag::warn_standalone_specifier; 3481 if (getLangOpts().CPlusPlus) 3482 DiagID = diag::ext_standalone_specifier; 3483 3484 // Note that a linkage-specification sets a storage class, but 3485 // 'extern "C" struct foo;' is actually valid and not theoretically 3486 // useless. 3487 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 3488 if (SCS == DeclSpec::SCS_mutable) 3489 // Since mutable is not a viable storage class specifier in C, there is 3490 // no reason to treat it as an extension. Instead, diagnose as an error. 3491 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); 3492 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) 3493 Diag(DS.getStorageClassSpecLoc(), DiagID) 3494 << DeclSpec::getSpecifierName(SCS); 3495 } 3496 3497 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 3498 Diag(DS.getThreadStorageClassSpecLoc(), DiagID) 3499 << DeclSpec::getSpecifierName(TSCS); 3500 if (DS.getTypeQualifiers()) { 3501 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 3502 Diag(DS.getConstSpecLoc(), DiagID) << "const"; 3503 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 3504 Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; 3505 // Restrict is covered above. 3506 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 3507 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; 3508 } 3509 3510 // Warn about ignored type attributes, for example: 3511 // __attribute__((aligned)) struct A; 3512 // Attributes should be placed after tag to apply to type declaration. 3513 if (!DS.getAttributes().empty()) { 3514 DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); 3515 if (TypeSpecType == DeclSpec::TST_class || 3516 TypeSpecType == DeclSpec::TST_struct || 3517 TypeSpecType == DeclSpec::TST_interface || 3518 TypeSpecType == DeclSpec::TST_union || 3519 TypeSpecType == DeclSpec::TST_enum) { 3520 AttributeList* attrs = DS.getAttributes().getList(); 3521 while (attrs) { 3522 Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored) 3523 << attrs->getName() 3524 << (TypeSpecType == DeclSpec::TST_class ? 0 : 3525 TypeSpecType == DeclSpec::TST_struct ? 1 : 3526 TypeSpecType == DeclSpec::TST_union ? 2 : 3527 TypeSpecType == DeclSpec::TST_interface ? 3 : 4); 3528 attrs = attrs->getNext(); 3529 } 3530 } 3531 } 3532 3533 return TagD; 3534 } 3535 3536 /// We are trying to inject an anonymous member into the given scope; 3537 /// check if there's an existing declaration that can't be overloaded. 3538 /// 3539 /// \return true if this is a forbidden redeclaration 3540 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, 3541 Scope *S, 3542 DeclContext *Owner, 3543 DeclarationName Name, 3544 SourceLocation NameLoc, 3545 unsigned diagnostic) { 3546 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, 3547 Sema::ForRedeclaration); 3548 if (!SemaRef.LookupName(R, S)) return false; 3549 3550 if (R.getAsSingle<TagDecl>()) 3551 return false; 3552 3553 // Pick a representative declaration. 3554 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); 3555 assert(PrevDecl && "Expected a non-null Decl"); 3556 3557 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) 3558 return false; 3559 3560 SemaRef.Diag(NameLoc, diagnostic) << Name; 3561 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 3562 3563 return true; 3564 } 3565 3566 /// InjectAnonymousStructOrUnionMembers - Inject the members of the 3567 /// anonymous struct or union AnonRecord into the owning context Owner 3568 /// and scope S. This routine will be invoked just after we realize 3569 /// that an unnamed union or struct is actually an anonymous union or 3570 /// struct, e.g., 3571 /// 3572 /// @code 3573 /// union { 3574 /// int i; 3575 /// float f; 3576 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and 3577 /// // f into the surrounding scope.x 3578 /// @endcode 3579 /// 3580 /// This routine is recursive, injecting the names of nested anonymous 3581 /// structs/unions into the owning context and scope as well. 3582 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, 3583 DeclContext *Owner, 3584 RecordDecl *AnonRecord, 3585 AccessSpecifier AS, 3586 SmallVectorImpl<NamedDecl *> &Chaining, 3587 bool MSAnonStruct) { 3588 unsigned diagKind 3589 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl 3590 : diag::err_anonymous_struct_member_redecl; 3591 3592 bool Invalid = false; 3593 3594 // Look every FieldDecl and IndirectFieldDecl with a name. 3595 for (auto *D : AnonRecord->decls()) { 3596 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && 3597 cast<NamedDecl>(D)->getDeclName()) { 3598 ValueDecl *VD = cast<ValueDecl>(D); 3599 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), 3600 VD->getLocation(), diagKind)) { 3601 // C++ [class.union]p2: 3602 // The names of the members of an anonymous union shall be 3603 // distinct from the names of any other entity in the 3604 // scope in which the anonymous union is declared. 3605 Invalid = true; 3606 } else { 3607 // C++ [class.union]p2: 3608 // For the purpose of name lookup, after the anonymous union 3609 // definition, the members of the anonymous union are 3610 // considered to have been defined in the scope in which the 3611 // anonymous union is declared. 3612 unsigned OldChainingSize = Chaining.size(); 3613 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) 3614 for (auto *PI : IF->chain()) 3615 Chaining.push_back(PI); 3616 else 3617 Chaining.push_back(VD); 3618 3619 assert(Chaining.size() >= 2); 3620 NamedDecl **NamedChain = 3621 new (SemaRef.Context)NamedDecl*[Chaining.size()]; 3622 for (unsigned i = 0; i < Chaining.size(); i++) 3623 NamedChain[i] = Chaining[i]; 3624 3625 IndirectFieldDecl* IndirectField = 3626 IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(), 3627 VD->getIdentifier(), VD->getType(), 3628 NamedChain, Chaining.size()); 3629 3630 IndirectField->setAccess(AS); 3631 IndirectField->setImplicit(); 3632 SemaRef.PushOnScopeChains(IndirectField, S); 3633 3634 // That includes picking up the appropriate access specifier. 3635 if (AS != AS_none) IndirectField->setAccess(AS); 3636 3637 Chaining.resize(OldChainingSize); 3638 } 3639 } 3640 } 3641 3642 return Invalid; 3643 } 3644 3645 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to 3646 /// a VarDecl::StorageClass. Any error reporting is up to the caller: 3647 /// illegal input values are mapped to SC_None. 3648 static StorageClass 3649 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { 3650 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); 3651 assert(StorageClassSpec != DeclSpec::SCS_typedef && 3652 "Parser allowed 'typedef' as storage class VarDecl."); 3653 switch (StorageClassSpec) { 3654 case DeclSpec::SCS_unspecified: return SC_None; 3655 case DeclSpec::SCS_extern: 3656 if (DS.isExternInLinkageSpec()) 3657 return SC_None; 3658 return SC_Extern; 3659 case DeclSpec::SCS_static: return SC_Static; 3660 case DeclSpec::SCS_auto: return SC_Auto; 3661 case DeclSpec::SCS_register: return SC_Register; 3662 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 3663 // Illegal SCSs map to None: error reporting is up to the caller. 3664 case DeclSpec::SCS_mutable: // Fall through. 3665 case DeclSpec::SCS_typedef: return SC_None; 3666 } 3667 llvm_unreachable("unknown storage class specifier"); 3668 } 3669 3670 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { 3671 assert(Record->hasInClassInitializer()); 3672 3673 for (const auto *I : Record->decls()) { 3674 const auto *FD = dyn_cast<FieldDecl>(I); 3675 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 3676 FD = IFD->getAnonField(); 3677 if (FD && FD->hasInClassInitializer()) 3678 return FD->getLocation(); 3679 } 3680 3681 llvm_unreachable("couldn't find in-class initializer"); 3682 } 3683 3684 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 3685 SourceLocation DefaultInitLoc) { 3686 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 3687 return; 3688 3689 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); 3690 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; 3691 } 3692 3693 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 3694 CXXRecordDecl *AnonUnion) { 3695 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 3696 return; 3697 3698 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); 3699 } 3700 3701 /// BuildAnonymousStructOrUnion - Handle the declaration of an 3702 /// anonymous structure or union. Anonymous unions are a C++ feature 3703 /// (C++ [class.union]) and a C11 feature; anonymous structures 3704 /// are a C11 feature and GNU C++ extension. 3705 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, 3706 AccessSpecifier AS, 3707 RecordDecl *Record, 3708 const PrintingPolicy &Policy) { 3709 DeclContext *Owner = Record->getDeclContext(); 3710 3711 // Diagnose whether this anonymous struct/union is an extension. 3712 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) 3713 Diag(Record->getLocation(), diag::ext_anonymous_union); 3714 else if (!Record->isUnion() && getLangOpts().CPlusPlus) 3715 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); 3716 else if (!Record->isUnion() && !getLangOpts().C11) 3717 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); 3718 3719 // C and C++ require different kinds of checks for anonymous 3720 // structs/unions. 3721 bool Invalid = false; 3722 if (getLangOpts().CPlusPlus) { 3723 const char *PrevSpec = nullptr; 3724 unsigned DiagID; 3725 if (Record->isUnion()) { 3726 // C++ [class.union]p6: 3727 // Anonymous unions declared in a named namespace or in the 3728 // global namespace shall be declared static. 3729 if (DS.getStorageClassSpec() != DeclSpec::SCS_static && 3730 (isa<TranslationUnitDecl>(Owner) || 3731 (isa<NamespaceDecl>(Owner) && 3732 cast<NamespaceDecl>(Owner)->getDeclName()))) { 3733 Diag(Record->getLocation(), diag::err_anonymous_union_not_static) 3734 << FixItHint::CreateInsertion(Record->getLocation(), "static "); 3735 3736 // Recover by adding 'static'. 3737 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), 3738 PrevSpec, DiagID, Policy); 3739 } 3740 // C++ [class.union]p6: 3741 // A storage class is not allowed in a declaration of an 3742 // anonymous union in a class scope. 3743 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 3744 isa<RecordDecl>(Owner)) { 3745 Diag(DS.getStorageClassSpecLoc(), 3746 diag::err_anonymous_union_with_storage_spec) 3747 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 3748 3749 // Recover by removing the storage specifier. 3750 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 3751 SourceLocation(), 3752 PrevSpec, DiagID, Context.getPrintingPolicy()); 3753 } 3754 } 3755 3756 // Ignore const/volatile/restrict qualifiers. 3757 if (DS.getTypeQualifiers()) { 3758 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 3759 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) 3760 << Record->isUnion() << "const" 3761 << FixItHint::CreateRemoval(DS.getConstSpecLoc()); 3762 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 3763 Diag(DS.getVolatileSpecLoc(), 3764 diag::ext_anonymous_struct_union_qualified) 3765 << Record->isUnion() << "volatile" 3766 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); 3767 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 3768 Diag(DS.getRestrictSpecLoc(), 3769 diag::ext_anonymous_struct_union_qualified) 3770 << Record->isUnion() << "restrict" 3771 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); 3772 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 3773 Diag(DS.getAtomicSpecLoc(), 3774 diag::ext_anonymous_struct_union_qualified) 3775 << Record->isUnion() << "_Atomic" 3776 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); 3777 3778 DS.ClearTypeQualifiers(); 3779 } 3780 3781 // C++ [class.union]p2: 3782 // The member-specification of an anonymous union shall only 3783 // define non-static data members. [Note: nested types and 3784 // functions cannot be declared within an anonymous union. ] 3785 for (auto *Mem : Record->decls()) { 3786 if (auto *FD = dyn_cast<FieldDecl>(Mem)) { 3787 // C++ [class.union]p3: 3788 // An anonymous union shall not have private or protected 3789 // members (clause 11). 3790 assert(FD->getAccess() != AS_none); 3791 if (FD->getAccess() != AS_public) { 3792 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) 3793 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected); 3794 Invalid = true; 3795 } 3796 3797 // C++ [class.union]p1 3798 // An object of a class with a non-trivial constructor, a non-trivial 3799 // copy constructor, a non-trivial destructor, or a non-trivial copy 3800 // assignment operator cannot be a member of a union, nor can an 3801 // array of such objects. 3802 if (CheckNontrivialField(FD)) 3803 Invalid = true; 3804 } else if (Mem->isImplicit()) { 3805 // Any implicit members are fine. 3806 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { 3807 // This is a type that showed up in an 3808 // elaborated-type-specifier inside the anonymous struct or 3809 // union, but which actually declares a type outside of the 3810 // anonymous struct or union. It's okay. 3811 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { 3812 if (!MemRecord->isAnonymousStructOrUnion() && 3813 MemRecord->getDeclName()) { 3814 // Visual C++ allows type definition in anonymous struct or union. 3815 if (getLangOpts().MicrosoftExt) 3816 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) 3817 << (int)Record->isUnion(); 3818 else { 3819 // This is a nested type declaration. 3820 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) 3821 << (int)Record->isUnion(); 3822 Invalid = true; 3823 } 3824 } else { 3825 // This is an anonymous type definition within another anonymous type. 3826 // This is a popular extension, provided by Plan9, MSVC and GCC, but 3827 // not part of standard C++. 3828 Diag(MemRecord->getLocation(), 3829 diag::ext_anonymous_record_with_anonymous_type) 3830 << (int)Record->isUnion(); 3831 } 3832 } else if (isa<AccessSpecDecl>(Mem)) { 3833 // Any access specifier is fine. 3834 } else if (isa<StaticAssertDecl>(Mem)) { 3835 // In C++1z, static_assert declarations are also fine. 3836 } else { 3837 // We have something that isn't a non-static data 3838 // member. Complain about it. 3839 unsigned DK = diag::err_anonymous_record_bad_member; 3840 if (isa<TypeDecl>(Mem)) 3841 DK = diag::err_anonymous_record_with_type; 3842 else if (isa<FunctionDecl>(Mem)) 3843 DK = diag::err_anonymous_record_with_function; 3844 else if (isa<VarDecl>(Mem)) 3845 DK = diag::err_anonymous_record_with_static; 3846 3847 // Visual C++ allows type definition in anonymous struct or union. 3848 if (getLangOpts().MicrosoftExt && 3849 DK == diag::err_anonymous_record_with_type) 3850 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) 3851 << (int)Record->isUnion(); 3852 else { 3853 Diag(Mem->getLocation(), DK) 3854 << (int)Record->isUnion(); 3855 Invalid = true; 3856 } 3857 } 3858 } 3859 3860 // C++11 [class.union]p8 (DR1460): 3861 // At most one variant member of a union may have a 3862 // brace-or-equal-initializer. 3863 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && 3864 Owner->isRecord()) 3865 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), 3866 cast<CXXRecordDecl>(Record)); 3867 } 3868 3869 if (!Record->isUnion() && !Owner->isRecord()) { 3870 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) 3871 << (int)getLangOpts().CPlusPlus; 3872 Invalid = true; 3873 } 3874 3875 // Mock up a declarator. 3876 Declarator Dc(DS, Declarator::MemberContext); 3877 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 3878 assert(TInfo && "couldn't build declarator info for anonymous struct/union"); 3879 3880 // Create a declaration for this anonymous struct/union. 3881 NamedDecl *Anon = nullptr; 3882 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { 3883 Anon = FieldDecl::Create(Context, OwningClass, 3884 DS.getLocStart(), 3885 Record->getLocation(), 3886 /*IdentifierInfo=*/nullptr, 3887 Context.getTypeDeclType(Record), 3888 TInfo, 3889 /*BitWidth=*/nullptr, /*Mutable=*/false, 3890 /*InitStyle=*/ICIS_NoInit); 3891 Anon->setAccess(AS); 3892 if (getLangOpts().CPlusPlus) 3893 FieldCollector->Add(cast<FieldDecl>(Anon)); 3894 } else { 3895 DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); 3896 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); 3897 if (SCSpec == DeclSpec::SCS_mutable) { 3898 // mutable can only appear on non-static class members, so it's always 3899 // an error here 3900 Diag(Record->getLocation(), diag::err_mutable_nonmember); 3901 Invalid = true; 3902 SC = SC_None; 3903 } 3904 3905 Anon = VarDecl::Create(Context, Owner, 3906 DS.getLocStart(), 3907 Record->getLocation(), /*IdentifierInfo=*/nullptr, 3908 Context.getTypeDeclType(Record), 3909 TInfo, SC); 3910 3911 // Default-initialize the implicit variable. This initialization will be 3912 // trivial in almost all cases, except if a union member has an in-class 3913 // initializer: 3914 // union { int n = 0; }; 3915 ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false); 3916 } 3917 Anon->setImplicit(); 3918 3919 // Mark this as an anonymous struct/union type. 3920 Record->setAnonymousStructOrUnion(true); 3921 3922 // Add the anonymous struct/union object to the current 3923 // context. We'll be referencing this object when we refer to one of 3924 // its members. 3925 Owner->addDecl(Anon); 3926 3927 // Inject the members of the anonymous struct/union into the owning 3928 // context and into the identifier resolver chain for name lookup 3929 // purposes. 3930 SmallVector<NamedDecl*, 2> Chain; 3931 Chain.push_back(Anon); 3932 3933 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, 3934 Chain, false)) 3935 Invalid = true; 3936 3937 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { 3938 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 3939 Decl *ManglingContextDecl; 3940 if (MangleNumberingContext *MCtx = 3941 getCurrentMangleNumberContext(NewVD->getDeclContext(), 3942 ManglingContextDecl)) { 3943 Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber())); 3944 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 3945 } 3946 } 3947 } 3948 3949 if (Invalid) 3950 Anon->setInvalidDecl(); 3951 3952 return Anon; 3953 } 3954 3955 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an 3956 /// Microsoft C anonymous structure. 3957 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx 3958 /// Example: 3959 /// 3960 /// struct A { int a; }; 3961 /// struct B { struct A; int b; }; 3962 /// 3963 /// void foo() { 3964 /// B var; 3965 /// var.a = 3; 3966 /// } 3967 /// 3968 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, 3969 RecordDecl *Record) { 3970 3971 // If there is no Record, get the record via the typedef. 3972 if (!Record) 3973 Record = DS.getRepAsType().get()->getAsStructureType()->getDecl(); 3974 3975 // Mock up a declarator. 3976 Declarator Dc(DS, Declarator::TypeNameContext); 3977 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 3978 assert(TInfo && "couldn't build declarator info for anonymous struct"); 3979 3980 // Create a declaration for this anonymous struct. 3981 NamedDecl *Anon = FieldDecl::Create(Context, 3982 cast<RecordDecl>(CurContext), 3983 DS.getLocStart(), 3984 DS.getLocStart(), 3985 /*IdentifierInfo=*/nullptr, 3986 Context.getTypeDeclType(Record), 3987 TInfo, 3988 /*BitWidth=*/nullptr, /*Mutable=*/false, 3989 /*InitStyle=*/ICIS_NoInit); 3990 Anon->setImplicit(); 3991 3992 // Add the anonymous struct object to the current context. 3993 CurContext->addDecl(Anon); 3994 3995 // Inject the members of the anonymous struct into the current 3996 // context and into the identifier resolver chain for name lookup 3997 // purposes. 3998 SmallVector<NamedDecl*, 2> Chain; 3999 Chain.push_back(Anon); 4000 4001 RecordDecl *RecordDef = Record->getDefinition(); 4002 if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext, 4003 RecordDef, AS_none, 4004 Chain, true)) 4005 Anon->setInvalidDecl(); 4006 4007 return Anon; 4008 } 4009 4010 /// GetNameForDeclarator - Determine the full declaration name for the 4011 /// given Declarator. 4012 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { 4013 return GetNameFromUnqualifiedId(D.getName()); 4014 } 4015 4016 /// \brief Retrieves the declaration name from a parsed unqualified-id. 4017 DeclarationNameInfo 4018 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { 4019 DeclarationNameInfo NameInfo; 4020 NameInfo.setLoc(Name.StartLocation); 4021 4022 switch (Name.getKind()) { 4023 4024 case UnqualifiedId::IK_ImplicitSelfParam: 4025 case UnqualifiedId::IK_Identifier: 4026 NameInfo.setName(Name.Identifier); 4027 NameInfo.setLoc(Name.StartLocation); 4028 return NameInfo; 4029 4030 case UnqualifiedId::IK_OperatorFunctionId: 4031 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( 4032 Name.OperatorFunctionId.Operator)); 4033 NameInfo.setLoc(Name.StartLocation); 4034 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc 4035 = Name.OperatorFunctionId.SymbolLocations[0]; 4036 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc 4037 = Name.EndLocation.getRawEncoding(); 4038 return NameInfo; 4039 4040 case UnqualifiedId::IK_LiteralOperatorId: 4041 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( 4042 Name.Identifier)); 4043 NameInfo.setLoc(Name.StartLocation); 4044 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); 4045 return NameInfo; 4046 4047 case UnqualifiedId::IK_ConversionFunctionId: { 4048 TypeSourceInfo *TInfo; 4049 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); 4050 if (Ty.isNull()) 4051 return DeclarationNameInfo(); 4052 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( 4053 Context.getCanonicalType(Ty))); 4054 NameInfo.setLoc(Name.StartLocation); 4055 NameInfo.setNamedTypeInfo(TInfo); 4056 return NameInfo; 4057 } 4058 4059 case UnqualifiedId::IK_ConstructorName: { 4060 TypeSourceInfo *TInfo; 4061 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); 4062 if (Ty.isNull()) 4063 return DeclarationNameInfo(); 4064 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 4065 Context.getCanonicalType(Ty))); 4066 NameInfo.setLoc(Name.StartLocation); 4067 NameInfo.setNamedTypeInfo(TInfo); 4068 return NameInfo; 4069 } 4070 4071 case UnqualifiedId::IK_ConstructorTemplateId: { 4072 // In well-formed code, we can only have a constructor 4073 // template-id that refers to the current context, so go there 4074 // to find the actual type being constructed. 4075 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); 4076 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) 4077 return DeclarationNameInfo(); 4078 4079 // Determine the type of the class being constructed. 4080 QualType CurClassType = Context.getTypeDeclType(CurClass); 4081 4082 // FIXME: Check two things: that the template-id names the same type as 4083 // CurClassType, and that the template-id does not occur when the name 4084 // was qualified. 4085 4086 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 4087 Context.getCanonicalType(CurClassType))); 4088 NameInfo.setLoc(Name.StartLocation); 4089 // FIXME: should we retrieve TypeSourceInfo? 4090 NameInfo.setNamedTypeInfo(nullptr); 4091 return NameInfo; 4092 } 4093 4094 case UnqualifiedId::IK_DestructorName: { 4095 TypeSourceInfo *TInfo; 4096 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); 4097 if (Ty.isNull()) 4098 return DeclarationNameInfo(); 4099 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( 4100 Context.getCanonicalType(Ty))); 4101 NameInfo.setLoc(Name.StartLocation); 4102 NameInfo.setNamedTypeInfo(TInfo); 4103 return NameInfo; 4104 } 4105 4106 case UnqualifiedId::IK_TemplateId: { 4107 TemplateName TName = Name.TemplateId->Template.get(); 4108 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; 4109 return Context.getNameForTemplate(TName, TNameLoc); 4110 } 4111 4112 } // switch (Name.getKind()) 4113 4114 llvm_unreachable("Unknown name kind"); 4115 } 4116 4117 static QualType getCoreType(QualType Ty) { 4118 do { 4119 if (Ty->isPointerType() || Ty->isReferenceType()) 4120 Ty = Ty->getPointeeType(); 4121 else if (Ty->isArrayType()) 4122 Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); 4123 else 4124 return Ty.withoutLocalFastQualifiers(); 4125 } while (true); 4126 } 4127 4128 /// hasSimilarParameters - Determine whether the C++ functions Declaration 4129 /// and Definition have "nearly" matching parameters. This heuristic is 4130 /// used to improve diagnostics in the case where an out-of-line function 4131 /// definition doesn't match any declaration within the class or namespace. 4132 /// Also sets Params to the list of indices to the parameters that differ 4133 /// between the declaration and the definition. If hasSimilarParameters 4134 /// returns true and Params is empty, then all of the parameters match. 4135 static bool hasSimilarParameters(ASTContext &Context, 4136 FunctionDecl *Declaration, 4137 FunctionDecl *Definition, 4138 SmallVectorImpl<unsigned> &Params) { 4139 Params.clear(); 4140 if (Declaration->param_size() != Definition->param_size()) 4141 return false; 4142 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { 4143 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); 4144 QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); 4145 4146 // The parameter types are identical 4147 if (Context.hasSameType(DefParamTy, DeclParamTy)) 4148 continue; 4149 4150 QualType DeclParamBaseTy = getCoreType(DeclParamTy); 4151 QualType DefParamBaseTy = getCoreType(DefParamTy); 4152 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); 4153 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); 4154 4155 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || 4156 (DeclTyName && DeclTyName == DefTyName)) 4157 Params.push_back(Idx); 4158 else // The two parameters aren't even close 4159 return false; 4160 } 4161 4162 return true; 4163 } 4164 4165 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given 4166 /// declarator needs to be rebuilt in the current instantiation. 4167 /// Any bits of declarator which appear before the name are valid for 4168 /// consideration here. That's specifically the type in the decl spec 4169 /// and the base type in any member-pointer chunks. 4170 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, 4171 DeclarationName Name) { 4172 // The types we specifically need to rebuild are: 4173 // - typenames, typeofs, and decltypes 4174 // - types which will become injected class names 4175 // Of course, we also need to rebuild any type referencing such a 4176 // type. It's safest to just say "dependent", but we call out a 4177 // few cases here. 4178 4179 DeclSpec &DS = D.getMutableDeclSpec(); 4180 switch (DS.getTypeSpecType()) { 4181 case DeclSpec::TST_typename: 4182 case DeclSpec::TST_typeofType: 4183 case DeclSpec::TST_underlyingType: 4184 case DeclSpec::TST_atomic: { 4185 // Grab the type from the parser. 4186 TypeSourceInfo *TSI = nullptr; 4187 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); 4188 if (T.isNull() || !T->isDependentType()) break; 4189 4190 // Make sure there's a type source info. This isn't really much 4191 // of a waste; most dependent types should have type source info 4192 // attached already. 4193 if (!TSI) 4194 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); 4195 4196 // Rebuild the type in the current instantiation. 4197 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); 4198 if (!TSI) return true; 4199 4200 // Store the new type back in the decl spec. 4201 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); 4202 DS.UpdateTypeRep(LocType); 4203 break; 4204 } 4205 4206 case DeclSpec::TST_decltype: 4207 case DeclSpec::TST_typeofExpr: { 4208 Expr *E = DS.getRepAsExpr(); 4209 ExprResult Result = S.RebuildExprInCurrentInstantiation(E); 4210 if (Result.isInvalid()) return true; 4211 DS.UpdateExprRep(Result.get()); 4212 break; 4213 } 4214 4215 default: 4216 // Nothing to do for these decl specs. 4217 break; 4218 } 4219 4220 // It doesn't matter what order we do this in. 4221 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { 4222 DeclaratorChunk &Chunk = D.getTypeObject(I); 4223 4224 // The only type information in the declarator which can come 4225 // before the declaration name is the base type of a member 4226 // pointer. 4227 if (Chunk.Kind != DeclaratorChunk::MemberPointer) 4228 continue; 4229 4230 // Rebuild the scope specifier in-place. 4231 CXXScopeSpec &SS = Chunk.Mem.Scope(); 4232 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) 4233 return true; 4234 } 4235 4236 return false; 4237 } 4238 4239 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { 4240 D.setFunctionDefinitionKind(FDK_Declaration); 4241 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); 4242 4243 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && 4244 Dcl && Dcl->getDeclContext()->isFileContext()) 4245 Dcl->setTopLevelDeclInObjCContainer(); 4246 4247 return Dcl; 4248 } 4249 4250 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: 4251 /// If T is the name of a class, then each of the following shall have a 4252 /// name different from T: 4253 /// - every static data member of class T; 4254 /// - every member function of class T 4255 /// - every member of class T that is itself a type; 4256 /// \returns true if the declaration name violates these rules. 4257 bool Sema::DiagnoseClassNameShadow(DeclContext *DC, 4258 DeclarationNameInfo NameInfo) { 4259 DeclarationName Name = NameInfo.getName(); 4260 4261 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 4262 if (Record->getIdentifier() && Record->getDeclName() == Name) { 4263 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; 4264 return true; 4265 } 4266 4267 return false; 4268 } 4269 4270 /// \brief Diagnose a declaration whose declarator-id has the given 4271 /// nested-name-specifier. 4272 /// 4273 /// \param SS The nested-name-specifier of the declarator-id. 4274 /// 4275 /// \param DC The declaration context to which the nested-name-specifier 4276 /// resolves. 4277 /// 4278 /// \param Name The name of the entity being declared. 4279 /// 4280 /// \param Loc The location of the name of the entity being declared. 4281 /// 4282 /// \returns true if we cannot safely recover from this error, false otherwise. 4283 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, 4284 DeclarationName Name, 4285 SourceLocation Loc) { 4286 DeclContext *Cur = CurContext; 4287 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) 4288 Cur = Cur->getParent(); 4289 4290 // If the user provided a superfluous scope specifier that refers back to the 4291 // class in which the entity is already declared, diagnose and ignore it. 4292 // 4293 // class X { 4294 // void X::f(); 4295 // }; 4296 // 4297 // Note, it was once ill-formed to give redundant qualification in all 4298 // contexts, but that rule was removed by DR482. 4299 if (Cur->Equals(DC)) { 4300 if (Cur->isRecord()) { 4301 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification 4302 : diag::err_member_extra_qualification) 4303 << Name << FixItHint::CreateRemoval(SS.getRange()); 4304 SS.clear(); 4305 } else { 4306 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; 4307 } 4308 return false; 4309 } 4310 4311 // Check whether the qualifying scope encloses the scope of the original 4312 // declaration. 4313 if (!Cur->Encloses(DC)) { 4314 if (Cur->isRecord()) 4315 Diag(Loc, diag::err_member_qualification) 4316 << Name << SS.getRange(); 4317 else if (isa<TranslationUnitDecl>(DC)) 4318 Diag(Loc, diag::err_invalid_declarator_global_scope) 4319 << Name << SS.getRange(); 4320 else if (isa<FunctionDecl>(Cur)) 4321 Diag(Loc, diag::err_invalid_declarator_in_function) 4322 << Name << SS.getRange(); 4323 else if (isa<BlockDecl>(Cur)) 4324 Diag(Loc, diag::err_invalid_declarator_in_block) 4325 << Name << SS.getRange(); 4326 else 4327 Diag(Loc, diag::err_invalid_declarator_scope) 4328 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); 4329 4330 return true; 4331 } 4332 4333 if (Cur->isRecord()) { 4334 // Cannot qualify members within a class. 4335 Diag(Loc, diag::err_member_qualification) 4336 << Name << SS.getRange(); 4337 SS.clear(); 4338 4339 // C++ constructors and destructors with incorrect scopes can break 4340 // our AST invariants by having the wrong underlying types. If 4341 // that's the case, then drop this declaration entirely. 4342 if ((Name.getNameKind() == DeclarationName::CXXConstructorName || 4343 Name.getNameKind() == DeclarationName::CXXDestructorName) && 4344 !Context.hasSameType(Name.getCXXNameType(), 4345 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) 4346 return true; 4347 4348 return false; 4349 } 4350 4351 // C++11 [dcl.meaning]p1: 4352 // [...] "The nested-name-specifier of the qualified declarator-id shall 4353 // not begin with a decltype-specifer" 4354 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); 4355 while (SpecLoc.getPrefix()) 4356 SpecLoc = SpecLoc.getPrefix(); 4357 if (dyn_cast_or_null<DecltypeType>( 4358 SpecLoc.getNestedNameSpecifier()->getAsType())) 4359 Diag(Loc, diag::err_decltype_in_declarator) 4360 << SpecLoc.getTypeLoc().getSourceRange(); 4361 4362 return false; 4363 } 4364 4365 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, 4366 MultiTemplateParamsArg TemplateParamLists) { 4367 // TODO: consider using NameInfo for diagnostic. 4368 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 4369 DeclarationName Name = NameInfo.getName(); 4370 4371 // All of these full declarators require an identifier. If it doesn't have 4372 // one, the ParsedFreeStandingDeclSpec action should be used. 4373 if (!Name) { 4374 if (!D.isInvalidType()) // Reject this if we think it is valid. 4375 Diag(D.getDeclSpec().getLocStart(), 4376 diag::err_declarator_need_ident) 4377 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 4378 return nullptr; 4379 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) 4380 return nullptr; 4381 4382 // The scope passed in may not be a decl scope. Zip up the scope tree until 4383 // we find one that is. 4384 while ((S->getFlags() & Scope::DeclScope) == 0 || 4385 (S->getFlags() & Scope::TemplateParamScope) != 0) 4386 S = S->getParent(); 4387 4388 DeclContext *DC = CurContext; 4389 if (D.getCXXScopeSpec().isInvalid()) 4390 D.setInvalidType(); 4391 else if (D.getCXXScopeSpec().isSet()) { 4392 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 4393 UPPC_DeclarationQualifier)) 4394 return nullptr; 4395 4396 bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); 4397 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); 4398 if (!DC || isa<EnumDecl>(DC)) { 4399 // If we could not compute the declaration context, it's because the 4400 // declaration context is dependent but does not refer to a class, 4401 // class template, or class template partial specialization. Complain 4402 // and return early, to avoid the coming semantic disaster. 4403 Diag(D.getIdentifierLoc(), 4404 diag::err_template_qualified_declarator_no_match) 4405 << D.getCXXScopeSpec().getScopeRep() 4406 << D.getCXXScopeSpec().getRange(); 4407 return nullptr; 4408 } 4409 bool IsDependentContext = DC->isDependentContext(); 4410 4411 if (!IsDependentContext && 4412 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) 4413 return nullptr; 4414 4415 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { 4416 Diag(D.getIdentifierLoc(), 4417 diag::err_member_def_undefined_record) 4418 << Name << DC << D.getCXXScopeSpec().getRange(); 4419 D.setInvalidType(); 4420 } else if (!D.getDeclSpec().isFriendSpecified()) { 4421 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC, 4422 Name, D.getIdentifierLoc())) { 4423 if (DC->isRecord()) 4424 return nullptr; 4425 4426 D.setInvalidType(); 4427 } 4428 } 4429 4430 // Check whether we need to rebuild the type of the given 4431 // declaration in the current instantiation. 4432 if (EnteringContext && IsDependentContext && 4433 TemplateParamLists.size() != 0) { 4434 ContextRAII SavedContext(*this, DC); 4435 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) 4436 D.setInvalidType(); 4437 } 4438 } 4439 4440 if (DiagnoseClassNameShadow(DC, NameInfo)) 4441 // If this is a typedef, we'll end up spewing multiple diagnostics. 4442 // Just return early; it's safer. 4443 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 4444 return nullptr; 4445 4446 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 4447 QualType R = TInfo->getType(); 4448 4449 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 4450 UPPC_DeclarationType)) 4451 D.setInvalidType(); 4452 4453 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 4454 ForRedeclaration); 4455 4456 // See if this is a redefinition of a variable in the same scope. 4457 if (!D.getCXXScopeSpec().isSet()) { 4458 bool IsLinkageLookup = false; 4459 bool CreateBuiltins = false; 4460 4461 // If the declaration we're planning to build will be a function 4462 // or object with linkage, then look for another declaration with 4463 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). 4464 // 4465 // If the declaration we're planning to build will be declared with 4466 // external linkage in the translation unit, create any builtin with 4467 // the same name. 4468 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 4469 /* Do nothing*/; 4470 else if (CurContext->isFunctionOrMethod() && 4471 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || 4472 R->isFunctionType())) { 4473 IsLinkageLookup = true; 4474 CreateBuiltins = 4475 CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); 4476 } else if (CurContext->getRedeclContext()->isTranslationUnit() && 4477 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) 4478 CreateBuiltins = true; 4479 4480 if (IsLinkageLookup) 4481 Previous.clear(LookupRedeclarationWithLinkage); 4482 4483 LookupName(Previous, S, CreateBuiltins); 4484 } else { // Something like "int foo::x;" 4485 LookupQualifiedName(Previous, DC); 4486 4487 // C++ [dcl.meaning]p1: 4488 // When the declarator-id is qualified, the declaration shall refer to a 4489 // previously declared member of the class or namespace to which the 4490 // qualifier refers (or, in the case of a namespace, of an element of the 4491 // inline namespace set of that namespace (7.3.1)) or to a specialization 4492 // thereof; [...] 4493 // 4494 // Note that we already checked the context above, and that we do not have 4495 // enough information to make sure that Previous contains the declaration 4496 // we want to match. For example, given: 4497 // 4498 // class X { 4499 // void f(); 4500 // void f(float); 4501 // }; 4502 // 4503 // void X::f(int) { } // ill-formed 4504 // 4505 // In this case, Previous will point to the overload set 4506 // containing the two f's declared in X, but neither of them 4507 // matches. 4508 4509 // C++ [dcl.meaning]p1: 4510 // [...] the member shall not merely have been introduced by a 4511 // using-declaration in the scope of the class or namespace nominated by 4512 // the nested-name-specifier of the declarator-id. 4513 RemoveUsingDecls(Previous); 4514 } 4515 4516 if (Previous.isSingleResult() && 4517 Previous.getFoundDecl()->isTemplateParameter()) { 4518 // Maybe we will complain about the shadowed template parameter. 4519 if (!D.isInvalidType()) 4520 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 4521 Previous.getFoundDecl()); 4522 4523 // Just pretend that we didn't see the previous declaration. 4524 Previous.clear(); 4525 } 4526 4527 // In C++, the previous declaration we find might be a tag type 4528 // (class or enum). In this case, the new declaration will hide the 4529 // tag type. Note that this does does not apply if we're declaring a 4530 // typedef (C++ [dcl.typedef]p4). 4531 if (Previous.isSingleTagDecl() && 4532 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) 4533 Previous.clear(); 4534 4535 // Check that there are no default arguments other than in the parameters 4536 // of a function declaration (C++ only). 4537 if (getLangOpts().CPlusPlus) 4538 CheckExtraCXXDefaultArguments(D); 4539 4540 NamedDecl *New; 4541 4542 bool AddToScope = true; 4543 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4544 if (TemplateParamLists.size()) { 4545 Diag(D.getIdentifierLoc(), diag::err_template_typedef); 4546 return nullptr; 4547 } 4548 4549 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); 4550 } else if (R->isFunctionType()) { 4551 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, 4552 TemplateParamLists, 4553 AddToScope); 4554 } else { 4555 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, 4556 AddToScope); 4557 } 4558 4559 if (!New) 4560 return nullptr; 4561 4562 // If this has an identifier and is not an invalid redeclaration or 4563 // function template specialization, add it to the scope stack. 4564 if (New->getDeclName() && AddToScope && 4565 !(D.isRedeclaration() && New->isInvalidDecl())) { 4566 // Only make a locally-scoped extern declaration visible if it is the first 4567 // declaration of this entity. Qualified lookup for such an entity should 4568 // only find this declaration if there is no visible declaration of it. 4569 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl(); 4570 PushOnScopeChains(New, S, AddToContext); 4571 if (!AddToContext) 4572 CurContext->addHiddenDecl(New); 4573 } 4574 4575 return New; 4576 } 4577 4578 /// Helper method to turn variable array types into constant array 4579 /// types in certain situations which would otherwise be errors (for 4580 /// GCC compatibility). 4581 static QualType TryToFixInvalidVariablyModifiedType(QualType T, 4582 ASTContext &Context, 4583 bool &SizeIsNegative, 4584 llvm::APSInt &Oversized) { 4585 // This method tries to turn a variable array into a constant 4586 // array even when the size isn't an ICE. This is necessary 4587 // for compatibility with code that depends on gcc's buggy 4588 // constant expression folding, like struct {char x[(int)(char*)2];} 4589 SizeIsNegative = false; 4590 Oversized = 0; 4591 4592 if (T->isDependentType()) 4593 return QualType(); 4594 4595 QualifierCollector Qs; 4596 const Type *Ty = Qs.strip(T); 4597 4598 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { 4599 QualType Pointee = PTy->getPointeeType(); 4600 QualType FixedType = 4601 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, 4602 Oversized); 4603 if (FixedType.isNull()) return FixedType; 4604 FixedType = Context.getPointerType(FixedType); 4605 return Qs.apply(Context, FixedType); 4606 } 4607 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { 4608 QualType Inner = PTy->getInnerType(); 4609 QualType FixedType = 4610 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, 4611 Oversized); 4612 if (FixedType.isNull()) return FixedType; 4613 FixedType = Context.getParenType(FixedType); 4614 return Qs.apply(Context, FixedType); 4615 } 4616 4617 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); 4618 if (!VLATy) 4619 return QualType(); 4620 // FIXME: We should probably handle this case 4621 if (VLATy->getElementType()->isVariablyModifiedType()) 4622 return QualType(); 4623 4624 llvm::APSInt Res; 4625 if (!VLATy->getSizeExpr() || 4626 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context)) 4627 return QualType(); 4628 4629 // Check whether the array size is negative. 4630 if (Res.isSigned() && Res.isNegative()) { 4631 SizeIsNegative = true; 4632 return QualType(); 4633 } 4634 4635 // Check whether the array is too large to be addressed. 4636 unsigned ActiveSizeBits 4637 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), 4638 Res); 4639 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 4640 Oversized = Res; 4641 return QualType(); 4642 } 4643 4644 return Context.getConstantArrayType(VLATy->getElementType(), 4645 Res, ArrayType::Normal, 0); 4646 } 4647 4648 static void 4649 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { 4650 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { 4651 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); 4652 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), 4653 DstPTL.getPointeeLoc()); 4654 DstPTL.setStarLoc(SrcPTL.getStarLoc()); 4655 return; 4656 } 4657 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { 4658 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); 4659 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), 4660 DstPTL.getInnerLoc()); 4661 DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); 4662 DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); 4663 return; 4664 } 4665 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); 4666 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); 4667 TypeLoc SrcElemTL = SrcATL.getElementLoc(); 4668 TypeLoc DstElemTL = DstATL.getElementLoc(); 4669 DstElemTL.initializeFullCopy(SrcElemTL); 4670 DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); 4671 DstATL.setSizeExpr(SrcATL.getSizeExpr()); 4672 DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); 4673 } 4674 4675 /// Helper method to turn variable array types into constant array 4676 /// types in certain situations which would otherwise be errors (for 4677 /// GCC compatibility). 4678 static TypeSourceInfo* 4679 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, 4680 ASTContext &Context, 4681 bool &SizeIsNegative, 4682 llvm::APSInt &Oversized) { 4683 QualType FixedTy 4684 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, 4685 SizeIsNegative, Oversized); 4686 if (FixedTy.isNull()) 4687 return nullptr; 4688 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); 4689 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), 4690 FixedTInfo->getTypeLoc()); 4691 return FixedTInfo; 4692 } 4693 4694 /// \brief Register the given locally-scoped extern "C" declaration so 4695 /// that it can be found later for redeclarations. We include any extern "C" 4696 /// declaration that is not visible in the translation unit here, not just 4697 /// function-scope declarations. 4698 void 4699 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { 4700 if (!getLangOpts().CPlusPlus && 4701 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) 4702 // Don't need to track declarations in the TU in C. 4703 return; 4704 4705 // Note that we have a locally-scoped external with this name. 4706 // FIXME: There can be multiple such declarations if they are functions marked 4707 // __attribute__((overloadable)) declared in function scope in C. 4708 LocallyScopedExternCDecls[ND->getDeclName()] = ND; 4709 } 4710 4711 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { 4712 if (ExternalSource) { 4713 // Load locally-scoped external decls from the external source. 4714 // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls? 4715 SmallVector<NamedDecl *, 4> Decls; 4716 ExternalSource->ReadLocallyScopedExternCDecls(Decls); 4717 for (unsigned I = 0, N = Decls.size(); I != N; ++I) { 4718 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos 4719 = LocallyScopedExternCDecls.find(Decls[I]->getDeclName()); 4720 if (Pos == LocallyScopedExternCDecls.end()) 4721 LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I]; 4722 } 4723 } 4724 4725 NamedDecl *D = LocallyScopedExternCDecls.lookup(Name); 4726 return D ? D->getMostRecentDecl() : nullptr; 4727 } 4728 4729 /// \brief Diagnose function specifiers on a declaration of an identifier that 4730 /// does not identify a function. 