1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 #include "llvm/Support/MachO.h" 12 13 #include "ObjectFileMachO.h" 14 15 #include "lldb/lldb-private-log.h" 16 #include "lldb/Core/ArchSpec.h" 17 #include "lldb/Core/DataBuffer.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/FileSpecList.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/Module.h" 22 #include "lldb/Core/ModuleSpec.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/RangeMap.h" 25 #include "lldb/Core/Section.h" 26 #include "lldb/Core/StreamFile.h" 27 #include "lldb/Core/StreamString.h" 28 #include "lldb/Core/Timer.h" 29 #include "lldb/Core/UUID.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/FileSpec.h" 32 #include "lldb/Symbol/ClangNamespaceDecl.h" 33 #include "lldb/Symbol/DWARFCallFrameInfo.h" 34 #include "lldb/Symbol/ObjectFile.h" 35 #include "lldb/Target/Platform.h" 36 #include "lldb/Target/Process.h" 37 #include "lldb/Target/Target.h" 38 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 39 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 40 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 41 42 #if defined (__APPLE__) && defined (__arm__) 43 // GetLLDBSharedCacheUUID() needs to call dlsym() 44 #include <dlfcn.h> 45 #endif 46 47 #ifndef __APPLE__ 48 #include "Utility/UuidCompatibility.h" 49 #endif 50 51 using namespace lldb; 52 using namespace lldb_private; 53 using namespace llvm::MachO; 54 55 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 56 { 57 public: 58 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 59 RegisterContextDarwin_x86_64 (thread, 0) 60 { 61 SetRegisterDataFrom_LC_THREAD (data); 62 } 63 64 virtual void 65 InvalidateAllRegisters () 66 { 67 // Do nothing... registers are always valid... 68 } 69 70 void 71 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 72 { 73 lldb::offset_t offset = 0; 74 SetError (GPRRegSet, Read, -1); 75 SetError (FPURegSet, Read, -1); 76 SetError (EXCRegSet, Read, -1); 77 bool done = false; 78 79 while (!done) 80 { 81 int flavor = data.GetU32 (&offset); 82 if (flavor == 0) 83 done = true; 84 else 85 { 86 uint32_t i; 87 uint32_t count = data.GetU32 (&offset); 88 switch (flavor) 89 { 90 case GPRRegSet: 91 for (i=0; i<count; ++i) 92 (&gpr.rax)[i] = data.GetU64(&offset); 93 SetError (GPRRegSet, Read, 0); 94 done = true; 95 96 break; 97 case FPURegSet: 98 // TODO: fill in FPU regs.... 99 //SetError (FPURegSet, Read, -1); 100 done = true; 101 102 break; 103 case EXCRegSet: 104 exc.trapno = data.GetU32(&offset); 105 exc.err = data.GetU32(&offset); 106 exc.faultvaddr = data.GetU64(&offset); 107 SetError (EXCRegSet, Read, 0); 108 done = true; 109 break; 110 case 7: 111 case 8: 112 case 9: 113 // fancy flavors that encapsulate of the the above 114 // falvors... 115 break; 116 117 default: 118 done = true; 119 break; 120 } 121 } 122 } 123 } 124 protected: 125 virtual int 126 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 127 { 128 return 0; 129 } 130 131 virtual int 132 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 133 { 134 return 0; 135 } 136 137 virtual int 138 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 139 { 140 return 0; 141 } 142 143 virtual int 144 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 145 { 146 return 0; 147 } 148 149 virtual int 150 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 151 { 152 return 0; 153 } 154 155 virtual int 156 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 157 { 158 return 0; 159 } 160 }; 161 162 163 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 164 { 165 public: 166 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 167 RegisterContextDarwin_i386 (thread, 0) 168 { 169 SetRegisterDataFrom_LC_THREAD (data); 170 } 171 172 virtual void 173 InvalidateAllRegisters () 174 { 175 // Do nothing... registers are always valid... 