1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Subclass of MipsTargetLowering specialized for mips16. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "Mips16ISelLowering.h" 14 #include "MCTargetDesc/MipsBaseInfo.h" 15 #include "MipsRegisterInfo.h" 16 #include "MipsTargetMachine.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/CodeGen/MachineInstrBuilder.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Target/TargetInstrInfo.h" 21 #include <string> 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "mips-lower" 26 27 static cl::opt<bool> DontExpandCondPseudos16( 28 "mips16-dont-expand-cond-pseudo", 29 cl::init(false), 30 cl::desc("Dont expand conditional move related " 31 "pseudos for Mips 16"), 32 cl::Hidden); 33 34 namespace { 35 struct Mips16Libcall { 36 RTLIB::Libcall Libcall; 37 const char *Name; 38 39 bool operator<(const Mips16Libcall &RHS) const { 40 return std::strcmp(Name, RHS.Name) < 0; 41 } 42 }; 43 44 struct Mips16IntrinsicHelperType{ 45 const char* Name; 46 const char* Helper; 47 48 bool operator<(const Mips16IntrinsicHelperType &RHS) const { 49 return std::strcmp(Name, RHS.Name) < 0; 50 } 51 bool operator==(const Mips16IntrinsicHelperType &RHS) const { 52 return std::strcmp(Name, RHS.Name) == 0; 53 } 54 }; 55 } 56 57 // Libcalls for which no helper is generated. Sorted by name for binary search. 58 static const Mips16Libcall HardFloatLibCalls[] = { 59 { RTLIB::ADD_F64, "__mips16_adddf3" }, 60 { RTLIB::ADD_F32, "__mips16_addsf3" }, 61 { RTLIB::DIV_F64, "__mips16_divdf3" }, 62 { RTLIB::DIV_F32, "__mips16_divsf3" }, 63 { RTLIB::OEQ_F64, "__mips16_eqdf2" }, 64 { RTLIB::OEQ_F32, "__mips16_eqsf2" }, 65 { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" }, 66 { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" }, 67 { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" }, 68 { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" }, 69 { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" }, 70 { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" }, 71 { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" }, 72 { RTLIB::OGE_F64, "__mips16_gedf2" }, 73 { RTLIB::OGE_F32, "__mips16_gesf2" }, 74 { RTLIB::OGT_F64, "__mips16_gtdf2" }, 75 { RTLIB::OGT_F32, "__mips16_gtsf2" }, 76 { RTLIB::OLE_F64, "__mips16_ledf2" }, 77 { RTLIB::OLE_F32, "__mips16_lesf2" }, 78 { RTLIB::OLT_F64, "__mips16_ltdf2" }, 79 { RTLIB::OLT_F32, "__mips16_ltsf2" }, 80 { RTLIB::MUL_F64, "__mips16_muldf3" }, 81 { RTLIB::MUL_F32, "__mips16_mulsf3" }, 82 { RTLIB::UNE_F64, "__mips16_nedf2" }, 83 { RTLIB::UNE_F32, "__mips16_nesf2" }, 84 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall. 85 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall. 86 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall. 87 { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall. 88 { RTLIB::SUB_F64, "__mips16_subdf3" }, 89 { RTLIB::SUB_F32, "__mips16_subsf3" }, 90 { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" }, 91 { RTLIB::UO_F64, "__mips16_unorddf2" }, 92 { RTLIB::UO_F32, "__mips16_unordsf2" } 93 }; 94 95 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = { 96 {"__fixunsdfsi", "__mips16_call_stub_2" }, 97 {"ceil", "__mips16_call_stub_df_2"}, 98 {"ceilf", "__mips16_call_stub_sf_1"}, 99 {"copysign", "__mips16_call_stub_df_10"}, 100 {"copysignf", "__mips16_call_stub_sf_5"}, 101 {"cos", "__mips16_call_stub_df_2"}, 102 {"cosf", "__mips16_call_stub_sf_1"}, 103 {"exp2", "__mips16_call_stub_df_2"}, 104 {"exp2f", "__mips16_call_stub_sf_1"}, 105 {"floor", "__mips16_call_stub_df_2"}, 106 {"floorf", "__mips16_call_stub_sf_1"}, 107 {"log2", "__mips16_call_stub_df_2"}, 108 {"log2f", "__mips16_call_stub_sf_1"}, 109 {"nearbyint", "__mips16_call_stub_df_2"}, 110 {"nearbyintf", "__mips16_call_stub_sf_1"}, 111 {"rint", "__mips16_call_stub_df_2"}, 112 {"rintf", "__mips16_call_stub_sf_1"}, 113 {"sin", "__mips16_call_stub_df_2"}, 114 {"sinf", "__mips16_call_stub_sf_1"}, 115 {"sqrt", "__mips16_call_stub_df_2"}, 116 {"sqrtf", "__mips16_call_stub_sf_1"}, 117 {"trunc", "__mips16_call_stub_df_2"}, 118 {"truncf", "__mips16_call_stub_sf_1"}, 119 }; 120 121 Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM) 122 : MipsTargetLowering(TM) { 123 124 // Set up the register classes 125 addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass); 126 127 if (Subtarget->inMips16HardFloat()) 128 setMips16HardFloatLibCalls(); 129 130 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); 131 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); 132 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); 133 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); 134 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); 135 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); 136 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); 137 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); 138 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); 139 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); 140 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); 141 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); 142 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); 143 144 setOperationAction(ISD::ROTR, MVT::i32, Expand); 145 setOperationAction(ISD::ROTR, MVT::i64, Expand); 146 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 147 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 148 149 computeRegisterProperties(); 150 } 151 152 const MipsTargetLowering * 153 llvm::createMips16TargetLowering(MipsTargetMachine &TM) { 154 return new Mips16TargetLowering(TM); 155 } 156 157 bool 158 Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, 159 unsigned, 160 bool *Fast) const { 161 return false; 162 } 163 164 MachineBasicBlock * 165 Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 166 MachineBasicBlock *BB) const { 167 switch (MI->getOpcode()) { 168 default: 169 return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB); 170 case Mips::SelBeqZ: 171 return emitSel16(Mips::BeqzRxImm16, MI, BB); 172 case Mips::SelBneZ: 173 return emitSel16(Mips::BnezRxImm16, MI, BB); 174 case Mips::SelTBteqZCmpi: 175 return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB); 176 case Mips::SelTBteqZSlti: 177 return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB); 178 case Mips::SelTBteqZSltiu: 179 return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB); 180 case Mips::SelTBtneZCmpi: 181 return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB); 182 case Mips::SelTBtneZSlti: 183 return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB); 184 case Mips::SelTBtneZSltiu: 185 return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB); 186 case Mips::SelTBteqZCmp: 187 return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB); 188 case Mips::SelTBteqZSlt: 189 return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB); 190 case Mips::SelTBteqZSltu: 191 return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB); 192 case Mips::SelTBtneZCmp: 193 return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB); 194 case Mips::SelTBtneZSlt: 195 return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB); 196 case Mips::SelTBtneZSltu: 197 return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB); 198 case Mips::BteqzT8CmpX16: 199 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB); 200 case Mips::BteqzT8SltX16: 201 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB); 202 case Mips::BteqzT8SltuX16: 203 // TBD: figure out a way to get this or remove the instruction 204 // altogether. 205 return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB); 206 case Mips::BtnezT8CmpX16: 207 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB); 208 case Mips::BtnezT8SltX16: 209 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB); 210 case Mips::BtnezT8SltuX16: 211 // TBD: figure out a way to get this or remove the instruction 212 // altogether. 