1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains code to lower X86 MachineInstrs to their corresponding 11 // MCInst records. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86AsmPrinter.h" 16 #include "X86RegisterInfo.h" 17 #include "InstPrinter/X86ATTInstPrinter.h" 18 #include "MCTargetDesc/X86BaseInfo.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 22 #include "llvm/CodeGen/StackMaps.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/GlobalValue.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstBuilder.h" 31 #include "llvm/MC/MCStreamer.h" 32 #include "llvm/MC/MCSymbol.h" 33 using namespace llvm; 34 35 namespace { 36 37 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst. 38 class X86MCInstLower { 39 MCContext &Ctx; 40 const MachineFunction &MF; 41 const TargetMachine &TM; 42 const MCAsmInfo &MAI; 43 X86AsmPrinter &AsmPrinter; 44 public: 45 X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter); 46 47 void Lower(const MachineInstr *MI, MCInst &OutMI) const; 48 49 MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const; 50 MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const; 51 52 private: 53 MachineModuleInfoMachO &getMachOMMI() const; 54 Mangler *getMang() const { 55 return AsmPrinter.Mang; 56 } 57 }; 58 59 } // end anonymous namespace 60 61 X86MCInstLower::X86MCInstLower(const MachineFunction &mf, 62 X86AsmPrinter &asmprinter) 63 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), 64 MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {} 65 66 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const { 67 return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>(); 68 } 69 70 71 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol 72 /// operand to an MCSymbol. 73 MCSymbol *X86MCInstLower:: 74 GetSymbolFromOperand(const MachineOperand &MO) const { 75 const DataLayout *DL = TM.getDataLayout(); 76 assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference"); 77 78 SmallString<128> Name; 79 StringRef Suffix; 80 81 switch (MO.getTargetFlags()) { 82 case X86II::MO_DLLIMPORT: 83 // Handle dllimport linkage. 84 Name += "__imp_"; 85 break; 86 case X86II::MO_DARWIN_STUB: 87 Suffix = "$stub"; 88 break; 89 case X86II::MO_DARWIN_NONLAZY: 90 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: 91 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: 92 Suffix = "$non_lazy_ptr"; 93 break; 94 } 95 96 if (!Suffix.empty()) 97 Name += DL->getPrivateGlobalPrefix(); 98 99 unsigned PrefixLen = Name.size(); 100 101 if (MO.isGlobal()) { 102 const GlobalValue *GV = MO.getGlobal(); 103 AsmPrinter.getNameWithPrefix(Name, GV); 104 } else if (MO.isSymbol()) { 105 getMang()->getNameWithPrefix(Name, MO.getSymbolName()); 106 } else if (MO.isMBB()) { 107 Name += MO.getMBB()->getSymbol()->getName(); 108 } 109 unsigned OrigLen = Name.size() - PrefixLen; 110 111 Name += Suffix; 112 MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name); 113 114 StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen); 115 116 // If the target flags on the operand changes the name of the symbol, do that 117 // before we return the symbol. 118 switch (MO.getTargetFlags()) { 119 default: break; 120 case X86II::MO_DARWIN_NONLAZY: 121 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: { 122 MachineModuleInfoImpl::StubValueTy &StubSym = 123 getMachOMMI().getGVStubEntry(Sym); 124 if (!StubSym.getPointer()) { 125 assert(MO.isGlobal() && "Extern symbol not handled yet"); 126 StubSym = 127 MachineModuleInfoImpl:: 128 StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()), 129 !MO.getGlobal()->hasInternalLinkage()); 130 } 131 break; 132 } 133 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: { 134 MachineModuleInfoImpl::StubValueTy &StubSym = 135 getMachOMMI().getHiddenGVStubEntry(Sym); 136 if (!StubSym.getPointer()) { 137 assert(MO.isGlobal() && "Extern symbol not handled yet"); 138 StubSym = 139 MachineModuleInfoImpl:: 140 StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()), 141 !MO.getGlobal()->hasInternalLinkage()); 142 } 143 break; 144 } 145 case X86II::MO_DARWIN_STUB: { 146 MachineModuleInfoImpl::StubValueTy &StubSym = 147 getMachOMMI().getFnStubEntry(Sym); 148 if (StubSym.getPointer()) 149 return Sym; 150 151 if (MO.isGlobal()) { 152 StubSym = 153 MachineModuleInfoImpl:: 154 StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()), 155 !MO.getGlobal()->hasInternalLinkage()); 156 } else { 157 StubSym = 158 MachineModuleInfoImpl:: 159 StubValueTy(Ctx.GetOrCreateSymbol(OrigName), false); 160 } 161 break; 162 } 163 } 164 165 return Sym; 166 } 167 168 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO, 169 MCSymbol *Sym) const { 170 // FIXME: We would like an efficient form for this, so we don't have to do a 171 // lot of extra uniquing. 