176 } 177 178 void 179 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 180 { 181 lldb::offset_t offset = 0; 182 SetError (GPRRegSet, Read, -1); 183 SetError (FPURegSet, Read, -1); 184 SetError (EXCRegSet, Read, -1); 185 bool done = false; 186 187 while (!done) 188 { 189 int flavor = data.GetU32 (&offset); 190 if (flavor == 0) 191 done = true; 192 else 193 { 194 uint32_t i; 195 uint32_t count = data.GetU32 (&offset); 196 switch (flavor) 197 { 198 case GPRRegSet: 199 for (i=0; i<count; ++i) 200 (&gpr.eax)[i] = data.GetU32(&offset); 201 SetError (GPRRegSet, Read, 0); 202 done = true; 203 204 break; 205 case FPURegSet: 206 // TODO: fill in FPU regs.... 207 //SetError (FPURegSet, Read, -1); 208 done = true; 209 210 break; 211 case EXCRegSet: 212 exc.trapno = data.GetU32(&offset); 213 exc.err = data.GetU32(&offset); 214 exc.faultvaddr = data.GetU32(&offset); 215 SetError (EXCRegSet, Read, 0); 216 done = true; 217 break; 218 case 7: 219 case 8: 220 case 9: 221 // fancy flavors that encapsulate of the the above 222 // falvors... 223 break; 224 225 default: 226 done = true; 227 break; 228 } 229 } 230 } 231 } 232 protected: 233 virtual int 234 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 235 { 236 return 0; 237 } 238 239 virtual int 240 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 241 { 242 return 0; 243 } 244 245 virtual int 246 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 247 { 248 return 0; 249 } 250 251 virtual int 252 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 253 { 254 return 0; 255 } 256 257 virtual int 258 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 259 { 260 return 0; 261 } 262 263 virtual int 264 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 265 { 266 return 0; 267 } 268 }; 269 270 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 271 { 272 public: 273 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 274 RegisterContextDarwin_arm (thread, 0) 275 { 276 SetRegisterDataFrom_LC_THREAD (data); 277 } 278 279 virtual void 280 InvalidateAllRegisters () 281 { 282 // Do nothing... registers are always valid... 283 } 284 285 void 286 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 287 { 288 lldb::offset_t offset = 0; 289 SetError (GPRRegSet, Read, -1); 290 SetError (FPURegSet, Read, -1); 291 SetError (EXCRegSet, Read, -1); 292 bool done = false; 293 294 while (!done) 295 { 296 int flavor = data.GetU32 (&offset); 297 uint32_t count = data.GetU32 (&offset); 298 lldb::offset_t next_thread_state = offset + (count * 4); 299 switch (flavor) 300 { 301 case GPRRegSet: 302 for (uint32_t i=0; i<count; ++i) 303 { 304 gpr.r[i] = data.GetU32(&offset); 305 } 306 307 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 308 // one element past the end of the gpr.r[] array. 309 310 SetError (GPRRegSet, Read, 0); 311 offset = next_thread_state; 312 break; 313 314 case FPURegSet: 315 { 316 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 317 const int fpu_reg_buf_size = sizeof (fpu.floats); 318 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 319 { 320 offset += fpu_reg_buf_size; 321 fpu.fpscr = data.GetU32(&offset); 322 SetError (FPURegSet, Read, 0); 323 } 324 else 325 { 326 done = true; 327 } 328 } 329 offset = next_thread_state; 330 break; 331 332 case EXCRegSet: 333 if (count == 3) 334 { 335 exc.exception = data.GetU32(&offset); 336 exc.fsr = data.GetU32(&offset); 337 exc.far = data.GetU32(&offset); 338 SetError (EXCRegSet, Read, 0); 339 } 340 done = true; 341 offset = next_thread_state; 342 break; 343 344 // Unknown register set flavor, stop trying to parse. 345 default: 346 done = true; 347 } 348 } 349 } 350 protected: 351 virtual int 352 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 353 { 354 return -1; 355 } 356 357 virtual int 358 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 359 { 360 return -1; 361 } 362 363 virtual int 364 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 365 { 366 return -1; 367 } 368 369 virtual int 370 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 371 { 372 return -1; 373 } 374 375 virtual int 376 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 377 { 378 return 0; 379 } 380 381 virtual int 382 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 