1 /* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 #include "Simplify.h" 8 9 #undef SkASSERT 10 #define SkASSERT(cond) while (!(cond)) { sk_throw(); } 11 12 // Terminology: 13 // A Path contains one of more Contours 14 // A Contour is made up of Segment array 15 // A Segment is described by a Verb and a Point array with 2, 3, or 4 points 16 // A Verb is one of Line, Quad(ratic), or Cubic 17 // A Segment contains a Span array 18 // A Span is describes a portion of a Segment using starting and ending T 19 // T values range from 0 to 1, where 0 is the first Point in the Segment 20 // An Edge is a Segment generated from a Span 21 22 // FIXME: remove once debugging is complete 23 #ifdef SK_DEBUG 24 int gDebugMaxWindSum = SK_MaxS32; 25 int gDebugMaxWindValue = SK_MaxS32; 26 #endif 27 28 #define PIN_ADD_T 0 29 #define TRY_ROTATE 1 30 #define ONE_PASS_COINCIDENCE_CHECK 0 31 #define APPROXIMATE_CUBICS 1 32 #define COMPACT_DEBUG_SORT 0 33 34 #define DEBUG_UNUSED 0 // set to expose unused functions 35 36 #if FORCE_RELEASE || defined SK_RELEASE 37 38 const bool gRunTestsInOneThread = false; 39 40 #define DEBUG_ACTIVE_OP 0 41 #define DEBUG_ACTIVE_SPANS 0 42 #define DEBUG_ACTIVE_SPANS_SHORT_FORM 0 43 #define DEBUG_ADD_INTERSECTING_TS 0 44 #define DEBUG_ADD_T_PAIR 0 45 #define DEBUG_ANGLE 0 46 #define DEBUG_AS_C_CODE 1 47 #define DEBUG_ASSEMBLE 0 48 #define DEBUG_CONCIDENT 0 49 #define DEBUG_CROSS 0 50 #define DEBUG_FLOW 0 51 #define DEBUG_MARK_DONE 0 52 #define DEBUG_PATH_CONSTRUCTION 0 53 #define DEBUG_SHOW_WINDING 0 54 #define DEBUG_SORT 0 55 #define DEBUG_SWAP_TOP 0 56 #define DEBUG_UNSORTABLE 0 57 #define DEBUG_WIND_BUMP 0 58 #define DEBUG_WINDING 0 59 #define DEBUG_WINDING_AT_T 0 60 61 #else 62 63 const bool gRunTestsInOneThread = true; 64 65 #define DEBUG_ACTIVE_OP 1 66 #define DEBUG_ACTIVE_SPANS 1 67 #define DEBUG_ACTIVE_SPANS_SHORT_FORM 0 68 #define DEBUG_ADD_INTERSECTING_TS 1 69 #define DEBUG_ADD_T_PAIR 1 70 #define DEBUG_ANGLE 1 71 #define DEBUG_AS_C_CODE 1 72 #define DEBUG_ASSEMBLE 1 73 #define DEBUG_CONCIDENT 1 74 #define DEBUG_CROSS 0 75 #define DEBUG_FLOW 1 76 #define DEBUG_MARK_DONE 1 77 #define DEBUG_PATH_CONSTRUCTION 1 78 #define DEBUG_SHOW_WINDING 0 79 #define DEBUG_SORT 1 80 #define DEBUG_SWAP_TOP 1 81 #define DEBUG_UNSORTABLE 1 82 #define DEBUG_WIND_BUMP 0 83 #define DEBUG_WINDING 1 84 #define DEBUG_WINDING_AT_T 1 85 86 #endif 87 88 #define DEBUG_DUMP (DEBUG_ACTIVE_OP | DEBUG_ACTIVE_SPANS | DEBUG_CONCIDENT | DEBUG_SORT | \ 89 DEBUG_PATH_CONSTRUCTION) 90 91 #if DEBUG_AS_C_CODE 92 #define CUBIC_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}}" 93 #define QUAD_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}}" 94 #define LINE_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}}" 95 #define PT_DEBUG_STR "{{%1.17g,%1.17g}}" 96 #else 97 #define CUBIC_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" 98 #define QUAD_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" 99 #define LINE_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g)" 100 #define PT_DEBUG_STR "(%1.9g,%1.9g)" 101 #endif 102 #define T_DEBUG_STR(t, n) #t "[" #n "]=%1.9g" 103 #define TX_DEBUG_STR(t) #t "[%d]=%1.9g" 104 #define CUBIC_DEBUG_DATA(c) c[0].fX, c[0].fY, c[1].fX, c[1].fY, c[2].fX, c[2].fY, c[3].fX, c[3].fY 105 #define QUAD_DEBUG_DATA(q) q[0].fX, q[0].fY, q[1].fX, q[1].fY, q[2].fX, q[2].fY 106 #define LINE_DEBUG_DATA(l) l[0].fX, l[0].fY, l[1].fX, l[1].fY 107 #define PT_DEBUG_DATA(i, n) i.fPt[n].x, i.fPt[n].y 108 109 #if DEBUG_DUMP 110 static const char* kLVerbStr[] = {"", "line", "quad", "cubic"}; 111 // static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"}; 112 static int gContourID; 113 static int gSegmentID; 114 #endif 115 116 #if DEBUG_SORT || DEBUG_SWAP_TOP 117 static int gDebugSortCountDefault = SK_MaxS32; 118 static int gDebugSortCount; 119 #endif 120 121 #if DEBUG_ACTIVE_OP 122 static const char* kShapeOpStr[] = {"diff", "sect", "union", "xor"}; 123 #endif 124 125 #ifndef DEBUG_TEST 126 #define DEBUG_TEST 0 127 #endif 128 129 #define MAKE_CONST_LINE(line, pts) \ 130 const _Line line = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}} 131 #define MAKE_CONST_QUAD(quad, pts) \ 132 const Quadratic quad = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \ 133 {pts[2].fX, pts[2].fY}} 134 #define MAKE_CONST_CUBIC(cubic, pts) \ 135 const Cubic cubic = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \ 136 {pts[2].fX, pts[2].fY}, {pts[3].fX, pts[3].fY}} 137 138 static int LineIntersect(const SkPoint a[2], const SkPoint b[2], 139 Intersections& intersections) { 140 MAKE_CONST_LINE(aLine, a); 141 MAKE_CONST_LINE(bLine, b); 142 return intersect(aLine, bLine, intersections); 143 } 144 145 static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2], 146 Intersections& intersections) { 147 MAKE_CONST_QUAD(aQuad, a); 148 MAKE_CONST_LINE(bLine, b); 149 return intersect(aQuad, bLine, intersections); 150 } 151 152 static int CubicLineIntersect(const SkPoint a[4], const SkPoint b[2], 153 Intersections& intersections) { 154 MAKE_CONST_CUBIC(aCubic, a); 155 MAKE_CONST_LINE(bLine, b); 156 return intersect(aCubic, bLine, intersections); 157 } 158 159 static int QuadIntersect(const SkPoint a[3], const SkPoint b[3], 160 Intersections& intersections) { 161 MAKE_CONST_QUAD(aQuad, a); 162 MAKE_CONST_QUAD(bQuad, b); 163 #define TRY_QUARTIC_SOLUTION 1 164 #if TRY_QUARTIC_SOLUTION 165 intersect2(aQuad, bQuad, intersections); 166 #else 167 intersect(aQuad, bQuad, intersections); 168 #endif 169 return intersections.fUsed; 170 } 171 172 #if APPROXIMATE_CUBICS 173 static int CubicQuadIntersect(const SkPoint a[4], const SkPoint b[3], 174 Intersections& intersections) { 175 MAKE_CONST_CUBIC(aCubic, a); 176 MAKE_CONST_QUAD(bQuad, b); 177 return intersect(aCubic, bQuad, intersections); 178 } 179 #endif 180 181 static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], Intersections& intersections) { 182 MAKE_CONST_CUBIC(aCubic, a); 183 MAKE_CONST_CUBIC(bCubic, b); 184 #if APPROXIMATE_CUBICS 185 intersect3(aCubic, bCubic, intersections); 186 #else 187 intersect(aCubic, bCubic, intersections); 188 #endif 189 return intersections.fUsed; 190 } 191 192 static int CubicIntersect(const SkPoint a[4], Intersections& intersections) { 193 MAKE_CONST_CUBIC(aCubic, a); 194 return intersect(aCubic, intersections); 195 } 196 197 static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, 198 SkScalar y, bool flipped, Intersections& intersections) { 199 MAKE_CONST_LINE(aLine, a); 200 return horizontalIntersect(aLine, left, right, y, flipped, intersections); 201 } 202 203 static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, 204 SkScalar y, bool flipped, Intersections& intersections) { 205 MAKE_CONST_QUAD(aQuad, a); 206 return horizontalIntersect(aQuad, left, right, y, flipped, intersections); 207 } 208 209 static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, 210 SkScalar y, bool flipped, Intersections& intersections) { 211 MAKE_CONST_CUBIC(aCubic, a); 212 return horizontalIntersect(aCubic, left, right, y, flipped, intersections); 213 } 214 215 static int (* const HSegmentIntersect[])(const SkPoint [], SkScalar , 216 SkScalar , SkScalar , bool , Intersections& ) = { 217 NULL, 218 HLineIntersect, 219 HQuadIntersect, 220 HCubicIntersect 221 }; 222 223 static int VLineIntersect(const SkPoint a[2], SkScalar top, SkScalar bottom, 224 SkScalar x, bool flipped, Intersections& intersections) { 225 MAKE_CONST_LINE(aLine, a); 226 return verticalIntersect(aLine, top, bottom, x, flipped, intersections); 227 } 228 229 static int VQuadIntersect(const SkPoint a[3], SkScalar top, SkScalar bottom, 230 SkScalar x, bool flipped, Intersections& intersections) { 231 MAKE_CONST_QUAD(aQuad, a); 232 return verticalIntersect(aQuad, top, bottom, x, flipped, intersections); 233 } 234 235 static int VCubicIntersect(const SkPoint a[4], SkScalar top, SkScalar bottom, 236 SkScalar x, bool flipped, Intersections& intersections) { 237 MAKE_CONST_CUBIC(aCubic, a); 238 return verticalIntersect(aCubic, top, bottom, x, flipped, intersections); 239 } 240 241 static int (* const VSegmentIntersect[])(const SkPoint [], SkScalar , 242 SkScalar , SkScalar , bool , Intersections& ) = { 243 NULL, 244 VLineIntersect, 245 VQuadIntersect, 246 VCubicIntersect 247 }; 248 249 static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) { 250 MAKE_CONST_LINE(line, a); 251 double x, y; 252 xy_at_t(line, t, x, y); 253 out->fX = SkDoubleToScalar(x); 254 out->fY = SkDoubleToScalar(y); 255 } 256 257 static void LineXYAtT(const SkPoint a[2], double t, _Point* out) { 258 MAKE_CONST_LINE(line, a); 259 xy_at_t(line, t, out->x, out->y); 260 } 261 262 static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) { 263 MAKE_CONST_QUAD(quad, a); 264 double x, y; 265 xy_at_t(quad, t, x, y); 266 out->fX = SkDoubleToScalar(x); 267 out->fY = SkDoubleToScalar(y); 268 } 269 270 static void QuadXYAtT(const SkPoint a[3], double t, _Point* out) { 271 MAKE_CONST_QUAD(quad, a); 272 xy_at_t(quad, t, out->x, out->y); 273 } 274 275 static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) { 276 MAKE_CONST_CUBIC(cubic, a); 277 double x, y; 278 xy_at_t(cubic, t, x, y); 279 out->fX = SkDoubleToScalar(x); 280 out->fY = SkDoubleToScalar(y); 281 } 282 283 static void CubicXYAtT(const SkPoint a[4], double t, _Point* out) { 284 MAKE_CONST_CUBIC(cubic, a); 285 xy_at_t(cubic, t, out->x, out->y); 286 } 287 288 static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = { 289 NULL, 290 LineXYAtT, 291 QuadXYAtT, 292 CubicXYAtT 293 }; 294 295 static void (* const SegmentXYAtT2[])(const SkPoint [], double , _Point* ) = { 296 NULL, 297 LineXYAtT, 298 QuadXYAtT, 299 CubicXYAtT 300 }; 301 302 static SkScalar LineXAtT(const SkPoint a[2], double t) { 303 MAKE_CONST_LINE(aLine, a); 304 double x; 305 xy_at_t(aLine, t, x, *(double*) 0); 306 return SkDoubleToScalar(x); 307 } 308 309 static SkScalar QuadXAtT(const SkPoint a[3], double t) { 310 MAKE_CONST_QUAD(quad, a); 311 double x; 312 xy_at_t(quad, t, x, *(double*) 0); 313 return SkDoubleToScalar(x); 314 } 315 316 static SkScalar CubicXAtT(const SkPoint a[4], double t) { 317 MAKE_CONST_CUBIC(cubic, a); 318 double x; 319 xy_at_t(cubic, t, x, *(double*) 0); 320 return SkDoubleToScalar(x); 321 } 322 323 static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = { 324 NULL, 325 LineXAtT, 326 QuadXAtT, 327 CubicXAtT 328 }; 329 330 static SkScalar LineYAtT(const SkPoint a[2], double t) { 331 MAKE_CONST_LINE(aLine, a); 332 double y; 333 xy_at_t(aLine, t, *(double*) 0, y); 334 return SkDoubleToScalar(y); 335 } 336 337 static SkScalar QuadYAtT(const SkPoint a[3], double t) { 338 MAKE_CONST_QUAD(quad, a); 339 double y; 340 xy_at_t(quad, t, *(double*) 0, y); 341 return SkDoubleToScalar(y); 342 } 343 344 static SkScalar CubicYAtT(const SkPoint a[4], double t) { 345 MAKE_CONST_CUBIC(cubic, a); 346 double y; 347 xy_at_t(cubic, t, *(double*) 0, y); 348 return SkDoubleToScalar(y); 349 } 350 351 static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = { 352 NULL, 353 LineYAtT, 354 QuadYAtT, 355 CubicYAtT 356 }; 357 358 static SkScalar LineDXAtT(const SkPoint a[2], double ) { 359 return a[1].fX - a[0].fX; 360 } 361 362 static SkScalar QuadDXAtT(const SkPoint a[3], double t) { 363 MAKE_CONST_QUAD(quad, a); 364 double x = dx_at_t(quad, t); 365 return SkDoubleToScalar(x); 366 } 367 368 static SkScalar CubicDXAtT(const SkPoint a[4], double t) { 369 MAKE_CONST_CUBIC(cubic, a); 370 double x = dx_at_t(cubic, t); 371 return SkDoubleToScalar(x); 372 } 373 374 static SkScalar (* const SegmentDXAtT[])(const SkPoint [], double ) = { 375 NULL, 376 LineDXAtT, 377 QuadDXAtT, 378 CubicDXAtT 379 }; 380 381 static SkScalar LineDYAtT(const SkPoint a[2], double ) { 382 return a[1].fY - a[0].fY; 383 } 384 385 static SkScalar QuadDYAtT(const SkPoint a[3], double t) { 386 MAKE_CONST_QUAD(quad, a); 387 double y = dy_at_t(quad, t); 388 return SkDoubleToScalar(y); 389 } 390 391 static SkScalar CubicDYAtT(const SkPoint a[4], double t) { 392 MAKE_CONST_CUBIC(cubic, a); 393 double y = dy_at_t(cubic, t); 394 return SkDoubleToScalar(y); 395 } 396 397 static SkScalar (* const SegmentDYAtT[])(const SkPoint [], double ) = { 398 NULL, 399 LineDYAtT, 400 QuadDYAtT, 401 CubicDYAtT 402 }; 403 404 static SkVector LineDXDYAtT(const SkPoint a[2], double ) { 405 return a[1] - a[0]; 406 } 407 408 static SkVector QuadDXDYAtT(const SkPoint a[3], double t) { 409 MAKE_CONST_QUAD(quad, a); 410 _Vector v = dxdy_at_t(quad, t); 411 return v.asSkVector(); 412 } 413 414 static SkVector CubicDXDYAtT(const SkPoint a[4], double t) { 415 MAKE_CONST_CUBIC(cubic, a); 416 _Vector v = dxdy_at_t(cubic, t); 417 return v.asSkVector(); 418 } 419 420 static SkVector (* const SegmentDXDYAtT[])(const SkPoint [], double ) = { 421 NULL, 422 LineDXDYAtT, 423 QuadDXDYAtT, 424 CubicDXDYAtT 425 }; 426 427 static void LineSubDivide(const SkPoint a[2], double startT, double endT, 428 SkPoint sub[2]) { 429 MAKE_CONST_LINE(aLine, a); 430 _Line dst; 431 sub_divide(aLine, startT, endT, dst); 432 sub[0].fX = SkDoubleToScalar(dst[0].x); 433 sub[0].fY = SkDoubleToScalar(dst[0].y); 434 sub[1].fX = SkDoubleToScalar(dst[1].x); 435 sub[1].fY = SkDoubleToScalar(dst[1].y); 436 } 437 438 static void QuadSubDivide(const SkPoint a[3], double startT, double endT, 439 SkPoint sub[3]) { 440 MAKE_CONST_QUAD(aQuad, a); 441 Quadratic dst; 442 sub_divide(aQuad, startT, endT, dst); 443 sub[0].fX = SkDoubleToScalar(dst[0].x); 444 sub[0].fY = SkDoubleToScalar(dst[0].y); 445 sub[1].fX = SkDoubleToScalar(dst[1].x); 446 sub[1].fY = SkDoubleToScalar(dst[1].y); 447 sub[2].fX = SkDoubleToScalar(dst[2].x); 448 sub[2].fY = SkDoubleToScalar(dst[2].y); 449 } 450 451 static void CubicSubDivide(const SkPoint a[4], double startT, double endT, 452 SkPoint sub[4]) { 453 MAKE_CONST_CUBIC(aCubic, a); 454 Cubic dst; 455 sub_divide(aCubic, startT, endT, dst); 456 sub[0].fX = SkDoubleToScalar(dst[0].x); 457 sub[0].fY = SkDoubleToScalar(dst[0].y); 458 sub[1].fX = SkDoubleToScalar(dst[1].x); 459 sub[1].fY = SkDoubleToScalar(dst[1].y); 460 sub[2].fX = SkDoubleToScalar(dst[2].x); 461 sub[2].fY = SkDoubleToScalar(dst[2].y); 462 sub[3].fX = SkDoubleToScalar(dst[3].x); 463 sub[3].fY = SkDoubleToScalar(dst[3].y); 464 } 465 466 static void (* const SegmentSubDivide[])(const SkPoint [], double , double , 467 SkPoint []) = { 468 NULL, 469 LineSubDivide, 470 QuadSubDivide, 471 CubicSubDivide 472 }; 473 474 static void LineSubDivideHD(const SkPoint a[2], double startT, double endT, _Line& dst) { 475 MAKE_CONST_LINE(aLine, a); 476 sub_divide(aLine, startT, endT, dst); 477 } 478 479 static void QuadSubDivideHD(const SkPoint a[3], double startT, double endT, Quadratic& dst) { 480 MAKE_CONST_QUAD(aQuad, a); 481 sub_divide(aQuad, startT, endT, dst); 482 } 483 484 static void CubicSubDivideHD(const SkPoint a[4], double startT, double endT, Cubic& dst) { 485 MAKE_CONST_CUBIC(aCubic, a); 486 sub_divide(aCubic, startT, endT, dst); 487 } 488 489 static SkPoint QuadTop(const SkPoint a[3], double startT, double endT) { 490 MAKE_CONST_QUAD(quad, a); 491 _Point topPt = top(quad, startT, endT); 492 return topPt.asSkPoint(); 493 } 494 495 static SkPoint CubicTop(const SkPoint a[3], double startT, double endT) { 496 MAKE_CONST_CUBIC(cubic, a); 497 _Point topPt = top(cubic, startT, endT); 498 return topPt.asSkPoint(); 499 } 500 501 static SkPoint (* SegmentTop[])(const SkPoint[], double , double ) = { 502 NULL, 503 NULL, 504 QuadTop, 505 CubicTop 506 }; 507 508 #if DEBUG_UNUSED 509 static void QuadSubBounds(const SkPoint a[3], double startT, double endT, 510 SkRect& bounds) { 511 SkPoint dst[3]; 512 QuadSubDivide(a, startT, endT, dst); 513 bounds.fLeft = bounds.fRight = dst[0].fX; 514 bounds.fTop = bounds.fBottom = dst[0].fY; 515 for (int index = 1; index < 3; ++index) { 516 bounds.growToInclude(dst[index].fX, dst[index].fY); 517 } 518 } 519 520 static void CubicSubBounds(const SkPoint a[4], double startT, double endT, 521 SkRect& bounds) { 522 SkPoint dst[4]; 523 CubicSubDivide(a, startT, endT, dst); 524 bounds.fLeft = bounds.fRight = dst[0].fX; 525 bounds.fTop = bounds.fBottom = dst[0].fY; 526 for (int index = 1; index < 4; ++index) { 527 bounds.growToInclude(dst[index].fX, dst[index].fY); 528 } 529 } 530 #endif 531 532 static SkPath::Verb QuadReduceOrder(const SkPoint a[3], 533 SkTDArray<SkPoint>& reducePts) { 534 MAKE_CONST_QUAD(aQuad, a); 535 Quadratic dst; 536 int order = reduceOrder(aQuad, dst, kReduceOrder_TreatAsFill); 537 if (order == 2) { // quad became line 538 for (int index = 0; index < order; ++index) { 539 SkPoint* pt = reducePts.append(); 540 pt->fX = SkDoubleToScalar(dst[index].x); 541 pt->fY = SkDoubleToScalar(dst[index].y); 542 } 543 } 544 return (SkPath::Verb) (order - 1); 545 } 546 547 static SkPath::Verb CubicReduceOrder(const SkPoint a[4], 548 SkTDArray<SkPoint>& reducePts) { 549 MAKE_CONST_CUBIC(aCubic, a); 550 Cubic dst; 551 int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); 552 if (order == 2 || order == 3) { // cubic became line or quad 553 for (int index = 0; index < order; ++index) { 554 SkPoint* pt = reducePts.append(); 555 pt->fX = SkDoubleToScalar(dst[index].x); 556 pt->fY = SkDoubleToScalar(dst[index].y); 557 } 558 } 559 return (SkPath::Verb) (order - 1); 560 } 561 562 static bool QuadIsLinear(const SkPoint a[3]) { 563 MAKE_CONST_QUAD(aQuad, a); 564 return isLinear(aQuad, 0, 2); 565 } 566 567 static bool CubicIsLinear(const SkPoint a[4]) { 568 MAKE_CONST_CUBIC(aCubic, a); 569 return isLinear(aCubic, 0, 3); 570 } 571 572 static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) { 573 MAKE_CONST_LINE(aLine, a); 574 double x[2]; 575 xy_at_t(aLine, startT, x[0], *(double*) 0); 576 xy_at_t(aLine, endT, x[1], *(double*) 0); 577 return SkMinScalar((float) x[0], (float) x[1]); 578 } 579 580 static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) { 581 MAKE_CONST_QUAD(aQuad, a); 582 return (float) leftMostT(aQuad, startT, endT); 583 } 584 585 static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) { 586 MAKE_CONST_CUBIC(aCubic, a); 587 return (float) leftMostT(aCubic, startT, endT); 588 } 589 590 static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = { 591 NULL, 592 LineLeftMost, 593 QuadLeftMost, 594 CubicLeftMost 595 }; 596 597 #if 0 // currently unused 598 static int QuadRayIntersect(const SkPoint a[3], const SkPoint b[2], 599 Intersections& intersections) { 600 MAKE_CONST_QUAD(aQuad, a); 601 MAKE_CONST_LINE(bLine, b); 602 return intersectRay(aQuad, bLine, intersections); 603 } 604 #endif 605 606 static int QuadRayIntersect(const SkPoint a[3], const _Line& bLine, Intersections& intersections) { 607 MAKE_CONST_QUAD(aQuad, a); 608 return intersectRay(aQuad, bLine, intersections); 609 } 610 611 static int CubicRayIntersect(const SkPoint a[3], const _Line& bLine, Intersections& intersections) { 612 MAKE_CONST_CUBIC(aCubic, a); 613 return intersectRay(aCubic, bLine, intersections); 614 } 615 616 static int (* const SegmentRayIntersect[])(const SkPoint [], const _Line& , Intersections&) = { 617 NULL, 618 NULL, 619 QuadRayIntersect, 620 CubicRayIntersect 621 }; 622 623 624 625 static bool LineVertical(const SkPoint a[2], double startT, double endT) { 626 MAKE_CONST_LINE(aLine, a); 627 double x[2]; 628 xy_at_t(aLine, startT, x[0], *(double*) 0); 629 xy_at_t(aLine, endT, x[1], *(double*) 0); 630 return AlmostEqualUlps((float) x[0], (float) x[1]); 631 } 632 633 static bool QuadVertical(const SkPoint a[3], double startT, double endT) { 634 SkPoint dst[3]; 635 QuadSubDivide(a, startT, endT, dst); 636 return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX); 637 } 638 639 static bool CubicVertical(const SkPoint a[4], double startT, double endT) { 640 SkPoint dst[4]; 641 CubicSubDivide(a, startT, endT, dst); 642 return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX) 643 && AlmostEqualUlps(dst[2].fX, dst[3].fX); 644 } 645 646 static bool (* const SegmentVertical[])(const SkPoint [], double , double) = { 647 NULL, 648 LineVertical, 649 QuadVertical, 650 CubicVertical 651 }; 652 653 class Segment; 654 655 struct Span { 656 Segment* fOther; 657 mutable SkPoint fPt; // lazily computed as needed 658 double fT; 659 double fOtherT; // value at fOther[fOtherIndex].fT 660 int fOtherIndex; // can't be used during intersection 661 int fWindSum; // accumulated from contours surrounding this one. 662 int fOppSum; // for binary operators: the opposite winding sum 663 int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident 664 int fOppValue; // normally 0 -- when binary coincident edges combine, opp value goes here 665 bool fDone; // if set, this span to next higher T has been processed 666 bool fUnsortableStart; // set when start is part of an unsortable pair 667 bool fUnsortableEnd; // set when end is part of an unsortable pair 668 bool fTiny; // if set, span may still be considered once for edge following 669 bool fLoop; // set when a cubic loops back to this point 670 }; 671 672 // sorting angles 673 // given angles of {dx dy ddx ddy dddx dddy} sort them 674 class Angle { 675 public: 676 // FIXME: this is bogus for quads and cubics 677 // if the quads and cubics' line from end pt to ctrl pt are coincident, 678 // there's no obvious way to determine the curve ordering from the 679 // derivatives alone. In particular, if one quadratic's coincident tangent 680 // is longer than the other curve, the final control point can place the 681 // longer curve on either side of the shorter one. 682 // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf 683 // may provide some help, but nothing has been figured out yet. 684 685 /*( 686 for quads and cubics, set up a parameterized line (e.g. LineParameters ) 687 for points [0] to [1]. See if point [2] is on that line, or on one side 688 or the other. If it both quads' end points are on the same side, choose 689 the shorter tangent. If the tangents are equal, choose the better second 690 tangent angle 691 692 maybe I could set up LineParameters lazily 693 */ 694 bool operator<(const Angle& rh) const { 695 double y = dy(); 696 double ry = rh.dy(); 697 if ((y < 0) ^ (ry < 0)) { // OPTIMIZATION: better to use y * ry < 0 ? 698 return y < 0; 699 } 700 double x = dx(); 701 double rx = rh.dx(); 702 if (y == 0 && ry == 0 && x * rx < 0) { 703 return x < rx; 704 } 705 double x_ry = x * ry; 706 double rx_y = rx * y; 707 double cmp = x_ry - rx_y; 708 if (!approximately_zero(cmp)) { 709 return cmp < 0; 710 } 711 if (approximately_zero(x_ry) && approximately_zero(rx_y) 712 && !approximately_zero_squared(cmp)) { 713 return cmp < 0; 714 } 715 // at this point, the initial tangent line is coincident 716 // see if edges curl away from each other 717 if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide) 718 || !approximately_zero(rh.fSide))) { 719 // FIXME: running demo will trigger this assertion 720 // (don't know if commenting out will trigger further assertion or not) 721 // commenting it out allows demo to run in release, though 722 // SkASSERT(fSide != rh.fSide); 723 return fSide < rh.fSide; 724 } 725 // see if either curve can be lengthened and try the tangent compare again 726 if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical 727 && (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting 728 Angle longer = *this; 729 Angle rhLonger = rh; 730 if (longer.lengthen() | rhLonger.lengthen()) { 731 return longer < rhLonger; 732 } 733 #if 0 734 // what if we extend in the other direction? 735 longer = *this; 736 rhLonger = rh; 737 if (longer.reverseLengthen() | rhLonger.reverseLengthen()) { 738 return longer < rhLonger; 739 } 740 #endif 741 } 742 if ((fVerb == SkPath::kLine_Verb && approximately_zero(x) && approximately_zero(y)) 743 || (rh.fVerb == SkPath::kLine_Verb 744 && approximately_zero(rx) && approximately_zero(ry))) { 745 // See general unsortable comment below. This case can happen when 746 // one line has a non-zero change in t but no change in x and y. 747 fUnsortable = true; 748 rh.fUnsortable = true; 749 return this < &rh; // even with no solution, return a stable sort 750 } 751 if ((*rh.fSpans)[SkMin32(rh.fStart, rh.fEnd)].fTiny 752 || (*fSpans)[SkMin32(fStart, fEnd)].fTiny) { 753 fUnsortable = true; 754 rh.fUnsortable = true; 755 return this < &rh; // even with no solution, return a stable sort 756 } 757 SkASSERT(fVerb >= SkPath::kQuad_Verb); 758 SkASSERT(rh.fVerb >= SkPath::kQuad_Verb); 759 // FIXME: until I can think of something better, project a ray from the 760 // end of the shorter tangent to midway between the end points 761 // through both curves and use the resulting angle to sort 762 // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive 763 double len = fTangent1.normalSquared(); 764 double rlen = rh.fTangent1.normalSquared(); 765 _Line ray; 766 Intersections i, ri; 767 int roots, rroots; 768 bool flip = false; 769 do { 770 bool useThis = (len < rlen) ^ flip; 771 const Cubic& part = useThis ? fCurvePart : rh.fCurvePart; 772 SkPath::Verb partVerb = useThis ? fVerb : rh.fVerb; 773 ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ? 