213 return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB); 214 case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins( 215 Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB); 216 case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins( 217 Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB); 218 case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins( 219 Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB); 220 case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins( 221 Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB); 222 case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins( 223 Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB); 224 case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins( 225 Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB); 226 break; 227 case Mips::SltCCRxRy16: 228 return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB); 229 break; 230 case Mips::SltiCCRxImmX16: 231 return emitFEXT_CCRXI16_ins 232 (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB); 233 case Mips::SltiuCCRxImmX16: 234 return emitFEXT_CCRXI16_ins 235 (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB); 236 case Mips::SltuCCRxRy16: 237 return emitFEXT_CCRX16_ins 238 (Mips::SltuRxRy16, MI, BB); 239 } 240 } 241 242 bool Mips16TargetLowering:: 243 isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo, 244 unsigned NextStackOffset, 245 const MipsFunctionInfo& FI) const { 246 // No tail call optimization for mips16. 247 return false; 248 } 249 250 void Mips16TargetLowering::setMips16HardFloatLibCalls() { 251 for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) { 252 assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) && 253 "Array not sorted!"); 254 if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL) 255 setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name); 256 } 257 258 setLibcallName(RTLIB::O_F64, "__mips16_unorddf2"); 259 setLibcallName(RTLIB::O_F32, "__mips16_unordsf2"); 260 } 261 262 // 263 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much 264 // cleaner way to do all of this but it will have to wait until the traditional 265 // gcc mechanism is completed. 266 // 267 // For Pic, in order for Mips16 code to call Mips32 code which according the abi 268 // have either arguments or returned values placed in floating point registers, 269 // we use a set of helper functions. (This includes functions which return type 270 // complex which on Mips are returned in a pair of floating point registers). 271 // 272 // This is an encoding that we inherited from gcc. 273 // In Mips traditional O32, N32 ABI, floating point numbers are passed in 274 // floating point argument registers 1,2 only when the first and optionally 275 // the second arguments are float (sf) or double (df). 276 // For Mips16 we are only concerned with the situations where floating point 277 // arguments are being passed in floating point registers by the ABI, because 278 // Mips16 mode code cannot execute floating point instructions to load those 279 // values and hence helper functions are needed. 280 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df) 281 // the helper function suffixs for these are: 282 // 0, 1, 5, 9, 2, 6, 10 283 // this suffix can then be calculated as follows: 284 // for a given argument Arg: 285 // Arg1x, Arg2x = 1 : Arg is sf 286 // 2 : Arg is df 287 // 0: Arg is neither sf or df 288 // So this stub is the string for number Arg1x + Arg2x*4. 289 // However not all numbers between 0 and 10 are possible, we check anyway and 290 // assert if the impossible exists. 291 // 292 293 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber 294 (ArgListTy &Args) const { 295 unsigned int resultNum = 0; 296 if (Args.size() >= 1) { 297 Type *t = Args[0].Ty; 298 if (t->isFloatTy()) { 299 resultNum = 1; 300 } 301 else if (t->isDoubleTy()) { 302 resultNum = 2; 303 } 304 } 305 if (resultNum) { 306 if (Args.size() >=2) { 307 Type *t = Args[1].Ty; 308 if (t->isFloatTy()) { 309 resultNum += 4; 310 } 311 else if (t->isDoubleTy()) { 312 resultNum += 8; 313 } 314 } 315 } 316 return resultNum; 317 } 318 319 // 320 // prefixs are attached to stub numbers depending on the return type . 