383 { 384 return 0; 385 } 386 387 virtual int 388 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 389 { 390 return 0; 391 } 392 393 virtual int 394 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 395 { 396 return -1; 397 } 398 }; 399 400 static uint32_t 401 MachHeaderSizeFromMagic(uint32_t magic) 402 { 403 switch (magic) 404 { 405 case HeaderMagic32: 406 case HeaderMagic32Swapped: 407 return sizeof(struct mach_header); 408 409 case HeaderMagic64: 410 case HeaderMagic64Swapped: 411 return sizeof(struct mach_header_64); 412 break; 413 414 default: 415 break; 416 } 417 return 0; 418 } 419 420 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 421 422 void 423 ObjectFileMachO::Initialize() 424 { 425 PluginManager::RegisterPlugin (GetPluginNameStatic(), 426 GetPluginDescriptionStatic(), 427 CreateInstance, 428 CreateMemoryInstance, 429 GetModuleSpecifications); 430 } 431 432 void 433 ObjectFileMachO::Terminate() 434 { 435 PluginManager::UnregisterPlugin (CreateInstance); 436 } 437 438 439 lldb_private::ConstString 440 ObjectFileMachO::GetPluginNameStatic() 441 { 442 static ConstString g_name("mach-o"); 443 return g_name; 444 } 445 446 const char * 447 ObjectFileMachO::GetPluginDescriptionStatic() 448 { 449 return "Mach-o object file reader (32 and 64 bit)"; 450 } 451 452 ObjectFile * 453 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 454 DataBufferSP& data_sp, 455 lldb::offset_t data_offset, 456 const FileSpec* file, 457 lldb::offset_t file_offset, 458 lldb::offset_t length) 459 { 460 if (!data_sp) 461 { 462 data_sp = file->MemoryMapFileContents(file_offset, length); 463 data_offset = 0; 464 } 465 466 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 467 { 468 // Update the data to contain the entire file if it doesn't already 469 if (data_sp->GetByteSize() < length) 470 { 471 data_sp = file->MemoryMapFileContents(file_offset, length); 472 data_offset = 0; 473 } 474 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 475 if (objfile_ap.get() && objfile_ap->ParseHeader()) 476 return objfile_ap.release(); 477 } 478 return NULL; 479 } 480 481 ObjectFile * 482 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 483 DataBufferSP& data_sp, 484 const ProcessSP &process_sp, 485 lldb::addr_t header_addr) 486 { 487 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 488 { 489 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 490 if (objfile_ap.get() && objfile_ap->ParseHeader()) 491 return objfile_ap.release(); 492 } 493 return NULL; 494 } 495 496 size_t 497 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 498 lldb::DataBufferSP& data_sp, 499 lldb::offset_t data_offset, 500 lldb::offset_t file_offset, 501 lldb::offset_t length, 502 lldb_private::ModuleSpecList &specs) 503 { 504 const size_t initial_count = specs.GetSize(); 505 506 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 507 { 508 DataExtractor data; 509 data.SetData(data_sp); 510 llvm::MachO::mach_header header; 511 if (ParseHeader (data, &data_offset, header)) 512 { 513 if (header.sizeofcmds >= data_sp->GetByteSize()) 514 { 515 data_sp = file.ReadFileContents(file_offset, header.sizeofcmds); 516 data.SetData(data_sp); 517 data_offset = MachHeaderSizeFromMagic(header.magic); 518 } 519 if (data_sp) 520 { 521 ModuleSpec spec; 522 spec.GetFileSpec() = file; 523 spec.GetArchitecture().SetArchitecture(eArchTypeMachO, 524 header.cputype, 525 header.cpusubtype); 526 if (spec.GetArchitecture().IsValid()) 527 { 528 GetUUID (header, data, data_offset, spec.GetUUID()); 529 specs.Append(spec); 530 } 531 } 532 } 533 } 534 return specs.GetSize() - initial_count; 535 } 536 537 538 539 const ConstString & 540 ObjectFileMachO::GetSegmentNameTEXT() 541 { 542 static ConstString g_segment_name_TEXT ("__TEXT"); 543 return g_segment_name_TEXT; 544 } 545 546 const ConstString & 547 ObjectFileMachO::GetSegmentNameDATA() 548 { 549 static ConstString g_segment_name_DATA ("__DATA"); 550 return g_segment_name_DATA; 551 } 552 553 const ConstString & 554 ObjectFileMachO::GetSegmentNameOBJC() 