774 part[2] : part[1]; 775 ray[1].x = (part[0].x + part[partVerb].x) / 2; 776 ray[1].y = (part[0].y + part[partVerb].y) / 2; 777 SkASSERT(ray[0] != ray[1]); 778 roots = (*SegmentRayIntersect[fVerb])(fPts, ray, i); 779 rroots = (*SegmentRayIntersect[rh.fVerb])(rh.fPts, ray, ri); 780 } while ((roots == 0 || rroots == 0) && (flip ^= true)); 781 if (roots == 0 || rroots == 0) { 782 // FIXME: we don't have a solution in this case. The interim solution 783 // is to mark the edges as unsortable, exclude them from this and 784 // future computations, and allow the returned path to be fragmented 785 fUnsortable = true; 786 rh.fUnsortable = true; 787 return this < &rh; // even with no solution, return a stable sort 788 } 789 _Point loc; 790 double best = SK_ScalarInfinity; 791 double dx, dy, dist; 792 int index; 793 for (index = 0; index < roots; ++index) { 794 (*SegmentXYAtT2[fVerb])(fPts, i.fT[0][index], &loc); 795 dx = loc.x - ray[0].x; 796 dy = loc.y - ray[0].y; 797 dist = dx * dx + dy * dy; 798 if (best > dist) { 799 best = dist; 800 } 801 } 802 for (index = 0; index < rroots; ++index) { 803 (*SegmentXYAtT2[rh.fVerb])(rh.fPts, ri.fT[0][index], &loc); 804 dx = loc.x - ray[0].x; 805 dy = loc.y - ray[0].y; 806 dist = dx * dx + dy * dy; 807 if (best > dist) { 808 return fSide < 0; 809 } 810 } 811 return fSide > 0; 812 } 813 814 double dx() const { 815 return fTangent1.dx(); 816 } 817 818 double dy() const { 819 return fTangent1.dy(); 820 } 821 822 int end() const { 823 return fEnd; 824 } 825 826 bool isHorizontal() const { 827 return dy() == 0 && fVerb == SkPath::kLine_Verb; 828 } 829 830 bool lengthen() { 831 int newEnd = fEnd; 832 if (fStart < fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { 833 fEnd = newEnd; 834 setSpans(); 835 return true; 836 } 837 return false; 838 } 839 840 bool reverseLengthen() { 841 if (fReversed) { 842 return false; 843 } 844 int newEnd = fStart; 845 if (fStart > fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { 846 fEnd = newEnd; 847 fReversed = true; 848 setSpans(); 849 return true; 850 } 851 return false; 852 } 853 854 void set(const SkPoint* orig, SkPath::Verb verb, const Segment* segment, 855 int start, int end, const SkTDArray<Span>& spans) { 856 fSegment = segment; 857 fStart = start; 858 fEnd = end; 859 fPts = orig; 860 fVerb = verb; 861 fSpans = &spans; 862 fReversed = false; 863 fUnsortable = false; 864 setSpans(); 865 } 866 867 868 void setSpans() { 869 double startT = (*fSpans)[fStart].fT; 870 double endT = (*fSpans)[fEnd].fT; 871 switch (fVerb) { 872 case SkPath::kLine_Verb: 873 _Line l; 874 LineSubDivideHD(fPts, startT, endT, l); 875 // OPTIMIZATION: for pure line compares, we never need fTangent1.c 876 fTangent1.lineEndPoints(l); 877 fSide = 0; 878 break; 879 case SkPath::kQuad_Verb: { 880 Quadratic& quad = (Quadratic&)fCurvePart; 881 QuadSubDivideHD(fPts, startT, endT, quad); 882 fTangent1.quadEndPoints(quad, 0, 1); 883 if (dx() == 0 && dy() == 0) { 884 fTangent1.quadEndPoints(quad); 885 } 886 fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -- compare sign only 887 } break; 888 case SkPath::kCubic_Verb: { 889 int nextC = 2; 890 CubicSubDivideHD(fPts, startT, endT, fCurvePart); 891 fTangent1.cubicEndPoints(fCurvePart, 0, 1); 892 if (dx() == 0 && dy() == 0) { 893 fTangent1.cubicEndPoints(fCurvePart, 0, 2); 894 nextC = 3; 895 if (dx() == 0 && dy() == 0) { 896 fTangent1.cubicEndPoints(fCurvePart, 0, 3); 897 } 898 } 899 fSide = -fTangent1.pointDistance(fCurvePart[nextC]); // compare sign only 900 if (nextC == 2 && approximately_zero(fSide)) { 901 fSide = -fTangent1.pointDistance(fCurvePart[3]); 902 } 903 } break; 904 default: 905 SkASSERT(0); 906 } 907 fUnsortable = dx() == 0 && dy() == 0; 908 if (fUnsortable) { 909 return; 910 } 911 SkASSERT(fStart != fEnd); 912 int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro? 913 for (int index = fStart; index != fEnd; index += step) { 914 #if 1 915 const Span& thisSpan = (*fSpans)[index]; 916 const Span& nextSpan = (*fSpans)[index + step]; 917 if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) { 918 continue; 919 } 920 fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd; 921 #if DEBUG_UNSORTABLE 922 if (fUnsortable) { 923 SkPoint iPt, ePt; 924 (*SegmentXYAtT[fVerb])(fPts, thisSpan.fT, &iPt); 925 (*SegmentXYAtT[fVerb])(fPts, nextSpan.fT, &ePt); 926 SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, 927 index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); 928 } 929 #endif 930 return; 931 #else 932 if ((*fSpans)[index].fUnsortableStart) { 933 fUnsortable = true; 934 return; 935 } 936 #endif 937 } 938 #if 1 939 #if DEBUG_UNSORTABLE 940 SkPoint iPt, ePt; 941 (*SegmentXYAtT[fVerb])(fPts, startT, &iPt); 942 (*SegmentXYAtT[fVerb])(fPts, endT, &ePt); 943 SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, 944 fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); 945 #endif 946 fUnsortable = true; 947 #endif 948 } 949 950 Segment* segment() const { 951 return const_cast<Segment*>(fSegment); 952 } 953 954 int sign() const { 955 return SkSign32(fStart - fEnd); 956 } 957 958 const SkTDArray<Span>* spans() const { 959 return fSpans; 960 } 961 962 int start() const { 963 return fStart; 964 } 965 966 bool unsortable() const { 967 return fUnsortable; 968 } 969 970 #if DEBUG_ANGLE 971 const SkPoint* pts() const { 972 return fPts; 973 } 974 975 SkPath::Verb verb() const { 976 return fVerb; 977 } 978 979 void debugShow(const SkPoint& a) const { 980 SkDebugf(" d=(%1.9g,%1.9g) side=%1.9g\n", dx(), dy(), fSide); 981 } 982 #endif 983 984 private: 985 const SkPoint* fPts; 986 Cubic fCurvePart; 987 SkPath::Verb fVerb; 988 double fSide; 989 LineParameters fTangent1; 990 const SkTDArray<Span>* fSpans; 991 const Segment* fSegment; 992 int fStart; 993 int fEnd; 994 bool fReversed; 995 mutable bool fUnsortable; // this alone is editable by the less than operator 996 }; 997 998 // Bounds, unlike Rect, does not consider a line to be empty. 999 struct Bounds : public SkRect { 1000 static bool Intersects(const Bounds& a, const Bounds& b) { 1001 return a.fLeft <= b.fRight && b.fLeft <= a.fRight && 1002 a.fTop <= b.fBottom && b.fTop <= a.fBottom; 1003 } 1004 1005 void add(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { 1006 if (left < fLeft) { 1007 fLeft = left; 1008 } 1009 if (top < fTop) { 1010 fTop = top; 1011 } 1012 if (right > fRight) { 1013 fRight = right; 1014 } 1015 if (bottom > fBottom) { 1016 fBottom = bottom; 1017 } 1018 } 1019 1020 void add(const Bounds& toAdd) { 1021 add(toAdd.fLeft, toAdd.fTop, toAdd.fRight, toAdd.fBottom); 1022 } 1023 1024 void add(const SkPoint& pt) { 1025 if (pt.fX < fLeft) fLeft = pt.fX; 1026 if (pt.fY < fTop) fTop = pt.fY; 1027 if (pt.fX > fRight) fRight = pt.fX; 1028 if (pt.fY > fBottom) fBottom = pt.fY; 1029 } 1030 1031 bool isEmpty() { 1032 return fLeft > fRight || fTop > fBottom 1033 || (fLeft == fRight && fTop == fBottom) 1034 || sk_double_isnan(fLeft) || sk_double_isnan(fRight) 1035 || sk_double_isnan(fTop) || sk_double_isnan(fBottom); 1036 } 1037 1038 void setCubicBounds(const SkPoint a[4]) { 1039 _Rect dRect; 1040 MAKE_CONST_CUBIC(cubic, a); 1041 dRect.setBounds(cubic); 1042 set((float) dRect.left, (float) dRect.top, (float) dRect.right, 1043 (float) dRect.bottom); 1044 } 1045 1046 void setLineBounds(const SkPoint a[2]) { 1047 setPoint(a[0]); 1048 add(a[1]); 1049 } 1050 1051 void setQuadBounds(const SkPoint a[3]) { 1052 MAKE_CONST_QUAD(quad, a); 1053 _Rect dRect; 1054 dRect.setBounds(quad); 1055 set((float) dRect.left, (float) dRect.top, (float) dRect.right, 1056 (float) dRect.bottom); 1057 } 1058 1059 void setPoint(const SkPoint& pt) { 1060 fLeft = fRight = pt.fX; 1061 fTop = fBottom = pt.fY; 1062 } 1063 }; 1064 1065 static void (Bounds::*setSegmentBounds[])(const SkPoint[]) = { 1066 NULL, 1067 &Bounds::setLineBounds, 1068 &Bounds::setQuadBounds, 1069 &Bounds::setCubicBounds 1070 }; 1071 1072 // OPTIMIZATION: does the following also work, and is it any faster? 1073 // return outerWinding * innerWinding > 0 1074 // || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) < 0))) 1075 static bool useInnerWinding(int outerWinding, int innerWinding) { 1076 SkASSERT(outerWinding != SK_MaxS32); 1077 SkASSERT(innerWinding != SK_MaxS32); 1078 int absOut = abs(outerWinding); 1079 int absIn = abs(innerWinding); 1080 bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn; 1081 #if 0 && DEBUG_WINDING 1082 if (outerWinding * innerWinding < 0) { 1083 SkDebugf("%s outer=%d inner=%d result=%s\n", __FUNCTION__, 1084 outerWinding, innerWinding, result ? "true" : "false"); 1085 } 1086 #endif 1087 return result; 1088 } 1089 1090 #define F (false) // discard the edge 1091 #define T (true) // keep the edge 1092 1093 static const bool gUnaryActiveEdge[2][2] = { 1094 // from=0 from=1 1095 // to=0,1 to=0,1 1096 {F, T}, {T, F}, 1097 }; 1098 1099 static const bool gActiveEdge[kShapeOp_Count][2][2][2][2] = { 1100 // miFrom=0 miFrom=1 1101 // miTo=0 miTo=1 miTo=0 miTo=1 1102 // suFrom=0 1 suFrom=0 1 suFrom=0 1 suFrom=0 1 1103 // suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 1104 {{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}, // mi - su 1105 {{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}, // mi & su 1106 {{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}, // mi | su 1107 {{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}, // mi ^ su 1108 }; 1109 1110 #undef F 1111 #undef T 1112 1113 // wrap path to keep track of whether the contour is initialized and non-empty 1114 class PathWrapper { 1115 public: 1116 PathWrapper(SkPath& path) 1117 : fPathPtr(&path) 1118 , fCloses(0) 1119 , fMoves(0) 1120 { 1121 init(); 1122 } 1123 1124 void close() { 1125 if (!fHasMove) { 1126 return; 1127 } 1128 bool callClose = isClosed(); 1129 lineTo(); 1130 if (fEmpty) { 1131 return; 1132 } 1133 if (callClose) { 1134 #if DEBUG_PATH_CONSTRUCTION 1135 SkDebugf("path.close();\n"); 1136 #endif 1137 fPathPtr->close(); 1138 fCloses++; 1139 } 1140 init(); 1141 } 1142 1143 void cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkPoint& pt3) { 1144 lineTo(); 1145 moveTo(); 1146 fDefer[1] = pt3; 1147 nudge(); 1148 fDefer[0] = fDefer[1]; 1149 #if DEBUG_PATH_CONSTRUCTION 1150 SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n", 1151 pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY); 1152 #endif 1153 fPathPtr->cubicTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY); 1154 fEmpty = false; 1155 } 1156 1157 void deferredLine(const SkPoint& pt) { 1158 if (pt == fDefer[1]) { 1159 return; 1160 } 1161 if (changedSlopes(pt)) { 1162 lineTo(); 1163 fDefer[0] = fDefer[1]; 1164 } 1165 fDefer[1] = pt; 1166 } 1167 1168 void deferredMove(const SkPoint& pt) { 1169 fMoved = true; 1170 fHasMove = true; 1171 fEmpty = true; 1172 fDefer[0] = fDefer[1] = pt; 1173 } 1174 1175 void deferredMoveLine(const SkPoint& pt) { 1176 if (!fHasMove) { 1177 deferredMove(pt); 1178 } 1179 deferredLine(pt); 1180 } 1181 1182 bool hasMove() const { 1183 return fHasMove; 1184 } 1185 1186 void init() { 1187 fEmpty = true; 1188 fHasMove = false; 1189 fMoved = false; 1190 } 1191 1192 bool isClosed() const { 1193 return !fEmpty && fFirstPt == fDefer[1]; 1194 } 1195 1196 void lineTo() { 1197 if (fDefer[0] == fDefer[1]) { 1198 return; 1199 } 1200 moveTo(); 1201 nudge(); 1202 fEmpty = false; 1203 #if DEBUG_PATH_CONSTRUCTION 1204 SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1].fX, fDefer[1].fY); 1205 #endif 1206 fPathPtr->lineTo(fDefer[1].fX, fDefer[1].fY); 1207 fDefer[0] = fDefer[1]; 1208 } 1209 1210 const SkPath* nativePath() const { 1211 return fPathPtr; 1212 } 1213 1214 void nudge() { 1215 if (fEmpty || !AlmostEqualUlps(fDefer[1].fX, fFirstPt.fX) 1216 || !AlmostEqualUlps(fDefer[1].fY, fFirstPt.fY)) { 1217 return; 1218 } 1219 fDefer[1] = fFirstPt; 1220 } 1221 1222 void quadTo(const SkPoint& pt1, const SkPoint& pt2) { 1223 lineTo(); 1224 moveTo(); 1225 fDefer[1] = pt2; 1226 nudge(); 1227 fDefer[0] = fDefer[1]; 1228 #if DEBUG_PATH_CONSTRUCTION 1229 SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n", 1230 pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY); 1231 #endif 1232 fPathPtr->quadTo(pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY); 1233 fEmpty = false; 1234 } 1235 1236 bool someAssemblyRequired() const { 1237 return fCloses < fMoves; 1238 } 1239 1240 protected: 1241 bool changedSlopes(const SkPoint& pt) const { 1242 if (fDefer[0] == fDefer[1]) { 1243 return false; 1244 } 1245 SkScalar deferDx = fDefer[1].fX - fDefer[0].fX; 1246 SkScalar deferDy = fDefer[1].fY - fDefer[0].fY; 1247 SkScalar lineDx = pt.fX - fDefer[1].fX; 1248 SkScalar lineDy = pt.fY - fDefer[1].fY; 1249 return deferDx * lineDy != deferDy * lineDx; 1250 } 1251 1252 void moveTo() { 1253 if (!fMoved) { 1254 return; 1255 } 1256 fFirstPt = fDefer[0]; 1257 #if DEBUG_PATH_CONSTRUCTION 1258 SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fDefer[0].fX, fDefer[0].fY); 1259 #endif 1260 fPathPtr->moveTo(fDefer[0].fX, fDefer[0].fY); 1261 fMoved = false; 1262 fMoves++; 1263 } 1264 1265 private: 1266 SkPath* fPathPtr; 1267 SkPoint fDefer[2]; 1268 SkPoint fFirstPt; 1269 int fCloses; 1270 int fMoves; 1271 bool fEmpty; 1272 bool fHasMove; 1273 bool fMoved; 1274 }; 1275 1276 class Segment { 1277 public: 1278 Segment() { 1279 #if DEBUG_DUMP 1280 fID = ++gSegmentID; 1281 #endif 1282 } 1283 1284 bool operator<(const Segment& rh) const { 1285 return fBounds.fTop < rh.fBounds.fTop; 1286 } 1287 1288 bool activeAngle(int index, int& done, SkTDArray<Angle>& angles) { 1289 if (activeAngleInner(index, done, angles)) { 1290 return true; 1291 } 1292 int lesser = index; 1293 while (--lesser >= 0 && equalPoints(index, lesser)) { 1294 if (activeAngleOther(lesser, done, angles)) { 1295 return true; 1296 } 1297 } 1298 lesser = index; 1299 do { 1300 if (activeAngleOther(index, done, angles)) { 1301 return true; 1302 } 1303 } while (++index < fTs.count() && equalPoints(index, lesser)); 1304 return false; 1305 } 1306 1307 bool activeAngleOther(int index, int& done, SkTDArray<Angle>& angles) { 1308 Span* span = &fTs[index]; 1309 Segment* other = span->fOther; 1310 int oIndex = span->fOtherIndex; 1311 return other->activeAngleInner(oIndex, done, angles); 1312 } 1313 1314 bool activeAngleInner(int index, int& done, SkTDArray<Angle>& angles) { 1315 int next = nextExactSpan(index, 1); 1316 if (next > 0) { 1317 Span& upSpan = fTs[index]; 1318 if (upSpan.fWindValue || upSpan.fOppValue) { 1319 addAngle(angles, index, next); 1320 if (upSpan.fDone || upSpan.fUnsortableEnd) { 1321 done++; 1322 } else if (upSpan.fWindSum != SK_MinS32) { 1323 return true; 1324 } 1325 } else if (!upSpan.fDone) { 1326 upSpan.fDone = true; 1327 fDoneSpans++; 1328 } 1329 } 1330 int prev = nextExactSpan(index, -1); 1331 // edge leading into junction 1332 if (prev >= 0) { 1333 Span& downSpan = fTs[prev]; 1334 if (downSpan.fWindValue || downSpan.fOppValue) { 1335 addAngle(angles, index, prev); 1336 if (downSpan.fDone) { 1337 done++; 1338 } else if (downSpan.fWindSum != SK_MinS32) { 1339 return true; 1340 } 1341 } else if (!downSpan.fDone) { 1342 downSpan.fDone = true; 1343 fDoneSpans++; 1344 } 1345 } 1346 return false; 1347 } 1348 1349 SkPoint activeLeftTop(bool onlySortable, int* firstT) const { 1350 SkASSERT(!done()); 1351 SkPoint topPt = {SK_ScalarMax, SK_ScalarMax}; 1352 int count = fTs.count(); 1353 // see if either end is not done since we want smaller Y of the pair 1354 bool lastDone = true; 1355 bool lastUnsortable = false; 1356 double lastT = -1; 1357 for (int index = 0; index < count; ++index) { 1358 const Span& span = fTs[index]; 1359 if (onlySortable && (span.fUnsortableStart || lastUnsortable)) { 1360 goto next; 1361 } 1362 if (span.fDone && lastDone) { 1363 goto next; 1364 } 1365 if (approximately_negative(span.fT - lastT)) { 1366 goto next; 1367 } 1368 { 1369 const SkPoint& xy = xyAtT(&span); 1370 if (topPt.fY > xy.fY || (topPt.fY == xy.fY && topPt.fX > xy.fX)) { 1371 topPt = xy; 1372 if (firstT) { 1373 *firstT = index; 1374 } 1375 } 1376 if (fVerb != SkPath::kLine_Verb && !lastDone) { 1377 SkPoint curveTop = (*SegmentTop[fVerb])(fPts, lastT, span.fT); 1378 if (topPt.fY > curveTop.fY || (topPt.fY == curveTop.fY 1379 && topPt.fX > curveTop.fX)) { 1380 topPt = curveTop; 1381 if (firstT) { 1382 *firstT = index; 1383 } 1384 } 1385 } 1386 lastT = span.fT; 1387 } 1388 next: 1389 lastDone = span.fDone; 1390 lastUnsortable = span.fUnsortableEnd; 1391 } 1392 return topPt; 1393 } 1394 1395 bool activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, ShapeOp op) { 1396 int sumMiWinding = updateWinding(endIndex, index); 1397 int sumSuWinding = updateOppWinding(endIndex, index); 1398 if (fOperand) { 1399 SkTSwap<int>(sumMiWinding, sumSuWinding); 1400 } 1401 int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; 1402 return activeOp(xorMiMask, xorSuMask, index, endIndex, op, sumMiWinding, sumSuWinding, 1403 maxWinding, sumWinding, oppMaxWinding, oppSumWinding); 1404 } 1405 1406 bool activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, ShapeOp op, 1407 int& sumMiWinding, int& sumSuWinding, 1408 int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) { 1409 setUpWindings(index, endIndex, sumMiWinding, sumSuWinding, 1410 maxWinding, sumWinding, oppMaxWinding, oppSumWinding); 1411 bool miFrom; 1412 bool miTo; 1413 bool suFrom; 1414 bool suTo; 1415 if (operand()) { 1416 miFrom = (oppMaxWinding & xorMiMask) != 0; 1417 miTo = (oppSumWinding & xorMiMask) != 0; 1418 suFrom = (maxWinding & xorSuMask) != 0; 1419 suTo = (sumWinding & xorSuMask) != 0; 1420 } else { 1421 miFrom = (maxWinding & xorMiMask) != 0; 1422 miTo = (sumWinding & xorMiMask) != 0; 1423 suFrom = (oppMaxWinding & xorSuMask) != 0; 1424 suTo = (oppSumWinding & xorSuMask) != 0; 1425 } 1426 bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo]; 1427 #if DEBUG_ACTIVE_OP 1428 SkDebugf("%s op=%s miFrom=%d miTo=%d suFrom=%d suTo=%d result=%d\n", __FUNCTION__, 1429 kShapeOpStr[op], miFrom, miTo, suFrom, suTo, result); 1430 #endif 1431 SkASSERT(result != -1); 1432 return result; 1433 } 1434 1435 bool activeWinding(int index, int endIndex) { 1436 int sumWinding = updateWinding(endIndex, index); 1437 int maxWinding; 1438 return activeWinding(index, endIndex, maxWinding, sumWinding); 1439 } 1440 1441 bool activeWinding(int index, int endIndex, int& maxWinding, int& sumWinding) { 1442 setUpWinding(index, endIndex, maxWinding, sumWinding); 1443 bool from = maxWinding != 0; 1444 bool to = sumWinding != 0; 1445 bool result = gUnaryActiveEdge[from][to]; 1446 SkASSERT(result != -1); 1447 return result; 1448 } 1449 1450 void addAngle(SkTDArray<Angle>& angles, int start, int end) const { 1451 SkASSERT(start != end); 1452 Angle* angle = angles.append(); 1453 #if DEBUG_ANGLE 1454 if (angles.count() > 1 && !fTs[start].fTiny) { 1455 SkPoint angle0Pt, newPt; 1456 (*SegmentXYAtT[angles[0].verb()])(angles[0].pts(), 1457 (*angles[0].spans())[angles[0].start()].fT, &angle0Pt); 1458 (*SegmentXYAtT[fVerb])(fPts, fTs[start].fT, &newPt); 1459 SkASSERT(AlmostEqualUlps(angle0Pt.fX, newPt.fX)); 1460 SkASSERT(AlmostEqualUlps(angle0Pt.fY, newPt.fY)); 1461 } 1462 #endif 1463 angle->set(fPts, fVerb, this, start, end, fTs); 1464 } 1465 1466 void addCancelOutsides(double tStart, double oStart, Segment& other, 1467 double oEnd) { 1468 int tIndex = -1; 1469 int tCount = fTs.count(); 1470 int oIndex = -1; 1471 int oCount = other.fTs.count(); 1472 do { 1473 ++tIndex; 1474 } while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tCount); 1475 int tIndexStart = tIndex; 1476 do { 1477 ++oIndex; 1478 } while (!approximately_negative(oStart - other.fTs[oIndex].fT) && oIndex < oCount); 1479 int oIndexStart = oIndex; 1480 double nextT; 1481 do { 1482 nextT = fTs[++tIndex].fT; 1483 } while (nextT < 1 && approximately_negative(nextT - tStart)); 1484 double oNextT; 1485 do { 1486 oNextT = other.fTs[++oIndex].fT; 1487 } while (oNextT < 1 && approximately_negative(oNextT - oStart)); 1488 // at this point, spans before and after are at: 1489 // fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex] 1490 // if tIndexStart == 0, no prior span 1491 // if nextT == 1, no following span 1492 1493 // advance the span with zero winding 1494 // if the following span exists (not past the end, non-zero winding) 1495 // connect the two edges 1496 if (!fTs[tIndexStart].fWindValue) { 1497 if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) { 1498 #if DEBUG_CONCIDENT 1499 SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", 1500 __FUNCTION__, fID, other.fID, tIndexStart - 1, 1501 fTs[tIndexStart].fT, xyAtT(tIndexStart).fX, 1502 xyAtT(tIndexStart).fY); 1503 #endif 1504 addTPair(fTs[tIndexStart].fT, other, other.fTs[oIndex].fT, false, 1505 fTs[tIndexStart].fPt); 1506 } 1507 if (nextT < 1 && fTs[tIndex].fWindValue) { 1508 #if DEBUG_CONCIDENT 1509 SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", 1510 __FUNCTION__, fID, other.fID, tIndex, 1511 fTs[tIndex].fT, xyAtT(tIndex).fX, 1512 xyAtT(tIndex).fY); 1513 #endif 1514 addTPair(fTs[tIndex].fT, other, other.fTs[oIndexStart].fT, false, fTs[tIndex].fPt); 1515 } 1516 } else { 1517 SkASSERT(!other.fTs[oIndexStart].fWindValue); 1518 if (oIndexStart > 0 && other.fTs[oIndexStart - 1].fWindValue) { 1519 #if DEBUG_CONCIDENT 1520 SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", 1521 __FUNCTION__, fID, other.fID, oIndexStart - 1, 1522 other.fTs[oIndexStart].fT, other.xyAtT(oIndexStart).fX, 1523 other.xyAtT(oIndexStart).fY); 1524 other.debugAddTPair(other.fTs[oIndexStart].fT, *this, fTs[tIndex].fT); 1525 #endif 1526 } 1527 if (oNextT < 1 && other.fTs[oIndex].fWindValue) { 1528 #if DEBUG_CONCIDENT 1529 SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", 1530 __FUNCTION__, fID, other.fID, oIndex, 1531 other.fTs[oIndex].fT, other.xyAtT(oIndex).fX, 1532 other.xyAtT(oIndex).fY); 1533 other.debugAddTPair(other.fTs[oIndex].fT, *this, fTs[tIndexStart].fT); 1534 #endif 1535 } 1536 } 1537 } 1538 1539 void addCoinOutsides(const SkTDArray<double>& outsideTs, Segment& other, 1540 double oEnd) { 1541 // walk this to outsideTs[0] 1542 // walk other to outsideTs[1] 1543 // if either is > 0, add a pointer to the other, copying adjacent winding 1544 int tIndex = -1; 1545 int oIndex = -1; 1546 double tStart = outsideTs[0]; 1547 double oStart = outsideTs[1]; 1548 do { 1549 ++tIndex; 1550 } while (!approximately_negative(tStart - fTs[tIndex].fT)); 1551 SkPoint ptStart = fTs[tIndex].fPt; 1552 do { 1553 ++oIndex; 1554 } while (!approximately_negative(oStart - other.fTs[oIndex].fT)); 1555 if (tIndex > 0 || oIndex > 0 || fOperand != other.fOperand) { 1556 addTPair(tStart, other, oStart, false, ptStart); 1557 } 1558 tStart = fTs[tIndex].fT; 1559 oStart = other.fTs[oIndex].fT; 1560 do { 1561 double nextT; 1562 do { 1563 nextT = fTs[++tIndex].fT; 1564 } while (approximately_negative(nextT - tStart)); 1565 tStart = nextT; 1566 ptStart = fTs[tIndex].fPt; 1567 do { 1568 nextT = other.fTs[++oIndex].fT; 1569 } while (approximately_negative(nextT - oStart)); 1570 oStart = nextT; 1571 if (tStart == 1 && oStart == 1 && fOperand == other.fOperand) { 1572 break; 1573 } 1574 addTPair(tStart, other, oStart, false, ptStart); 1575 } while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oStart)); 1576 } 1577 1578 void addCubic(const SkPoint pts[4], bool operand, bool evenOdd) { 1579 init(pts, SkPath::kCubic_Verb, operand, evenOdd); 1580 fBounds.setCubicBounds(pts); 1581 } 1582 1583 /* SkPoint */ void addCurveTo(int start, int end, PathWrapper& path, bool active) const { 1584 SkPoint edge[4]; 1585 const SkPoint* ePtr; 1586 int lastT = fTs.count() - 1; 1587 if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end == 0)) { 1588 ePtr = fPts; 1589 } else { 1590 // OPTIMIZE? if not active, skip remainder and return xy_at_t(end) 1591 subDivide(start, end, edge); 1592 ePtr = edge; 1593 } 1594 if (active) { 1595 bool reverse = ePtr == fPts && start != 0; 1596 if (reverse) { 1597 path.deferredMoveLine(ePtr[fVerb]); 1598 switch (fVerb) { 1599 case SkPath::kLine_Verb: 1600 path.deferredLine(ePtr[0]); 1601 break; 1602 case SkPath::kQuad_Verb: 1603 path.quadTo(ePtr[1], ePtr[0]); 1604 break; 1605 case SkPath::kCubic_Verb: 1606 path.cubicTo(ePtr[2], ePtr[1], ePtr[0]); 1607 break; 1608 default: 1609 SkASSERT(0); 1610 } 1611 // return ePtr[0]; 1612 } else { 1613 path.deferredMoveLine(ePtr[0]); 1614 switch (fVerb) { 1615 case SkPath::kLine_Verb: 1616 path.deferredLine(ePtr[1]); 1617 break; 1618 case SkPath::kQuad_Verb: 1619 path.quadTo(ePtr[1], ePtr[2]); 1620 break; 1621 case SkPath::kCubic_Verb: 1622 path.cubicTo(ePtr[1], ePtr[2], ePtr[3]); 1623 break; 1624 default: 1625 SkASSERT(0); 1626 } 1627 } 1628 } 1629 // return ePtr[fVerb]; 1630 } 1631 1632 void addLine(const SkPoint pts[2], bool operand, bool evenOdd) { 1633 init(pts, SkPath::kLine_Verb, operand, evenOdd); 1634 fBounds.set(pts, 2); 1635 } 1636 1637 #if 0 1638 const SkPoint& addMoveTo(int tIndex, PathWrapper& path, bool active) const { 1639 const SkPoint& pt = xyAtT(tIndex); 1640 if (active) { 1641 path.deferredMove(pt); 1642 } 1643 return pt; 1644 } 1645 #endif 1646 1647 // add 2 to edge or out of range values to get T extremes 1648 void addOtherT(int index, double otherT, int otherIndex) { 1649 Span& span = fTs[index]; 1650 #if PIN_ADD_T 1651 if (precisely_less_than_zero(otherT)) { 1652 otherT = 0; 1653 } else if (precisely_greater_than_one(otherT)) { 1654 otherT = 1; 1655 } 1656 #endif 1657 span.fOtherT = otherT; 1658 span.fOtherIndex = otherIndex; 1659 } 1660 1661 void addQuad(const SkPoint pts[3], bool operand, bool evenOdd) { 1662 init(pts, SkPath::kQuad_Verb, operand, evenOdd); 1663 fBounds.setQuadBounds(pts); 1664 } 1665 1666 // Defer all coincident edge processing until 1667 // after normal intersections have been computed 1668 1669 // no need to be tricky; insert in normal T order 1670 // resolve overlapping ts when considering coincidence later 1671 1672 // add non-coincident intersection. Resulting edges are sorted in T. 1673 int addT(Segment* other, const SkPoint& pt, double& newT) { 1674 // FIXME: in the pathological case where there is a ton of intercepts, 1675 // binary search? 1676 int insertedAt = -1; 1677 size_t tCount = fTs.count(); 1678 #if PIN_ADD_T 1679 // FIXME: only do this pinning here (e.g. this is done also in quad/line intersect) 1680 if (precisely_less_than_zero(newT)) { 1681 newT = 0; 1682 } else if (precisely_greater_than_one(newT)) { 1683 newT = 1; 1684 } 1685 #endif 1686 for (size_t index = 0; index < tCount; ++index) { 1687 // OPTIMIZATION: if there are three or more identical Ts, then 1688 // the fourth and following could be further insertion-sorted so 1689 // that all the edges are clockwise or counterclockwise. 