172 const MCExpr *Expr = nullptr; 173 MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None; 174 175 switch (MO.getTargetFlags()) { 176 default: llvm_unreachable("Unknown target flag on GV operand"); 177 case X86II::MO_NO_FLAG: // No flag. 178 // These affect the name of the symbol, not any suffix. 179 case X86II::MO_DARWIN_NONLAZY: 180 case X86II::MO_DLLIMPORT: 181 case X86II::MO_DARWIN_STUB: 182 break; 183 184 case X86II::MO_TLVP: RefKind = MCSymbolRefExpr::VK_TLVP; break; 185 case X86II::MO_TLVP_PIC_BASE: 186 Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx); 187 // Subtract the pic base. 188 Expr = MCBinaryExpr::CreateSub(Expr, 189 MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), 190 Ctx), 191 Ctx); 192 break; 193 case X86II::MO_SECREL: RefKind = MCSymbolRefExpr::VK_SECREL; break; 194 case X86II::MO_TLSGD: RefKind = MCSymbolRefExpr::VK_TLSGD; break; 195 case X86II::MO_TLSLD: RefKind = MCSymbolRefExpr::VK_TLSLD; break; 196 case X86II::MO_TLSLDM: RefKind = MCSymbolRefExpr::VK_TLSLDM; break; 197 case X86II::MO_GOTTPOFF: RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break; 198 case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break; 199 case X86II::MO_TPOFF: RefKind = MCSymbolRefExpr::VK_TPOFF; break; 200 case X86II::MO_DTPOFF: RefKind = MCSymbolRefExpr::VK_DTPOFF; break; 201 case X86II::MO_NTPOFF: RefKind = MCSymbolRefExpr::VK_NTPOFF; break; 202 case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break; 203 case X86II::MO_GOTPCREL: RefKind = MCSymbolRefExpr::VK_GOTPCREL; break; 204 case X86II::MO_GOT: RefKind = MCSymbolRefExpr::VK_GOT; break; 205 case X86II::MO_GOTOFF: RefKind = MCSymbolRefExpr::VK_GOTOFF; break; 206 case X86II::MO_PLT: RefKind = MCSymbolRefExpr::VK_PLT; break; 207 case X86II::MO_PIC_BASE_OFFSET: 208 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: 209 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: 210 Expr = MCSymbolRefExpr::Create(Sym, Ctx); 211 // Subtract the pic base. 212 Expr = MCBinaryExpr::CreateSub(Expr, 213 MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx), 214 Ctx); 215 if (MO.isJTI() && MAI.hasSetDirective()) { 216 // If .set directive is supported, use it to reduce the number of 217 // relocations the assembler will generate for differences between 218 // local labels. This is only safe when the symbols are in the same 219 // section so we are restricting it to jumptable references. 220 MCSymbol *Label = Ctx.CreateTempSymbol(); 221 AsmPrinter.OutStreamer.EmitAssignment(Label, Expr); 222 Expr = MCSymbolRefExpr::Create(Label, Ctx); 223 } 224 break; 225 } 226 227 if (!Expr) 228 Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx); 229 230 if (!MO.isJTI() && !MO.isMBB() && MO.getOffset()) 231 Expr = MCBinaryExpr::CreateAdd(Expr, 232 MCConstantExpr::Create(MO.getOffset(), Ctx), 233 Ctx); 234 return MCOperand::CreateExpr(Expr); 235 } 236 237 238 /// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with 239 /// a short fixed-register form. 240 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) { 241 unsigned ImmOp = Inst.getNumOperands() - 1; 242 assert(Inst.getOperand(0).isReg() && 243 (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) && 244 ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() && 245 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) || 246 Inst.getNumOperands() == 2) && "Unexpected instruction!"); 247 248 // Check whether the destination register can be fixed. 249 unsigned Reg = Inst.getOperand(0).getReg(); 250 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) 251 return; 252 253 // If so, rewrite the instruction. 254 MCOperand Saved = Inst.getOperand(ImmOp); 255 Inst = MCInst(); 256 Inst.setOpcode(Opcode); 257 Inst.addOperand(Saved); 258 } 259 260 /// \brief If a movsx instruction has a shorter encoding for the used register 261 /// simplify the instruction to use it instead. 