555 { 556 static ConstString g_segment_name_OBJC ("__OBJC"); 557 return g_segment_name_OBJC; 558 } 559 560 const ConstString & 561 ObjectFileMachO::GetSegmentNameLINKEDIT() 562 { 563 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 564 return g_section_name_LINKEDIT; 565 } 566 567 const ConstString & 568 ObjectFileMachO::GetSectionNameEHFrame() 569 { 570 static ConstString g_section_name_eh_frame ("__eh_frame"); 571 return g_section_name_eh_frame; 572 } 573 574 bool 575 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 576 lldb::addr_t data_offset, 577 lldb::addr_t data_length) 578 { 579 DataExtractor data; 580 data.SetData (data_sp, data_offset, data_length); 581 lldb::offset_t offset = 0; 582 uint32_t magic = data.GetU32(&offset); 583 return MachHeaderSizeFromMagic(magic) != 0; 584 } 585 586 587 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 588 DataBufferSP& data_sp, 589 lldb::offset_t data_offset, 590 const FileSpec* file, 591 lldb::offset_t file_offset, 592 lldb::offset_t length) : 593 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 594 m_mach_segments(), 595 m_mach_sections(), 596 m_entry_point_address(), 597 m_thread_context_offsets(), 598 m_thread_context_offsets_valid(false) 599 { 600 ::memset (&m_header, 0, sizeof(m_header)); 601 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 602 } 603 604 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 605 lldb::DataBufferSP& header_data_sp, 606 const lldb::ProcessSP &process_sp, 607 lldb::addr_t header_addr) : 608 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 609 m_mach_segments(), 610 m_mach_sections(), 611 m_entry_point_address(), 612 m_thread_context_offsets(), 613 m_thread_context_offsets_valid(false) 614 { 615 ::memset (&m_header, 0, sizeof(m_header)); 616 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 617 } 618 619 ObjectFileMachO::~ObjectFileMachO() 620 { 621 } 622 623 bool 624 ObjectFileMachO::ParseHeader (DataExtractor &data, 625 lldb::offset_t *data_offset_ptr, 626 llvm::MachO::mach_header &header) 627 { 628 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 629 // Leave magic in the original byte order 630 header.magic = data.GetU32(data_offset_ptr); 631 bool can_parse = false; 632 bool is_64_bit = false; 633 switch (header.magic) 634 { 635 case HeaderMagic32: 636 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 637 data.SetAddressByteSize(4); 638 can_parse = true; 639 break; 640 641 case HeaderMagic64: 642 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 643 data.SetAddressByteSize(8); 644 can_parse = true; 645 is_64_bit = true; 646 break; 647 648 case HeaderMagic32Swapped: 649 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 650 data.SetAddressByteSize(4); 651 can_parse = true; 652 break; 653 654 case HeaderMagic64Swapped: 655 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 656 data.SetAddressByteSize(8); 657 is_64_bit = true; 658 can_parse = true; 659 break; 660 661 default: 662 break; 663 } 664 665 if (can_parse) 666 { 667 data.GetU32(data_offset_ptr, &header.cputype, 6); 668 if (is_64_bit) 669 *data_offset_ptr += 4; 670 return true; 671 } 672 else 673 { 674 memset(&header, 0, sizeof(header)); 675 } 676 return false; 677 } 678 679 bool 680 ObjectFileMachO::ParseHeader () 681 { 682 ModuleSP module_sp(GetModule()); 683 if (module_sp) 684 { 685 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 686 bool can_parse = false; 687 lldb::offset_t offset = 0; 688 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 689 // Leave magic in the original byte order 690 m_header.magic = m_data.GetU32(&offset); 691 switch (m_header.magic) 692 { 693 case HeaderMagic32: 694 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 695 m_data.SetAddressByteSize(4); 696 can_parse = true; 697 break; 698 699 case HeaderMagic64: 700 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 701 m_data.SetAddressByteSize(8); 702 can_parse = true; 703 break; 704 705 case HeaderMagic32Swapped: 706 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 707 