321 // return type: float sf_ 322 // double df_ 323 // single complex sc_ 324 // double complext dc_ 325 // others NO PREFIX 326 // 327 // 328 // The full name of a helper function is__mips16_call_stub + 329 // return type dependent prefix + stub number 330 // 331 // 332 // This is something that probably should be in a different source file and 333 // perhaps done differently but my main purpose is to not waste runtime 334 // on something that we can enumerate in the source. Another possibility is 335 // to have a python script to generate these mapping tables. This will do 336 // for now. There are a whole series of helper function mapping arrays, one 337 // for each return type class as outlined above. There there are 11 possible 338 // entries. Ones with 0 are ones which should never be selected 339 // 340 // All the arrays are similar except for ones which return neither 341 // sf, df, sc, dc, in which only care about ones which have sf or df as a 342 // first parameter. 343 // 344 #define P_ "__mips16_call_stub_" 345 #define MAX_STUB_NUMBER 10 346 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10" 347 #define T P "0" , T1 348 #define P P_ 349 static char const * vMips16Helper[MAX_STUB_NUMBER+1] = 350 {nullptr, T1 }; 351 #undef P 352 #define P P_ "sf_" 353 static char const * sfMips16Helper[MAX_STUB_NUMBER+1] = 354 { T }; 355 #undef P 356 #define P P_ "df_" 357 static char const * dfMips16Helper[MAX_STUB_NUMBER+1] = 358 { T }; 359 #undef P 360 #define P P_ "sc_" 361 static char const * scMips16Helper[MAX_STUB_NUMBER+1] = 362 { T }; 363 #undef P 364 #define P P_ "dc_" 365 static char const * dcMips16Helper[MAX_STUB_NUMBER+1] = 366 { T }; 367 #undef P 368 #undef P_ 369 370 371 const char* Mips16TargetLowering:: 372 getMips16HelperFunction 373 (Type* RetTy, ArgListTy &Args, bool &needHelper) const { 374 const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args); 375 #ifndef NDEBUG 376 const unsigned int maxStubNum = 10; 377 assert(stubNum <= maxStubNum); 378 const bool validStubNum[maxStubNum+1] = 379 {true, true, true, false, false, true, true, false, false, true, true}; 380 assert(validStubNum[stubNum]); 381 #endif 382 const char *result; 383 if (RetTy->isFloatTy()) { 384 result = sfMips16Helper[stubNum]; 385 } 386 else if (RetTy ->isDoubleTy()) { 387 result = dfMips16Helper[stubNum]; 388 } 389 else if (RetTy->isStructTy()) { 390 // check if it's complex 391 if (RetTy->getNumContainedTypes() == 2) { 392 if ((RetTy->getContainedType(0)->isFloatTy()) && 393 (RetTy->getContainedType(1)->isFloatTy())) { 394 result = scMips16Helper[stubNum]; 395 } 396 else if ((RetTy->getContainedType(0)->isDoubleTy()) && 397 (RetTy->getContainedType(1)->isDoubleTy())) { 398 result = dcMips16Helper[stubNum]; 399 } 400 else { 401 llvm_unreachable("Uncovered condition"); 402 } 403 } 404 else { 405 llvm_unreachable("Uncovered condition"); 406 } 407 } 408 else { 409 if (stubNum == 0) { 410 needHelper = false; 411 return ""; 412 } 413 result = vMips16Helper[stubNum]; 414 } 415 needHelper = true; 416 return result; 417 } 418 419 void Mips16TargetLowering:: 420 getOpndList(SmallVectorImpl<SDValue> &Ops, 421 std::deque< std::pair<unsigned, SDValue> > &RegsToPass, 422 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, 423 CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const { 424 SelectionDAG &DAG = CLI.DAG; 425 MachineFunction &MF = DAG.getMachineFunction(); 426 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 427 const char* Mips16HelperFunction = nullptr; 428 bool NeedMips16Helper = false; 429 430 if (Subtarget->inMips16HardFloat()) { 431 // 432 // currently we don't have symbols tagged with the mips16 or mips32 433 // qualifier so we will assume that we don't know what kind it is. 434 // and generate the helper 435 // 436 bool LookupHelper = true; 437 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) { 438 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() }; 439 440 if (std::binary_search(std::begin(HardFloatLibCalls), 441 std::end(HardFloatLibCalls), Find)) 442 LookupHelper = false; 443 else { 444 const char *Symbol = S->getSymbol(); 445 Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" }; 446 const Mips16HardFloatInfo::FuncSignature *Signature = 447 Mips16HardFloatInfo::findFuncSignature(Symbol); 448 if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) == 449 FuncInfo->StubsNeeded.end()))) { 450 FuncInfo->StubsNeeded[Symbol] = Signature; 451 // 452 // S2 is normally saved if the stub is for a function which 453 // returns a float or double value and is not otherwise. This is 454 // because more work is required after the function the stub 455 // is calling completes, and so the stub cannot directly return 456 // and the stub has no stack space to store the return address so 457 // S2 is used for that purpose. 