4731 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { 4732 // FIXME: We should probably indicate the identifier in question to avoid 4733 // confusion for constructs like "inline int a(), b;" 4734 if (DS.isInlineSpecified()) 4735 Diag(DS.getInlineSpecLoc(), 4736 diag::err_inline_non_function); 4737 4738 if (DS.isVirtualSpecified()) 4739 Diag(DS.getVirtualSpecLoc(), 4740 diag::err_virtual_non_function); 4741 4742 if (DS.isExplicitSpecified()) 4743 Diag(DS.getExplicitSpecLoc(), 4744 diag::err_explicit_non_function); 4745 4746 if (DS.isNoreturnSpecified()) 4747 Diag(DS.getNoreturnSpecLoc(), 4748 diag::err_noreturn_non_function); 4749 } 4750 4751 NamedDecl* 4752 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, 4753 TypeSourceInfo *TInfo, LookupResult &Previous) { 4754 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). 4755 if (D.getCXXScopeSpec().isSet()) { 4756 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) 4757 << D.getCXXScopeSpec().getRange(); 4758 D.setInvalidType(); 4759 // Pretend we didn't see the scope specifier. 4760 DC = CurContext; 4761 Previous.clear(); 4762 } 4763 4764 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 4765 4766 if (D.getDeclSpec().isConstexprSpecified()) 4767 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) 4768 << 1; 4769 4770 if (D.getName().Kind != UnqualifiedId::IK_Identifier) { 4771 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) 4772 << D.getName().getSourceRange(); 4773 return nullptr; 4774 } 4775 4776 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); 4777 if (!NewTD) return nullptr; 4778 4779 // Handle attributes prior to checking for duplicates in MergeVarDecl 4780 ProcessDeclAttributes(S, NewTD, D); 4781 4782 CheckTypedefForVariablyModifiedType(S, NewTD); 4783 4784 bool Redeclaration = D.isRedeclaration(); 4785 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); 4786 D.setRedeclaration(Redeclaration); 4787 return ND; 4788 } 4789 4790 void 4791 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { 4792 // C99 6.7.7p2: If a typedef name specifies a variably modified type 4793 // then it shall have block scope. 4794 // Note that variably modified types must be fixed before merging the decl so 4795 // that redeclarations will match. 4796 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); 4797 QualType T = TInfo->getType(); 4798 if (T->isVariablyModifiedType()) { 4799 getCurFunction()->setHasBranchProtectedScope(); 4800 4801 if (S->getFnParent() == nullptr) { 4802 bool SizeIsNegative; 4803 llvm::APSInt Oversized; 4804 TypeSourceInfo *FixedTInfo = 4805 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 4806 SizeIsNegative, 4807 Oversized); 4808 if (FixedTInfo) { 4809 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size); 4810 NewTD->setTypeSourceInfo(FixedTInfo); 4811 } else { 4812 if (SizeIsNegative) 4813 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); 4814 else if (T->isVariableArrayType()) 4815 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); 4816 else if (Oversized.getBoolValue()) 4817 Diag(NewTD->getLocation(), diag::err_array_too_large) 4818 << Oversized.toString(10); 4819 else 4820 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); 4821 NewTD->setInvalidDecl(); 4822 } 4823 } 4824 } 4825 } 4826 4827 4828 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which 4829 /// declares a typedef-name, either using the 'typedef' type specifier or via 4830 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. 4831 NamedDecl* 4832 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, 4833 LookupResult &Previous, bool &Redeclaration) { 4834 // Merge the decl with the existing one if appropriate. If the decl is 4835 // in an outer scope, it isn't the same thing. 4836 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, 4837 /*AllowInlineNamespace*/false); 4838 filterNonConflictingPreviousDecls(Context, NewTD, Previous); 4839 if (!Previous.empty()) { 4840 Redeclaration = true; 4841 MergeTypedefNameDecl(NewTD, Previous); 4842 } 4843 4844 // If this is the C FILE type, notify the AST context. 4845 if (IdentifierInfo *II = NewTD->getIdentifier()) 4846 if (!NewTD->isInvalidDecl() && 4847 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 4848 if (II->isStr("FILE")) 4849 Context.setFILEDecl(NewTD); 4850 else if (II->isStr("jmp_buf")) 4851 Context.setjmp_bufDecl(NewTD); 4852 else if (II->isStr("sigjmp_buf")) 4853 Context.setsigjmp_bufDecl(NewTD); 4854 else if (II->isStr("ucontext_t")) 4855 Context.setucontext_tDecl(NewTD); 4856 } 4857 4858 return NewTD; 4859 } 4860 4861 /// \brief Determines whether the given declaration is an out-of-scope 4862 /// previous declaration. 4863 /// 4864 /// This routine should be invoked when name lookup has found a 4865 /// previous declaration (PrevDecl) that is not in the scope where a 4866 /// new declaration by the same name is being introduced. If the new 4867 /// declaration occurs in a local scope, previous declarations with 4868 /// linkage may still be considered previous declarations (C99 4869 /// 6.2.2p4-5, C++ [basic.link]p6). 4870 /// 4871 /// \param PrevDecl the previous declaration found by name 4872 /// lookup 4873 /// 4874 /// \param DC the context in which the new declaration is being 4875 /// declared. 4876 /// 4877 /// \returns true if PrevDecl is an out-of-scope previous declaration 4878 /// for a new delcaration with the same name. 4879 static bool 4880 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, 4881 ASTContext &Context) { 4882 if (!PrevDecl) 4883 return false; 4884 4885 if (!PrevDecl->hasLinkage()) 4886 return false; 4887 4888 if (Context.getLangOpts().CPlusPlus) { 4889 // C++ [basic.link]p6: 4890 // If there is a visible declaration of an entity with linkage 4891 // having the same name and type, ignoring entities declared 4892 // outside the innermost enclosing namespace scope, the block 4893 // scope declaration declares that same entity and receives the 4894 // linkage of the previous declaration. 4895 DeclContext *OuterContext = DC->getRedeclContext(); 4896 if (!OuterContext->isFunctionOrMethod()) 4897 // This rule only applies to block-scope declarations. 4898 return false; 4899 4900 DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); 4901 if (PrevOuterContext->isRecord()) 4902 // We found a member function: ignore it. 4903 return false; 4904 4905 // Find the innermost enclosing namespace for the new and 4906 // previous declarations. 4907 OuterContext = OuterContext->getEnclosingNamespaceContext(); 4908 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); 4909 4910 // The previous declaration is in a different namespace, so it 4911 // isn't the same function. 4912 if (!OuterContext->Equals(PrevOuterContext)) 4913 return false; 4914 } 4915 4916 return true; 4917 } 4918 4919 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) { 4920 CXXScopeSpec &SS = D.getCXXScopeSpec(); 4921 if (!SS.isSet()) return; 4922 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext())); 4923 } 4924 4925 bool Sema::inferObjCARCLifetime(ValueDecl *decl) { 4926 QualType type = decl->getType(); 4927 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); 4928 if (lifetime == Qualifiers::OCL_Autoreleasing) { 4929 // Various kinds of declaration aren't allowed to be __autoreleasing. 4930 unsigned kind = -1U; 4931 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 4932 if (var->hasAttr<BlocksAttr>()) 4933 kind = 0; // __block 4934 else if (!var->hasLocalStorage()) 4935 kind = 1; // global 4936 } else if (isa<ObjCIvarDecl>(decl)) { 4937 kind = 3; // ivar 4938 } else if (isa<FieldDecl>(decl)) { 4939 kind = 2; // field 4940 } 4941 4942 if (kind != -1U) { 4943 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) 4944 << kind; 4945 } 4946 } else if (lifetime == Qualifiers::OCL_None) { 4947 // Try to infer lifetime. 4948 if (!type->isObjCLifetimeType()) 4949 return false; 4950 4951 lifetime = type->getObjCARCImplicitLifetime(); 4952 type = Context.getLifetimeQualifiedType(type, lifetime); 4953 decl->setType(type); 4954 } 4955 4956 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 4957 // Thread-local variables cannot have lifetime. 4958 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && 4959 var->getTLSKind()) { 4960 Diag(var->getLocation(), diag::err_arc_thread_ownership) 4961 << var->getType(); 4962 return true; 4963 } 4964 } 4965 4966 return false; 4967 } 4968 4969 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { 4970 // Ensure that an auto decl is deduced otherwise the checks below might cache 4971 // the wrong linkage. 4972 assert(S.ParsingInitForAutoVars.count(&ND) == 0); 4973 4974 // 'weak' only applies to declarations with external linkage. 4975 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { 4976 if (!ND.isExternallyVisible()) { 4977 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); 4978 ND.dropAttr<WeakAttr>(); 4979 } 4980 } 4981 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { 4982 if (ND.isExternallyVisible()) { 4983 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); 4984 ND.dropAttr<WeakRefAttr>(); 4985 } 4986 } 4987 4988 // 'selectany' only applies to externally visible varable declarations. 4989 // It does not apply to functions. 4990 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { 4991 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { 4992 S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data); 4993 ND.dropAttr<SelectAnyAttr>(); 4994 } 4995 } 4996 4997 // dll attributes require external linkage. 4998 if (const DLLImportAttr *Attr = ND.getAttr<DLLImportAttr>()) { 4999 if (!ND.isExternallyVisible()) { 5000 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) 5001 << &ND << Attr; 5002 ND.setInvalidDecl(); 5003 } 5004 } 5005 if (const DLLExportAttr *Attr = ND.getAttr<DLLExportAttr>()) { 5006 if (!ND.isExternallyVisible()) { 5007 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) 5008 << &ND << Attr; 5009 ND.setInvalidDecl(); 5010 } 5011 } 5012 } 5013 5014 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, 5015 NamedDecl *NewDecl, 5016 bool IsSpecialization) { 5017 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) 5018 OldDecl = OldTD->getTemplatedDecl(); 5019 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) 5020 NewDecl = NewTD->getTemplatedDecl(); 5021 5022 if (!OldDecl || !NewDecl) 5023 return; 5024 5025 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); 5026 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); 5027 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); 5028 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); 5029 5030 // dllimport and dllexport are inheritable attributes so we have to exclude 5031 // inherited attribute instances. 5032 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || 5033 (NewExportAttr && !NewExportAttr->isInherited()); 5034 5035 // A redeclaration is not allowed to add a dllimport or dllexport attribute, 5036 // the only exception being explicit specializations. 5037 // Implicitly generated declarations are also excluded for now because there 5038 // is no other way to switch these to use dllimport or dllexport. 5039 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; 5040 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { 5041 S.Diag(NewDecl->getLocation(), diag::err_attribute_dll_redeclaration) 5042 << NewDecl 5043 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); 5044 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 5045 NewDecl->setInvalidDecl(); 5046 return; 5047 } 5048 5049 // A redeclaration is not allowed to drop a dllimport attribute, the only 5050 // exception being inline function definitions. 5051 // NB: MSVC converts such a declaration to dllexport. 5052 bool IsInline = false, IsStaticDataMember = false; 5053 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) 5054 // Ignore static data because out-of-line definitions are diagnosed 5055 // separately. 5056 IsStaticDataMember = VD->isStaticDataMember(); 5057 else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) 5058 IsInline = FD->isInlined(); 5059 5060 if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember) { 5061 S.Diag(NewDecl->getLocation(), 5062 diag::warn_redeclaration_without_attribute_prev_attribute_ignored) 5063 << NewDecl << OldImportAttr; 5064 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 5065 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); 5066 OldDecl->dropAttr<DLLImportAttr>(); 5067 NewDecl->dropAttr<DLLImportAttr>(); 5068 } 5069 } 5070 5071 /// Given that we are within the definition of the given function, 5072 /// will that definition behave like C99's 'inline', where the 5073 /// definition is discarded except for optimization purposes? 5074 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { 5075 // Try to avoid calling GetGVALinkageForFunction. 5076 5077 // All cases of this require the 'inline' keyword. 5078 if (!FD->isInlined()) return false; 5079 5080 // This is only possible in C++ with the gnu_inline attribute. 5081 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) 5082 return false; 5083 5084 // Okay, go ahead and call the relatively-more-expensive function. 5085 5086 #ifndef NDEBUG 5087 // AST quite reasonably asserts that it's working on a function 5088 // definition. We don't really have a way to tell it that we're 5089 // currently defining the function, so just lie to it in +Asserts 5090 // builds. This is an awful hack. 5091 FD->setLazyBody(1); 5092 #endif 5093 5094 bool isC99Inline = 5095 S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; 5096 5097 #ifndef NDEBUG 5098 FD->setLazyBody(0); 5099 #endif 5100 5101 return isC99Inline; 5102 } 5103 5104 /// Determine whether a variable is extern "C" prior to attaching 5105 /// an initializer. We can't just call isExternC() here, because that 5106 /// will also compute and cache whether the declaration is externally 5107 /// visible, which might change when we attach the initializer. 5108 /// 5109 /// This can only be used if the declaration is known to not be a 5110 /// redeclaration of an internal linkage declaration. 5111 /// 5112 /// For instance: 5113 /// 5114 /// auto x = []{}; 5115 /// 5116 /// Attaching the initializer here makes this declaration not externally 5117 /// visible, because its type has internal linkage. 5118 /// 5119 /// FIXME: This is a hack. 5120 template<typename T> 5121 static bool isIncompleteDeclExternC(Sema &S, const T *D) { 5122 if (S.getLangOpts().CPlusPlus) { 5123 // In C++, the overloadable attribute negates the effects of extern "C". 5124 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) 5125 return false; 5126 } 5127 return D->isExternC(); 5128 } 5129 5130 static bool shouldConsiderLinkage(const VarDecl *VD) { 5131 const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); 5132 if (DC->isFunctionOrMethod()) 5133 return VD->hasExternalStorage(); 5134 if (DC->isFileContext()) 5135 return true; 5136 if (DC->isRecord()) 5137 return false; 5138 llvm_unreachable("Unexpected context"); 5139 } 5140 5141 static bool shouldConsiderLinkage(const FunctionDecl *FD) { 5142 const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); 5143 if (DC->isFileContext() || DC->isFunctionOrMethod()) 5144 return true; 5145 if (DC->isRecord()) 5146 return false; 5147 llvm_unreachable("Unexpected context"); 5148 } 5149 5150 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList, 5151 AttributeList::Kind Kind) { 5152 for (const AttributeList *L = AttrList; L; L = L->getNext()) 5153 if (L->getKind() == Kind) 5154 return true; 5155 return false; 5156 } 5157 5158 static bool hasParsedAttr(Scope *S, const Declarator &PD, 5159 AttributeList::Kind Kind) { 5160 // Check decl attributes on the DeclSpec. 5161 if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind)) 5162 return true; 5163 5164 // Walk the declarator structure, checking decl attributes that were in a type 5165 // position to the decl itself. 5166 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { 5167 if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind)) 5168 return true; 5169 } 5170 5171 // Finally, check attributes on the decl itself. 5172 return hasParsedAttr(S, PD.getAttributes(), Kind); 5173 } 5174 5175 /// Adjust the \c DeclContext for a function or variable that might be a 5176 /// function-local external declaration. 5177 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { 5178 if (!DC->isFunctionOrMethod()) 5179 return false; 5180 5181 // If this is a local extern function or variable declared within a function 5182 // template, don't add it into the enclosing namespace scope until it is 5183 // instantiated; it might have a dependent type right now. 5184 if (DC->isDependentContext()) 5185 return true; 5186 5187 // C++11 [basic.link]p7: 5188 // When a block scope declaration of an entity with linkage is not found to 5189 // refer to some other declaration, then that entity is a member of the 5190 // innermost enclosing namespace. 5191 // 5192 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a 5193 // semantically-enclosing namespace, not a lexically-enclosing one. 5194 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) 5195 DC = DC->getParent(); 5196 return true; 5197 } 5198 5199 NamedDecl * 5200 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, 5201 TypeSourceInfo *TInfo, LookupResult &Previous, 5202 MultiTemplateParamsArg TemplateParamLists, 5203 bool &AddToScope) { 5204 QualType R = TInfo->getType(); 5205 DeclarationName Name = GetNameForDeclarator(D).getName(); 5206 5207 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); 5208 VarDecl::StorageClass SC = 5209 StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); 5210 5211 // dllimport globals without explicit storage class are treated as extern. We 5212 // have to change the storage class this early to get the right DeclContext. 5213 if (SC == SC_None && !DC->isRecord() && 5214 hasParsedAttr(S, D, AttributeList::AT_DLLImport) && 5215 !hasParsedAttr(S, D, AttributeList::AT_DLLExport)) 5216 SC = SC_Extern; 5217 5218 DeclContext *OriginalDC = DC; 5219 bool IsLocalExternDecl = SC == SC_Extern && 5220 adjustContextForLocalExternDecl(DC); 5221 5222 if (getLangOpts().OpenCL) { 5223 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. 5224 QualType NR = R; 5225 while (NR->isPointerType()) { 5226 if (NR->isFunctionPointerType()) { 5227 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable); 5228 D.setInvalidType(); 5229 break; 5230 } 5231 NR = NR->getPointeeType(); 5232 } 5233 5234 if (!getOpenCLOptions().cl_khr_fp16) { 5235 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and 5236 // half array type (unless the cl_khr_fp16 extension is enabled). 5237 if (Context.getBaseElementType(R)->isHalfType()) { 5238 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R; 5239 D.setInvalidType(); 5240 } 5241 } 5242 } 5243 5244 if (SCSpec == DeclSpec::SCS_mutable) { 5245 // mutable can only appear on non-static class members, so it's always 5246 // an error here 5247 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); 5248 D.setInvalidType(); 5249 SC = SC_None; 5250 } 5251 5252 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && 5253 !D.getAsmLabel() && !getSourceManager().isInSystemMacro( 5254 D.getDeclSpec().getStorageClassSpecLoc())) { 5255 // In C++11, the 'register' storage class specifier is deprecated. 5256 // Suppress the warning in system macros, it's used in macros in some 5257 // popular C system headers, such as in glibc's htonl() macro. 5258 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 5259 diag::warn_deprecated_register) 5260 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 5261 } 5262 5263 IdentifierInfo *II = Name.getAsIdentifierInfo(); 5264 if (!II) { 5265 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) 5266 << Name; 5267 return nullptr; 5268 } 5269 5270 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 5271 5272 if (!DC->isRecord() && S->getFnParent() == nullptr) { 5273 // C99 6.9p2: The storage-class specifiers auto and register shall not 5274 // appear in the declaration specifiers in an external declaration. 5275 // Global Register+Asm is a GNU extension we support. 5276 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { 5277 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); 5278 D.setInvalidType(); 5279 } 5280 } 5281 5282 if (getLangOpts().OpenCL) { 5283 // Set up the special work-group-local storage class for variables in the 5284 // OpenCL __local address space. 5285 if (R.getAddressSpace() == LangAS::opencl_local) { 5286 SC = SC_OpenCLWorkGroupLocal; 5287 } 5288 5289 // OpenCL v1.2 s6.9.b p4: 5290 // The sampler type cannot be used with the __local and __global address 5291 // space qualifiers. 5292 if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local || 5293 R.getAddressSpace() == LangAS::opencl_global)) { 5294 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace); 5295 } 5296 5297 // OpenCL 1.2 spec, p6.9 r: 5298 // The event type cannot be used to declare a program scope variable. 5299 // The event type cannot be used with the __local, __constant and __global 5300 // address space qualifiers. 5301 if (R->isEventT()) { 5302 if (S->getParent() == nullptr) { 5303 Diag(D.getLocStart(), diag::err_event_t_global_var); 5304 D.setInvalidType(); 5305 } 5306 5307 if (R.getAddressSpace()) { 5308 Diag(D.getLocStart(), diag::err_event_t_addr_space_qual); 5309 D.setInvalidType(); 5310 } 5311 } 5312 } 5313 5314 bool IsExplicitSpecialization = false; 5315 bool IsVariableTemplateSpecialization = false; 5316 bool IsPartialSpecialization = false; 5317 bool IsVariableTemplate = false; 5318 VarDecl *NewVD = nullptr; 5319 VarTemplateDecl *NewTemplate = nullptr; 5320 TemplateParameterList *TemplateParams = nullptr; 5321 if (!getLangOpts().CPlusPlus) { 5322 NewVD = VarDecl::Create(Context, DC, D.getLocStart(), 5323 D.getIdentifierLoc(), II, 5324 R, TInfo, SC); 5325 5326 if (D.isInvalidType()) 5327 NewVD->setInvalidDecl(); 5328 } else { 5329 bool Invalid = false; 5330 5331 if (DC->isRecord() && !CurContext->isRecord()) { 5332 // This is an out-of-line definition of a static data member. 5333 switch (SC) { 5334 case SC_None: 5335 break; 5336 case SC_Static: 5337 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 5338 diag::err_static_out_of_line) 5339 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 5340 break; 5341 case SC_Auto: 5342 case SC_Register: 5343 case SC_Extern: 5344 // [dcl.stc] p2: The auto or register specifiers shall be applied only 5345 // to names of variables declared in a block or to function parameters. 5346 // [dcl.stc] p6: The extern specifier cannot be used in the declaration 5347 // of class members 5348 5349 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 5350 diag::err_storage_class_for_static_member) 5351 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 5352 break; 5353 case SC_PrivateExtern: 5354 llvm_unreachable("C storage class in c++!"); 5355 case SC_OpenCLWorkGroupLocal: 5356 llvm_unreachable("OpenCL storage class in c++!"); 5357 } 5358 } 5359 5360 if (SC == SC_Static && CurContext->isRecord()) { 5361 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { 5362 if (RD->isLocalClass()) 5363 Diag(D.getIdentifierLoc(), 5364 diag::err_static_data_member_not_allowed_in_local_class) 5365 << Name << RD->getDeclName(); 5366 5367 // C++98 [class.union]p1: If a union contains a static data member, 5368 // the program is ill-formed. C++11 drops this restriction. 5369 if (RD->isUnion()) 5370 Diag(D.getIdentifierLoc(), 5371 getLangOpts().CPlusPlus11 5372 ? diag::warn_cxx98_compat_static_data_member_in_union 5373 : diag::ext_static_data_member_in_union) << Name; 5374 // We conservatively disallow static data members in anonymous structs. 5375 else if (!RD->getDeclName()) 5376 Diag(D.getIdentifierLoc(), 5377 diag::err_static_data_member_not_allowed_in_anon_struct) 5378 << Name << RD->isUnion(); 5379 } 5380 } 5381 5382 // Match up the template parameter lists with the scope specifier, then 5383 // determine whether we have a template or a template specialization. 5384 TemplateParams = MatchTemplateParametersToScopeSpecifier( 5385 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(), 5386 D.getCXXScopeSpec(), 5387 D.getName().getKind() == UnqualifiedId::IK_TemplateId 5388 ? D.getName().TemplateId 5389 : nullptr, 5390 TemplateParamLists, 5391 /*never a friend*/ false, IsExplicitSpecialization, Invalid); 5392 5393 if (TemplateParams) { 5394 if (!TemplateParams->size() && 5395 D.getName().getKind() != UnqualifiedId::IK_TemplateId) { 5396 // There is an extraneous 'template<>' for this variable. Complain 5397 // about it, but allow the declaration of the variable. 5398 Diag(TemplateParams->getTemplateLoc(), 5399 diag::err_template_variable_noparams) 5400 << II 5401 << SourceRange(TemplateParams->getTemplateLoc(), 5402 TemplateParams->getRAngleLoc()); 5403 TemplateParams = nullptr; 5404 } else { 5405 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5406 // This is an explicit specialization or a partial specialization. 5407 // FIXME: Check that we can declare a specialization here. 5408 IsVariableTemplateSpecialization = true; 5409 IsPartialSpecialization = TemplateParams->size() > 0; 5410 } else { // if (TemplateParams->size() > 0) 5411 // This is a template declaration. 5412 IsVariableTemplate = true; 5413 5414 // Check that we can declare a template here. 5415 if (CheckTemplateDeclScope(S, TemplateParams)) 5416 return nullptr; 5417 5418 // Only C++1y supports variable templates (N3651). 5419 Diag(D.getIdentifierLoc(), 5420 getLangOpts().CPlusPlus1y 5421 ? diag::warn_cxx11_compat_variable_template 5422 : diag::ext_variable_template); 5423 } 5424 } 5425 } else { 5426 assert(D.getName().getKind() != UnqualifiedId::IK_TemplateId && 5427 "should have a 'template<>' for this decl"); 5428 } 5429 5430 if (IsVariableTemplateSpecialization) { 5431 SourceLocation TemplateKWLoc = 5432 TemplateParamLists.size() > 0 5433 ? TemplateParamLists[0]->getTemplateLoc() 5434 : SourceLocation(); 5435 DeclResult Res = ActOnVarTemplateSpecialization( 5436 S, D, TInfo, TemplateKWLoc, TemplateParams, SC, 5437 IsPartialSpecialization); 5438 if (Res.isInvalid()) 5439 return nullptr; 5440 NewVD = cast<VarDecl>(Res.get()); 5441 AddToScope = false; 5442 } else 5443 NewVD = VarDecl::Create(Context, DC, D.getLocStart(), 5444 D.getIdentifierLoc(), II, R, TInfo, SC); 5445 5446 // If this is supposed to be a variable template, create it as such. 5447 if (IsVariableTemplate) { 5448 NewTemplate = 5449 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, 5450 TemplateParams, NewVD); 5451 NewVD->setDescribedVarTemplate(NewTemplate); 5452 } 5453 5454 // If this decl has an auto type in need of deduction, make a note of the 5455 // Decl so we can diagnose uses of it in its own initializer. 5456 if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType()) 5457 ParsingInitForAutoVars.insert(NewVD); 5458 5459 if (D.isInvalidType() || Invalid) { 5460 NewVD->setInvalidDecl(); 5461 if (NewTemplate) 5462 NewTemplate->setInvalidDecl(); 5463 } 5464 5465 SetNestedNameSpecifier(NewVD, D); 5466 5467 // If we have any template parameter lists that don't directly belong to 5468 // the variable (matching the scope specifier), store them. 5469 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; 5470 if (TemplateParamLists.size() > VDTemplateParamLists) 5471 NewVD->setTemplateParameterListsInfo( 5472 Context, TemplateParamLists.size() - VDTemplateParamLists, 5473 TemplateParamLists.data()); 5474 5475 if (D.getDeclSpec().isConstexprSpecified()) 5476 NewVD->setConstexpr(true); 5477 } 5478 5479 // Set the lexical context. If the declarator has a C++ scope specifier, the 5480 // lexical context will be different from the semantic context. 5481 NewVD->setLexicalDeclContext(CurContext); 5482 if (NewTemplate) 5483 NewTemplate->setLexicalDeclContext(CurContext); 5484 5485 if (IsLocalExternDecl) 5486 NewVD->setLocalExternDecl(); 5487 5488 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { 5489 if (NewVD->hasLocalStorage()) { 5490 // C++11 [dcl.stc]p4: 5491 // When thread_local is applied to a variable of block scope the 5492 // storage-class-specifier static is implied if it does not appear 5493 // explicitly. 5494 // Core issue: 'static' is not implied if the variable is declared 5495 // 'extern'. 5496 if (SCSpec == DeclSpec::SCS_unspecified && 5497 TSCS == DeclSpec::TSCS_thread_local && 5498 DC->isFunctionOrMethod()) 5499 NewVD->setTSCSpec(TSCS); 5500 else 5501 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 5502 diag::err_thread_non_global) 5503 << DeclSpec::getSpecifierName(TSCS); 5504 } else if (!Context.getTargetInfo().isTLSSupported()) 5505 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 5506 diag::err_thread_unsupported); 5507 else 5508 NewVD->setTSCSpec(TSCS); 5509 } 5510 5511 // C99 6.7.4p3 5512 // An inline definition of a function with external linkage shall 5513 // not contain a definition of a modifiable object with static or 5514 // thread storage duration... 5515 // We only apply this when the function is required to be defined 5516 // elsewhere, i.e. when the function is not 'extern inline'. Note 5517 // that a local variable with thread storage duration still has to 5518 // be marked 'static'. Also note that it's possible to get these 5519 // semantics in C++ using __attribute__((gnu_inline)). 5520 if (SC == SC_Static && S->getFnParent() != nullptr && 5521 !NewVD->getType().isConstQualified()) { 5522 FunctionDecl *CurFD = getCurFunctionDecl(); 5523 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { 5524 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 5525 diag::warn_static_local_in_extern_inline); 5526 MaybeSuggestAddingStaticToDecl(CurFD); 5527 } 5528 } 5529 5530 if (D.getDeclSpec().isModulePrivateSpecified()) { 5531 if (IsVariableTemplateSpecialization) 5532 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 5533 << (IsPartialSpecialization ? 1 : 0) 5534 << FixItHint::CreateRemoval( 5535 D.getDeclSpec().getModulePrivateSpecLoc()); 5536 else if (IsExplicitSpecialization) 5537 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 5538 << 2 5539 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 5540 else if (NewVD->hasLocalStorage()) 5541 Diag(NewVD->getLocation(), diag::err_module_private_local) 5542 << 0 << NewVD->getDeclName() 5543 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 5544 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 5545 else { 5546 NewVD->setModulePrivate(); 5547 if (NewTemplate) 5548 NewTemplate->setModulePrivate(); 5549 } 5550 } 5551 5552 // Handle attributes prior to checking for duplicates in MergeVarDecl 5553 ProcessDeclAttributes(S, NewVD, D); 5554 5555 if (getLangOpts().CUDA) { 5556 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static 5557 // storage [duration]." 5558 if (SC == SC_None && S->getFnParent() != nullptr && 5559 (NewVD->hasAttr<CUDASharedAttr>() || 5560 NewVD->hasAttr<CUDAConstantAttr>())) { 5561 NewVD->setStorageClass(SC_Static); 5562 } 5563 } 5564 5565 // Ensure that dllimport globals without explicit storage class are treated as 5566 // extern. The storage class is set above using parsed attributes. Now we can 5567 // check the VarDecl itself. 5568 assert(!NewVD->hasAttr<DLLImportAttr>() || 5569 NewVD->getAttr<DLLImportAttr>()->isInherited() || 5570 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); 5571 5572 // In auto-retain/release, infer strong retension for variables of 5573 // retainable type. 5574 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) 5575 NewVD->setInvalidDecl(); 5576 5577 // Handle GNU asm-label extension (encoded as an attribute). 5578 if (Expr *E = (Expr*)D.getAsmLabel()) { 5579 // The parser guarantees this is a string. 5580 StringLiteral *SE = cast<StringLiteral>(E); 5581 StringRef Label = SE->getString(); 5582 if (S->getFnParent() != nullptr) { 5583 switch (SC) { 5584 case SC_None: 5585 case SC_Auto: 5586 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; 5587 break; 5588 case SC_Register: 5589 // Local Named register 5590 if (!Context.getTargetInfo().isValidGCCRegisterName(Label)) 5591 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 5592 break; 5593 case SC_Static: 5594 case SC_Extern: 5595 case SC_PrivateExtern: 5596 case SC_OpenCLWorkGroupLocal: 5597 break; 5598 } 5599 } else if (SC == SC_Register) { 5600 // Global Named register 5601 if (!Context.getTargetInfo().isValidGCCRegisterName(Label)) 5602 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 5603 if (!R->isIntegralType(Context) && !R->isPointerType()) { 5604 Diag(D.getLocStart(), diag::err_asm_bad_register_type); 5605 NewVD->setInvalidDecl(true); 5606 } 5607 } 5608 5609 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), 5610 Context, Label, 0)); 5611 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 5612 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 5613 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); 5614 if (I != ExtnameUndeclaredIdentifiers.end()) { 5615 NewVD->addAttr(I->second); 5616 ExtnameUndeclaredIdentifiers.erase(I); 5617 } 5618 } 5619 5620 // Diagnose shadowed variables before filtering for scope. 5621 if (D.getCXXScopeSpec().isEmpty()) 5622 CheckShadow(S, NewVD, Previous); 5623 5624 // Don't consider existing declarations that are in a different 5625 // scope and are out-of-semantic-context declarations (if the new 5626 // declaration has linkage). 5627 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), 5628 D.getCXXScopeSpec().isNotEmpty() || 5629 IsExplicitSpecialization || 5630 IsVariableTemplateSpecialization); 5631 5632 // Check whether the previous declaration is in the same block scope. This 5633 // affects whether we merge types with it, per C++11 [dcl.array]p3. 5634 if (getLangOpts().CPlusPlus && 5635 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) 5636 NewVD->setPreviousDeclInSameBlockScope( 5637 Previous.isSingleResult() && !Previous.isShadowed() && 5638 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); 5639 5640 if (!getLangOpts().CPlusPlus) { 5641 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 5642 } else { 5643 // If this is an explicit specialization of a static data member, check it. 5644 if (IsExplicitSpecialization && !NewVD->isInvalidDecl() && 5645 CheckMemberSpecialization(NewVD, Previous)) 5646 NewVD->setInvalidDecl(); 5647 5648 // Merge the decl with the existing one if appropriate. 5649 if (!Previous.empty()) { 5650 if (Previous.isSingleResult() && 5651 isa<FieldDecl>(Previous.getFoundDecl()) && 5652 D.getCXXScopeSpec().isSet()) { 5653 // The user tried to define a non-static data member 5654 // out-of-line (C++ [dcl.meaning]p1). 5655 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) 5656 << D.getCXXScopeSpec().getRange(); 5657 Previous.clear(); 5658 NewVD->setInvalidDecl(); 5659 } 5660 } else if (D.getCXXScopeSpec().isSet()) { 5661 // No previous declaration in the qualifying scope. 5662 Diag(D.getIdentifierLoc(), diag::err_no_member) 5663 << Name << computeDeclContext(D.getCXXScopeSpec(), true) 5664 << D.getCXXScopeSpec().getRange(); 5665 NewVD->setInvalidDecl(); 5666 } 5667 5668 if (!IsVariableTemplateSpecialization) 5669 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 5670 5671 if (NewTemplate) { 5672 VarTemplateDecl *PrevVarTemplate = 5673 NewVD->getPreviousDecl() 5674 ? NewVD->getPreviousDecl()->getDescribedVarTemplate() 5675 : nullptr; 5676 5677 // Check the template parameter list of this declaration, possibly 5678 // merging in the template parameter list from the previous variable 5679 // template declaration. 5680 if (CheckTemplateParameterList( 5681 TemplateParams, 5682 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() 5683 : nullptr, 5684 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && 5685 DC->isDependentContext()) 5686 ? TPC_ClassTemplateMember 5687 : TPC_VarTemplate)) 5688 NewVD->setInvalidDecl(); 5689 5690 // If we are providing an explicit specialization of a static variable 5691 // template, make a note of that. 5692 if (PrevVarTemplate && 5693 PrevVarTemplate->getInstantiatedFromMemberTemplate()) 5694 PrevVarTemplate->setMemberSpecialization(); 5695 } 5696 } 5697 5698 ProcessPragmaWeak(S, NewVD); 5699 5700 // If this is the first declaration of an extern C variable, update 5701 // the map of such variables. 5702 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && 5703 isIncompleteDeclExternC(*this, NewVD)) 5704 RegisterLocallyScopedExternCDecl(NewVD, S); 5705 5706 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 5707 Decl *ManglingContextDecl; 5708 if (MangleNumberingContext *MCtx = 5709 getCurrentMangleNumberContext(NewVD->getDeclContext(), 5710 ManglingContextDecl)) { 5711 Context.setManglingNumber( 5712 NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber())); 5713 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 5714 } 5715 } 5716 5717 if (D.isRedeclaration() && !Previous.empty()) { 5718 checkDLLAttributeRedeclaration( 5719 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD, 5720 IsExplicitSpecialization); 5721 } 5722 5723 if (NewTemplate) { 5724 if (NewVD->isInvalidDecl()) 5725 NewTemplate->setInvalidDecl(); 5726 ActOnDocumentableDecl(NewTemplate); 5727 return NewTemplate; 5728 } 5729 5730 return NewVD; 5731 } 5732 5733 /// \brief Diagnose variable or built-in function shadowing. Implements 5734 /// -Wshadow. 5735 /// 5736 /// This method is called whenever a VarDecl is added to a "useful" 5737 /// scope. 5738 /// 5739 /// \param S the scope in which the shadowing name is being declared 5740 /// \param R the lookup of the name 5741 /// 5742 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) { 5743 // Return if warning is ignored. 5744 if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc())) 5745 return; 5746 5747 // Don't diagnose declarations at file scope. 5748 if (D->hasGlobalStorage()) 5749 return; 5750 5751 DeclContext *NewDC = D->getDeclContext(); 5752 5753 // Only diagnose if we're shadowing an unambiguous field or variable. 5754 if (R.getResultKind() != LookupResult::Found) 5755 return; 5756 5757 NamedDecl* ShadowedDecl = R.getFoundDecl(); 5758 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl)) 5759 return; 5760 5761 // Fields are not shadowed by variables in C++ static methods. 5762 if (isa<FieldDecl>(ShadowedDecl)) 5763 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) 5764 if (MD->isStatic()) 5765 return; 5766 5767 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) 5768 if (shadowedVar->isExternC()) { 5769 // For shadowing external vars, make sure that we point to the global 5770 // declaration, not a locally scoped extern declaration. 5771 for (auto I : shadowedVar->redecls()) 5772 if (I->isFileVarDecl()) { 5773 ShadowedDecl = I; 5774 break; 5775 } 5776 } 5777 5778 DeclContext *OldDC = ShadowedDecl->getDeclContext(); 5779 5780 // Only warn about certain kinds of shadowing for class members. 5781 if (NewDC && NewDC->isRecord()) { 5782 // In particular, don't warn about shadowing non-class members. 5783 if (!OldDC->isRecord()) 5784 return; 5785 5786 // TODO: should we warn about static data members shadowing 5787 // static data members from base classes? 5788 5789 // TODO: don't diagnose for inaccessible shadowed members. 5790 // This is hard to do perfectly because we might friend the 5791 // shadowing context, but that's just a false negative. 5792 } 5793 5794 // Determine what kind of declaration we're shadowing. 5795 unsigned Kind; 5796 if (isa<RecordDecl>(OldDC)) { 5797 if (isa<FieldDecl>(ShadowedDecl)) 5798 Kind = 3; // field 5799 else 5800 Kind = 2; // static data member 5801 } else if (OldDC->isFileContext()) 5802 Kind = 1; // global 5803 else 5804 Kind = 0; // local 5805 5806 DeclarationName Name = R.getLookupName(); 5807 5808 // Emit warning and note. 5809 if (getSourceManager().isInSystemMacro(R.getNameLoc())) 5810 return; 5811 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC; 5812 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 5813 } 5814 5815 /// \brief Check -Wshadow without the advantage of a previous lookup. 5816 void Sema::CheckShadow(Scope *S, VarDecl *D) { 5817 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) 5818 return; 5819 5820 LookupResult R(*this, D->getDeclName(), D->getLocation(), 5821 Sema::LookupOrdinaryName, Sema::ForRedeclaration); 5822 LookupName(R, S); 5823 CheckShadow(S, D, R); 5824 } 5825 5826 /// Check for conflict between this global or extern "C" declaration and 5827 /// previous global or extern "C" declarations. This is only used in C++. 5828 template<typename T> 5829 static bool checkGlobalOrExternCConflict( 5830 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { 5831 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); 5832 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); 5833 5834 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { 5835 // The common case: this global doesn't conflict with any extern "C" 5836 // declaration. 5837 return false; 5838 } 5839 5840 if (Prev) { 5841 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { 5842 // Both the old and new declarations have C language linkage. This is a 5843 // redeclaration. 5844 Previous.clear(); 5845 Previous.addDecl(Prev); 5846 return true; 5847 } 5848 5849 // This is a global, non-extern "C" declaration, and there is a previous 5850 // non-global extern "C" declaration. Diagnose if this is a variable 5851 // declaration. 5852 if (!isa<VarDecl>(ND)) 5853 return false; 5854 } else { 5855 // The declaration is extern "C". Check for any declaration in the 5856 // translation unit which might conflict. 5857 if (IsGlobal) { 5858 // We have already performed the lookup into the translation unit. 5859 IsGlobal = false; 5860 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5861 I != E; ++I) { 5862 if (isa<VarDecl>(*I)) { 5863 Prev = *I; 5864 break; 5865 } 5866 } 5867 } else { 5868 DeclContext::lookup_result R = 5869 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); 5870 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); 5871 I != E; ++I) { 5872 if (isa<VarDecl>(*I)) { 5873 Prev = *I; 5874 break; 5875 } 5876 // FIXME: If we have any other entity with this name in global scope, 5877 // the declaration is ill-formed, but that is a defect: it breaks the 5878 // 'stat' hack, for instance. Only variables can have mangled name 5879 // clashes with extern "C" declarations, so only they deserve a 5880 // diagnostic. 5881 } 5882 } 5883 5884 if (!Prev) 5885 return false; 5886 } 5887 5888 // Use the first declaration's location to ensure we point at something which 5889 // is lexically inside an extern "C" linkage-spec. 5890 assert(Prev && "should have found a previous declaration to diagnose"); 5891 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) 5892 Prev = FD->getFirstDecl(); 5893 else 5894 Prev = cast<VarDecl>(Prev)->getFirstDecl(); 5895 5896 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) 5897 << IsGlobal << ND; 5898 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) 5899 << IsGlobal; 5900 return false; 5901 } 5902 5903 /// Apply special rules for handling extern "C" declarations. Returns \c true 5904 /// if we have found that this is a redeclaration of some prior entity. 5905 /// 5906 /// Per C++ [dcl.link]p6: 5907 /// Two declarations [for a function or variable] with C language linkage 5908 /// with the same name that appear in different scopes refer to the same 5909 /// [entity]. An entity with C language linkage shall not be declared with 5910 /// the same name as an entity in global scope. 5911 template<typename T> 5912 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, 5913 LookupResult &Previous) { 5914 if (!S.getLangOpts().CPlusPlus) { 5915 // In C, when declaring a global variable, look for a corresponding 'extern' 5916 // variable declared in function scope. We don't need this in C++, because 5917 // we find local extern decls in the surrounding file-scope DeclContext. 5918 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 5919 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { 5920 Previous.clear(); 5921 Previous.addDecl(Prev); 5922 return true; 5923 } 5924 } 5925 return false; 5926 } 5927 5928 // A declaration in the translation unit can conflict with an extern "C" 5929 // declaration. 5930 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) 5931 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); 5932 5933 // An extern "C" declaration can conflict with a declaration in the 5934 // translation unit or can be a redeclaration of an extern "C" declaration 5935 // in another scope. 5936 if (isIncompleteDeclExternC(S,ND)) 5937 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); 5938 5939 // Neither global nor extern "C": nothing to do. 5940 return false; 5941 } 5942 5943 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { 5944 // If the decl is already known invalid, don't check it. 5945 if (NewVD->isInvalidDecl()) 5946 return; 5947 5948 TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo(); 5949 QualType T = TInfo->getType(); 5950 5951 // Defer checking an 'auto' type until its initializer is attached. 5952 if (T->isUndeducedType()) 5953 return; 5954 5955 if (NewVD->hasAttrs()) 5956 CheckAlignasUnderalignment(NewVD); 5957 5958 if (T->isObjCObjectType()) { 5959 Diag(NewVD->getLocation(), diag::err_statically_allocated_object) 5960 << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); 5961 T = Context.getObjCObjectPointerType(T); 5962 NewVD->setType(T); 5963 } 5964 5965 // Emit an error if an address space was applied to decl with local storage. 5966 // This includes arrays of objects with address space qualifiers, but not 5967 // automatic variables that point to other address spaces. 5968 // ISO/IEC TR 18037 S5.1.2 5969 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) { 5970 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl); 5971 NewVD->setInvalidDecl(); 5972 return; 5973 } 5974 5975 // OpenCL v1.2 s6.5 - All program scope variables must be declared in the 5976 // __constant address space. 5977 if (getLangOpts().OpenCL && NewVD->isFileVarDecl() 5978 && T.getAddressSpace() != LangAS::opencl_constant 5979 && !T->isSamplerT()){ 5980 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space); 5981 NewVD->setInvalidDecl(); 5982 return; 5983 } 5984 5985 // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program 5986 // scope. 