262 static void SimplifyMOVSX(MCInst &Inst) { 263 unsigned NewOpcode = 0; 264 unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg(); 265 switch (Inst.getOpcode()) { 266 default: 267 llvm_unreachable("Unexpected instruction!"); 268 case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw 269 if (Op0 == X86::AX && Op1 == X86::AL) 270 NewOpcode = X86::CBW; 271 break; 272 case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl 273 if (Op0 == X86::EAX && Op1 == X86::AX) 274 NewOpcode = X86::CWDE; 275 break; 276 case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq 277 if (Op0 == X86::RAX && Op1 == X86::EAX) 278 NewOpcode = X86::CDQE; 279 break; 280 } 281 282 if (NewOpcode != 0) { 283 Inst = MCInst(); 284 Inst.setOpcode(NewOpcode); 285 } 286 } 287 288 /// \brief Simplify things like MOV32rm to MOV32o32a. 289 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst, 290 unsigned Opcode) { 291 // Don't make these simplifications in 64-bit mode; other assemblers don't 292 // perform them because they make the code larger. 293 if (Printer.getSubtarget().is64Bit()) 294 return; 295 296 bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg(); 297 unsigned AddrBase = IsStore; 298 unsigned RegOp = IsStore ? 0 : 5; 299 unsigned AddrOp = AddrBase + 3; 300 assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() && 301 Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() && 302 Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() && 303 Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() && 304 Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() && 305 (Inst.getOperand(AddrOp).isExpr() || 306 Inst.getOperand(AddrOp).isImm()) && 307 "Unexpected instruction!"); 308 309 // Check whether the destination register can be fixed. 310 unsigned Reg = Inst.getOperand(RegOp).getReg(); 311 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) 312 return; 313 314 // Check whether this is an absolute address. 315 // FIXME: We know TLVP symbol refs aren't, but there should be a better way 316 // to do this here. 317 bool Absolute = true; 318 if (Inst.getOperand(AddrOp).isExpr()) { 319 const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr(); 320 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE)) 321 if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP) 322 Absolute = false; 323 } 324 325 if (Absolute && 326 (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 || 327 Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 || 328 Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0)) 329 return; 330 331 // If so, rewrite the instruction. 332 MCOperand Saved = Inst.getOperand(AddrOp); 333 MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg); 334 Inst = MCInst(); 335 Inst.setOpcode(Opcode); 336 Inst.addOperand(Saved); 337 Inst.addOperand(Seg); 338 } 339 340 static unsigned getRetOpcode(const X86Subtarget &Subtarget) 341 { 342 return Subtarget.is64Bit() ? X86::RETQ : X86::RETL; 343 } 344 345 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { 346 OutMI.setOpcode(MI->getOpcode()); 347 348 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 349 const MachineOperand &MO = MI->getOperand(i); 350 351 MCOperand MCOp; 352 switch (MO.getType()) { 353 default: 354 MI->dump(); 355 llvm_unreachable("unknown operand type"); 356 case MachineOperand::MO_Register: 357 // Ignore all implicit register operands. 358 if (MO.isImplicit()) continue; 359 MCOp = MCOperand::CreateReg(MO.getReg()); 360 break; 361 case MachineOperand::MO_Immediate: 362 MCOp = MCOperand::CreateImm(MO.getImm()); 363 break; 364 case MachineOperand::MO_MachineBasicBlock: 365 case MachineOperand::MO_GlobalAddress: 366 case MachineOperand::MO_ExternalSymbol: 367 MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO)); 368 break; 369 case MachineOperand::MO_JumpTableIndex: 370 MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex())); 371 break; 372 case MachineOperand::MO_ConstantPoolIndex: 373 MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex())); 374 break; 375 case MachineOperand::MO_BlockAddress: 376 MCOp = LowerSymbolOperand(MO, 377 AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress())); 378 break; 379 case MachineOperand::MO_RegisterMask: 380 // Ignore call clobbers. 381 continue; 382 } 383 384 OutMI.addOperand(MCOp); 385 } 386 387 // Handle a few special cases to eliminate operand modifiers. 