458 // In order to take advantage of not saving S2, we need to also 459 // optimize the call in the stub and this requires some further 460 // functionality in MipsAsmPrinter which we don't have yet. 461 // So for now we always save S2. The optimization will be done 462 // in a follow-on patch. 463 // 464 if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet)) 465 FuncInfo->setSaveS2(); 466 } 467 // one more look at list of intrinsics 468 const Mips16IntrinsicHelperType *Helper = 469 std::lower_bound(std::begin(Mips16IntrinsicHelper), 470 std::end(Mips16IntrinsicHelper), IntrinsicFind); 471 if (Helper != std::end(Mips16IntrinsicHelper) && 472 *Helper == IntrinsicFind) { 473 Mips16HelperFunction = Helper->Helper; 474 NeedMips16Helper = true; 475 LookupHelper = false; 476 } 477 478 } 479 } else if (GlobalAddressSDNode *G = 480 dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { 481 Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, 482 G->getGlobal()->getName().data() }; 483 484 if (std::binary_search(std::begin(HardFloatLibCalls), 485 std::end(HardFloatLibCalls), Find)) 486 LookupHelper = false; 487 } 488 if (LookupHelper) 489 Mips16HelperFunction = 490 getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper); 491 } 492 493 SDValue JumpTarget = Callee; 494 495 // T9 should contain the address of the callee function if 496 // -reloction-model=pic or it is an indirect call. 497 if (IsPICCall || !GlobalOrExternal) { 498 unsigned V0Reg = Mips::V0; 499 if (NeedMips16Helper) { 500 RegsToPass.push_front(std::make_pair(V0Reg, Callee)); 501 JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy()); 502 ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget); 503 JumpTarget = getAddrGlobal(S, JumpTarget.getValueType(), DAG, 504 MipsII::MO_GOT, Chain, 505 FuncInfo->callPtrInfo(S->getSymbol())); 506 } else 507 RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee)); 508 } 509 510 Ops.push_back(JumpTarget); 511 512 MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, 513 InternalLinkage, CLI, Callee, Chain); 514 } 515 516 MachineBasicBlock *Mips16TargetLowering:: 517 emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const { 518 if (DontExpandCondPseudos16) 519 return BB; 520 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 521 DebugLoc DL = MI->getDebugLoc(); 522 // To "insert" a SELECT_CC instruction, we actually have to insert the 523 // diamond control-flow pattern. The incoming instruction knows the 524 // destination vreg to set, the condition code register to branch on, the 525 // true/false values to select between, and a branch opcode to use. 526 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 527 MachineFunction::iterator It = BB; 528 ++It; 529 530 // thisMBB: 531 // ... 532 // TrueVal = ... 533 // setcc r1, r2, r3 534 // bNE r1, r0, copy1MBB 535 // fallthrough --> copy0MBB 536 MachineBasicBlock *thisMBB = BB; 537 MachineFunction *F = BB->getParent(); 538 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 539 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 540 F->insert(It, copy0MBB); 541 F->insert(It, sinkMBB); 542 543 // Transfer the remainder of BB and its successor edges to sinkMBB. 544 sinkMBB->splice(sinkMBB->begin(), BB, 545 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 546 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 547 548 // Next, add the true and fallthrough blocks as its successors. 549 BB->addSuccessor(copy0MBB); 550 BB->addSuccessor(sinkMBB); 551 552 BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg()) 553 .addMBB(sinkMBB); 554 555 // copy0MBB: 556 // %FalseValue = ... 