5987 if ((getLangOpts().OpenCLVersion >= 120) 5988 && NewVD->isStaticLocal()) { 5989 Diag(NewVD->getLocation(), diag::err_static_function_scope); 5990 NewVD->setInvalidDecl(); 5991 return; 5992 } 5993 5994 if (NewVD->hasLocalStorage() && T.isObjCGCWeak() 5995 && !NewVD->hasAttr<BlocksAttr>()) { 5996 if (getLangOpts().getGC() != LangOptions::NonGC) 5997 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); 5998 else { 5999 assert(!getLangOpts().ObjCAutoRefCount); 6000 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); 6001 } 6002 } 6003 6004 bool isVM = T->isVariablyModifiedType(); 6005 if (isVM || NewVD->hasAttr<CleanupAttr>() || 6006 NewVD->hasAttr<BlocksAttr>()) 6007 getCurFunction()->setHasBranchProtectedScope(); 6008 6009 if ((isVM && NewVD->hasLinkage()) || 6010 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { 6011 bool SizeIsNegative; 6012 llvm::APSInt Oversized; 6013 TypeSourceInfo *FixedTInfo = 6014 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 6015 SizeIsNegative, Oversized); 6016 if (!FixedTInfo && T->isVariableArrayType()) { 6017 const VariableArrayType *VAT = Context.getAsVariableArrayType(T); 6018 // FIXME: This won't give the correct result for 6019 // int a[10][n]; 6020 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); 6021 6022 if (NewVD->isFileVarDecl()) 6023 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) 6024 << SizeRange; 6025 else if (NewVD->isStaticLocal()) 6026 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) 6027 << SizeRange; 6028 else 6029 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) 6030 << SizeRange; 6031 NewVD->setInvalidDecl(); 6032 return; 6033 } 6034 6035 if (!FixedTInfo) { 6036 if (NewVD->isFileVarDecl()) 6037 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); 6038 else 6039 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); 6040 NewVD->setInvalidDecl(); 6041 return; 6042 } 6043 6044 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); 6045 NewVD->setType(FixedTInfo->getType()); 6046 NewVD->setTypeSourceInfo(FixedTInfo); 6047 } 6048 6049 if (T->isVoidType()) { 6050 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names 6051 // of objects and functions. 6052 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { 6053 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) 6054 << T; 6055 NewVD->setInvalidDecl(); 6056 return; 6057 } 6058 } 6059 6060 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { 6061 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); 6062 NewVD->setInvalidDecl(); 6063 return; 6064 } 6065 6066 if (isVM && NewVD->hasAttr<BlocksAttr>()) { 6067 Diag(NewVD->getLocation(), diag::err_block_on_vm); 6068 NewVD->setInvalidDecl(); 6069 return; 6070 } 6071 6072 if (NewVD->isConstexpr() && !T->isDependentType() && 6073 RequireLiteralType(NewVD->getLocation(), T, 6074 diag::err_constexpr_var_non_literal)) { 6075 NewVD->setInvalidDecl(); 6076 return; 6077 } 6078 } 6079 6080 /// \brief Perform semantic checking on a newly-created variable 6081 /// declaration. 6082 /// 6083 /// This routine performs all of the type-checking required for a 6084 /// variable declaration once it has been built. It is used both to 6085 /// check variables after they have been parsed and their declarators 6086 /// have been translated into a declaration, and to check variables 6087 /// that have been instantiated from a template. 6088 /// 6089 /// Sets NewVD->isInvalidDecl() if an error was encountered. 6090 /// 6091 /// Returns true if the variable declaration is a redeclaration. 6092 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { 6093 CheckVariableDeclarationType(NewVD); 6094 6095 // If the decl is already known invalid, don't check it. 6096 if (NewVD->isInvalidDecl()) 6097 return false; 6098 6099 // If we did not find anything by this name, look for a non-visible 6100 // extern "C" declaration with the same name. 6101 if (Previous.empty() && 6102 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) 6103 Previous.setShadowed(); 6104 6105 // Filter out any non-conflicting previous declarations. 6106 filterNonConflictingPreviousDecls(Context, NewVD, Previous); 6107 6108 if (!Previous.empty()) { 6109 MergeVarDecl(NewVD, Previous); 6110 return true; 6111 } 6112 return false; 6113 } 6114 6115 /// \brief Data used with FindOverriddenMethod 6116 struct FindOverriddenMethodData { 6117 Sema *S; 6118 CXXMethodDecl *Method; 6119 }; 6120 6121 /// \brief Member lookup function that determines whether a given C++ 6122 /// method overrides a method in a base class, to be used with 6123 /// CXXRecordDecl::lookupInBases(). 6124 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier, 6125 CXXBasePath &Path, 6126 void *UserData) { 6127 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); 6128 6129 FindOverriddenMethodData *Data 6130 = reinterpret_cast<FindOverriddenMethodData*>(UserData); 6131 6132 DeclarationName Name = Data->Method->getDeclName(); 6133 6134 // FIXME: Do we care about other names here too? 6135 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 6136 // We really want to find the base class destructor here. 6137 QualType T = Data->S->Context.getTypeDeclType(BaseRecord); 6138 CanQualType CT = Data->S->Context.getCanonicalType(T); 6139 6140 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT); 6141 } 6142 6143 for (Path.Decls = BaseRecord->lookup(Name); 6144 !Path.Decls.empty(); 6145 Path.Decls = Path.Decls.slice(1)) { 6146 NamedDecl *D = Path.Decls.front(); 6147 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 6148 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false)) 6149 return true; 6150 } 6151 } 6152 6153 return false; 6154 } 6155 6156 namespace { 6157 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted }; 6158 } 6159 /// \brief Report an error regarding overriding, along with any relevant 6160 /// overriden methods. 6161 /// 6162 /// \param DiagID the primary error to report. 6163 /// \param MD the overriding method. 6164 /// \param OEK which overrides to include as notes. 6165 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD, 6166 OverrideErrorKind OEK = OEK_All) { 6167 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6168 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), 6169 E = MD->end_overridden_methods(); 6170 I != E; ++I) { 6171 // This check (& the OEK parameter) could be replaced by a predicate, but 6172 // without lambdas that would be overkill. This is still nicer than writing 6173 // out the diag loop 3 times. 6174 if ((OEK == OEK_All) || 6175 (OEK == OEK_NonDeleted && !(*I)->isDeleted()) || 6176 (OEK == OEK_Deleted && (*I)->isDeleted())) 6177 S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function); 6178 } 6179 } 6180 6181 /// AddOverriddenMethods - See if a method overrides any in the base classes, 6182 /// and if so, check that it's a valid override and remember it. 6183 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { 6184 // Look for virtual methods in base classes that this method might override. 6185 CXXBasePaths Paths; 6186 FindOverriddenMethodData Data; 6187 Data.Method = MD; 6188 Data.S = this; 6189 bool hasDeletedOverridenMethods = false; 6190 bool hasNonDeletedOverridenMethods = false; 6191 bool AddedAny = false; 6192 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) { 6193 for (auto *I : Paths.found_decls()) { 6194 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) { 6195 MD->addOverriddenMethod(OldMD->getCanonicalDecl()); 6196 if (!CheckOverridingFunctionReturnType(MD, OldMD) && 6197 !CheckOverridingFunctionAttributes(MD, OldMD) && 6198 !CheckOverridingFunctionExceptionSpec(MD, OldMD) && 6199 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { 6200 hasDeletedOverridenMethods |= OldMD->isDeleted(); 6201 hasNonDeletedOverridenMethods |= !OldMD->isDeleted(); 6202 AddedAny = true; 6203 } 6204 } 6205 } 6206 } 6207 6208 if (hasDeletedOverridenMethods && !MD->isDeleted()) { 6209 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted); 6210 } 6211 if (hasNonDeletedOverridenMethods && MD->isDeleted()) { 6212 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted); 6213 } 6214 6215 return AddedAny; 6216 } 6217 6218 namespace { 6219 // Struct for holding all of the extra arguments needed by 6220 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. 6221 struct ActOnFDArgs { 6222 Scope *S; 6223 Declarator &D; 6224 MultiTemplateParamsArg TemplateParamLists; 6225 bool AddToScope; 6226 }; 6227 } 6228 6229 namespace { 6230 6231 // Callback to only accept typo corrections that have a non-zero edit distance. 6232 // Also only accept corrections that have the same parent decl. 6233 class DifferentNameValidatorCCC : public CorrectionCandidateCallback { 6234 public: 6235 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, 6236 CXXRecordDecl *Parent) 6237 : Context(Context), OriginalFD(TypoFD), 6238 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} 6239 6240 bool ValidateCandidate(const TypoCorrection &candidate) override { 6241 if (candidate.getEditDistance() == 0) 6242 return false; 6243 6244 SmallVector<unsigned, 1> MismatchedParams; 6245 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), 6246 CDeclEnd = candidate.end(); 6247 CDecl != CDeclEnd; ++CDecl) { 6248 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 6249 6250 if (FD && !FD->hasBody() && 6251 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { 6252 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 6253 CXXRecordDecl *Parent = MD->getParent(); 6254 if (Parent && Parent->getCanonicalDecl() == ExpectedParent) 6255 return true; 6256 } else if (!ExpectedParent) { 6257 return true; 6258 } 6259 } 6260 } 6261 6262 return false; 6263 } 6264 6265 private: 6266 ASTContext &Context; 6267 FunctionDecl *OriginalFD; 6268 CXXRecordDecl *ExpectedParent; 6269 }; 6270 6271 } 6272 6273 /// \brief Generate diagnostics for an invalid function redeclaration. 6274 /// 6275 /// This routine handles generating the diagnostic messages for an invalid 6276 /// function redeclaration, including finding possible similar declarations 6277 /// or performing typo correction if there are no previous declarations with 6278 /// the same name. 6279 /// 6280 /// Returns a NamedDecl iff typo correction was performed and substituting in 6281 /// the new declaration name does not cause new errors. 6282 static NamedDecl *DiagnoseInvalidRedeclaration( 6283 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, 6284 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { 6285 DeclarationName Name = NewFD->getDeclName(); 6286 DeclContext *NewDC = NewFD->getDeclContext(); 6287 SmallVector<unsigned, 1> MismatchedParams; 6288 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; 6289 TypoCorrection Correction; 6290 bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); 6291 unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend 6292 : diag::err_member_decl_does_not_match; 6293 LookupResult Prev(SemaRef, Name, NewFD->getLocation(), 6294 IsLocalFriend ? Sema::LookupLocalFriendName 6295 : Sema::LookupOrdinaryName, 6296 Sema::ForRedeclaration); 6297 6298 NewFD->setInvalidDecl(); 6299 if (IsLocalFriend) 6300 SemaRef.LookupName(Prev, S); 6301 else 6302 SemaRef.LookupQualifiedName(Prev, NewDC); 6303 assert(!Prev.isAmbiguous() && 6304 "Cannot have an ambiguity in previous-declaration lookup"); 6305 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 6306 DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD, 6307 MD ? MD->getParent() : nullptr); 6308 if (!Prev.empty()) { 6309 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); 6310 Func != FuncEnd; ++Func) { 6311 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); 6312 if (FD && 6313 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 6314 // Add 1 to the index so that 0 can mean the mismatch didn't 6315 // involve a parameter 6316 unsigned ParamNum = 6317 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; 6318 NearMatches.push_back(std::make_pair(FD, ParamNum)); 6319 } 6320 } 6321 // If the qualified name lookup yielded nothing, try typo correction 6322 } else if ((Correction = SemaRef.CorrectTypo( 6323 Prev.getLookupNameInfo(), Prev.getLookupKind(), S, 6324 &ExtraArgs.D.getCXXScopeSpec(), Validator, 6325 Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) { 6326 // Set up everything for the call to ActOnFunctionDeclarator 6327 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), 6328 ExtraArgs.D.getIdentifierLoc()); 6329 Previous.clear(); 6330 Previous.setLookupName(Correction.getCorrection()); 6331 for (TypoCorrection::decl_iterator CDecl = Correction.begin(), 6332 CDeclEnd = Correction.end(); 6333 CDecl != CDeclEnd; ++CDecl) { 6334 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 6335 if (FD && !FD->hasBody() && 6336 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 6337 Previous.addDecl(FD); 6338 } 6339 } 6340 bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); 6341 6342 NamedDecl *Result; 6343 // Retry building the function declaration with the new previous 6344 // declarations, and with errors suppressed. 6345 { 6346 // Trap errors. 6347 Sema::SFINAETrap Trap(SemaRef); 6348 6349 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the 6350 // pieces need to verify the typo-corrected C++ declaration and hopefully 6351 // eliminate the need for the parameter pack ExtraArgs. 6352 Result = SemaRef.ActOnFunctionDeclarator( 6353 ExtraArgs.S, ExtraArgs.D, 6354 Correction.getCorrectionDecl()->getDeclContext(), 6355 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, 6356 ExtraArgs.AddToScope); 6357 6358 if (Trap.hasErrorOccurred()) 6359 Result = nullptr; 6360 } 6361 6362 if (Result) { 6363 // Determine which correction we picked. 6364 Decl *Canonical = Result->getCanonicalDecl(); 6365 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6366 I != E; ++I) 6367 if ((*I)->getCanonicalDecl() == Canonical) 6368 Correction.setCorrectionDecl(*I); 6369 6370 SemaRef.diagnoseTypo( 6371 Correction, 6372 SemaRef.PDiag(IsLocalFriend 6373 ? diag::err_no_matching_local_friend_suggest 6374 : diag::err_member_decl_does_not_match_suggest) 6375 << Name << NewDC << IsDefinition); 6376 return Result; 6377 } 6378 6379 // Pretend the typo correction never occurred 6380 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), 6381 ExtraArgs.D.getIdentifierLoc()); 6382 ExtraArgs.D.setRedeclaration(wasRedeclaration); 6383 Previous.clear(); 6384 Previous.setLookupName(Name); 6385 } 6386 6387 SemaRef.Diag(NewFD->getLocation(), DiagMsg) 6388 << Name << NewDC << IsDefinition << NewFD->getLocation(); 6389 6390 bool NewFDisConst = false; 6391 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) 6392 NewFDisConst = NewMD->isConst(); 6393 6394 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator 6395 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); 6396 NearMatch != NearMatchEnd; ++NearMatch) { 6397 FunctionDecl *FD = NearMatch->first; 6398 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 6399 bool FDisConst = MD && MD->isConst(); 6400 bool IsMember = MD || !IsLocalFriend; 6401 6402 // FIXME: These notes are poorly worded for the local friend case. 6403 if (unsigned Idx = NearMatch->second) { 6404 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); 6405 SourceLocation Loc = FDParam->getTypeSpecStartLoc(); 6406 if (Loc.isInvalid()) Loc = FD->getLocation(); 6407 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match 6408 : diag::note_local_decl_close_param_match) 6409 << Idx << FDParam->getType() 6410 << NewFD->getParamDecl(Idx - 1)->getType(); 6411 } else if (FDisConst != NewFDisConst) { 6412 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) 6413 << NewFDisConst << FD->getSourceRange().getEnd(); 6414 } else 6415 SemaRef.Diag(FD->getLocation(), 6416 IsMember ? diag::note_member_def_close_match 6417 : diag::note_local_decl_close_match); 6418 } 6419 return nullptr; 6420 } 6421 6422 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef, 6423 Declarator &D) { 6424 switch (D.getDeclSpec().getStorageClassSpec()) { 6425 default: llvm_unreachable("Unknown storage class!"); 6426 case DeclSpec::SCS_auto: 6427 case DeclSpec::SCS_register: 6428 case DeclSpec::SCS_mutable: 6429 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6430 diag::err_typecheck_sclass_func); 6431 D.setInvalidType(); 6432 break; 6433 case DeclSpec::SCS_unspecified: break; 6434 case DeclSpec::SCS_extern: 6435 if (D.getDeclSpec().isExternInLinkageSpec()) 6436 return SC_None; 6437 return SC_Extern; 6438 case DeclSpec::SCS_static: { 6439 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { 6440 // C99 6.7.1p5: 6441 // The declaration of an identifier for a function that has 6442 // block scope shall have no explicit storage-class specifier 6443 // other than extern 6444 // See also (C++ [dcl.stc]p4). 6445 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6446 diag::err_static_block_func); 6447 break; 6448 } else 6449 return SC_Static; 6450 } 6451 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 6452 } 6453 6454 // No explicit storage class has already been returned 6455 return SC_None; 6456 } 6457 6458 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, 6459 DeclContext *DC, QualType &R, 6460 TypeSourceInfo *TInfo, 6461 FunctionDecl::StorageClass SC, 6462 bool &IsVirtualOkay) { 6463 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); 6464 DeclarationName Name = NameInfo.getName(); 6465 6466 FunctionDecl *NewFD = nullptr; 6467 bool isInline = D.getDeclSpec().isInlineSpecified(); 6468 6469 if (!SemaRef.getLangOpts().CPlusPlus) { 6470 // Determine whether the function was written with a 6471 // prototype. This true when: 6472 // - there is a prototype in the declarator, or 6473 // - the type R of the function is some kind of typedef or other reference 6474 // to a type name (which eventually refers to a function type). 6475 bool HasPrototype = 6476 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || 6477 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType()); 6478 6479 NewFD = FunctionDecl::Create(SemaRef.Context, DC, 6480 D.getLocStart(), NameInfo, R, 6481 TInfo, SC, isInline, 6482 HasPrototype, false); 6483 if (D.isInvalidType()) 6484 NewFD->setInvalidDecl(); 6485 6486 // Set the lexical context. 6487 NewFD->setLexicalDeclContext(SemaRef.CurContext); 6488 6489 return NewFD; 6490 } 6491 6492 bool isExplicit = D.getDeclSpec().isExplicitSpecified(); 6493 bool isConstexpr = D.getDeclSpec().isConstexprSpecified(); 6494 6495 // Check that the return type is not an abstract class type. 6496 // For record types, this is done by the AbstractClassUsageDiagnoser once 6497 // the class has been completely parsed. 6498 if (!DC->isRecord() && 6499 SemaRef.RequireNonAbstractType( 6500 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(), 6501 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) 6502 D.setInvalidType(); 6503 6504 if (Name.getNameKind() == DeclarationName::CXXConstructorName) { 6505 // This is a C++ constructor declaration. 6506 assert(DC->isRecord() && 6507 "Constructors can only be declared in a member context"); 6508 6509 R = SemaRef.CheckConstructorDeclarator(D, R, SC); 6510 return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC), 6511 D.getLocStart(), NameInfo, 6512 R, TInfo, isExplicit, isInline, 6513 /*isImplicitlyDeclared=*/false, 6514 isConstexpr); 6515 6516 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 6517 // This is a C++ destructor declaration. 6518 if (DC->isRecord()) { 6519 R = SemaRef.CheckDestructorDeclarator(D, R, SC); 6520 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 6521 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( 6522 SemaRef.Context, Record, 6523 D.getLocStart(), 6524 NameInfo, R, TInfo, isInline, 6525 /*isImplicitlyDeclared=*/false); 6526 6527 // If the class is complete, then we now create the implicit exception 6528 // specification. If the class is incomplete or dependent, we can't do 6529 // it yet. 6530 if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() && 6531 Record->getDefinition() && !Record->isBeingDefined() && 6532 R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) { 6533 SemaRef.AdjustDestructorExceptionSpec(Record, NewDD); 6534 } 6535 6536 IsVirtualOkay = true; 6537 return NewDD; 6538 6539 } else { 6540 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); 6541 D.setInvalidType(); 6542 6543 // Create a FunctionDecl to satisfy the function definition parsing 6544 // code path. 6545 return FunctionDecl::Create(SemaRef.Context, DC, 6546 D.getLocStart(), 6547 D.getIdentifierLoc(), Name, R, TInfo, 6548 SC, isInline, 6549 /*hasPrototype=*/true, isConstexpr); 6550 } 6551 6552 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { 6553 if (!DC->isRecord()) { 6554 SemaRef.Diag(D.getIdentifierLoc(), 6555 diag::err_conv_function_not_member); 6556 return nullptr; 6557 } 6558 6559 SemaRef.CheckConversionDeclarator(D, R, SC); 6560 IsVirtualOkay = true; 6561 return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC), 6562 D.getLocStart(), NameInfo, 6563 R, TInfo, isInline, isExplicit, 6564 isConstexpr, SourceLocation()); 6565 6566 } else if (DC->isRecord()) { 6567 // If the name of the function is the same as the name of the record, 6568 // then this must be an invalid constructor that has a return type. 6569 // (The parser checks for a return type and makes the declarator a 6570 // constructor if it has no return type). 6571 if (Name.getAsIdentifierInfo() && 6572 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ 6573 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) 6574 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 6575 << SourceRange(D.getIdentifierLoc()); 6576 return nullptr; 6577 } 6578 6579 // This is a C++ method declaration. 6580 CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context, 6581 cast<CXXRecordDecl>(DC), 6582 D.getLocStart(), NameInfo, R, 6583 TInfo, SC, isInline, 6584 isConstexpr, SourceLocation()); 6585 IsVirtualOkay = !Ret->isStatic(); 6586 return Ret; 6587 } else { 6588 // Determine whether the function was written with a 6589 // prototype. This true when: 6590 // - we're in C++ (where every function has a prototype), 6591 return FunctionDecl::Create(SemaRef.Context, DC, 6592 D.getLocStart(), 6593 NameInfo, R, TInfo, SC, isInline, 6594 true/*HasPrototype*/, isConstexpr); 6595 } 6596 } 6597 6598 enum OpenCLParamType { 6599 ValidKernelParam, 6600 PtrPtrKernelParam, 6601 PtrKernelParam, 6602 PrivatePtrKernelParam, 6603 InvalidKernelParam, 6604 RecordKernelParam 6605 }; 6606 6607 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) { 6608 if (PT->isPointerType()) { 6609 QualType PointeeType = PT->getPointeeType(); 6610 if (PointeeType->isPointerType()) 6611 return PtrPtrKernelParam; 6612 return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam 6613 : PtrKernelParam; 6614 } 6615 6616 // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can 6617 // be used as builtin types. 6618 6619 if (PT->isImageType()) 6620 return PtrKernelParam; 6621 6622 if (PT->isBooleanType()) 6623 return InvalidKernelParam; 6624 6625 if (PT->isEventT()) 6626 return InvalidKernelParam; 6627 6628 if (PT->isHalfType()) 6629 return InvalidKernelParam; 6630 6631 if (PT->isRecordType()) 6632 return RecordKernelParam; 6633 6634 return ValidKernelParam; 6635 } 6636 6637 static void checkIsValidOpenCLKernelParameter( 6638 Sema &S, 6639 Declarator &D, 6640 ParmVarDecl *Param, 6641 llvm::SmallPtrSet<const Type *, 16> &ValidTypes) { 6642 QualType PT = Param->getType(); 6643 6644 // Cache the valid types we encounter to avoid rechecking structs that are 6645 // used again 6646 if (ValidTypes.count(PT.getTypePtr())) 6647 return; 6648 6649 switch (getOpenCLKernelParameterType(PT)) { 6650 case PtrPtrKernelParam: 6651 // OpenCL v1.2 s6.9.a: 6652 // A kernel function argument cannot be declared as a 6653 // pointer to a pointer type. 6654 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); 6655 D.setInvalidType(); 6656 return; 6657 6658 case PrivatePtrKernelParam: 6659 // OpenCL v1.2 s6.9.a: 6660 // A kernel function argument cannot be declared as a 6661 // pointer to the private address space. 6662 S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param); 6663 D.setInvalidType(); 6664 return; 6665 6666 // OpenCL v1.2 s6.9.k: 6667 // Arguments to kernel functions in a program cannot be declared with the 6668 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 6669 // uintptr_t or a struct and/or union that contain fields declared to be 6670 // one of these built-in scalar types. 6671 6672 case InvalidKernelParam: 6673 // OpenCL v1.2 s6.8 n: 6674 // A kernel function argument cannot be declared 6675 // of event_t type. 6676 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 6677 D.setInvalidType(); 6678 return; 6679 6680 case PtrKernelParam: 6681 case ValidKernelParam: 6682 ValidTypes.insert(PT.getTypePtr()); 6683 return; 6684 6685 case RecordKernelParam: 6686 break; 6687 } 6688 6689 // Track nested structs we will inspect 6690 SmallVector<const Decl *, 4> VisitStack; 6691 6692 // Track where we are in the nested structs. Items will migrate from 6693 // VisitStack to HistoryStack as we do the DFS for bad field. 6694 SmallVector<const FieldDecl *, 4> HistoryStack; 6695 HistoryStack.push_back(nullptr); 6696 6697 const RecordDecl *PD = PT->castAs<RecordType>()->getDecl(); 6698 VisitStack.push_back(PD); 6699 6700 assert(VisitStack.back() && "First decl null?"); 6701 6702 do { 6703 const Decl *Next = VisitStack.pop_back_val(); 6704 if (!Next) { 6705 assert(!HistoryStack.empty()); 6706 // Found a marker, we have gone up a level 6707 if (const FieldDecl *Hist = HistoryStack.pop_back_val()) 6708 ValidTypes.insert(Hist->getType().getTypePtr()); 6709 6710 continue; 6711 } 6712 6713 // Adds everything except the original parameter declaration (which is not a 6714 // field itself) to the history stack. 6715 const RecordDecl *RD; 6716 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { 6717 HistoryStack.push_back(Field); 6718 RD = Field->getType()->castAs<RecordType>()->getDecl(); 6719 } else { 6720 RD = cast<RecordDecl>(Next); 6721 } 6722 6723 // Add a null marker so we know when we've gone back up a level 6724 VisitStack.push_back(nullptr); 6725 6726 for (const auto *FD : RD->fields()) { 6727 QualType QT = FD->getType(); 6728 6729 if (ValidTypes.count(QT.getTypePtr())) 6730 continue; 6731 6732 OpenCLParamType ParamType = getOpenCLKernelParameterType(QT); 6733 if (ParamType == ValidKernelParam) 6734 continue; 6735 6736 if (ParamType == RecordKernelParam) { 6737 VisitStack.push_back(FD); 6738 continue; 6739 } 6740 6741 // OpenCL v1.2 s6.9.p: 6742 // Arguments to kernel functions that are declared to be a struct or union 6743 // do not allow OpenCL objects to be passed as elements of the struct or 6744 // union. 6745 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || 6746 ParamType == PrivatePtrKernelParam) { 6747 S.Diag(Param->getLocation(), 6748 diag::err_record_with_pointers_kernel_param) 6749 << PT->isUnionType() 6750 << PT; 6751 } else { 6752 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 6753 } 6754 6755 S.Diag(PD->getLocation(), diag::note_within_field_of_type) 6756 << PD->getDeclName(); 6757 6758 // We have an error, now let's go back up through history and show where 6759 // the offending field came from 6760 for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1, 6761 E = HistoryStack.end(); I != E; ++I) { 6762 const FieldDecl *OuterField = *I; 6763 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) 6764 << OuterField->getType(); 6765 } 6766 6767 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) 6768 << QT->isPointerType() 6769 << QT; 6770 D.setInvalidType(); 6771 return; 6772 } 6773 } while (!VisitStack.empty()); 6774 } 6775 6776 NamedDecl* 6777 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, 6778 TypeSourceInfo *TInfo, LookupResult &Previous, 6779 MultiTemplateParamsArg TemplateParamLists, 6780 bool &AddToScope) { 6781 QualType R = TInfo->getType(); 6782 6783 assert(R.getTypePtr()->isFunctionType()); 6784 6785 // TODO: consider using NameInfo for diagnostic. 6786 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6787 DeclarationName Name = NameInfo.getName(); 6788 FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D); 6789 6790 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 6791 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 6792 diag::err_invalid_thread) 6793 << DeclSpec::getSpecifierName(TSCS); 6794 6795 if (D.isFirstDeclarationOfMember()) 6796 adjustMemberFunctionCC(R, D.isStaticMember()); 6797 6798 bool isFriend = false; 6799 FunctionTemplateDecl *FunctionTemplate = nullptr; 6800 bool isExplicitSpecialization = false; 6801 bool isFunctionTemplateSpecialization = false; 6802 6803 bool isDependentClassScopeExplicitSpecialization = false; 6804 bool HasExplicitTemplateArgs = false; 6805 TemplateArgumentListInfo TemplateArgs; 6806 6807 bool isVirtualOkay = false; 6808 6809 DeclContext *OriginalDC = DC; 6810 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); 6811 6812 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, 6813 isVirtualOkay); 6814 if (!NewFD) return nullptr; 6815 6816 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) 6817 NewFD->setTopLevelDeclInObjCContainer(); 6818 6819 // Set the lexical context. If this is a function-scope declaration, or has a 6820 // C++ scope specifier, or is the object of a friend declaration, the lexical 6821 // context will be different from the semantic context. 6822 NewFD->setLexicalDeclContext(CurContext); 6823 6824 if (IsLocalExternDecl) 6825 NewFD->setLocalExternDecl(); 6826 6827 if (getLangOpts().CPlusPlus) { 6828 bool isInline = D.getDeclSpec().isInlineSpecified(); 6829 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 6830 bool isExplicit = D.getDeclSpec().isExplicitSpecified(); 6831 bool isConstexpr = D.getDeclSpec().isConstexprSpecified(); 6832 isFriend = D.getDeclSpec().isFriendSpecified(); 6833 if (isFriend && !isInline && D.isFunctionDefinition()) { 6834 // C++ [class.friend]p5 6835 // A function can be defined in a friend declaration of a 6836 // class . . . . Such a function is implicitly inline. 6837 NewFD->setImplicitlyInline(); 6838 } 6839 6840 // If this is a method defined in an __interface, and is not a constructor 6841 // or an overloaded operator, then set the pure flag (isVirtual will already 6842 // return true). 6843 if (const CXXRecordDecl *Parent = 6844 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { 6845 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) 6846 NewFD->setPure(true); 6847 } 6848 6849 SetNestedNameSpecifier(NewFD, D); 6850 isExplicitSpecialization = false; 6851 isFunctionTemplateSpecialization = false; 6852 if (D.isInvalidType()) 6853 NewFD->setInvalidDecl(); 6854 6855 // Match up the template parameter lists with the scope specifier, then 6856 // determine whether we have a template or a template specialization. 6857 bool Invalid = false; 6858 if (TemplateParameterList *TemplateParams = 6859 MatchTemplateParametersToScopeSpecifier( 6860 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(), 6861 D.getCXXScopeSpec(), 6862 D.getName().getKind() == UnqualifiedId::IK_TemplateId 6863 ? D.getName().TemplateId 6864 : nullptr, 6865 TemplateParamLists, isFriend, isExplicitSpecialization, 6866 Invalid)) { 6867 if (TemplateParams->size() > 0) { 6868 // This is a function template 6869 6870 // Check that we can declare a template here. 6871 if (CheckTemplateDeclScope(S, TemplateParams)) 6872 return nullptr; 6873 6874 // A destructor cannot be a template. 6875 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 6876 Diag(NewFD->getLocation(), diag::err_destructor_template); 6877 return nullptr; 6878 } 6879 6880 // If we're adding a template to a dependent context, we may need to 6881 // rebuilding some of the types used within the template parameter list, 6882 // now that we know what the current instantiation is. 6883 if (DC->isDependentContext()) { 6884 ContextRAII SavedContext(*this, DC); 6885 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 6886 Invalid = true; 6887 } 6888 6889 6890 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, 6891 NewFD->getLocation(), 6892 Name, TemplateParams, 6893 NewFD); 6894 FunctionTemplate->setLexicalDeclContext(CurContext); 6895 NewFD->setDescribedFunctionTemplate(FunctionTemplate); 6896 6897 // For source fidelity, store the other template param lists. 6898 if (TemplateParamLists.size() > 1) { 6899 NewFD->setTemplateParameterListsInfo(Context, 6900 TemplateParamLists.size() - 1, 6901 TemplateParamLists.data()); 6902 } 6903 } else { 6904 // This is a function template specialization. 6905 isFunctionTemplateSpecialization = true; 6906 // For source fidelity, store all the template param lists. 6907 if (TemplateParamLists.size() > 0) 6908 NewFD->setTemplateParameterListsInfo(Context, 6909 TemplateParamLists.size(), 6910 TemplateParamLists.data()); 6911 6912 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". 6913 if (isFriend) { 6914 // We want to remove the "template<>", found here. 6915 SourceRange RemoveRange = TemplateParams->getSourceRange(); 6916 6917 // If we remove the template<> and the name is not a 6918 // template-id, we're actually silently creating a problem: 6919 // the friend declaration will refer to an untemplated decl, 6920 // and clearly the user wants a template specialization. So 6921 // we need to insert '<>' after the name. 6922 SourceLocation InsertLoc; 6923 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) { 6924 InsertLoc = D.getName().getSourceRange().getEnd(); 6925 InsertLoc = getLocForEndOfToken(InsertLoc); 6926 } 6927 6928 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) 6929 << Name << RemoveRange 6930 << FixItHint::CreateRemoval(RemoveRange) 6931 << FixItHint::CreateInsertion(InsertLoc, "<>"); 6932 } 6933 } 6934 } 6935 else { 6936 // All template param lists were matched against the scope specifier: 6937 // this is NOT (an explicit specialization of) a template. 6938 if (TemplateParamLists.size() > 0) 6939 // For source fidelity, store all the template param lists. 6940 NewFD->setTemplateParameterListsInfo(Context, 6941 TemplateParamLists.size(), 6942 TemplateParamLists.data()); 6943 } 6944 6945 if (Invalid) { 6946 NewFD->setInvalidDecl(); 6947 if (FunctionTemplate) 6948 FunctionTemplate->setInvalidDecl(); 6949 } 6950 6951 // C++ [dcl.fct.spec]p5: 6952 // The virtual specifier shall only be used in declarations of 6953 // nonstatic class member functions that appear within a 6954 // member-specification of a class declaration; see 10.3. 6955 // 6956 if (isVirtual && !NewFD->isInvalidDecl()) { 6957 if (!isVirtualOkay) { 6958 Diag(D.getDeclSpec().getVirtualSpecLoc(), 6959 diag::err_virtual_non_function); 6960 } else if (!CurContext->isRecord()) { 6961 // 'virtual' was specified outside of the class. 6962 Diag(D.getDeclSpec().getVirtualSpecLoc(), 6963 diag::err_virtual_out_of_class) 6964 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 6965 } else if (NewFD->getDescribedFunctionTemplate()) { 6966 // C++ [temp.mem]p3: 6967 // A member function template shall not be virtual. 6968 Diag(D.getDeclSpec().getVirtualSpecLoc(), 6969 diag::err_virtual_member_function_template) 6970 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 6971 } else { 6972 // Okay: Add virtual to the method. 6973 NewFD->setVirtualAsWritten(true); 6974 } 6975 6976 if (getLangOpts().CPlusPlus1y && 6977 NewFD->getReturnType()->isUndeducedType()) 6978 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); 6979 } 6980 6981 if (getLangOpts().CPlusPlus1y && 6982 (NewFD->isDependentContext() || 6983 (isFriend && CurContext->isDependentContext())) && 6984 NewFD->getReturnType()->isUndeducedType()) { 6985 // If the function template is referenced directly (for instance, as a 6986 // member of the current instantiation), pretend it has a dependent type. 6987 // This is not really justified by the standard, but is the only sane 6988 // thing to do. 6989 // FIXME: For a friend function, we have not marked the function as being 6990 // a friend yet, so 'isDependentContext' on the FD doesn't work. 6991 const FunctionProtoType *FPT = 6992 NewFD->getType()->castAs<FunctionProtoType>(); 6993 QualType Result = 6994 SubstAutoType(FPT->getReturnType(), Context.DependentTy); 6995 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), 6996 FPT->getExtProtoInfo())); 6997 } 6998 6999 // C++ [dcl.fct.spec]p3: 7000 // The inline specifier shall not appear on a block scope function 7001 // declaration. 7002 if (isInline && !NewFD->isInvalidDecl()) { 7003 if (CurContext->isFunctionOrMethod()) { 7004 // 'inline' is not allowed on block scope function declaration. 7005 Diag(D.getDeclSpec().getInlineSpecLoc(), 7006 diag::err_inline_declaration_block_scope) << Name 7007 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 7008 } 7009 } 7010 7011 // C++ [dcl.fct.spec]p6: 7012 // The explicit specifier shall be used only in the declaration of a 7013 // constructor or conversion function within its class definition; 7014 // see 12.3.1 and 12.3.2. 7015 if (isExplicit && !NewFD->isInvalidDecl()) { 7016 if (!CurContext->isRecord()) { 7017 // 'explicit' was specified outside of the class. 7018 Diag(D.getDeclSpec().getExplicitSpecLoc(), 7019 diag::err_explicit_out_of_class) 7020 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); 7021 } else if (!isa<CXXConstructorDecl>(NewFD) && 7022 !isa<CXXConversionDecl>(NewFD)) { 7023 // 'explicit' was specified on a function that wasn't a constructor 7024 // or conversion function. 7025 Diag(D.getDeclSpec().getExplicitSpecLoc(), 7026 diag::err_explicit_non_ctor_or_conv_function) 7027 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); 7028 } 7029 } 7030 7031 if (isConstexpr) { 7032 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors 7033 // are implicitly inline. 7034 NewFD->setImplicitlyInline(); 7035 7036 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to 7037 // be either constructors or to return a literal type. Therefore, 7038 // destructors cannot be declared constexpr. 7039 if (isa<CXXDestructorDecl>(NewFD)) 7040 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor); 7041 } 7042 7043 // If __module_private__ was specified, mark the function accordingly. 7044 if (D.getDeclSpec().isModulePrivateSpecified()) { 7045 if (isFunctionTemplateSpecialization) { 7046 SourceLocation ModulePrivateLoc 7047 = D.getDeclSpec().getModulePrivateSpecLoc(); 7048 Diag(ModulePrivateLoc, diag::err_module_private_specialization) 7049 << 0 7050 << FixItHint::CreateRemoval(ModulePrivateLoc); 7051 } else { 7052 NewFD->setModulePrivate(); 7053 if (FunctionTemplate) 7054 FunctionTemplate->setModulePrivate(); 7055 } 7056 } 7057 7058 if (isFriend) { 7059 if (FunctionTemplate) { 7060 FunctionTemplate->setObjectOfFriendDecl(); 7061 FunctionTemplate->setAccess(AS_public); 7062 } 7063 NewFD->setObjectOfFriendDecl(); 7064 NewFD->setAccess(AS_public); 7065 } 7066 7067 // If a function is defined as defaulted or deleted, mark it as such now. 7068 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function 7069 // definition kind to FDK_Definition. 7070 switch (D.getFunctionDefinitionKind()) { 7071 case FDK_Declaration: 7072 case FDK_Definition: 7073 break; 7074 7075 case FDK_Defaulted: 7076 NewFD->setDefaulted(); 7077 break; 7078 7079 case FDK_Deleted: 7080 NewFD->setDeletedAsWritten(); 7081 break; 7082 } 7083 7084 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && 7085 D.isFunctionDefinition()) { 7086 // C++ [class.mfct]p2: 7087 // A member function may be defined (8.4) in its class definition, in 7088 // which case it is an inline member function (7.1.2) 7089 NewFD->setImplicitlyInline(); 7090 } 7091 7092 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && 7093 !CurContext->isRecord()) { 7094 // C++ [class.static]p1: 7095 // A data or function member of a class may be declared static 7096 // in a class definition, in which case it is a static member of 7097 // the class. 7098 7099 // Complain about the 'static' specifier if it's on an out-of-line 7100 // member function definition. 7101 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7102 diag::err_static_out_of_line) 7103 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 7104 } 7105 7106 // C++11 [except.spec]p15: 7107 // A deallocation function with no exception-specification is treated 7108 // as if it were specified with noexcept(true). 7109 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); 7110 if ((Name.getCXXOverloadedOperator() == OO_Delete || 7111 Name.getCXXOverloadedOperator() == OO_Array_Delete) && 7112 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) { 7113 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 7114 EPI.ExceptionSpecType = EST_BasicNoexcept; 7115 NewFD->setType(Context.getFunctionType(FPT->getReturnType(), 7116 FPT->getParamTypes(), EPI)); 7117 } 7118 } 7119 7120 // Filter out previous declarations that don't match the scope. 7121 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), 7122 D.getCXXScopeSpec().isNotEmpty() || 7123 isExplicitSpecialization || 7124 isFunctionTemplateSpecialization); 7125 7126 // Handle GNU asm-label extension (encoded as an attribute). 7127 if (Expr *E = (Expr*) D.getAsmLabel()) { 7128 // The parser guarantees this is a string. 7129 StringLiteral *SE = cast<StringLiteral>(E); 7130 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context, 7131 SE->getString(), 0)); 7132 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 7133 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 7134 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); 7135 if (I != ExtnameUndeclaredIdentifiers.end()) { 7136 NewFD->addAttr(I->second); 7137 ExtnameUndeclaredIdentifiers.erase(I); 7138 } 7139 } 7140 7141 // Copy the parameter declarations from the declarator D to the function 7142 // declaration NewFD, if they are available. First scavenge them into Params. 7143 SmallVector<ParmVarDecl*, 16> Params; 7144 if (D.isFunctionDeclarator()) { 7145 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 7146 7147 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs 7148 // function that takes no arguments, not a function that takes a 7149 // single void argument. 7150 // We let through "const void" here because Sema::GetTypeForDeclarator 7151 // already checks for that case. 7152 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { 7153 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { 7154 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 7155 assert(Param->getDeclContext() != NewFD && "Was set before ?"); 7156 Param->setDeclContext(NewFD); 7157 Params.push_back(Param); 7158 7159 if (Param->isInvalidDecl()) 7160 NewFD->setInvalidDecl(); 7161 } 7162 } 7163 7164 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { 7165 // When we're declaring a function with a typedef, typeof, etc as in the 7166 // following example, we'll need to synthesize (unnamed) 7167 // parameters for use in the declaration. 7168 // 7169 // @code 7170 // typedef void fn(int); 7171 // fn f; 7172 // @endcode 7173 7174 // Synthesize a parameter for each argument type. 7175 for (const auto &AI : FT->param_types()) { 7176 ParmVarDecl *Param = 7177 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); 7178 Param->setScopeInfo(0, Params.size()); 7179 Params.push_back(Param); 7180 } 7181 } else { 7182 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && 7183 "Should not need args for typedef of non-prototype fn"); 7184 } 7185 7186 // Finally, we know we have the right number of parameters, install them. 7187 NewFD->setParams(Params); 7188 7189 // Find all anonymous symbols defined during the declaration of this function 7190 // and add to NewFD. This lets us track decls such 'enum Y' in: 7191 // 7192 // void f(enum Y {AA} x) {} 7193 // 7194 // which would otherwise incorrectly end up in the translation unit scope. 7195 NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope); 7196 DeclsInPrototypeScope.clear(); 7197 7198 if (D.getDeclSpec().isNoreturnSpecified()) 7199 NewFD->addAttr( 7200 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(), 7201 Context, 0)); 7202 7203 // Functions returning a variably modified type violate C99 6.7.5.2p2 7204 // because all functions have linkage. 7205 if (!NewFD->isInvalidDecl() && 7206 NewFD->getReturnType()->isVariablyModifiedType()) { 7207 Diag(NewFD->getLocation(), diag::err_vm_func_decl); 7208 NewFD->setInvalidDecl(); 7209 } 7210 7211 if (D.isFunctionDefinition() && CodeSegStack.CurrentValue && 7212 !NewFD->hasAttr<SectionAttr>()) { 7213 NewFD->addAttr( 7214 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate, 7215 CodeSegStack.CurrentValue->getString(), 7216 CodeSegStack.CurrentPragmaLocation)); 7217 if (UnifySection(CodeSegStack.CurrentValue->getString(), 7218 PSF_Implicit | PSF_Execute | PSF_Read, NewFD)) 7219 NewFD->dropAttr<SectionAttr>(); 7220 } 7221 7222 // Handle attributes. 7223 ProcessDeclAttributes(S, NewFD, D); 7224 7225 QualType RetType = NewFD->getReturnType(); 7226 const CXXRecordDecl *Ret = RetType->isRecordType() ? 7227 RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl(); 7228 if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() && 7229 Ret && Ret->hasAttr<WarnUnusedResultAttr>()) { 7230 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 7231 // Attach WarnUnusedResult to functions returning types with that attribute. 7232 // Don't apply the attribute to that type's own non-static member functions 7233 // (to avoid warning on things like assignment operators) 7234 if (!MD || MD->getParent() != Ret) 7235 NewFD->addAttr(WarnUnusedResultAttr::CreateImplicit(Context)); 7236 } 7237 7238 if (getLangOpts().OpenCL) { 7239 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return 7240 // type declaration will generate a compilation error. 7241 unsigned AddressSpace = RetType.getAddressSpace(); 7242 if (AddressSpace == LangAS::opencl_local || 7243 AddressSpace == LangAS::opencl_global || 7244 AddressSpace == LangAS::opencl_constant) { 7245 Diag(NewFD->getLocation(), 7246 diag::err_opencl_return_value_with_address_space); 7247 NewFD->setInvalidDecl(); 7248 } 7249 } 7250 7251 if (!getLangOpts().CPlusPlus) { 7252 // Perform semantic checking on the function declaration. 7253 bool isExplicitSpecialization=false; 7254 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 7255 CheckMain(NewFD, D.getDeclSpec()); 7256 7257 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 7258 CheckMSVCRTEntryPoint(NewFD); 7259 7260 if (!NewFD->isInvalidDecl()) 7261 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 7262 isExplicitSpecialization)); 7263 else if (!Previous.empty()) 7264 // Make graceful recovery from an invalid redeclaration. 7265 D.setRedeclaration(true); 7266 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 7267 Previous.getResultKind() != LookupResult::FoundOverloaded) && 7268 "previous declaration set still overloaded"); 7269 } else { 7270 // C++11 [replacement.functions]p3: 7271 // The program's definitions shall not be specified as inline. 7272 // 7273 // N.B. We diagnose declarations instead of definitions per LWG issue 2340. 7274 // 7275 // Suppress the diagnostic if the function is __attribute__((used)), since 7276 // that forces an external definition to be emitted. 7277 if (D.getDeclSpec().isInlineSpecified() && 7278 NewFD->isReplaceableGlobalAllocationFunction() && 7279 !NewFD->hasAttr<UsedAttr>()) 7280 Diag(D.getDeclSpec().getInlineSpecLoc(), 7281 diag::ext_operator_new_delete_declared_inline) 7282 << NewFD->getDeclName(); 7283 7284 // If the declarator is a template-id, translate the parser's template 7285 // argument list into our AST format. 