388 ReSimplify: 389 switch (OutMI.getOpcode()) { 390 case X86::LEA64_32r: 391 case X86::LEA64r: 392 case X86::LEA16r: 393 case X86::LEA32r: 394 // LEA should have a segment register, but it must be empty. 395 assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands && 396 "Unexpected # of LEA operands"); 397 assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 && 398 "LEA has segment specified!"); 399 break; 400 401 case X86::MOV32ri64: 402 OutMI.setOpcode(X86::MOV32ri); 403 break; 404 405 // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B 406 // if one of the registers is extended, but other isn't. 407 case X86::VMOVAPDrr: 408 case X86::VMOVAPDYrr: 409 case X86::VMOVAPSrr: 410 case X86::VMOVAPSYrr: 411 case X86::VMOVDQArr: 412 case X86::VMOVDQAYrr: 413 case X86::VMOVDQUrr: 414 case X86::VMOVDQUYrr: 415 case X86::VMOVUPDrr: 416 case X86::VMOVUPDYrr: 417 case X86::VMOVUPSrr: 418 case X86::VMOVUPSYrr: { 419 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && 420 X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) { 421 unsigned NewOpc; 422 switch (OutMI.getOpcode()) { 423 default: llvm_unreachable("Invalid opcode"); 424 case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break; 425 case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break; 426 case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break; 427 case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break; 428 case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break; 429 case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break; 430 case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break; 431 case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break; 432 case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break; 433 case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break; 434 case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break; 435 case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break; 436 } 437 OutMI.setOpcode(NewOpc); 438 } 439 break; 440 } 441 case X86::VMOVSDrr: 442 case X86::VMOVSSrr: { 443 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && 444 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) { 445 unsigned NewOpc; 446 switch (OutMI.getOpcode()) { 447 default: llvm_unreachable("Invalid opcode"); 448 case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; 449 case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; 450 } 451 OutMI.setOpcode(NewOpc); 452 } 453 break; 454 } 455 456 // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register 457 // inputs modeled as normal uses instead of implicit uses. As such, truncate 458 // off all but the first operand (the callee). FIXME: Change isel. 459 case X86::TAILJMPr64: 460 case X86::CALL64r: 461 case X86::CALL64pcrel32: { 462 unsigned Opcode = OutMI.getOpcode(); 463 MCOperand Saved = OutMI.getOperand(0); 464 OutMI = MCInst(); 465 OutMI.setOpcode(Opcode); 466 OutMI.addOperand(Saved); 467 break; 468 } 469 470 case X86::EH_RETURN: 471 case X86::EH_RETURN64: { 472 OutMI = MCInst(); 473 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); 474 break; 475 } 476 477 // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions. 478 case X86::TAILJMPr: 479 case X86::TAILJMPd: 480 case X86::TAILJMPd64: { 481 unsigned Opcode; 482 switch (OutMI.getOpcode()) { 483 default: llvm_unreachable("Invalid opcode"); 484 case X86::TAILJMPr: Opcode = X86::JMP32r; break; 485 case X86::TAILJMPd: 486 case X86::TAILJMPd64: Opcode = X86::JMP_1; break; 487 } 488 489 MCOperand Saved = OutMI.getOperand(0); 490 OutMI = MCInst(); 491 OutMI.setOpcode(Opcode); 492 OutMI.addOperand(Saved); 493 break; 494 } 495 496 // These are pseudo-ops for OR to help with the OR->ADD transformation. We do 497 // this with an ugly goto in case the resultant OR uses EAX and needs the 498 // short form. 499 case X86::ADD16rr_DB: OutMI.setOpcode(X86::OR16rr); goto ReSimplify; 500 case X86::ADD32rr_DB: OutMI.setOpcode(X86::OR32rr); goto ReSimplify; 501 case X86::ADD64rr_DB: OutMI.setOpcode(X86::OR64rr); goto ReSimplify; 502 case X86::ADD16ri_DB: OutMI.setOpcode(X86::OR16ri); goto ReSimplify; 503 case X86::ADD32ri_DB: OutMI.setOpcode(X86::OR32ri); goto ReSimplify; 504 case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify; 505 case X86::ADD16ri8_DB: OutMI.setOpcode(X86::OR16ri8); goto ReSimplify; 506 case X86::ADD32ri8_DB: OutMI.setOpcode(X86::OR32ri8); goto