Home | History | Annotate | Download | only in Interpreter
      1 //===-- Interpreter.h ------------------------------------------*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This header file defines the interpreter structure
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLI_INTERPRETER_H
     15 #define LLI_INTERPRETER_H
     16 
     17 #include "llvm/ExecutionEngine/ExecutionEngine.h"
     18 #include "llvm/ExecutionEngine/GenericValue.h"
     19 #include "llvm/IR/CallSite.h"
     20 #include "llvm/IR/DataLayout.h"
     21 #include "llvm/IR/Function.h"
     22 #include "llvm/IR/InstVisitor.h"
     23 #include "llvm/Support/DataTypes.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 namespace llvm {
     27 
     28 class IntrinsicLowering;
     29 struct FunctionInfo;
     30 template<typename T> class generic_gep_type_iterator;
     31 class ConstantExpr;
     32 typedef generic_gep_type_iterator<User::const_op_iterator> gep_type_iterator;
     33 
     34 
     35 // AllocaHolder - Object to track all of the blocks of memory allocated by
     36 // alloca.  When the function returns, this object is popped off the execution
     37 // stack, which causes the dtor to be run, which frees all the alloca'd memory.
     38 //
     39 class AllocaHolder {
     40   friend class AllocaHolderHandle;
     41   std::vector<void*> Allocations;
     42   unsigned RefCnt;
     43 public:
     44   AllocaHolder() : RefCnt(0) {}
     45   void add(void *mem) { Allocations.push_back(mem); }
     46   ~AllocaHolder() {
     47     for (unsigned i = 0; i < Allocations.size(); ++i)
     48       free(Allocations[i]);
     49   }
     50 };
     51 
     52 // AllocaHolderHandle gives AllocaHolder value semantics so we can stick it into
     53 // a vector...
     54 //
     55 class AllocaHolderHandle {
     56   AllocaHolder *H;
     57 public:
     58   AllocaHolderHandle() : H(new AllocaHolder()) { H->RefCnt++; }
     59   AllocaHolderHandle(const AllocaHolderHandle &AH) : H(AH.H) { H->RefCnt++; }
     60   ~AllocaHolderHandle() { if (--H->RefCnt == 0) delete H; }
     61 
     62   void add(void *mem) { H->add(mem); }
     63 };
     64 
     65 typedef std::vector<GenericValue> ValuePlaneTy;
     66 
     67 // ExecutionContext struct - This struct represents one stack frame currently
     68 // executing.
     69 //
     70 struct ExecutionContext {
     71   Function             *CurFunction;// The currently executing function
     72   BasicBlock           *CurBB;      // The currently executing BB
     73   BasicBlock::iterator  CurInst;    // The next instruction to execute
     74   std::map<Value *, GenericValue> Values; // LLVM values used in this invocation
     75   std::vector<GenericValue>  VarArgs; // Values passed through an ellipsis
     76   CallSite             Caller;     // Holds the call that called subframes.
     77                                    // NULL if main func or debugger invoked fn
     78   AllocaHolderHandle    Allocas;    // Track memory allocated by alloca
     79 };
     80 
     81 // Interpreter - This class represents the entirety of the interpreter.
     82 //
     83 class Interpreter : public ExecutionEngine, public InstVisitor<Interpreter> {
     84   GenericValue ExitValue;          // The return value of the called function
     85   DataLayout TD;
     86   IntrinsicLowering *IL;
     87 
     88   // The runtime stack of executing code.  The top of the stack is the current
     89   // function record.
     90   std::vector<ExecutionContext> ECStack;
     91 
     92   // AtExitHandlers - List of functions to call when the program exits,
     93   // registered with the atexit() library function.
     94   std::vector<Function*> AtExitHandlers;
     95 
     96 public:
     97   explicit Interpreter(Module *M);
     98   ~Interpreter();
     99 
    100   /// runAtExitHandlers - Run any functions registered by the program's calls to
    101   /// atexit(3), which we intercept and store in AtExitHandlers.
    102   ///
    103   void runAtExitHandlers();
    104 
    105   static void Register() {
    106     InterpCtor = create;
    107   }
    108 
    109   /// create - Create an interpreter ExecutionEngine. This can never fail.
    110   ///
    111   static ExecutionEngine *create(Module *M, std::string *ErrorStr = nullptr);
    112 
    113   /// run - Start execution with the specified function and arguments.
    114   ///
    115   GenericValue runFunction(Function *F,
    116                            const std::vector<GenericValue> &ArgValues) override;
    117 
    118   void *getPointerToNamedFunction(const std::string &Name,
    119                                   bool AbortOnFailure = true) override {
    120     // FIXME: not implemented.
    121     return nullptr;
    122   }
    123 
    124   /// recompileAndRelinkFunction - For the interpreter, functions are always
    125   /// up-to-date.
    126   ///
    127   void *recompileAndRelinkFunction(Function *F) override {
    128     return getPointerToFunction(F);
    129   }
    130 
    131   /// freeMachineCodeForFunction - The interpreter does not generate any code.