1690 // This could later limit segment tests to the two adjacent 1691 // neighbors, although it doesn't help with determining which 1692 // circular direction to go in. 1693 if (newT < fTs[index].fT) { 1694 insertedAt = index; 1695 break; 1696 } 1697 } 1698 Span* span; 1699 if (insertedAt >= 0) { 1700 span = fTs.insert(insertedAt); 1701 } else { 1702 insertedAt = tCount; 1703 span = fTs.append(); 1704 } 1705 span->fT = newT; 1706 span->fOther = other; 1707 span->fPt = pt; 1708 span->fWindSum = SK_MinS32; 1709 span->fOppSum = SK_MinS32; 1710 span->fWindValue = 1; 1711 span->fOppValue = 0; 1712 span->fTiny = false; 1713 span->fLoop = false; 1714 if ((span->fDone = newT == 1)) { 1715 ++fDoneSpans; 1716 } 1717 span->fUnsortableStart = false; 1718 span->fUnsortableEnd = false; 1719 int less = -1; 1720 while (&span[less + 1] - fTs.begin() > 0 && xyAtT(&span[less]) == xyAtT(span)) { 1721 #if 1 1722 if (span[less].fDone) { 1723 break; 1724 } 1725 double tInterval = newT - span[less].fT; 1726 if (precisely_negative(tInterval)) { 1727 break; 1728 } 1729 if (fVerb == SkPath::kCubic_Verb) { 1730 double tMid = newT - tInterval / 2; 1731 _Point midPt; 1732 CubicXYAtT(fPts, tMid, &midPt); 1733 if (!midPt.approximatelyEqual(xyAtT(span))) { 1734 break; 1735 } 1736 } 1737 span[less].fTiny = true; 1738 span[less].fDone = true; 1739 if (approximately_negative(newT - span[less].fT)) { 1740 if (approximately_greater_than_one(newT)) { 1741 span[less].fUnsortableStart = true; 1742 span[less - 1].fUnsortableEnd = true; 1743 } 1744 if (approximately_less_than_zero(span[less].fT)) { 1745 span[less + 1].fUnsortableStart = true; 1746 span[less].fUnsortableEnd = true; 1747 } 1748 } 1749 ++fDoneSpans; 1750 #else 1751 double tInterval = newT - span[less].fT; 1752 if (precisely_negative(tInterval)) { 1753 break; 1754 } 1755 if (fVerb == SkPath::kCubic_Verb) { 1756 double tMid = newT - tInterval / 2; 1757 _Point midPt; 1758 CubicXYAtT(fPts, tMid, &midPt); 1759 if (!midPt.approximatelyEqual(xyAtT(span))) { 1760 break; 1761 } 1762 } 1763 SkASSERT(span[less].fDone == span->fDone); 1764 if (span[less].fT == 0) { 1765 span->fT = newT = 0; 1766 } else { 1767 setSpanT(less, newT); 1768 } 1769 #endif 1770 --less; 1771 } 1772 int more = 1; 1773 while (fTs.end() - &span[more - 1] > 1 && xyAtT(&span[more]) == xyAtT(span)) { 1774 #if 1 1775 if (span[more - 1].fDone) { 1776 break; 1777 } 1778 double tEndInterval = span[more].fT - newT; 1779 if (precisely_negative(tEndInterval)) { 1780 break; 1781 } 1782 if (fVerb == SkPath::kCubic_Verb) { 1783 double tMid = newT - tEndInterval / 2; 1784 _Point midEndPt; 1785 CubicXYAtT(fPts, tMid, &midEndPt); 1786 if (!midEndPt.approximatelyEqual(xyAtT(span))) { 1787 break; 1788 } 1789 } 1790 span[more - 1].fTiny = true; 1791 span[more - 1].fDone = true; 1792 if (approximately_negative(span[more].fT - newT)) { 1793 if (approximately_greater_than_one(span[more].fT)) { 1794 span[more + 1].fUnsortableStart = true; 1795 span[more].fUnsortableEnd = true; 1796 } 1797 if (approximately_less_than_zero(newT)) { 1798 span[more].fUnsortableStart = true; 1799 span[more - 1].fUnsortableEnd = true; 1800 } 1801 } 1802 ++fDoneSpans; 1803 #else 1804 double tEndInterval = span[more].fT - newT; 1805 if (precisely_negative(tEndInterval)) { 1806 break; 1807 } 1808 if (fVerb == SkPath::kCubic_Verb) { 1809 double tMid = newT - tEndInterval / 2; 1810 _Point midEndPt; 1811 CubicXYAtT(fPts, tMid, &midEndPt); 1812 if (!midEndPt.approximatelyEqual(xyAtT(span))) { 1813 break; 1814 } 1815 } 1816 SkASSERT(span[more - 1].fDone == span[more].fDone); 1817 if (newT == 0) { 1818 setSpanT(more, 0); 1819 } else { 1820 span->fT = newT = span[more].fT; 1821 } 1822 #endif 1823 ++more; 1824 } 1825 return insertedAt; 1826 } 1827 1828 // set spans from start to end to decrement by one 1829 // note this walks other backwards 1830 // FIMXE: there's probably an edge case that can be constructed where 1831 // two span in one segment are separated by float epsilon on one span but 1832 // not the other, if one segment is very small. For this 1833 // case the counts asserted below may or may not be enough to separate the 1834 // spans. Even if the counts work out, what if the spans aren't correctly 1835 // sorted? It feels better in such a case to match the span's other span 1836 // pointer since both coincident segments must contain the same spans. 1837 void addTCancel(double startT, double endT, Segment& other, 1838 double oStartT, double oEndT) { 1839 SkASSERT(!approximately_negative(endT - startT)); 1840 SkASSERT(!approximately_negative(oEndT - oStartT)); 1841 bool binary = fOperand != other.fOperand; 1842 int index = 0; 1843 while (!approximately_negative(startT - fTs[index].fT)) { 1844 ++index; 1845 } 1846 int oIndex = other.fTs.count(); 1847 while (approximately_positive(other.fTs[--oIndex].fT - oEndT)) 1848 ; 1849 double tRatio = (oEndT - oStartT) / (endT - startT); 1850 Span* test = &fTs[index]; 1851 Span* oTest = &other.fTs[oIndex]; 1852 SkTDArray<double> outsideTs; 1853 SkTDArray<double> oOutsideTs; 1854 do { 1855 bool decrement = test->fWindValue && oTest->fWindValue && !binary; 1856 bool track = test->fWindValue || oTest->fWindValue; 1857 double testT = test->fT; 1858 double oTestT = oTest->fT; 1859 Span* span = test; 1860 do { 1861 if (decrement) { 1862 decrementSpan(span); 1863 } else if (track && span->fT < 1 && oTestT < 1) { 1864 TrackOutside(outsideTs, span->fT, oTestT); 1865 } 1866 span = &fTs[++index]; 1867 } while (approximately_negative(span->fT - testT)); 1868 Span* oSpan = oTest; 1869 double otherTMatchStart = oEndT - (span->fT - startT) * tRatio; 1870 double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio; 1871 SkDEBUGCODE(int originalWindValue = oSpan->fWindValue); 1872 while (approximately_negative(otherTMatchStart - oSpan->fT) 1873 && !approximately_negative(otherTMatchEnd - oSpan->fT)) { 1874 #ifdef SK_DEBUG 1875 SkASSERT(originalWindValue == oSpan->fWindValue); 1876 #endif 1877 if (decrement) { 1878 other.decrementSpan(oSpan); 1879 } else if (track && oSpan->fT < 1 && testT < 1) { 1880 TrackOutside(oOutsideTs, oSpan->fT, testT); 1881 } 1882 if (!oIndex) { 1883 break; 1884 } 1885 oSpan = &other.fTs[--oIndex]; 1886 } 1887 test = span; 1888 oTest = oSpan; 1889 } while (!approximately_negative(endT - test->fT)); 1890 SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT)); 1891 // FIXME: determine if canceled edges need outside ts added 1892 if (!done() && outsideTs.count()) { 1893 double tStart = outsideTs[0]; 1894 double oStart = outsideTs[1]; 1895 addCancelOutsides(tStart, oStart, other, oEndT); 1896 int count = outsideTs.count(); 1897 if (count > 2) { 1898 double tStart = outsideTs[count - 2]; 1899 double oStart = outsideTs[count - 1]; 1900 addCancelOutsides(tStart, oStart, other, oEndT); 1901 } 1902 } 1903 if (!other.done() && oOutsideTs.count()) { 1904 double tStart = oOutsideTs[0]; 1905 double oStart = oOutsideTs[1]; 1906 other.addCancelOutsides(tStart, oStart, *this, endT); 1907 } 1908 } 1909 1910 int addSelfT(Segment* other, const SkPoint& pt, double& newT) { 1911 int result = addT(other, pt, newT); 1912 Span* span = &fTs[result]; 1913 span->fLoop = true; 1914 return result; 1915 } 1916 1917 int addUnsortableT(Segment* other, bool start, const SkPoint& pt, double& newT) { 1918 int result = addT(other, pt, newT); 1919 Span* span = &fTs[result]; 1920 if (start) { 1921 if (result > 0) { 1922 span[result - 1].fUnsortableEnd = true; 1923 } 1924 span[result].fUnsortableStart = true; 1925 } else { 1926 span[result].fUnsortableEnd = true; 1927 if (result + 1 < fTs.count()) { 1928 span[result + 1].fUnsortableStart = true; 1929 } 1930 } 1931 return result; 1932 } 1933 1934 int bumpCoincidentThis(const Span* oTest, bool opp, int index, 1935 SkTDArray<double>& outsideTs) { 1936 int oWindValue = oTest->fWindValue; 1937 int oOppValue = oTest->fOppValue; 1938 if (opp) { 1939 SkTSwap<int>(oWindValue, oOppValue); 1940 } 1941 Span* const test = &fTs[index]; 1942 Span* end = test; 1943 const double oStartT = oTest->fT; 1944 do { 1945 if (bumpSpan(end, oWindValue, oOppValue)) { 1946 TrackOutside(outsideTs, end->fT, oStartT); 1947 } 1948 end = &fTs[++index]; 1949 } while (approximately_negative(end->fT - test->fT)); 1950 return index; 1951 } 1952 1953 // because of the order in which coincidences are resolved, this and other 1954 // may not have the same intermediate points. Compute the corresponding 1955 // intermediate T values (using this as the master, other as the follower) 1956 // and walk other conditionally -- hoping that it catches up in the end 1957 int bumpCoincidentOther(const Span* test, double oEndT, int& oIndex, 1958 SkTDArray<double>& oOutsideTs) { 1959 Span* const oTest = &fTs[oIndex]; 1960 Span* oEnd = oTest; 1961 const double startT = test->fT; 1962 const double oStartT = oTest->fT; 1963 while (!approximately_negative(oEndT - oEnd->fT) 1964 && approximately_negative(oEnd->fT - oStartT)) { 1965 zeroSpan(oEnd); 1966 TrackOutside(oOutsideTs, oEnd->fT, startT); 1967 oEnd = &fTs[++oIndex]; 1968 } 1969 return oIndex; 1970 } 1971 1972 // FIXME: need to test this case: 1973 // contourA has two segments that are coincident 1974 // contourB has two segments that are coincident in the same place 1975 // each ends up with +2/0 pairs for winding count 1976 // since logic below doesn't transfer count (only increments/decrements) can this be 1977 // resolved to +4/0 ? 1978 1979 // set spans from start to end to increment the greater by one and decrement 1980 // the lesser 1981 void addTCoincident(double startT, double endT, Segment& other, double oStartT, double oEndT) { 1982 SkASSERT(!approximately_negative(endT - startT)); 1983 SkASSERT(!approximately_negative(oEndT - oStartT)); 1984 bool opp = fOperand ^ other.fOperand; 1985 int index = 0; 1986 while (!approximately_negative(startT - fTs[index].fT)) { 1987 ++index; 1988 } 1989 int oIndex = 0; 1990 while (!approximately_negative(oStartT - other.fTs[oIndex].fT)) { 1991 ++oIndex; 1992 } 1993 Span* test = &fTs[index]; 1994 Span* oTest = &other.fTs[oIndex]; 1995 SkTDArray<double> outsideTs; 1996 SkTDArray<double> oOutsideTs; 1997 do { 1998 // if either span has an opposite value and the operands don't match, resolve first 1999 // SkASSERT(!test->fDone || !oTest->fDone); 2000 if (test->fDone || oTest->fDone) { 2001 index = advanceCoincidentThis(oTest, opp, index); 2002 oIndex = other.advanceCoincidentOther(test, oEndT, oIndex); 2003 } else { 2004 index = bumpCoincidentThis(oTest, opp, index, outsideTs); 2005 oIndex = other.bumpCoincidentOther(test, oEndT, oIndex, oOutsideTs); 2006 } 2007 test = &fTs[index]; 2008 oTest = &other.fTs[oIndex]; 2009 } while (!approximately_negative(endT - test->fT)); 2010 SkASSERT(approximately_negative(oTest->fT - oEndT)); 2011 SkASSERT(approximately_negative(oEndT - oTest->fT)); 2012 if (!done() && outsideTs.count()) { 2013 addCoinOutsides(outsideTs, other, oEndT); 2014 } 2015 if (!other.done() && oOutsideTs.count()) { 2016 other.addCoinOutsides(oOutsideTs, *this, endT); 2017 } 2018 } 2019 2020 // FIXME: this doesn't prevent the same span from being added twice 2021 // fix in caller, SkASSERT here? 2022 void addTPair(double t, Segment& other, double otherT, bool borrowWind, const SkPoint& pt) { 2023 int tCount = fTs.count(); 2024 for (int tIndex = 0; tIndex < tCount; ++tIndex) { 2025 const Span& span = fTs[tIndex]; 2026 if (!approximately_negative(span.fT - t)) { 2027 break; 2028 } 2029 if (approximately_negative(span.fT - t) && span.fOther == &other 2030 && approximately_equal(span.fOtherT, otherT)) { 2031 #if DEBUG_ADD_T_PAIR 2032 SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n", 2033 __FUNCTION__, fID, t, other.fID, otherT); 2034 #endif 2035 return; 2036 } 2037 } 2038 #if DEBUG_ADD_T_PAIR 2039 SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n", 2040 __FUNCTION__, fID, t, other.fID, otherT); 2041 #endif 2042 int insertedAt = addT(&other, pt, t); 2043 int otherInsertedAt = other.addT(this, pt, otherT); 2044 addOtherT(insertedAt, otherT, otherInsertedAt); 2045 other.addOtherT(otherInsertedAt, t, insertedAt); 2046 matchWindingValue(insertedAt, t, borrowWind); 2047 other.matchWindingValue(otherInsertedAt, otherT, borrowWind); 2048 } 2049 2050 void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) const { 2051 // add edge leading into junction 2052 int min = SkMin32(end, start); 2053 if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) { 2054 addAngle(angles, end, start); 2055 } 2056 // add edge leading away from junction 2057 int step = SkSign32(end - start); 2058 int tIndex = nextExactSpan(end, step); 2059 min = SkMin32(end, tIndex); 2060 if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0)) { 2061 addAngle(angles, end, tIndex); 2062 } 2063 } 2064 2065 int advanceCoincidentThis(const Span* oTest, bool opp, int index) { 2066 Span* const test = &fTs[index]; 2067 Span* end = test; 2068 do { 2069 end = &fTs[++index]; 2070 } while (approximately_negative(end->fT - test->fT)); 2071 return index; 2072 } 2073 2074 int advanceCoincidentOther(const Span* test, double oEndT, int& oIndex) { 2075 Span* const oTest = &fTs[oIndex]; 2076 Span* oEnd = oTest; 2077 const double oStartT = oTest->fT; 2078 while (!approximately_negative(oEndT - oEnd->fT) 2079 && approximately_negative(oEnd->fT - oStartT)) { 2080 oEnd = &fTs[++oIndex]; 2081 } 2082 return oIndex; 2083 } 2084 2085 bool betweenTs(int lesser, double testT, int greater) { 2086 if (lesser > greater) { 2087 SkTSwap<int>(lesser, greater); 2088 } 2089 return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT); 2090 } 2091 2092 const Bounds& bounds() const { 2093 return fBounds; 2094 } 2095 2096 void buildAngles(int index, SkTDArray<Angle>& angles, bool includeOpp) const { 2097 double referenceT = fTs[index].fT; 2098 int lesser = index; 2099 while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == fOperand) 2100 && precisely_negative(referenceT - fTs[lesser].fT)) { 2101 buildAnglesInner(lesser, angles); 2102 } 2103 do { 2104 buildAnglesInner(index, angles); 2105 } while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOperand == fOperand) 2106 && precisely_negative(fTs[index].fT - referenceT)); 2107 } 2108 2109 void buildAnglesInner(int index, SkTDArray<Angle>& angles) const { 2110 const Span* span = &fTs[index]; 2111 Segment* other = span->fOther; 2112 // if there is only one live crossing, and no coincidence, continue 2113 // in the same direction 2114 // if there is coincidence, the only choice may be to reverse direction 2115 // find edge on either side of intersection 2116 int oIndex = span->fOtherIndex; 2117 // if done == -1, prior span has already been processed 2118 int step = 1; 2119 int next = other->nextExactSpan(oIndex, step); 2120 if (next < 0) { 2121 step = -step; 2122 next = other->nextExactSpan(oIndex, step); 2123 } 2124 // add candidate into and away from junction 2125 other->addTwoAngles(next, oIndex, angles); 2126 } 2127 2128 int computeSum(int startIndex, int endIndex, bool binary) { 2129 SkTDArray<Angle> angles; 2130 addTwoAngles(startIndex, endIndex, angles); 2131 buildAngles(endIndex, angles, false); 2132 // OPTIMIZATION: check all angles to see if any have computed wind sum 2133 // before sorting (early exit if none) 2134 SkTDArray<Angle*> sorted; 2135 bool sortable = SortAngles(angles, sorted); 2136 #if DEBUG_SORT 2137 sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); 2138 #endif 2139 if (!sortable) { 2140 return SK_MinS32; 2141 } 2142 int angleCount = angles.count(); 2143 const Angle* angle; 2144 const Segment* base; 2145 int winding; 2146 int oWinding; 2147 int firstIndex = 0; 2148 do { 2149 angle = sorted[firstIndex]; 2150 base = angle->segment(); 2151 winding = base->windSum(angle); 2152 if (winding != SK_MinS32) { 2153 oWinding = base->oppSum(angle); 2154 break; 2155 } 2156 if (++firstIndex == angleCount) { 2157 return SK_MinS32; 2158 } 2159 } while (true); 2160 // turn winding into contourWinding 2161 int spanWinding = base->spanSign(angle); 2162 bool inner = useInnerWinding(winding + spanWinding, winding); 2163 #if DEBUG_WINDING 2164 SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __FUNCTION__, 2165 spanWinding, winding, angle->sign(), inner, 2166 inner ? winding + spanWinding : winding); 2167 #endif 2168 if (inner) { 2169 winding += spanWinding; 2170 } 2171 #if DEBUG_SORT 2172 base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding); 2173 #endif 2174 int nextIndex = firstIndex + 1; 2175 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; 2176 winding -= base->spanSign(angle); 2177 oWinding -= base->oppSign(angle); 2178 do { 2179 if (nextIndex == angleCount) { 2180 nextIndex = 0; 2181 } 2182 angle = sorted[nextIndex]; 2183 Segment* segment = angle->segment(); 2184 bool opp = base->fOperand ^ segment->fOperand; 2185 int maxWinding, oMaxWinding; 2186 int spanSign = segment->spanSign(angle); 2187 int oppoSign = segment->oppSign(angle); 2188 if (opp) { 2189 oMaxWinding = oWinding; 2190 oWinding -= spanSign; 2191 maxWinding = winding; 2192 if (oppoSign) { 2193 winding -= oppoSign; 2194 } 2195 } else { 2196 maxWinding = winding; 2197 winding -= spanSign; 2198 oMaxWinding = oWinding; 2199 if (oppoSign) { 2200 oWinding -= oppoSign; 2201 } 2202 } 2203 if (segment->windSum(angle) == SK_MinS32) { 2204 if (opp) { 2205 if (useInnerWinding(oMaxWinding, oWinding)) { 2206 oMaxWinding = oWinding; 2207 } 2208 if (oppoSign && useInnerWinding(maxWinding, winding)) { 2209 maxWinding = winding; 2210 } 2211 (void) segment->markAndChaseWinding(angle, oMaxWinding, maxWinding); 2212 } else { 2213 if (useInnerWinding(maxWinding, winding)) { 2214 maxWinding = winding; 2215 } 2216 if (oppoSign && useInnerWinding(oMaxWinding, oWinding)) { 2217 oMaxWinding = oWinding; 2218 } 2219 (void) segment->markAndChaseWinding(angle, maxWinding, 2220 binary ? oMaxWinding : 0); 2221 } 2222 } 2223 } while (++nextIndex != lastIndex); 2224 int minIndex = SkMin32(startIndex, endIndex); 2225 return windSum(minIndex); 2226 } 2227 2228 int crossedSpanY(const SkPoint& basePt, SkScalar& bestY, double& hitT, bool& hitSomething, 2229 double mid, bool opp, bool current) const { 2230 SkScalar bottom = fBounds.fBottom; 2231 int bestTIndex = -1; 2232 if (bottom <= bestY) { 2233 return bestTIndex; 2234 } 2235 SkScalar top = fBounds.fTop; 2236 if (top >= basePt.fY) { 2237 return bestTIndex; 2238 } 2239 if (fBounds.fLeft > basePt.fX) { 2240 return bestTIndex; 2241 } 2242 if (fBounds.fRight < basePt.fX) { 2243 return bestTIndex; 2244 } 2245 if (fBounds.fLeft == fBounds.fRight) { 2246 // if vertical, and directly above test point, wait for another one 2247 return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestTIndex; 2248 } 2249 // intersect ray starting at basePt with edge 2250 Intersections intersections; 2251 // OPTIMIZE: use specialty function that intersects ray with curve, 2252 // returning t values only for curve (we don't care about t on ray) 2253 int pts = (*VSegmentIntersect[fVerb])(fPts, top, bottom, basePt.fX, false, intersections); 2254 if (pts == 0 || (current && pts == 1)) { 2255 return bestTIndex; 2256 } 2257 if (current) { 2258 SkASSERT(pts > 1); 2259 int closestIdx = 0; 2260 double closest = fabs(intersections.fT[0][0] - mid); 2261 for (int idx = 1; idx < pts; ++idx) { 2262 double test = fabs(intersections.fT[0][idx] - mid); 2263 if (closest > test) { 2264 closestIdx = idx; 2265 closest = test; 2266 } 2267 } 2268 if (closestIdx < pts - 1) { 2269 intersections.fT[0][closestIdx] = intersections.fT[0][pts - 1]; 2270 } 2271 --pts; 2272 } 2273 double bestT = -1; 2274 for (int index = 0; index < pts; ++index) { 2275 double foundT = intersections.fT[0][index]; 2276 if (approximately_less_than_zero(foundT) 2277 || approximately_greater_than_one(foundT)) { 2278 continue; 2279 } 2280 SkScalar testY = (*SegmentYAtT[fVerb])(fPts, foundT); 2281 if (approximately_negative(testY - bestY) 2282 || approximately_negative(basePt.fY - testY)) { 2283 continue; 2284 } 2285 if (pts > 1 && fVerb == SkPath::kLine_Verb) { 2286 return SK_MinS32; // if the intersection is edge on, wait for another one 2287 } 2288 if (fVerb > SkPath::kLine_Verb) { 2289 SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, foundT); 2290 if (approximately_zero(dx)) { 2291 return SK_MinS32; // hit vertical, wait for another one 2292 } 2293 } 2294 bestY = testY; 2295 bestT = foundT; 2296 } 2297 if (bestT < 0) { 2298 return bestTIndex; 2299 } 2300 SkASSERT(bestT >= 0); 2301 SkASSERT(bestT <= 1); 2302 int start; 2303 int end = 0; 2304 do { 2305 start = end; 2306 end = nextSpan(start, 1); 2307 } while (fTs[end].fT < bestT); 2308 // FIXME: see next candidate for a better pattern to find the next start/end pair 2309 while (start + 1 < end && fTs[start].fDone) { 2310 ++start; 2311 } 2312 if (!isCanceled(start)) { 2313 hitT = bestT; 2314 bestTIndex = start; 2315 hitSomething = true; 2316 } 2317 return bestTIndex; 2318 } 2319 2320 void decrementSpan(Span* span) { 2321 SkASSERT(span->fWindValue > 0); 2322 if (--(span->fWindValue) == 0) { 2323 if (!span->fOppValue && !span->fDone) { 2324 span->fDone = true; 2325 ++fDoneSpans; 2326 } 2327 } 2328 } 2329 2330 bool bumpSpan(Span* span, int windDelta, int oppDelta) { 2331 SkASSERT(!span->fDone); 2332 span->fWindValue += windDelta; 2333 SkASSERT(span->fWindValue >= 0); 2334 span->fOppValue += oppDelta; 2335 SkASSERT(span->fOppValue >= 0); 2336 if (fXor) { 2337 span->fWindValue &= 1; 2338 } 2339 if (fOppXor) { 2340 span->fOppValue &= 1; 2341 } 2342 if (!span->fWindValue && !span->fOppValue) { 2343 span->fDone = true; 2344 ++fDoneSpans; 2345 return true; 2346 } 2347 return false; 2348 } 2349 2350 // OPTIMIZE 2351 // when the edges are initially walked, they don't automatically get the prior and next 2352 // edges assigned to positions t=0 and t=1. Doing that would remove the need for this check, 2353 // and would additionally remove the need for similar checks in condition edges. It would 2354 // also allow intersection code to assume end of segment intersections (maybe?) 2355 bool complete() const { 2356 int count = fTs.count(); 2357 return count > 1 && fTs[0].fT == 0 && fTs[--count].fT == 1; 2358 } 2359 2360 bool done() const { 2361 SkASSERT(fDoneSpans <= fTs.count()); 2362 return fDoneSpans == fTs.count(); 2363 } 2364 2365 bool done(int min) const { 2366 return fTs[min].fDone; 2367 } 2368 2369 bool done(const Angle* angle) const { 2370 return done(SkMin32(angle->start(), angle->end())); 2371 } 2372 2373 SkVector dxdy(int index) const { 2374 return (*SegmentDXDYAtT[fVerb])(fPts, fTs[index].fT); 2375 } 2376 2377 SkScalar dy(int index) const { 2378 return (*SegmentDYAtT[fVerb])(fPts, fTs[index].fT); 2379 } 2380 2381 bool equalPoints(int greaterTIndex, int lesserTIndex) { 2382 SkASSERT(greaterTIndex >= lesserTIndex); 2383 double greaterT = fTs[greaterTIndex].fT; 2384 double lesserT = fTs[lesserTIndex].fT; 2385 if (greaterT == lesserT) { 2386 return true; 2387 } 2388 if (!approximately_negative(greaterT - lesserT)) { 2389 return false; 2390 } 2391 return xyAtT(greaterTIndex) == xyAtT(lesserTIndex); 2392 } 2393 2394 /* 2395 The M and S variable name parts stand for the operators. 2396 Mi stands for Minuend (see wiki subtraction, analogous to difference) 2397 Su stands for Subtrahend 2398 The Opp variable name part designates that the value is for the Opposite operator. 2399 Opposite values result from combining coincident spans. 