7286 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 7287 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 7288 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 7289 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 7290 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7291 TemplateId->NumArgs); 7292 translateTemplateArguments(TemplateArgsPtr, 7293 TemplateArgs); 7294 7295 HasExplicitTemplateArgs = true; 7296 7297 if (NewFD->isInvalidDecl()) { 7298 HasExplicitTemplateArgs = false; 7299 } else if (FunctionTemplate) { 7300 // Function template with explicit template arguments. 7301 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) 7302 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); 7303 7304 HasExplicitTemplateArgs = false; 7305 } else { 7306 assert((isFunctionTemplateSpecialization || 7307 D.getDeclSpec().isFriendSpecified()) && 7308 "should have a 'template<>' for this decl"); 7309 // "friend void foo<>(int);" is an implicit specialization decl. 7310 isFunctionTemplateSpecialization = true; 7311 } 7312 } else if (isFriend && isFunctionTemplateSpecialization) { 7313 // This combination is only possible in a recovery case; the user 7314 // wrote something like: 7315 // template <> friend void foo(int); 7316 // which we're recovering from as if the user had written: 7317 // friend void foo<>(int); 7318 // Go ahead and fake up a template id. 7319 HasExplicitTemplateArgs = true; 7320 TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); 7321 TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); 7322 } 7323 7324 // If it's a friend (and only if it's a friend), it's possible 7325 // that either the specialized function type or the specialized 7326 // template is dependent, and therefore matching will fail. In 7327 // this case, don't check the specialization yet. 7328 bool InstantiationDependent = false; 7329 if (isFunctionTemplateSpecialization && isFriend && 7330 (NewFD->getType()->isDependentType() || DC->isDependentContext() || 7331 TemplateSpecializationType::anyDependentTemplateArguments( 7332 TemplateArgs.getArgumentArray(), TemplateArgs.size(), 7333 InstantiationDependent))) { 7334 assert(HasExplicitTemplateArgs && 7335 "friend function specialization without template args"); 7336 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, 7337 Previous)) 7338 NewFD->setInvalidDecl(); 7339 } else if (isFunctionTemplateSpecialization) { 7340 if (CurContext->isDependentContext() && CurContext->isRecord() 7341 && !isFriend) { 7342 isDependentClassScopeExplicitSpecialization = true; 7343 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 7344 diag::ext_function_specialization_in_class : 7345 diag::err_function_specialization_in_class) 7346 << NewFD->getDeclName(); 7347 } else if (CheckFunctionTemplateSpecialization(NewFD, 7348 (HasExplicitTemplateArgs ? &TemplateArgs 7349 : nullptr), 7350 Previous)) 7351 NewFD->setInvalidDecl(); 7352 7353 // C++ [dcl.stc]p1: 7354 // A storage-class-specifier shall not be specified in an explicit 7355 // specialization (14.7.3) 7356 FunctionTemplateSpecializationInfo *Info = 7357 NewFD->getTemplateSpecializationInfo(); 7358 if (Info && SC != SC_None) { 7359 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) 7360 Diag(NewFD->getLocation(), 7361 diag::err_explicit_specialization_inconsistent_storage_class) 7362 << SC 7363 << FixItHint::CreateRemoval( 7364 D.getDeclSpec().getStorageClassSpecLoc()); 7365 7366 else 7367 Diag(NewFD->getLocation(), 7368 diag::ext_explicit_specialization_storage_class) 7369 << FixItHint::CreateRemoval( 7370 D.getDeclSpec().getStorageClassSpecLoc()); 7371 } 7372 7373 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) { 7374 if (CheckMemberSpecialization(NewFD, Previous)) 7375 NewFD->setInvalidDecl(); 7376 } 7377 7378 // Perform semantic checking on the function declaration. 7379 if (!isDependentClassScopeExplicitSpecialization) { 7380 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 7381 CheckMain(NewFD, D.getDeclSpec()); 7382 7383 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 7384 CheckMSVCRTEntryPoint(NewFD); 7385 7386 if (!NewFD->isInvalidDecl()) 7387 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 7388 isExplicitSpecialization)); 7389 } 7390 7391 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 7392 Previous.getResultKind() != LookupResult::FoundOverloaded) && 7393 "previous declaration set still overloaded"); 7394 7395 NamedDecl *PrincipalDecl = (FunctionTemplate 7396 ? cast<NamedDecl>(FunctionTemplate) 7397 : NewFD); 7398 7399 if (isFriend && D.isRedeclaration()) { 7400 AccessSpecifier Access = AS_public; 7401 if (!NewFD->isInvalidDecl()) 7402 Access = NewFD->getPreviousDecl()->getAccess(); 7403 7404 NewFD->setAccess(Access); 7405 if (FunctionTemplate) FunctionTemplate->setAccess(Access); 7406 } 7407 7408 if (NewFD->isOverloadedOperator() && !DC->isRecord() && 7409 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 7410 PrincipalDecl->setNonMemberOperator(); 7411 7412 // If we have a function template, check the template parameter 7413 // list. This will check and merge default template arguments. 7414 if (FunctionTemplate) { 7415 FunctionTemplateDecl *PrevTemplate = 7416 FunctionTemplate->getPreviousDecl(); 7417 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), 7418 PrevTemplate ? PrevTemplate->getTemplateParameters() 7419 : nullptr, 7420 D.getDeclSpec().isFriendSpecified() 7421 ? (D.isFunctionDefinition() 7422 ? TPC_FriendFunctionTemplateDefinition 7423 : TPC_FriendFunctionTemplate) 7424 : (D.getCXXScopeSpec().isSet() && 7425 DC && DC->isRecord() && 7426 DC->isDependentContext()) 7427 ? TPC_ClassTemplateMember 7428 : TPC_FunctionTemplate); 7429 } 7430 7431 if (NewFD->isInvalidDecl()) { 7432 // Ignore all the rest of this. 7433 } else if (!D.isRedeclaration()) { 7434 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, 7435 AddToScope }; 7436 // Fake up an access specifier if it's supposed to be a class member. 7437 if (isa<CXXRecordDecl>(NewFD->getDeclContext())) 7438 NewFD->setAccess(AS_public); 7439 7440 // Qualified decls generally require a previous declaration. 7441 if (D.getCXXScopeSpec().isSet()) { 7442 // ...with the major exception of templated-scope or 7443 // dependent-scope friend declarations. 7444 7445 // TODO: we currently also suppress this check in dependent 7446 // contexts because (1) the parameter depth will be off when 7447 // matching friend templates and (2) we might actually be 7448 // selecting a friend based on a dependent factor. But there 7449 // are situations where these conditions don't apply and we 7450 // can actually do this check immediately. 7451 if (isFriend && 7452 (TemplateParamLists.size() || 7453 D.getCXXScopeSpec().getScopeRep()->isDependent() || 7454 CurContext->isDependentContext())) { 7455 // ignore these 7456 } else { 7457 // The user tried to provide an out-of-line definition for a 7458 // function that is a member of a class or namespace, but there 7459 // was no such member function declared (C++ [class.mfct]p2, 7460 // C++ [namespace.memdef]p2). For example: 7461 // 7462 // class X { 7463 // void f() const; 7464 // }; 7465 // 7466 // void X::f() { } // ill-formed 7467 // 7468 // Complain about this problem, and attempt to suggest close 7469 // matches (e.g., those that differ only in cv-qualifiers and 7470 // whether the parameter types are references). 7471 7472 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 7473 *this, Previous, NewFD, ExtraArgs, false, nullptr)) { 7474 AddToScope = ExtraArgs.AddToScope; 7475 return Result; 7476 } 7477 } 7478 7479 // Unqualified local friend declarations are required to resolve 7480 // to something. 7481 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { 7482 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 7483 *this, Previous, NewFD, ExtraArgs, true, S)) { 7484 AddToScope = ExtraArgs.AddToScope; 7485 return Result; 7486 } 7487 } 7488 7489 } else if (!D.isFunctionDefinition() && 7490 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && 7491 !isFriend && !isFunctionTemplateSpecialization && 7492 !isExplicitSpecialization) { 7493 // An out-of-line member function declaration must also be a 7494 // definition (C++ [class.mfct]p2). 7495 // Note that this is not the case for explicit specializations of 7496 // function templates or member functions of class templates, per 7497 // C++ [temp.expl.spec]p2. We also allow these declarations as an 7498 // extension for compatibility with old SWIG code which likes to 7499 // generate them. 7500 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) 7501 << D.getCXXScopeSpec().getRange(); 7502 } 7503 } 7504 7505 ProcessPragmaWeak(S, NewFD); 7506 checkAttributesAfterMerging(*this, *NewFD); 7507 7508 AddKnownFunctionAttributes(NewFD); 7509 7510 if (NewFD->hasAttr<OverloadableAttr>() && 7511 !NewFD->getType()->getAs<FunctionProtoType>()) { 7512 Diag(NewFD->getLocation(), 7513 diag::err_attribute_overloadable_no_prototype) 7514 << NewFD; 7515 7516 // Turn this into a variadic function with no parameters. 7517 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); 7518 FunctionProtoType::ExtProtoInfo EPI( 7519 Context.getDefaultCallingConvention(true, false)); 7520 EPI.Variadic = true; 7521 EPI.ExtInfo = FT->getExtInfo(); 7522 7523 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); 7524 NewFD->setType(R); 7525 } 7526 7527 // If there's a #pragma GCC visibility in scope, and this isn't a class 7528 // member, set the visibility of this function. 7529 if (!DC->isRecord() && NewFD->isExternallyVisible()) 7530 AddPushedVisibilityAttribute(NewFD); 7531 7532 // If there's a #pragma clang arc_cf_code_audited in scope, consider 7533 // marking the function. 7534 AddCFAuditedAttribute(NewFD); 7535 7536 // If this is a function definition, check if we have to apply optnone due to 7537 // a pragma. 7538 if(D.isFunctionDefinition()) 7539 AddRangeBasedOptnone(NewFD); 7540 7541 // If this is the first declaration of an extern C variable, update 7542 // the map of such variables. 7543 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && 7544 isIncompleteDeclExternC(*this, NewFD)) 7545 RegisterLocallyScopedExternCDecl(NewFD, S); 7546 7547 // Set this FunctionDecl's range up to the right paren. 7548 NewFD->setRangeEnd(D.getSourceRange().getEnd()); 7549 7550 if (D.isRedeclaration() && !Previous.empty()) { 7551 checkDLLAttributeRedeclaration( 7552 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD, 7553 isExplicitSpecialization || isFunctionTemplateSpecialization); 7554 } 7555 7556 if (getLangOpts().CPlusPlus) { 7557 if (FunctionTemplate) { 7558 if (NewFD->isInvalidDecl()) 7559 FunctionTemplate->setInvalidDecl(); 7560 return FunctionTemplate; 7561 } 7562 } 7563 7564 if (NewFD->hasAttr<OpenCLKernelAttr>()) { 7565 // OpenCL v1.2 s6.8 static is invalid for kernel functions. 7566 if ((getLangOpts().OpenCLVersion >= 120) 7567 && (SC == SC_Static)) { 7568 Diag(D.getIdentifierLoc(), diag::err_static_kernel); 7569 D.setInvalidType(); 7570 } 7571 7572 // OpenCL v1.2, s6.9 -- Kernels can only have return type void. 7573 if (!NewFD->getReturnType()->isVoidType()) { 7574 SourceRange RTRange = NewFD->getReturnTypeSourceRange(); 7575 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) 7576 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 7577 : FixItHint()); 7578 D.setInvalidType(); 7579 } 7580 7581 llvm::SmallPtrSet<const Type *, 16> ValidTypes; 7582 for (auto Param : NewFD->params()) 7583 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); 7584 } 7585 7586 MarkUnusedFileScopedDecl(NewFD); 7587 7588 if (getLangOpts().CUDA) 7589 if (IdentifierInfo *II = NewFD->getIdentifier()) 7590 if (!NewFD->isInvalidDecl() && 7591 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 7592 if (II->isStr("cudaConfigureCall")) { 7593 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType()) 7594 Diag(NewFD->getLocation(), diag::err_config_scalar_return); 7595 7596 Context.setcudaConfigureCallDecl(NewFD); 7597 } 7598 } 7599 7600 // Here we have an function template explicit specialization at class scope. 7601 // The actually specialization will be postponed to template instatiation 7602 // time via the ClassScopeFunctionSpecializationDecl node. 7603 if (isDependentClassScopeExplicitSpecialization) { 7604 ClassScopeFunctionSpecializationDecl *NewSpec = 7605 ClassScopeFunctionSpecializationDecl::Create( 7606 Context, CurContext, SourceLocation(), 7607 cast<CXXMethodDecl>(NewFD), 7608 HasExplicitTemplateArgs, TemplateArgs); 7609 CurContext->addDecl(NewSpec); 7610 AddToScope = false; 7611 } 7612 7613 return NewFD; 7614 } 7615 7616 /// \brief Perform semantic checking of a new function declaration. 7617 /// 7618 /// Performs semantic analysis of the new function declaration 7619 /// NewFD. This routine performs all semantic checking that does not 7620 /// require the actual declarator involved in the declaration, and is 7621 /// used both for the declaration of functions as they are parsed 7622 /// (called via ActOnDeclarator) and for the declaration of functions 7623 /// that have been instantiated via C++ template instantiation (called 7624 /// via InstantiateDecl). 7625 /// 7626 /// \param IsExplicitSpecialization whether this new function declaration is 7627 /// an explicit specialization of the previous declaration. 7628 /// 7629 /// This sets NewFD->isInvalidDecl() to true if there was an error. 7630 /// 7631 /// \returns true if the function declaration is a redeclaration. 7632 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, 7633 LookupResult &Previous, 7634 bool IsExplicitSpecialization) { 7635 assert(!NewFD->getReturnType()->isVariablyModifiedType() && 7636 "Variably modified return types are not handled here"); 7637 7638 // Determine whether the type of this function should be merged with 7639 // a previous visible declaration. This never happens for functions in C++, 7640 // and always happens in C if the previous declaration was visible. 7641 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && 7642 !Previous.isShadowed(); 7643 7644 // Filter out any non-conflicting previous declarations. 7645 filterNonConflictingPreviousDecls(Context, NewFD, Previous); 7646 7647 bool Redeclaration = false; 7648 NamedDecl *OldDecl = nullptr; 7649 7650 // Merge or overload the declaration with an existing declaration of 7651 // the same name, if appropriate. 7652 if (!Previous.empty()) { 7653 // Determine whether NewFD is an overload of PrevDecl or 7654 // a declaration that requires merging. If it's an overload, 7655 // there's no more work to do here; we'll just add the new 7656 // function to the scope. 7657 if (!AllowOverloadingOfFunction(Previous, Context)) { 7658 NamedDecl *Candidate = Previous.getFoundDecl(); 7659 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { 7660 Redeclaration = true; 7661 OldDecl = Candidate; 7662 } 7663 } else { 7664 switch (CheckOverload(S, NewFD, Previous, OldDecl, 7665 /*NewIsUsingDecl*/ false)) { 7666 case Ovl_Match: 7667 Redeclaration = true; 7668 break; 7669 7670 case Ovl_NonFunction: 7671 Redeclaration = true; 7672 break; 7673 7674 case Ovl_Overload: 7675 Redeclaration = false; 7676 break; 7677 } 7678 7679 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) { 7680 // If a function name is overloadable in C, then every function 7681 // with that name must be marked "overloadable". 7682 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) 7683 << Redeclaration << NewFD; 7684 NamedDecl *OverloadedDecl = nullptr; 7685 if (Redeclaration) 7686 OverloadedDecl = OldDecl; 7687 else if (!Previous.empty()) 7688 OverloadedDecl = Previous.getRepresentativeDecl(); 7689 if (OverloadedDecl) 7690 Diag(OverloadedDecl->getLocation(), 7691 diag::note_attribute_overloadable_prev_overload); 7692 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 7693 } 7694 } 7695 } 7696 7697 // Check for a previous extern "C" declaration with this name. 7698 if (!Redeclaration && 7699 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { 7700 filterNonConflictingPreviousDecls(Context, NewFD, Previous); 7701 if (!Previous.empty()) { 7702 // This is an extern "C" declaration with the same name as a previous 7703 // declaration, and thus redeclares that entity... 7704 Redeclaration = true; 7705 OldDecl = Previous.getFoundDecl(); 7706 MergeTypeWithPrevious = false; 7707 7708 // ... except in the presence of __attribute__((overloadable)). 7709 if (OldDecl->hasAttr<OverloadableAttr>()) { 7710 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) { 7711 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) 7712 << Redeclaration << NewFD; 7713 Diag(Previous.getFoundDecl()->getLocation(), 7714 diag::note_attribute_overloadable_prev_overload); 7715 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 7716 } 7717 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { 7718 Redeclaration = false; 7719 OldDecl = nullptr; 7720 } 7721 } 7722 } 7723 } 7724 7725 // C++11 [dcl.constexpr]p8: 7726 // A constexpr specifier for a non-static member function that is not 7727 // a constructor declares that member function to be const. 7728 // 7729 // This needs to be delayed until we know whether this is an out-of-line 7730 // definition of a static member function. 7731 // 7732 // This rule is not present in C++1y, so we produce a backwards 7733 // compatibility warning whenever it happens in C++11. 7734 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 7735 if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() && 7736 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && 7737 (MD->getTypeQualifiers() & Qualifiers::Const) == 0) { 7738 CXXMethodDecl *OldMD = nullptr; 7739 if (OldDecl) 7740 OldMD = dyn_cast<CXXMethodDecl>(OldDecl->getAsFunction()); 7741 if (!OldMD || !OldMD->isStatic()) { 7742 const FunctionProtoType *FPT = 7743 MD->getType()->castAs<FunctionProtoType>(); 7744 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 7745 EPI.TypeQuals |= Qualifiers::Const; 7746 MD->setType(Context.getFunctionType(FPT->getReturnType(), 7747 FPT->getParamTypes(), EPI)); 7748 7749 // Warn that we did this, if we're not performing template instantiation. 7750 // In that case, we'll have warned already when the template was defined. 7751 if (ActiveTemplateInstantiations.empty()) { 7752 SourceLocation AddConstLoc; 7753 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() 7754 .IgnoreParens().getAs<FunctionTypeLoc>()) 7755 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); 7756 7757 Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const) 7758 << FixItHint::CreateInsertion(AddConstLoc, " const"); 7759 } 7760 } 7761 } 7762 7763 if (Redeclaration) { 7764 // NewFD and OldDecl represent declarations that need to be 7765 // merged. 7766 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { 7767 NewFD->setInvalidDecl(); 7768 return Redeclaration; 7769 } 7770 7771 Previous.clear(); 7772 Previous.addDecl(OldDecl); 7773 7774 if (FunctionTemplateDecl *OldTemplateDecl 7775 = dyn_cast<FunctionTemplateDecl>(OldDecl)) { 7776 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl()); 7777 FunctionTemplateDecl *NewTemplateDecl 7778 = NewFD->getDescribedFunctionTemplate(); 7779 assert(NewTemplateDecl && "Template/non-template mismatch"); 7780 if (CXXMethodDecl *Method 7781 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) { 7782 Method->setAccess(OldTemplateDecl->getAccess()); 7783 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); 7784 } 7785 7786 // If this is an explicit specialization of a member that is a function 7787 // template, mark it as a member specialization. 7788 if (IsExplicitSpecialization && 7789 NewTemplateDecl->getInstantiatedFromMemberTemplate()) { 7790 NewTemplateDecl->setMemberSpecialization(); 7791 assert(OldTemplateDecl->isMemberSpecialization()); 7792 } 7793 7794 } else { 7795 // This needs to happen first so that 'inline' propagates. 7796 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl)); 7797 7798 if (isa<CXXMethodDecl>(NewFD)) { 7799 // A valid redeclaration of a C++ method must be out-of-line, 7800 // but (unfortunately) it's not necessarily a definition 7801 // because of templates, which means that the previous 7802 // declaration is not necessarily from the class definition. 7803 7804 // For just setting the access, that doesn't matter. 7805 CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl); 7806 NewFD->setAccess(oldMethod->getAccess()); 7807 7808 // Update the key-function state if necessary for this ABI. 7809 if (NewFD->isInlined() && 7810 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 7811 // setNonKeyFunction needs to work with the original 7812 // declaration from the class definition, and isVirtual() is 7813 // just faster in that case, so map back to that now. 7814 oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl()); 7815 if (oldMethod->isVirtual()) { 7816 Context.setNonKeyFunction(oldMethod); 7817 } 7818 } 7819 } 7820 } 7821 } 7822 7823 // Semantic checking for this function declaration (in isolation). 7824 if (getLangOpts().CPlusPlus) { 7825 // C++-specific checks. 7826 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { 7827 CheckConstructor(Constructor); 7828 } else if (CXXDestructorDecl *Destructor = 7829 dyn_cast<CXXDestructorDecl>(NewFD)) { 7830 CXXRecordDecl *Record = Destructor->getParent(); 7831 QualType ClassType = Context.getTypeDeclType(Record); 7832 7833 // FIXME: Shouldn't we be able to perform this check even when the class 7834 // type is dependent? Both gcc and edg can handle that. 7835 if (!ClassType->isDependentType()) { 7836 DeclarationName Name 7837 = Context.DeclarationNames.getCXXDestructorName( 7838 Context.getCanonicalType(ClassType)); 7839 if (NewFD->getDeclName() != Name) { 7840 Diag(NewFD->getLocation(), diag::err_destructor_name); 7841 NewFD->setInvalidDecl(); 7842 return Redeclaration; 7843 } 7844 } 7845 } else if (CXXConversionDecl *Conversion 7846 = dyn_cast<CXXConversionDecl>(NewFD)) { 7847 ActOnConversionDeclarator(Conversion); 7848 } 7849 7850 // Find any virtual functions that this function overrides. 7851 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { 7852 if (!Method->isFunctionTemplateSpecialization() && 7853 !Method->getDescribedFunctionTemplate() && 7854 Method->isCanonicalDecl()) { 7855 if (AddOverriddenMethods(Method->getParent(), Method)) { 7856 // If the function was marked as "static", we have a problem. 7857 if (NewFD->getStorageClass() == SC_Static) { 7858 ReportOverrides(*this, diag::err_static_overrides_virtual, Method); 7859 } 7860 } 7861 } 7862 7863 if (Method->isStatic()) 7864 checkThisInStaticMemberFunctionType(Method); 7865 } 7866 7867 // Extra checking for C++ overloaded operators (C++ [over.oper]). 7868 if (NewFD->isOverloadedOperator() && 7869 CheckOverloadedOperatorDeclaration(NewFD)) { 7870 NewFD->setInvalidDecl(); 7871 return Redeclaration; 7872 } 7873 7874 // Extra checking for C++0x literal operators (C++0x [over.literal]). 7875 if (NewFD->getLiteralIdentifier() && 7876 CheckLiteralOperatorDeclaration(NewFD)) { 7877 NewFD->setInvalidDecl(); 7878 return Redeclaration; 7879 } 7880 7881 // In C++, check default arguments now that we have merged decls. Unless 7882 // the lexical context is the class, because in this case this is done 7883 // during delayed parsing anyway. 7884 if (!CurContext->isRecord()) 7885 CheckCXXDefaultArguments(NewFD); 7886 7887 // If this function declares a builtin function, check the type of this 7888 // declaration against the expected type for the builtin. 7889 if (unsigned BuiltinID = NewFD->getBuiltinID()) { 7890 ASTContext::GetBuiltinTypeError Error; 7891 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier()); 7892 QualType T = Context.GetBuiltinType(BuiltinID, Error); 7893 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) { 7894 // The type of this function differs from the type of the builtin, 7895 // so forget about the builtin entirely. 7896 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents); 7897 } 7898 } 7899 7900 // If this function is declared as being extern "C", then check to see if 7901 // the function returns a UDT (class, struct, or union type) that is not C 7902 // compatible, and if it does, warn the user. 7903 // But, issue any diagnostic on the first declaration only. 7904 if (NewFD->isExternC() && Previous.empty()) { 7905 QualType R = NewFD->getReturnType(); 7906 if (R->isIncompleteType() && !R->isVoidType()) 7907 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) 7908 << NewFD << R; 7909 else if (!R.isPODType(Context) && !R->isVoidType() && 7910 !R->isObjCObjectPointerType()) 7911 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; 7912 } 7913 } 7914 return Redeclaration; 7915 } 7916 7917 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { 7918 // C++11 [basic.start.main]p3: 7919 // A program that [...] declares main to be inline, static or 7920 // constexpr is ill-formed. 7921 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall 7922 // appear in a declaration of main. 7923 // static main is not an error under C99, but we should warn about it. 7924 // We accept _Noreturn main as an extension. 7925 if (FD->getStorageClass() == SC_Static) 7926 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus 7927 ? diag::err_static_main : diag::warn_static_main) 7928 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 7929 if (FD->isInlineSpecified()) 7930 Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 7931 << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); 7932 if (DS.isNoreturnSpecified()) { 7933 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); 7934 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); 7935 Diag(NoreturnLoc, diag::ext_noreturn_main); 7936 Diag(NoreturnLoc, diag::note_main_remove_noreturn) 7937 << FixItHint::CreateRemoval(NoreturnRange); 7938 } 7939 if (FD->isConstexpr()) { 7940 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) 7941 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); 7942 FD->setConstexpr(false); 7943 } 7944 7945 if (getLangOpts().OpenCL) { 7946 Diag(FD->getLocation(), diag::err_opencl_no_main) 7947 << FD->hasAttr<OpenCLKernelAttr>(); 7948 FD->setInvalidDecl(); 7949 return; 7950 } 7951 7952 QualType T = FD->getType(); 7953 assert(T->isFunctionType() && "function decl is not of function type"); 7954 const FunctionType* FT = T->castAs<FunctionType>(); 7955 7956 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { 7957 // In C with GNU extensions we allow main() to have non-integer return 7958 // type, but we should warn about the extension, and we disable the 7959 // implicit-return-zero rule. 7960 7961 // GCC in C mode accepts qualified 'int'. 7962 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) 7963 FD->setHasImplicitReturnZero(true); 7964 else { 7965 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); 7966 SourceRange RTRange = FD->getReturnTypeSourceRange(); 7967 if (RTRange.isValid()) 7968 Diag(RTRange.getBegin(), diag::note_main_change_return_type) 7969 << FixItHint::CreateReplacement(RTRange, "int"); 7970 } 7971 } else { 7972 // In C and C++, main magically returns 0 if you fall off the end; 7973 // set the flag which tells us that. 7974 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. 7975 7976 // All the standards say that main() should return 'int'. 7977 if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) 7978 FD->setHasImplicitReturnZero(true); 7979 else { 7980 // Otherwise, this is just a flat-out error. 7981 SourceRange RTRange = FD->getReturnTypeSourceRange(); 7982 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) 7983 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") 7984 : FixItHint()); 7985 FD->setInvalidDecl(true); 7986 } 7987 } 7988 7989 // Treat protoless main() as nullary. 7990 if (isa<FunctionNoProtoType>(FT)) return; 7991 7992 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); 7993 unsigned nparams = FTP->getNumParams(); 7994 assert(FD->getNumParams() == nparams); 7995 7996 bool HasExtraParameters = (nparams > 3); 7997 7998 // Darwin passes an undocumented fourth argument of type char**. If 7999 // other platforms start sprouting these, the logic below will start 8000 // getting shifty. 8001 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) 8002 HasExtraParameters = false; 8003 8004 if (HasExtraParameters) { 8005 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; 8006 FD->setInvalidDecl(true); 8007 nparams = 3; 8008 } 8009 8010 // FIXME: a lot of the following diagnostics would be improved 8011 // if we had some location information about types. 8012 8013 QualType CharPP = 8014 Context.getPointerType(Context.getPointerType(Context.CharTy)); 8015 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; 8016 8017 for (unsigned i = 0; i < nparams; ++i) { 8018 QualType AT = FTP->getParamType(i); 8019 8020 bool mismatch = true; 8021 8022 if (Context.hasSameUnqualifiedType(AT, Expected[i])) 8023 mismatch = false; 8024 else if (Expected[i] == CharPP) { 8025 // As an extension, the following forms are okay: 8026 // char const ** 8027 // char const * const * 8028 // char * const * 8029 8030 QualifierCollector qs; 8031 const PointerType* PT; 8032 if ((PT = qs.strip(AT)->getAs<PointerType>()) && 8033 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && 8034 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), 8035 Context.CharTy)) { 8036 qs.removeConst(); 8037 mismatch = !qs.empty(); 8038 } 8039 } 8040 8041 if (mismatch) { 8042 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; 8043 // TODO: suggest replacing given type with expected type 8044 FD->setInvalidDecl(true); 8045 } 8046 } 8047 8048 if (nparams == 1 && !FD->isInvalidDecl()) { 8049 Diag(FD->getLocation(), diag::warn_main_one_arg); 8050 } 8051 8052 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 8053 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 8054 FD->setInvalidDecl(); 8055 } 8056 } 8057 8058 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { 8059 QualType T = FD->getType(); 8060 assert(T->isFunctionType() && "function decl is not of function type"); 8061 const FunctionType *FT = T->castAs<FunctionType>(); 8062 8063 // Set an implicit return of 'zero' if the function can return some integral, 8064 // enumeration, pointer or nullptr type. 8065 if (FT->getReturnType()->isIntegralOrEnumerationType() || 8066 FT->getReturnType()->isAnyPointerType() || 8067 FT->getReturnType()->isNullPtrType()) 8068 // DllMain is exempt because a return value of zero means it failed. 8069 if (FD->getName() != "DllMain") 8070 FD->setHasImplicitReturnZero(true); 8071 8072 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 8073 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 8074 FD->setInvalidDecl(); 8075 } 8076 } 8077 8078 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { 8079 // FIXME: Need strict checking. In C89, we need to check for 8080 // any assignment, increment, decrement, function-calls, or 8081 // commas outside of a sizeof. In C99, it's the same list, 8082 // except that the aforementioned are allowed in unevaluated 8083 // expressions. Everything else falls under the 8084 // "may accept other forms of constant expressions" exception. 8085 // (We never end up here for C++, so the constant expression 8086 // rules there don't matter.) 8087 const Expr *Culprit; 8088 if (Init->isConstantInitializer(Context, false, &Culprit)) 8089 return false; 8090 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) 8091 << Culprit->getSourceRange(); 8092 return true; 8093 } 8094 8095 namespace { 8096 // Visits an initialization expression to see if OrigDecl is evaluated in 8097 // its own initialization and throws a warning if it does. 8098 class SelfReferenceChecker 8099 : public EvaluatedExprVisitor<SelfReferenceChecker> { 8100 Sema &S; 8101 Decl *OrigDecl; 8102 bool isRecordType; 8103 bool isPODType; 8104 bool isReferenceType; 8105 8106 public: 8107 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; 8108 8109 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), 8110 S(S), OrigDecl(OrigDecl) { 8111 isPODType = false; 8112 isRecordType = false; 8113 isReferenceType = false; 8114 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { 8115 isPODType = VD->getType().isPODType(S.Context); 8116 isRecordType = VD->getType()->isRecordType(); 8117 isReferenceType = VD->getType()->isReferenceType(); 8118 } 8119 } 8120 8121 // For most expressions, the cast is directly above the DeclRefExpr. 8122 // For conditional operators, the cast can be outside the conditional 8123 // operator if both expressions are DeclRefExpr's. 8124 void HandleValue(Expr *E) { 8125 if (isReferenceType) 8126 return; 8127 E = E->IgnoreParenImpCasts(); 8128 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { 8129 HandleDeclRefExpr(DRE); 8130 return; 8131 } 8132 8133 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8134 HandleValue(CO->getTrueExpr()); 8135 HandleValue(CO->getFalseExpr()); 8136 return; 8137 } 8138 8139 if (isa<MemberExpr>(E)) { 8140 Expr *Base = E->IgnoreParenImpCasts(); 8141 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 8142 // Check for static member variables and don't warn on them. 8143 if (!isa<FieldDecl>(ME->getMemberDecl())) 8144 return; 8145 Base = ME->getBase()->IgnoreParenImpCasts(); 8146 } 8147 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) 8148 HandleDeclRefExpr(DRE); 8149 return; 8150 } 8151 } 8152 8153 // Reference types are handled here since all uses of references are 8154 // bad, not just r-value uses. 8155 void VisitDeclRefExpr(DeclRefExpr *E) { 8156 if (isReferenceType) 8157 HandleDeclRefExpr(E); 8158 } 8159 8160 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 8161 if (E->getCastKind() == CK_LValueToRValue || 8162 (isRecordType && E->getCastKind() == CK_NoOp)) 8163 HandleValue(E->getSubExpr()); 8164 8165 Inherited::VisitImplicitCastExpr(E); 8166 } 8167 8168 void VisitMemberExpr(MemberExpr *E) { 8169 // Don't warn on arrays since they can be treated as pointers. 8170 if (E->getType()->canDecayToPointerType()) return; 8171 8172 // Warn when a non-static method call is followed by non-static member 8173 // field accesses, which is followed by a DeclRefExpr. 8174 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); 8175 bool Warn = (MD && !MD->isStatic()); 8176 Expr *Base = E->getBase()->IgnoreParenImpCasts(); 8177 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 8178 if (!isa<FieldDecl>(ME->getMemberDecl())) 8179 Warn = false; 8180 Base = ME->getBase()->IgnoreParenImpCasts(); 8181 } 8182 8183 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 8184 if (Warn) 8185 HandleDeclRefExpr(DRE); 8186 return; 8187 } 8188 8189 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. 8190 // Visit that expression. 8191 Visit(Base); 8192 } 8193 8194 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 8195 if (E->getNumArgs() > 0) 8196 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0))) 8197 HandleDeclRefExpr(DRE); 8198 8199 Inherited::VisitCXXOperatorCallExpr(E); 8200 } 8201 8202 void VisitUnaryOperator(UnaryOperator *E) { 8203 // For POD record types, addresses of its own members are well-defined. 8204 if (E->getOpcode() == UO_AddrOf && isRecordType && 8205 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { 8206 if (!isPODType) 8207 HandleValue(E->getSubExpr()); 8208 return; 8209 } 8210 Inherited::VisitUnaryOperator(E); 8211 } 8212 8213 void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; } 8214 8215 void HandleDeclRefExpr(DeclRefExpr *DRE) { 8216 Decl* ReferenceDecl = DRE->getDecl(); 8217 if (OrigDecl != ReferenceDecl) return; 8218 unsigned diag; 8219 if (isReferenceType) { 8220 diag = diag::warn_uninit_self_reference_in_reference_init; 8221 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { 8222 diag = diag::warn_static_self_reference_in_init; 8223 } else { 8224 diag = diag::warn_uninit_self_reference_in_init; 8225 } 8226 8227 S.DiagRuntimeBehavior(DRE->getLocStart(), DRE, 8228 S.PDiag(diag) 8229 << DRE->getNameInfo().getName() 8230 << OrigDecl->getLocation() 8231 << DRE->getSourceRange()); 8232 } 8233 }; 8234 8235 /// CheckSelfReference - Warns if OrigDecl is used in expression E. 8236 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, 8237 bool DirectInit) { 8238 // Parameters arguments are occassionially constructed with itself, 8239 // for instance, in recursive functions. Skip them. 8240 if (isa<ParmVarDecl>(OrigDecl)) 8241 return; 8242 8243 E = E->IgnoreParens(); 8244 8245 // Skip checking T a = a where T is not a record or reference type. 8246 // Doing so is a way to silence uninitialized warnings. 8247 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) 8248 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 8249 if (ICE->getCastKind() == CK_LValueToRValue) 8250 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) 8251 if (DRE->getDecl() == OrigDecl) 8252 return; 8253 8254 SelfReferenceChecker(S, OrigDecl).Visit(E); 8255 } 8256 } 8257 8258 /// AddInitializerToDecl - Adds the initializer Init to the 8259 /// declaration dcl. If DirectInit is true, this is C++ direct 8260 /// initialization rather than copy initialization. 8261 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, 8262 bool DirectInit, bool TypeMayContainAuto) { 8263 // If there is no declaration, there was an error parsing it. Just ignore 8264 // the initializer. 8265 if (!RealDecl || RealDecl->isInvalidDecl()) 8266 return; 8267 8268 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { 8269 // With declarators parsed the way they are, the parser cannot 8270 // distinguish between a normal initializer and a pure-specifier. 8271 // Thus this grotesque test. 8272 IntegerLiteral *IL; 8273 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 && 8274 Context.getCanonicalType(IL->getType()) == Context.IntTy) 8275 CheckPureMethod(Method, Init->getSourceRange()); 8276 else { 8277 Diag(Method->getLocation(), diag::err_member_function_initialization) 8278 << Method->getDeclName() << Init->getSourceRange(); 8279 Method->setInvalidDecl(); 8280 } 8281 return; 8282 } 8283 8284 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); 8285 if (!VDecl) { 8286 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); 8287 Diag(RealDecl->getLocation(), diag::err_illegal_initializer); 8288 RealDecl->setInvalidDecl(); 8289 return; 8290 } 8291 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 8292 8293 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. 8294 if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) { 8295 Expr *DeduceInit = Init; 8296 // Initializer could be a C++ direct-initializer. Deduction only works if it 8297 // contains exactly one expression. 8298 if (CXXDirectInit) { 8299 if (CXXDirectInit->getNumExprs() == 0) { 8300 // It isn't possible to write this directly, but it is possible to 8301 // end up in this situation with "auto x(some_pack...);" 8302 Diag(CXXDirectInit->getLocStart(), 8303 VDecl->isInitCapture() ? diag::err_init_capture_no_expression 8304 : diag::err_auto_var_init_no_expression) 8305 << VDecl->getDeclName() << VDecl->getType() 8306 << VDecl->getSourceRange(); 8307 RealDecl->setInvalidDecl(); 8308 return; 8309 } else if (CXXDirectInit->getNumExprs() > 1) { 8310 Diag(CXXDirectInit->getExpr(1)->getLocStart(), 8311 VDecl->isInitCapture() 8312 ? diag::err_init_capture_multiple_expressions 8313 : diag::err_auto_var_init_multiple_expressions) 8314 << VDecl->getDeclName() << VDecl->getType() 8315 << VDecl->getSourceRange(); 8316 RealDecl->setInvalidDecl(); 8317 return; 8318 } else { 8319 DeduceInit = CXXDirectInit->getExpr(0); 8320 if (isa<InitListExpr>(DeduceInit)) 8321 Diag(CXXDirectInit->getLocStart(), 8322 diag::err_auto_var_init_paren_braces) 8323 << VDecl->getDeclName() << VDecl->getType() 8324 << VDecl->getSourceRange(); 8325 } 8326 } 8327 8328 // Expressions default to 'id' when we're in a debugger. 8329 bool DefaultedToAuto = false; 8330 if (getLangOpts().DebuggerCastResultToId && 8331 Init->getType() == Context.UnknownAnyTy) { 8332 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 8333 if (Result.isInvalid()) { 8334 VDecl->setInvalidDecl(); 8335 return; 8336 } 8337 Init = Result.get(); 8338 DefaultedToAuto = true; 8339 } 8340 8341 QualType DeducedType; 8342 if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) == 8343 DAR_Failed) 8344 DiagnoseAutoDeductionFailure(VDecl, DeduceInit); 8345 if (DeducedType.isNull()) { 8346 RealDecl->setInvalidDecl(); 8347 return; 8348 } 8349 VDecl->setType(DeducedType); 8350 assert(VDecl->isLinkageValid()); 8351 8352 // In ARC, infer lifetime. 8353 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) 8354 VDecl->setInvalidDecl(); 8355 8356 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using 8357 // 'id' instead of a specific object type prevents most of our usual checks. 8358 // We only want to warn outside of template instantiations, though: 8359 // inside a template, the 'id' could have come from a parameter. 8360 if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto && 8361 DeducedType->isObjCIdType()) { 8362 SourceLocation Loc = 8363 VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 8364 Diag(Loc, diag::warn_auto_var_is_id) 8365 << VDecl->getDeclName() << DeduceInit->getSourceRange(); 8366 } 8367 8368 // If this is a redeclaration, check that the type we just deduced matches 8369 // the previously declared type. 8370 if (VarDecl *Old = VDecl->getPreviousDecl()) { 8371 // We never need to merge the type, because we cannot form an incomplete 8372 // array of auto, nor deduce such a type. 8373 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false); 8374 } 8375 8376 // Check the deduced type is valid for a variable declaration. 8377 CheckVariableDeclarationType(VDecl); 8378 if (VDecl->isInvalidDecl()) 8379 return; 8380 } 8381 8382 // dllimport cannot be used on variable definitions. 8383 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { 8384 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); 8385 VDecl->setInvalidDecl(); 8386 return; 8387 } 8388 8389 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { 8390 // C99 6.7.8p5. C++ has no such restriction, but that is a defect. 8391 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); 8392 VDecl->setInvalidDecl(); 8393 return; 8394 } 8395 8396 if (!VDecl->getType()->isDependentType()) { 8397 // A definition must end up with a complete type, which means it must be 8398 // complete with the restriction that an array type might be completed by 8399 // the initializer; note that later code assumes this restriction. 8400 QualType BaseDeclType = VDecl->getType(); 8401 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) 8402 BaseDeclType = Array->getElementType(); 8403 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, 8404 diag::err_typecheck_decl_incomplete_type)) { 8405 RealDecl->setInvalidDecl(); 8406 return; 8407 } 8408 8409 // The variable can not have an abstract class type. 8410 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), 8411 diag::err_abstract_type_in_decl, 8412 AbstractVariableType)) 8413 VDecl->setInvalidDecl(); 8414 } 8415 8416 const VarDecl *Def; 8417 if ((Def = VDecl->getDefinition()) && Def != VDecl) { 8418 Diag(VDecl->getLocation(), diag::err_redefinition) 8419 << VDecl->getDeclName(); 8420 Diag(Def->getLocation(), diag::note_previous_definition); 8421 VDecl->setInvalidDecl(); 8422 return; 8423 } 8424 8425 const VarDecl *PrevInit = nullptr; 8426 if (getLangOpts().CPlusPlus) { 8427 // C++ [class.static.data]p4 8428 // If a static data member is of const integral or const 8429 // enumeration type, its declaration in the class definition can 8430 // specify a constant-initializer which shall be an integral 8431 // constant expression (5.19). In that case, the member can appear 8432 // in integral constant expressions. The member shall still be 8433 // defined in a namespace scope if it is used in the program and the 8434 // namespace scope definition shall not contain an initializer. 8435 // 8436 // We already performed a redefinition check above, but for static 8437 // data members we also need to check whether there was an in-class 8438 // declaration with an initializer. 8439 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { 8440 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) 8441 << VDecl->getDeclName(); 8442 Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0; 8443 return; 8444 } 8445 8446 if (VDecl->hasLocalStorage()) 8447 getCurFunction()->setHasBranchProtectedScope(); 8448 8449 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { 8450 VDecl->setInvalidDecl(); 8451 return; 8452 } 8453 } 8454 8455 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside 8456 // a kernel function cannot be initialized." 8457 if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) { 8458 Diag(VDecl->getLocation(), diag::err_local_cant_init); 8459 VDecl->setInvalidDecl(); 8460 return; 8461 } 8462 8463 // Get the decls type and save a reference for later, since 8464 // CheckInitializerTypes may change it. 8465 QualType DclT = VDecl->getType(), SavT = DclT; 8466 8467 // Expressions default to 'id' when we're in a debugger 8468 // and we are assigning it to a variable of Objective-C pointer type. 8469 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && 8470 Init->getType() == Context.UnknownAnyTy) { 8471 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 8472 if (Result.isInvalid()) { 8473 VDecl->setInvalidDecl(); 8474 return; 8475 } 8476 Init = Result.get(); 8477 } 8478 8479 // Perform the initialization. 8480 if (!VDecl->isInvalidDecl()) { 8481 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 8482 InitializationKind Kind 8483 = DirectInit ? 8484 CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(), 8485 Init->getLocStart(), 8486 Init->getLocEnd()) 8487 : InitializationKind::CreateDirectList( 8488 VDecl->getLocation()) 8489 : InitializationKind::CreateCopy(VDecl->getLocation(), 8490 Init->getLocStart()); 8491 8492 MultiExprArg Args = Init; 8493 if (CXXDirectInit) 8494 Args = MultiExprArg(CXXDirectInit->getExprs(), 8495 CXXDirectInit->getNumExprs()); 8496 8497 InitializationSequence InitSeq(*this, Entity, Kind, Args); 8498 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 8499 if (Result.isInvalid()) { 8500 VDecl->setInvalidDecl(); 8501 return; 8502 } 8503 8504 Init = Result.getAs<Expr>(); 8505 } 8506 8507 // Check for self-references within variable initializers. 8508 // Variables declared within a function/method body (except for references) 8509 // are handled by a dataflow analysis. 8510 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || 8511 VDecl->getType()->isReferenceType()) { 8512 CheckSelfReference(*this, RealDecl, Init, DirectInit); 8513 } 8514 8515 // If the type changed, it means we had an incomplete type that was 8516 // completed by the initializer. For example: 8517 // int ary[] = { 1, 3, 5 }; 8518 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. 8519 if (!VDecl->isInvalidDecl() && (DclT != SavT)) 8520 VDecl->setType(DclT); 8521 8522 if (!VDecl->isInvalidDecl()) { 8523 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); 8524 8525 if (VDecl->hasAttr<BlocksAttr>()) 8526 checkRetainCycles(VDecl, Init); 8527 8528 // It is safe to assign a weak reference into a strong variable. 