    132   ///
    133   void freeMachineCodeForFunction(Function *F) override { }
    134 
    135   // Methods used to execute code:
    136   // Place a call on the stack
    137   void callFunction(Function *F, const std::vector<GenericValue> &ArgVals);
    138   void run();                // Execute instructions until nothing left to do
    139 
    140   // Opcode Implementations
    141   void visitReturnInst(ReturnInst &I);
    142   void visitBranchInst(BranchInst &I);
    143   void visitSwitchInst(SwitchInst &I);
    144   void visitIndirectBrInst(IndirectBrInst &I);
    145 
    146   void visitBinaryOperator(BinaryOperator &I);
    147   void visitICmpInst(ICmpInst &I);
    148   void visitFCmpInst(FCmpInst &I);
    149   void visitAllocaInst(AllocaInst &I);
    150   void visitLoadInst(LoadInst &I);
    151   void visitStoreInst(StoreInst &I);
    152   void visitGetElementPtrInst(GetElementPtrInst &I);
    153   void visitPHINode(PHINode &PN) {
    154     llvm_unreachable("PHI nodes already handled!");
    155   }
    156   void visitTruncInst(TruncInst &I);
    157   void visitZExtInst(ZExtInst &I);
    158   void visitSExtInst(SExtInst &I);
    159   void visitFPTruncInst(FPTruncInst &I);
    160   void visitFPExtInst(FPExtInst &I);
    161   void visitUIToFPInst(UIToFPInst &I);
    162   void visitSIToFPInst(SIToFPInst &I);
    163   void visitFPToUIInst(FPToUIInst &I);
    164   void visitFPToSIInst(FPToSIInst &I);
    165   void visitPtrToIntInst(PtrToIntInst &I);
    166   void visitIntToPtrInst(IntToPtrInst &I);
    167   void visitBitCastInst(BitCastInst &I);
    168   void visitSelectInst(SelectInst &I);
    169 
    170 
    171   void visitCallSite(CallSite CS);
    172   void visitCallInst(CallInst &I) { visitCallSite (CallSite (&I)); }
    173   void visitInvokeInst(InvokeInst &I) { visitCallSite (CallSite (&I)); }
    174   void visitUnreachableInst(UnreachableInst &I);
    175 
    176   void visitShl(BinaryOperator &I);
    177   void visitLShr(BinaryOperator &I);
    178   void visitAShr(BinaryOperator &I);
    179 
    180   void visitVAArgInst(VAArgInst &I);
    181   void visitExtractElementInst(ExtractElementInst &I);
    182   void visitInsertElementInst(InsertElementInst &I);
    183   void visitShuffleVectorInst(ShuffleVectorInst &I);
    184 
    185   void visitExtractValueInst(ExtractValueInst &I);
    186   void visitInsertValueInst(InsertValueInst &I);
    187 
    188   void visitInstruction(Instruction &I) {
    189     errs() << I << "\n";
    190     llvm_unreachable("Instruction not interpretable yet!");
    191   }
    192 
    193   GenericValue callExternalFunction(Function *F,
    194                                     const std::vector<GenericValue> &ArgVals);
    195   void exitCalled(GenericValue GV);
    196 
    197   void addAtExitHandler(Function *F) {
    198     AtExitHandlers.push_back(F);
    199   }
    200 
    201   GenericValue *getFirstVarArg () {
    202     return &(ECStack.back ().VarArgs[0]);
    203   }
    204 
    205 private:  // Helper functions
    206   GenericValue executeGEPOperation(Value *Ptr, gep_type_iterator I,
    207                                    gep_type_iterator E, ExecutionContext &SF);
    208 
    209   // SwitchToNewBasicBlock - Start execution in a new basic block and run any
    210   // PHI nodes in the top of the block.  This is used for intraprocedural
    211   // control flow.
    212   //
    213   void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF);
    214 
    215   void *getPointerToFunction(Function *F) override { return (void*)F; }
    216   void *getPointerToBasicBlock(BasicBlock *BB) override { return (void*)BB; }
    217 
    218   void initializeExecutionEngine() { }
    219   void initializeExternalFunctions();
    220   GenericValue getConstantExprValue(ConstantExpr *CE, ExecutionContext &SF);
    221   GenericValue getOperandValue(Value *V, ExecutionContext &SF);
    222   GenericValue executeTruncInst(Value *SrcVal, Type *DstTy,
    223                                 ExecutionContext &SF);
    224   GenericValue executeSExtInst(Value *SrcVal, Type *DstTy,
    225                                ExecutionContext &SF);
    226   GenericValue executeZExtInst(Value *SrcVal, Type *DstTy,
    227                                ExecutionContext &SF);
    228   GenericValue executeFPTruncInst(Value *SrcVal, Type *DstTy,
    229                                   ExecutionContext &SF);
    230   GenericValue executeFPExtInst(Value *SrcVal, Type *DstTy,
    231                                 ExecutionContext &SF);
    232   GenericValue executeFPToUIInst(Value *SrcVal, Type *DstTy,
    233                                  ExecutionContext &SF);
    234   GenericValue executeFPToSIInst(Value *SrcVal, Type *DstTy,
    235                                  ExecutionContext &SF);
    236   GenericValue executeUIToFPInst(Value *SrcVal, Type *DstTy,
    237                                  ExecutionContext &SF);
    238   GenericValue executeSIToFPInst(Value *SrcVal, Type *DstTy,
    239                                  ExecutionContext &SF);
    240   GenericValue executePtrToIntInst(Value *SrcVal, Type *DstTy,
    241                                    ExecutionContext &SF);
    242   GenericValue executeIntToPtrInst(Value *SrcVal, Type *DstTy,
    243                                    ExecutionContext &SF);
    244   GenericValue executeBitCastInst(Value *SrcVal, Type *DstTy,
    245                                   ExecutionContext &SF);
    246   GenericValue executeCastOperation(Instruction::CastOps opcode, Value *SrcVal,
    247                                     Type *Ty, ExecutionContext &SF);
    248   void popStackAndReturnValueToCaller(Type *RetTy, GenericValue Result);
    249 
    250 };
    251 
    252 } // End llvm namespace
    253 
    254 #endif
    255