ReSimplify; 507 case X86::ADD64ri8_DB: OutMI.setOpcode(X86::OR64ri8); goto ReSimplify; 508 509 // The assembler backend wants to see branches in their small form and relax 510 // them to their large form. The JIT can only handle the large form because 511 // it does not do relaxation. For now, translate the large form to the 512 // small one here. 513 case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break; 514 case X86::JO_4: OutMI.setOpcode(X86::JO_1); break; 515 case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break; 516 case X86::JB_4: OutMI.setOpcode(X86::JB_1); break; 517 case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break; 518 case X86::JE_4: OutMI.setOpcode(X86::JE_1); break; 519 case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break; 520 case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break; 521 case X86::JA_4: OutMI.setOpcode(X86::JA_1); break; 522 case X86::JS_4: OutMI.setOpcode(X86::JS_1); break; 523 case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break; 524 case X86::JP_4: OutMI.setOpcode(X86::JP_1); break; 525 case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break; 526 case X86::JL_4: OutMI.setOpcode(X86::JL_1); break; 527 case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break; 528 case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break; 529 case X86::JG_4: OutMI.setOpcode(X86::JG_1); break; 530 531 // Atomic load and store require a separate pseudo-inst because Acquire 532 // implies mayStore and Release implies mayLoad; fix these to regular MOV 533 // instructions here 534 case X86::ACQUIRE_MOV8rm: OutMI.setOpcode(X86::MOV8rm); goto ReSimplify; 535 case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify; 536 case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify; 537 case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify; 538 case X86::RELEASE_MOV8mr: OutMI.setOpcode(X86::MOV8mr); goto ReSimplify; 539 case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify; 540 case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify; 541 case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify; 542 543 // We don't currently select the correct instruction form for instructions 544 // which have a short %eax, etc. form. Handle this by custom lowering, for 545 // now. 546 // 547 // Note, we are currently not handling the following instructions: 548 // MOV64ao8, MOV64o8a 549 // XCHG16ar, XCHG32ar, XCHG64ar 550 case X86::MOV8mr_NOREX: 551 case X86::MOV8mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break; 552 case X86::MOV8rm_NOREX: 553 case X86::MOV8rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break; 554 case X86::MOV16mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break; 555 case X86::MOV16rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break; 556 case X86::MOV32mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break; 557 case X86::MOV32rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break; 558 559 case X86::ADC8ri: SimplifyShortImmForm(OutMI, X86::ADC8i8); break; 560 case X86::ADC16ri: SimplifyShortImmForm(OutMI, X86::ADC16i16); break; 561 case X86::ADC32ri: SimplifyShortImmForm(OutMI, X86::ADC32i32); break; 562 case X86::ADC64ri32: SimplifyShortImmForm(OutMI, X86::ADC64i32); break; 563 case X86::ADD8ri: SimplifyShortImmForm(OutMI, X86::ADD8i8); break; 564 case X86::ADD16ri: SimplifyShortImmForm(OutMI, X86::ADD16i16); break; 565 case X86::ADD32ri: SimplifyShortImmForm(OutMI, X86::ADD32i32); break; 566 case X86::ADD64ri32: SimplifyShortImmForm(OutMI, X86::ADD64i32); break; 567 case X86::AND8ri: SimplifyShortImmForm(OutMI, X86::AND8i8); break; 568 case X86::AND16ri: SimplifyShortImmForm(OutMI, X86::AND16i16); break; 569 case X86::AND32ri: SimplifyShortImmForm(OutMI, X86::AND32i32); break; 570 case X86::AND64ri32: SimplifyShortImmForm(OutMI, X86::AND64i32); break; 571 case X86::CMP8ri: SimplifyShortImmForm(OutMI, X86::CMP8i8); break; 572 case X86::CMP16ri: SimplifyShortImmForm(OutMI, X86::CMP16i16); break; 573 case X86::CMP32ri: SimplifyShortImmForm(OutMI, X86::CMP32i32); break; 574 case X86::CMP64ri32: SimplifyShortImmForm(OutMI, X86::CMP64i32); break; 575 case X86::OR8ri: SimplifyShortImmForm(OutMI, X86::OR8i8); break; 576 case X86::OR16ri: SimplifyShortImmForm(OutMI, X86::OR16i16); break; 577 case X86::OR32ri: SimplifyShortImmForm(OutMI, X86::OR32i32); break; 578 case X86::OR64ri32: SimplifyShortImmForm(OutMI, X86::OR64i32); break; 579 case X86::SBB8ri: SimplifyShortImmForm(OutMI, X86::SBB8i8); break; 580 case X86::SBB16ri: SimplifyShortImmForm(OutMI, X86::SBB16i16); break; 581 case X86::SBB32ri: SimplifyShortImmForm(OutMI, X86::SBB32i32); break; 582 case X86::SBB64ri32: SimplifyShortImmForm(OutMI, X86::SBB64i32); break; 583 case X86::SUB8ri: SimplifyShortImmForm(OutMI, X86::SUB8i8); break; 584 case X86::SUB16ri: SimplifyShortImmForm(OutMI, X86::SUB16i16); break; 585 case X86::SUB32ri: SimplifyShortImmForm(OutMI, X86::SUB32i32); break; 586 case X86::SUB64ri32: SimplifyShortImmForm(OutMI, X86::SUB64i32); break; 587 case X86::TEST8ri: SimplifyShortImmForm(OutMI, X86::TEST8i8); break; 588 case X86::TEST16ri: SimplifyShortImmForm(OutMI, X86::TEST16i16); break; 589 case X86::TEST32ri: SimplifyShortImmForm(OutMI, X86::TEST32i32); break; 590 case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break; 591 case X86::XOR8ri: SimplifyShortImmForm(OutMI, X86::XOR8i8); break; 592 case X86::XOR16ri: SimplifyShortImmForm(OutMI, X86::XOR16i16); break; 593 case X86::XOR32ri: SimplifyShortImmForm(OutMI, X86::XOR32i32); break; 594 case X86::XOR64ri32: SimplifyShortImmForm(OutMI, X86::XOR64i32); break; 595 596 // Try to shrink some forms of movsx. 597 case X86::MOVSX16rr8: 598 case X86::MOVSX32rr16: 599 case X86::MOVSX64rr32: 600 SimplifyMOVSX(OutMI); 601 break; 602 } 603 } 604 605 static void LowerTlsAddr(MCStreamer &OutStreamer, 606 X86MCInstLower &MCInstLowering, 607 const MachineInstr &MI, 608 const MCSubtargetInfo& STI) { 609 610 bool is64Bits = MI.getOpcode() == X86::TLS_addr64 || 611 MI.getOpcode() == X86::TLS_base_addr64; 612 613 bool needsPadding = MI.getOpcode() == X86::TLS_addr64; 614 615 MCContext &context = OutStreamer.getContext(); 616 617 if (needsPadding) 618 OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI); 619 620 MCSymbolRefExpr::VariantKind SRVK; 621 switch (MI.getOpcode()) { 622 case X86::TLS_addr32: 623 case X86::TLS_addr64: 624 SRVK = MCSymbolRefExpr::VK_TLSGD; 625 break; 626 case X86::TLS_base_addr32: 627 SRVK = MCSymbolRefExpr::VK_TLSLDM; 628 break; 629 case X86::TLS_base_addr64: 630 SRVK = MCSymbolRefExpr::VK_TLSLD; 631 break; 632 default: 633 llvm_unreachable("unexpected opcode"); 634 } 635 636 MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)); 637 const MCSymbolRefExpr *symRef = MCSymbolRefExpr::Create(sym, SRVK, context); 638 639 MCInst LEA; 640 if (is64Bits) { 641 LEA.setOpcode(X86::LEA64r); 642 LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest 643 LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base 644 LEA.addOperand(MCOperand::CreateImm(1)); // scale 645 LEA.addOperand(MCOperand::CreateReg(0)); // index 646 LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp 647 LEA.addOperand(MCOperand::CreateReg(0)); // seg 648 } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) { 649 LEA.setOpcode(X86::LEA32r); 650 LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest 651 LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // base 652 LEA.addOperand(MCOperand::CreateImm(1)); // scale 653 LEA.addOperand(MCOperand::CreateReg(0)); // index 654 LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp 655 LEA.addOperand(MCOperand::CreateReg(0)); // seg 656 } else { 657 LEA.setOpcode(X86::LEA32r); 658 LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest 659 LEA.addOperand(MCOperand::CreateReg(0)); // base 660 LEA.addOperand(MCOperand::CreateImm(1)); // scale 661 LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index 662 LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp 663 LEA.addOperand(MCOperand::CreateReg(0)); // seg 664 } 665 OutStreamer.EmitInstruction(LEA, STI); 666 667 if (needsPadding) { 668 OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI); 669 OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI); 670 OutStreamer.EmitInstruction(MCInstBuilder(X86::REX64_PREFIX), STI); 671 } 672 673 StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr"; 674 MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name); 675 const MCSymbolRefExpr *tlsRef = 676 MCSymbolRefExpr::Create(tlsGetAddr, 677 MCSymbolRefExpr::VK_PLT, 678 context); 679 680 OutStreamer.EmitInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32 681 : X86::CALLpcrel32) 682 .addExpr(tlsRef), STI); 683 } 684 685 /// \brief Emit the optimal amount of multi-byte nops on X86. 