8529 // Although this code can still have problems: 8530 // id x = self.weakProp; 8531 // id y = self.weakProp; 8532 // we do not warn to warn spuriously when 'x' and 'y' are on separate 8533 // paths through the function. This should be revisited if 8534 // -Wrepeated-use-of-weak is made flow-sensitive. 8535 if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong && 8536 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, 8537 Init->getLocStart())) 8538 getCurFunction()->markSafeWeakUse(Init); 8539 } 8540 8541 // The initialization is usually a full-expression. 8542 // 8543 // FIXME: If this is a braced initialization of an aggregate, it is not 8544 // an expression, and each individual field initializer is a separate 8545 // full-expression. For instance, in: 8546 // 8547 // struct Temp { ~Temp(); }; 8548 // struct S { S(Temp); }; 8549 // struct T { S a, b; } t = { Temp(), Temp() } 8550 // 8551 // we should destroy the first Temp before constructing the second. 8552 ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(), 8553 false, 8554 VDecl->isConstexpr()); 8555 if (Result.isInvalid()) { 8556 VDecl->setInvalidDecl(); 8557 return; 8558 } 8559 Init = Result.get(); 8560 8561 // Attach the initializer to the decl. 8562 VDecl->setInit(Init); 8563 8564 if (VDecl->isLocalVarDecl()) { 8565 // C99 6.7.8p4: All the expressions in an initializer for an object that has 8566 // static storage duration shall be constant expressions or string literals. 8567 // C++ does not have this restriction. 8568 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) { 8569 const Expr *Culprit; 8570 if (VDecl->getStorageClass() == SC_Static) 8571 CheckForConstantInitializer(Init, DclT); 8572 // C89 is stricter than C99 for non-static aggregate types. 8573 // C89 6.5.7p3: All the expressions [...] in an initializer list 8574 // for an object that has aggregate or union type shall be 8575 // constant expressions. 8576 else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && 8577 isa<InitListExpr>(Init) && 8578 !Init->isConstantInitializer(Context, false, &Culprit)) 8579 Diag(Culprit->getExprLoc(), 8580 diag::ext_aggregate_init_not_constant) 8581 << Culprit->getSourceRange(); 8582 } 8583 } else if (VDecl->isStaticDataMember() && 8584 VDecl->getLexicalDeclContext()->isRecord()) { 8585 // This is an in-class initialization for a static data member, e.g., 8586 // 8587 // struct S { 8588 // static const int value = 17; 8589 // }; 8590 8591 // C++ [class.mem]p4: 8592 // A member-declarator can contain a constant-initializer only 8593 // if it declares a static member (9.4) of const integral or 8594 // const enumeration type, see 9.4.2. 8595 // 8596 // C++11 [class.static.data]p3: 8597 // If a non-volatile const static data member is of integral or 8598 // enumeration type, its declaration in the class definition can 8599 // specify a brace-or-equal-initializer in which every initalizer-clause 8600 // that is an assignment-expression is a constant expression. A static 8601 // data member of literal type can be declared in the class definition 8602 // with the constexpr specifier; if so, its declaration shall specify a 8603 // brace-or-equal-initializer in which every initializer-clause that is 8604 // an assignment-expression is a constant expression. 8605 8606 // Do nothing on dependent types. 8607 if (DclT->isDependentType()) { 8608 8609 // Allow any 'static constexpr' members, whether or not they are of literal 8610 // type. We separately check that every constexpr variable is of literal 8611 // type. 8612 } else if (VDecl->isConstexpr()) { 8613 8614 // Require constness. 8615 } else if (!DclT.isConstQualified()) { 8616 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) 8617 << Init->getSourceRange(); 8618 VDecl->setInvalidDecl(); 8619 8620 // We allow integer constant expressions in all cases. 8621 } else if (DclT->isIntegralOrEnumerationType()) { 8622 // Check whether the expression is a constant expression. 8623 SourceLocation Loc; 8624 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) 8625 // In C++11, a non-constexpr const static data member with an 8626 // in-class initializer cannot be volatile. 8627 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); 8628 else if (Init->isValueDependent()) 8629 ; // Nothing to check. 8630 else if (Init->isIntegerConstantExpr(Context, &Loc)) 8631 ; // Ok, it's an ICE! 8632 else if (Init->isEvaluatable(Context)) { 8633 // If we can constant fold the initializer through heroics, accept it, 8634 // but report this as a use of an extension for -pedantic. 8635 Diag(Loc, diag::ext_in_class_initializer_non_constant) 8636 << Init->getSourceRange(); 8637 } else { 8638 // Otherwise, this is some crazy unknown case. Report the issue at the 8639 // location provided by the isIntegerConstantExpr failed check. 8640 Diag(Loc, diag::err_in_class_initializer_non_constant) 8641 << Init->getSourceRange(); 8642 VDecl->setInvalidDecl(); 8643 } 8644 8645 // We allow foldable floating-point constants as an extension. 8646 } else if (DclT->isFloatingType()) { // also permits complex, which is ok 8647 // In C++98, this is a GNU extension. In C++11, it is not, but we support 8648 // it anyway and provide a fixit to add the 'constexpr'. 8649 if (getLangOpts().CPlusPlus11) { 8650 Diag(VDecl->getLocation(), 8651 diag::ext_in_class_initializer_float_type_cxx11) 8652 << DclT << Init->getSourceRange(); 8653 Diag(VDecl->getLocStart(), 8654 diag::note_in_class_initializer_float_type_cxx11) 8655 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr "); 8656 } else { 8657 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) 8658 << DclT << Init->getSourceRange(); 8659 8660 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { 8661 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) 8662 << Init->getSourceRange(); 8663 VDecl->setInvalidDecl(); 8664 } 8665 } 8666 8667 // Suggest adding 'constexpr' in C++11 for literal types. 8668 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { 8669 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) 8670 << DclT << Init->getSourceRange() 8671 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr "); 8672 VDecl->setConstexpr(true); 8673 8674 } else { 8675 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) 8676 << DclT << Init->getSourceRange(); 8677 VDecl->setInvalidDecl(); 8678 } 8679 } else if (VDecl->isFileVarDecl()) { 8680 if (VDecl->getStorageClass() == SC_Extern && 8681 (!getLangOpts().CPlusPlus || 8682 !(Context.getBaseElementType(VDecl->getType()).isConstQualified() || 8683 VDecl->isExternC())) && 8684 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) 8685 Diag(VDecl->getLocation(), diag::warn_extern_init); 8686 8687 // C99 6.7.8p4. All file scoped initializers need to be constant. 8688 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) 8689 CheckForConstantInitializer(Init, DclT); 8690 } 8691 8692 // We will represent direct-initialization similarly to copy-initialization: 8693 // int x(1); -as-> int x = 1; 8694 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); 8695 // 8696 // Clients that want to distinguish between the two forms, can check for 8697 // direct initializer using VarDecl::getInitStyle(). 8698 // A major benefit is that clients that don't particularly care about which 8699 // exactly form was it (like the CodeGen) can handle both cases without 8700 // special case code. 8701 8702 // C++ 8.5p11: 8703 // The form of initialization (using parentheses or '=') is generally 8704 // insignificant, but does matter when the entity being initialized has a 8705 // class type. 8706 if (CXXDirectInit) { 8707 assert(DirectInit && "Call-style initializer must be direct init."); 8708 VDecl->setInitStyle(VarDecl::CallInit); 8709 } else if (DirectInit) { 8710 // This must be list-initialization. No other way is direct-initialization. 8711 VDecl->setInitStyle(VarDecl::ListInit); 8712 } 8713 8714 CheckCompleteVariableDeclaration(VDecl); 8715 } 8716 8717 /// ActOnInitializerError - Given that there was an error parsing an 8718 /// initializer for the given declaration, try to return to some form 8719 /// of sanity. 8720 void Sema::ActOnInitializerError(Decl *D) { 8721 // Our main concern here is re-establishing invariants like "a 8722 // variable's type is either dependent or complete". 8723 if (!D || D->isInvalidDecl()) return; 8724 8725 VarDecl *VD = dyn_cast<VarDecl>(D); 8726 if (!VD) return; 8727 8728 // Auto types are meaningless if we can't make sense of the initializer. 8729 if (ParsingInitForAutoVars.count(D)) { 8730 D->setInvalidDecl(); 8731 return; 8732 } 8733 8734 QualType Ty = VD->getType(); 8735 if (Ty->isDependentType()) return; 8736 8737 // Require a complete type. 8738 if (RequireCompleteType(VD->getLocation(), 8739 Context.getBaseElementType(Ty), 8740 diag::err_typecheck_decl_incomplete_type)) { 8741 VD->setInvalidDecl(); 8742 return; 8743 } 8744 8745 // Require a non-abstract type. 8746 if (RequireNonAbstractType(VD->getLocation(), Ty, 8747 diag::err_abstract_type_in_decl, 8748 AbstractVariableType)) { 8749 VD->setInvalidDecl(); 8750 return; 8751 } 8752 8753 // Don't bother complaining about constructors or destructors, 8754 // though. 8755 } 8756 8757 void Sema::ActOnUninitializedDecl(Decl *RealDecl, 8758 bool TypeMayContainAuto) { 8759 // If there is no declaration, there was an error parsing it. Just ignore it. 8760 if (!RealDecl) 8761 return; 8762 8763 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { 8764 QualType Type = Var->getType(); 8765 8766 // C++11 [dcl.spec.auto]p3 8767 if (TypeMayContainAuto && Type->getContainedAutoType()) { 8768 Diag(Var->getLocation(), diag::err_auto_var_requires_init) 8769 << Var->getDeclName() << Type; 8770 Var->setInvalidDecl(); 8771 return; 8772 } 8773 8774 // C++11 [class.static.data]p3: A static data member can be declared with 8775 // the constexpr specifier; if so, its declaration shall specify 8776 // a brace-or-equal-initializer. 8777 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to 8778 // the definition of a variable [...] or the declaration of a static data 8779 // member. 8780 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) { 8781 if (Var->isStaticDataMember()) 8782 Diag(Var->getLocation(), 8783 diag::err_constexpr_static_mem_var_requires_init) 8784 << Var->getDeclName(); 8785 else 8786 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); 8787 Var->setInvalidDecl(); 8788 return; 8789 } 8790 8791 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must 8792 // be initialized. 8793 if (!Var->isInvalidDecl() && 8794 Var->getType().getAddressSpace() == LangAS::opencl_constant && 8795 Var->getStorageClass() != SC_Extern && !Var->getInit()) { 8796 Diag(Var->getLocation(), diag::err_opencl_constant_no_init); 8797 Var->setInvalidDecl(); 8798 return; 8799 } 8800 8801 switch (Var->isThisDeclarationADefinition()) { 8802 case VarDecl::Definition: 8803 if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) 8804 break; 8805 8806 // We have an out-of-line definition of a static data member 8807 // that has an in-class initializer, so we type-check this like 8808 // a declaration. 8809 // 8810 // Fall through 8811 8812 case VarDecl::DeclarationOnly: 8813 // It's only a declaration. 8814 8815 // Block scope. C99 6.7p7: If an identifier for an object is 8816 // declared with no linkage (C99 6.2.2p6), the type for the 8817 // object shall be complete. 8818 if (!Type->isDependentType() && Var->isLocalVarDecl() && 8819 !Var->hasLinkage() && !Var->isInvalidDecl() && 8820 RequireCompleteType(Var->getLocation(), Type, 8821 diag::err_typecheck_decl_incomplete_type)) 8822 Var->setInvalidDecl(); 8823 8824 // Make sure that the type is not abstract. 8825 if (!Type->isDependentType() && !Var->isInvalidDecl() && 8826 RequireNonAbstractType(Var->getLocation(), Type, 8827 diag::err_abstract_type_in_decl, 8828 AbstractVariableType)) 8829 Var->setInvalidDecl(); 8830 if (!Type->isDependentType() && !Var->isInvalidDecl() && 8831 Var->getStorageClass() == SC_PrivateExtern) { 8832 Diag(Var->getLocation(), diag::warn_private_extern); 8833 Diag(Var->getLocation(), diag::note_private_extern); 8834 } 8835 8836 return; 8837 8838 case VarDecl::TentativeDefinition: 8839 // File scope. C99 6.9.2p2: A declaration of an identifier for an 8840 // object that has file scope without an initializer, and without a 8841 // storage-class specifier or with the storage-class specifier "static", 8842 // constitutes a tentative definition. Note: A tentative definition with 8843 // external linkage is valid (C99 6.2.2p5). 8844 if (!Var->isInvalidDecl()) { 8845 if (const IncompleteArrayType *ArrayT 8846 = Context.getAsIncompleteArrayType(Type)) { 8847 if (RequireCompleteType(Var->getLocation(), 8848 ArrayT->getElementType(), 8849 diag::err_illegal_decl_array_incomplete_type)) 8850 Var->setInvalidDecl(); 8851 } else if (Var->getStorageClass() == SC_Static) { 8852 // C99 6.9.2p3: If the declaration of an identifier for an object is 8853 // a tentative definition and has internal linkage (C99 6.2.2p3), the 8854 // declared type shall not be an incomplete type. 8855 // NOTE: code such as the following 8856 // static struct s; 8857 // struct s { int a; }; 8858 // is accepted by gcc. Hence here we issue a warning instead of 8859 // an error and we do not invalidate the static declaration. 8860 // NOTE: to avoid multiple warnings, only check the first declaration. 8861 if (Var->isFirstDecl()) 8862 RequireCompleteType(Var->getLocation(), Type, 8863 diag::ext_typecheck_decl_incomplete_type); 8864 } 8865 } 8866 8867 // Record the tentative definition; we're done. 8868 if (!Var->isInvalidDecl()) 8869 TentativeDefinitions.push_back(Var); 8870 return; 8871 } 8872 8873 // Provide a specific diagnostic for uninitialized variable 8874 // definitions with incomplete array type. 8875 if (Type->isIncompleteArrayType()) { 8876 Diag(Var->getLocation(), 8877 diag::err_typecheck_incomplete_array_needs_initializer); 8878 Var->setInvalidDecl(); 8879 return; 8880 } 8881 8882 // Provide a specific diagnostic for uninitialized variable 8883 // definitions with reference type. 8884 if (Type->isReferenceType()) { 8885 Diag(Var->getLocation(), diag::err_reference_var_requires_init) 8886 << Var->getDeclName() 8887 << SourceRange(Var->getLocation(), Var->getLocation()); 8888 Var->setInvalidDecl(); 8889 return; 8890 } 8891 8892 // Do not attempt to type-check the default initializer for a 8893 // variable with dependent type. 8894 if (Type->isDependentType()) 8895 return; 8896 8897 if (Var->isInvalidDecl()) 8898 return; 8899 8900 if (!Var->hasAttr<AliasAttr>()) { 8901 if (RequireCompleteType(Var->getLocation(), 8902 Context.getBaseElementType(Type), 8903 diag::err_typecheck_decl_incomplete_type)) { 8904 Var->setInvalidDecl(); 8905 return; 8906 } 8907 } 8908 8909 // The variable can not have an abstract class type. 8910 if (RequireNonAbstractType(Var->getLocation(), Type, 8911 diag::err_abstract_type_in_decl, 8912 AbstractVariableType)) { 8913 Var->setInvalidDecl(); 8914 return; 8915 } 8916 8917 // Check for jumps past the implicit initializer. C++0x 8918 // clarifies that this applies to a "variable with automatic 8919 // storage duration", not a "local variable". 8920 // C++11 [stmt.dcl]p3 8921 // A program that jumps from a point where a variable with automatic 8922 // storage duration is not in scope to a point where it is in scope is 8923 // ill-formed unless the variable has scalar type, class type with a 8924 // trivial default constructor and a trivial destructor, a cv-qualified 8925 // version of one of these types, or an array of one of the preceding 8926 // types and is declared without an initializer. 8927 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { 8928 if (const RecordType *Record 8929 = Context.getBaseElementType(Type)->getAs<RecordType>()) { 8930 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); 8931 // Mark the function for further checking even if the looser rules of 8932 // C++11 do not require such checks, so that we can diagnose 8933 // incompatibilities with C++98. 8934 if (!CXXRecord->isPOD()) 8935 getCurFunction()->setHasBranchProtectedScope(); 8936 } 8937 } 8938 8939 // C++03 [dcl.init]p9: 8940 // If no initializer is specified for an object, and the 8941 // object is of (possibly cv-qualified) non-POD class type (or 8942 // array thereof), the object shall be default-initialized; if 8943 // the object is of const-qualified type, the underlying class 8944 // type shall have a user-declared default 8945 // constructor. Otherwise, if no initializer is specified for 8946 // a non- static object, the object and its subobjects, if 8947 // any, have an indeterminate initial value); if the object 8948 // or any of its subobjects are of const-qualified type, the 8949 // program is ill-formed. 8950 // C++0x [dcl.init]p11: 8951 // If no initializer is specified for an object, the object is 8952 // default-initialized; [...]. 8953 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); 8954 InitializationKind Kind 8955 = InitializationKind::CreateDefault(Var->getLocation()); 8956 8957 InitializationSequence InitSeq(*this, Entity, Kind, None); 8958 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); 8959 if (Init.isInvalid()) 8960 Var->setInvalidDecl(); 8961 else if (Init.get()) { 8962 Var->setInit(MaybeCreateExprWithCleanups(Init.get())); 8963 // This is important for template substitution. 8964 Var->setInitStyle(VarDecl::CallInit); 8965 } 8966 8967 CheckCompleteVariableDeclaration(Var); 8968 } 8969 } 8970 8971 void Sema::ActOnCXXForRangeDecl(Decl *D) { 8972 VarDecl *VD = dyn_cast<VarDecl>(D); 8973 if (!VD) { 8974 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); 8975 D->setInvalidDecl(); 8976 return; 8977 } 8978 8979 VD->setCXXForRangeDecl(true); 8980 8981 // for-range-declaration cannot be given a storage class specifier. 8982 int Error = -1; 8983 switch (VD->getStorageClass()) { 8984 case SC_None: 8985 break; 8986 case SC_Extern: 8987 Error = 0; 8988 break; 8989 case SC_Static: 8990 Error = 1; 8991 break; 8992 case SC_PrivateExtern: 8993 Error = 2; 8994 break; 8995 case SC_Auto: 8996 Error = 3; 8997 break; 8998 case SC_Register: 8999 Error = 4; 9000 break; 9001 case SC_OpenCLWorkGroupLocal: 9002 llvm_unreachable("Unexpected storage class"); 9003 } 9004 if (VD->isConstexpr()) 9005 Error = 5; 9006 if (Error != -1) { 9007 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) 9008 << VD->getDeclName() << Error; 9009 D->setInvalidDecl(); 9010 } 9011 } 9012 9013 StmtResult 9014 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, 9015 IdentifierInfo *Ident, 9016 ParsedAttributes &Attrs, 9017 SourceLocation AttrEnd) { 9018 // C++1y [stmt.iter]p1: 9019 // A range-based for statement of the form 9020 // for ( for-range-identifier : for-range-initializer ) statement 9021 // is equivalent to 9022 // for ( auto&& for-range-identifier : for-range-initializer ) statement 9023 DeclSpec DS(Attrs.getPool().getFactory()); 9024 9025 const char *PrevSpec; 9026 unsigned DiagID; 9027 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, 9028 getPrintingPolicy()); 9029 9030 Declarator D(DS, Declarator::ForContext); 9031 D.SetIdentifier(Ident, IdentLoc); 9032 D.takeAttributes(Attrs, AttrEnd); 9033 9034 ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory()); 9035 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false), 9036 EmptyAttrs, IdentLoc); 9037 Decl *Var = ActOnDeclarator(S, D); 9038 cast<VarDecl>(Var)->setCXXForRangeDecl(true); 9039 FinalizeDeclaration(Var); 9040 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, 9041 AttrEnd.isValid() ? AttrEnd : IdentLoc); 9042 } 9043 9044 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { 9045 if (var->isInvalidDecl()) return; 9046 9047 // In ARC, don't allow jumps past the implicit initialization of a 9048 // local retaining variable. 9049 if (getLangOpts().ObjCAutoRefCount && 9050 var->hasLocalStorage()) { 9051 switch (var->getType().getObjCLifetime()) { 9052 case Qualifiers::OCL_None: 9053 case Qualifiers::OCL_ExplicitNone: 9054 case Qualifiers::OCL_Autoreleasing: 9055 break; 9056 9057 case Qualifiers::OCL_Weak: 9058 case Qualifiers::OCL_Strong: 9059 getCurFunction()->setHasBranchProtectedScope(); 9060 break; 9061 } 9062 } 9063 9064 // Warn about externally-visible variables being defined without a 9065 // prior declaration. We only want to do this for global 9066 // declarations, but we also specifically need to avoid doing it for 9067 // class members because the linkage of an anonymous class can 9068 // change if it's later given a typedef name. 9069 if (var->isThisDeclarationADefinition() && 9070 var->getDeclContext()->getRedeclContext()->isFileContext() && 9071 var->isExternallyVisible() && var->hasLinkage() && 9072 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, 9073 var->getLocation())) { 9074 // Find a previous declaration that's not a definition. 9075 VarDecl *prev = var->getPreviousDecl(); 9076 while (prev && prev->isThisDeclarationADefinition()) 9077 prev = prev->getPreviousDecl(); 9078 9079 if (!prev) 9080 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; 9081 } 9082 9083 if (var->getTLSKind() == VarDecl::TLS_Static) { 9084 const Expr *Culprit; 9085 if (var->getType().isDestructedType()) { 9086 // GNU C++98 edits for __thread, [basic.start.term]p3: 9087 // The type of an object with thread storage duration shall not 9088 // have a non-trivial destructor. 9089 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); 9090 if (getLangOpts().CPlusPlus11) 9091 Diag(var->getLocation(), diag::note_use_thread_local); 9092 } else if (getLangOpts().CPlusPlus && var->hasInit() && 9093 !var->getInit()->isConstantInitializer( 9094 Context, var->getType()->isReferenceType(), &Culprit)) { 9095 // GNU C++98 edits for __thread, [basic.start.init]p4: 9096 // An object of thread storage duration shall not require dynamic 9097 // initialization. 9098 // FIXME: Need strict checking here. 9099 Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init) 9100 << Culprit->getSourceRange(); 9101 if (getLangOpts().CPlusPlus11) 9102 Diag(var->getLocation(), diag::note_use_thread_local); 9103 } 9104 9105 } 9106 9107 if (var->isThisDeclarationADefinition() && 9108 ActiveTemplateInstantiations.empty()) { 9109 PragmaStack<StringLiteral *> *Stack = nullptr; 9110 int SectionFlags = PSF_Implicit | PSF_Read; 9111 if (var->getType().isConstQualified()) 9112 Stack = &ConstSegStack; 9113 else if (!var->getInit()) { 9114 Stack = &BSSSegStack; 9115 SectionFlags |= PSF_Write; 9116 } else { 9117 Stack = &DataSegStack; 9118 SectionFlags |= PSF_Write; 9119 } 9120 if (!var->hasAttr<SectionAttr>() && Stack->CurrentValue) 9121 var->addAttr( 9122 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate, 9123 Stack->CurrentValue->getString(), 9124 Stack->CurrentPragmaLocation)); 9125 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) 9126 if (UnifySection(SA->getName(), SectionFlags, var)) 9127 var->dropAttr<SectionAttr>(); 9128 } 9129 9130 // All the following checks are C++ only. 9131 if (!getLangOpts().CPlusPlus) return; 9132 9133 QualType type = var->getType(); 9134 if (type->isDependentType()) return; 9135 9136 // __block variables might require us to capture a copy-initializer. 9137 if (var->hasAttr<BlocksAttr>()) { 9138 // It's currently invalid to ever have a __block variable with an 9139 // array type; should we diagnose that here? 9140 9141 // Regardless, we don't want to ignore array nesting when 9142 // constructing this copy. 9143 if (type->isStructureOrClassType()) { 9144 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated); 9145 SourceLocation poi = var->getLocation(); 9146 Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi); 9147 ExprResult result 9148 = PerformMoveOrCopyInitialization( 9149 InitializedEntity::InitializeBlock(poi, type, false), 9150 var, var->getType(), varRef, /*AllowNRVO=*/true); 9151 if (!result.isInvalid()) { 9152 result = MaybeCreateExprWithCleanups(result); 9153 Expr *init = result.getAs<Expr>(); 9154 Context.setBlockVarCopyInits(var, init); 9155 } 9156 } 9157 } 9158 9159 Expr *Init = var->getInit(); 9160 bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal(); 9161 QualType baseType = Context.getBaseElementType(type); 9162 9163 if (!var->getDeclContext()->isDependentContext() && 9164 Init && !Init->isValueDependent()) { 9165 if (IsGlobal && !var->isConstexpr() && 9166 !getDiagnostics().isIgnored(diag::warn_global_constructor, 9167 var->getLocation())) { 9168 // Warn about globals which don't have a constant initializer. Don't 9169 // warn about globals with a non-trivial destructor because we already 9170 // warned about them. 9171 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); 9172 if (!(RD && !RD->hasTrivialDestructor()) && 9173 !Init->isConstantInitializer(Context, baseType->isReferenceType())) 9174 Diag(var->getLocation(), diag::warn_global_constructor) 9175 << Init->getSourceRange(); 9176 } 9177 9178 if (var->isConstexpr()) { 9179 SmallVector<PartialDiagnosticAt, 8> Notes; 9180 if (!var->evaluateValue(Notes) || !var->isInitICE()) { 9181 SourceLocation DiagLoc = var->getLocation(); 9182 // If the note doesn't add any useful information other than a source 9183 // location, fold it into the primary diagnostic. 9184 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 9185 diag::note_invalid_subexpr_in_const_expr) { 9186 DiagLoc = Notes[0].first; 9187 Notes.clear(); 9188 } 9189 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) 9190 << var << Init->getSourceRange(); 9191 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 9192 Diag(Notes[I].first, Notes[I].second); 9193 } 9194 } else if (var->isUsableInConstantExpressions(Context)) { 9195 // Check whether the initializer of a const variable of integral or 9196 // enumeration type is an ICE now, since we can't tell whether it was 9197 // initialized by a constant expression if we check later. 9198 var->checkInitIsICE(); 9199 } 9200 } 9201 9202 // Require the destructor. 9203 if (const RecordType *recordType = baseType->getAs<RecordType>()) 9204 FinalizeVarWithDestructor(var, recordType); 9205 } 9206 9207 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform 9208 /// any semantic actions necessary after any initializer has been attached. 9209 void 9210 Sema::FinalizeDeclaration(Decl *ThisDecl) { 9211 // Note that we are no longer parsing the initializer for this declaration. 9212 ParsingInitForAutoVars.erase(ThisDecl); 9213 9214 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); 9215 if (!VD) 9216 return; 9217 9218 checkAttributesAfterMerging(*this, *VD); 9219 9220 // Static locals inherit dll attributes from their function. 9221 if (VD->isStaticLocal()) { 9222 if (FunctionDecl *FD = 9223 dyn_cast<FunctionDecl>(VD->getParentFunctionOrMethod())) { 9224 if (Attr *A = getDLLAttr(FD)) { 9225 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); 9226 NewAttr->setInherited(true); 9227 VD->addAttr(NewAttr); 9228 } 9229 } 9230 } 9231 9232 // Imported static data members cannot be defined out-of-line. 9233 if (const DLLImportAttr *IA = VD->getAttr<DLLImportAttr>()) { 9234 if (VD->isStaticDataMember() && VD->isOutOfLine() && 9235 VD->isThisDeclarationADefinition()) { 9236 // We allow definitions of dllimport class template static data members 9237 // with a warning. 9238 CXXRecordDecl *Context = 9239 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); 9240 bool IsClassTemplateMember = 9241 isa<ClassTemplatePartialSpecializationDecl>(Context) || 9242 Context->getDescribedClassTemplate(); 9243 9244 Diag(VD->getLocation(), 9245 IsClassTemplateMember 9246 ? diag::warn_attribute_dllimport_static_field_definition 9247 : diag::err_attribute_dllimport_static_field_definition); 9248 Diag(IA->getLocation(), diag::note_attribute); 9249 if (!IsClassTemplateMember) 9250 VD->setInvalidDecl(); 9251 } 9252 } 9253 9254 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { 9255 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 9256 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr; 9257 VD->dropAttr<UsedAttr>(); 9258 } 9259 } 9260 9261 if (!VD->isInvalidDecl() && 9262 VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) { 9263 if (const VarDecl *Def = VD->getDefinition()) { 9264 if (Def->hasAttr<AliasAttr>()) { 9265 Diag(VD->getLocation(), diag::err_tentative_after_alias) 9266 << VD->getDeclName(); 9267 Diag(Def->getLocation(), diag::note_previous_definition); 9268 VD->setInvalidDecl(); 9269 } 9270 } 9271 } 9272 9273 const DeclContext *DC = VD->getDeclContext(); 9274 // If there's a #pragma GCC visibility in scope, and this isn't a class 9275 // member, set the visibility of this variable. 9276 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) 9277 AddPushedVisibilityAttribute(VD); 9278 9279 // FIXME: Warn on unused templates. 9280 if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() && 9281 !isa<VarTemplatePartialSpecializationDecl>(VD)) 9282 MarkUnusedFileScopedDecl(VD); 9283 9284 // Now we have parsed the initializer and can update the table of magic 9285 // tag values. 9286 if (!VD->hasAttr<TypeTagForDatatypeAttr>() || 9287 !VD->getType()->isIntegralOrEnumerationType()) 9288 return; 9289 9290 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { 9291 const Expr *MagicValueExpr = VD->getInit(); 9292 if (!MagicValueExpr) { 9293 continue; 9294 } 9295 llvm::APSInt MagicValueInt; 9296 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) { 9297 Diag(I->getRange().getBegin(), 9298 diag::err_type_tag_for_datatype_not_ice) 9299 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 9300 continue; 9301 } 9302 if (MagicValueInt.getActiveBits() > 64) { 9303 Diag(I->getRange().getBegin(), 9304 diag::err_type_tag_for_datatype_too_large) 9305 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 9306 continue; 9307 } 9308 uint64_t MagicValue = MagicValueInt.getZExtValue(); 9309 RegisterTypeTagForDatatype(I->getArgumentKind(), 9310 MagicValue, 9311 I->getMatchingCType(), 9312 I->getLayoutCompatible(), 9313 I->getMustBeNull()); 9314 } 9315 } 9316 9317 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, 9318 ArrayRef<Decl *> Group) { 9319 SmallVector<Decl*, 8> Decls; 9320 9321 if (DS.isTypeSpecOwned()) 9322 Decls.push_back(DS.getRepAsDecl()); 9323 9324 DeclaratorDecl *FirstDeclaratorInGroup = nullptr; 9325 for (unsigned i = 0, e = Group.size(); i != e; ++i) 9326 if (Decl *D = Group[i]) { 9327 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) 9328 if (!FirstDeclaratorInGroup) 9329 FirstDeclaratorInGroup = DD; 9330 Decls.push_back(D); 9331 } 9332 9333 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { 9334 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { 9335 HandleTagNumbering(*this, Tag, S); 9336 if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl()) 9337 Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup); 9338 } 9339 } 9340 9341 return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType()); 9342 } 9343 9344 /// BuildDeclaratorGroup - convert a list of declarations into a declaration 9345 /// group, performing any necessary semantic checking. 9346 Sema::DeclGroupPtrTy 9347 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group, 9348 bool TypeMayContainAuto) { 9349 // C++0x [dcl.spec.auto]p7: 9350 // If the type deduced for the template parameter U is not the same in each 9351 // deduction, the program is ill-formed. 9352 // FIXME: When initializer-list support is added, a distinction is needed 9353 // between the deduced type U and the deduced type which 'auto' stands for. 9354 // auto a = 0, b = { 1, 2, 3 }; 9355 // is legal because the deduced type U is 'int' in both cases. 9356 if (TypeMayContainAuto && Group.size() > 1) { 9357 QualType Deduced; 9358 CanQualType DeducedCanon; 9359 VarDecl *DeducedDecl = nullptr; 9360 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 9361 if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) { 9362 AutoType *AT = D->getType()->getContainedAutoType(); 9363 // Don't reissue diagnostics when instantiating a template. 9364 if (AT && D->isInvalidDecl()) 9365 break; 9366 QualType U = AT ? AT->getDeducedType() : QualType(); 9367 if (!U.isNull()) { 9368 CanQualType UCanon = Context.getCanonicalType(U); 9369 if (Deduced.isNull()) { 9370 Deduced = U; 9371 DeducedCanon = UCanon; 9372 DeducedDecl = D; 9373 } else if (DeducedCanon != UCanon) { 9374 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 9375 diag::err_auto_different_deductions) 9376 << (AT->isDecltypeAuto() ? 1 : 0) 9377 << Deduced << DeducedDecl->getDeclName() 9378 << U << D->getDeclName() 9379 << DeducedDecl->getInit()->getSourceRange() 9380 << D->getInit()->getSourceRange(); 9381 D->setInvalidDecl(); 9382 break; 9383 } 9384 } 9385 } 9386 } 9387 } 9388 9389 ActOnDocumentableDecls(Group); 9390 9391 return DeclGroupPtrTy::make( 9392 DeclGroupRef::Create(Context, Group.data(), Group.size())); 9393 } 9394 9395 void Sema::ActOnDocumentableDecl(Decl *D) { 9396 ActOnDocumentableDecls(D); 9397 } 9398 9399 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { 9400 // Don't parse the comment if Doxygen diagnostics are ignored. 9401 if (Group.empty() || !Group[0]) 9402 return; 9403 9404 if (Diags.isIgnored(diag::warn_doc_param_not_found, Group[0]->getLocation())) 9405 return; 9406 9407 if (Group.size() >= 2) { 9408 // This is a decl group. Normally it will contain only declarations 9409 // produced from declarator list. But in case we have any definitions or 9410 // additional declaration references: 9411 // 'typedef struct S {} S;' 9412 // 'typedef struct S *S;' 9413 // 'struct S *pS;' 9414 // FinalizeDeclaratorGroup adds these as separate declarations. 9415 Decl *MaybeTagDecl = Group[0]; 9416 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { 9417 Group = Group.slice(1); 9418 } 9419 } 9420 9421 // See if there are any new comments that are not attached to a decl. 9422 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments(); 9423 if (!Comments.empty() && 9424 !Comments.back()->isAttached()) { 9425 // There is at least one comment that not attached to a decl. 9426 // Maybe it should be attached to one of these decls? 9427 // 9428 // Note that this way we pick up not only comments that precede the 9429 // declaration, but also comments that *follow* the declaration -- thanks to 9430 // the lookahead in the lexer: we've consumed the semicolon and looked 9431 // ahead through comments. 9432 for (unsigned i = 0, e = Group.size(); i != e; ++i) 9433 Context.getCommentForDecl(Group[i], &PP); 9434 } 9435 } 9436 9437 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() 9438 /// to introduce parameters into function prototype scope. 9439 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { 9440 const DeclSpec &DS = D.getDeclSpec(); 9441 9442 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. 9443 9444 // C++03 [dcl.stc]p2 also permits 'auto'. 9445 VarDecl::StorageClass StorageClass = SC_None; 9446 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 9447 StorageClass = SC_Register; 9448 } else if (getLangOpts().CPlusPlus && 9449 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 9450 StorageClass = SC_Auto; 9451 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 9452 Diag(DS.getStorageClassSpecLoc(), 9453 diag::err_invalid_storage_class_in_func_decl); 9454 D.getMutableDeclSpec().ClearStorageClassSpecs(); 9455 } 9456 9457 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 9458 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) 9459 << DeclSpec::getSpecifierName(TSCS); 9460 if (DS.isConstexprSpecified()) 9461 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) 9462 << 0; 9463 9464 DiagnoseFunctionSpecifiers(DS); 9465 9466 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 9467 QualType parmDeclType = TInfo->getType(); 9468 9469 if (getLangOpts().CPlusPlus) { 9470 // Check that there are no default arguments inside the type of this 9471 // parameter. 9472 CheckExtraCXXDefaultArguments(D); 9473 9474 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 9475 if (D.getCXXScopeSpec().isSet()) { 9476 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) 9477 << D.getCXXScopeSpec().getRange(); 9478 D.getCXXScopeSpec().clear(); 9479 } 9480 } 9481 9482 // Ensure we have a valid name 9483 IdentifierInfo *II = nullptr; 9484 if (D.hasName()) { 9485 II = D.getIdentifier(); 9486 if (!II) { 9487 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) 9488 << GetNameForDeclarator(D).getName(); 9489 D.setInvalidType(true); 9490 } 9491 } 9492 9493 // Check for redeclaration of parameters, e.g. int foo(int x, int x); 9494 if (II) { 9495 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, 9496 ForRedeclaration); 9497 LookupName(R, S); 9498 if (R.isSingleResult()) { 9499 NamedDecl *PrevDecl = R.getFoundDecl(); 9500 if (PrevDecl->isTemplateParameter()) { 9501 // Maybe we will complain about the shadowed template parameter. 9502 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 9503 // Just pretend that we didn't see the previous declaration. 9504 PrevDecl = nullptr; 9505 } else if (S->isDeclScope(PrevDecl)) { 9506 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; 9507 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 9508 9509 // Recover by removing the name 9510 II = nullptr; 9511 D.SetIdentifier(nullptr, D.getIdentifierLoc()); 9512 D.setInvalidType(true); 9513 } 9514 } 9515 } 9516 9517 // Temporarily put parameter variables in the translation unit, not 9518 // the enclosing context. This prevents them from accidentally 9519 // looking like class members in C++. 9520 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(), 9521 D.getLocStart(), 9522 D.getIdentifierLoc(), II, 9523 parmDeclType, TInfo, 9524 StorageClass); 9525 9526 if (D.isInvalidType()) 9527 New->setInvalidDecl(); 9528 9529 assert(S->isFunctionPrototypeScope()); 9530 assert(S->getFunctionPrototypeDepth() >= 1); 9531 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, 9532 S->getNextFunctionPrototypeIndex()); 9533 9534 // Add the parameter declaration into this scope. 9535 S->AddDecl(New); 9536 if (II) 9537 IdResolver.AddDecl(New); 9538 9539 ProcessDeclAttributes(S, New, D); 9540 9541 if (D.getDeclSpec().isModulePrivateSpecified()) 9542 Diag(New->getLocation(), diag::err_module_private_local) 9543 << 1 << New->getDeclName() 9544 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 9545 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 9546 9547 if (New->hasAttr<BlocksAttr>()) { 9548 Diag(New->getLocation(), diag::err_block_on_nonlocal); 9549 } 9550 return New; 9551 } 9552 9553 /// \brief Synthesizes a variable for a parameter arising from a 9554 /// typedef. 9555 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, 9556 SourceLocation Loc, 9557 QualType T) { 9558 /* FIXME: setting StartLoc == Loc. 9559 Would it be worth to modify callers so as to provide proper source 9560 location for the unnamed parameters, embedding the parameter's type? */ 9561 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, 9562 T, Context.getTrivialTypeSourceInfo(T, Loc), 9563 SC_None, nullptr); 9564 Param->setImplicit(); 9565 return Param; 9566 } 9567 9568 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param, 9569 ParmVarDecl * const *ParamEnd) { 9570 // Don't diagnose unused-parameter errors in template instantiations; we 9571 // will already have done so in the template itself. 9572 if (!ActiveTemplateInstantiations.empty()) 9573 return; 9574 9575 for (; Param != ParamEnd; ++Param) { 9576 if (!(*Param)->isReferenced() && (*Param)->getDeclName() && 9577 !(*Param)->hasAttr<UnusedAttr>()) { 9578 Diag((*Param)->getLocation(), diag::warn_unused_parameter) 9579 << (*Param)->getDeclName(); 9580 } 9581 } 9582 } 9583 9584 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param, 9585 ParmVarDecl * const *ParamEnd, 9586 QualType ReturnTy, 9587 NamedDecl *D) { 9588 if (LangOpts.NumLargeByValueCopy == 0) // No check. 9589 return; 9590 9591 // Warn if the return value is pass-by-value and larger than the specified 9592 // threshold. 9593 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { 9594 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); 9595 if (Size > LangOpts.NumLargeByValueCopy) 9596 Diag(D->getLocation(), diag::warn_return_value_size) 9597 << D->getDeclName() << Size; 9598 } 9599 9600 // Warn if any parameter is pass-by-value and larger than the specified 9601 // threshold. 9602 for (; Param != ParamEnd; ++Param) { 9603 QualType T = (*Param)->getType(); 9604 if (T->isDependentType() || !T.isPODType(Context)) 9605 continue; 9606 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 9607 if (Size > LangOpts.NumLargeByValueCopy) 9608 Diag((*Param)->getLocation(), diag::warn_parameter_size) 9609 << (*Param)->getDeclName() << Size; 9610 } 9611 } 9612 9613 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, 9614 SourceLocation NameLoc, IdentifierInfo *Name, 9615 QualType T, TypeSourceInfo *TSInfo, 9616 VarDecl::StorageClass StorageClass) { 9617 // In ARC, infer a lifetime qualifier for appropriate parameter types. 9618 if (getLangOpts().ObjCAutoRefCount && 9619 T.getObjCLifetime() == Qualifiers::OCL_None && 9620 T->isObjCLifetimeType()) { 9621 9622 Qualifiers::ObjCLifetime lifetime; 9623 9624 // Special cases for arrays: 9625 // - if it's const, use __unsafe_unretained 9626 // - otherwise, it's an error 9627 if (T->isArrayType()) { 9628 if (!T.isConstQualified()) { 9629 DelayedDiagnostics.add( 9630 sema::DelayedDiagnostic::makeForbiddenType( 9631 NameLoc, diag::err_arc_array_param_no_ownership, T, false)); 9632 } 9633 lifetime = Qualifiers::OCL_ExplicitNone; 9634 } else { 9635 lifetime = T->getObjCARCImplicitLifetime(); 9636 } 9637 T = Context.getLifetimeQualifiedType(T, lifetime); 9638 } 9639 9640 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, 9641 Context.getAdjustedParameterType(T), 9642 TSInfo, 9643 StorageClass, nullptr); 9644 9645 // Parameters can not be abstract class types. 9646 // For record types, this is done by the AbstractClassUsageDiagnoser once 9647 // the class has been completely parsed. 9648 if (!CurContext->isRecord() && 9649 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, 9650 AbstractParamType)) 9651 New->setInvalidDecl(); 9652 9653 // Parameter declarators cannot be interface types. All ObjC objects are 9654 // passed by reference. 9655 if (T->isObjCObjectType()) { 9656 SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd(); 9657 Diag(NameLoc, 9658 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T 9659 << FixItHint::CreateInsertion(TypeEndLoc, "*"); 9660 T = Context.getObjCObjectPointerType(T); 9661 New->setType(T); 9662 } 9663 9664 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 9665 // duration shall not be qualified by an address-space qualifier." 9666 // Since all parameters have automatic store duration, they can not have 9667 // an address space. 9668 if (T.getAddressSpace() != 0) { 9669 // OpenCL allows function arguments declared to be an array of a type 9670 // to be qualified with an address space. 9671 if (!(getLangOpts().OpenCL && T->isArrayType())) { 9672 Diag(NameLoc, diag::err_arg_with_address_space); 9673 New->setInvalidDecl(); 9674 } 9675 } 9676 9677 return New; 9678 } 9679 9680 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, 9681 SourceLocation LocAfterDecls) { 9682 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 9683 9684 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' 9685 // for a K&R function. 9686 if (!FTI.hasPrototype) { 9687 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { 9688 --i; 9689 if (FTI.Params[i].Param == nullptr) { 9690 SmallString<256> Code; 9691 llvm::raw_svector_ostream(Code) 9692 << " int " << FTI.Params[i].Ident->getName() << ";\n"; 9693 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) 9694 << FTI.Params[i].Ident 9695 << FixItHint::CreateInsertion(LocAfterDecls, Code.str()); 9696 9697 // Implicitly declare the argument as type 'int' for lack of a better 9698 // type. 9699 AttributeFactory attrs; 9700 DeclSpec DS(attrs); 9701 const char* PrevSpec; // unused 9702 unsigned DiagID; // unused 9703 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, 9704 DiagID, Context.getPrintingPolicy()); 9705 // Use the identifier location for the type source range. 9706 DS.SetRangeStart(FTI.Params[i].IdentLoc); 9707 DS.SetRangeEnd(FTI.Params[i].IdentLoc); 9708 Declarator ParamD(DS, Declarator::KNRTypeListContext); 9709 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); 9710 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); 9711 } 9712 } 9713 } 9714 } 9715 9716 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { 9717 assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); 9718 assert(D.isFunctionDeclarator() && "Not a function declarator!"); 9719 Scope *ParentScope = FnBodyScope->getParent(); 9720 9721 D.setFunctionDefinitionKind(FDK_Definition); 9722 Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg()); 9723 return ActOnStartOfFunctionDef(FnBodyScope, DP); 9724 } 9725 9726 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) { 9727 Consumer.HandleInlineMethodDefinition(D); 9728 } 9729 9730 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, 9731 const FunctionDecl*& PossibleZeroParamPrototype) { 9732 // Don't warn about invalid declarations. 9733 if (FD->isInvalidDecl()) 9734 return false; 9735 9736 // Or declarations that aren't global. 9737 if (!FD->isGlobal()) 9738 return false; 9739 9740 // Don't warn about C++ member functions. 9741 if (isa<CXXMethodDecl>(FD)) 9742 return false; 9743 9744 // Don't warn about 'main'. 9745 if (FD->isMain()) 9746 return false; 9747 9748 // Don't warn about inline functions. 9749 if (FD->isInlined()) 9750 return false; 9751 9752 // Don't warn about function templates. 9753 if (FD->getDescribedFunctionTemplate()) 9754 return false; 9755 9756 // Don't warn about function template specializations. 9757 if (FD->isFunctionTemplateSpecialization()) 9758 return false; 9759 9760 // Don't warn for OpenCL kernels. 9761 if (FD->hasAttr<OpenCLKernelAttr>()) 9762 return false; 9763 9764 bool MissingPrototype = true; 9765 for (const FunctionDecl *Prev = FD->getPreviousDecl(); 9766 Prev; Prev = Prev->getPreviousDecl()) { 9767 // Ignore any declarations that occur in function or method 9768 // scope, because they aren't visible from the header. 9769 if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) 9770 continue; 9771 9772 MissingPrototype = !Prev->getType()->isFunctionProtoType(); 9773 if (FD->getNumParams() == 0) 9774 PossibleZeroParamPrototype = Prev; 9775 break; 9776 } 9777 9778 return MissingPrototype; 9779 } 9780 9781 void 9782 Sema::CheckForFunctionRedefinition(FunctionDecl *FD, 9783 const FunctionDecl *EffectiveDefinition) { 9784 // Don't complain if we're in GNU89 mode and the previous definition 9785 // was an extern inline function. 