2400 */ 2401 2402 Segment* findNextOp(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd, 2403 bool& unsortable, ShapeOp op, const int xorMiMask, const int xorSuMask) { 2404 const int startIndex = nextStart; 2405 const int endIndex = nextEnd; 2406 SkASSERT(startIndex != endIndex); 2407 const int count = fTs.count(); 2408 SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); 2409 const int step = SkSign32(endIndex - startIndex); 2410 const int end = nextExactSpan(startIndex, step); 2411 SkASSERT(end >= 0); 2412 Span* endSpan = &fTs[end]; 2413 Segment* other; 2414 if (isSimple(end)) { 2415 // mark the smaller of startIndex, endIndex done, and all adjacent 2416 // spans with the same T value (but not 'other' spans) 2417 #if DEBUG_WINDING 2418 SkDebugf("%s simple\n", __FUNCTION__); 2419 #endif 2420 int min = SkMin32(startIndex, endIndex); 2421 if (fTs[min].fDone) { 2422 return NULL; 2423 } 2424 markDoneBinary(min); 2425 other = endSpan->fOther; 2426 nextStart = endSpan->fOtherIndex; 2427 double startT = other->fTs[nextStart].fT; 2428 nextEnd = nextStart; 2429 do { 2430 nextEnd += step; 2431 } 2432 while (precisely_zero(startT - other->fTs[nextEnd].fT)); 2433 SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); 2434 return other; 2435 } 2436 // more than one viable candidate -- measure angles to find best 2437 SkTDArray<Angle> angles; 2438 SkASSERT(startIndex - endIndex != 0); 2439 SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); 2440 addTwoAngles(startIndex, end, angles); 2441 buildAngles(end, angles, true); 2442 SkTDArray<Angle*> sorted; 2443 bool sortable = SortAngles(angles, sorted); 2444 int angleCount = angles.count(); 2445 int firstIndex = findStartingEdge(sorted, startIndex, end); 2446 SkASSERT(firstIndex >= 0); 2447 #if DEBUG_SORT 2448 debugShowSort(__FUNCTION__, sorted, firstIndex); 2449 #endif 2450 if (!sortable) { 2451 unsortable = true; 2452 return NULL; 2453 } 2454 SkASSERT(sorted[firstIndex]->segment() == this); 2455 #if DEBUG_WINDING 2456 SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, 2457 sorted[firstIndex]->sign()); 2458 #endif 2459 int sumMiWinding = updateWinding(endIndex, startIndex); 2460 int sumSuWinding = updateOppWinding(endIndex, startIndex); 2461 if (operand()) { 2462 SkTSwap<int>(sumMiWinding, sumSuWinding); 2463 } 2464 int nextIndex = firstIndex + 1; 2465 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; 2466 const Angle* foundAngle = NULL; 2467 bool foundDone = false; 2468 // iterate through the angle, and compute everyone's winding 2469 Segment* nextSegment; 2470 int activeCount = 0; 2471 do { 2472 SkASSERT(nextIndex != firstIndex); 2473 if (nextIndex == angleCount) { 2474 nextIndex = 0; 2475 } 2476 const Angle* nextAngle = sorted[nextIndex]; 2477 nextSegment = nextAngle->segment(); 2478 int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; 2479 bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextAngle->start(), 2480 nextAngle->end(), op, sumMiWinding, sumSuWinding, 2481 maxWinding, sumWinding, oppMaxWinding, oppSumWinding); 2482 if (activeAngle) { 2483 ++activeCount; 2484 if (!foundAngle || (foundDone && activeCount & 1)) { 2485 if (nextSegment->tiny(nextAngle)) { 2486 unsortable = true; 2487 return NULL; 2488 } 2489 foundAngle = nextAngle; 2490 foundDone = nextSegment->done(nextAngle) && !nextSegment->tiny(nextAngle); 2491 } 2492 } 2493 if (nextSegment->done()) { 2494 continue; 2495 } 2496 if (nextSegment->windSum(nextAngle) != SK_MinS32) { 2497 continue; 2498 } 2499 Span* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWinding, 2500 oppSumWinding, activeAngle, nextAngle); 2501 if (last) { 2502 *chase.append() = last; 2503 #if DEBUG_WINDING 2504 SkDebugf("%s chase.append id=%d\n", __FUNCTION__, 2505 last->fOther->fTs[last->fOtherIndex].fOther->debugID()); 2506 #endif 2507 } 2508 } while (++nextIndex != lastIndex); 2509 markDoneBinary(SkMin32(startIndex, endIndex)); 2510 if (!foundAngle) { 2511 return NULL; 2512 } 2513 nextStart = foundAngle->start(); 2514 nextEnd = foundAngle->end(); 2515 nextSegment = foundAngle->segment(); 2516 2517 #if DEBUG_WINDING 2518 SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", 2519 __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); 2520 #endif 2521 return nextSegment; 2522 } 2523 2524 Segment* findNextWinding(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd, 2525 bool& unsortable) { 2526 const int startIndex = nextStart; 2527 const int endIndex = nextEnd; 2528 SkASSERT(startIndex != endIndex); 2529 const int count = fTs.count(); 2530 SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); 2531 const int step = SkSign32(endIndex - startIndex); 2532 const int end = nextExactSpan(startIndex, step); 2533 SkASSERT(end >= 0); 2534 Span* endSpan = &fTs[end]; 2535 Segment* other; 2536 if (isSimple(end)) { 2537 // mark the smaller of startIndex, endIndex done, and all adjacent 2538 // spans with the same T value (but not 'other' spans) 2539 #if DEBUG_WINDING 2540 SkDebugf("%s simple\n", __FUNCTION__); 2541 #endif 2542 int min = SkMin32(startIndex, endIndex); 2543 if (fTs[min].fDone) { 2544 return NULL; 2545 } 2546 markDoneUnary(min); 2547 other = endSpan->fOther; 2548 nextStart = endSpan->fOtherIndex; 2549 double startT = other->fTs[nextStart].fT; 2550 nextEnd = nextStart; 2551 do { 2552 nextEnd += step; 2553 } 2554 while (precisely_zero(startT - other->fTs[nextEnd].fT)); 2555 SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); 2556 return other; 2557 } 2558 // more than one viable candidate -- measure angles to find best 2559 SkTDArray<Angle> angles; 2560 SkASSERT(startIndex - endIndex != 0); 2561 SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); 2562 addTwoAngles(startIndex, end, angles); 2563 buildAngles(end, angles, true); 2564 SkTDArray<Angle*> sorted; 2565 bool sortable = SortAngles(angles, sorted); 2566 int angleCount = angles.count(); 2567 int firstIndex = findStartingEdge(sorted, startIndex, end); 2568 SkASSERT(firstIndex >= 0); 2569 #if DEBUG_SORT 2570 debugShowSort(__FUNCTION__, sorted, firstIndex); 2571 #endif 2572 if (!sortable) { 2573 unsortable = true; 2574 return NULL; 2575 } 2576 SkASSERT(sorted[firstIndex]->segment() == this); 2577 #if DEBUG_WINDING 2578 SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, 2579 sorted[firstIndex]->sign()); 2580 #endif 2581 int sumWinding = updateWinding(endIndex, startIndex); 2582 int nextIndex = firstIndex + 1; 2583 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; 2584 const Angle* foundAngle = NULL; 2585 bool foundDone = false; 2586 // iterate through the angle, and compute everyone's winding 2587 Segment* nextSegment; 2588 int activeCount = 0; 2589 do { 2590 SkASSERT(nextIndex != firstIndex); 2591 if (nextIndex == angleCount) { 2592 nextIndex = 0; 2593 } 2594 const Angle* nextAngle = sorted[nextIndex]; 2595 nextSegment = nextAngle->segment(); 2596 int maxWinding; 2597 bool activeAngle = nextSegment->activeWinding(nextAngle->start(), nextAngle->end(), 2598 maxWinding, sumWinding); 2599 if (activeAngle) { 2600 ++activeCount; 2601 if (!foundAngle || (foundDone && activeCount & 1)) { 2602 if (nextSegment->tiny(nextAngle)) { 2603 unsortable = true; 2604 return NULL; 2605 } 2606 foundAngle = nextAngle; 2607 foundDone = nextSegment->done(nextAngle); 2608 } 2609 } 2610 if (nextSegment->done()) { 2611 continue; 2612 } 2613 if (nextSegment->windSum(nextAngle) != SK_MinS32) { 2614 continue; 2615 } 2616 Span* last = nextSegment->markAngle(maxWinding, sumWinding, activeAngle, nextAngle); 2617 if (last) { 2618 *chase.append() = last; 2619 #if DEBUG_WINDING 2620 SkDebugf("%s chase.append id=%d\n", __FUNCTION__, 2621 last->fOther->fTs[last->fOtherIndex].fOther->debugID()); 2622 #endif 2623 } 2624 } while (++nextIndex != lastIndex); 2625 markDoneUnary(SkMin32(startIndex, endIndex)); 2626 if (!foundAngle) { 2627 return NULL; 2628 } 2629 nextStart = foundAngle->start(); 2630 nextEnd = foundAngle->end(); 2631 nextSegment = foundAngle->segment(); 2632 #if DEBUG_WINDING 2633 SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", 2634 __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); 2635 #endif 2636 return nextSegment; 2637 } 2638 2639 Segment* findNextXor(int& nextStart, int& nextEnd, bool& unsortable) { 2640 const int startIndex = nextStart; 2641 const int endIndex = nextEnd; 2642 SkASSERT(startIndex != endIndex); 2643 int count = fTs.count(); 2644 SkASSERT(startIndex < endIndex ? startIndex < count - 1 2645 : startIndex > 0); 2646 int step = SkSign32(endIndex - startIndex); 2647 int end = nextExactSpan(startIndex, step); 2648 SkASSERT(end >= 0); 2649 Span* endSpan = &fTs[end]; 2650 Segment* other; 2651 if (isSimple(end)) { 2652 #if DEBUG_WINDING 2653 SkDebugf("%s simple\n", __FUNCTION__); 2654 #endif 2655 int min = SkMin32(startIndex, endIndex); 2656 if (fTs[min].fDone) { 2657 return NULL; 2658 } 2659 markDone(min, 1); 2660 other = endSpan->fOther; 2661 nextStart = endSpan->fOtherIndex; 2662 double startT = other->fTs[nextStart].fT; 2663 #if 01 // FIXME: I don't know why the logic here is difference from the winding case 2664 SkDEBUGCODE(bool firstLoop = true;) 2665 if ((approximately_less_than_zero(startT) && step < 0) 2666 || (approximately_greater_than_one(startT) && step > 0)) { 2667 step = -step; 2668 SkDEBUGCODE(firstLoop = false;) 2669 } 2670 do { 2671 #endif 2672 nextEnd = nextStart; 2673 do { 2674 nextEnd += step; 2675 } 2676 while (precisely_zero(startT - other->fTs[nextEnd].fT)); 2677 #if 01 2678 if (other->fTs[SkMin32(nextStart, nextEnd)].fWindValue) { 2679 break; 2680 } 2681 #ifdef SK_DEBUG 2682 SkASSERT(firstLoop); 2683 #endif 2684 SkDEBUGCODE(firstLoop = false;) 2685 step = -step; 2686 } while (true); 2687 #endif 2688 SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); 2689 return other; 2690 } 2691 SkTDArray<Angle> angles; 2692 SkASSERT(startIndex - endIndex != 0); 2693 SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); 2694 addTwoAngles(startIndex, end, angles); 2695 buildAngles(end, angles, false); 2696 SkTDArray<Angle*> sorted; 2697 bool sortable = SortAngles(angles, sorted); 2698 if (!sortable) { 2699 unsortable = true; 2700 #if DEBUG_SORT 2701 debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIndex, end), 0, 0); 2702 #endif 2703 return NULL; 2704 } 2705 int angleCount = angles.count(); 2706 int firstIndex = findStartingEdge(sorted, startIndex, end); 2707 SkASSERT(firstIndex >= 0); 2708 #if DEBUG_SORT 2709 debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0); 2710 #endif 2711 SkASSERT(sorted[firstIndex]->segment() == this); 2712 int nextIndex = firstIndex + 1; 2713 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; 2714 const Angle* foundAngle = NULL; 2715 bool foundDone = false; 2716 Segment* nextSegment; 2717 int activeCount = 0; 2718 do { 2719 SkASSERT(nextIndex != firstIndex); 2720 if (nextIndex == angleCount) { 2721 nextIndex = 0; 2722 } 2723 const Angle* nextAngle = sorted[nextIndex]; 2724 nextSegment = nextAngle->segment(); 2725 ++activeCount; 2726 if (!foundAngle || (foundDone && activeCount & 1)) { 2727 if (nextSegment->tiny(nextAngle)) { 2728 unsortable = true; 2729 return NULL; 2730 } 2731 foundAngle = nextAngle; 2732 foundDone = nextSegment->done(nextAngle); 2733 } 2734 if (nextSegment->done()) { 2735 continue; 2736 } 2737 } while (++nextIndex != lastIndex); 2738 markDone(SkMin32(startIndex, endIndex), 1); 2739 if (!foundAngle) { 2740 return NULL; 2741 } 2742 nextStart = foundAngle->start(); 2743 nextEnd = foundAngle->end(); 2744 nextSegment = foundAngle->segment(); 2745 #if DEBUG_WINDING 2746 SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", 2747 __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); 2748 #endif 2749 return nextSegment; 2750 } 2751 2752 int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) { 2753 int angleCount = sorted.count(); 2754 int firstIndex = -1; 2755 for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) { 2756 const Angle* angle = sorted[angleIndex]; 2757 if (angle->segment() == this && angle->start() == end && 2758 angle->end() == start) { 2759 firstIndex = angleIndex; 2760 break; 2761 } 2762 } 2763 return firstIndex; 2764 } 2765 2766 // FIXME: this is tricky code; needs its own unit test 2767 // note that fOtherIndex isn't computed yet, so it can't be used here 2768 void findTooCloseToCall() { 2769 int count = fTs.count(); 2770 if (count < 3) { // require t=0, x, 1 at minimum 2771 return; 2772 } 2773 int matchIndex = 0; 2774 int moCount; 2775 Span* match; 2776 Segment* mOther; 2777 do { 2778 match = &fTs[matchIndex]; 2779 mOther = match->fOther; 2780 // FIXME: allow quads, cubics to be near coincident? 2781 if (mOther->fVerb == SkPath::kLine_Verb) { 2782 moCount = mOther->fTs.count(); 2783 if (moCount >= 3) { 2784 break; 2785 } 2786 } 2787 if (++matchIndex >= count) { 2788 return; 2789 } 2790 } while (true); // require t=0, x, 1 at minimum 2791 // OPTIMIZATION: defer matchPt until qualifying toCount is found? 2792 const SkPoint* matchPt = &xyAtT(match); 2793 // look for a pair of nearby T values that map to the same (x,y) value 2794 // if found, see if the pair of other segments share a common point. If 2795 // so, the span from here to there is coincident. 2796 for (int index = matchIndex + 1; index < count; ++index) { 2797 Span* test = &fTs[index]; 2798 if (test->fDone) { 2799 continue; 2800 } 2801 Segment* tOther = test->fOther; 2802 if (tOther->fVerb != SkPath::kLine_Verb) { 2803 continue; // FIXME: allow quads, cubics to be near coincident? 2804 } 2805 int toCount = tOther->fTs.count(); 2806 if (toCount < 3) { // require t=0, x, 1 at minimum 2807 continue; 2808 } 2809 const SkPoint* testPt = &xyAtT(test); 2810 if (*matchPt != *testPt) { 2811 matchIndex = index; 2812 moCount = toCount; 2813 match = test; 2814 mOther = tOther; 2815 matchPt = testPt; 2816 continue; 2817 } 2818 int moStart = -1; 2819 int moEnd = -1; 2820 double moStartT, moEndT; 2821 for (int moIndex = 0; moIndex < moCount; ++moIndex) { 2822 Span& moSpan = mOther->fTs[moIndex]; 2823 if (moSpan.fDone) { 2824 continue; 2825 } 2826 if (moSpan.fOther == this) { 2827 if (moSpan.fOtherT == match->fT) { 2828 moStart = moIndex; 2829 moStartT = moSpan.fT; 2830 } 2831 continue; 2832 } 2833 if (moSpan.fOther == tOther) { 2834 if (tOther->windValueAt(moSpan.fOtherT) == 0) { 2835 moStart = -1; 2836 break; 2837 } 2838 SkASSERT(moEnd == -1); 2839 moEnd = moIndex; 2840 moEndT = moSpan.fT; 2841 } 2842 } 2843 if (moStart < 0 || moEnd < 0) { 2844 continue; 2845 } 2846 // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test 2847 if (approximately_equal(moStartT, moEndT)) { 2848 continue; 2849 } 2850 int toStart = -1; 2851 int toEnd = -1; 2852 double toStartT, toEndT; 2853 for (int toIndex = 0; toIndex < toCount; ++toIndex) { 2854 Span& toSpan = tOther->fTs[toIndex]; 2855 if (toSpan.fDone) { 2856 continue; 2857 } 2858 if (toSpan.fOther == this) { 2859 if (toSpan.fOtherT == test->fT) { 2860 toStart = toIndex; 2861 toStartT = toSpan.fT; 2862 } 2863 continue; 2864 } 2865 if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) { 2866 if (mOther->windValueAt(toSpan.fOtherT) == 0) { 2867 moStart = -1; 2868 break; 2869 } 2870 SkASSERT(toEnd == -1); 2871 toEnd = toIndex; 2872 toEndT = toSpan.fT; 2873 } 2874 } 2875 // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test 2876 if (toStart <= 0 || toEnd <= 0) { 2877 continue; 2878 } 2879 if (approximately_equal(toStartT, toEndT)) { 2880 continue; 2881 } 2882 // test to see if the segment between there and here is linear 2883 if (!mOther->isLinear(moStart, moEnd) 2884 || !tOther->isLinear(toStart, toEnd)) { 2885 continue; 2886 } 2887 bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1; 2888 if (flipped) { 2889 mOther->addTCancel(moStartT, moEndT, *tOther, toEndT, toStartT); 2890 } else { 2891 mOther->addTCoincident(moStartT, moEndT, *tOther, toStartT, toEndT); 2892 } 2893 } 2894 } 2895 2896 // FIXME: either: 2897 // a) mark spans with either end unsortable as done, or 2898 // b) rewrite findTop / findTopSegment / findTopContour to iterate further 2899 // when encountering an unsortable span 2900 2901 // OPTIMIZATION : for a pair of lines, can we compute points at T (cached) 2902 // and use more concise logic like the old edge walker code? 2903 // FIXME: this needs to deal with coincident edges 2904 Segment* findTop(int& tIndex, int& endIndex, bool& unsortable, bool onlySortable) { 2905 // iterate through T intersections and return topmost 2906 // topmost tangent from y-min to first pt is closer to horizontal 2907 SkASSERT(!done()); 2908 int firstT = -1; 2909 /* SkPoint topPt = */ activeLeftTop(onlySortable, &firstT); 2910 if (firstT < 0) { 2911 unsortable = true; 2912 firstT = 0; 2913 while (fTs[firstT].fDone) { 2914 SkASSERT(firstT < fTs.count()); 2915 ++firstT; 2916 } 2917 tIndex = firstT; 2918 endIndex = nextExactSpan(firstT, 1); 2919 return this; 2920 } 2921 // sort the edges to find the leftmost 2922 int step = 1; 2923 int end = nextSpan(firstT, step); 2924 if (end == -1) { 2925 step = -1; 2926 end = nextSpan(firstT, step); 2927 SkASSERT(end != -1); 2928 } 2929 // if the topmost T is not on end, or is three-way or more, find left 2930 // look for left-ness from tLeft to firstT (matching y of other) 2931 SkTDArray<Angle> angles; 2932 SkASSERT(firstT - end != 0); 2933 addTwoAngles(end, firstT, angles); 2934 buildAngles(firstT, angles, true); 2935 SkTDArray<Angle*> sorted; 2936 bool sortable = SortAngles(angles, sorted); 2937 int first = SK_MaxS32; 2938 SkScalar top = SK_ScalarMax; 2939 int count = sorted.count(); 2940 for (int index = 0; index < count; ++index) { 2941 const Angle* angle = sorted[index]; 2942 Segment* next = angle->segment(); 2943 Bounds bounds; 2944 next->subDivideBounds(angle->end(), angle->start(), bounds); 2945 if (approximately_greater(top, bounds.fTop)) { 2946 top = bounds.fTop; 2947 first = index; 2948 } 2949 } 2950 SkASSERT(first < SK_MaxS32); 2951 #if DEBUG_SORT // || DEBUG_SWAP_TOP 2952 sorted[first]->segment()->debugShowSort(__FUNCTION__, sorted, first, 0, 0); 2953 #endif 2954 if (onlySortable && !sortable) { 2955 unsortable = true; 2956 return NULL; 2957 } 2958 // skip edges that have already been processed 2959 firstT = first - 1; 2960 Segment* leftSegment; 2961 do { 2962 if (++firstT == count) { 2963 firstT = 0; 2964 } 2965 const Angle* angle = sorted[firstT]; 2966 SkASSERT(!onlySortable || !angle->unsortable()); 2967 leftSegment = angle->segment(); 2968 tIndex = angle->end(); 2969 endIndex = angle->start(); 2970 } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone); 2971 if (leftSegment->verb() >= SkPath::kQuad_Verb) { 2972 if (!leftSegment->clockwise(tIndex, endIndex)) { 2973 bool swap = leftSegment->verb() == SkPath::kQuad_Verb 2974 || (!leftSegment->monotonic_in_y(tIndex, endIndex) 2975 && !leftSegment->serpentine(tIndex, endIndex)); 2976 #if DEBUG_SWAP_TOP 2977 SkDebugf("%s swap=%d serpentine=%d controls_contained_by_ends=%d\n", __FUNCTION__, 2978 swap, 2979 leftSegment->serpentine(tIndex, endIndex), 2980 leftSegment->controls_contained_by_ends(tIndex, endIndex), 2981 leftSegment->monotonic_in_y(tIndex, endIndex)); 2982 #endif 2983 if (swap) { 2984 // FIXME: I doubt it makes sense to (necessarily) swap if the edge was not the first 2985 // sorted but merely the first not already processed (i.e., not done) 2986 SkTSwap(tIndex, endIndex); 2987 } 2988 } 2989 } 2990 SkASSERT(!leftSegment->fTs[SkMin32(tIndex, endIndex)].fTiny); 2991 return leftSegment; 2992 } 2993 2994 // FIXME: not crazy about this 2995 // when the intersections are performed, the other index is into an 2996 // incomplete array. As the array grows, the indices become incorrect 2997 // while the following fixes the indices up again, it isn't smart about 2998 // skipping segments whose indices are already correct 2999 // assuming we leave the code that wrote the index in the first place 3000 void fixOtherTIndex() { 3001 int iCount = fTs.count(); 3002 for (int i = 0; i < iCount; ++i) { 3003 Span& iSpan = fTs[i]; 3004 double oT = iSpan.fOtherT; 3005 Segment* other = iSpan.fOther; 3006 int oCount = other->fTs.count(); 3007 for (int o = 0; o < oCount; ++o) { 3008 Span& oSpan = other->fTs[o]; 3009 if (oT == oSpan.fT && this == oSpan.fOther && oSpan.fOtherT == iSpan.fT) { 3010 iSpan.fOtherIndex = o; 3011 break; 3012 } 3013 } 3014 } 3015 } 3016 3017 void init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd) { 3018 fDoneSpans = 0; 3019 fOperand = operand; 3020 fXor = evenOdd; 3021 fPts = pts; 3022 fVerb = verb; 3023 } 3024 3025 void initWinding(int start, int end) { 3026 int local = spanSign(start, end); 3027 int oppLocal = oppSign(start, end); 3028 (void) markAndChaseWinding(start, end, local, oppLocal); 3029 // OPTIMIZATION: the reverse mark and chase could skip the first marking 3030 (void) markAndChaseWinding(end, start, local, oppLocal); 3031 } 3032 3033 void initWinding(int start, int end, int winding, int oppWinding) { 3034 int local = spanSign(start, end); 3035 if (local * winding >= 0) { 3036 winding += local; 3037 } 3038 int oppLocal = oppSign(start, end); 3039 if (oppLocal * oppWinding >= 0) { 3040 oppWinding += oppLocal; 3041 } 3042 (void) markAndChaseWinding(start, end, winding, oppWinding); 3043 } 3044 3045 /* 3046 when we start with a vertical intersect, we try to use the dx to determine if the edge is to 3047 the left or the right of vertical. This determines if we need to add the span's 3048 sign or not. However, this isn't enough. 3049 If the supplied sign (winding) is zero, then we didn't hit another vertical span, so dx is needed. 3050 If there was a winding, then it may or may not need adjusting. If the span the winding was borrowed 3051 from has the same x direction as this span, the winding should change. If the dx is opposite, then 3052 the same winding is shared by both. 3053 */ 3054 void initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, int oppWind, 3055 SkScalar hitOppDx) { 3056 SkASSERT(hitDx || !winding); 3057 SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, tHit); 3058 SkASSERT(dx); 3059 int windVal = windValue(SkMin32(start, end)); 3060 #if DEBUG_WINDING_AT_T 3061 SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, winding, 3062 hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal); 3063 #endif 3064 if (!winding) { 3065 winding = dx < 0 ? windVal : -windVal; 3066 } else if (winding * dx < 0) { 3067 int sideWind = winding + (dx < 0 ? windVal : -windVal); 3068 if (abs(winding) < abs(sideWind)) { 3069 winding = sideWind; 3070 } 3071 } 3072 #if DEBUG_WINDING_AT_T 3073 SkDebugf(" winding=%d\n", winding); 3074 #endif 3075 int oppLocal = oppSign(start, end); 3076 SkASSERT(hitOppDx || !oppWind || !oppLocal); 3077 int oppWindVal = oppValue(SkMin32(start, end)); 3078 if (!oppWind) { 3079 oppWind = dx < 0 ? oppWindVal : -oppWindVal; 3080 } else if (hitOppDx * dx >= 0) { 3081 int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal); 3082 if (abs(oppWind) < abs(oppSideWind)) { 3083 oppWind = oppSideWind; 3084 } 3085 } 3086 (void) markAndChaseWinding(start, end, winding, oppWind); 3087 } 3088 3089 bool intersected() const { 3090 return fTs.count() > 0; 3091 } 3092 3093 bool isCanceled(int tIndex) const { 3094 return fTs[tIndex].fWindValue == 0 && fTs[tIndex].fOppValue == 0; 3095 } 3096 3097 bool isConnected(int startIndex, int endIndex) const { 3098 return fTs[startIndex].fWindSum != SK_MinS32 3099 || fTs[endIndex].fWindSum != SK_MinS32; 3100 } 3101 3102 bool isHorizontal() const { 3103 return fBounds.fTop == fBounds.fBottom; 3104 } 3105 3106 bool isLinear(int start, int end) const { 3107 if (fVerb == SkPath::kLine_Verb) { 3108 return true; 3109 } 3110 if (fVerb == SkPath::kQuad_Verb) { 3111 SkPoint qPart[3]; 3112 QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart); 3113 return QuadIsLinear(qPart); 3114 } else { 3115 SkASSERT(fVerb == SkPath::kCubic_Verb); 3116 SkPoint cPart[4]; 3117 CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart); 3118 return CubicIsLinear(cPart); 3119 } 3120 } 3121 3122 // OPTIMIZE: successive calls could start were the last leaves off 3123 // or calls could specialize to walk forwards or backwards 3124 bool isMissing(double startT) const { 3125 size_t tCount = fTs.count(); 3126 for (size_t index = 0; index < tCount; ++index) { 3127 if (approximately_zero(startT - fTs[index].fT)) { 3128 return false; 3129 } 3130 } 3131 return true; 3132 } 3133 3134 bool isSimple(int end) const { 3135 int count = fTs.count(); 3136 if (count == 2) { 3137 return true; 3138 } 3139 double t = fTs[end].fT; 3140 if (approximately_less_than_zero(t)) { 3141 return !approximately_less_than_zero(fTs[1].fT); 3142 } 3143 if (approximately_greater_than_one(t)) { 3144 return !approximately_greater_than_one(fTs[count - 2].fT); 3145 } 3146 return false; 3147 } 3148 3149 bool isVertical() const { 3150 return fBounds.fLeft == fBounds.fRight; 3151 } 3152 3153 bool isVertical(int start, int end) const { 3154 return (*SegmentVertical[fVerb])(fPts, start, end); 3155 } 3156 3157 SkScalar leftMost(int start, int end) const { 3158 return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT); 3159 } 3160 3161 // this span is excluded by the winding rule -- chase the ends 3162 // as long as they are unambiguous to mark connections as done 3163 // and give them the same winding value 3164 Span* markAndChaseDone(const Angle* angle, int winding) { 3165 int index = angle->start(); 3166 int endIndex = angle->end(); 3167 return markAndChaseDone(index, endIndex, winding); 3168 } 3169 3170 Span* markAndChaseDone(int index, int endIndex, int winding) { 3171 int step = SkSign32(endIndex - index); 3172 int min = SkMin32(index, endIndex); 3173 markDone(min, winding); 3174 Span* last; 3175 Segment* other = this; 3176 while ((other = other->nextChase(index, step, min, last))) { 3177 other->markDone(min, winding); 3178 } 3179 return last; 3180 } 3181 3182 Span* markAndChaseDoneBinary(const Angle* angle, int winding, int oppWinding) { 3183 int index = angle->start(); 3184 int endIndex = angle->end(); 3185 int step = SkSign32(endIndex - index); 3186 int min = SkMin32(index, endIndex); 3187 markDoneBinary(min, winding, oppWinding); 3188 Span* last; 3189 Segment* other = this; 3190 while ((other = other->nextChase(index, step, min, last))) { 3191 other->markDoneBinary(min, winding, oppWinding); 3192 } 3193 return last; 3194 } 3195 3196 Span* markAndChaseDoneBinary(int index, int endIndex) { 3197 int step = SkSign32(endIndex - index); 3198 int min = SkMin32(index, endIndex); 3199 markDoneBinary(min); 3200 Span* last; 3201 Segment* other = this; 3202 while ((other = other->nextChase(index, step, min, last))) { 3203 if (other->done()) { 3204 return NULL; 3205 } 3206 other->markDoneBinary(min); 3207 } 3208 return last; 3209 } 3210 3211 Span* markAndChaseDoneUnary(int index, int endIndex) { 3212 int step = SkSign32(endIndex - index); 3213 int min = SkMin32(index, endIndex); 3214 markDoneUnary(min); 3215 Span* last; 3216 Segment* other = this; 3217 while ((other = other->nextChase(index, step, min, last))) { 3218 if (other->done()) { 3219 return NULL; 3220 } 3221 other->markDoneUnary(min); 3222 } 3223 return last; 3224 } 3225 3226 Span* markAndChaseDoneUnary(const Angle* angle, int winding) { 3227 int index = angle->start(); 3228 int endIndex = angle->end(); 3229 return markAndChaseDone(index, endIndex, winding); 3230 } 3231 3232 Span* markAndChaseWinding(const Angle* angle, const int winding) { 3233 int index = angle->start(); 3234 int endIndex = angle->end(); 3235 int step = SkSign32(endIndex - index); 3236 int min = SkMin32(index, endIndex); 3237 markWinding(min, winding); 3238 Span* last; 3239 Segment* other = this; 3240 while ((other = other->nextChase(index, step, min, last))) { 3241 if (other->fTs[min].fWindSum != SK_MinS32) { 3242 SkASSERT(other->fTs[min].fWindSum == winding); 3243 return NULL; 3244 } 3245 other->markWinding(min, winding); 3246 } 3247 return last; 3248 } 3249 3250 Span* markAndChaseWinding(int index, int endIndex, int winding, int oppWinding) { 3251 int min = SkMin32(index, endIndex); 3252 int step = SkSign32(endIndex - index); 3253 markWinding(min, winding, oppWinding); 3254 Span* last; 3255 Segment* other = this; 3256 while ((other = other->nextChase(index, step, min, last))) { 3257 if (other->fTs[min].fWindSum != SK_MinS32) { 3258 SkASSERT(other->fTs[min].fWindSum == winding || other->fTs[min].fLoop); 3259 return NULL; 3260 } 3261 other->markWinding(min, winding, oppWinding); 3262 } 3263 return last; 3264 } 3265 3266 Span* markAndChaseWinding(const Angle* angle, int winding, int oppWinding) { 3267 int start = angle->start(); 3268 int end = angle->end(); 3269 return markAndChaseWinding(start, end, winding, oppWinding); 3270 } 3271 3272 Span* markAngle(int maxWinding, int sumWinding, bool activeAngle, const Angle* angle) { 3273 SkASSERT(angle->segment() == this); 3274 if (useInnerWinding(maxWinding, sumWinding)) { 3275 maxWinding = sumWinding; 3276 } 3277 Span* last; 3278 if (activeAngle) { 3279 last = markAndChaseWinding(angle, maxWinding); 3280 } else { 3281 last = markAndChaseDoneUnary(angle, maxWinding); 3282 } 3283 return last; 3284 } 3285 3286 Span* markAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSumWinding, 3287 bool activeAngle, const Angle* angle) { 3288 SkASSERT(angle->segment() == this); 3289 if (useInnerWinding(maxWinding, sumWinding)) { 3290 maxWinding = sumWinding; 3291 } 3292 if (oppMaxWinding != oppSumWinding && useInnerWinding(oppMaxWinding, oppSumWinding)) { 3293 oppMaxWinding = oppSumWinding; 3294 } 3295 Span* last; 3296 if (activeAngle) { 3297 last = markAndChaseWinding(angle, maxWinding, oppMaxWinding); 3298 } else { 3299 last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding); 3300 } 3301 return last; 3302 } 3303 3304 // FIXME: this should also mark spans with equal (x,y) 3305 // This may be called when the segment is already marked done. While this 3306 // wastes time, it shouldn't do any more than spin through the T spans. 