686 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, const MCSubtargetInfo &STI) { 687 // This works only for 64bit. For 32bit we have to do additional checking if 688 // the CPU supports multi-byte nops. 689 assert(Is64Bit && "EmitNops only supports X86-64"); 690 while (NumBytes) { 691 unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg; 692 Opc = IndexReg = Displacement = SegmentReg = 0; 693 BaseReg = X86::RAX; ScaleVal = 1; 694 switch (NumBytes) { 695 case 0: llvm_unreachable("Zero nops?"); break; 696 case 1: NumBytes -= 1; Opc = X86::NOOP; break; 697 case 2: NumBytes -= 2; Opc = X86::XCHG16ar; break; 698 case 3: NumBytes -= 3; Opc = X86::NOOPL; break; 699 case 4: NumBytes -= 4; Opc = X86::NOOPL; Displacement = 8; break; 700 case 5: NumBytes -= 5; Opc = X86::NOOPL; Displacement = 8; 701 IndexReg = X86::RAX; break; 702 case 6: NumBytes -= 6; Opc = X86::NOOPW; Displacement = 8; 703 IndexReg = X86::RAX; break; 704 case 7: NumBytes -= 7; Opc = X86::NOOPL; Displacement = 512; break; 705 case 8: NumBytes -= 8; Opc = X86::NOOPL; Displacement = 512; 706 IndexReg = X86::RAX; break; 707 case 9: NumBytes -= 9; Opc = X86::NOOPW; Displacement = 512; 708 IndexReg = X86::RAX; break; 709 default: NumBytes -= 10; Opc = X86::NOOPW; Displacement = 512; 710 IndexReg = X86::RAX; SegmentReg = X86::CS; break; 711 } 712 713 unsigned NumPrefixes = std::min(NumBytes, 5U); 714 NumBytes -= NumPrefixes; 715 for (unsigned i = 0; i != NumPrefixes; ++i) 716 OS.EmitBytes("\x66"); 717 718 switch (Opc) { 719 default: llvm_unreachable("Unexpected opcode"); break; 720 case X86::NOOP: 721 OS.EmitInstruction(MCInstBuilder(Opc), STI); 722 break; 723 case X86::XCHG16ar: 724 OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX), STI); 725 break; 726 case X86::NOOPL: 727 case X86::NOOPW: 728 OS.EmitInstruction(MCInstBuilder(Opc).addReg(BaseReg).addImm(ScaleVal) 729 .addReg(IndexReg) 730 .addImm(Displacement) 731 .addReg(SegmentReg), STI); 732 break; 733 } 734 } // while (NumBytes) 735 } 736 737 // Lower a stackmap of the form: 738 // <id>, <shadowBytes>, ... 739 static void LowerSTACKMAP(MCStreamer &OS, StackMaps &SM, 740 const MachineInstr &MI, bool Is64Bit, const MCSubtargetInfo& STI) { 741 unsigned NumBytes = MI.getOperand(1).getImm(); 742 SM.recordStackMap(MI); 743 // Emit padding. 744 // FIXME: These nops ensure that the stackmap's shadow is covered by 745 // instructions from the same basic block, but the nops should not be 746 // necessary if instructions from the same block follow the stackmap. 747 EmitNops(OS, NumBytes, Is64Bit, STI); 748 } 749 750 // Lower a patchpoint of the form: 751 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ... 752 static void LowerPATCHPOINT(MCStreamer &OS, StackMaps &SM, 753 const MachineInstr &MI, bool Is64Bit, const MCSubtargetInfo& STI) { 754 assert(Is64Bit && "Patchpoint currently only supports X86-64"); 755 SM.recordPatchPoint(MI); 756 757 PatchPointOpers opers(&MI); 758 unsigned ScratchIdx = opers.getNextScratchIdx(); 759 unsigned EncodedBytes = 0; 760 int64_t CallTarget = opers.getMetaOper(PatchPointOpers::TargetPos).getImm(); 761 if (CallTarget) { 762 // Emit MOV to materialize the target address and the CALL to target. 763 // This is encoded with 12-13 bytes, depending on which register is used. 764 unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg(); 765 if (X86II::isX86_64ExtendedReg(ScratchReg)) 766 EncodedBytes = 13; 767 else 768 EncodedBytes = 12; 769 OS.EmitInstruction(MCInstBuilder(X86::MOV64ri).addReg(ScratchReg) 770 .addImm(CallTarget), STI); 771 OS.EmitInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg), STI); 772 } 773 // Emit padding. 774 unsigned NumBytes = opers.getMetaOper(PatchPointOpers::NBytesPos).getImm(); 775 assert(NumBytes >= EncodedBytes && 776 "Patchpoint can't request size less than the length of a call."); 777 778 EmitNops(OS, NumBytes - EncodedBytes, Is64Bit, STI); 779 } 780 781 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { 782 X86MCInstLower MCInstLowering(*MF, *this); 783 const X86RegisterInfo *RI = 784 static_cast<const X86RegisterInfo *>(TM.getRegisterInfo()); 785 786 switch (MI->getOpcode()) { 787 case TargetOpcode::DBG_VALUE: 788 llvm_unreachable("Should be handled target independently"); 789 790 // Emit nothing here but a comment if we can. 791 case X86::Int_MemBarrier: 792 OutStreamer.emitRawComment("MEMBARRIER"); 793 return; 794 795 796 case X86::EH_RETURN: 797 case X86::EH_RETURN64: { 798 // Lower these as normal, but add some comments. 