9786 const FunctionDecl *Definition = EffectiveDefinition; 9787 if (!Definition) 9788 if (!FD->isDefined(Definition)) 9789 return; 9790 9791 if (canRedefineFunction(Definition, getLangOpts())) 9792 return; 9793 9794 if (getLangOpts().GNUMode && Definition->isInlineSpecified() && 9795 Definition->getStorageClass() == SC_Extern) 9796 Diag(FD->getLocation(), diag::err_redefinition_extern_inline) 9797 << FD->getDeclName() << getLangOpts().CPlusPlus; 9798 else 9799 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); 9800 9801 Diag(Definition->getLocation(), diag::note_previous_definition); 9802 FD->setInvalidDecl(); 9803 } 9804 9805 9806 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, 9807 Sema &S) { 9808 CXXRecordDecl *const LambdaClass = CallOperator->getParent(); 9809 9810 LambdaScopeInfo *LSI = S.PushLambdaScope(); 9811 LSI->CallOperator = CallOperator; 9812 LSI->Lambda = LambdaClass; 9813 LSI->ReturnType = CallOperator->getReturnType(); 9814 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); 9815 9816 if (LCD == LCD_None) 9817 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; 9818 else if (LCD == LCD_ByCopy) 9819 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; 9820 else if (LCD == LCD_ByRef) 9821 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; 9822 DeclarationNameInfo DNI = CallOperator->getNameInfo(); 9823 9824 LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); 9825 LSI->Mutable = !CallOperator->isConst(); 9826 9827 // Add the captures to the LSI so they can be noted as already 9828 // captured within tryCaptureVar. 9829 for (const auto &C : LambdaClass->captures()) { 9830 if (C.capturesVariable()) { 9831 VarDecl *VD = C.getCapturedVar(); 9832 if (VD->isInitCapture()) 9833 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); 9834 QualType CaptureType = VD->getType(); 9835 const bool ByRef = C.getCaptureKind() == LCK_ByRef; 9836 LSI->addCapture(VD, /*IsBlock*/false, ByRef, 9837 /*RefersToEnclosingLocal*/true, C.getLocation(), 9838 /*EllipsisLoc*/C.isPackExpansion() 9839 ? C.getEllipsisLoc() : SourceLocation(), 9840 CaptureType, /*Expr*/ nullptr); 9841 9842 } else if (C.capturesThis()) { 9843 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), 9844 S.getCurrentThisType(), /*Expr*/ nullptr); 9845 } 9846 } 9847 } 9848 9849 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) { 9850 // Clear the last template instantiation error context. 9851 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation(); 9852 9853 if (!D) 9854 return D; 9855 FunctionDecl *FD = nullptr; 9856 9857 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) 9858 FD = FunTmpl->getTemplatedDecl(); 9859 else 9860 FD = cast<FunctionDecl>(D); 9861 // If we are instantiating a generic lambda call operator, push 9862 // a LambdaScopeInfo onto the function stack. But use the information 9863 // that's already been calculated (ActOnLambdaExpr) to prime the current 9864 // LambdaScopeInfo. 9865 // When the template operator is being specialized, the LambdaScopeInfo, 9866 // has to be properly restored so that tryCaptureVariable doesn't try 9867 // and capture any new variables. In addition when calculating potential 9868 // captures during transformation of nested lambdas, it is necessary to 9869 // have the LSI properly restored. 9870 if (isGenericLambdaCallOperatorSpecialization(FD)) { 9871 assert(ActiveTemplateInstantiations.size() && 9872 "There should be an active template instantiation on the stack " 9873 "when instantiating a generic lambda!"); 9874 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); 9875 } 9876 else 9877 // Enter a new function scope 9878 PushFunctionScope(); 9879 9880 // See if this is a redefinition. 9881 if (!FD->isLateTemplateParsed()) 9882 CheckForFunctionRedefinition(FD); 9883 9884 // Builtin functions cannot be defined. 9885 if (unsigned BuiltinID = FD->getBuiltinID()) { 9886 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 9887 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { 9888 Diag(FD->getLocation(), diag::err_builtin_definition) << FD; 9889 FD->setInvalidDecl(); 9890 } 9891 } 9892 9893 // The return type of a function definition must be complete 9894 // (C99 6.9.1p3, C++ [dcl.fct]p6). 9895 QualType ResultType = FD->getReturnType(); 9896 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 9897 !FD->isInvalidDecl() && 9898 RequireCompleteType(FD->getLocation(), ResultType, 9899 diag::err_func_def_incomplete_result)) 9900 FD->setInvalidDecl(); 9901 9902 // GNU warning -Wmissing-prototypes: 9903 // Warn if a global function is defined without a previous 9904 // prototype declaration. This warning is issued even if the 9905 // definition itself provides a prototype. The aim is to detect 9906 // global functions that fail to be declared in header files. 9907 const FunctionDecl *PossibleZeroParamPrototype = nullptr; 9908 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) { 9909 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; 9910 9911 if (PossibleZeroParamPrototype) { 9912 // We found a declaration that is not a prototype, 9913 // but that could be a zero-parameter prototype 9914 if (TypeSourceInfo *TI = 9915 PossibleZeroParamPrototype->getTypeSourceInfo()) { 9916 TypeLoc TL = TI->getTypeLoc(); 9917 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) 9918 Diag(PossibleZeroParamPrototype->getLocation(), 9919 diag::note_declaration_not_a_prototype) 9920 << PossibleZeroParamPrototype 9921 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void"); 9922 } 9923 } 9924 } 9925 9926 if (FnBodyScope) 9927 PushDeclContext(FnBodyScope, FD); 9928 9929 // Check the validity of our function parameters 9930 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(), 9931 /*CheckParameterNames=*/true); 9932 9933 // Introduce our parameters into the function scope 9934 for (auto Param : FD->params()) { 9935 Param->setOwningFunction(FD); 9936 9937 // If this has an identifier, add it to the scope stack. 9938 if (Param->getIdentifier() && FnBodyScope) { 9939 CheckShadow(FnBodyScope, Param); 9940 9941 PushOnScopeChains(Param, FnBodyScope); 9942 } 9943 } 9944 9945 // If we had any tags defined in the function prototype, 9946 // introduce them into the function scope. 9947 if (FnBodyScope) { 9948 for (ArrayRef<NamedDecl *>::iterator 9949 I = FD->getDeclsInPrototypeScope().begin(), 9950 E = FD->getDeclsInPrototypeScope().end(); 9951 I != E; ++I) { 9952 NamedDecl *D = *I; 9953 9954 // Some of these decls (like enums) may have been pinned to the translation unit 9955 // for lack of a real context earlier. If so, remove from the translation unit 9956 // and reattach to the current context. 9957 if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) { 9958 // Is the decl actually in the context? 9959 for (const auto *DI : Context.getTranslationUnitDecl()->decls()) { 9960 if (DI == D) { 9961 Context.getTranslationUnitDecl()->removeDecl(D); 9962 break; 9963 } 9964 } 9965 // Either way, reassign the lexical decl context to our FunctionDecl. 9966 D->setLexicalDeclContext(CurContext); 9967 } 9968 9969 // If the decl has a non-null name, make accessible in the current scope. 9970 if (!D->getName().empty()) 9971 PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false); 9972 9973 // Similarly, dive into enums and fish their constants out, making them 9974 // accessible in this scope. 9975 if (auto *ED = dyn_cast<EnumDecl>(D)) { 9976 for (auto *EI : ED->enumerators()) 9977 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); 9978 } 9979 } 9980 } 9981 9982 // Ensure that the function's exception specification is instantiated. 9983 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) 9984 ResolveExceptionSpec(D->getLocation(), FPT); 9985 9986 // dllimport cannot be applied to non-inline function definitions. 9987 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && 9988 !FD->isTemplateInstantiation()) { 9989 assert(!FD->hasAttr<DLLExportAttr>()); 9990 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); 9991 FD->setInvalidDecl(); 9992 return D; 9993 } 9994 // We want to attach documentation to original Decl (which might be 9995 // a function template). 9996 ActOnDocumentableDecl(D); 9997 if (getCurLexicalContext()->isObjCContainer() && 9998 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && 9999 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) 10000 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); 10001 10002 return D; 10003 } 10004 10005 /// \brief Given the set of return statements within a function body, 10006 /// compute the variables that are subject to the named return value 10007 /// optimization. 10008 /// 10009 /// Each of the variables that is subject to the named return value 10010 /// optimization will be marked as NRVO variables in the AST, and any 10011 /// return statement that has a marked NRVO variable as its NRVO candidate can 10012 /// use the named return value optimization. 10013 /// 10014 /// This function applies a very simplistic algorithm for NRVO: if every return 10015 /// statement in the scope of a variable has the same NRVO candidate, that 10016 /// candidate is an NRVO variable. 10017 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { 10018 ReturnStmt **Returns = Scope->Returns.data(); 10019 10020 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { 10021 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { 10022 if (!NRVOCandidate->isNRVOVariable()) 10023 Returns[I]->setNRVOCandidate(nullptr); 10024 } 10025 } 10026 } 10027 10028 bool Sema::canDelayFunctionBody(const Declarator &D) { 10029 // We can't delay parsing the body of a constexpr function template (yet). 10030 if (D.getDeclSpec().isConstexprSpecified()) 10031 return false; 10032 10033 // We can't delay parsing the body of a function template with a deduced 10034 // return type (yet). 10035 if (D.getDeclSpec().containsPlaceholderType()) { 10036 // If the placeholder introduces a non-deduced trailing return type, 10037 // we can still delay parsing it. 10038 if (D.getNumTypeObjects()) { 10039 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); 10040 if (Outer.Kind == DeclaratorChunk::Function && 10041 Outer.Fun.hasTrailingReturnType()) { 10042 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); 10043 return Ty.isNull() || !Ty->isUndeducedType(); 10044 } 10045 } 10046 return false; 10047 } 10048 10049 return true; 10050 } 10051 10052 bool Sema::canSkipFunctionBody(Decl *D) { 10053 // We cannot skip the body of a function (or function template) which is 10054 // constexpr, since we may need to evaluate its body in order to parse the 10055 // rest of the file. 10056 // We cannot skip the body of a function with an undeduced return type, 10057 // because any callers of that function need to know the type. 10058 if (const FunctionDecl *FD = D->getAsFunction()) 10059 if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType()) 10060 return false; 10061 return Consumer.shouldSkipFunctionBody(D); 10062 } 10063 10064 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { 10065 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl)) 10066 FD->setHasSkippedBody(); 10067 else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl)) 10068 MD->setHasSkippedBody(); 10069 return ActOnFinishFunctionBody(Decl, nullptr); 10070 } 10071 10072 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { 10073 return ActOnFinishFunctionBody(D, BodyArg, false); 10074 } 10075 10076 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, 10077 bool IsInstantiation) { 10078 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; 10079 10080 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); 10081 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; 10082 10083 if (FD) { 10084 FD->setBody(Body); 10085 10086 if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body && 10087 !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) { 10088 // If the function has a deduced result type but contains no 'return' 10089 // statements, the result type as written must be exactly 'auto', and 10090 // the deduced result type is 'void'. 10091 if (!FD->getReturnType()->getAs<AutoType>()) { 10092 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) 10093 << FD->getReturnType(); 10094 FD->setInvalidDecl(); 10095 } else { 10096 // Substitute 'void' for the 'auto' in the type. 10097 TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc(). 10098 IgnoreParens().castAs<FunctionProtoTypeLoc>().getReturnLoc(); 10099 Context.adjustDeducedFunctionResultType( 10100 FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); 10101 } 10102 } 10103 10104 // The only way to be included in UndefinedButUsed is if there is an 10105 // ODR use before the definition. Avoid the expensive map lookup if this 10106 // is the first declaration. 10107 if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) { 10108 if (!FD->isExternallyVisible()) 10109 UndefinedButUsed.erase(FD); 10110 else if (FD->isInlined() && 10111 (LangOpts.CPlusPlus || !LangOpts.GNUInline) && 10112 (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>())) 10113 UndefinedButUsed.erase(FD); 10114 } 10115 10116 // If the function implicitly returns zero (like 'main') or is naked, 10117 // don't complain about missing return statements. 10118 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) 10119 WP.disableCheckFallThrough(); 10120 10121 // MSVC permits the use of pure specifier (=0) on function definition, 10122 // defined at class scope, warn about this non-standard construct. 10123 if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl()) 10124 Diag(FD->getLocation(), diag::warn_pure_function_definition); 10125 10126 if (!FD->isInvalidDecl()) { 10127 // Don't diagnose unused parameters of defaulted or deleted functions. 10128 if (Body) 10129 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end()); 10130 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(), 10131 FD->getReturnType(), FD); 10132 10133 // If this is a constructor, we need a vtable. 10134 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) 10135 MarkVTableUsed(FD->getLocation(), Constructor->getParent()); 10136 10137 // Try to apply the named return value optimization. We have to check 10138 // if we can do this here because lambdas keep return statements around 10139 // to deduce an implicit return type. 10140 if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() && 10141 !FD->isDependentContext()) 10142 computeNRVO(Body, getCurFunction()); 10143 } 10144 10145 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && 10146 "Function parsing confused"); 10147 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { 10148 assert(MD == getCurMethodDecl() && "Method parsing confused"); 10149 MD->setBody(Body); 10150 if (!MD->isInvalidDecl()) { 10151 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end()); 10152 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(), 10153 MD->getReturnType(), MD); 10154 10155 if (Body) 10156 computeNRVO(Body, getCurFunction()); 10157 } 10158 if (getCurFunction()->ObjCShouldCallSuper) { 10159 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call) 10160 << MD->getSelector().getAsString(); 10161 getCurFunction()->ObjCShouldCallSuper = false; 10162 } 10163 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) { 10164 const ObjCMethodDecl *InitMethod = nullptr; 10165 bool isDesignated = 10166 MD->isDesignatedInitializerForTheInterface(&InitMethod); 10167 assert(isDesignated && InitMethod); 10168 (void)isDesignated; 10169 10170 auto superIsNSObject = [&](const ObjCMethodDecl *MD) { 10171 auto IFace = MD->getClassInterface(); 10172 if (!IFace) 10173 return false; 10174 auto SuperD = IFace->getSuperClass(); 10175 if (!SuperD) 10176 return false; 10177 return SuperD->getIdentifier() == 10178 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 10179 }; 10180 // Don't issue this warning for unavailable inits or direct subclasses 10181 // of NSObject. 10182 if (!MD->isUnavailable() && !superIsNSObject(MD)) { 10183 Diag(MD->getLocation(), 10184 diag::warn_objc_designated_init_missing_super_call); 10185 Diag(InitMethod->getLocation(), 10186 diag::note_objc_designated_init_marked_here); 10187 } 10188 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false; 10189 } 10190 if (getCurFunction()->ObjCWarnForNoInitDelegation) { 10191 // Don't issue this warning for unavaialable inits. 10192 if (!MD->isUnavailable()) 10193 Diag(MD->getLocation(), diag::warn_objc_secondary_init_missing_init_call); 10194 getCurFunction()->ObjCWarnForNoInitDelegation = false; 10195 } 10196 } else { 10197 return nullptr; 10198 } 10199 10200 assert(!getCurFunction()->ObjCShouldCallSuper && 10201 "This should only be set for ObjC methods, which should have been " 10202 "handled in the block above."); 10203 10204 // Verify and clean out per-function state. 10205 if (Body) { 10206 // C++ constructors that have function-try-blocks can't have return 10207 // statements in the handlers of that block. (C++ [except.handle]p14) 10208 // Verify this. 10209 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) 10210 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); 10211 10212 // Verify that gotos and switch cases don't jump into scopes illegally. 10213 if (getCurFunction()->NeedsScopeChecking() && 10214 !PP.isCodeCompletionEnabled()) 10215 DiagnoseInvalidJumps(Body); 10216 10217 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { 10218 if (!Destructor->getParent()->isDependentType()) 10219 CheckDestructor(Destructor); 10220 10221 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 10222 Destructor->getParent()); 10223 } 10224 10225 // If any errors have occurred, clear out any temporaries that may have 10226 // been leftover. This ensures that these temporaries won't be picked up for 10227 // deletion in some later function. 10228 if (getDiagnostics().hasErrorOccurred() || 10229 getDiagnostics().getSuppressAllDiagnostics()) { 10230 DiscardCleanupsInEvaluationContext(); 10231 } 10232 if (!getDiagnostics().hasUncompilableErrorOccurred() && 10233 !isa<FunctionTemplateDecl>(dcl)) { 10234 // Since the body is valid, issue any analysis-based warnings that are 10235 // enabled. 10236 ActivePolicy = &WP; 10237 } 10238 10239 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && 10240 (!CheckConstexprFunctionDecl(FD) || 10241 !CheckConstexprFunctionBody(FD, Body))) 10242 FD->setInvalidDecl(); 10243 10244 assert(ExprCleanupObjects.empty() && "Leftover temporaries in function"); 10245 assert(!ExprNeedsCleanups && "Unaccounted cleanups in function"); 10246 assert(MaybeODRUseExprs.empty() && 10247 "Leftover expressions for odr-use checking"); 10248 } 10249 10250 if (!IsInstantiation) 10251 PopDeclContext(); 10252 10253 PopFunctionScopeInfo(ActivePolicy, dcl); 10254 // If any errors have occurred, clear out any temporaries that may have 10255 // been leftover. This ensures that these temporaries won't be picked up for 10256 // deletion in some later function. 10257 if (getDiagnostics().hasErrorOccurred()) { 10258 DiscardCleanupsInEvaluationContext(); 10259 } 10260 10261 return dcl; 10262 } 10263 10264 10265 /// When we finish delayed parsing of an attribute, we must attach it to the 10266 /// relevant Decl. 10267 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, 10268 ParsedAttributes &Attrs) { 10269 // Always attach attributes to the underlying decl. 10270 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 10271 D = TD->getTemplatedDecl(); 10272 ProcessDeclAttributeList(S, D, Attrs.getList()); 10273 10274 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) 10275 if (Method->isStatic()) 10276 checkThisInStaticMemberFunctionAttributes(Method); 10277 } 10278 10279 10280 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function 10281 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). 10282 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, 10283 IdentifierInfo &II, Scope *S) { 10284 // Before we produce a declaration for an implicitly defined 10285 // function, see whether there was a locally-scoped declaration of 10286 // this name as a function or variable. If so, use that 10287 // (non-visible) declaration, and complain about it. 10288 if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) { 10289 Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev; 10290 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); 10291 return ExternCPrev; 10292 } 10293 10294 // Extension in C99. Legal in C90, but warn about it. 10295 unsigned diag_id; 10296 if (II.getName().startswith("__builtin_")) 10297 diag_id = diag::warn_builtin_unknown; 10298 else if (getLangOpts().C99) 10299 diag_id = diag::ext_implicit_function_decl; 10300 else 10301 diag_id = diag::warn_implicit_function_decl; 10302 Diag(Loc, diag_id) << &II; 10303 10304 // Because typo correction is expensive, only do it if the implicit 10305 // function declaration is going to be treated as an error. 10306 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { 10307 TypoCorrection Corrected; 10308 DeclFilterCCC<FunctionDecl> Validator; 10309 if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), 10310 LookupOrdinaryName, S, nullptr, Validator, 10311 CTK_NonError))) 10312 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), 10313 /*ErrorRecovery*/false); 10314 } 10315 10316 // Set a Declarator for the implicit definition: int foo(); 10317 const char *Dummy; 10318 AttributeFactory attrFactory; 10319 DeclSpec DS(attrFactory); 10320 unsigned DiagID; 10321 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, 10322 Context.getPrintingPolicy()); 10323 (void)Error; // Silence warning. 10324 assert(!Error && "Error setting up implicit decl!"); 10325 SourceLocation NoLoc; 10326 Declarator D(DS, Declarator::BlockContext); 10327 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, 10328 /*IsAmbiguous=*/false, 10329 /*LParenLoc=*/NoLoc, 10330 /*Params=*/nullptr, 10331 /*NumParams=*/0, 10332 /*EllipsisLoc=*/NoLoc, 10333 /*RParenLoc=*/NoLoc, 10334 /*TypeQuals=*/0, 10335 /*RefQualifierIsLvalueRef=*/true, 10336 /*RefQualifierLoc=*/NoLoc, 10337 /*ConstQualifierLoc=*/NoLoc, 10338 /*VolatileQualifierLoc=*/NoLoc, 10339 /*MutableLoc=*/NoLoc, 10340 EST_None, 10341 /*ESpecLoc=*/NoLoc, 10342 /*Exceptions=*/nullptr, 10343 /*ExceptionRanges=*/nullptr, 10344 /*NumExceptions=*/0, 10345 /*NoexceptExpr=*/nullptr, 10346 Loc, Loc, D), 10347 DS.getAttributes(), 10348 SourceLocation()); 10349 D.SetIdentifier(&II, Loc); 10350 10351 // Insert this function into translation-unit scope. 10352 10353 DeclContext *PrevDC = CurContext; 10354 CurContext = Context.getTranslationUnitDecl(); 10355 10356 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D)); 10357 FD->setImplicit(); 10358 10359 CurContext = PrevDC; 10360 10361 AddKnownFunctionAttributes(FD); 10362 10363 return FD; 10364 } 10365 10366 /// \brief Adds any function attributes that we know a priori based on 10367 /// the declaration of this function. 10368 /// 10369 /// These attributes can apply both to implicitly-declared builtins 10370 /// (like __builtin___printf_chk) or to library-declared functions 10371 /// like NSLog or printf. 10372 /// 10373 /// We need to check for duplicate attributes both here and where user-written 10374 /// attributes are applied to declarations. 10375 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { 10376 if (FD->isInvalidDecl()) 10377 return; 10378 10379 // If this is a built-in function, map its builtin attributes to 10380 // actual attributes. 10381 if (unsigned BuiltinID = FD->getBuiltinID()) { 10382 // Handle printf-formatting attributes. 10383 unsigned FormatIdx; 10384 bool HasVAListArg; 10385 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { 10386 if (!FD->hasAttr<FormatAttr>()) { 10387 const char *fmt = "printf"; 10388 unsigned int NumParams = FD->getNumParams(); 10389 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) 10390 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) 10391 fmt = "NSString"; 10392 FD->addAttr(FormatAttr::CreateImplicit(Context, 10393 &Context.Idents.get(fmt), 10394 FormatIdx+1, 10395 HasVAListArg ? 0 : FormatIdx+2, 10396 FD->getLocation())); 10397 } 10398 } 10399 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, 10400 HasVAListArg)) { 10401 if (!FD->hasAttr<FormatAttr>()) 10402 FD->addAttr(FormatAttr::CreateImplicit(Context, 10403 &Context.Idents.get("scanf"), 10404 FormatIdx+1, 10405 HasVAListArg ? 0 : FormatIdx+2, 10406 FD->getLocation())); 10407 } 10408 10409 // Mark const if we don't care about errno and that is the only 10410 // thing preventing the function from being const. This allows 10411 // IRgen to use LLVM intrinsics for such functions. 10412 if (!getLangOpts().MathErrno && 10413 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) { 10414 if (!FD->hasAttr<ConstAttr>()) 10415 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 10416 } 10417 10418 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && 10419 !FD->hasAttr<ReturnsTwiceAttr>()) 10420 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, 10421 FD->getLocation())); 10422 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) 10423 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 10424 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) 10425 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 10426 } 10427 10428 IdentifierInfo *Name = FD->getIdentifier(); 10429 if (!Name) 10430 return; 10431 if ((!getLangOpts().CPlusPlus && 10432 FD->getDeclContext()->isTranslationUnit()) || 10433 (isa<LinkageSpecDecl>(FD->getDeclContext()) && 10434 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == 10435 LinkageSpecDecl::lang_c)) { 10436 // Okay: this could be a libc/libm/Objective-C function we know 10437 // about. 10438 } else 10439 return; 10440 10441 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { 10442 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be 10443 // target-specific builtins, perhaps? 10444 if (!FD->hasAttr<FormatAttr>()) 10445 FD->addAttr(FormatAttr::CreateImplicit(Context, 10446 &Context.Idents.get("printf"), 2, 10447 Name->isStr("vasprintf") ? 0 : 3, 10448 FD->getLocation())); 10449 } 10450 10451 if (Name->isStr("__CFStringMakeConstantString")) { 10452 // We already have a __builtin___CFStringMakeConstantString, 10453 // but builds that use -fno-constant-cfstrings don't go through that. 10454 if (!FD->hasAttr<FormatArgAttr>()) 10455 FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1, 10456 FD->getLocation())); 10457 } 10458 } 10459 10460 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, 10461 TypeSourceInfo *TInfo) { 10462 assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); 10463 assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); 10464 10465 if (!TInfo) { 10466 assert(D.isInvalidType() && "no declarator info for valid type"); 10467 TInfo = Context.getTrivialTypeSourceInfo(T); 10468 } 10469 10470 // Scope manipulation handled by caller. 10471 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, 10472 D.getLocStart(), 10473 D.getIdentifierLoc(), 10474 D.getIdentifier(), 10475 TInfo); 10476 10477 // Bail out immediately if we have an invalid declaration. 10478 if (D.isInvalidType()) { 10479 NewTD->setInvalidDecl(); 10480 return NewTD; 10481 } 10482 10483 if (D.getDeclSpec().isModulePrivateSpecified()) { 10484 if (CurContext->isFunctionOrMethod()) 10485 Diag(NewTD->getLocation(), diag::err_module_private_local) 10486 << 2 << NewTD->getDeclName() 10487 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 10488 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 10489 else 10490 NewTD->setModulePrivate(); 10491 } 10492 10493 // C++ [dcl.typedef]p8: 10494 // If the typedef declaration defines an unnamed class (or 10495 // enum), the first typedef-name declared by the declaration 10496 // to be that class type (or enum type) is used to denote the 10497 // class type (or enum type) for linkage purposes only. 10498 // We need to check whether the type was declared in the declaration. 10499 switch (D.getDeclSpec().getTypeSpecType()) { 10500 case TST_enum: 10501 case TST_struct: 10502 case TST_interface: 10503 case TST_union: 10504 case TST_class: { 10505 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); 10506 10507 // Do nothing if the tag is not anonymous or already has an 10508 // associated typedef (from an earlier typedef in this decl group). 10509 if (tagFromDeclSpec->getIdentifier()) break; 10510 if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break; 10511 10512 // A well-formed anonymous tag must always be a TUK_Definition. 10513 assert(tagFromDeclSpec->isThisDeclarationADefinition()); 10514 10515 // The type must match the tag exactly; no qualifiers allowed. 10516 if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec))) 10517 break; 10518 10519 // If we've already computed linkage for the anonymous tag, then 10520 // adding a typedef name for the anonymous decl can change that 10521 // linkage, which might be a serious problem. Diagnose this as 10522 // unsupported and ignore the typedef name. TODO: we should 10523 // pursue this as a language defect and establish a formal rule 10524 // for how to handle it. 10525 if (tagFromDeclSpec->hasLinkageBeenComputed()) { 10526 Diag(D.getIdentifierLoc(), diag::err_typedef_changes_linkage); 10527 10528 SourceLocation tagLoc = D.getDeclSpec().getTypeSpecTypeLoc(); 10529 tagLoc = getLocForEndOfToken(tagLoc); 10530 10531 llvm::SmallString<40> textToInsert; 10532 textToInsert += ' '; 10533 textToInsert += D.getIdentifier()->getName(); 10534 Diag(tagLoc, diag::note_typedef_changes_linkage) 10535 << FixItHint::CreateInsertion(tagLoc, textToInsert); 10536 break; 10537 } 10538 10539 // Otherwise, set this is the anon-decl typedef for the tag. 10540 tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); 10541 break; 10542 } 10543 10544 default: 10545 break; 10546 } 10547 10548 return NewTD; 10549 } 10550 10551 10552 /// \brief Check that this is a valid underlying type for an enum declaration. 10553 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { 10554 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 10555 QualType T = TI->getType(); 10556 10557 if (T->isDependentType()) 10558 return false; 10559 10560 if (const BuiltinType *BT = T->getAs<BuiltinType>()) 10561 if (BT->isInteger()) 10562 return false; 10563 10564 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; 10565 return true; 10566 } 10567 10568 /// Check whether this is a valid redeclaration of a previous enumeration. 10569 /// \return true if the redeclaration was invalid. 10570 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, 10571 QualType EnumUnderlyingTy, 10572 const EnumDecl *Prev) { 10573 bool IsFixed = !EnumUnderlyingTy.isNull(); 10574 10575 if (IsScoped != Prev->isScoped()) { 10576 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) 10577 << Prev->isScoped(); 10578 Diag(Prev->getLocation(), diag::note_previous_declaration); 10579 return true; 10580 } 10581 10582 if (IsFixed && Prev->isFixed()) { 10583 if (!EnumUnderlyingTy->isDependentType() && 10584 !Prev->getIntegerType()->isDependentType() && 10585 !Context.hasSameUnqualifiedType(EnumUnderlyingTy, 10586 Prev->getIntegerType())) { 10587 // TODO: Highlight the underlying type of the redeclaration. 10588 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) 10589 << EnumUnderlyingTy << Prev->getIntegerType(); 10590 Diag(Prev->getLocation(), diag::note_previous_declaration) 10591 << Prev->getIntegerTypeRange(); 10592 return true; 10593 } 10594 } else if (IsFixed != Prev->isFixed()) { 10595 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) 10596 << Prev->isFixed(); 10597 Diag(Prev->getLocation(), diag::note_previous_declaration); 10598 return true; 10599 } 10600 10601 return false; 10602 } 10603 10604 /// \brief Get diagnostic %select index for tag kind for 10605 /// redeclaration diagnostic message. 10606 /// WARNING: Indexes apply to particular diagnostics only! 10607 /// 10608 /// \returns diagnostic %select index. 10609 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { 10610 switch (Tag) { 10611 case TTK_Struct: return 0; 10612 case TTK_Interface: return 1; 10613 case TTK_Class: return 2; 10614 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); 10615 } 10616 } 10617 10618 /// \brief Determine if tag kind is a class-key compatible with 10619 /// class for redeclaration (class, struct, or __interface). 10620 /// 10621 /// \returns true iff the tag kind is compatible. 10622 static bool isClassCompatTagKind(TagTypeKind Tag) 10623 { 10624 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; 10625 } 10626 10627 /// \brief Determine whether a tag with a given kind is acceptable 10628 /// as a redeclaration of the given tag declaration. 10629 /// 10630 /// \returns true if the new tag kind is acceptable, false otherwise. 10631 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, 10632 TagTypeKind NewTag, bool isDefinition, 10633 SourceLocation NewTagLoc, 10634 const IdentifierInfo &Name) { 10635 // C++ [dcl.type.elab]p3: 10636 // The class-key or enum keyword present in the 10637 // elaborated-type-specifier shall agree in kind with the 10638 // declaration to which the name in the elaborated-type-specifier 10639 // refers. This rule also applies to the form of 10640 // elaborated-type-specifier that declares a class-name or 10641 // friend class since it can be construed as referring to the 10642 // definition of the class. Thus, in any 10643 // elaborated-type-specifier, the enum keyword shall be used to 10644 // refer to an enumeration (7.2), the union class-key shall be 10645 // used to refer to a union (clause 9), and either the class or 10646 // struct class-key shall be used to refer to a class (clause 9) 10647 // declared using the class or struct class-key. 10648 TagTypeKind OldTag = Previous->getTagKind(); 10649 if (!isDefinition || !isClassCompatTagKind(NewTag)) 10650 if (OldTag == NewTag) 10651 return true; 10652 10653 if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) { 10654 // Warn about the struct/class tag mismatch. 10655 bool isTemplate = false; 10656 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) 10657 isTemplate = Record->getDescribedClassTemplate(); 10658 10659 if (!ActiveTemplateInstantiations.empty()) { 10660 // In a template instantiation, do not offer fix-its for tag mismatches 10661 // since they usually mess up the template instead of fixing the problem. 10662 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 10663 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name 10664 << getRedeclDiagFromTagKind(OldTag); 10665 return true; 10666 } 10667 10668 if (isDefinition) { 10669 // On definitions, check previous tags and issue a fix-it for each 10670 // one that doesn't match the current tag. 10671 if (Previous->getDefinition()) { 10672 // Don't suggest fix-its for redefinitions. 10673 return true; 10674 } 10675 10676 bool previousMismatch = false; 10677 for (auto I : Previous->redecls()) { 10678 if (I->getTagKind() != NewTag) { 10679 if (!previousMismatch) { 10680 previousMismatch = true; 10681 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) 10682 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name 10683 << getRedeclDiagFromTagKind(I->getTagKind()); 10684 } 10685 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) 10686 << getRedeclDiagFromTagKind(NewTag) 10687 << FixItHint::CreateReplacement(I->getInnerLocStart(), 10688 TypeWithKeyword::getTagTypeKindName(NewTag)); 10689 } 10690 } 10691 return true; 10692 } 10693 10694 // Check for a previous definition. If current tag and definition 10695 // are same type, do nothing. If no definition, but disagree with 10696 // with previous tag type, give a warning, but no fix-it. 10697 const TagDecl *Redecl = Previous->getDefinition() ? 10698 Previous->getDefinition() : Previous; 10699 if (Redecl->getTagKind() == NewTag) { 10700 return true; 10701 } 10702 10703 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 10704 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name 10705 << getRedeclDiagFromTagKind(OldTag); 10706 Diag(Redecl->getLocation(), diag::note_previous_use); 10707 10708 // If there is a previous definition, suggest a fix-it. 10709 if (Previous->getDefinition()) { 10710 Diag(NewTagLoc, diag::note_struct_class_suggestion) 10711 << getRedeclDiagFromTagKind(Redecl->getTagKind()) 10712 << FixItHint::CreateReplacement(SourceRange(NewTagLoc), 10713 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); 10714 } 10715 10716 return true; 10717 } 10718 return false; 10719 } 10720 10721 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the 10722 /// former case, Name will be non-null. In the later case, Name will be null. 10723 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a 10724 /// reference/declaration/definition of a tag. 10725 /// 10726 /// IsTypeSpecifier is true if this is a type-specifier (or 10727 /// trailing-type-specifier) other than one in an alias-declaration. 10728 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 10729 SourceLocation KWLoc, CXXScopeSpec &SS, 10730 IdentifierInfo *Name, SourceLocation NameLoc, 10731 AttributeList *Attr, AccessSpecifier AS, 10732 SourceLocation ModulePrivateLoc, 10733 MultiTemplateParamsArg TemplateParameterLists, 10734 bool &OwnedDecl, bool &IsDependent, 10735 SourceLocation ScopedEnumKWLoc, 10736 bool ScopedEnumUsesClassTag, 10737 TypeResult UnderlyingType, 10738 bool IsTypeSpecifier) { 10739 // If this is not a definition, it must have a name. 10740 IdentifierInfo *OrigName = Name; 10741 assert((Name != nullptr || TUK == TUK_Definition) && 10742 "Nameless record must be a definition!"); 10743 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); 10744 10745 OwnedDecl = false; 10746 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10747 bool ScopedEnum = ScopedEnumKWLoc.isValid(); 10748 10749 // FIXME: Check explicit specializations more carefully. 10750 bool isExplicitSpecialization = false; 10751 bool Invalid = false; 10752 10753 // We only need to do this matching if we have template parameters 10754 // or a scope specifier, which also conveniently avoids this work 10755 // for non-C++ cases. 10756 if (TemplateParameterLists.size() > 0 || 10757 (SS.isNotEmpty() && TUK != TUK_Reference)) { 10758 if (TemplateParameterList *TemplateParams = 10759 MatchTemplateParametersToScopeSpecifier( 10760 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, 10761 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) { 10762 if (Kind == TTK_Enum) { 10763 Diag(KWLoc, diag::err_enum_template); 10764 return nullptr; 10765 } 10766 10767 if (TemplateParams->size() > 0) { 10768 // This is a declaration or definition of a class template (which may 10769 // be a member of another template). 10770 10771 if (Invalid) 10772 return nullptr; 10773 10774 OwnedDecl = false; 10775 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc, 10776 SS, Name, NameLoc, Attr, 10777 TemplateParams, AS, 10778 ModulePrivateLoc, 10779 TemplateParameterLists.size()-1, 10780 TemplateParameterLists.data()); 10781 return Result.get(); 10782 } else { 10783 // The "template<>" header is extraneous. 10784 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 10785 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 10786 isExplicitSpecialization = true; 10787 } 10788 } 10789 } 10790 10791 // Figure out the underlying type if this a enum declaration. We need to do 10792 // this early, because it's needed to detect if this is an incompatible 10793 // redeclaration. 10794 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; 10795 10796 if (Kind == TTK_Enum) { 10797 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) 10798 // No underlying type explicitly specified, or we failed to parse the 10799 // type, default to int. 10800 EnumUnderlying = Context.IntTy.getTypePtr(); 10801 else if (UnderlyingType.get()) { 10802 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an 10803 // integral type; any cv-qualification is ignored. 10804 TypeSourceInfo *TI = nullptr; 10805 GetTypeFromParser(UnderlyingType.get(), &TI); 10806 EnumUnderlying = TI; 10807 10808 if (CheckEnumUnderlyingType(TI)) 10809 // Recover by falling back to int. 10810 EnumUnderlying = Context.IntTy.getTypePtr(); 10811 10812 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, 10813 UPPC_FixedUnderlyingType)) 10814 EnumUnderlying = Context.IntTy.getTypePtr(); 10815 10816 } else if (getLangOpts().MSVCCompat) 10817 // Microsoft enums are always of int type. 10818 EnumUnderlying = Context.IntTy.getTypePtr(); 10819 } 10820 10821 DeclContext *SearchDC = CurContext; 10822 DeclContext *DC = CurContext; 10823 bool isStdBadAlloc = false; 10824 10825 RedeclarationKind Redecl = ForRedeclaration; 10826 if (TUK == TUK_Friend || TUK == TUK_Reference) 10827 Redecl = NotForRedeclaration; 10828 10829 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); 10830 bool FriendSawTagOutsideEnclosingNamespace = false; 10831 if (Name && SS.isNotEmpty()) { 10832 // We have a nested-name tag ('struct foo::bar'). 10833 10834 // Check for invalid 'foo::'. 10835 if (SS.isInvalid()) { 10836 Name = nullptr; 10837 goto CreateNewDecl; 10838 } 10839 10840 // If this is a friend or a reference to a class in a dependent 10841 // context, don't try to make a decl for it. 10842 if (TUK == TUK_Friend || TUK == TUK_Reference) { 10843 DC = computeDeclContext(SS, false); 10844 if (!DC) { 10845 IsDependent = true; 10846 return nullptr; 10847 } 10848 } else { 10849 DC = computeDeclContext(SS, true); 10850 if (!DC) { 10851 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) 10852 << SS.getRange(); 10853 return nullptr; 10854 } 10855 } 10856 10857 if (RequireCompleteDeclContext(SS, DC)) 10858 return nullptr; 10859 10860 SearchDC = DC; 10861 // Look-up name inside 'foo::'. 10862 LookupQualifiedName(Previous, DC); 10863 10864 if (Previous.isAmbiguous()) 10865 return nullptr; 10866 10867 if (Previous.empty()) { 10868 // Name lookup did not find anything. However, if the 10869 // nested-name-specifier refers to the current instantiation, 10870 // and that current instantiation has any dependent base 10871 // classes, we might find something at instantiation time: treat 10872 // this as a dependent elaborated-type-specifier. 10873 // But this only makes any sense for reference-like lookups. 10874 if (Previous.wasNotFoundInCurrentInstantiation() && 10875 (TUK == TUK_Reference || TUK == TUK_Friend)) { 10876 IsDependent = true; 10877 return nullptr; 10878 } 10879 10880 // A tag 'foo::bar' must already exist. 10881 Diag(NameLoc, diag::err_not_tag_in_scope) 10882 << Kind << Name << DC << SS.getRange(); 10883 Name = nullptr; 10884 Invalid = true; 10885 goto CreateNewDecl; 10886 } 10887 } else if (Name) { 10888 // If this is a named struct, check to see if there was a previous forward 10889 // declaration or definition. 10890 // FIXME: We're looking into outer scopes here, even when we 10891 // shouldn't be. Doing so can result in ambiguities that we 10892 // shouldn't be diagnosing. 10893 LookupName(Previous, S); 10894 10895 // When declaring or defining a tag, ignore ambiguities introduced 10896 // by types using'ed into this scope. 10897 if (Previous.isAmbiguous() && 10898 (TUK == TUK_Definition || TUK == TUK_Declaration)) { 10899 LookupResult::Filter F = Previous.makeFilter(); 10900 while (F.hasNext()) { 10901 NamedDecl *ND = F.next(); 10902 if (ND->getDeclContext()->getRedeclContext() != SearchDC) 10903 F.erase(); 10904 } 10905 F.done(); 10906 } 10907 10908 // C++11 [namespace.memdef]p3: 10909 // If the name in a friend declaration is neither qualified nor 10910 // a template-id and the declaration is a function or an 10911 // elaborated-type-specifier, the lookup to determine whether 10912 // the entity has been previously declared shall not consider 10913 // any scopes outside the innermost enclosing namespace. 10914 // 10915 // Does it matter that this should be by scope instead of by 10916 // semantic context? 10917 if (!Previous.empty() && TUK == TUK_Friend) { 10918 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); 10919 LookupResult::Filter F = Previous.makeFilter(); 10920 while (F.hasNext()) { 10921 NamedDecl *ND = F.next(); 10922 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 10923 if (DC->isFileContext() && 10924 !EnclosingNS->Encloses(ND->getDeclContext())) { 10925 F.erase(); 10926 FriendSawTagOutsideEnclosingNamespace = true; 10927 } 10928 } 10929 F.done(); 10930 } 10931 10932 // Note: there used to be some attempt at recovery here. 10933 if (Previous.isAmbiguous()) 10934 return nullptr; 10935 10936 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { 10937 // FIXME: This makes sure that we ignore the contexts associated 10938 // with C structs, unions, and enums when looking for a matching 10939 // tag declaration or definition. See the similar lookup tweak 10940 // in Sema::LookupName; is there a better way to deal with this? 10941 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) 10942 SearchDC = SearchDC->getParent(); 10943 } 10944 } 10945 10946 if (Previous.isSingleResult() && 10947 Previous.getFoundDecl()->isTemplateParameter()) { 10948 // Maybe we will complain about the shadowed template parameter. 10949 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); 10950 // Just pretend that we didn't see the previous declaration. 10951 Previous.clear(); 10952 } 10953 10954 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && 10955 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) { 10956 // This is a declaration of or a reference to "std::bad_alloc". 10957 isStdBadAlloc = true; 10958 10959 if (Previous.empty() && StdBadAlloc) { 10960 // std::bad_alloc has been implicitly declared (but made invisible to 10961 // name lookup). Fill in this implicit declaration as the previous 10962 // declaration, so that the declarations get chained appropriately. 10963 Previous.addDecl(getStdBadAlloc()); 10964 } 10965 } 10966 10967 // If we didn't find a previous declaration, and this is a reference 10968 // (or friend reference), move to the correct scope. In C++, we 10969 // also need to do a redeclaration lookup there, just in case 10970 // there's a shadow friend decl. 10971 if (Name && Previous.empty() && 10972 (TUK == TUK_Reference || TUK == TUK_Friend)) { 10973 if (Invalid) goto CreateNewDecl; 10974 assert(SS.isEmpty()); 10975 10976 if (TUK == TUK_Reference) { 10977 // C++ [basic.scope.pdecl]p5: 10978 // -- for an elaborated-type-specifier of the form 10979 // 10980 // class-key identifier 10981 // 10982 // if the elaborated-type-specifier is used in the 10983 // decl-specifier-seq or parameter-declaration-clause of a 10984 // function defined in namespace scope, the identifier is 10985 // declared as a class-name in the namespace that contains 10986 // the declaration; otherwise, except as a friend 10987 // declaration, the identifier is declared in the smallest 10988 // non-class, non-function-prototype scope that contains the 10989 // declaration. 10990 // 10991 // C99 6.7.2.3p8 has a similar (but not identical!) provision for 10992 // C structs and unions. 