3307 // OPTIMIZATION: abort on first done found (assuming that this code is 3308 // always called to mark segments done). 3309 void markDone(int index, int winding) { 3310 // SkASSERT(!done()); 3311 SkASSERT(winding); 3312 double referenceT = fTs[index].fT; 3313 int lesser = index; 3314 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { 3315 markOneDone(__FUNCTION__, lesser, winding); 3316 } 3317 do { 3318 markOneDone(__FUNCTION__, index, winding); 3319 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); 3320 } 3321 3322 void markDoneBinary(int index, int winding, int oppWinding) { 3323 // SkASSERT(!done()); 3324 SkASSERT(winding || oppWinding); 3325 double referenceT = fTs[index].fT; 3326 int lesser = index; 3327 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { 3328 markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding); 3329 } 3330 do { 3331 markOneDoneBinary(__FUNCTION__, index, winding, oppWinding); 3332 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); 3333 } 3334 3335 void markDoneBinary(int index) { 3336 double referenceT = fTs[index].fT; 3337 int lesser = index; 3338 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { 3339 markOneDoneBinary(__FUNCTION__, lesser); 3340 } 3341 do { 3342 markOneDoneBinary(__FUNCTION__, index); 3343 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); 3344 } 3345 3346 void markDoneUnary(int index, int winding) { 3347 // SkASSERT(!done()); 3348 SkASSERT(winding); 3349 double referenceT = fTs[index].fT; 3350 int lesser = index; 3351 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { 3352 markOneDoneUnary(__FUNCTION__, lesser, winding); 3353 } 3354 do { 3355 markOneDoneUnary(__FUNCTION__, index, winding); 3356 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); 3357 } 3358 3359 void markDoneUnary(int index) { 3360 double referenceT = fTs[index].fT; 3361 int lesser = index; 3362 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { 3363 markOneDoneUnary(__FUNCTION__, lesser); 3364 } 3365 do { 3366 markOneDoneUnary(__FUNCTION__, index); 3367 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); 3368 } 3369 3370 void markOneDone(const char* funName, int tIndex, int winding) { 3371 Span* span = markOneWinding(funName, tIndex, winding); 3372 if (!span) { 3373 return; 3374 } 3375 span->fDone = true; 3376 fDoneSpans++; 3377 } 3378 3379 void markOneDoneBinary(const char* funName, int tIndex) { 3380 Span* span = verifyOneWinding(funName, tIndex); 3381 if (!span) { 3382 return; 3383 } 3384 span->fDone = true; 3385 fDoneSpans++; 3386 } 3387 3388 void markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding) { 3389 Span* span = markOneWinding(funName, tIndex, winding, oppWinding); 3390 if (!span) { 3391 return; 3392 } 3393 span->fDone = true; 3394 fDoneSpans++; 3395 } 3396 3397 void markOneDoneUnary(const char* funName, int tIndex) { 3398 Span* span = verifyOneWindingU(funName, tIndex); 3399 if (!span) { 3400 return; 3401 } 3402 span->fDone = true; 3403 fDoneSpans++; 3404 } 3405 3406 void markOneDoneUnary(const char* funName, int tIndex, int winding) { 3407 Span* span = markOneWinding(funName, tIndex, winding); 3408 if (!span) { 3409 return; 3410 } 3411 span->fDone = true; 3412 fDoneSpans++; 3413 } 3414 3415 Span* markOneWinding(const char* funName, int tIndex, int winding) { 3416 Span& span = fTs[tIndex]; 3417 if (span.fDone) { 3418 return NULL; 3419 } 3420 #if DEBUG_MARK_DONE 3421 debugShowNewWinding(funName, span, winding); 3422 #endif 3423 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); 3424 #ifdef SK_DEBUG 3425 SkASSERT(abs(winding) <= gDebugMaxWindSum); 3426 #endif 3427 span.fWindSum = winding; 3428 return &span; 3429 } 3430 3431 Span* markOneWinding(const char* funName, int tIndex, int winding, int oppWinding) { 3432 Span& span = fTs[tIndex]; 3433 if (span.fDone) { 3434 return NULL; 3435 } 3436 #if DEBUG_MARK_DONE 3437 debugShowNewWinding(funName, span, winding, oppWinding); 3438 #endif 3439 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); 3440 #ifdef SK_DEBUG 3441 SkASSERT(abs(winding) <= gDebugMaxWindSum); 3442 #endif 3443 span.fWindSum = winding; 3444 SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding); 3445 #ifdef SK_DEBUG 3446 SkASSERT(abs(oppWinding) <= gDebugMaxWindSum); 3447 #endif 3448 span.fOppSum = oppWinding; 3449 return &span; 3450 } 3451 3452 bool controls_contained_by_ends(int tStart, int tEnd) const { 3453 if (fVerb != SkPath::kCubic_Verb) { 3454 return false; 3455 } 3456 MAKE_CONST_CUBIC(aCubic, fPts); 3457 Cubic dst; 3458 sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); 3459 return ::controls_contained_by_ends(dst); 3460 } 3461 3462 // from http://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order 3463 bool clockwise(int tStart, int tEnd) const { 3464 SkASSERT(fVerb != SkPath::kLine_Verb); 3465 SkPoint edge[4]; 3466 subDivide(tStart, tEnd, edge); 3467 double sum = (edge[0].fX - edge[fVerb].fX) * (edge[0].fY + edge[fVerb].fY); 3468 if (fVerb == SkPath::kCubic_Verb) { 3469 SkScalar lesser = SkTMin(edge[0].fY, edge[3].fY); 3470 if (edge[1].fY < lesser && edge[2].fY < lesser) { 3471 _Line tangent1 = { {edge[0].fX, edge[0].fY}, {edge[1].fX, edge[1].fY} }; 3472 _Line tangent2 = { {edge[2].fX, edge[2].fY}, {edge[3].fX, edge[3].fY} }; 3473 if (testIntersect(tangent1, tangent2)) { 3474 SkPoint topPt = CubicTop(fPts, fTs[tStart].fT, fTs[tEnd].fT); 3475 sum += (topPt.fX - edge[0].fX) * (topPt.fY + edge[0].fY); 3476 sum += (edge[3].fX - topPt.fX) * (edge[3].fY + topPt.fY); 3477 return sum <= 0; 3478 } 3479 } 3480 } 3481 for (int idx = 0; idx < fVerb; ++idx){ 3482 sum += (edge[idx + 1].fX - edge[idx].fX) * (edge[idx + 1].fY + edge[idx].fY); 3483 } 3484 return sum <= 0; 3485 } 3486 3487 bool monotonic_in_y(int tStart, int tEnd) const { 3488 if (fVerb != SkPath::kCubic_Verb) { 3489 return false; 3490 } 3491 MAKE_CONST_CUBIC(aCubic, fPts); 3492 Cubic dst; 3493 sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); 3494 return ::monotonic_in_y(dst); 3495 } 3496 3497 bool serpentine(int tStart, int tEnd) const { 3498 if (fVerb != SkPath::kCubic_Verb) { 3499 return false; 3500 } 3501 MAKE_CONST_CUBIC(aCubic, fPts); 3502 Cubic dst; 3503 sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); 3504 return ::serpentine(dst); 3505 } 3506 3507 Span* verifyOneWinding(const char* funName, int tIndex) { 3508 Span& span = fTs[tIndex]; 3509 if (span.fDone) { 3510 return NULL; 3511 } 3512 #if DEBUG_MARK_DONE 3513 debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum); 3514 #endif 3515 SkASSERT(span.fWindSum != SK_MinS32); 3516 SkASSERT(span.fOppSum != SK_MinS32); 3517 return &span; 3518 } 3519 3520 Span* verifyOneWindingU(const char* funName, int tIndex) { 3521 Span& span = fTs[tIndex]; 3522 if (span.fDone) { 3523 return NULL; 3524 } 3525 #if DEBUG_MARK_DONE 3526 debugShowNewWinding(funName, span, span.fWindSum); 3527 #endif 3528 SkASSERT(span.fWindSum != SK_MinS32); 3529 return &span; 3530 } 3531 3532 // note that just because a span has one end that is unsortable, that's 3533 // not enough to mark it done. The other end may be sortable, allowing the 3534 // span to be added. 3535 // FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both ends 3536 void markUnsortable(int start, int end) { 3537 Span* span = &fTs[start]; 3538 if (start < end) { 3539 #if DEBUG_UNSORTABLE 3540 debugShowNewWinding(__FUNCTION__, *span, 0); 3541 #endif 3542 span->fUnsortableStart = true; 3543 } else { 3544 --span; 3545 #if DEBUG_UNSORTABLE 3546 debugShowNewWinding(__FUNCTION__, *span, 0); 3547 #endif 3548 span->fUnsortableEnd = true; 3549 } 3550 if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) { 3551 return; 3552 } 3553 span->fDone = true; 3554 fDoneSpans++; 3555 } 3556 3557 void markWinding(int index, int winding) { 3558 // SkASSERT(!done()); 3559 SkASSERT(winding); 3560 double referenceT = fTs[index].fT; 3561 int lesser = index; 3562 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { 3563 markOneWinding(__FUNCTION__, lesser, winding); 3564 } 3565 do { 3566 markOneWinding(__FUNCTION__, index, winding); 3567 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); 3568 } 3569 3570 void markWinding(int index, int winding, int oppWinding) { 3571 // SkASSERT(!done()); 3572 SkASSERT(winding || oppWinding); 3573 double referenceT = fTs[index].fT; 3574 int lesser = index; 3575 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { 3576 markOneWinding(__FUNCTION__, lesser, winding, oppWinding); 3577 } 3578 do { 3579 markOneWinding(__FUNCTION__, index, winding, oppWinding); 3580 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); 3581 } 3582 3583 void matchWindingValue(int tIndex, double t, bool borrowWind) { 3584 int nextDoorWind = SK_MaxS32; 3585 int nextOppWind = SK_MaxS32; 3586 if (tIndex > 0) { 3587 const Span& below = fTs[tIndex - 1]; 3588 if (approximately_negative(t - below.fT)) { 3589 nextDoorWind = below.fWindValue; 3590 nextOppWind = below.fOppValue; 3591 } 3592 } 3593 if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) { 3594 const Span& above = fTs[tIndex + 1]; 3595 if (approximately_negative(above.fT - t)) { 3596 nextDoorWind = above.fWindValue; 3597 nextOppWind = above.fOppValue; 3598 } 3599 } 3600 if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) { 3601 const Span& below = fTs[tIndex - 1]; 3602 nextDoorWind = below.fWindValue; 3603 nextOppWind = below.fOppValue; 3604 } 3605 if (nextDoorWind != SK_MaxS32) { 3606 Span& newSpan = fTs[tIndex]; 3607 newSpan.fWindValue = nextDoorWind; 3608 newSpan.fOppValue = nextOppWind; 3609 if (!nextDoorWind && !nextOppWind && !newSpan.fDone) { 3610 newSpan.fDone = true; 3611 ++fDoneSpans; 3612 } 3613 } 3614 } 3615 3616 bool moreHorizontal(int index, int endIndex, bool& unsortable) const { 3617 // find bounds 3618 Bounds bounds; 3619 bounds.setPoint(xyAtT(index)); 3620 bounds.add(xyAtT(endIndex)); 3621 SkScalar width = bounds.width(); 3622 SkScalar height = bounds.height(); 3623 if (width > height) { 3624 if (approximately_negative(width)) { 3625 unsortable = true; // edge is too small to resolve meaningfully 3626 } 3627 return false; 3628 } else { 3629 if (approximately_negative(height)) { 3630 unsortable = true; // edge is too small to resolve meaningfully 3631 } 3632 return true; 3633 } 3634 } 3635 3636 // return span if when chasing, two or more radiating spans are not done 3637 // OPTIMIZATION: ? multiple spans is detected when there is only one valid 3638 // candidate and the remaining spans have windValue == 0 (canceled by 3639 // coincidence). The coincident edges could either be removed altogether, 3640 // or this code could be more complicated in detecting this case. Worth it? 3641 bool multipleSpans(int end) const { 3642 return end > 0 && end < fTs.count() - 1; 3643 } 3644 3645 bool nextCandidate(int& start, int& end) const { 3646 while (fTs[end].fDone) { 3647 if (fTs[end].fT == 1) { 3648 return false; 3649 } 3650 ++end; 3651 } 3652 start = end; 3653 end = nextExactSpan(start, 1); 3654 return true; 3655 } 3656 3657 Segment* nextChase(int& index, const int step, int& min, Span*& last) { 3658 int end = nextExactSpan(index, step); 3659 SkASSERT(end >= 0); 3660 if (multipleSpans(end)) { 3661 last = &fTs[end]; 3662 return NULL; 3663 } 3664 const Span& endSpan = fTs[end]; 3665 Segment* other = endSpan.fOther; 3666 index = endSpan.fOtherIndex; 3667 SkASSERT(index >= 0); 3668 int otherEnd = other->nextExactSpan(index, step); 3669 SkASSERT(otherEnd >= 0); 3670 min = SkMin32(index, otherEnd); 3671 return other; 3672 } 3673 3674 // This has callers for two different situations: one establishes the end 3675 // of the current span, and one establishes the beginning of the next span 3676 // (thus the name). When this is looking for the end of the current span, 3677 // coincidence is found when the beginning Ts contain -step and the end 3678 // contains step. When it is looking for the beginning of the next, the 3679 // first Ts found can be ignored and the last Ts should contain -step. 3680 // OPTIMIZATION: probably should split into two functions 3681 int nextSpan(int from, int step) const { 3682 const Span& fromSpan = fTs[from]; 3683 int count = fTs.count(); 3684 int to = from; 3685 while (step > 0 ? ++to < count : --to >= 0) { 3686 const Span& span = fTs[to]; 3687 if (approximately_zero(span.fT - fromSpan.fT)) { 3688 continue; 3689 } 3690 return to; 3691 } 3692 return -1; 3693 } 3694 3695 // FIXME 3696 // this returns at any difference in T, vs. a preset minimum. It may be 3697 // that all callers to nextSpan should use this instead. 3698 // OPTIMIZATION splitting this into separate loops for up/down steps 3699 // would allow using precisely_negative instead of precisely_zero 3700 int nextExactSpan(int from, int step) const { 3701 const Span& fromSpan = fTs[from]; 3702 int count = fTs.count(); 3703 int to = from; 3704 while (step > 0 ? ++to < count : --to >= 0) { 3705 const Span& span = fTs[to]; 3706 if (precisely_zero(span.fT - fromSpan.fT)) { 3707 continue; 3708 } 3709 return to; 3710 } 3711 return -1; 3712 } 3713 3714 bool operand() const { 3715 return fOperand; 3716 } 3717 3718 int oppSign(const Angle* angle) const { 3719 SkASSERT(angle->segment() == this); 3720 return oppSign(angle->start(), angle->end()); 3721 } 3722 3723 int oppSign(int startIndex, int endIndex) const { 3724 int result = startIndex < endIndex ? -fTs[startIndex].fOppValue 3725 : fTs[endIndex].fOppValue; 3726 #if DEBUG_WIND_BUMP 3727 SkDebugf("%s oppSign=%d\n", __FUNCTION__, result); 3728 #endif 3729 return result; 3730 } 3731 3732 int oppSum(int tIndex) const { 3733 return fTs[tIndex].fOppSum; 3734 } 3735 3736 int oppSum(const Angle* angle) const { 3737 int lesser = SkMin32(angle->start(), angle->end()); 3738 return fTs[lesser].fOppSum; 3739 } 3740 3741 int oppValue(int tIndex) const { 3742 return fTs[tIndex].fOppValue; 3743 } 3744 3745 int oppValue(const Angle* angle) const { 3746 int lesser = SkMin32(angle->start(), angle->end()); 3747 return fTs[lesser].fOppValue; 3748 } 3749 3750 const SkPoint* pts() const { 3751 return fPts; 3752 } 3753 3754 void reset() { 3755 init(NULL, (SkPath::Verb) -1, false, false); 3756 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); 3757 fTs.reset(); 3758 } 3759 3760 void setOppXor(bool isOppXor) { 3761 fOppXor = isOppXor; 3762 } 3763 3764 void setSpanT(int index, double t) { 3765 Span& span = fTs[index]; 3766 span.fT = t; 3767 span.fOther->fTs[span.fOtherIndex].fOtherT = t; 3768 } 3769 3770 void setUpWinding(int index, int endIndex, int& maxWinding, int& sumWinding) { 3771 int deltaSum = spanSign(index, endIndex); 3772 maxWinding = sumWinding; 3773 sumWinding = sumWinding -= deltaSum; 3774 } 3775 3776 void setUpWindings(int index, int endIndex, int& sumMiWinding, int& sumSuWinding, 3777 int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) { 3778 int deltaSum = spanSign(index, endIndex); 3779 int oppDeltaSum = oppSign(index, endIndex); 3780 if (operand()) { 3781 maxWinding = sumSuWinding; 3782 sumWinding = sumSuWinding -= deltaSum; 3783 oppMaxWinding = sumMiWinding; 3784 oppSumWinding = sumMiWinding -= oppDeltaSum; 3785 } else { 3786 maxWinding = sumMiWinding; 3787 sumWinding = sumMiWinding -= deltaSum; 3788 oppMaxWinding = sumSuWinding; 3789 oppSumWinding = sumSuWinding -= oppDeltaSum; 3790 } 3791 } 3792 3793 // This marks all spans unsortable so that this info is available for early 3794 // exclusion in find top and others. This could be optimized to only mark 3795 // adjacent spans that unsortable. However, this makes it difficult to later 3796 // determine starting points for edge detection in find top and the like. 3797 static bool SortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) { 3798 bool sortable = true; 3799 int angleCount = angles.count(); 3800 int angleIndex; 3801 angleList.setReserve(angleCount); 3802 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { 3803 Angle& angle = angles[angleIndex]; 3804 *angleList.append() = ∠ 3805 sortable &= !angle.unsortable(); 3806 } 3807 if (sortable) { 3808 QSort<Angle>(angleList.begin(), angleList.end() - 1); 3809 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { 3810 if (angles[angleIndex].unsortable()) { 3811 sortable = false; 3812 break; 3813 } 3814 } 3815 } 3816 if (!sortable) { 3817 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { 3818 Angle& angle = angles[angleIndex]; 3819 angle.segment()->markUnsortable(angle.start(), angle.end()); 3820 } 3821 } 3822 return sortable; 3823 } 3824 3825 // OPTIMIZATION: mark as debugging only if used solely by tests 3826 const Span& span(int tIndex) const { 3827 return fTs[tIndex]; 3828 } 3829 3830 int spanSign(const Angle* angle) const { 3831 SkASSERT(angle->segment() == this); 3832 return spanSign(angle->start(), angle->end()); 3833 } 3834 3835 int spanSign(int startIndex, int endIndex) const { 3836 int result = startIndex < endIndex ? -fTs[startIndex].fWindValue 3837 : fTs[endIndex].fWindValue; 3838 #if DEBUG_WIND_BUMP 3839 SkDebugf("%s spanSign=%d\n", __FUNCTION__, result); 3840 #endif 3841 return result; 3842 } 3843 3844 void subDivide(int start, int end, SkPoint edge[4]) const { 3845 edge[0] = fTs[start].fPt; 3846 edge[fVerb] = fTs[end].fPt; 3847 if (fVerb == SkPath::kQuad_Verb || fVerb == SkPath::kCubic_Verb) { 3848 _Point sub[2] = {{ edge[0].fX, edge[0].fY}, {edge[fVerb].fX, edge[fVerb].fY }}; 3849 if (fVerb == SkPath::kQuad_Verb) { 3850 MAKE_CONST_QUAD(aQuad, fPts); 3851 edge[1] = sub_divide(aQuad, sub[0], sub[1], fTs[start].fT, fTs[end].fT).asSkPoint(); 3852 } else { 3853 MAKE_CONST_CUBIC(aCubic, fPts); 3854 sub_divide(aCubic, sub[0], sub[1], fTs[start].fT, fTs[end].fT, sub); 3855 edge[1] = sub[0].asSkPoint(); 3856 edge[2] = sub[1].asSkPoint(); 3857 } 3858 } 3859 } 3860 3861 void subDivideBounds(int start, int end, Bounds& bounds) const { 3862 SkPoint edge[4]; 3863 subDivide(start, end, edge); 3864 (bounds.*setSegmentBounds[fVerb])(edge); 3865 } 3866 3867 // OPTIMIZATION: mark as debugging only if used solely by tests 3868 double t(int tIndex) const { 3869 return fTs[tIndex].fT; 3870 } 3871 3872 double tAtMid(int start, int end, double mid) const { 3873 return fTs[start].fT * (1 - mid) + fTs[end].fT * mid; 3874 } 3875 3876 bool tiny(const Angle* angle) const { 3877 int start = angle->start(); 3878 int end = angle->end(); 3879 const Span& mSpan = fTs[SkMin32(start, end)]; 3880 return mSpan.fTiny; 3881 } 3882 3883 static void TrackOutside(SkTDArray<double>& outsideTs, double end, 3884 double start) { 3885 int outCount = outsideTs.count(); 3886 if (outCount == 0 || !approximately_negative(end - outsideTs[outCount - 2])) { 3887 *outsideTs.append() = end; 3888 *outsideTs.append() = start; 3889 } 3890 } 3891 3892 void undoneSpan(int& start, int& end) { 3893 size_t tCount = fTs.count(); 3894 size_t index; 3895 for (index = 0; index < tCount; ++index) { 3896 if (!fTs[index].fDone) { 3897 break; 3898 } 3899 } 3900 SkASSERT(index < tCount - 1); 3901 start = index; 3902 double startT = fTs[index].fT; 3903 while (approximately_negative(fTs[++index].fT - startT)) 3904 SkASSERT(index < tCount); 3905 SkASSERT(index < tCount); 3906 end = index; 3907 } 3908 3909 bool unsortable(int index) const { 3910 return fTs[index].fUnsortableStart || fTs[index].fUnsortableEnd; 3911 } 3912 3913 void updatePts(const SkPoint pts[]) { 3914 fPts = pts; 3915 } 3916 3917 int updateOppWinding(int index, int endIndex) const { 3918 int lesser = SkMin32(index, endIndex); 3919 int oppWinding = oppSum(lesser); 3920 int oppSpanWinding = oppSign(index, endIndex); 3921 if (oppSpanWinding && useInnerWinding(oppWinding - oppSpanWinding, oppWinding) 3922 && oppWinding != SK_MaxS32) { 3923 oppWinding -= oppSpanWinding; 3924 } 3925 return oppWinding; 3926 } 3927 3928 int updateOppWinding(const Angle* angle) const { 3929 int startIndex = angle->start(); 3930 int endIndex = angle->end(); 3931 return updateOppWinding(endIndex, startIndex); 3932 } 3933 3934 int updateOppWindingReverse(const Angle* angle) const { 3935 int startIndex = angle->start(); 3936 int endIndex = angle->end(); 3937 return updateOppWinding(startIndex, endIndex); 3938 } 3939 3940 int updateWinding(int index, int endIndex) const { 3941 int lesser = SkMin32(index, endIndex); 3942 int winding = windSum(lesser); 3943 int spanWinding = spanSign(index, endIndex); 3944 if (winding && useInnerWinding(winding - spanWinding, winding) && winding != SK_MaxS32) { 3945 winding -= spanWinding; 3946 } 3947 return winding; 3948 } 3949 3950 int updateWinding(const Angle* angle) const { 3951 int startIndex = angle->start(); 3952 int endIndex = angle->end(); 3953 return updateWinding(endIndex, startIndex); 3954 } 3955 3956 int updateWindingReverse(const Angle* angle) const { 3957 int startIndex = angle->start(); 3958 int endIndex = angle->end(); 3959 return updateWinding(startIndex, endIndex); 3960 } 3961 3962 SkPath::Verb verb() const { 3963 return fVerb; 3964 } 3965 3966 int windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar& dx) const { 3967 if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a span, disregard 3968 return SK_MinS32; 3969 } 3970 int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex); 3971 SkASSERT(winding != SK_MinS32); 3972 int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex); 3973 #if DEBUG_WINDING_AT_T 3974 SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal); 3975 #endif 3976 // see if a + change in T results in a +/- change in X (compute x'(T)) 3977 dx = (*SegmentDXAtT[fVerb])(fPts, tHit); 3978 if (fVerb > SkPath::kLine_Verb && approximately_zero(dx)) { 3979 dx = fPts[2].fX - fPts[1].fX - dx; 3980 } 3981 if (dx == 0) { 3982 #if DEBUG_WINDING_AT_T 3983 SkDebugf(" dx=0 winding=SK_MinS32\n"); 3984 #endif 3985 return SK_MinS32; 3986 } 3987 if (winding * dx > 0) { // if same signs, result is negative 3988 winding += dx > 0 ? -windVal : windVal; 3989 } 3990 #if DEBUG_WINDING_AT_T 3991 SkDebugf(" dx=%c winding=%d\n", dx > 0 ? '+' : '-', winding); 3992 #endif 3993 return winding; 3994 } 3995 3996 int windSum(int tIndex) const { 3997 return fTs[tIndex].fWindSum; 3998 } 3999 4000 int windSum(const Angle* angle) const { 4001 int start = angle->start(); 4002 int end = angle->end(); 4003 int index = SkMin32(start, end); 4004 return windSum(index); 4005 } 4006 4007 int windValue(int tIndex) const { 4008 return fTs[tIndex].fWindValue; 4009 } 4010 4011 int windValue(const Angle* angle) const { 4012 int start = angle->start(); 4013 int end = angle->end(); 4014 int index = SkMin32(start, end); 4015 return windValue(index); 4016 } 4017 4018 int windValueAt(double t) const { 4019 int count = fTs.count(); 4020 for (int index = 0; index < count; ++index) { 4021 if (fTs[index].fT == t) { 4022 return fTs[index].fWindValue; 4023 } 4024 } 4025 SkASSERT(0); 4026 return 0; 4027 } 4028 4029 SkScalar xAtT(int index) const { 4030 return xAtT(&fTs[index]); 4031 } 4032 4033 SkScalar xAtT(const Span* span) const { 4034 return xyAtT(span).fX; 4035 } 4036 4037 const SkPoint& xyAtT(int index) const { 4038 return xyAtT(&fTs[index]); 4039 } 4040 4041 const SkPoint& xyAtT(const Span* span) const { 4042 if (SkScalarIsNaN(span->fPt.fX)) { 4043 SkASSERT(0); // make sure this path is never used 4044 if (span->fT == 0) { 4045 span->fPt = fPts[0]; 4046 } else if (span->fT == 1) { 4047 span->fPt = fPts[fVerb]; 4048 } else { 4049 (*SegmentXYAtT[fVerb])(fPts, span->fT, &span->fPt); 4050 } 4051 } 4052 return span->fPt; 4053 } 4054 4055 // used only by right angle winding finding 4056 void xyAtT(double mid, SkPoint& pt) const { 4057 (*SegmentXYAtT[fVerb])(fPts, mid, &pt); 4058 } 4059 4060 SkScalar yAtT(int index) const { 4061 return yAtT(&fTs[index]); 4062 } 4063 4064 SkScalar yAtT(const Span* span) const { 4065 return xyAtT(span).fY; 4066 } 4067 4068 void zeroCoincidentOpp(Span* oTest, int index) { 4069 Span* const test = &fTs[index]; 4070 Span* end = test; 4071 do { 4072 end->fOppValue = 0; 4073 end = &fTs[++index]; 4074 } while (approximately_negative(end->fT - test->fT)); 4075 } 4076 4077 void zeroCoincidentOther(Span* test, const double tRatio, const double oEndT, int oIndex) { 4078 Span* const oTest = &fTs[oIndex]; 4079 Span* oEnd = oTest; 4080 const double startT = test->fT; 4081 const double oStartT = oTest->fT; 4082 double otherTMatch = (test->fT - startT) * tRatio + oStartT; 4083 while (!approximately_negative(oEndT - oEnd->fT) 4084 && approximately_negative(oEnd->fT - otherTMatch)) { 4085 oEnd->fOppValue = 0; 4086 oEnd = &fTs[++oIndex]; 4087 } 4088 } 4089 4090 void zeroSpan(Span* span) { 4091 SkASSERT(span->fWindValue > 0 || span->fOppValue > 0); 4092 span->fWindValue = 0; 4093 span->fOppValue = 0; 4094 SkASSERT(!span->fDone); 4095 span->fDone = true; 4096 ++fDoneSpans; 4097 } 4098 4099 #if DEBUG_DUMP 4100 void dump() const { 4101 const char className[] = "Segment"; 4102 const int tab = 4; 4103 for (int i = 0; i < fTs.count(); ++i) { 4104 SkPoint out; 4105 (*SegmentXYAtT[fVerb])(fPts, t(i), &out); 4106 SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d" 4107 " otherT=%1.9g windSum=%d\n", 4108 tab + sizeof(className), className, fID, 4109 kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY, 4110 fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum); 4111 } 4112 SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)", 4113 tab + sizeof(className), className, fID, 4114 fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); 4115 } 4116 #endif 4117 4118 #if DEBUG_CONCIDENT 4119 // SkASSERT if pair has not already been added 4120 void debugAddTPair(double t, const Segment& other, double otherT) const { 4121 for (int i = 0; i < fTs.count(); ++i) { 4122 if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) { 4123 return; 4124 } 4125 } 4126 SkASSERT(0); 4127 } 4128 #endif 4129 4130 #if DEBUG_DUMP 4131 int debugID() const { 4132 return fID; 4133 } 4134 #endif 4135 4136 #if DEBUG_WINDING 4137 void debugShowSums() const { 4138 SkDebugf("%s id=%d (%1.9g,%1.9g %1.9g,%1.9g)", __FUNCTION__, fID, 4139 fPts[0].fX, fPts[0].fY, fPts[fVerb].fX, fPts[fVerb].fY); 4140 for (int i = 0; i < fTs.count(); ++i) { 4141 const Span& span = fTs[i]; 4142 SkDebugf(" [t=%1.3g %1.9g,%1.9g w=", span.fT, xAtT(&span), yAtT(&span)); 4143 if (span.fWindSum == SK_MinS32) { 4144 SkDebugf("?"); 4145 } else { 4146 SkDebugf("%d", span.fWindSum); 4147 } 4148 SkDebugf("]"); 4149 } 4150 SkDebugf("\n"); 4151 } 4152 #endif 4153 4154 #if DEBUG_CONCIDENT 4155 void debugShowTs() const { 4156 SkDebugf("%s id=%d", __FUNCTION__, fID); 4157 int lastWind = -1; 4158 int lastOpp = -1; 4159 double lastT = -1; 4160 int i; 4161 for (i = 0; i < fTs.count(); ++i) { 4162 bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue 4163 || lastOpp != fTs[i].fOppValue; 4164 if (change && lastWind >= 0) { 4165 SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", 4166 lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); 4167 } 4168 if (change) { 4169 SkDebugf(" [o=%d", fTs[i].fOther->fID); 4170 lastWind = fTs[i].fWindValue; 4171 lastOpp = fTs[i].fOppValue; 4172 lastT = fTs[i].fT; 4173 } else { 4174 SkDebugf(",%d", fTs[i].fOther->fID); 4175 } 4176 } 4177 if (i <= 0) { 4178 return; 4179 } 4180 SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", 4181 lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); 4182 if (fOperand) { 4183 SkDebugf(" operand"); 4184 } 4185 if (done()) { 4186 SkDebugf(" done"); 4187 } 4188 SkDebugf("\n"); 4189 } 4190 #endif 4191 4192 #if DEBUG_ACTIVE_SPANS 4193 void debugShowActiveSpans() const { 4194 if (done()) { 4195 return; 4196 } 4197 #if DEBUG_ACTIVE_SPANS_SHORT_FORM 4198 int lastId = -1; 4199 double lastT = -1; 4200 #endif 4201 for (int i = 0; i < fTs.count(); ++i) { 4202 SkASSERT(&fTs[i] == &fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOther-> 4203 fTs[fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOtherIndex]); 4204 if (fTs[i].fDone) { 4205 continue; 4206 } 4207 #if DEBUG_ACTIVE_SPANS_SHORT_FORM 4208 if (lastId == fID && lastT == fTs[i].fT) { 4209 continue; 4210 } 4211 lastId = fID; 4212 lastT = fTs[i].fT; 4213 #endif 4214 SkDebugf("%s id=%d", __FUNCTION__, fID); 4215 SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); 4216 for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { 4217 SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); 4218 } 4219 const Span* span = &fTs[i]; 4220 SkDebugf(") t=%1.9g (%1.9g,%1.9g)", fTs[i].fT, 4221 xAtT(span), yAtT(span)); 4222 int iEnd = i + 1; 4223 while (fTs[iEnd].fT < 1 && approximately_equal(fTs[i].fT, fTs[iEnd].fT)) { 4224 ++iEnd; 4225 } 4226 SkDebugf(" tEnd=%1.9g", fTs[iEnd].fT); 4227 const Segment* other = fTs[i].fOther; 4228 SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=", 4229 other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex); 4230 if (fTs[i].fWindSum == SK_MinS32) { 4231 SkDebugf("?"); 4232 } else { 4233 SkDebugf("%d", fTs[i].fWindSum); 4234 } 4235 SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fOppValue); 4236 } 4237 } 4238 4239 // This isn't useful yet -- but leaving it in for now in case i think of something 4240 // to use it for 4241 void validateActiveSpans() const { 4242 if (done()) { 4243 return; 4244 } 4245 int tCount = fTs.count(); 4246 for (int index = 0; index < tCount; ++index) { 4247 if (fTs[index].fDone) { 4248 continue; 4249 } 4250 // count number of connections which are not done 4251 int first = index; 4252 double baseT = fTs[index].fT; 4253 while (first > 0 && approximately_equal(fTs[first - 1].fT, baseT)) { 4254 --first; 4255 } 4256 int last = index; 4257 while (last < tCount - 1 && approximately_equal(fTs[last + 1].fT, baseT)) { 4258 ++last; 4259 } 4260 int connections = 0; 4261 connections += first > 0 && !fTs[first - 1].fDone; 4262 for (int test = first; test <= last; ++test) { 4263 connections += !fTs[test].fDone; 4264 const Segment* other = fTs[test].fOther; 4265 int oIndex = fTs[test].fOtherIndex; 4266 connections += !other->fTs[oIndex].fDone; 4267 connections += oIndex > 0 && !other->fTs[oIndex - 1].fDone; 4268 } 4269 // SkASSERT(!(connections & 1)); 4270 } 4271 } 4272 #endif 4273 4274 #if DEBUG_MARK_DONE || DEBUG_UNSORTABLE 4275 void debugShowNewWinding(const char* fun, const Span& span, int winding) { 4276 const SkPoint& pt = xyAtT(&span); 4277 SkDebugf("%s id=%d", fun, fID); 4278 SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); 4279 for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { 4280 SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); 4281 } 4282 SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> 4283 fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); 4284 SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d windSum=", 4285 span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, 4286 (&span)[1].fT, winding); 4287 if (span.fWindSum == SK_MinS32) { 4288 SkDebugf("?"); 4289 } else { 4290 SkDebugf("%d", span.fWindSum); 4291 } 4292 SkDebugf(" windValue=%d\n", span.fWindValue); 4293 } 4294 4295 void debugShowNewWinding(const char* fun, const Span& span, int winding, int oppWinding) { 4296 const SkPoint& pt = xyAtT(&span); 4297 SkDebugf("%s id=%d", fun, fID); 4298 SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); 4299 for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { 4300 SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); 4301 } 4302 SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> 4303 fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); 4304 SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d newOppSum=%d oppSum=", 4305 span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, 4306 (&span)[1].fT, winding, oppWinding); 4307 if (span.fOppSum == SK_MinS32) { 4308 SkDebugf("?"); 4309 } else { 4310 SkDebugf("%d", span.fOppSum); 4311 } 4312 SkDebugf(" windSum="); 4313 if (span.fWindSum == SK_MinS32) { 4314 SkDebugf("?"); 4315 } else { 4316 SkDebugf("%d", span.fWindSum); 4317 } 4318 SkDebugf(" windValue=%d\n", span.fWindValue); 4319 } 4320 #endif 4321 4322 #if DEBUG_SORT || DEBUG_SWAP_TOP 4323 void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first, 4324 const int contourWinding, const int oppContourWinding) const { 4325 if (--gDebugSortCount < 0) { 4326 return; 4327 } 4328 SkASSERT(angles[first]->segment() == this); 4329 SkASSERT(angles.count() > 1); 4330 int lastSum = contourWinding; 4331 int oppLastSum = oppContourWinding; 4332 const Angle* firstAngle = angles[first]; 4333 int windSum = lastSum - spanSign(firstAngle); 4334 int oppoSign = oppSign(firstAngle); 4335 int oppWindSum = oppLastSum - oppoSign; 4336 #define WIND_AS_STRING(x) char x##Str[12]; if (!valid_wind(x)) strcpy(x##Str, "?"); \ 4337 else snprintf(x##Str, sizeof(x##Str), "%d", x) 4338 WIND_AS_STRING(contourWinding); 4339 WIND_AS_STRING(oppContourWinding); 4340 SkDebugf("%s %s contourWinding=%s oppContourWinding=%s sign=%d\n", fun, __FUNCTION__, 4341 contourWindingStr, oppContourWindingStr, spanSign(angles[first])); 4342 int index = first; 4343 bool firstTime = true; 4344 do { 4345 const Angle& angle = *angles[index]; 4346 const Segment& segment = *angle.segment(); 4347 int start = angle.start(); 4348 int end = angle.end(); 4349 const Span& sSpan = segment.fTs[start]; 4350 const Span& eSpan = segment.fTs[end]; 4351 const Span& mSpan = segment.fTs[SkMin32(start, end)]; 4352 bool opp = segment.fOperand ^ fOperand; 4353 if (!firstTime) { 4354 oppoSign = segment.oppSign(&angle); 4355 if (opp) { 4356 oppLastSum = oppWindSum; 4357 oppWindSum -= segment.spanSign(&angle); 4358 if (oppoSign) { 4359 lastSum = windSum; 4360 windSum -= oppoSign; 4361 } 4362 } else { 4363 lastSum = windSum; 4364 windSum -= segment.spanSign(&angle); 4365 if (oppoSign) { 4366 oppLastSum = oppWindSum; 4367 oppWindSum -= oppoSign; 4368 } 4369 } 4370 } 4371 SkDebugf("%s [%d] %s", __FUNCTION__, index, 4372 angle.unsortable() ? "*** UNSORTABLE *** " : ""); 4373 #if COMPACT_DEBUG_SORT 4374 SkDebugf("id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)", 4375 segment.fID, kLVerbStr[segment.fVerb], 4376 start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end, 4377 segment.xAtT(&eSpan), segment.yAtT(&eSpan)); 4378 #else 4379 switch (segment.fVerb) { 4380 case SkPath::kLine_Verb: 4381 SkDebugf(LINE_DEBUG_STR, LINE_DEBUG_DATA(segment.fPts)); 4382 break; 4383 case SkPath::kQuad_Verb: 4384 SkDebugf(QUAD_DEBUG_STR, QUAD_DEBUG_DATA(segment.fPts)); 4385 break; 4386 case SkPath::kCubic_Verb: 4387 SkDebugf(CUBIC_DEBUG_STR, CUBIC_DEBUG_DATA(segment.fPts)); 4388 break; 4389 default: 4390 SkASSERT(0); 4391 } 4392 SkDebugf(" tStart=%1.9g tEnd=%1.9g", sSpan.fT, eSpan.fT); 4393 #endif 4394 SkDebugf(" sign=%d windValue=%d windSum=", angle.sign(), mSpan.fWindValue); 4395 winding_printf(mSpan.fWindSum); 4396 int last, wind; 4397 if (opp) { 4398 last = oppLastSum; 4399 wind = oppWindSum; 4400 } else { 4401 last = lastSum; 4402 wind = windSum; 4403 } 4404 bool useInner = valid_wind(last) && valid_wind(wind) && useInnerWinding(last, wind); 4405 WIND_AS_STRING(last); 4406 WIND_AS_STRING(wind); 4407 WIND_AS_STRING(lastSum); 4408 WIND_AS_STRING(oppLastSum); 4409 WIND_AS_STRING(windSum); 4410 WIND_AS_STRING(oppWindSum); 4411 #undef WIND_AS_STRING 4412 if (!oppoSign) { 4413 SkDebugf(" %s->%s (max=%s)", lastStr, windStr, useInner ? windStr : lastStr); 4414 } else { 4415 SkDebugf(" %s->%s (%s->%s)", lastStr, windStr, opp ? lastSumStr : oppLastSumStr, 4416 opp ? windSumStr : oppWindSumStr); 4417 } 4418 SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp); 4419 #if false && DEBUG_ANGLE 4420 angle.debugShow(segment.xyAtT(&sSpan)); 4421 #endif 4422 ++index; 4423 if (index == angles.count()) { 4424 index = 0; 4425 } 4426 if (firstTime) { 4427 firstTime = false; 4428 } 4429 } while (index != first); 4430 } 4431 4432 void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first) { 4433 const Angle* firstAngle = angles[first]; 4434 const Segment* segment = firstAngle->segment(); 4435 int winding = segment->updateWinding(firstAngle); 4436 int oppWinding = segment->updateOppWinding(firstAngle); 4437 debugShowSort(fun, angles, first, winding, oppWinding); 4438 } 4439 4440 #endif 4441 4442 #if DEBUG_WINDING 4443 static char as_digit(int value) { 4444 return value < 0 ? '?' : value <= 9 ? '0' + value : '+'; 4445 } 4446 #endif 4447 4448 #if DEBUG_SHOW_WINDING 4449 int debugShowWindingValues(int slotCount, int ofInterest) const { 4450 if (!(1 << fID & ofInterest)) { 4451 return 0; 4452 } 4453 int sum = 0; 4454 SkTDArray<char> slots; 4455 slots.setCount(slotCount * 2); 4456 memset(slots.begin(), ' ', slotCount * 2); 4457 for (int i = 0; i < fTs.count(); ++i) { 4458 // if (!(1 << fTs[i].fOther->fID & ofInterest)) { 4459 // continue; 4460 // } 4461 sum += fTs[i].fWindValue; 4462 slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue); 4463 sum += fTs[i].fOppValue; 4464 slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValue); 4465 } 4466 SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.begin(), slotCount, 4467 slots.begin() + slotCount); 4468 return sum; 4469 } 4470 #endif 4471 4472 private: 4473 const SkPoint* fPts; 4474 Bounds fBounds; 4475 SkTDArray<Span> fTs; // two or more (always includes t=0 t=1) 4476 // OPTIMIZATION: could pack donespans, verb, operand, xor into 1 int-sized value 4477 int fDoneSpans; // quick check that segment is finished 4478 // OPTIMIZATION: force the following to be byte-sized 4479 SkPath::Verb fVerb; 4480 bool fOperand; 4481 bool fXor; // set if original contour had even-odd fill 4482 bool fOppXor; // set if opposite operand had even-odd fill 4483 #if DEBUG_DUMP 4484 int fID; 4485 #endif 4486 }; 4487 4488 class Contour; 4489 4490 struct Coincidence { 4491 Contour* fContours[2]; 4492 int fSegments[2]; 4493 double fTs[2][2]; 4494 SkPoint fPts[2]; 4495 }; 4496 4497 class Contour { 4498 public: 4499 Contour() { 4500 reset(); 4501 #if DEBUG_DUMP 4502 fID = ++gContourID; 4503 #endif 4504 } 4505 4506 bool operator<(const Contour& rh) const { 4507 return fBounds.fTop == rh.fBounds.fTop 4508 ? fBounds.fLeft < rh.fBounds.fLeft 4509 : fBounds.fTop < rh.fBounds.fTop; 4510 } 4511 4512 void addCoincident(int index, Contour* other, int otherIndex, 4513 const Intersections& ts, bool swap) { 4514 Coincidence& coincidence = *fCoincidences.append(); 4515 coincidence.fContours[0] = this; // FIXME: no need to store 4516 coincidence.fContours[1] = other; 4517 coincidence.fSegments[0] = index; 4518 coincidence.fSegments[1] = otherIndex; 4519 coincidence.fTs[swap][0] = ts.fT[0][0]; 4520 coincidence.fTs[swap][1] = ts.fT[0][1]; 4521 coincidence.fTs[!swap][0] = ts.fT[1][0]; 4522 coincidence.fTs[!swap][1] = ts.fT[1][1]; 4523 coincidence.fPts[0] = ts.fPt[0].asSkPoint(); 4524 coincidence.fPts[1] = ts.fPt[1].asSkPoint(); 4525 } 4526 4527 void addCross(const Contour* crosser) { 4528 #ifdef DEBUG_CROSS 4529 for (int index = 0; index < fCrosses.count(); ++index) { 4530 SkASSERT(fCrosses[index] != crosser); 4531 } 4532 #endif 4533 *fCrosses.append() = crosser; 4534 } 4535 4536 void addCubic(const SkPoint pts[4]) { 4537 fSegments.push_back().addCubic(pts, fOperand, fXor); 4538 fContainsCurves = fContainsCubics = true; 4539 } 4540 4541 int addLine(const SkPoint pts[2]) { 4542 fSegments.push_back().addLine(pts, fOperand, fXor); 4543 return fSegments.count(); 4544 } 4545 4546 void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) { 4547 fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex); 4548 } 4549 4550 int addQuad(const SkPoint pts[3]) { 4551 fSegments.push_back().addQuad(pts, fOperand, fXor); 4552 fContainsCurves = true; 4553 return fSegments.count(); 4554 } 4555 4556 int addT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt, double& newT) { 4557 setContainsIntercepts(); 4558 return fSegments[segIndex].addT(&other->fSegments[otherIndex], pt, newT); 4559 } 4560 4561 int addSelfT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt, double& newT) { 4562 setContainsIntercepts(); 4563 return fSegments[segIndex].addSelfT(&other->fSegments[otherIndex], pt, newT); 4564 } 4565 4566 int addUnsortableT(int segIndex, Contour* other, int otherIndex, bool start, 4567 const SkPoint& pt, double& newT) { 4568 return fSegments[segIndex].addUnsortableT(&other->fSegments[otherIndex], start, pt, newT); 4569 } 4570 4571 const Bounds& bounds() const { 4572 return fBounds; 4573 } 4574 4575 void complete() { 4576 setBounds(); 4577 fContainsIntercepts = false; 4578 } 4579 4580 bool containsCubics() const { 4581 return fContainsCubics; 4582 } 4583 4584 bool crosses(const Contour* crosser) const { 4585 for (int index = 0; index < fCrosses.count(); ++index) { 4586 if (fCrosses[index] == crosser) { 4587 return true; 4588 } 4589 } 4590 return false; 4591 } 4592 4593 bool done() const { 4594 return fDone; 4595 } 4596 4597 const SkPoint& end() const { 4598 const Segment& segment = fSegments.back(); 4599 return segment.pts()[segment.verb()]; 4600 } 4601 4602 void findTooCloseToCall() { 4603 int segmentCount = fSegments.count(); 4604 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { 4605 fSegments[sIndex].findTooCloseToCall(); 4606 } 4607 } 4608 4609 void fixOtherTIndex() { 4610 int segmentCount = fSegments.count(); 4611 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { 4612 fSegments[sIndex].fixOtherTIndex(); 4613 } 4614 } 4615 4616 Segment* nonVerticalSegment(int& start, int& end) { 4617 int segmentCount = fSortedSegments.count(); 4618 SkASSERT(segmentCount > 0); 4619 for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sortedIndex) { 4620 Segment* testSegment = fSortedSegments[sortedIndex]; 4621 if (testSegment->done()) { 4622 continue; 4623 } 4624 start = end = 0; 4625 while (testSegment->nextCandidate(start, end)) { 4626 if (!testSegment->isVertical(start, end)) { 4627 return testSegment; 4628 } 4629 } 4630 } 4631 return NULL; 4632 } 4633 4634 bool operand() const { 4635 return fOperand; 4636 } 4637 4638 void reset() { 4639 fSegments.reset(); 4640 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); 4641 fContainsCurves = fContainsCubics = fContainsIntercepts = fDone = false; 4642 } 4643 4644 void resolveCoincidence(SkTDArray<Contour*>& contourList) { 4645 int count = fCoincidences.count(); 4646 for (int index = 0; index < count; ++index) { 4647 Coincidence& coincidence = fCoincidences[index]; 4648 SkASSERT(coincidence.fContours[0] == this); 4649 int thisIndex = coincidence.fSegments[0]; 4650 Segment& thisOne = fSegments[thisIndex]; 4651 Contour* otherContour = coincidence.fContours[1]; 4652 int otherIndex = coincidence.fSegments[1]; 4653 Segment& other = otherContour->fSegments[otherIndex]; 4654 if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { 4655 continue; 4656 } 4657 #if DEBUG_CONCIDENT 4658 thisOne.debugShowTs(); 4659 other.debugShowTs(); 4660 #endif 4661 double startT = coincidence.fTs[0][0]; 4662 double endT = coincidence.fTs[0][1]; 4663 bool cancelers = false; 4664 if (startT > endT) { 4665 SkTSwap<double>(startT, endT); 4666 cancelers ^= true; // FIXME: just assign true 4667 } 4668 SkASSERT(!approximately_negative(endT - startT)); 4669 double oStartT = coincidence.fTs[1][0]; 4670 double oEndT = coincidence.fTs[1][1]; 4671 if (oStartT > oEndT) { 4672 SkTSwap<double>(oStartT, oEndT); 4673 cancelers ^= true; 4674 } 4675 SkASSERT(!approximately_negative(oEndT - oStartT)); 4676 bool opp = fOperand ^ otherContour->fOperand; 4677 if (cancelers && !opp) { 4678 // make sure startT and endT have t entries 4679 if (startT > 0 || oEndT < 1 4680 || thisOne.isMissing(startT) || other.isMissing(oEndT)) { 4681 thisOne.addTPair(startT, other, oEndT, true, coincidence.fPts[0]); 4682 } 4683 if (oStartT > 0 || endT < 1 4684 || thisOne.isMissing(endT) || other.isMissing(oStartT)) { 4685 other.addTPair(oStartT, thisOne, endT, true, coincidence.fPts[1]); 4686 } 4687 if (!thisOne.done() && !other.done()) { 4688 thisOne.addTCancel(startT, endT, other, oStartT, oEndT); 4689 } 4690 } else { 4691 if (startT > 0 || oStartT > 0 4692 || thisOne.isMissing(startT) || other.isMissing(oStartT)) { 4693 thisOne.addTPair(startT, other, oStartT, true, coincidence.fPts[0]); 4694 } 4695 if (endT < 1 || oEndT < 1 4696 || thisOne.isMissing(endT) || other.isMissing(oEndT)) { 4697 other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[1]); 4698 } 4699 if (!thisOne.done() && !other.done()) { 4700 thisOne.addTCoincident(startT, endT, other, oStartT, oEndT); 4701 } 4702 } 4703 #if DEBUG_CONCIDENT 4704 thisOne.debugShowTs(); 4705 other.debugShowTs(); 4706 #endif 4707 #if DEBUG_SHOW_WINDING 4708 debugShowWindingValues(contourList); 4709 #endif 4710 } 4711 } 4712 4713 // first pass, add missing T values 4714 // second pass, determine winding values of overlaps 4715 void addCoincidentPoints() { 4716 int count = fCoincidences.count(); 4717 for (int index = 0; index < count; ++index) { 4718 Coincidence& coincidence = fCoincidences[index]; 4719 SkASSERT(coincidence.fContours[0] == this); 4720 int thisIndex = coincidence.fSegments[0]; 4721 Segment& thisOne = fSegments[thisIndex]; 4722 Contour* otherContour = coincidence.fContours[1]; 4723 int otherIndex = coincidence.fSegments[1]; 4724 Segment& other = otherContour->fSegments[otherIndex]; 4725 if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { 4726 // OPTIMIZATION: remove from array 4727 continue; 4728 } 4729 #if DEBUG_CONCIDENT 4730 thisOne.debugShowTs(); 4731 other.debugShowTs(); 4732 #endif 4733 double startT = coincidence.fTs[0][0]; 4734 double endT = coincidence.fTs[0][1]; 4735 bool cancelers; 4736 if ((cancelers = startT > endT)) { 4737 SkTSwap(startT, endT); 4738 SkTSwap(coincidence.fPts[0], coincidence.fPts[1]); 4739 } 4740 SkASSERT(!approximately_negative(endT - startT)); 4741 double oStartT = coincidence.fTs[1][0]; 4742 double oEndT = coincidence.fTs[1][1]; 4743 if (oStartT > oEndT) { 4744 SkTSwap<double>(oStartT, oEndT); 4745 cancelers ^= true; 4746 } 4747 SkASSERT(!approximately_negative(oEndT - oStartT)); 4748 bool opp = fOperand ^ otherContour->fOperand; 4749 if (cancelers && !opp) { 4750 // make sure startT and endT have t entries 4751 if (startT > 0 || oEndT < 1 4752 || thisOne.isMissing(startT) || other.isMissing(oEndT)) { 4753 thisOne.addTPair(startT, other, oEndT, true, coincidence.fPts[0]); 4754 } 4755 if (oStartT > 0 || endT < 1 4756 || thisOne.isMissing(endT) || other.isMissing(oStartT)) { 4757 other.addTPair(oStartT, thisOne, endT, true, coincidence.fPts[1]); 4758 } 4759 } else { 4760 if (startT > 0 || oStartT > 0 4761 || thisOne.isMissing(startT) || other.isMissing(oStartT)) { 4762 thisOne.addTPair(startT, other, oStartT, true, coincidence.fPts[0]); 4763 } 4764 if (endT < 1 || oEndT < 1 4765 || thisOne.isMissing(endT) || other.isMissing(oEndT)) { 4766 other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[1]); 4767 } 4768 } 4769 #if DEBUG_CONCIDENT 4770 thisOne.debugShowTs(); 4771 other.debugShowTs(); 4772 #endif 4773 } 4774 } 4775 4776 void calcCoincidentWinding() { 4777 int count = fCoincidences.count(); 4778 for (int index = 0; index < count; ++index) { 4779 Coincidence& coincidence = fCoincidences[index]; 4780 SkASSERT(coincidence.fContours[0] == this); 4781 int thisIndex = coincidence.fSegments[0]; 4782 Segment& thisOne = fSegments[thisIndex]; 4783 if (thisOne.done()) { 4784 continue; 4785 } 4786 Contour* otherContour = coincidence.fContours[1]; 4787 int otherIndex = coincidence.fSegments[1]; 4788 Segment& other = otherContour->fSegments[otherIndex]; 4789 if (other.done()) { 4790 continue; 4791 } 4792 double startT = coincidence.fTs[0][0]; 4793 double endT = coincidence.fTs[0][1]; 4794 bool cancelers; 4795 if ((cancelers = startT > endT)) { 4796 SkTSwap<double>(startT, endT); 4797 } 4798 SkASSERT(!approximately_negative(endT - startT)); 4799 double oStartT = coincidence.fTs[1][0]; 4800 double oEndT = coincidence.fTs[1][1]; 4801 if (oStartT > oEndT) { 4802 SkTSwap<double>(oStartT, oEndT); 4803 cancelers ^= true; 4804 } 4805 SkASSERT(!approximately_negative(oEndT - oStartT)); 4806 bool opp = fOperand ^ otherContour->fOperand; 4807 if (cancelers && !opp) { 4808 // make sure startT and endT have t entries 4809 if (!thisOne.done() && !other.done()) { 4810 thisOne.addTCancel(startT, endT, other, oStartT, oEndT); 4811 } 4812 } else { 4813 if (!thisOne.done() && !other.done()) { 4814 thisOne.addTCoincident(startT, endT, other, oStartT, oEndT); 4815 } 4816 } 4817 #if DEBUG_CONCIDENT 4818 thisOne.debugShowTs(); 4819 other.debugShowTs(); 4820 #endif 4821 } 4822 } 4823 4824 SkTArray<Segment>& segments() { 4825 return fSegments; 4826 } 4827 4828 void setContainsIntercepts() { 4829 fContainsIntercepts = true; 4830 } 4831 4832 void setOperand(bool isOp) { 4833 fOperand = isOp; 4834 } 4835 4836 void setOppXor(bool isOppXor) { 4837 fOppXor = isOppXor; 4838 int segmentCount = fSegments.count(); 4839 for (int test = 0; test < segmentCount; ++test) { 4840 fSegments[test].setOppXor(isOppXor); 4841 } 4842 } 4843 4844 void setXor(bool isXor) { 4845 fXor = isXor; 4846 } 4847 4848 void sortSegments() { 4849 int segmentCount = fSegments.count(); 4850 fSortedSegments.setReserve(segmentCount); 4851 for (int test = 0; test < segmentCount; ++test) { 4852 *fSortedSegments.append() = &fSegments[test]; 4853 } 4854 QSort<Segment>(fSortedSegments.begin(), fSortedSegments.end() - 1); 4855 fFirstSorted = 0; 4856 } 4857 4858 const SkPoint& start() const { 4859 return fSegments.front().pts()[0]; 4860 } 4861 4862 void toPath(PathWrapper& path) const { 4863 int segmentCount = fSegments.count(); 4864 const SkPoint& pt = fSegments.front().pts()[0]; 4865 path.deferredMove(pt); 4866 for (int test = 0; test < segmentCount; ++test) { 4867 fSegments[test].addCurveTo(0, 1, path, true); 4868 } 4869 path.close(); 4870 } 4871 4872 void toPartialBackward(PathWrapper& path) const { 4873 int segmentCount = fSegments.count(); 4874 for (int test = segmentCount - 1; test >= 0; --test) { 4875 fSegments[test].addCurveTo(1, 0, path, true); 4876 } 4877 } 4878 4879 void toPartialForward(PathWrapper& path) const { 4880 int segmentCount = fSegments.count(); 4881 for (int test = 0; test < segmentCount; ++test) { 4882 fSegments[test].addCurveTo(0, 1, path, true); 4883 } 4884 } 4885 4886 void topSortableSegment(const SkPoint& topLeft, SkPoint& bestXY, Segment*& topStart) { 4887 int segmentCount = fSortedSegments.count(); 4888 SkASSERT(segmentCount > 0); 4889 int sortedIndex = fFirstSorted; 4890 fDone = true; // may be cleared below 4891 for ( ; sortedIndex < segmentCount; ++sortedIndex) { 4892 Segment* testSegment = fSortedSegments[sortedIndex]; 4893 if (testSegment->done()) { 4894 if (sortedIndex == fFirstSorted) { 4895 ++fFirstSorted; 4896 } 4897 continue; 4898 } 4899 fDone = false; 4900 SkPoint testXY = testSegment->activeLeftTop(true, NULL); 4901 if (topStart) { 4902 if (testXY.fY < topLeft.fY) { 4903 continue; 4904 } 4905 if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) { 4906 continue; 4907 } 4908 if (bestXY.fY < testXY.fY) { 4909 continue; 4910 } 4911 if (bestXY.fY == testXY.fY && bestXY.fX < testXY.fX) { 4912 continue; 4913 } 4914 } 4915 topStart = testSegment; 4916 bestXY = testXY; 4917 } 4918 } 4919 4920 Segment* undoneSegment(int& start, int& end) { 4921 int segmentCount = fSegments.count(); 4922 for (int test = 0; test < segmentCount; ++test) { 4923 Segment* testSegment = &fSegments[test]; 4924 if (testSegment->done()) { 4925 continue; 4926 } 4927 testSegment->undoneSpan(start, end); 4928 return testSegment; 4929 } 4930 return NULL; 4931 } 4932 4933 int updateSegment(int index, const SkPoint* pts) { 4934 Segment& segment = fSegments[index]; 4935 segment.updatePts(pts); 4936 return segment.verb() + 1; 4937 } 4938 4939 #if DEBUG_TEST 4940 SkTArray<Segment>& debugSegments() { 4941 return fSegments; 4942 } 4943 #endif 4944 4945 #if DEBUG_DUMP 4946 void dump() { 4947 int i; 4948 const char className[] = "Contour"; 4949 const int tab = 4; 4950 SkDebugf("%s %p (contour=%d)\n", className, this, fID); 4951 for (i = 0; i < fSegments.count(); ++i) { 4952 SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className), 4953 className, i); 4954 fSegments[i].dump(); 4955 } 4956 SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n", 4957 tab + sizeof(className), className, 4958 fBounds.fLeft, fBounds.fTop, 4959 fBounds.fRight, fBounds.fBottom); 4960 SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className), 4961 className, fContainsIntercepts); 4962 SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className), 4963 className, fContainsCurves); 4964 } 4965 #endif 4966 4967 #if DEBUG_ACTIVE_SPANS 4968 void debugShowActiveSpans() { 4969 for (int index = 0; index < fSegments.count(); ++index) { 4970 fSegments[index].debugShowActiveSpans(); 4971 } 4972 } 4973 4974 void validateActiveSpans() { 4975 for (int index = 0; index < fSegments.count(); ++index) { 4976 fSegments[index].validateActiveSpans(); 4977 } 4978 } 4979 #endif 4980 4981 #if DEBUG_SHOW_WINDING 4982 int debugShowWindingValues(int totalSegments, int ofInterest) { 4983 int count = fSegments.count(); 4984 int sum = 0; 4985 for (int index = 0; index < count; ++index) { 4986 sum += fSegments[index].debugShowWindingValues(totalSegments, ofInterest); 4987 } 4988 // SkDebugf("%s sum=%d\n", __FUNCTION__, sum); 4989 return sum; 4990 } 4991 4992 static void debugShowWindingValues(SkTDArray<Contour*>& contourList) { 4993 // int ofInterest = 1 << 1 | 1 << 5 | 1 << 9 | 1 << 13; 4994 // int ofInterest = 1 << 4 | 1 << 8 | 1 << 12 | 1 << 16; 4995 int ofInterest = 1 << 5 | 1 << 8; 4996 int total = 0; 4997 int index; 4998 for (index = 0; index < contourList.count(); ++index) { 4999 total += contourList[index]->segments().count(); 5000 } 5001 int sum = 0; 5002 for (index = 0; index < contourList.count(); ++index) { 5003 sum += contourList[index]->debugShowWindingValues(total, ofInterest); 5004 } 5005 // SkDebugf("%s total=%d\n", __FUNCTION__, sum); 5006 } 5007 #endif 5008 5009 protected: 5010 void setBounds() { 5011 int count = fSegments.count(); 5012 if (count == 0) { 5013 SkDebugf("%s empty contour\n", __FUNCTION__); 5014 SkASSERT(0); 5015 // FIXME: delete empty contour? 