799 unsigned Reg = MI->getOperand(0).getReg(); 800 OutStreamer.AddComment(StringRef("eh_return, addr: %") + 801 X86ATTInstPrinter::getRegisterName(Reg)); 802 break; 803 } 804 case X86::TAILJMPr: 805 case X86::TAILJMPd: 806 case X86::TAILJMPd64: 807 // Lower these as normal, but add some comments. 808 OutStreamer.AddComment("TAILCALL"); 809 break; 810 811 case X86::TLS_addr32: 812 case X86::TLS_addr64: 813 case X86::TLS_base_addr32: 814 case X86::TLS_base_addr64: 815 return LowerTlsAddr(OutStreamer, MCInstLowering, *MI, getSubtargetInfo()); 816 817 case X86::MOVPC32r: { 818 // This is a pseudo op for a two instruction sequence with a label, which 819 // looks like: 820 // call "L1$pb" 821 // "L1$pb": 822 // popl %esi 823 824 // Emit the call. 825 MCSymbol *PICBase = MF->getPICBaseSymbol(); 826 // FIXME: We would like an efficient form for this, so we don't have to do a 827 // lot of extra uniquing. 828 EmitToStreamer(OutStreamer, MCInstBuilder(X86::CALLpcrel32) 829 .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext))); 830 831 // Emit the label. 832 OutStreamer.EmitLabel(PICBase); 833 834 // popl $reg 835 EmitToStreamer(OutStreamer, MCInstBuilder(X86::POP32r) 836 .addReg(MI->getOperand(0).getReg())); 837 return; 838 } 839 840 case X86::ADD32ri: { 841 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri. 842 if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS) 843 break; 844 845 // Okay, we have something like: 846 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL) 847 848 // For this, we want to print something like: 849 // MYGLOBAL + (. - PICBASE) 850 // However, we can't generate a ".", so just emit a new label here and refer 851 // to it. 852 MCSymbol *DotSym = OutContext.CreateTempSymbol(); 853 OutStreamer.EmitLabel(DotSym); 854 855 // Now that we have emitted the label, lower the complex operand expression. 856 MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2)); 857 858 const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext); 859 const MCExpr *PICBase = 860 MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext); 861 DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext); 862 863 DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext), 864 DotExpr, OutContext); 865 866 EmitToStreamer(OutStreamer, MCInstBuilder(X86::ADD32ri) 867 .addReg(MI->getOperand(0).getReg()) 868 .addReg(MI->getOperand(1).getReg()) 869 .addExpr(DotExpr)); 870 return; 871 } 872 873 case TargetOpcode::STACKMAP: 874 return LowerSTACKMAP(OutStreamer, SM, *MI, Subtarget->is64Bit(), getSubtargetInfo()); 875 876 case TargetOpcode::PATCHPOINT: 877 return LowerPATCHPOINT(OutStreamer, SM, *MI, Subtarget->is64Bit(), getSubtargetInfo()); 878 879 case X86::MORESTACK_RET: 880 EmitToStreamer(OutStreamer, MCInstBuilder(getRetOpcode(*Subtarget))); 881 return; 882 883 case X86::MORESTACK_RET_RESTORE_R10: 884 // Return, then restore R10. 885 EmitToStreamer(OutStreamer, MCInstBuilder(getRetOpcode(*Subtarget))); 886 EmitToStreamer(OutStreamer, MCInstBuilder(X86::MOV64rr) 887 .addReg(X86::R10) 888 .addReg(X86::RAX)); 889 return; 890 891 case X86::SEH_PushReg: 892 OutStreamer.EmitWinCFIPushReg(RI->getSEHRegNum(MI->getOperand(0).getImm())); 893 return; 894 895 case X86::SEH_SaveReg: 896 OutStreamer.EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()), 897 MI->getOperand(1).getImm()); 898 return; 899 900 case X86::SEH_SaveXMM: 901 OutStreamer.EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()), 902 MI->getOperand(1).getImm()); 903 return; 904 905 case X86::SEH_StackAlloc: 906 OutStreamer.EmitWinCFIAllocStack(MI->getOperand(0).getImm()); 907 return; 908 909 case X86::SEH_SetFrame: 910 OutStreamer.EmitWinCFISetFrame(RI->getSEHRegNum(MI->getOperand(0).getImm()), 911 MI->getOperand(1).getImm()); 912 return; 913 914 case X86::SEH_PushFrame: 915 OutStreamer.EmitWinCFIPushFrame(MI->getOperand(0).getImm()); 916 return; 917 918 case X86::SEH_EndPrologue: 919 OutStreamer.EmitWinCFIEndProlog(); 920 return; 921 } 922 923 MCInst TmpInst; 924 MCInstLowering.Lower(MI, TmpInst); 925 EmitToStreamer(OutStreamer, TmpInst); 926 } 927