557 // # fallthrough to sinkMBB 558 BB = copy0MBB; 559 560 // Update machine-CFG edges 561 BB->addSuccessor(sinkMBB); 562 563 // sinkMBB: 564 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 565 // ... 566 BB = sinkMBB; 567 568 BuildMI(*BB, BB->begin(), DL, 569 TII->get(Mips::PHI), MI->getOperand(0).getReg()) 570 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB) 571 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB); 572 573 MI->eraseFromParent(); // The pseudo instruction is gone now. 574 return BB; 575 } 576 577 MachineBasicBlock *Mips16TargetLowering::emitSelT16 578 (unsigned Opc1, unsigned Opc2, 579 MachineInstr *MI, MachineBasicBlock *BB) const { 580 if (DontExpandCondPseudos16) 581 return BB; 582 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 583 DebugLoc DL = MI->getDebugLoc(); 584 // To "insert" a SELECT_CC instruction, we actually have to insert the 585 // diamond control-flow pattern. The incoming instruction knows the 586 // destination vreg to set, the condition code register to branch on, the 587 // true/false values to select between, and a branch opcode to use. 588 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 589 MachineFunction::iterator It = BB; 590 ++It; 591 592 // thisMBB: 593 // ... 594 // TrueVal = ... 595 // setcc r1, r2, r3 596 // bNE r1, r0, copy1MBB 597 // fallthrough --> copy0MBB 598 MachineBasicBlock *thisMBB = BB; 599 MachineFunction *F = BB->getParent(); 600 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 601 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 602 F->insert(It, copy0MBB); 603 F->insert(It, sinkMBB); 604 605 // Transfer the remainder of BB and its successor edges to sinkMBB. 606 sinkMBB->splice(sinkMBB->begin(), BB, 607 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 608 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 609 610 // Next, add the true and fallthrough blocks as its successors. 611 BB->addSuccessor(copy0MBB); 612 BB->addSuccessor(sinkMBB); 613 614 BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg()) 615 .addReg(MI->getOperand(4).getReg()); 616 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB); 617 618 // copy0MBB: 619 // %FalseValue = ... 620 // # fallthrough to sinkMBB 621 BB = copy0MBB; 622 623 // Update machine-CFG edges 624 BB->addSuccessor(sinkMBB); 625 626 // sinkMBB: 627 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 628 // ... 629 BB = sinkMBB; 630 631 BuildMI(*BB, BB->begin(), DL, 632 TII->get(Mips::PHI), MI->getOperand(0).getReg()) 633 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB) 634 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB); 635 636 MI->eraseFromParent(); // The pseudo instruction is gone now. 637 return BB; 638 639 } 640 641 MachineBasicBlock *Mips16TargetLowering::emitSeliT16 642 (unsigned Opc1, unsigned Opc2, 643 MachineInstr *MI, MachineBasicBlock *BB) const { 644 if (DontExpandCondPseudos16) 645 return BB; 646 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 647 DebugLoc DL = MI->getDebugLoc(); 648 // To "insert" a SELECT_CC instruction, we actually have to insert the 649 // diamond control-flow pattern. The incoming instruction knows the 650 // destination vreg to set, the condition code register to branch on, the 651 // true/false values to select between, and a branch opcode to use. 652 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 653 MachineFunction::iterator It = BB; 654 ++It; 655 656 // thisMBB: 657 // ... 658 // TrueVal = ... 659 // setcc r1, r2, r3 660 // bNE r1, r0, copy1MBB 661 // fallthrough --> copy0MBB 662 MachineBasicBlock *thisMBB = BB; 663 MachineFunction *F = BB->getParent(); 664 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 665 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 666 F->insert(It, copy0MBB); 667 F->insert(It, sinkMBB); 668 669 // Transfer the remainder of BB and its successor edges to sinkMBB. 670 sinkMBB->splice(sinkMBB->begin(), BB, 671 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 672 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 673 674 // Next, add the true and fallthrough blocks as its successors. 