10993 // 10994 // It is an error in C++ to declare (rather than define) an enum 10995 // type, including via an elaborated type specifier. We'll 10996 // diagnose that later; for now, declare the enum in the same 10997 // scope as we would have picked for any other tag type. 10998 // 10999 // GNU C also supports this behavior as part of its incomplete 11000 // enum types extension, while GNU C++ does not. 11001 // 11002 // Find the context where we'll be declaring the tag. 11003 // FIXME: We would like to maintain the current DeclContext as the 11004 // lexical context, 11005 while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod()) 11006 SearchDC = SearchDC->getParent(); 11007 11008 // Find the scope where we'll be declaring the tag. 11009 while (S->isClassScope() || 11010 (getLangOpts().CPlusPlus && 11011 S->isFunctionPrototypeScope()) || 11012 ((S->getFlags() & Scope::DeclScope) == 0) || 11013 (S->getEntity() && S->getEntity()->isTransparentContext())) 11014 S = S->getParent(); 11015 } else { 11016 assert(TUK == TUK_Friend); 11017 // C++ [namespace.memdef]p3: 11018 // If a friend declaration in a non-local class first declares a 11019 // class or function, the friend class or function is a member of 11020 // the innermost enclosing namespace. 11021 SearchDC = SearchDC->getEnclosingNamespaceContext(); 11022 } 11023 11024 // In C++, we need to do a redeclaration lookup to properly 11025 // diagnose some problems. 11026 if (getLangOpts().CPlusPlus) { 11027 Previous.setRedeclarationKind(ForRedeclaration); 11028 LookupQualifiedName(Previous, SearchDC); 11029 } 11030 } 11031 11032 if (!Previous.empty()) { 11033 NamedDecl *PrevDecl = Previous.getFoundDecl(); 11034 NamedDecl *DirectPrevDecl = 11035 getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl; 11036 11037 // It's okay to have a tag decl in the same scope as a typedef 11038 // which hides a tag decl in the same scope. Finding this 11039 // insanity with a redeclaration lookup can only actually happen 11040 // in C++. 11041 // 11042 // This is also okay for elaborated-type-specifiers, which is 11043 // technically forbidden by the current standard but which is 11044 // okay according to the likely resolution of an open issue; 11045 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 11046 if (getLangOpts().CPlusPlus) { 11047 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { 11048 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { 11049 TagDecl *Tag = TT->getDecl(); 11050 if (Tag->getDeclName() == Name && 11051 Tag->getDeclContext()->getRedeclContext() 11052 ->Equals(TD->getDeclContext()->getRedeclContext())) { 11053 PrevDecl = Tag; 11054 Previous.clear(); 11055 Previous.addDecl(Tag); 11056 Previous.resolveKind(); 11057 } 11058 } 11059 } 11060 } 11061 11062 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { 11063 // If this is a use of a previous tag, or if the tag is already declared 11064 // in the same scope (so that the definition/declaration completes or 11065 // rementions the tag), reuse the decl. 11066 if (TUK == TUK_Reference || TUK == TUK_Friend || 11067 isDeclInScope(DirectPrevDecl, SearchDC, S, 11068 SS.isNotEmpty() || isExplicitSpecialization)) { 11069 // Make sure that this wasn't declared as an enum and now used as a 11070 // struct or something similar. 11071 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, 11072 TUK == TUK_Definition, KWLoc, 11073 *Name)) { 11074 bool SafeToContinue 11075 = (PrevTagDecl->getTagKind() != TTK_Enum && 11076 Kind != TTK_Enum); 11077 if (SafeToContinue) 11078 Diag(KWLoc, diag::err_use_with_wrong_tag) 11079 << Name 11080 << FixItHint::CreateReplacement(SourceRange(KWLoc), 11081 PrevTagDecl->getKindName()); 11082 else 11083 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; 11084 Diag(PrevTagDecl->getLocation(), diag::note_previous_use); 11085 11086 if (SafeToContinue) 11087 Kind = PrevTagDecl->getTagKind(); 11088 else { 11089 // Recover by making this an anonymous redefinition. 11090 Name = nullptr; 11091 Previous.clear(); 11092 Invalid = true; 11093 } 11094 } 11095 11096 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { 11097 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); 11098 11099 // If this is an elaborated-type-specifier for a scoped enumeration, 11100 // the 'class' keyword is not necessary and not permitted. 11101 if (TUK == TUK_Reference || TUK == TUK_Friend) { 11102 if (ScopedEnum) 11103 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference) 11104 << PrevEnum->isScoped() 11105 << FixItHint::CreateRemoval(ScopedEnumKWLoc); 11106 return PrevTagDecl; 11107 } 11108 11109 QualType EnumUnderlyingTy; 11110 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 11111 EnumUnderlyingTy = TI->getType().getUnqualifiedType(); 11112 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) 11113 EnumUnderlyingTy = QualType(T, 0); 11114 11115 // All conflicts with previous declarations are recovered by 11116 // returning the previous declaration, unless this is a definition, 11117 // in which case we want the caller to bail out. 11118 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, 11119 ScopedEnum, EnumUnderlyingTy, PrevEnum)) 11120 return TUK == TUK_Declaration ? PrevTagDecl : nullptr; 11121 } 11122 11123 // C++11 [class.mem]p1: 11124 // A member shall not be declared twice in the member-specification, 11125 // except that a nested class or member class template can be declared 11126 // and then later defined. 11127 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && 11128 S->isDeclScope(PrevDecl)) { 11129 Diag(NameLoc, diag::ext_member_redeclared); 11130 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); 11131 } 11132 11133 if (!Invalid) { 11134 // If this is a use, just return the declaration we found, unless 11135 // we have attributes. 11136 11137 // FIXME: In the future, return a variant or some other clue 11138 // for the consumer of this Decl to know it doesn't own it. 11139 // For our current ASTs this shouldn't be a problem, but will 11140 // need to be changed with DeclGroups. 11141 if (!Attr && 11142 ((TUK == TUK_Reference && 11143 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt)) 11144 || TUK == TUK_Friend)) 11145 return PrevTagDecl; 11146 11147 // Diagnose attempts to redefine a tag. 11148 if (TUK == TUK_Definition) { 11149 if (TagDecl *Def = PrevTagDecl->getDefinition()) { 11150 // If we're defining a specialization and the previous definition 11151 // is from an implicit instantiation, don't emit an error 11152 // here; we'll catch this in the general case below. 11153 bool IsExplicitSpecializationAfterInstantiation = false; 11154 if (isExplicitSpecialization) { 11155 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) 11156 IsExplicitSpecializationAfterInstantiation = 11157 RD->getTemplateSpecializationKind() != 11158 TSK_ExplicitSpecialization; 11159 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) 11160 IsExplicitSpecializationAfterInstantiation = 11161 ED->getTemplateSpecializationKind() != 11162 TSK_ExplicitSpecialization; 11163 } 11164 11165 if (!IsExplicitSpecializationAfterInstantiation) { 11166 // A redeclaration in function prototype scope in C isn't 11167 // visible elsewhere, so merely issue a warning. 11168 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) 11169 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; 11170 else 11171 Diag(NameLoc, diag::err_redefinition) << Name; 11172 Diag(Def->getLocation(), diag::note_previous_definition); 11173 // If this is a redefinition, recover by making this 11174 // struct be anonymous, which will make any later 11175 // references get the previous definition. 11176 Name = nullptr; 11177 Previous.clear(); 11178 Invalid = true; 11179 } 11180 } else { 11181 // If the type is currently being defined, complain 11182 // about a nested redefinition. 11183 const TagType *Tag 11184 = cast<TagType>(Context.getTagDeclType(PrevTagDecl)); 11185 if (Tag->isBeingDefined()) { 11186 Diag(NameLoc, diag::err_nested_redefinition) << Name; 11187 Diag(PrevTagDecl->getLocation(), 11188 diag::note_previous_definition); 11189 Name = nullptr; 11190 Previous.clear(); 11191 Invalid = true; 11192 } 11193 } 11194 11195 // Okay, this is definition of a previously declared or referenced 11196 // tag. We're going to create a new Decl for it. 11197 } 11198 11199 // Okay, we're going to make a redeclaration. If this is some kind 11200 // of reference, make sure we build the redeclaration in the same DC 11201 // as the original, and ignore the current access specifier. 11202 if (TUK == TUK_Friend || TUK == TUK_Reference) { 11203 SearchDC = PrevTagDecl->getDeclContext(); 11204 AS = AS_none; 11205 } 11206 } 11207 // If we get here we have (another) forward declaration or we 11208 // have a definition. Just create a new decl. 11209 11210 } else { 11211 // If we get here, this is a definition of a new tag type in a nested 11212 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a 11213 // new decl/type. We set PrevDecl to NULL so that the entities 11214 // have distinct types. 11215 Previous.clear(); 11216 } 11217 // If we get here, we're going to create a new Decl. If PrevDecl 11218 // is non-NULL, it's a definition of the tag declared by 11219 // PrevDecl. If it's NULL, we have a new definition. 11220 11221 11222 // Otherwise, PrevDecl is not a tag, but was found with tag 11223 // lookup. This is only actually possible in C++, where a few 11224 // things like templates still live in the tag namespace. 11225 } else { 11226 // Use a better diagnostic if an elaborated-type-specifier 11227 // found the wrong kind of type on the first 11228 // (non-redeclaration) lookup. 11229 if ((TUK == TUK_Reference || TUK == TUK_Friend) && 11230 !Previous.isForRedeclaration()) { 11231 unsigned Kind = 0; 11232 if (isa<TypedefDecl>(PrevDecl)) Kind = 1; 11233 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2; 11234 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3; 11235 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind; 11236 Diag(PrevDecl->getLocation(), diag::note_declared_at); 11237 Invalid = true; 11238 11239 // Otherwise, only diagnose if the declaration is in scope. 11240 } else if (!isDeclInScope(PrevDecl, SearchDC, S, 11241 SS.isNotEmpty() || isExplicitSpecialization)) { 11242 // do nothing 11243 11244 // Diagnose implicit declarations introduced by elaborated types. 11245 } else if (TUK == TUK_Reference || TUK == TUK_Friend) { 11246 unsigned Kind = 0; 11247 if (isa<TypedefDecl>(PrevDecl)) Kind = 1; 11248 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2; 11249 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3; 11250 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind; 11251 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 11252 Invalid = true; 11253 11254 // Otherwise it's a declaration. Call out a particularly common 11255 // case here. 11256 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { 11257 unsigned Kind = 0; 11258 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; 11259 Diag(NameLoc, diag::err_tag_definition_of_typedef) 11260 << Name << Kind << TND->getUnderlyingType(); 11261 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 11262 Invalid = true; 11263 11264 // Otherwise, diagnose. 11265 } else { 11266 // The tag name clashes with something else in the target scope, 11267 // issue an error and recover by making this tag be anonymous. 11268 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 11269 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11270 Name = nullptr; 11271 Invalid = true; 11272 } 11273 11274 // The existing declaration isn't relevant to us; we're in a 11275 // new scope, so clear out the previous declaration. 11276 Previous.clear(); 11277 } 11278 } 11279 11280 CreateNewDecl: 11281 11282 TagDecl *PrevDecl = nullptr; 11283 if (Previous.isSingleResult()) 11284 PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); 11285 11286 // If there is an identifier, use the location of the identifier as the 11287 // location of the decl, otherwise use the location of the struct/union 11288 // keyword. 11289 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 11290 11291 // Otherwise, create a new declaration. If there is a previous 11292 // declaration of the same entity, the two will be linked via 11293 // PrevDecl. 11294 TagDecl *New; 11295 11296 bool IsForwardReference = false; 11297 if (Kind == TTK_Enum) { 11298 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 11299 // enum X { A, B, C } D; D should chain to X. 11300 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, 11301 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, 11302 ScopedEnumUsesClassTag, !EnumUnderlying.isNull()); 11303 // If this is an undefined enum, warn. 11304 if (TUK != TUK_Definition && !Invalid) { 11305 TagDecl *Def; 11306 if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) && 11307 cast<EnumDecl>(New)->isFixed()) { 11308 // C++0x: 7.2p2: opaque-enum-declaration. 11309 // Conflicts are diagnosed above. Do nothing. 11310 } 11311 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { 11312 Diag(Loc, diag::ext_forward_ref_enum_def) 11313 << New; 11314 Diag(Def->getLocation(), diag::note_previous_definition); 11315 } else { 11316 unsigned DiagID = diag::ext_forward_ref_enum; 11317 if (getLangOpts().MSVCCompat) 11318 DiagID = diag::ext_ms_forward_ref_enum; 11319 else if (getLangOpts().CPlusPlus) 11320 DiagID = diag::err_forward_ref_enum; 11321 Diag(Loc, DiagID); 11322 11323 // If this is a forward-declared reference to an enumeration, make a 11324 // note of it; we won't actually be introducing the declaration into 11325 // the declaration context. 11326 if (TUK == TUK_Reference) 11327 IsForwardReference = true; 11328 } 11329 } 11330 11331 if (EnumUnderlying) { 11332 EnumDecl *ED = cast<EnumDecl>(New); 11333 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 11334 ED->setIntegerTypeSourceInfo(TI); 11335 else 11336 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); 11337 ED->setPromotionType(ED->getIntegerType()); 11338 } 11339 11340 } else { 11341 // struct/union/class 11342 11343 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 11344 // struct X { int A; } D; D should chain to X. 11345 if (getLangOpts().CPlusPlus) { 11346 // FIXME: Look for a way to use RecordDecl for simple structs. 11347 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 11348 cast_or_null<CXXRecordDecl>(PrevDecl)); 11349 11350 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) 11351 StdBadAlloc = cast<CXXRecordDecl>(New); 11352 } else 11353 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 11354 cast_or_null<RecordDecl>(PrevDecl)); 11355 } 11356 11357 // C++11 [dcl.type]p3: 11358 // A type-specifier-seq shall not define a class or enumeration [...]. 11359 if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) { 11360 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) 11361 << Context.getTagDeclType(New); 11362 Invalid = true; 11363 } 11364 11365 // Maybe add qualifier info. 11366 if (SS.isNotEmpty()) { 11367 if (SS.isSet()) { 11368 // If this is either a declaration or a definition, check the 11369 // nested-name-specifier against the current context. We don't do this 11370 // for explicit specializations, because they have similar checking 11371 // (with more specific diagnostics) in the call to 11372 // CheckMemberSpecialization, below. 11373 if (!isExplicitSpecialization && 11374 (TUK == TUK_Definition || TUK == TUK_Declaration) && 11375 diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc)) 11376 Invalid = true; 11377 11378 New->setQualifierInfo(SS.getWithLocInContext(Context)); 11379 if (TemplateParameterLists.size() > 0) { 11380 New->setTemplateParameterListsInfo(Context, 11381 TemplateParameterLists.size(), 11382 TemplateParameterLists.data()); 11383 } 11384 } 11385 else 11386 Invalid = true; 11387 } 11388 11389 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 11390 // Add alignment attributes if necessary; these attributes are checked when 11391 // the ASTContext lays out the structure. 11392 // 11393 // It is important for implementing the correct semantics that this 11394 // happen here (in act on tag decl). The #pragma pack stack is 11395 // maintained as a result of parser callbacks which can occur at 11396 // many points during the parsing of a struct declaration (because 11397 // the #pragma tokens are effectively skipped over during the 11398 // parsing of the struct). 11399 if (TUK == TUK_Definition) { 11400 AddAlignmentAttributesForRecord(RD); 11401 AddMsStructLayoutForRecord(RD); 11402 } 11403 } 11404 11405 if (ModulePrivateLoc.isValid()) { 11406 if (isExplicitSpecialization) 11407 Diag(New->getLocation(), diag::err_module_private_specialization) 11408 << 2 11409 << FixItHint::CreateRemoval(ModulePrivateLoc); 11410 // __module_private__ does not apply to local classes. However, we only 11411 // diagnose this as an error when the declaration specifiers are 11412 // freestanding. Here, we just ignore the __module_private__. 11413 else if (!SearchDC->isFunctionOrMethod()) 11414 New->setModulePrivate(); 11415 } 11416 11417 // If this is a specialization of a member class (of a class template), 11418 // check the specialization. 11419 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous)) 11420 Invalid = true; 11421 11422 // If we're declaring or defining a tag in function prototype scope in C, 11423 // note that this type can only be used within the function and add it to 11424 // the list of decls to inject into the function definition scope. 11425 if ((Name || Kind == TTK_Enum) && 11426 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { 11427 if (getLangOpts().CPlusPlus) { 11428 // C++ [dcl.fct]p6: 11429 // Types shall not be defined in return or parameter types. 11430 if (TUK == TUK_Definition && !IsTypeSpecifier) { 11431 Diag(Loc, diag::err_type_defined_in_param_type) 11432 << Name; 11433 Invalid = true; 11434 } 11435 } else { 11436 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); 11437 } 11438 DeclsInPrototypeScope.push_back(New); 11439 } 11440 11441 if (Invalid) 11442 New->setInvalidDecl(); 11443 11444 if (Attr) 11445 ProcessDeclAttributeList(S, New, Attr); 11446 11447 // Set the lexical context. If the tag has a C++ scope specifier, the 11448 // lexical context will be different from the semantic context. 11449 New->setLexicalDeclContext(CurContext); 11450 11451 // Mark this as a friend decl if applicable. 11452 // In Microsoft mode, a friend declaration also acts as a forward 11453 // declaration so we always pass true to setObjectOfFriendDecl to make 11454 // the tag name visible. 11455 if (TUK == TUK_Friend) 11456 New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace && 11457 getLangOpts().MicrosoftExt); 11458 11459 // Set the access specifier. 11460 if (!Invalid && SearchDC->isRecord()) 11461 SetMemberAccessSpecifier(New, PrevDecl, AS); 11462 11463 if (TUK == TUK_Definition) 11464 New->startDefinition(); 11465 11466 // If this has an identifier, add it to the scope stack. 11467 if (TUK == TUK_Friend) { 11468 // We might be replacing an existing declaration in the lookup tables; 11469 // if so, borrow its access specifier. 11470 if (PrevDecl) 11471 New->setAccess(PrevDecl->getAccess()); 11472 11473 DeclContext *DC = New->getDeclContext()->getRedeclContext(); 11474 DC->makeDeclVisibleInContext(New); 11475 if (Name) // can be null along some error paths 11476 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 11477 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); 11478 } else if (Name) { 11479 S = getNonFieldDeclScope(S); 11480 PushOnScopeChains(New, S, !IsForwardReference); 11481 if (IsForwardReference) 11482 SearchDC->makeDeclVisibleInContext(New); 11483 11484 } else { 11485 CurContext->addDecl(New); 11486 } 11487 11488 // If this is the C FILE type, notify the AST context. 11489 if (IdentifierInfo *II = New->getIdentifier()) 11490 if (!New->isInvalidDecl() && 11491 New->getDeclContext()->getRedeclContext()->isTranslationUnit() && 11492 II->isStr("FILE")) 11493 Context.setFILEDecl(New); 11494 11495 if (PrevDecl) 11496 mergeDeclAttributes(New, PrevDecl); 11497 11498 // If there's a #pragma GCC visibility in scope, set the visibility of this 11499 // record. 11500 AddPushedVisibilityAttribute(New); 11501 11502 OwnedDecl = true; 11503 // In C++, don't return an invalid declaration. We can't recover well from 11504 // the cases where we make the type anonymous. 11505 return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New; 11506 } 11507 11508 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { 11509 AdjustDeclIfTemplate(TagD); 11510 TagDecl *Tag = cast<TagDecl>(TagD); 11511 11512 // Enter the tag context. 11513 PushDeclContext(S, Tag); 11514 11515 ActOnDocumentableDecl(TagD); 11516 11517 // If there's a #pragma GCC visibility in scope, set the visibility of this 11518 // record. 11519 AddPushedVisibilityAttribute(Tag); 11520 } 11521 11522 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { 11523 assert(isa<ObjCContainerDecl>(IDecl) && 11524 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); 11525 DeclContext *OCD = cast<DeclContext>(IDecl); 11526 assert(getContainingDC(OCD) == CurContext && 11527 "The next DeclContext should be lexically contained in the current one."); 11528 CurContext = OCD; 11529 return IDecl; 11530 } 11531 11532 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, 11533 SourceLocation FinalLoc, 11534 bool IsFinalSpelledSealed, 11535 SourceLocation LBraceLoc) { 11536 AdjustDeclIfTemplate(TagD); 11537 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); 11538 11539 FieldCollector->StartClass(); 11540 11541 if (!Record->getIdentifier()) 11542 return; 11543 11544 if (FinalLoc.isValid()) 11545 Record->addAttr(new (Context) 11546 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed)); 11547 11548 // C++ [class]p2: 11549 // [...] The class-name is also inserted into the scope of the 11550 // class itself; this is known as the injected-class-name. For 11551 // purposes of access checking, the injected-class-name is treated 11552 // as if it were a public member name. 11553 CXXRecordDecl *InjectedClassName 11554 = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext, 11555 Record->getLocStart(), Record->getLocation(), 11556 Record->getIdentifier(), 11557 /*PrevDecl=*/nullptr, 11558 /*DelayTypeCreation=*/true); 11559 Context.getTypeDeclType(InjectedClassName, Record); 11560 InjectedClassName->setImplicit(); 11561 InjectedClassName->setAccess(AS_public); 11562 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) 11563 InjectedClassName->setDescribedClassTemplate(Template); 11564 PushOnScopeChains(InjectedClassName, S); 11565 assert(InjectedClassName->isInjectedClassName() && 11566 "Broken injected-class-name"); 11567 } 11568 11569 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, 11570 SourceLocation RBraceLoc) { 11571 AdjustDeclIfTemplate(TagD); 11572 TagDecl *Tag = cast<TagDecl>(TagD); 11573 Tag->setRBraceLoc(RBraceLoc); 11574 11575 // Make sure we "complete" the definition even it is invalid. 11576 if (Tag->isBeingDefined()) { 11577 assert(Tag->isInvalidDecl() && "We should already have completed it"); 11578 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 11579 RD->completeDefinition(); 11580 } 11581 11582 if (isa<CXXRecordDecl>(Tag)) 11583 FieldCollector->FinishClass(); 11584 11585 // Exit this scope of this tag's definition. 11586 PopDeclContext(); 11587 11588 if (getCurLexicalContext()->isObjCContainer() && 11589 Tag->getDeclContext()->isFileContext()) 11590 Tag->setTopLevelDeclInObjCContainer(); 11591 11592 // Notify the consumer that we've defined a tag. 11593 if (!Tag->isInvalidDecl()) 11594 Consumer.HandleTagDeclDefinition(Tag); 11595 } 11596 11597 void Sema::ActOnObjCContainerFinishDefinition() { 11598 // Exit this scope of this interface definition. 11599 PopDeclContext(); 11600 } 11601 11602 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { 11603 assert(DC == CurContext && "Mismatch of container contexts"); 11604 OriginalLexicalContext = DC; 11605 ActOnObjCContainerFinishDefinition(); 11606 } 11607 11608 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { 11609 ActOnObjCContainerStartDefinition(cast<Decl>(DC)); 11610 OriginalLexicalContext = nullptr; 11611 } 11612 11613 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { 11614 AdjustDeclIfTemplate(TagD); 11615 TagDecl *Tag = cast<TagDecl>(TagD); 11616 Tag->setInvalidDecl(); 11617 11618 // Make sure we "complete" the definition even it is invalid. 11619 if (Tag->isBeingDefined()) { 11620 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 11621 RD->completeDefinition(); 11622 } 11623 11624 // We're undoing ActOnTagStartDefinition here, not 11625 // ActOnStartCXXMemberDeclarations, so we don't have to mess with 11626 // the FieldCollector. 11627 11628 PopDeclContext(); 11629 } 11630 11631 // Note that FieldName may be null for anonymous bitfields. 11632 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, 11633 IdentifierInfo *FieldName, 11634 QualType FieldTy, bool IsMsStruct, 11635 Expr *BitWidth, bool *ZeroWidth) { 11636 // Default to true; that shouldn't confuse checks for emptiness 11637 if (ZeroWidth) 11638 *ZeroWidth = true; 11639 11640 // C99 6.7.2.1p4 - verify the field type. 11641 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 11642 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { 11643 // Handle incomplete types with specific error. 11644 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete)) 11645 return ExprError(); 11646 if (FieldName) 11647 return Diag(FieldLoc, diag::err_not_integral_type_bitfield) 11648 << FieldName << FieldTy << BitWidth->getSourceRange(); 11649 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) 11650 << FieldTy << BitWidth->getSourceRange(); 11651 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), 11652 UPPC_BitFieldWidth)) 11653 return ExprError(); 11654 11655 // If the bit-width is type- or value-dependent, don't try to check 11656 // it now. 11657 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) 11658 return BitWidth; 11659 11660 llvm::APSInt Value; 11661 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value); 11662 if (ICE.isInvalid()) 11663 return ICE; 11664 BitWidth = ICE.get(); 11665 11666 if (Value != 0 && ZeroWidth) 11667 *ZeroWidth = false; 11668 11669 // Zero-width bitfield is ok for anonymous field. 11670 if (Value == 0 && FieldName) 11671 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; 11672 11673 if (Value.isSigned() && Value.isNegative()) { 11674 if (FieldName) 11675 return Diag(FieldLoc, diag::err_bitfield_has_negative_width) 11676 << FieldName << Value.toString(10); 11677 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) 11678 << Value.toString(10); 11679 } 11680 11681 if (!FieldTy->isDependentType()) { 11682 uint64_t TypeSize = Context.getTypeSize(FieldTy); 11683 if (Value.getZExtValue() > TypeSize) { 11684 if (!getLangOpts().CPlusPlus || IsMsStruct || 11685 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 11686 if (FieldName) 11687 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size) 11688 << FieldName << (unsigned)Value.getZExtValue() 11689 << (unsigned)TypeSize; 11690 11691 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size) 11692 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; 11693 } 11694 11695 if (FieldName) 11696 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size) 11697 << FieldName << (unsigned)Value.getZExtValue() 11698 << (unsigned)TypeSize; 11699 else 11700 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size) 11701 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; 11702 } 11703 } 11704 11705 return BitWidth; 11706 } 11707 11708 /// ActOnField - Each field of a C struct/union is passed into this in order 11709 /// to create a FieldDecl object for it. 11710 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, 11711 Declarator &D, Expr *BitfieldWidth) { 11712 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), 11713 DeclStart, D, static_cast<Expr*>(BitfieldWidth), 11714 /*InitStyle=*/ICIS_NoInit, AS_public); 11715 return Res; 11716 } 11717 11718 /// HandleField - Analyze a field of a C struct or a C++ data member. 11719 /// 11720 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, 11721 SourceLocation DeclStart, 11722 Declarator &D, Expr *BitWidth, 11723 InClassInitStyle InitStyle, 11724 AccessSpecifier AS) { 11725 IdentifierInfo *II = D.getIdentifier(); 11726 SourceLocation Loc = DeclStart; 11727 if (II) Loc = D.getIdentifierLoc(); 11728 11729 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 11730 QualType T = TInfo->getType(); 11731 if (getLangOpts().CPlusPlus) { 11732 CheckExtraCXXDefaultArguments(D); 11733 11734 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 11735 UPPC_DataMemberType)) { 11736 D.setInvalidType(); 11737 T = Context.IntTy; 11738 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 11739 } 11740 } 11741 11742 // TR 18037 does not allow fields to be declared with address spaces. 11743 if (T.getQualifiers().hasAddressSpace()) { 11744 Diag(Loc, diag::err_field_with_address_space); 11745 D.setInvalidType(); 11746 } 11747 11748 // OpenCL 1.2 spec, s6.9 r: 11749 // The event type cannot be used to declare a structure or union field. 11750 if (LangOpts.OpenCL && T->isEventT()) { 11751 Diag(Loc, diag::err_event_t_struct_field); 11752 D.setInvalidType(); 11753 } 11754 11755 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 11756 11757 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 11758 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 11759 diag::err_invalid_thread) 11760 << DeclSpec::getSpecifierName(TSCS); 11761 11762 // Check to see if this name was declared as a member previously 11763 NamedDecl *PrevDecl = nullptr; 11764 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration); 11765 LookupName(Previous, S); 11766 switch (Previous.getResultKind()) { 11767 case LookupResult::Found: 11768 case LookupResult::FoundUnresolvedValue: 11769 PrevDecl = Previous.getAsSingle<NamedDecl>(); 11770 break; 11771 11772 case LookupResult::FoundOverloaded: 11773 PrevDecl = Previous.getRepresentativeDecl(); 11774 break; 11775 11776 case LookupResult::NotFound: 11777 case LookupResult::NotFoundInCurrentInstantiation: 11778 case LookupResult::Ambiguous: 11779 break; 11780 } 11781 Previous.suppressDiagnostics(); 11782 11783 if (PrevDecl && PrevDecl->isTemplateParameter()) { 11784 // Maybe we will complain about the shadowed template parameter. 11785 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 11786 // Just pretend that we didn't see the previous declaration. 11787 PrevDecl = nullptr; 11788 } 11789 11790 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 11791 PrevDecl = nullptr; 11792 11793 bool Mutable 11794 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); 11795 SourceLocation TSSL = D.getLocStart(); 11796 FieldDecl *NewFD 11797 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, 11798 TSSL, AS, PrevDecl, &D); 11799 11800 if (NewFD->isInvalidDecl()) 11801 Record->setInvalidDecl(); 11802 11803 if (D.getDeclSpec().isModulePrivateSpecified()) 11804 NewFD->setModulePrivate(); 11805 11806 if (NewFD->isInvalidDecl() && PrevDecl) { 11807 // Don't introduce NewFD into scope; there's already something 11808 // with the same name in the same scope. 11809 } else if (II) { 11810 PushOnScopeChains(NewFD, S); 11811 } else 11812 Record->addDecl(NewFD); 11813 11814 return NewFD; 11815 } 11816 11817 /// \brief Build a new FieldDecl and check its well-formedness. 11818 /// 11819 /// This routine builds a new FieldDecl given the fields name, type, 11820 /// record, etc. \p PrevDecl should refer to any previous declaration 11821 /// with the same name and in the same scope as the field to be 11822 /// created. 11823 /// 11824 /// \returns a new FieldDecl. 11825 /// 11826 /// \todo The Declarator argument is a hack. It will be removed once 11827 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, 11828 TypeSourceInfo *TInfo, 11829 RecordDecl *Record, SourceLocation Loc, 11830 bool Mutable, Expr *BitWidth, 11831 InClassInitStyle InitStyle, 11832 SourceLocation TSSL, 11833 AccessSpecifier AS, NamedDecl *PrevDecl, 11834 Declarator *D) { 11835 IdentifierInfo *II = Name.getAsIdentifierInfo(); 11836 bool InvalidDecl = false; 11837 if (D) InvalidDecl = D->isInvalidType(); 11838 11839 // If we receive a broken type, recover by assuming 'int' and 11840 // marking this declaration as invalid. 11841 if (T.isNull()) { 11842 InvalidDecl = true; 11843 T = Context.IntTy; 11844 } 11845 11846 QualType EltTy = Context.getBaseElementType(T); 11847 if (!EltTy->isDependentType()) { 11848 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) { 11849 // Fields of incomplete type force their record to be invalid. 11850 Record->setInvalidDecl(); 11851 InvalidDecl = true; 11852 } else { 11853 NamedDecl *Def; 11854 EltTy->isIncompleteType(&Def); 11855 if (Def && Def->isInvalidDecl()) { 11856 Record->setInvalidDecl(); 11857 InvalidDecl = true; 11858 } 11859 } 11860 } 11861 11862 // OpenCL v1.2 s6.9.c: bitfields are not supported. 11863 if (BitWidth && getLangOpts().OpenCL) { 11864 Diag(Loc, diag::err_opencl_bitfields); 11865 InvalidDecl = true; 11866 } 11867 11868 // C99 6.7.2.1p8: A member of a structure or union may have any type other 11869 // than a variably modified type. 11870 if (!InvalidDecl && T->isVariablyModifiedType()) { 11871 bool SizeIsNegative; 11872 llvm::APSInt Oversized; 11873 11874 TypeSourceInfo *FixedTInfo = 11875 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 11876 SizeIsNegative, 11877 Oversized); 11878 if (FixedTInfo) { 11879 Diag(Loc, diag::warn_illegal_constant_array_size); 11880 TInfo = FixedTInfo; 11881 T = FixedTInfo->getType(); 11882 } else { 11883 if (SizeIsNegative) 11884 Diag(Loc, diag::err_typecheck_negative_array_size); 11885 else if (Oversized.getBoolValue()) 11886 Diag(Loc, diag::err_array_too_large) 11887 << Oversized.toString(10); 11888 else 11889 Diag(Loc, diag::err_typecheck_field_variable_size); 11890 InvalidDecl = true; 11891 } 11892 } 11893 11894 // Fields can not have abstract class types 11895 if (!InvalidDecl && RequireNonAbstractType(Loc, T, 11896 diag::err_abstract_type_in_decl, 11897 AbstractFieldType)) 11898 InvalidDecl = true; 11899 11900 bool ZeroWidth = false; 11901 // If this is declared as a bit-field, check the bit-field. 11902 if (!InvalidDecl && BitWidth) { 11903 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, 11904 &ZeroWidth).get(); 11905 if (!BitWidth) { 11906 InvalidDecl = true; 11907 BitWidth = nullptr; 11908 ZeroWidth = false; 11909 } 11910 } 11911 11912 // Check that 'mutable' is consistent with the type of the declaration. 11913 if (!InvalidDecl && Mutable) { 11914 unsigned DiagID = 0; 11915 if (T->isReferenceType()) 11916 DiagID = diag::err_mutable_reference; 11917 else if (T.isConstQualified()) 11918 DiagID = diag::err_mutable_const; 11919 11920 if (DiagID) { 11921 SourceLocation ErrLoc = Loc; 11922 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) 11923 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); 11924 Diag(ErrLoc, DiagID); 11925 Mutable = false; 11926 InvalidDecl = true; 11927 } 11928 } 11929 11930 // C++11 [class.union]p8 (DR1460): 11931 // At most one variant member of a union may have a 11932 // brace-or-equal-initializer. 11933 if (InitStyle != ICIS_NoInit) 11934 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); 11935 11936 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, 11937 BitWidth, Mutable, InitStyle); 11938 if (InvalidDecl) 11939 NewFD->setInvalidDecl(); 11940 11941 if (PrevDecl && !isa<TagDecl>(PrevDecl)) { 11942 Diag(Loc, diag::err_duplicate_member) << II; 11943 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 11944 NewFD->setInvalidDecl(); 11945 } 11946 11947 if (!InvalidDecl && getLangOpts().CPlusPlus) { 11948 if (Record->isUnion()) { 11949 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 11950 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); 11951 if (RDecl->getDefinition()) { 11952 // C++ [class.union]p1: An object of a class with a non-trivial 11953 // constructor, a non-trivial copy constructor, a non-trivial 11954 // destructor, or a non-trivial copy assignment operator 11955 // cannot be a member of a union, nor can an array of such 11956 // objects. 11957 if (CheckNontrivialField(NewFD)) 11958 NewFD->setInvalidDecl(); 11959 } 11960 } 11961 11962 // C++ [class.union]p1: If a union contains a member of reference type, 11963 // the program is ill-formed, except when compiling with MSVC extensions 11964 // enabled. 11965 if (EltTy->isReferenceType()) { 11966 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 11967 diag::ext_union_member_of_reference_type : 11968 diag::err_union_member_of_reference_type) 11969 << NewFD->getDeclName() << EltTy; 11970 if (!getLangOpts().MicrosoftExt) 11971 NewFD->setInvalidDecl(); 11972 } 11973 } 11974 } 11975 11976 // FIXME: We need to pass in the attributes given an AST 11977 // representation, not a parser representation. 11978 if (D) { 11979 // FIXME: The current scope is almost... but not entirely... correct here. 11980 ProcessDeclAttributes(getCurScope(), NewFD, *D); 11981 11982 if (NewFD->hasAttrs()) 11983 CheckAlignasUnderalignment(NewFD); 11984 } 11985 11986 // In auto-retain/release, infer strong retension for fields of 11987 // retainable type. 11988 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) 11989 NewFD->setInvalidDecl(); 11990 11991 if (T.isObjCGCWeak()) 11992 Diag(Loc, diag::warn_attribute_weak_on_field); 11993 11994 NewFD->setAccess(AS); 11995 return NewFD; 11996 } 11997 11998 bool Sema::CheckNontrivialField(FieldDecl *FD) { 11999 assert(FD); 12000 assert(getLangOpts().CPlusPlus && "valid check only for C++"); 12001 12002 if (FD->isInvalidDecl() || FD->getType()->isDependentType()) 12003 return false; 12004 12005 QualType EltTy = Context.getBaseElementType(FD->getType()); 12006 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 12007 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); 12008 if (RDecl->getDefinition()) { 12009 // We check for copy constructors before constructors 12010 // because otherwise we'll never get complaints about 12011 // copy constructors. 12012 12013 CXXSpecialMember member = CXXInvalid; 12014 // We're required to check for any non-trivial constructors. Since the 12015 // implicit default constructor is suppressed if there are any 12016 // user-declared constructors, we just need to check that there is a 12017 // trivial default constructor and a trivial copy constructor. (We don't 12018 // worry about move constructors here, since this is a C++98 check.) 12019 if (RDecl->hasNonTrivialCopyConstructor()) 12020 member = CXXCopyConstructor; 12021 else if (!RDecl->hasTrivialDefaultConstructor()) 12022 member = CXXDefaultConstructor; 12023 else if (RDecl->hasNonTrivialCopyAssignment()) 12024 member = CXXCopyAssignment; 12025 else if (RDecl->hasNonTrivialDestructor()) 12026 member = CXXDestructor; 12027 12028 if (member != CXXInvalid) { 12029 if (!getLangOpts().CPlusPlus11 && 12030 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { 12031 // Objective-C++ ARC: it is an error to have a non-trivial field of 12032 // a union. However, system headers in Objective-C programs 12033 // occasionally have Objective-C lifetime objects within unions, 12034 // and rather than cause the program to fail, we make those 12035 // members unavailable. 12036 SourceLocation Loc = FD->getLocation(); 12037 if (getSourceManager().isInSystemHeader(Loc)) { 12038 if (!FD->hasAttr<UnavailableAttr>()) 12039 FD->addAttr(UnavailableAttr::CreateImplicit(Context, 12040 "this system field has retaining ownership", 12041 Loc)); 12042 return false; 12043 } 12044 } 12045 12046 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? 12047 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : 12048 diag::err_illegal_union_or_anon_struct_member) 12049 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member; 12050 DiagnoseNontrivial(RDecl, member); 12051 return !getLangOpts().CPlusPlus11; 12052 } 12053 } 12054 } 12055 12056 return false; 12057 } 12058 12059 /// TranslateIvarVisibility - Translate visibility from a token ID to an 12060 /// AST enum value. 12061 static ObjCIvarDecl::AccessControl 12062 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { 12063 switch (ivarVisibility) { 12064 default: llvm_unreachable("Unknown visitibility kind"); 12065 case tok::objc_private: return ObjCIvarDecl::Private; 12066 case tok::objc_public: return ObjCIvarDecl::Public; 12067 case tok::objc_protected: return ObjCIvarDecl::Protected; 12068 case tok::objc_package: return ObjCIvarDecl::Package; 12069 } 12070 } 12071 12072 /// ActOnIvar - Each ivar field of an objective-c class is passed into this 12073 /// in order to create an IvarDecl object for it. 12074 Decl *Sema::ActOnIvar(Scope *S, 12075 SourceLocation DeclStart, 12076 Declarator &D, Expr *BitfieldWidth, 12077 tok::ObjCKeywordKind Visibility) { 12078 12079 IdentifierInfo *II = D.getIdentifier(); 12080 Expr *BitWidth = (Expr*)BitfieldWidth; 12081 SourceLocation Loc = DeclStart; 12082 if (II) Loc = D.getIdentifierLoc(); 12083 12084 // FIXME: Unnamed fields can be handled in various different ways, for 12085 // example, unnamed unions inject all members into the struct namespace! 12086 12087 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 12088 QualType T = TInfo->getType(); 12089 12090 if (BitWidth) { 12091 // 6.7.2.1p3, 6.7.2.1p4 12092 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); 12093 if (!BitWidth) 12094 D.setInvalidType(); 12095 } else { 12096 // Not a bitfield. 12097 12098 // validate II. 12099 12100 } 12101 if (T->isReferenceType()) { 12102 Diag(Loc, diag::err_ivar_reference_type); 12103 D.setInvalidType(); 12104 } 12105 // C99 6.7.2.1p8: A member of a structure or union may have any type other 12106 // than a variably modified type. 12107 else if (T->isVariablyModifiedType()) { 12108 Diag(Loc, diag::err_typecheck_ivar_variable_size); 12109 D.setInvalidType(); 12110 } 12111 12112 // Get the visibility (access control) for this ivar. 12113 ObjCIvarDecl::AccessControl ac = 12114 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) 12115 : ObjCIvarDecl::None; 12116 // Must set ivar's DeclContext to its enclosing interface. 12117 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); 12118 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) 12119 return nullptr; 12120 ObjCContainerDecl *EnclosingContext; 12121 if (ObjCImplementationDecl *IMPDecl = 12122 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 12123 if (LangOpts.ObjCRuntime.isFragile()) { 12124 // Case of ivar declared in an implementation. Context is that of its class. 12125 EnclosingContext = IMPDecl->getClassInterface(); 12126 assert(EnclosingContext && "Implementation has no class interface!"); 12127 } 12128 else 12129 EnclosingContext = EnclosingDecl; 12130 } else { 12131 if (ObjCCategoryDecl *CDecl = 12132 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 12133 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { 12134 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); 12135 return nullptr; 12136 } 12137 } 12138 EnclosingContext = EnclosingDecl; 12139 } 12140 12141 // Construct the decl. 12142 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, 12143 DeclStart, Loc, II, T, 12144 TInfo, ac, (Expr *)BitfieldWidth); 12145 12146 if (II) { 12147 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, 12148 ForRedeclaration); 12149 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) 12150 && !isa<TagDecl>(PrevDecl)) { 12151 Diag(Loc, diag::err_duplicate_member) << II; 12152 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 12153 NewID->setInvalidDecl(); 12154 } 12155 } 12156 12157 // Process attributes attached to the ivar. 12158 ProcessDeclAttributes(S, NewID, D); 12159 12160 if (D.isInvalidType()) 12161 NewID->setInvalidDecl(); 12162 12163 // In ARC, infer 'retaining' for ivars of retainable type. 12164 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) 12165 NewID->setInvalidDecl(); 12166 12167 if (D.getDeclSpec().isModulePrivateSpecified()) 12168 NewID->setModulePrivate(); 12169 12170 if (II) { 12171 // FIXME: When interfaces are DeclContexts, we'll need to add 12172 // these to the interface. 12173 S->AddDecl(NewID); 12174 IdResolver.AddDecl(NewID); 12175 } 12176 12177 if (LangOpts.ObjCRuntime.isNonFragile() && 12178 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) 12179 Diag(Loc, diag::warn_ivars_in_interface); 12180 12181 return NewID; 12182 } 12183 12184 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 12185 /// class and class extensions. For every class \@interface and class 12186 /// extension \@interface, if the last ivar is a bitfield of any type, 12187 /// then add an implicit `char :0` ivar to the end of that interface. 12188 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, 12189 SmallVectorImpl<Decl *> &AllIvarDecls) { 12190 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) 12191 return; 12192 12193 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; 12194 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); 12195 12196 if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0) 12197 return; 12198 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); 12199 if (!ID) { 12200 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { 12201 if (!CD->IsClassExtension()) 12202 return; 12203 } 12204 // No need to add this to end of @implementation. 12205 else 12206 return; 12207 } 12208 // All conditions are met. Add a new bitfield to the tail end of ivars. 12209 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); 12210 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); 12211 12212 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), 12213 DeclLoc, DeclLoc, nullptr, 12214 Context.CharTy, 12215 Context.getTrivialTypeSourceInfo(Context.CharTy, 12216 DeclLoc), 12217 ObjCIvarDecl::Private, BW, 12218 true); 12219 AllIvarDecls.push_back(Ivar); 12220 } 12221 12222 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, 12223 ArrayRef<Decl *> Fields, SourceLocation LBrac, 12224 SourceLocation RBrac, AttributeList *Attr) { 12225 assert(EnclosingDecl && "missing record or interface decl"); 12226 12227 // If this is an Objective-C @implementation or category and we have 12228 // new fields here we should reset the layout of the interface since 12229 // it will now change. 12230 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { 12231 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); 12232 switch (DC->getKind()) { 12233 default: break; 12234 case Decl::ObjCCategory: 12235 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); 12236 break; 12237 case Decl::ObjCImplementation: 12238 Context. 12239 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); 12240 break; 12241 } 12242 } 12243 12244 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); 12245 12246 // Start counting up the number of named members; make sure to include 12247 // members of anonymous structs and unions in the total. 