5016 return; 5017 } 5018 fBounds = fSegments.front().bounds(); 5019 for (int index = 1; index < count; ++index) { 5020 fBounds.add(fSegments[index].bounds()); 5021 } 5022 } 5023 5024 private: 5025 SkTArray<Segment> fSegments; 5026 SkTDArray<Segment*> fSortedSegments; 5027 int fFirstSorted; 5028 SkTDArray<Coincidence> fCoincidences; 5029 SkTDArray<const Contour*> fCrosses; 5030 Bounds fBounds; 5031 bool fContainsIntercepts; // FIXME: is this used by anybody? 5032 bool fContainsCubics; 5033 bool fContainsCurves; 5034 bool fDone; 5035 bool fOperand; // true for the second argument to a binary operator 5036 bool fXor; 5037 bool fOppXor; 5038 #if DEBUG_DUMP 5039 int fID; 5040 #endif 5041 }; 5042 5043 class EdgeBuilder { 5044 public: 5045 5046 EdgeBuilder(const PathWrapper& path, SkTArray<Contour>& contours) 5047 : fPath(path.nativePath()) 5048 , fContours(contours) 5049 { 5050 init(); 5051 } 5052 5053 EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours) 5054 : fPath(&path) 5055 , fContours(contours) 5056 { 5057 init(); 5058 } 5059 5060 void init() { 5061 fCurrentContour = NULL; 5062 fOperand = false; 5063 fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask; 5064 #if DEBUG_DUMP 5065 gContourID = 0; 5066 gSegmentID = 0; 5067 #endif 5068 fSecondHalf = preFetch(); 5069 } 5070 5071 void addOperand(const SkPath& path) { 5072 SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb); 5073 fPathVerbs.pop(); 5074 fPath = &path; 5075 fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask; 5076 preFetch(); 5077 } 5078 5079 void finish() { 5080 walk(); 5081 complete(); 5082 if (fCurrentContour && !fCurrentContour->segments().count()) { 5083 fContours.pop_back(); 5084 } 5085 // correct pointers in contours since fReducePts may have moved as it grew 5086 int cIndex = 0; 5087 int extraCount = fExtra.count(); 5088 SkASSERT(extraCount == 0 || fExtra[0] == -1); 5089 int eIndex = 0; 5090 int rIndex = 0; 5091 while (++eIndex < extraCount) { 5092 int offset = fExtra[eIndex]; 5093 if (offset < 0) { 5094 ++cIndex; 5095 continue; 5096 } 5097 fCurrentContour = &fContours[cIndex]; 5098 rIndex += fCurrentContour->updateSegment(offset - 1, 5099 &fReducePts[rIndex]); 5100 } 5101 fExtra.reset(); // we're done with this 5102 } 5103 5104 ShapeOpMask xorMask() const { 5105 return fXorMask[fOperand]; 5106 } 5107 5108 protected: 5109 5110 void complete() { 5111 if (fCurrentContour && fCurrentContour->segments().count()) { 5112 fCurrentContour->complete(); 5113 fCurrentContour = NULL; 5114 } 5115 } 5116 5117 // FIXME:remove once we can access path pts directly 5118 int preFetch() { 5119 SkPath::RawIter iter(*fPath); // FIXME: access path directly when allowed 5120 SkPoint pts[4]; 5121 SkPath::Verb verb; 5122 do { 5123 verb = iter.next(pts); 5124 *fPathVerbs.append() = verb; 5125 if (verb == SkPath::kMove_Verb) { 5126 *fPathPts.append() = pts[0]; 5127 } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) { 5128 fPathPts.append(verb, &pts[1]); 5129 } 5130 } while (verb != SkPath::kDone_Verb); 5131 return fPathVerbs.count() - 1; 5132 } 5133 5134 void walk() { 5135 SkPath::Verb reducedVerb; 5136 uint8_t* verbPtr = fPathVerbs.begin(); 5137 uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf]; 5138 const SkPoint* pointsPtr = fPathPts.begin(); 5139 const SkPoint* finalCurveStart = NULL; 5140 const SkPoint* finalCurveEnd = NULL; 5141 SkPath::Verb verb; 5142 while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) { 5143 switch (verb) { 5144 case SkPath::kMove_Verb: 5145 complete(); 5146 if (!fCurrentContour) { 5147 fCurrentContour = fContours.push_back_n(1); 5148 fCurrentContour->setOperand(fOperand); 5149 fCurrentContour->setXor(fXorMask[fOperand] == kEvenOdd_Mask); 5150 *fExtra.append() = -1; // start new contour 5151 } 5152 finalCurveEnd = pointsPtr++; 5153 goto nextVerb; 5154 case SkPath::kLine_Verb: 5155 // skip degenerate points 5156 if (pointsPtr[-1].fX != pointsPtr[0].fX 5157 || pointsPtr[-1].fY != pointsPtr[0].fY) { 5158 fCurrentContour->addLine(&pointsPtr[-1]); 5159 } 5160 break; 5161 case SkPath::kQuad_Verb: 5162 5163 reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts); 5164 if (reducedVerb == 0) { 5165 break; // skip degenerate points 5166 } 5167 if (reducedVerb == 1) { 5168 *fExtra.append() = 5169 fCurrentContour->addLine(fReducePts.end() - 2); 5170 break; 5171 } 5172 fCurrentContour->addQuad(&pointsPtr[-1]); 5173 break; 5174 case SkPath::kCubic_Verb: 5175 reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts); 5176 if (reducedVerb == 0) { 5177 break; // skip degenerate points 5178 } 5179 if (reducedVerb == 1) { 5180 *fExtra.append() = 5181 fCurrentContour->addLine(fReducePts.end() - 2); 5182 break; 5183 } 5184 if (reducedVerb == 2) { 5185 *fExtra.append() = 5186 fCurrentContour->addQuad(fReducePts.end() - 3); 5187 break; 5188 } 5189 fCurrentContour->addCubic(&pointsPtr[-1]); 5190 break; 5191 case SkPath::kClose_Verb: 5192 SkASSERT(fCurrentContour); 5193 if (finalCurveStart && finalCurveEnd 5194 && *finalCurveStart != *finalCurveEnd) { 5195 *fReducePts.append() = *finalCurveStart; 5196 *fReducePts.append() = *finalCurveEnd; 5197 *fExtra.append() = 5198 fCurrentContour->addLine(fReducePts.end() - 2); 5199 } 5200 complete(); 5201 goto nextVerb; 5202 default: 5203 SkDEBUGFAIL("bad verb"); 5204 return; 5205 } 5206 finalCurveStart = &pointsPtr[verb - 1]; 5207 pointsPtr += verb; 5208 SkASSERT(fCurrentContour); 5209 nextVerb: 5210 if (verbPtr == endOfFirstHalf) { 5211 fOperand = true; 5212 } 5213 } 5214 } 5215 5216 private: 5217 const SkPath* fPath; 5218 SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead 5219 SkTDArray<uint8_t> fPathVerbs; // FIXME: remove 5220 Contour* fCurrentContour; 5221 SkTArray<Contour>& fContours; 5222 SkTDArray<SkPoint> fReducePts; // segments created on the fly 5223 SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour 5224 ShapeOpMask fXorMask[2]; 5225 int fSecondHalf; 5226 bool fOperand; 5227 }; 5228 5229 class Work { 5230 public: 5231 enum SegmentType { 5232 kHorizontalLine_Segment = -1, 5233 kVerticalLine_Segment = 0, 5234 kLine_Segment = SkPath::kLine_Verb, 5235 kQuad_Segment = SkPath::kQuad_Verb, 5236 kCubic_Segment = SkPath::kCubic_Verb, 5237 }; 5238 5239 void addCoincident(Work& other, const Intersections& ts, bool swap) { 5240 fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap); 5241 } 5242 5243 // FIXME: does it make sense to write otherIndex now if we're going to 5244 // fix it up later? 5245 void addOtherT(int index, double otherT, int otherIndex) { 5246 fContour->addOtherT(fIndex, index, otherT, otherIndex); 5247 } 5248 5249 // Avoid collapsing t values that are close to the same since 5250 // we walk ts to describe consecutive intersections. Since a pair of ts can 5251 // be nearly equal, any problems caused by this should be taken care 5252 // of later. 5253 // On the edge or out of range values are negative; add 2 to get end 5254 int addT(const Work& other, const SkPoint& pt, double& newT) { 5255 return fContour->addT(fIndex, other.fContour, other.fIndex, pt, newT); 5256 } 5257 5258 int addSelfT(const Work& other, const SkPoint& pt, double& newT) { 5259 return fContour->addSelfT(fIndex, other.fContour, other.fIndex, pt, newT); 5260 } 5261 5262 int addUnsortableT(const Work& other, bool start, const SkPoint& pt, double& newT) { 5263 return fContour->addUnsortableT(fIndex, other.fContour, other.fIndex, start, pt, newT); 5264 } 5265 5266 bool advance() { 5267 return ++fIndex < fLast; 5268 } 5269 5270 SkScalar bottom() const { 5271 return bounds().fBottom; 5272 } 5273 5274 const Bounds& bounds() const { 5275 return fContour->segments()[fIndex].bounds(); 5276 } 5277 5278 #if !APPROXIMATE_CUBICS 5279 const SkPoint* cubic() const { 5280 return fCubic; 5281 } 5282 #endif 5283 5284 void init(Contour* contour) { 5285 fContour = contour; 5286 fIndex = 0; 5287 fLast = contour->segments().count(); 5288 } 5289 5290 bool isAdjacent(const Work& next) { 5291 return fContour == next.fContour && fIndex + 1 == next.fIndex; 5292 } 5293 5294 bool isFirstLast(const Work& next) { 5295 return fContour == next.fContour && fIndex == 0 5296 && next.fIndex == fLast - 1; 5297 } 5298 5299 SkScalar left() const { 5300 return bounds().fLeft; 5301 } 5302 5303 #if !APPROXIMATE_CUBICS 5304 void promoteToCubic() { 5305 fCubic[0] = pts()[0]; 5306 fCubic[2] = pts()[1]; 5307 fCubic[3] = pts()[2]; 5308 fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3; 5309 fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3; 5310 fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3; 5311 fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3; 5312 } 5313 #endif 5314 5315 const SkPoint* pts() const { 5316 return fContour->segments()[fIndex].pts(); 5317 } 5318 5319 SkScalar right() const { 5320 return bounds().fRight; 5321 } 5322 5323 ptrdiff_t segmentIndex() const { 5324 return fIndex; 5325 } 5326 5327 SegmentType segmentType() const { 5328 const Segment& segment = fContour->segments()[fIndex]; 5329 SegmentType type = (SegmentType) segment.verb(); 5330 if (type != kLine_Segment) { 5331 return type; 5332 } 5333 if (segment.isHorizontal()) { 5334 return kHorizontalLine_Segment; 5335 } 5336 if (segment.isVertical()) { 5337 return kVerticalLine_Segment; 5338 } 5339 return kLine_Segment; 5340 } 5341 5342 bool startAfter(const Work& after) { 5343 fIndex = after.fIndex; 5344 return advance(); 5345 } 5346 5347 SkScalar top() const { 5348 return bounds().fTop; 5349 } 5350 5351 SkPath::Verb verb() const { 5352 return fContour->segments()[fIndex].verb(); 5353 } 5354 5355 SkScalar x() const { 5356 return bounds().fLeft; 5357 } 5358 5359 bool xFlipped() const { 5360 return x() != pts()[0].fX; 5361 } 5362 5363 SkScalar y() const { 5364 return bounds().fTop; 5365 } 5366 5367 bool yFlipped() const { 5368 return y() != pts()[0].fY; 5369 } 5370 5371 protected: 5372 Contour* fContour; 5373 #if !APPROXIMATE_CUBICS 5374 SkPoint fCubic[4]; 5375 #endif 5376 int fIndex; 5377 int fLast; 5378 }; 5379 5380 #if DEBUG_ADD_INTERSECTING_TS 5381 5382 static void debugShowLineIntersection(int pts, const Work& wt, const Work& wn, 5383 const Intersections& i) { 5384 SkASSERT(i.used() == pts); 5385 if (!pts) { 5386 SkDebugf("%s no intersect " LINE_DEBUG_STR " " LINE_DEBUG_STR "\n", 5387 __FUNCTION__, LINE_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); 5388 return; 5389 } 5390 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " LINE_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, 5391 i.fT[0][0], LINE_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); 5392 if (pts == 2) { 5393 SkDebugf(" " T_DEBUG_STR(wtTs, 1) " " PT_DEBUG_STR, i.fT[0][1], PT_DEBUG_DATA(i, 1)); 5394 } 5395 SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts())); 5396 if (pts == 2) { 5397 SkDebugf(" " T_DEBUG_STR(wnTs, 1), i.fT[1][1]); 5398 } 5399 SkDebugf("\n"); 5400 } 5401 5402 static void debugShowQuadLineIntersection(int pts, const Work& wt, 5403 const Work& wn, const Intersections& i) { 5404 SkASSERT(i.used() == pts); 5405 if (!pts) { 5406 SkDebugf("%s no intersect " QUAD_DEBUG_STR " " LINE_DEBUG_STR "\n", 5407 __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); 5408 return; 5409 } 5410 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, 5411 i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); 5412 for (int n = 1; n < pts; ++n) { 5413 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); 5414 } 5415 SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts())); 5416 for (int n = 1; n < pts; ++n) { 5417 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); 5418 } 5419 SkDebugf("\n"); 5420 } 5421 5422 static void debugShowQuadIntersection(int pts, const Work& wt, 5423 const Work& wn, const Intersections& i) { 5424 SkASSERT(i.used() == pts); 5425 if (!pts) { 5426 SkDebugf("%s no intersect " QUAD_DEBUG_STR " " QUAD_DEBUG_STR "\n", 5427 __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts())); 5428 return; 5429 } 5430 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, 5431 i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); 5432 for (int n = 1; n < pts; ++n) { 5433 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); 5434 } 5435 SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts())); 5436 for (int n = 1; n < pts; ++n) { 5437 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); 5438 } 5439 SkDebugf("\n"); 5440 } 5441 5442 static void debugShowCubicLineIntersection(int pts, const Work& wt, 5443 const Work& wn, const Intersections& i) { 5444 SkASSERT(i.used() == pts); 5445 if (!pts) { 5446 SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " LINE_DEBUG_STR "\n", 5447 __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); 5448 return; 5449 } 5450 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, 5451 i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); 5452 for (int n = 1; n < pts; ++n) { 5453 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); 5454 } 5455 SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts())); 5456 for (int n = 1; n < pts; ++n) { 5457 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); 5458 } 5459 SkDebugf("\n"); 5460 } 5461 5462 static void debugShowCubicQuadIntersection(int pts, const Work& wt, 5463 const Work& wn, const Intersections& i) { 5464 SkASSERT(i.used() == pts); 5465 if (!pts) { 5466 SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " QUAD_DEBUG_STR "\n", 5467 __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts())); 5468 return; 5469 } 5470 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, 5471 i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); 5472 for (int n = 1; n < pts; ++n) { 5473 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); 5474 } 5475 SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts())); 5476 for (int n = 1; n < pts; ++n) { 5477 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); 5478 } 5479 SkDebugf("\n"); 5480 } 5481 5482 static void debugShowCubicIntersection(int pts, const Work& wt, 5483 const Work& wn, const Intersections& i) { 5484 SkASSERT(i.used() == pts); 5485 if (!pts) { 5486 SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " CUBIC_DEBUG_STR "\n", 5487 __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), CUBIC_DEBUG_DATA(wn.pts())); 5488 return; 5489 } 5490 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, 5491 i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); 5492 for (int n = 1; n < pts; ++n) { 5493 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); 5494 } 5495 SkDebugf(" wnTs[0]=%g " CUBIC_DEBUG_STR, i.fT[1][0], CUBIC_DEBUG_DATA(wn.pts())); 5496 for (int n = 1; n < pts; ++n) { 5497 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); 5498 } 5499 SkDebugf("\n"); 5500 } 5501 5502 static void debugShowCubicIntersection(int pts, const Work& wt, const Intersections& i) { 5503 SkASSERT(i.used() == pts); 5504 if (!pts) { 5505 SkDebugf("%s no self intersect " CUBIC_DEBUG_STR "\n", __FUNCTION__, 5506 CUBIC_DEBUG_DATA(wt.pts())); 5507 return; 5508 } 5509 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, 5510 i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); 5511 SkDebugf(" " T_DEBUG_STR(wtTs, 1), i.fT[1][0]); 5512 SkDebugf("\n"); 5513 } 5514 5515 #else 5516 static void debugShowLineIntersection(int , const Work& , const Work& , const Intersections& ) { 5517 } 5518 5519 static void debugShowQuadLineIntersection(int , const Work& , const Work& , const Intersections& ) { 5520 } 5521 5522 static void debugShowQuadIntersection(int , const Work& , const Work& , const Intersections& ) { 5523 } 5524 5525 static void debugShowCubicLineIntersection(int , const Work& , const Work& , 5526 const Intersections& ) { 5527 } 5528 5529 static void debugShowCubicQuadIntersection(int , const Work& , const Work& , 5530 const Intersections& ) { 5531 } 5532 5533 static void debugShowCubicIntersection(int , const Work& , const Work& , const Intersections& ) { 5534 } 5535 5536 static void debugShowCubicIntersection(int , const Work& , const Intersections& ) { 5537 } 5538 #endif 5539 5540 static bool addIntersectTs(Contour* test, Contour* next) { 5541 5542 if (test != next) { 5543 if (test->bounds().fBottom < next->bounds().fTop) { 5544 return false; 5545 } 5546 if (!Bounds::Intersects(test->bounds(), next->bounds())) { 5547 return true; 5548 } 5549 } 5550 Work wt; 5551 wt.init(test); 5552 bool foundCommonContour = test == next; 5553 do { 5554 Work wn; 5555 wn.init(next); 5556 if (test == next && !wn.startAfter(wt)) { 5557 continue; 5558 } 5559 do { 5560 if (!Bounds::Intersects(wt.bounds(), wn.bounds())) { 5561 continue; 5562 } 5563 int pts; 5564 Intersections ts; 5565 bool swap = false; 5566 switch (wt.segmentType()) { 5567 case Work::kHorizontalLine_Segment: 5568 swap = true; 5569 switch (wn.segmentType()) { 5570 case Work::kHorizontalLine_Segment: 5571 case Work::kVerticalLine_Segment: 5572 case Work::kLine_Segment: { 5573 pts = HLineIntersect(wn.pts(), wt.left(), 5574 wt.right(), wt.y(), wt.xFlipped(), ts); 5575 debugShowLineIntersection(pts, wt, wn, ts); 5576 break; 5577 } 5578 case Work::kQuad_Segment: { 5579 pts = HQuadIntersect(wn.pts(), wt.left(), 5580 wt.right(), wt.y(), wt.xFlipped(), ts); 5581 break; 5582 } 5583 case Work::kCubic_Segment: { 5584 pts = HCubicIntersect(wn.pts(), wt.left(), 5585 wt.right(), wt.y(), wt.xFlipped(), ts); 5586 debugShowCubicLineIntersection(pts, wn, wt, ts); 5587 break; 5588 } 5589 default: 5590 SkASSERT(0); 5591 } 5592 break; 5593 case Work::kVerticalLine_Segment: 5594 swap = true; 5595 switch (wn.segmentType()) { 5596 case Work::kHorizontalLine_Segment: 5597 case Work::kVerticalLine_Segment: 5598 case Work::kLine_Segment: { 5599 pts = VLineIntersect(wn.pts(), wt.top(), 5600 wt.bottom(), wt.x(), wt.yFlipped(), ts); 5601 debugShowLineIntersection(pts, wt, wn, ts); 5602 break; 5603 } 5604 case Work::kQuad_Segment: { 5605 pts = VQuadIntersect(wn.pts(), wt.top(), 5606 wt.bottom(), wt.x(), wt.yFlipped(), ts); 5607 break; 5608 } 5609 case Work::kCubic_Segment: { 5610 pts = VCubicIntersect(wn.pts(), wt.top(), 5611 wt.bottom(), wt.x(), wt.yFlipped(), ts); 5612 debugShowCubicLineIntersection(pts, wn, wt, ts); 5613 break; 5614 } 5615 default: 5616 SkASSERT(0); 5617 } 5618 break; 5619 case Work::kLine_Segment: 5620 switch (wn.segmentType()) { 5621 case Work::kHorizontalLine_Segment: 5622 pts = HLineIntersect(wt.pts(), wn.left(), 5623 wn.right(), wn.y(), wn.xFlipped(), ts); 5624 debugShowLineIntersection(pts, wt, wn, ts); 5625 break; 5626 case Work::kVerticalLine_Segment: 5627 pts = VLineIntersect(wt.pts(), wn.top(), 5628 wn.bottom(), wn.x(), wn.yFlipped(), ts); 5629 debugShowLineIntersection(pts, wt, wn, ts); 5630 break; 5631 case Work::kLine_Segment: { 5632 pts = LineIntersect(wt.pts(), wn.pts(), ts); 5633 debugShowLineIntersection(pts, wt, wn, ts); 5634 break; 5635 } 5636 case Work::kQuad_Segment: { 5637 swap = true; 5638 pts = QuadLineIntersect(wn.pts(), wt.pts(), ts); 5639 debugShowQuadLineIntersection(pts, wn, wt, ts); 5640 break; 5641 } 5642 case Work::kCubic_Segment: { 5643 swap = true; 5644 pts = CubicLineIntersect(wn.pts(), wt.pts(), ts); 5645 debugShowCubicLineIntersection(pts, wn, wt, ts); 5646 break; 5647 } 5648 default: 5649 SkASSERT(0); 5650 } 5651 break; 5652 case Work::kQuad_Segment: 5653 switch (wn.segmentType()) { 5654 case Work::kHorizontalLine_Segment: 5655 pts = HQuadIntersect(wt.pts(), wn.left(), 5656 wn.right(), wn.y(), wn.xFlipped(), ts); 5657 break; 5658 case Work::kVerticalLine_Segment: 5659 pts = VQuadIntersect(wt.pts(), wn.top(), 5660 wn.bottom(), wn.x(), wn.yFlipped(), ts); 5661 break; 5662 case Work::kLine_Segment: { 5663 pts = QuadLineIntersect(wt.pts(), wn.pts(), ts); 5664 debugShowQuadLineIntersection(pts, wt, wn, ts); 5665 break; 5666 } 5667 case Work::kQuad_Segment: { 5668 pts = QuadIntersect(wt.pts(), wn.pts(), ts); 5669 debugShowQuadIntersection(pts, wt, wn, ts); 5670 break; 5671 } 5672 case Work::kCubic_Segment: { 5673 #if APPROXIMATE_CUBICS 5674 swap = true; 5675 pts = CubicQuadIntersect(wn.pts(), wt.pts(), ts); 5676 debugShowCubicQuadIntersection(pts, wn, wt, ts); 5677 #else 5678 wt.promoteToCubic(); 5679 pts = CubicIntersect(wt.cubic(), wn.pts(), ts); 5680 debugShowCubicIntersection(pts, wt, wn, ts); 5681 #endif 5682 break; 5683 } 5684 default: 5685 SkASSERT(0); 5686 } 5687 break; 5688 case Work::kCubic_Segment: 5689 switch (wn.segmentType()) { 5690 case Work::kHorizontalLine_Segment: 5691 pts = HCubicIntersect(wt.pts(), wn.left(), 5692 wn.right(), wn.y(), wn.xFlipped(), ts); 5693 debugShowCubicLineIntersection(pts, wt, wn, ts); 5694 break; 5695 case Work::kVerticalLine_Segment: 5696 pts = VCubicIntersect(wt.pts(), wn.top(), 5697 wn.bottom(), wn.x(), wn.yFlipped(), ts); 5698 debugShowCubicLineIntersection(pts, wt, wn, ts); 5699 break; 5700 case Work::kLine_Segment: { 5701 pts = CubicLineIntersect(wt.pts(), wn.pts(), ts); 5702 debugShowCubicLineIntersection(pts, wt, wn, ts); 5703 break; 5704 } 5705 case Work::kQuad_Segment: { 5706 #if APPROXIMATE_CUBICS 5707 pts = CubicQuadIntersect(wt.pts(), wn.pts(), ts); 5708 debugShowCubicQuadIntersection(pts, wt, wn, ts); 5709 #else 5710 wn.promoteToCubic(); 5711 pts = CubicIntersect(wt.pts(), wn.cubic(), ts); 5712 debugShowCubicIntersection(pts, wt, wn, ts); 5713 #endif 5714 break; 5715 } 5716 case Work::kCubic_Segment: { 5717 pts = CubicIntersect(wt.pts(), wn.pts(), ts); 5718 debugShowCubicIntersection(pts, wt, wn, ts); 5719 break; 5720 } 5721 default: 5722 SkASSERT(0); 5723 } 5724 break; 5725 default: 5726 SkASSERT(0); 5727 } 5728 if (!foundCommonContour && pts > 0) { 5729 test->addCross(next); 5730 next->addCross(test); 5731 foundCommonContour = true; 5732 } 5733 // in addition to recording T values, record matching segment 5734 if (ts.unsortable()) { 5735 bool start = true; 5736 for (int pt = 0; pt < ts.used(); ++pt) { 5737 // FIXME: if unsortable, the other points to the original. This logic is 5738 // untested downstream. 