675 BB->addSuccessor(copy0MBB); 676 BB->addSuccessor(sinkMBB); 677 678 BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg()) 679 .addImm(MI->getOperand(4).getImm()); 680 BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB); 681 682 // copy0MBB: 683 // %FalseValue = ... 684 // # fallthrough to sinkMBB 685 BB = copy0MBB; 686 687 // Update machine-CFG edges 688 BB->addSuccessor(sinkMBB); 689 690 // sinkMBB: 691 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 692 // ... 693 BB = sinkMBB; 694 695 BuildMI(*BB, BB->begin(), DL, 696 TII->get(Mips::PHI), MI->getOperand(0).getReg()) 697 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB) 698 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB); 699 700 MI->eraseFromParent(); // The pseudo instruction is gone now. 701 return BB; 702 703 } 704 705 MachineBasicBlock 706 *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc, 707 MachineInstr *MI, 708 MachineBasicBlock *BB) const { 709 if (DontExpandCondPseudos16) 710 return BB; 711 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 712 unsigned regX = MI->getOperand(0).getReg(); 713 unsigned regY = MI->getOperand(1).getReg(); 714 MachineBasicBlock *target = MI->getOperand(2).getMBB(); 715 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX) 716 .addReg(regY); 717 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target); 718 MI->eraseFromParent(); // The pseudo instruction is gone now. 719 return BB; 720 } 721 722 MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins( 723 unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned, 724 MachineInstr *MI, MachineBasicBlock *BB) const { 725 if (DontExpandCondPseudos16) 726 return BB; 727 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 728 unsigned regX = MI->getOperand(0).getReg(); 729 int64_t imm = MI->getOperand(1).getImm(); 730 MachineBasicBlock *target = MI->getOperand(2).getMBB(); 731 unsigned CmpOpc; 732 if (isUInt<8>(imm)) 733 CmpOpc = CmpiOpc; 734 else if ((!ImmSigned && isUInt<16>(imm)) || 735 (ImmSigned && isInt<16>(imm))) 736 CmpOpc = CmpiXOpc; 737 else 738 llvm_unreachable("immediate field not usable"); 739 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX) 740 .addImm(imm); 741 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target); 742 MI->eraseFromParent(); // The pseudo instruction is gone now. 743 return BB; 744 } 745 746 static unsigned Mips16WhichOp8uOr16simm 747 (unsigned shortOp, unsigned longOp, int64_t Imm) { 748 if (isUInt<8>(Imm)) 749 return shortOp; 750 else if (isInt<16>(Imm)) 751 return longOp; 752 else 753 llvm_unreachable("immediate field not usable"); 754 } 755 756 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins( 757 unsigned SltOpc, 758 MachineInstr *MI, MachineBasicBlock *BB) const { 759 if (DontExpandCondPseudos16) 760 return BB; 761 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 762 unsigned CC = MI->getOperand(0).getReg(); 763 unsigned regX = MI->getOperand(1).getReg(); 764 unsigned regY = MI->getOperand(2).getReg(); 765 BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(SltOpc)).addReg(regX).addReg( 766 regY); 767 BuildMI(*BB, MI, MI->getDebugLoc(), 768 TII->get(Mips::MoveR3216), CC).addReg(Mips::T8); 769 MI->eraseFromParent(); // The pseudo instruction is gone now. 770 return BB; 771 } 772 773 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins( 774 unsigned SltiOpc, unsigned SltiXOpc, 775 MachineInstr *MI, MachineBasicBlock *BB )const { 776 if (DontExpandCondPseudos16) 777 return BB; 778 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 779 unsigned CC = MI->getOperand(0).getReg(); 780 unsigned regX = MI->getOperand(1).getReg(); 781 int64_t Imm = MI->getOperand(2).getImm(); 782 unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm); 783 BuildMI(*BB, MI, MI->getDebugLoc(), 784 TII->get(SltOpc)).addReg(regX).addImm(Imm); 785 BuildMI(*BB, MI, MI->getDebugLoc(), 786 TII->get(Mips::MoveR3216), CC).addReg(Mips::T8); 787 MI->eraseFromParent(); // The pseudo instruction is gone now. 788 return BB; 789 790 } 791