12248 unsigned NumNamedMembers = 0; 12249 if (Record) { 12250 for (const auto *I : Record->decls()) { 12251 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 12252 if (IFD->getDeclName()) 12253 ++NumNamedMembers; 12254 } 12255 } 12256 12257 // Verify that all the fields are okay. 12258 SmallVector<FieldDecl*, 32> RecFields; 12259 12260 bool ARCErrReported = false; 12261 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); 12262 i != end; ++i) { 12263 FieldDecl *FD = cast<FieldDecl>(*i); 12264 12265 // Get the type for the field. 12266 const Type *FDTy = FD->getType().getTypePtr(); 12267 12268 if (!FD->isAnonymousStructOrUnion()) { 12269 // Remember all fields written by the user. 12270 RecFields.push_back(FD); 12271 } 12272 12273 // If the field is already invalid for some reason, don't emit more 12274 // diagnostics about it. 12275 if (FD->isInvalidDecl()) { 12276 EnclosingDecl->setInvalidDecl(); 12277 continue; 12278 } 12279 12280 // C99 6.7.2.1p2: 12281 // A structure or union shall not contain a member with 12282 // incomplete or function type (hence, a structure shall not 12283 // contain an instance of itself, but may contain a pointer to 12284 // an instance of itself), except that the last member of a 12285 // structure with more than one named member may have incomplete 12286 // array type; such a structure (and any union containing, 12287 // possibly recursively, a member that is such a structure) 12288 // shall not be a member of a structure or an element of an 12289 // array. 12290 if (FDTy->isFunctionType()) { 12291 // Field declared as a function. 12292 Diag(FD->getLocation(), diag::err_field_declared_as_function) 12293 << FD->getDeclName(); 12294 FD->setInvalidDecl(); 12295 EnclosingDecl->setInvalidDecl(); 12296 continue; 12297 } else if (FDTy->isIncompleteArrayType() && Record && 12298 ((i + 1 == Fields.end() && !Record->isUnion()) || 12299 ((getLangOpts().MicrosoftExt || 12300 getLangOpts().CPlusPlus) && 12301 (i + 1 == Fields.end() || Record->isUnion())))) { 12302 // Flexible array member. 12303 // Microsoft and g++ is more permissive regarding flexible array. 12304 // It will accept flexible array in union and also 12305 // as the sole element of a struct/class. 12306 unsigned DiagID = 0; 12307 if (Record->isUnion()) 12308 DiagID = getLangOpts().MicrosoftExt 12309 ? diag::ext_flexible_array_union_ms 12310 : getLangOpts().CPlusPlus 12311 ? diag::ext_flexible_array_union_gnu 12312 : diag::err_flexible_array_union; 12313 else if (Fields.size() == 1) 12314 DiagID = getLangOpts().MicrosoftExt 12315 ? diag::ext_flexible_array_empty_aggregate_ms 12316 : getLangOpts().CPlusPlus 12317 ? diag::ext_flexible_array_empty_aggregate_gnu 12318 : NumNamedMembers < 1 12319 ? diag::err_flexible_array_empty_aggregate 12320 : 0; 12321 12322 if (DiagID) 12323 Diag(FD->getLocation(), DiagID) << FD->getDeclName() 12324 << Record->getTagKind(); 12325 // While the layout of types that contain virtual bases is not specified 12326 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place 12327 // virtual bases after the derived members. This would make a flexible 12328 // array member declared at the end of an object not adjacent to the end 12329 // of the type. 12330 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) 12331 if (RD->getNumVBases() != 0) 12332 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) 12333 << FD->getDeclName() << Record->getTagKind(); 12334 if (!getLangOpts().C99) 12335 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) 12336 << FD->getDeclName() << Record->getTagKind(); 12337 12338 // If the element type has a non-trivial destructor, we would not 12339 // implicitly destroy the elements, so disallow it for now. 12340 // 12341 // FIXME: GCC allows this. We should probably either implicitly delete 12342 // the destructor of the containing class, or just allow this. 12343 QualType BaseElem = Context.getBaseElementType(FD->getType()); 12344 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { 12345 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) 12346 << FD->getDeclName() << FD->getType(); 12347 FD->setInvalidDecl(); 12348 EnclosingDecl->setInvalidDecl(); 12349 continue; 12350 } 12351 // Okay, we have a legal flexible array member at the end of the struct. 12352 if (Record) 12353 Record->setHasFlexibleArrayMember(true); 12354 } else if (!FDTy->isDependentType() && 12355 RequireCompleteType(FD->getLocation(), FD->getType(), 12356 diag::err_field_incomplete)) { 12357 // Incomplete type 12358 FD->setInvalidDecl(); 12359 EnclosingDecl->setInvalidDecl(); 12360 continue; 12361 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { 12362 if (FDTTy->getDecl()->hasFlexibleArrayMember()) { 12363 // If this is a member of a union, then entire union becomes "flexible". 12364 if (Record && Record->isUnion()) { 12365 Record->setHasFlexibleArrayMember(true); 12366 } else { 12367 // If this is a struct/class and this is not the last element, reject 12368 // it. Note that GCC supports variable sized arrays in the middle of 12369 // structures. 12370 if (i + 1 != Fields.end()) 12371 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) 12372 << FD->getDeclName() << FD->getType(); 12373 else { 12374 // We support flexible arrays at the end of structs in 12375 // other structs as an extension. 12376 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) 12377 << FD->getDeclName(); 12378 if (Record) 12379 Record->setHasFlexibleArrayMember(true); 12380 } 12381 } 12382 } 12383 if (isa<ObjCContainerDecl>(EnclosingDecl) && 12384 RequireNonAbstractType(FD->getLocation(), FD->getType(), 12385 diag::err_abstract_type_in_decl, 12386 AbstractIvarType)) { 12387 // Ivars can not have abstract class types 12388 FD->setInvalidDecl(); 12389 } 12390 if (Record && FDTTy->getDecl()->hasObjectMember()) 12391 Record->setHasObjectMember(true); 12392 if (Record && FDTTy->getDecl()->hasVolatileMember()) 12393 Record->setHasVolatileMember(true); 12394 } else if (FDTy->isObjCObjectType()) { 12395 /// A field cannot be an Objective-c object 12396 Diag(FD->getLocation(), diag::err_statically_allocated_object) 12397 << FixItHint::CreateInsertion(FD->getLocation(), "*"); 12398 QualType T = Context.getObjCObjectPointerType(FD->getType()); 12399 FD->setType(T); 12400 } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported && 12401 (!getLangOpts().CPlusPlus || Record->isUnion())) { 12402 // It's an error in ARC if a field has lifetime. 12403 // We don't want to report this in a system header, though, 12404 // so we just make the field unavailable. 12405 // FIXME: that's really not sufficient; we need to make the type 12406 // itself invalid to, say, initialize or copy. 12407 QualType T = FD->getType(); 12408 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime(); 12409 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) { 12410 SourceLocation loc = FD->getLocation(); 12411 if (getSourceManager().isInSystemHeader(loc)) { 12412 if (!FD->hasAttr<UnavailableAttr>()) { 12413 FD->addAttr(UnavailableAttr::CreateImplicit(Context, 12414 "this system field has retaining ownership", 12415 loc)); 12416 } 12417 } else { 12418 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag) 12419 << T->isBlockPointerType() << Record->getTagKind(); 12420 } 12421 ARCErrReported = true; 12422 } 12423 } else if (getLangOpts().ObjC1 && 12424 getLangOpts().getGC() != LangOptions::NonGC && 12425 Record && !Record->hasObjectMember()) { 12426 if (FD->getType()->isObjCObjectPointerType() || 12427 FD->getType().isObjCGCStrong()) 12428 Record->setHasObjectMember(true); 12429 else if (Context.getAsArrayType(FD->getType())) { 12430 QualType BaseType = Context.getBaseElementType(FD->getType()); 12431 if (BaseType->isRecordType() && 12432 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()) 12433 Record->setHasObjectMember(true); 12434 else if (BaseType->isObjCObjectPointerType() || 12435 BaseType.isObjCGCStrong()) 12436 Record->setHasObjectMember(true); 12437 } 12438 } 12439 if (Record && FD->getType().isVolatileQualified()) 12440 Record->setHasVolatileMember(true); 12441 // Keep track of the number of named members. 12442 if (FD->getIdentifier()) 12443 ++NumNamedMembers; 12444 } 12445 12446 // Okay, we successfully defined 'Record'. 12447 if (Record) { 12448 bool Completed = false; 12449 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) { 12450 if (!CXXRecord->isInvalidDecl()) { 12451 // Set access bits correctly on the directly-declared conversions. 12452 for (CXXRecordDecl::conversion_iterator 12453 I = CXXRecord->conversion_begin(), 12454 E = CXXRecord->conversion_end(); I != E; ++I) 12455 I.setAccess((*I)->getAccess()); 12456 12457 if (!CXXRecord->isDependentType()) { 12458 if (CXXRecord->hasUserDeclaredDestructor()) { 12459 // Adjust user-defined destructor exception spec. 12460 if (getLangOpts().CPlusPlus11) 12461 AdjustDestructorExceptionSpec(CXXRecord, 12462 CXXRecord->getDestructor()); 12463 } 12464 12465 // Add any implicitly-declared members to this class. 12466 AddImplicitlyDeclaredMembersToClass(CXXRecord); 12467 12468 // If we have virtual base classes, we may end up finding multiple 12469 // final overriders for a given virtual function. Check for this 12470 // problem now. 12471 if (CXXRecord->getNumVBases()) { 12472 CXXFinalOverriderMap FinalOverriders; 12473 CXXRecord->getFinalOverriders(FinalOverriders); 12474 12475 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 12476 MEnd = FinalOverriders.end(); 12477 M != MEnd; ++M) { 12478 for (OverridingMethods::iterator SO = M->second.begin(), 12479 SOEnd = M->second.end(); 12480 SO != SOEnd; ++SO) { 12481 assert(SO->second.size() > 0 && 12482 "Virtual function without overridding functions?"); 12483 if (SO->second.size() == 1) 12484 continue; 12485 12486 // C++ [class.virtual]p2: 12487 // In a derived class, if a virtual member function of a base 12488 // class subobject has more than one final overrider the 12489 // program is ill-formed. 12490 Diag(Record->getLocation(), diag::err_multiple_final_overriders) 12491 << (const NamedDecl *)M->first << Record; 12492 Diag(M->first->getLocation(), 12493 diag::note_overridden_virtual_function); 12494 for (OverridingMethods::overriding_iterator 12495 OM = SO->second.begin(), 12496 OMEnd = SO->second.end(); 12497 OM != OMEnd; ++OM) 12498 Diag(OM->Method->getLocation(), diag::note_final_overrider) 12499 << (const NamedDecl *)M->first << OM->Method->getParent(); 12500 12501 Record->setInvalidDecl(); 12502 } 12503 } 12504 CXXRecord->completeDefinition(&FinalOverriders); 12505 Completed = true; 12506 } 12507 } 12508 } 12509 } 12510 12511 if (!Completed) 12512 Record->completeDefinition(); 12513 12514 if (Record->hasAttrs()) { 12515 CheckAlignasUnderalignment(Record); 12516 12517 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) 12518 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), 12519 IA->getRange(), IA->getBestCase(), 12520 IA->getSemanticSpelling()); 12521 } 12522 12523 // Check if the structure/union declaration is a type that can have zero 12524 // size in C. For C this is a language extension, for C++ it may cause 12525 // compatibility problems. 12526 bool CheckForZeroSize; 12527 if (!getLangOpts().CPlusPlus) { 12528 CheckForZeroSize = true; 12529 } else { 12530 // For C++ filter out types that cannot be referenced in C code. 12531 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); 12532 CheckForZeroSize = 12533 CXXRecord->getLexicalDeclContext()->isExternCContext() && 12534 !CXXRecord->isDependentType() && 12535 CXXRecord->isCLike(); 12536 } 12537 if (CheckForZeroSize) { 12538 bool ZeroSize = true; 12539 bool IsEmpty = true; 12540 unsigned NonBitFields = 0; 12541 for (RecordDecl::field_iterator I = Record->field_begin(), 12542 E = Record->field_end(); 12543 (NonBitFields == 0 || ZeroSize) && I != E; ++I) { 12544 IsEmpty = false; 12545 if (I->isUnnamedBitfield()) { 12546 if (I->getBitWidthValue(Context) > 0) 12547 ZeroSize = false; 12548 } else { 12549 ++NonBitFields; 12550 QualType FieldType = I->getType(); 12551 if (FieldType->isIncompleteType() || 12552 !Context.getTypeSizeInChars(FieldType).isZero()) 12553 ZeroSize = false; 12554 } 12555 } 12556 12557 // Empty structs are an extension in C (C99 6.7.2.1p7). They are 12558 // allowed in C++, but warn if its declaration is inside 12559 // extern "C" block. 12560 if (ZeroSize) { 12561 Diag(RecLoc, getLangOpts().CPlusPlus ? 12562 diag::warn_zero_size_struct_union_in_extern_c : 12563 diag::warn_zero_size_struct_union_compat) 12564 << IsEmpty << Record->isUnion() << (NonBitFields > 1); 12565 } 12566 12567 // Structs without named members are extension in C (C99 6.7.2.1p7), 12568 // but are accepted by GCC. 12569 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { 12570 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : 12571 diag::ext_no_named_members_in_struct_union) 12572 << Record->isUnion(); 12573 } 12574 } 12575 } else { 12576 ObjCIvarDecl **ClsFields = 12577 reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); 12578 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { 12579 ID->setEndOfDefinitionLoc(RBrac); 12580 // Add ivar's to class's DeclContext. 12581 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 12582 ClsFields[i]->setLexicalDeclContext(ID); 12583 ID->addDecl(ClsFields[i]); 12584 } 12585 // Must enforce the rule that ivars in the base classes may not be 12586 // duplicates. 12587 if (ID->getSuperClass()) 12588 DiagnoseDuplicateIvars(ID, ID->getSuperClass()); 12589 } else if (ObjCImplementationDecl *IMPDecl = 12590 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 12591 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); 12592 for (unsigned I = 0, N = RecFields.size(); I != N; ++I) 12593 // Ivar declared in @implementation never belongs to the implementation. 12594 // Only it is in implementation's lexical context. 12595 ClsFields[I]->setLexicalDeclContext(IMPDecl); 12596 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); 12597 IMPDecl->setIvarLBraceLoc(LBrac); 12598 IMPDecl->setIvarRBraceLoc(RBrac); 12599 } else if (ObjCCategoryDecl *CDecl = 12600 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 12601 // case of ivars in class extension; all other cases have been 12602 // reported as errors elsewhere. 12603 // FIXME. Class extension does not have a LocEnd field. 12604 // CDecl->setLocEnd(RBrac); 12605 // Add ivar's to class extension's DeclContext. 12606 // Diagnose redeclaration of private ivars. 12607 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); 12608 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 12609 if (IDecl) { 12610 if (const ObjCIvarDecl *ClsIvar = 12611 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { 12612 Diag(ClsFields[i]->getLocation(), 12613 diag::err_duplicate_ivar_declaration); 12614 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 12615 continue; 12616 } 12617 for (const auto *Ext : IDecl->known_extensions()) { 12618 if (const ObjCIvarDecl *ClsExtIvar 12619 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { 12620 Diag(ClsFields[i]->getLocation(), 12621 diag::err_duplicate_ivar_declaration); 12622 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 12623 continue; 12624 } 12625 } 12626 } 12627 ClsFields[i]->setLexicalDeclContext(CDecl); 12628 CDecl->addDecl(ClsFields[i]); 12629 } 12630 CDecl->setIvarLBraceLoc(LBrac); 12631 CDecl->setIvarRBraceLoc(RBrac); 12632 } 12633 } 12634 12635 if (Attr) 12636 ProcessDeclAttributeList(S, Record, Attr); 12637 } 12638 12639 /// \brief Determine whether the given integral value is representable within 12640 /// the given type T. 12641 static bool isRepresentableIntegerValue(ASTContext &Context, 12642 llvm::APSInt &Value, 12643 QualType T) { 12644 assert(T->isIntegralType(Context) && "Integral type required!"); 12645 unsigned BitWidth = Context.getIntWidth(T); 12646 12647 if (Value.isUnsigned() || Value.isNonNegative()) { 12648 if (T->isSignedIntegerOrEnumerationType()) 12649 --BitWidth; 12650 return Value.getActiveBits() <= BitWidth; 12651 } 12652 return Value.getMinSignedBits() <= BitWidth; 12653 } 12654 12655 // \brief Given an integral type, return the next larger integral type 12656 // (or a NULL type of no such type exists). 12657 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { 12658 // FIXME: Int128/UInt128 support, which also needs to be introduced into 12659 // enum checking below. 12660 assert(T->isIntegralType(Context) && "Integral type required!"); 12661 const unsigned NumTypes = 4; 12662 QualType SignedIntegralTypes[NumTypes] = { 12663 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy 12664 }; 12665 QualType UnsignedIntegralTypes[NumTypes] = { 12666 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 12667 Context.UnsignedLongLongTy 12668 }; 12669 12670 unsigned BitWidth = Context.getTypeSize(T); 12671 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes 12672 : UnsignedIntegralTypes; 12673 for (unsigned I = 0; I != NumTypes; ++I) 12674 if (Context.getTypeSize(Types[I]) > BitWidth) 12675 return Types[I]; 12676 12677 return QualType(); 12678 } 12679 12680 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, 12681 EnumConstantDecl *LastEnumConst, 12682 SourceLocation IdLoc, 12683 IdentifierInfo *Id, 12684 Expr *Val) { 12685 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 12686 llvm::APSInt EnumVal(IntWidth); 12687 QualType EltTy; 12688 12689 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) 12690 Val = nullptr; 12691 12692 if (Val) 12693 Val = DefaultLvalueConversion(Val).get(); 12694 12695 if (Val) { 12696 if (Enum->isDependentType() || Val->isTypeDependent()) 12697 EltTy = Context.DependentTy; 12698 else { 12699 SourceLocation ExpLoc; 12700 if (getLangOpts().CPlusPlus11 && Enum->isFixed() && 12701 !getLangOpts().MSVCCompat) { 12702 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the 12703 // constant-expression in the enumerator-definition shall be a converted 12704 // constant expression of the underlying type. 12705 EltTy = Enum->getIntegerType(); 12706 ExprResult Converted = 12707 CheckConvertedConstantExpression(Val, EltTy, EnumVal, 12708 CCEK_Enumerator); 12709 if (Converted.isInvalid()) 12710 Val = nullptr; 12711 else 12712 Val = Converted.get(); 12713 } else if (!Val->isValueDependent() && 12714 !(Val = VerifyIntegerConstantExpression(Val, 12715 &EnumVal).get())) { 12716 // C99 6.7.2.2p2: Make sure we have an integer constant expression. 12717 } else { 12718 if (Enum->isFixed()) { 12719 EltTy = Enum->getIntegerType(); 12720 12721 // In Obj-C and Microsoft mode, require the enumeration value to be 12722 // representable in the underlying type of the enumeration. In C++11, 12723 // we perform a non-narrowing conversion as part of converted constant 12724 // expression checking. 12725 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 12726 if (getLangOpts().MSVCCompat) { 12727 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; 12728 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get(); 12729 } else 12730 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; 12731 } else 12732 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get(); 12733 } else if (getLangOpts().CPlusPlus) { 12734 // C++11 [dcl.enum]p5: 12735 // If the underlying type is not fixed, the type of each enumerator 12736 // is the type of its initializing value: 12737 // - If an initializer is specified for an enumerator, the 12738 // initializing value has the same type as the expression. 12739 EltTy = Val->getType(); 12740 } else { 12741 // C99 6.7.2.2p2: 12742 // The expression that defines the value of an enumeration constant 12743 // shall be an integer constant expression that has a value 12744 // representable as an int. 12745 12746 // Complain if the value is not representable in an int. 12747 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) 12748 Diag(IdLoc, diag::ext_enum_value_not_int) 12749 << EnumVal.toString(10) << Val->getSourceRange() 12750 << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); 12751 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { 12752 // Force the type of the expression to 'int'. 12753 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); 12754 } 12755 EltTy = Val->getType(); 12756 } 12757 } 12758 } 12759 } 12760 12761 if (!Val) { 12762 if (Enum->isDependentType()) 12763 EltTy = Context.DependentTy; 12764 else if (!LastEnumConst) { 12765 // C++0x [dcl.enum]p5: 12766 // If the underlying type is not fixed, the type of each enumerator 12767 // is the type of its initializing value: 12768 // - If no initializer is specified for the first enumerator, the 12769 // initializing value has an unspecified integral type. 12770 // 12771 // GCC uses 'int' for its unspecified integral type, as does 12772 // C99 6.7.2.2p3. 12773 if (Enum->isFixed()) { 12774 EltTy = Enum->getIntegerType(); 12775 } 12776 else { 12777 EltTy = Context.IntTy; 12778 } 12779 } else { 12780 // Assign the last value + 1. 12781 EnumVal = LastEnumConst->getInitVal(); 12782 ++EnumVal; 12783 EltTy = LastEnumConst->getType(); 12784 12785 // Check for overflow on increment. 12786 if (EnumVal < LastEnumConst->getInitVal()) { 12787 // C++0x [dcl.enum]p5: 12788 // If the underlying type is not fixed, the type of each enumerator 12789 // is the type of its initializing value: 12790 // 12791 // - Otherwise the type of the initializing value is the same as 12792 // the type of the initializing value of the preceding enumerator 12793 // unless the incremented value is not representable in that type, 12794 // in which case the type is an unspecified integral type 12795 // sufficient to contain the incremented value. If no such type 12796 // exists, the program is ill-formed. 12797 QualType T = getNextLargerIntegralType(Context, EltTy); 12798 if (T.isNull() || Enum->isFixed()) { 12799 // There is no integral type larger enough to represent this 12800 // value. Complain, then allow the value to wrap around. 12801 EnumVal = LastEnumConst->getInitVal(); 12802 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); 12803 ++EnumVal; 12804 if (Enum->isFixed()) 12805 // When the underlying type is fixed, this is ill-formed. 12806 Diag(IdLoc, diag::err_enumerator_wrapped) 12807 << EnumVal.toString(10) 12808 << EltTy; 12809 else 12810 Diag(IdLoc, diag::ext_enumerator_increment_too_large) 12811 << EnumVal.toString(10); 12812 } else { 12813 EltTy = T; 12814 } 12815 12816 // Retrieve the last enumerator's value, extent that type to the 12817 // type that is supposed to be large enough to represent the incremented 12818 // value, then increment. 12819 EnumVal = LastEnumConst->getInitVal(); 12820 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 12821 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); 12822 ++EnumVal; 12823 12824 // If we're not in C++, diagnose the overflow of enumerator values, 12825 // which in C99 means that the enumerator value is not representable in 12826 // an int (C99 6.7.2.2p2). However, we support GCC's extension that 12827 // permits enumerator values that are representable in some larger 12828 // integral type. 12829 if (!getLangOpts().CPlusPlus && !T.isNull()) 12830 Diag(IdLoc, diag::warn_enum_value_overflow); 12831 } else if (!getLangOpts().CPlusPlus && 12832 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 12833 // Enforce C99 6.7.2.2p2 even when we compute the next value. 12834 Diag(IdLoc, diag::ext_enum_value_not_int) 12835 << EnumVal.toString(10) << 1; 12836 } 12837 } 12838 } 12839 12840 if (!EltTy->isDependentType()) { 12841 // Make the enumerator value match the signedness and size of the 12842 // enumerator's type. 12843 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); 12844 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 12845 } 12846 12847 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, 12848 Val, EnumVal); 12849 } 12850 12851 12852 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, 12853 SourceLocation IdLoc, IdentifierInfo *Id, 12854 AttributeList *Attr, 12855 SourceLocation EqualLoc, Expr *Val) { 12856 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); 12857 EnumConstantDecl *LastEnumConst = 12858 cast_or_null<EnumConstantDecl>(lastEnumConst); 12859 12860 // The scope passed in may not be a decl scope. Zip up the scope tree until 12861 // we find one that is. 12862 S = getNonFieldDeclScope(S); 12863 12864 // Verify that there isn't already something declared with this name in this 12865 // scope. 12866 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName, 12867 ForRedeclaration); 12868 if (PrevDecl && PrevDecl->isTemplateParameter()) { 12869 // Maybe we will complain about the shadowed template parameter. 12870 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); 12871 // Just pretend that we didn't see the previous declaration. 12872 PrevDecl = nullptr; 12873 } 12874 12875 if (PrevDecl) { 12876 // When in C++, we may get a TagDecl with the same name; in this case the 12877 // enum constant will 'hide' the tag. 12878 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && 12879 "Received TagDecl when not in C++!"); 12880 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { 12881 if (isa<EnumConstantDecl>(PrevDecl)) 12882 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; 12883 else 12884 Diag(IdLoc, diag::err_redefinition) << Id; 12885 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 12886 return nullptr; 12887 } 12888 } 12889 12890 // C++ [class.mem]p15: 12891 // If T is the name of a class, then each of the following shall have a name 12892 // different from T: 12893 // - every enumerator of every member of class T that is an unscoped 12894 // enumerated type 12895 if (CXXRecordDecl *Record 12896 = dyn_cast<CXXRecordDecl>( 12897 TheEnumDecl->getDeclContext()->getRedeclContext())) 12898 if (!TheEnumDecl->isScoped() && 12899 Record->getIdentifier() && Record->getIdentifier() == Id) 12900 Diag(IdLoc, diag::err_member_name_of_class) << Id; 12901 12902 EnumConstantDecl *New = 12903 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); 12904 12905 if (New) { 12906 // Process attributes. 12907 if (Attr) ProcessDeclAttributeList(S, New, Attr); 12908 12909 // Register this decl in the current scope stack. 12910 New->setAccess(TheEnumDecl->getAccess()); 12911 PushOnScopeChains(New, S); 12912 } 12913 12914 ActOnDocumentableDecl(New); 12915 12916 return New; 12917 } 12918 12919 // Returns true when the enum initial expression does not trigger the 12920 // duplicate enum warning. A few common cases are exempted as follows: 12921 // Element2 = Element1 12922 // Element2 = Element1 + 1 12923 // Element2 = Element1 - 1 12924 // Where Element2 and Element1 are from the same enum. 12925 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { 12926 Expr *InitExpr = ECD->getInitExpr(); 12927 if (!InitExpr) 12928 return true; 12929 InitExpr = InitExpr->IgnoreImpCasts(); 12930 12931 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { 12932 if (!BO->isAdditiveOp()) 12933 return true; 12934 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); 12935 if (!IL) 12936 return true; 12937 if (IL->getValue() != 1) 12938 return true; 12939 12940 InitExpr = BO->getLHS(); 12941 } 12942 12943 // This checks if the elements are from the same enum. 12944 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); 12945 if (!DRE) 12946 return true; 12947 12948 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); 12949 if (!EnumConstant) 12950 return true; 12951 12952 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != 12953 Enum) 12954 return true; 12955 12956 return false; 12957 } 12958 12959 struct DupKey { 12960 int64_t val; 12961 bool isTombstoneOrEmptyKey; 12962 DupKey(int64_t val, bool isTombstoneOrEmptyKey) 12963 : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {} 12964 }; 12965 12966 static DupKey GetDupKey(const llvm::APSInt& Val) { 12967 return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(), 12968 false); 12969 } 12970 12971 struct DenseMapInfoDupKey { 12972 static DupKey getEmptyKey() { return DupKey(0, true); } 12973 static DupKey getTombstoneKey() { return DupKey(1, true); } 12974 static unsigned getHashValue(const DupKey Key) { 12975 return (unsigned)(Key.val * 37); 12976 } 12977 static bool isEqual(const DupKey& LHS, const DupKey& RHS) { 12978 return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey && 12979 LHS.val == RHS.val; 12980 } 12981 }; 12982 12983 // Emits a warning when an element is implicitly set a value that 12984 // a previous element has already been set to. 12985 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, 12986 EnumDecl *Enum, 12987 QualType EnumType) { 12988 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) 12989 return; 12990 // Avoid anonymous enums 12991 if (!Enum->getIdentifier()) 12992 return; 12993 12994 // Only check for small enums. 12995 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) 12996 return; 12997 12998 typedef SmallVector<EnumConstantDecl *, 3> ECDVector; 12999 typedef SmallVector<ECDVector *, 3> DuplicatesVector; 13000 13001 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; 13002 typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey> 13003 ValueToVectorMap; 13004 13005 DuplicatesVector DupVector; 13006 ValueToVectorMap EnumMap; 13007 13008 // Populate the EnumMap with all values represented by enum constants without 13009 // an initialier. 13010 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13011 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]); 13012 13013 // Null EnumConstantDecl means a previous diagnostic has been emitted for 13014 // this constant. Skip this enum since it may be ill-formed. 13015 if (!ECD) { 13016 return; 13017 } 13018 13019 if (ECD->getInitExpr()) 13020 continue; 13021 13022 DupKey Key = GetDupKey(ECD->getInitVal()); 13023 DeclOrVector &Entry = EnumMap[Key]; 13024 13025 // First time encountering this value. 13026 if (Entry.isNull()) 13027 Entry = ECD; 13028 } 13029 13030 // Create vectors for any values that has duplicates. 13031 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13032 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]); 13033 if (!ValidDuplicateEnum(ECD, Enum)) 13034 continue; 13035 13036 DupKey Key = GetDupKey(ECD->getInitVal()); 13037 13038 DeclOrVector& Entry = EnumMap[Key]; 13039 if (Entry.isNull()) 13040 continue; 13041 13042 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { 13043 // Ensure constants are different. 13044 if (D == ECD) 13045 continue; 13046 13047 // Create new vector and push values onto it. 13048 ECDVector *Vec = new ECDVector(); 13049 Vec->push_back(D); 13050 Vec->push_back(ECD); 13051 13052 // Update entry to point to the duplicates vector. 13053 Entry = Vec; 13054 13055 // Store the vector somewhere we can consult later for quick emission of 13056 // diagnostics. 13057 DupVector.push_back(Vec); 13058 continue; 13059 } 13060 13061 ECDVector *Vec = Entry.get<ECDVector*>(); 13062 // Make sure constants are not added more than once. 13063 if (*Vec->begin() == ECD) 13064 continue; 13065 13066 Vec->push_back(ECD); 13067 } 13068 13069 // Emit diagnostics. 13070 for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(), 13071 DupVectorEnd = DupVector.end(); 13072 DupVectorIter != DupVectorEnd; ++DupVectorIter) { 13073 ECDVector *Vec = *DupVectorIter; 13074 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); 13075 13076 // Emit warning for one enum constant. 13077 ECDVector::iterator I = Vec->begin(); 13078 S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values) 13079 << (*I)->getName() << (*I)->getInitVal().toString(10) 13080 << (*I)->getSourceRange(); 13081 ++I; 13082 13083 // Emit one note for each of the remaining enum constants with 13084 // the same value. 13085 for (ECDVector::iterator E = Vec->end(); I != E; ++I) 13086 S.Diag((*I)->getLocation(), diag::note_duplicate_element) 13087 << (*I)->getName() << (*I)->getInitVal().toString(10) 13088 << (*I)->getSourceRange(); 13089 delete Vec; 13090 } 13091 } 13092 13093 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc, 13094 SourceLocation RBraceLoc, Decl *EnumDeclX, 13095 ArrayRef<Decl *> Elements, 13096 Scope *S, AttributeList *Attr) { 13097 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); 13098 QualType EnumType = Context.getTypeDeclType(Enum); 13099 13100 if (Attr) 13101 ProcessDeclAttributeList(S, Enum, Attr); 13102 13103 if (Enum->isDependentType()) { 13104 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13105 EnumConstantDecl *ECD = 13106 cast_or_null<EnumConstantDecl>(Elements[i]); 13107 if (!ECD) continue; 13108 13109 ECD->setType(EnumType); 13110 } 13111 13112 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); 13113 return; 13114 } 13115 13116 // TODO: If the result value doesn't fit in an int, it must be a long or long 13117 // long value. ISO C does not support this, but GCC does as an extension, 13118 // emit a warning. 13119 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 13120 unsigned CharWidth = Context.getTargetInfo().getCharWidth(); 13121 unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); 13122 13123 // Verify that all the values are okay, compute the size of the values, and 13124 // reverse the list. 13125 unsigned NumNegativeBits = 0; 13126 unsigned NumPositiveBits = 0; 13127 13128 // Keep track of whether all elements have type int. 13129 bool AllElementsInt = true; 13130 13131 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13132 EnumConstantDecl *ECD = 13133 cast_or_null<EnumConstantDecl>(Elements[i]); 13134 if (!ECD) continue; // Already issued a diagnostic. 13135 13136 const llvm::APSInt &InitVal = ECD->getInitVal(); 13137 13138 // Keep track of the size of positive and negative values. 13139 if (InitVal.isUnsigned() || InitVal.isNonNegative()) 13140 NumPositiveBits = std::max(NumPositiveBits, 13141 (unsigned)InitVal.getActiveBits()); 13142 else 13143 NumNegativeBits = std::max(NumNegativeBits, 13144 (unsigned)InitVal.getMinSignedBits()); 13145 13146 // Keep track of whether every enum element has type int (very commmon). 13147 if (AllElementsInt) 13148 AllElementsInt = ECD->getType() == Context.IntTy; 13149 } 13150 13151 // Figure out the type that should be used for this enum. 13152 QualType BestType; 13153 unsigned BestWidth; 13154 13155 // C++0x N3000 [conv.prom]p3: 13156 // An rvalue of an unscoped enumeration type whose underlying 13157 // type is not fixed can be converted to an rvalue of the first 13158 // of the following types that can represent all the values of 13159 // the enumeration: int, unsigned int, long int, unsigned long 13160 // int, long long int, or unsigned long long int. 13161 // C99 6.4.4.3p2: 13162 // An identifier declared as an enumeration constant has type int. 13163 // The C99 rule is modified by a gcc extension 13164 QualType BestPromotionType; 13165 13166 bool Packed = Enum->hasAttr<PackedAttr>(); 13167 // -fshort-enums is the equivalent to specifying the packed attribute on all 13168 // enum definitions. 13169 if (LangOpts.ShortEnums) 13170 Packed = true; 13171 13172 if (Enum->isFixed()) { 13173 BestType = Enum->getIntegerType(); 13174 if (BestType->isPromotableIntegerType()) 13175 BestPromotionType = Context.getPromotedIntegerType(BestType); 13176 else 13177 BestPromotionType = BestType; 13178 // We don't need to set BestWidth, because BestType is going to be the type 13179 // of the enumerators, but we do anyway because otherwise some compilers 13180 // warn that it might be used uninitialized. 13181 BestWidth = CharWidth; 13182 } 13183 else if (NumNegativeBits) { 13184 // If there is a negative value, figure out the smallest integer type (of 13185 // int/long/longlong) that fits. 13186 // If it's packed, check also if it fits a char or a short. 13187 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { 13188 BestType = Context.SignedCharTy; 13189 BestWidth = CharWidth; 13190 } else if (Packed && NumNegativeBits <= ShortWidth && 13191 NumPositiveBits < ShortWidth) { 13192 BestType = Context.ShortTy; 13193 BestWidth = ShortWidth; 13194 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { 13195 BestType = Context.IntTy; 13196 BestWidth = IntWidth; 13197 } else { 13198 BestWidth = Context.getTargetInfo().getLongWidth(); 13199 13200 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { 13201 BestType = Context.LongTy; 13202 } else { 13203 BestWidth = Context.getTargetInfo().getLongLongWidth(); 13204 13205 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) 13206 Diag(Enum->getLocation(), diag::ext_enum_too_large); 13207 BestType = Context.LongLongTy; 13208 } 13209 } 13210 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); 13211 } else { 13212 // If there is no negative value, figure out the smallest type that fits 13213 // all of the enumerator values. 13214 // If it's packed, check also if it fits a char or a short. 13215 if (Packed && NumPositiveBits <= CharWidth) { 13216 BestType = Context.UnsignedCharTy; 13217 BestPromotionType = Context.IntTy; 13218 BestWidth = CharWidth; 13219 } else if (Packed && NumPositiveBits <= ShortWidth) { 13220 BestType = Context.UnsignedShortTy; 13221 BestPromotionType = Context.IntTy; 13222 BestWidth = ShortWidth; 13223 } else if (NumPositiveBits <= IntWidth) { 13224 BestType = Context.UnsignedIntTy; 13225 BestWidth = IntWidth; 13226 BestPromotionType 13227 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 13228 ? Context.UnsignedIntTy : Context.IntTy; 13229 } else if (NumPositiveBits <= 13230 (BestWidth = Context.getTargetInfo().getLongWidth())) { 13231 BestType = Context.UnsignedLongTy; 13232 BestPromotionType 13233 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 13234 ? Context.UnsignedLongTy : Context.LongTy; 13235 } else { 13236 BestWidth = Context.getTargetInfo().getLongLongWidth(); 13237 assert(NumPositiveBits <= BestWidth && 13238 "How could an initializer get larger than ULL?"); 13239 BestType = Context.UnsignedLongLongTy; 13240 BestPromotionType 13241 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 13242 ? Context.UnsignedLongLongTy : Context.LongLongTy; 13243 } 13244 } 13245 13246 // Loop over all of the enumerator constants, changing their types to match 13247 // the type of the enum if needed. 13248 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 13249 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]); 13250 if (!ECD) continue; // Already issued a diagnostic. 13251 13252 // Standard C says the enumerators have int type, but we allow, as an 13253 // extension, the enumerators to be larger than int size. If each 13254 // enumerator value fits in an int, type it as an int, otherwise type it the 13255 // same as the enumerator decl itself. This means that in "enum { X = 1U }" 13256 // that X has type 'int', not 'unsigned'. 13257 13258 // Determine whether the value fits into an int. 13259 llvm::APSInt InitVal = ECD->getInitVal(); 13260 13261 // If it fits into an integer type, force it. Otherwise force it to match 13262 // the enum decl type. 13263 QualType NewTy; 13264 unsigned NewWidth; 13265 bool NewSign; 13266 if (!getLangOpts().CPlusPlus && 13267 !Enum->isFixed() && 13268 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { 13269 NewTy = Context.IntTy; 13270 NewWidth = IntWidth; 13271 NewSign = true; 13272 } else if (ECD->getType() == BestType) { 13273 // Already the right type! 13274 if (getLangOpts().CPlusPlus) 13275 // C++ [dcl.enum]p4: Following the closing brace of an 13276 // enum-specifier, each enumerator has the type of its 13277 // enumeration. 13278 ECD->setType(EnumType); 13279 continue; 13280 } else { 13281 NewTy = BestType; 13282 NewWidth = BestWidth; 13283 NewSign = BestType->isSignedIntegerOrEnumerationType(); 13284 } 13285 13286 // Adjust the APSInt value. 13287 InitVal = InitVal.extOrTrunc(NewWidth); 13288 InitVal.setIsSigned(NewSign); 13289 ECD->setInitVal(InitVal); 13290 13291 // Adjust the Expr initializer and type. 13292 if (ECD->getInitExpr() && 13293 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) 13294 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, 13295 CK_IntegralCast, 13296 ECD->getInitExpr(), 13297 /*base paths*/ nullptr, 13298 VK_RValue)); 13299 if (getLangOpts().CPlusPlus) 13300 // C++ [dcl.enum]p4: Following the closing brace of an 13301 // enum-specifier, each enumerator has the type of its 13302 // enumeration. 13303 ECD->setType(EnumType); 13304 else 13305 ECD->setType(NewTy); 13306 } 13307 13308 Enum->completeDefinition(BestType, BestPromotionType, 13309 NumPositiveBits, NumNegativeBits); 13310 13311 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); 13312 13313 // Now that the enum type is defined, ensure it's not been underaligned. 13314 if (Enum->hasAttrs()) 13315 CheckAlignasUnderalignment(Enum); 13316 } 13317 13318 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, 13319 SourceLocation StartLoc, 13320 SourceLocation EndLoc) { 13321 StringLiteral *AsmString = cast<StringLiteral>(expr); 13322 13323 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, 13324 AsmString, StartLoc, 13325 EndLoc); 13326 CurContext->addDecl(New); 13327 return New; 13328 } 13329 13330 static void checkModuleImportContext(Sema &S, Module *M, 13331 SourceLocation ImportLoc, 13332 DeclContext *DC) { 13333 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { 13334 switch (LSD->getLanguage()) { 13335 case LinkageSpecDecl::lang_c: 13336 if (!M->IsExternC) { 13337 S.Diag(ImportLoc, diag::err_module_import_in_extern_c) 13338 << M->getFullModuleName(); 13339 S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c); 13340 return; 13341 } 13342 break; 13343 case LinkageSpecDecl::lang_cxx: 13344 break; 13345 } 13346 DC = LSD->getParent(); 13347 } 13348 13349 while (isa<LinkageSpecDecl>(DC)) 13350 DC = DC->getParent(); 13351 if (!isa<TranslationUnitDecl>(DC)) { 13352 S.Diag(ImportLoc, diag::err_module_import_not_at_top_level) 13353 << M->getFullModuleName() << DC; 13354 S.Diag(cast<Decl>(DC)->getLocStart(), 13355 diag::note_module_import_not_at_top_level) 13356 << DC; 13357 } 13358 } 13359 13360 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc, 13361 SourceLocation ImportLoc, 13362 ModuleIdPath Path) { 13363 Module *Mod = 13364 getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible, 13365 /*IsIncludeDirective=*/false); 13366 if (!Mod) 13367 return true; 13368 13369 checkModuleImportContext(*this, Mod, ImportLoc, CurContext); 13370 13371 // FIXME: we should support importing a submodule within a different submodule 13372 // of the same top-level module. Until we do, make it an error rather than 13373 // silently ignoring the import. 13374 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule) 13375 Diag(ImportLoc, diag::err_module_self_import) 13376 << Mod->getFullModuleName() << getLangOpts().CurrentModule; 13377 13378 SmallVector<SourceLocation, 2> IdentifierLocs; 13379 Module *ModCheck = Mod; 13380 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 13381 // If we've run out of module parents, just drop the remaining identifiers. 13382 // We need the length to be consistent. 13383 if (!ModCheck) 13384 break; 13385 ModCheck = ModCheck->Parent; 13386 13387 IdentifierLocs.push_back(Path[I].second); 13388 } 13389 13390 ImportDecl *Import = ImportDecl::Create(Context, 13391 Context.getTranslationUnitDecl(), 13392 AtLoc.isValid()? AtLoc : ImportLoc, 13393 Mod, IdentifierLocs); 13394 Context.getTranslationUnitDecl()->addDecl(Import); 13395 return Import; 13396 } 13397 13398 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { 13399 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext); 13400 13401 // FIXME: Should we synthesize an ImportDecl here? 13402 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc, 13403 /*Complain=*/true); 13404 } 13405 13406 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, 13407 Module *Mod) { 13408 // Bail if we're not allowed to implicitly import a module here. 13409 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery) 13410 return; 13411 13412 // Create the implicit import declaration. 13413 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); 13414 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, 13415 Loc, Mod, Loc); 13416 TU->addDecl(ImportD); 13417 Consumer.HandleImplicitImportDecl(ImportD); 13418 13419 // Make the module visible. 13420 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc, 13421 /*Complain=*/false); 13422 } 13423 13424 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, 13425 IdentifierInfo* AliasName, 13426 SourceLocation PragmaLoc, 13427 SourceLocation NameLoc, 13428 SourceLocation AliasNameLoc) { 13429 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, 13430 LookupOrdinaryName); 13431 AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context, 13432 AliasName->getName(), 0); 13433 13434 if (PrevDecl) 13435 PrevDecl->addAttr(Attr); 13436 else 13437 (void)ExtnameUndeclaredIdentifiers.insert( 13438 std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr)); 13439 } 13440 13441 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, 13442 SourceLocation PragmaLoc, 13443 SourceLocation NameLoc) { 13444 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); 13445 13446 if (PrevDecl) { 13447 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc)); 13448 } else { 13449 (void)WeakUndeclaredIdentifiers.insert( 13450 std::pair<IdentifierInfo*,WeakInfo> 13451 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); 13452 } 13453 } 13454 13455 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, 13456 IdentifierInfo* AliasName, 13457 SourceLocation PragmaLoc, 13458 SourceLocation NameLoc, 13459 SourceLocation AliasNameLoc) { 13460 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, 13461 LookupOrdinaryName); 13462 WeakInfo W = WeakInfo(Name, NameLoc); 13463 13464 if (PrevDecl) { 13465 if (!PrevDecl->hasAttr<AliasAttr>()) 13466 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) 13467 DeclApplyPragmaWeak(TUScope, ND, W); 13468 } else { 13469 (void)WeakUndeclaredIdentifiers.insert( 13470 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); 13471 } 13472 } 13473 13474 Decl *Sema::getObjCDeclContext() const { 13475 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); 13476 } 13477 13478 AvailabilityResult Sema::getCurContextAvailability() const { 13479 const Decl *D = cast<Decl>(getCurObjCLexicalContext()); 13480 // If we are within an Objective-C method, we should consult 13481 // both the availability of the method as well as the 13482 // enclosing class. If the class is (say) deprecated, 13483 // the entire method is considered deprecated from the 13484 // purpose of checking if the current context is deprecated. 13485 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { 13486 AvailabilityResult R = MD->getAvailability(); 13487 if (R != AR_Available) 13488 return R; 13489 D = MD->getClassInterface(); 13490 } 13491 // If we are within an Objective-c @implementation, it 13492 // gets the same availability context as the @interface. 13493 else if (const ObjCImplementationDecl *ID = 13494 dyn_cast<ObjCImplementationDecl>(D)) { 13495 D = ID->getClassInterface(); 13496 } 13497 return D->getAvailability(); 13498 } 13499