5739 SkPoint point = ts.fPt[pt].asSkPoint(); 5740 int testTAt = wt.addUnsortableT(wt, start, point, ts.fT[swap][pt]); 5741 wt.addOtherT(testTAt, ts.fT[swap][pt], testTAt); 5742 testTAt = wn.addUnsortableT(wn, start ^ ts.fFlip, point, ts.fT[!swap][pt]); 5743 wn.addOtherT(testTAt, ts.fT[!swap][pt], testTAt); 5744 start ^= true; 5745 } 5746 continue; 5747 } 5748 if (pts == 2) { 5749 if (wn.segmentType() <= Work::kLine_Segment 5750 && wt.segmentType() <= Work::kLine_Segment) { 5751 wt.addCoincident(wn, ts, swap); 5752 continue; 5753 } 5754 if (wn.segmentType() >= Work::kQuad_Segment 5755 && wt.segmentType() >= Work::kQuad_Segment 5756 && ts.fIsCoincident[0]) { 5757 SkASSERT(ts.coincidentUsed() == 2); 5758 wt.addCoincident(wn, ts, swap); 5759 continue; 5760 } 5761 5762 } 5763 for (int pt = 0; pt < pts; ++pt) { 5764 SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1); 5765 SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1); 5766 SkPoint point = ts.fPt[pt].asSkPoint(); 5767 int testTAt = wt.addT(wn, point, ts.fT[swap][pt]); 5768 int nextTAt = wn.addT(wt, point, ts.fT[!swap][pt]); 5769 wt.addOtherT(testTAt, ts.fT[!swap][pt ^ ts.fFlip], nextTAt); 5770 wn.addOtherT(nextTAt, ts.fT[swap][pt ^ ts.fFlip], testTAt); 5771 } 5772 } while (wn.advance()); 5773 } while (wt.advance()); 5774 return true; 5775 } 5776 5777 static void addSelfIntersectTs(Contour* test) { 5778 Work wt; 5779 wt.init(test); 5780 do { 5781 if (wt.segmentType() != Work::kCubic_Segment) { 5782 continue; 5783 } 5784 Intersections ts; 5785 int pts = CubicIntersect(wt.pts(), ts); 5786 debugShowCubicIntersection(pts, wt, ts); 5787 if (!pts) { 5788 continue; 5789 } 5790 SkASSERT(pts == 1); 5791 SkASSERT(ts.fT[0][0] >= 0 && ts.fT[0][0] <= 1); 5792 SkASSERT(ts.fT[1][0] >= 0 && ts.fT[1][0] <= 1); 5793 SkPoint point = ts.fPt[0].asSkPoint(); 5794 int testTAt = wt.addSelfT(wt, point, ts.fT[0][0]); 5795 int nextTAt = wt.addT(wt, point, ts.fT[1][0]); 5796 wt.addOtherT(testTAt, ts.fT[1][0], nextTAt); 5797 wt.addOtherT(nextTAt, ts.fT[0][0], testTAt); 5798 } while (wt.advance()); 5799 } 5800 5801 // resolve any coincident pairs found while intersecting, and 5802 // see if coincidence is formed by clipping non-concident segments 5803 static void coincidenceCheck(SkTDArray<Contour*>& contourList, int total) { 5804 int contourCount = contourList.count(); 5805 #if ONE_PASS_COINCIDENCE_CHECK 5806 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { 5807 Contour* contour = contourList[cIndex]; 5808 contour->resolveCoincidence(contourList); 5809 } 5810 #else 5811 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { 5812 Contour* contour = contourList[cIndex]; 5813 contour->addCoincidentPoints(); 5814 } 5815 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { 5816 Contour* contour = contourList[cIndex]; 5817 contour->calcCoincidentWinding(); 5818 } 5819 #endif 5820 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { 5821 Contour* contour = contourList[cIndex]; 5822 contour->findTooCloseToCall(); 5823 } 5824 } 5825 5826 static int contourRangeCheckY(SkTDArray<Contour*>& contourList, Segment*& current, int& index, 5827 int& endIndex, double& bestHit, SkScalar& bestDx, bool& tryAgain, double& mid, bool opp) { 5828 SkPoint basePt; 5829 double tAtMid = current->tAtMid(index, endIndex, mid); 5830 current->xyAtT(tAtMid, basePt); 5831 int contourCount = contourList.count(); 5832 SkScalar bestY = SK_ScalarMin; 5833 Segment* bestSeg = NULL; 5834 int bestTIndex; 5835 bool bestOpp; 5836 bool hitSomething = false; 5837 for (int cTest = 0; cTest < contourCount; ++cTest) { 5838 Contour* contour = contourList[cTest]; 5839 bool testOpp = contour->operand() ^ current->operand() ^ opp; 5840 if (basePt.fY < contour->bounds().fTop) { 5841 continue; 5842 } 5843 if (bestY > contour->bounds().fBottom) { 5844 continue; 5845 } 5846 int segmentCount = contour->segments().count(); 5847 for (int test = 0; test < segmentCount; ++test) { 5848 Segment* testSeg = &contour->segments()[test]; 5849 SkScalar testY = bestY; 5850 double testHit; 5851 int testTIndex = testSeg->crossedSpanY(basePt, testY, testHit, hitSomething, tAtMid, 5852 testOpp, testSeg == current); 5853 if (testTIndex < 0) { 5854 if (testTIndex == SK_MinS32) { 5855 hitSomething = true; 5856 bestSeg = NULL; 5857 goto abortContours; // vertical encountered, return and try different point 5858 } 5859 continue; 5860 } 5861 if (testSeg == current && current->betweenTs(index, testHit, endIndex)) { 5862 double baseT = current->t(index); 5863 double endT = current->t(endIndex); 5864 double newMid = (testHit - baseT) / (endT - baseT); 5865 #if DEBUG_WINDING 5866 SkPoint midXY, newXY; 5867 double midT = current->tAtMid(index, endIndex, mid); 5868 current->xyAtT(midT, midXY); 5869 double newMidT = current->tAtMid(index, endIndex, newMid); 5870 current->xyAtT(newMidT, newXY); 5871 SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)" 5872 " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, 5873 current->debugID(), mid, newMid, 5874 baseT, current->xAtT(index), current->yAtT(index), 5875 baseT + mid * (endT - baseT), midXY.fX, midXY.fY, 5876 baseT + newMid * (endT - baseT), newXY.fX, newXY.fY, 5877 endT, current->xAtT(endIndex), current->yAtT(endIndex)); 5878 #endif 5879 mid = newMid * 2; // calling loop with divide by 2 before continuing 5880 return SK_MinS32; 5881 } 5882 bestSeg = testSeg; 5883 bestHit = testHit; 5884 bestOpp = testOpp; 5885 bestTIndex = testTIndex; 5886 bestY = testY; 5887 } 5888 } 5889 abortContours: 5890 int result; 5891 if (!bestSeg) { 5892 result = hitSomething ? SK_MinS32 : 0; 5893 } else { 5894 if (bestSeg->windSum(bestTIndex) == SK_MinS32) { 5895 current = bestSeg; 5896 index = bestTIndex; 5897 endIndex = bestSeg->nextSpan(bestTIndex, 1); 5898 SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); 5899 tryAgain = true; 5900 return 0; 5901 } 5902 result = bestSeg->windingAtT(bestHit, bestTIndex, bestOpp, bestDx); 5903 SkASSERT(bestDx); 5904 } 5905 double baseT = current->t(index); 5906 double endT = current->t(endIndex); 5907 bestHit = baseT + mid * (endT - baseT); 5908 return result; 5909 } 5910 5911 static Segment* findUndone(SkTDArray<Contour*>& contourList, int& start, int& end) { 5912 int contourCount = contourList.count(); 5913 Segment* result; 5914 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { 5915 Contour* contour = contourList[cIndex]; 5916 result = contour->undoneSegment(start, end); 5917 if (result) { 5918 return result; 5919 } 5920 } 5921 return NULL; 5922 } 5923 5924 #define OLD_FIND_CHASE 1 5925 5926 static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex) { 5927 while (chase.count()) { 5928 Span* span; 5929 chase.pop(&span); 5930 const Span& backPtr = span->fOther->span(span->fOtherIndex); 5931 Segment* segment = backPtr.fOther; 5932 tIndex = backPtr.fOtherIndex; 5933 SkTDArray<Angle> angles; 5934 int done = 0; 5935 if (segment->activeAngle(tIndex, done, angles)) { 5936 Angle* last = angles.end() - 1; 5937 tIndex = last->start(); 5938 endIndex = last->end(); 5939 #if TRY_ROTATE 5940 *chase.insert(0) = span; 5941 #else 5942 *chase.append() = span; 5943 #endif 5944 return last->segment(); 5945 } 5946 if (done == angles.count()) { 5947 continue; 5948 } 5949 SkTDArray<Angle*> sorted; 5950 bool sortable = Segment::SortAngles(angles, sorted); 5951 int angleCount = sorted.count(); 5952 #if DEBUG_SORT 5953 sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); 5954 #endif 5955 if (!sortable) { 5956 continue; 5957 } 5958 // find first angle, initialize winding to computed fWindSum 5959 int firstIndex = -1; 5960 const Angle* angle; 5961 #if OLD_FIND_CHASE 5962 int winding; 5963 do { 5964 angle = sorted[++firstIndex]; 5965 segment = angle->segment(); 5966 winding = segment->windSum(angle); 5967 } while (winding == SK_MinS32); 5968 int spanWinding = segment->spanSign(angle->start(), angle->end()); 5969 #if DEBUG_WINDING 5970 SkDebugf("%s winding=%d spanWinding=%d\n", 5971 __FUNCTION__, winding, spanWinding); 5972 #endif 5973 // turn span winding into contour winding 5974 if (spanWinding * winding < 0) { 5975 winding += spanWinding; 5976 } 5977 #if DEBUG_SORT 5978 segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0); 5979 #endif 5980 // we care about first sign and whether wind sum indicates this 5981 // edge is inside or outside. Maybe need to pass span winding 5982 // or first winding or something into this function? 5983 // advance to first undone angle, then return it and winding 5984 // (to set whether edges are active or not) 5985 int nextIndex = firstIndex + 1; 5986 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; 5987 angle = sorted[firstIndex]; 5988 winding -= angle->segment()->spanSign(angle); 5989 #else 5990 do { 5991 angle = sorted[++firstIndex]; 5992 segment = angle->segment(); 5993 } while (segment->windSum(angle) == SK_MinS32); 5994 #if DEBUG_SORT 5995 segment->debugShowSort(__FUNCTION__, sorted, firstIndex); 5996 #endif 5997 int sumWinding = segment->updateWindingReverse(angle); 5998 int nextIndex = firstIndex + 1; 5999 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; 6000 Segment* first = NULL; 6001 #endif 6002 do { 6003 SkASSERT(nextIndex != firstIndex); 6004 if (nextIndex == angleCount) { 6005 nextIndex = 0; 6006 } 6007 angle = sorted[nextIndex]; 6008 segment = angle->segment(); 6009 #if OLD_FIND_CHASE 6010 int maxWinding = winding; 6011 winding -= segment->spanSign(angle); 6012 #if DEBUG_SORT 6013 SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__, 6014 segment->debugID(), maxWinding, winding, angle->sign()); 6015 #endif 6016 tIndex = angle->start(); 6017 endIndex = angle->end(); 6018 int lesser = SkMin32(tIndex, endIndex); 6019 const Span& nextSpan = segment->span(lesser); 6020 if (!nextSpan.fDone) { 6021 #if 1 6022 // FIXME: this be wrong? assign startWinding if edge is in 6023 // same direction. If the direction is opposite, winding to 6024 // assign is flipped sign or +/- 1? 6025 if (useInnerWinding(maxWinding, winding)) { 6026 maxWinding = winding; 6027 } 6028 segment->markAndChaseWinding(angle, maxWinding, 0); 6029 #endif 6030 break; 6031 } 6032 #else 6033 int start = angle->start(); 6034 int end = angle->end(); 6035 int maxWinding; 6036 segment->setUpWinding(start, end, maxWinding, sumWinding); 6037 if (!segment->done(angle)) { 6038 if (!first) { 6039 first = segment; 6040 tIndex = start; 6041 endIndex = end; 6042 } 6043 (void) segment->markAngle(maxWinding, sumWinding, true, angle); 6044 } 6045 #endif 6046 } while (++nextIndex != lastIndex); 6047 #if TRY_ROTATE 6048 *chase.insert(0) = span; 6049 #else 6050 *chase.append() = span; 6051 #endif 6052 return segment; 6053 } 6054 return NULL; 6055 } 6056 6057 #if DEBUG_ACTIVE_SPANS 6058 static void debugShowActiveSpans(SkTDArray<Contour*>& contourList) { 6059 int index; 6060 for (index = 0; index < contourList.count(); ++ index) { 6061 contourList[index]->debugShowActiveSpans(); 6062 } 6063 for (index = 0; index < contourList.count(); ++ index) { 6064 contourList[index]->validateActiveSpans(); 6065 } 6066 } 6067 #endif 6068 6069 static Segment* findSortableTop(SkTDArray<Contour*>& contourList, int& index, 6070 int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool onlySortable) { 6071 Segment* result; 6072 do { 6073 SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax}; 6074 int contourCount = contourList.count(); 6075 Segment* topStart = NULL; 6076 done = true; 6077 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { 6078 Contour* contour = contourList[cIndex]; 6079 if (contour->done()) { 6080 continue; 6081 } 6082 const Bounds& bounds = contour->bounds(); 6083 if (bounds.fBottom < topLeft.fY) { 6084 done = false; 6085 continue; 6086 } 6087 if (bounds.fBottom == topLeft.fY && bounds.fRight < topLeft.fX) { 6088 done = false; 6089 continue; 6090 } 6091 contour->topSortableSegment(topLeft, bestXY, topStart); 6092 if (!contour->done()) { 6093 done = false; 6094 } 6095 } 6096 if (!topStart) { 6097 return NULL; 6098 } 6099 topLeft = bestXY; 6100 result = topStart->findTop(index, endIndex, unsortable, onlySortable); 6101 } while (!result); 6102 return result; 6103 } 6104 6105 static int rightAngleWinding(SkTDArray<Contour*>& contourList, 6106 Segment*& current, int& index, int& endIndex, double& tHit, SkScalar& hitDx, bool& tryAgain, 6107 bool opp) { 6108 double test = 0.9; 6109 int contourWinding; 6110 do { 6111 contourWinding = contourRangeCheckY(contourList, current, index, endIndex, tHit, hitDx, 6112 tryAgain, test, opp); 6113 if (contourWinding != SK_MinS32 || tryAgain) { 6114 return contourWinding; 6115 } 6116 test /= 2; 6117 } while (!approximately_negative(test)); 6118 SkASSERT(0); // should be OK to comment out, but interested when this hits 6119 return contourWinding; 6120 } 6121 6122 static void skipVertical(SkTDArray<Contour*>& contourList, 6123 Segment*& current, int& index, int& endIndex) { 6124 if (!current->isVertical(index, endIndex)) { 6125 return; 6126 } 6127 int contourCount = contourList.count(); 6128 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { 6129 Contour* contour = contourList[cIndex]; 6130 if (contour->done()) { 6131 continue; 6132 } 6133 current = contour->nonVerticalSegment(index, endIndex); 6134 if (current) { 6135 return; 6136 } 6137 } 6138 } 6139 6140 static Segment* findSortableTop(SkTDArray<Contour*>& contourList, bool& firstContour, int& index, 6141 int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool binary) { 6142 Segment* current = findSortableTop(contourList, index, endIndex, topLeft, unsortable, done, 6143 true); 6144 if (!current) { 6145 return NULL; 6146 } 6147 if (firstContour) { 6148 current->initWinding(index, endIndex); 6149 firstContour = false; 6150 return current; 6151 } 6152 int minIndex = SkMin32(index, endIndex); 6153 int sumWinding = current->windSum(minIndex); 6154 if (sumWinding != SK_MinS32) { 6155 return current; 6156 } 6157 sumWinding = current->computeSum(index, endIndex, binary); 6158 if (sumWinding != SK_MinS32) { 6159 return current; 6160 } 6161 int contourWinding; 6162 int oppContourWinding = 0; 6163 // the simple upward projection of the unresolved points hit unsortable angles 6164 // shoot rays at right angles to the segment to find its winding, ignoring angle cases 6165 bool tryAgain; 6166 double tHit; 6167 SkScalar hitDx = 0; 6168 SkScalar hitOppDx = 0; 6169 do { 6170 // if current is vertical, find another candidate which is not 6171 // if only remaining candidates are vertical, then they can be marked done 6172 SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); 6173 skipVertical(contourList, current, index, endIndex); 6174 SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); 6175 tryAgain = false; 6176 contourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitDx, 6177 tryAgain, false); 6178 if (tryAgain) { 6179 continue; 6180 } 6181 if (!binary) { 6182 break; 6183 } 6184 oppContourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitOppDx, 6185 tryAgain, true); 6186 } while (tryAgain); 6187 6188 current->initWinding(index, endIndex, tHit, contourWinding, hitDx, oppContourWinding, hitOppDx); 6189 return current; 6190 } 6191 6192 // rewrite that abandons keeping local track of winding 6193 static bool bridgeWinding(SkTDArray<Contour*>& contourList, PathWrapper& simple) { 6194 bool firstContour = true; 6195 bool unsortable = false; 6196 bool topUnsortable = false; 6197 SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin}; 6198 do { 6199 int index, endIndex; 6200 bool topDone; 6201 Segment* current = findSortableTop(contourList, firstContour, index, endIndex, topLeft, 6202 topUnsortable, topDone, false); 6203 if (!current) { 6204 if (topUnsortable || !topDone) { 6205 topUnsortable = false; 6206 SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin); 6207 topLeft.fX = topLeft.fY = SK_ScalarMin; 6208 continue; 6209 } 6210 break; 6211 } 6212 SkTDArray<Span*> chaseArray; 6213 do { 6214 if (current->activeWinding(index, endIndex)) { 6215 do { 6216 #if DEBUG_ACTIVE_SPANS 6217 if (!unsortable && current->done()) { 6218 debugShowActiveSpans(contourList); 6219 } 6220 #endif 6221 SkASSERT(unsortable || !current->done()); 6222 int nextStart = index; 6223 int nextEnd = endIndex; 6224 Segment* next = current->findNextWinding(chaseArray, nextStart, nextEnd, 6225 unsortable); 6226 if (!next) { 6227 if (!unsortable && simple.hasMove() 6228 && current->verb() != SkPath::kLine_Verb 6229 && !simple.isClosed()) { 6230 current->addCurveTo(index, endIndex, simple, true); 6231 SkASSERT(simple.isClosed()); 6232 } 6233 break; 6234 } 6235 #if DEBUG_FLOW 6236 SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, 6237 current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY, 6238 current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY); 6239 #endif 6240 current->addCurveTo(index, endIndex, simple, true); 6241 current = next; 6242 index = nextStart; 6243 endIndex = nextEnd; 6244 } while (!simple.isClosed() && (!unsortable 6245 || !current->done(SkMin32(index, endIndex)))); 6246 if (current->activeWinding(index, endIndex) && !simple.isClosed()) { 6247 SkASSERT(unsortable); 6248 int min = SkMin32(index, endIndex); 6249 if (!current->done(min)) { 6250 current->addCurveTo(index, endIndex, simple, true); 6251 current->markDoneUnary(min); 6252 } 6253 } 6254 simple.close(); 6255 } else { 6256 Span* last = current->markAndChaseDoneUnary(index, endIndex); 6257 if (last && !last->fLoop) { 6258 *chaseArray.append() = last; 6259 } 6260 } 6261 current = findChase(chaseArray, index, endIndex); 6262 #if DEBUG_ACTIVE_SPANS 6263 debugShowActiveSpans(contourList); 6264 #endif 6265 if (!current) { 6266 break; 6267 } 6268 } while (true); 6269 } while (true); 6270 return simple.someAssemblyRequired(); 6271 } 6272 6273 // returns true if all edges were processed 6274 static bool bridgeXor(SkTDArray<Contour*>& contourList, PathWrapper& simple) { 6275 Segment* current; 6276 int start, end; 6277 bool unsortable = false; 6278 bool closable = true; 6279 while ((current = findUndone(contourList, start, end))) { 6280 do { 6281 #if DEBUG_ACTIVE_SPANS 6282 if (!unsortable && current->done()) { 6283 debugShowActiveSpans(contourList); 6284 } 6285 #endif 6286 SkASSERT(unsortable || !current->done()); 6287 int nextStart = start; 6288 int nextEnd = end; 6289 Segment* next = current->findNextXor(nextStart, nextEnd, unsortable); 6290 if (!next) { 6291 if (!unsortable && simple.hasMove() 6292 && current->verb() != SkPath::kLine_Verb 6293 && !simple.isClosed()) { 6294 current->addCurveTo(start, end, simple, true); 6295 SkASSERT(simple.isClosed()); 6296 } 6297 break; 6298 } 6299 #if DEBUG_FLOW 6300 SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, 6301 current->debugID(), current->xyAtT(start).fX, current->xyAtT(start).fY, 6302 current->xyAtT(end).fX, current->xyAtT(end).fY); 6303 #endif 6304 current->addCurveTo(start, end, simple, true); 6305 current = next; 6306 start = nextStart; 6307 end = nextEnd; 6308 } while (!simple.isClosed() && (!unsortable || !current->done(SkMin32(start, end)))); 6309 if (!simple.isClosed()) { 6310 SkASSERT(unsortable); 6311 int min = SkMin32(start, end); 6312 if (!current->done(min)) { 6313 current->addCurveTo(start, end, simple, true); 6314 current->markDone(min, 1); 6315 } 6316 closable = false; 6317 } 6318 simple.close(); 6319 #if DEBUG_ACTIVE_SPANS 6320 debugShowActiveSpans(contourList); 6321 #endif 6322 } 6323 return closable; 6324 } 6325 6326 static void fixOtherTIndex(SkTDArray<Contour*>& contourList) { 6327 int contourCount = contourList.count(); 6328 for (int cTest = 0; cTest < contourCount; ++cTest) { 6329 Contour* contour = contourList[cTest]; 6330 contour->fixOtherTIndex(); 6331 } 6332 } 6333 6334 static void sortSegments(SkTDArray<Contour*>& contourList) { 6335 int contourCount = contourList.count(); 6336 for (int cTest = 0; cTest < contourCount; ++cTest) { 6337 Contour* contour = contourList[cTest]; 6338 contour->sortSegments(); 6339 } 6340 } 6341 6342 static void makeContourList(SkTArray<Contour>& contours, SkTDArray<Contour*>& list, 6343 bool evenOdd, bool oppEvenOdd) { 6344 int count = contours.count(); 6345 if (count == 0) { 6346 return; 6347 } 6348 for (int index = 0; index < count; ++index) { 6349 Contour& contour = contours[index]; 6350 contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd); 6351 *list.append() = &contour; 6352 } 6353 QSort<Contour>(list.begin(), list.end() - 1); 6354 } 6355 6356 static bool approximatelyEqual(const SkPoint& a, const SkPoint& b) { 6357 return AlmostEqualUlps(a.fX, b.fX) && AlmostEqualUlps(a.fY, b.fY); 6358 } 6359 6360 static bool lessThan(SkTDArray<double>& distances, const int one, const int two) { 6361 return distances[one] < distances[two]; 6362 } 6363 /* 6364 check start and end of each contour 6365 if not the same, record them 6366 match them up 6367 connect closest 6368 reassemble contour pieces into new path 6369 */ 6370 static void assemble(const PathWrapper& path, PathWrapper& simple) { 6371 #if DEBUG_PATH_CONSTRUCTION 6372 SkDebugf("%s\n", __FUNCTION__); 6373 #endif 6374 SkTArray<Contour> contours; 6375 EdgeBuilder builder(path, contours); 6376 builder.finish(); 6377 int count = contours.count(); 6378 int outer; 6379 SkTDArray<int> runs; // indices of partial contours 6380 for (outer = 0; outer < count; ++outer) { 6381 const Contour& eContour = contours[outer]; 6382 const SkPoint& eStart = eContour.start(); 6383 const SkPoint& eEnd = eContour.end(); 6384 #if DEBUG_ASSEMBLE 6385 SkDebugf("%s contour", __FUNCTION__); 6386 if (!approximatelyEqual(eStart, eEnd)) { 6387 SkDebugf("[%d]", runs.count()); 6388 } else { 6389 SkDebugf(" "); 6390 } 6391 SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", 6392 eStart.fX, eStart.fY, eEnd.fX, eEnd.fY); 6393 #endif 6394 if (approximatelyEqual(eStart, eEnd)) { 6395 eContour.toPath(simple); 6396 continue; 6397 } 6398 *runs.append() = outer; 6399 } 6400 count = runs.count(); 6401 if (count == 0) { 6402 return; 6403 } 6404 SkTDArray<int> sLink, eLink; 6405 sLink.setCount(count); 6406 eLink.setCount(count); 6407 int rIndex, iIndex; 6408 for (rIndex = 0; rIndex < count; ++rIndex) { 6409 sLink[rIndex] = eLink[rIndex] = SK_MaxS32; 6410 } 6411 SkTDArray<double> distances; 6412 const int ends = count * 2; // all starts and ends 6413 const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2 6414 distances.setCount(entries); 6415 for (rIndex = 0; rIndex < ends - 1; ++rIndex) { 6416 outer = runs[rIndex >> 1]; 6417 const Contour& oContour = contours[outer]; 6418 const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start(); 6419 const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2) 6420 * ends - rIndex - 1; 6421 for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) { 6422 int inner = runs[iIndex >> 1]; 6423 const Contour& iContour = contours[inner]; 6424 const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start(); 6425 double dx = iPt.fX - oPt.fX; 6426 double dy = iPt.fY - oPt.fY; 6427 double dist = dx * dx + dy * dy; 6428 distances[row + iIndex] = dist; // oStart distance from iStart 6429 } 6430 } 6431 SkTDArray<int> sortedDist; 6432 sortedDist.setCount(entries); 6433 for (rIndex = 0; rIndex < entries; ++rIndex) { 6434 sortedDist[rIndex] = rIndex; 6435 } 6436 QSort<SkTDArray<double>, int>(distances, sortedDist.begin(), sortedDist.end() - 1, lessThan); 6437 int remaining = count; // number of start/end pairs 6438 for (rIndex = 0; rIndex < entries; ++rIndex) { 6439 int pair = sortedDist[rIndex]; 6440 int row = pair / ends; 6441 int col = pair - row * ends; 6442 int thingOne = row < col ? row : ends - row - 2; 6443 int ndxOne = thingOne >> 1; 6444 bool endOne = thingOne & 1; 6445 int* linkOne = endOne ? eLink.begin() : sLink.begin(); 6446 if (linkOne[ndxOne] != SK_MaxS32) { 6447 continue; 6448 } 6449 int thingTwo = row < col ? col : ends - row + col - 1; 6450 int ndxTwo = thingTwo >> 1; 6451 bool endTwo = thingTwo & 1; 6452 int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); 6453 if (linkTwo[ndxTwo] != SK_MaxS32) { 6454 continue; 6455 } 6456 SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); 6457 bool flip = endOne == endTwo; 6458 linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; 6459 linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; 6460 if (!--remaining) { 6461 break; 6462 } 6463 } 6464 SkASSERT(!remaining); 6465 #if DEBUG_ASSEMBLE 6466 for (rIndex = 0; rIndex < count; ++rIndex) { 6467 int s = sLink[rIndex]; 6468 int e = eLink[rIndex]; 6469 SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e', 6470 s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e); 6471 } 6472 #endif 6473 rIndex = 0; 6474 do { 6475 bool forward = true; 6476 bool first = true; 6477 int sIndex = sLink[rIndex]; 6478 SkASSERT(sIndex != SK_MaxS32); 6479 sLink[rIndex] = SK_MaxS32; 6480 int eIndex; 6481 if (sIndex < 0) { 6482 eIndex = sLink[~sIndex]; 6483 sLink[~sIndex] = SK_MaxS32; 6484 } else { 6485 eIndex = eLink[sIndex]; 6486 eLink[sIndex] = SK_MaxS32; 6487 } 6488 SkASSERT(eIndex != SK_MaxS32); 6489 #if DEBUG_ASSEMBLE 6490 SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e', 6491 sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', 6492 eIndex < 0 ? ~eIndex : eIndex); 6493 #endif 6494 do { 6495 outer = runs[rIndex]; 6496 const Contour& contour = contours[outer]; 6497 if (first) { 6498 first = false; 6499 const SkPoint* startPtr = &contour.start(); 6500 simple.deferredMove(startPtr[0]); 6501 } 6502 if (forward) { 6503 contour.toPartialForward(simple); 6504 } else { 6505 contour.toPartialBackward(simple); 6506 } 6507 #if DEBUG_ASSEMBLE 6508 SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex, 6509 eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, 6510 sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); 6511 #endif 6512 if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { 6513 simple.close(); 6514 break; 6515 } 6516 if (forward) { 6517 eIndex = eLink[rIndex]; 6518 SkASSERT(eIndex != SK_MaxS32); 6519 eLink[rIndex] = SK_MaxS32; 6520 if (eIndex >= 0) { 6521 SkASSERT(sLink[eIndex] == rIndex); 6522 sLink[eIndex] = SK_MaxS32; 6523 } else { 6524 SkASSERT(eLink[~eIndex] == ~rIndex); 6525 eLink[~eIndex] = SK_MaxS32; 6526 } 6527 } else { 6528 eIndex = sLink[rIndex]; 6529 SkASSERT(eIndex != SK_MaxS32); 6530 sLink[rIndex] = SK_MaxS32; 6531 if (eIndex >= 0) { 6532 SkASSERT(eLink[eIndex] == rIndex); 6533 eLink[eIndex] = SK_MaxS32; 6534 } else { 6535 SkASSERT(sLink[~eIndex] == ~rIndex); 6536 sLink[~eIndex] = SK_MaxS32; 6537 } 6538 } 6539 rIndex = eIndex; 6540 if (rIndex < 0) { 6541 forward ^= 1; 6542 rIndex = ~rIndex; 6543 } 6544 } while (true); 6545 for (rIndex = 0; rIndex < count; ++rIndex) { 6546 if (sLink[rIndex] != SK_MaxS32) { 6547 break; 6548 } 6549 } 6550 } while (rIndex < count); 6551 #if DEBUG_ASSEMBLE 6552 for (rIndex = 0; rIndex < count; ++rIndex) { 6553 SkASSERT(sLink[rIndex] == SK_MaxS32); 6554 SkASSERT(eLink[rIndex] == SK_MaxS32); 6555 } 6556 #endif 6557 } 6558 6559 void simplifyx(const SkPath& path, SkPath& result) { 6560 #if DEBUG_SORT || DEBUG_SWAP_TOP 6561 gDebugSortCount = gDebugSortCountDefault; 6562 #endif 6563 // returns 1 for evenodd, -1 for winding, regardless of inverse-ness 6564 result.reset(); 6565 result.setFillType(SkPath::kEvenOdd_FillType); 6566 PathWrapper simple(result); 6567 6568 // turn path into list of segments 6569 SkTArray<Contour> contours; 6570 EdgeBuilder builder(path, contours); 6571 builder.finish(); 6572 SkTDArray<Contour*> contourList; 6573 makeContourList(contours, contourList, false, false); 6574 Contour** currentPtr = contourList.begin(); 6575 if (!currentPtr) { 6576 return; 6577 } 6578 Contour** listEnd = contourList.end(); 6579 // find all intersections between segments 6580 do { 6581 Contour** nextPtr = currentPtr; 6582 Contour* current = *currentPtr++; 6583 if (current->containsCubics()) { 6584 addSelfIntersectTs(current); 6585 } 6586 Contour* next; 6587 do { 6588 next = *nextPtr++; 6589 } while (addIntersectTs(current, next) && nextPtr != listEnd); 6590 } while (currentPtr != listEnd); 6591 // eat through coincident edges 6592 coincidenceCheck(contourList, 0); 6593 fixOtherTIndex(contourList); 6594 sortSegments(contourList); 6595 #if DEBUG_ACTIVE_SPANS 6596 debugShowActiveSpans(contourList); 6597 #endif 6598 // construct closed contours 6599 if (builder.xorMask() == kWinding_Mask ? bridgeWinding(contourList, simple) 6600 : !bridgeXor(contourList, simple)) 6601 { // if some edges could not be resolved, assemble remaining fragments 6602 SkPath temp; 6603 temp.setFillType(SkPath::kEvenOdd_FillType); 6604 PathWrapper assembled(temp); 6605 assemble(simple, assembled); 6606 result = *assembled.nativePath(); 6607 } 6608 } 6609