m_data.SetAddressByteSize(4); 708 can_parse = true; 709 break; 710 711 case HeaderMagic64Swapped: 712 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 713 m_data.SetAddressByteSize(8); 714 can_parse = true; 715 break; 716 717 default: 718 break; 719 } 720 721 if (can_parse) 722 { 723 m_data.GetU32(&offset, &m_header.cputype, 6); 724 725 ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 726 727 // Check if the module has a required architecture 728 const ArchSpec &module_arch = module_sp->GetArchitecture(); 729 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 730 return false; 731 732 if (SetModulesArchitecture (mach_arch)) 733 { 734 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 735 if (m_data.GetByteSize() < header_and_lc_size) 736 { 737 DataBufferSP data_sp; 738 ProcessSP process_sp (m_process_wp.lock()); 739 if (process_sp) 740 { 741 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 742 } 743 else 744 { 745 // Read in all only the load command data from the file on disk 746 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 747 if (data_sp->GetByteSize() != header_and_lc_size) 748 return false; 749 } 750 if (data_sp) 751 m_data.SetData (data_sp); 752 } 753 } 754 return true; 755 } 756 else 757 { 758 memset(&m_header, 0, sizeof(struct mach_header)); 759 } 760 } 761 return false; 762 } 763 764 765 ByteOrder 766 ObjectFileMachO::GetByteOrder () const 767 { 768 return m_data.GetByteOrder (); 769 } 770 771 bool 772 ObjectFileMachO::IsExecutable() const 773 { 774 return m_header.filetype == HeaderFileTypeExecutable; 775 } 776 777 uint32_t 778 ObjectFileMachO::GetAddressByteSize () const 779 { 780 return m_data.GetAddressByteSize (); 781 } 782 783 AddressClass 784 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 785 { 786 Symtab *symtab = GetSymtab(); 787 if (symtab) 788 { 789 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 790 if (symbol) 791 { 792 if (symbol->ValueIsAddress()) 793 { 794 SectionSP section_sp (symbol->GetAddress().GetSection()); 795 if (section_sp) 796 { 797 const SectionType section_type = section_sp->GetType(); 798 switch (section_type) 799 { 800 case eSectionTypeInvalid: return eAddressClassUnknown; 801 case eSectionTypeCode: 802 if (m_header.cputype == llvm::MachO::CPUTypeARM) 803 { 804 // For ARM we have a bit in the n_desc field of the symbol 805 // that tells us ARM/Thumb which is bit 0x0008. 806 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 807 return eAddressClassCodeAlternateISA; 808 } 809 return eAddressClassCode; 810 811 case eSectionTypeContainer: return eAddressClassUnknown; 812 case eSectionTypeData: 813 case eSectionTypeDataCString: 814 case eSectionTypeDataCStringPointers: 815 case eSectionTypeDataSymbolAddress: 816 case eSectionTypeData4: 817 case eSectionTypeData8: 818 case eSectionTypeData16: 819 case eSectionTypeDataPointers: 820 case eSectionTypeZeroFill: 821 case eSectionTypeDataObjCMessageRefs: 822 case eSectionTypeDataObjCCFStrings: 823 return eAddressClassData; 824 case eSectionTypeDebug: 825 case eSectionTypeDWARFDebugAbbrev: 826 case eSectionTypeDWARFDebugAranges: 827 case eSectionTypeDWARFDebugFrame: 828 case eSectionTypeDWARFDebugInfo: 829 case eSectionTypeDWARFDebugLine: 830 case eSectionTypeDWARFDebugLoc: 831 case eSectionTypeDWARFDebugMacInfo: 832 case eSectionTypeDWARFDebugPubNames: 833 case eSectionTypeDWARFDebugPubTypes: 834 case eSectionTypeDWARFDebugRanges: 835 case eSectionTypeDWARFDebugStr: 836 case eSectionTypeDWARFAppleNames: 837 case eSectionTypeDWARFAppleTypes: 838 case eSectionTypeDWARFAppleNamespaces: 839 case eSectionTypeDWARFAppleObjC: 840 return eAddressClassDebug; 841 case eSectionTypeEHFrame: return eAddressClassRuntime; 842 case eSectionTypeELFSymbolTable: 843 case eSectionTypeELFDynamicSymbols: 844 case eSectionTypeELFRelocationEntries: 845 case eSectionTypeELFDynamicLinkInfo: 846 case eSectionTypeOther: return eAddressClassUnknown; 847 } 848 } 849 } 850 851 const SymbolType symbol_type = symbol->GetType(); 852 switch (symbol_type) 853 { 854 case eSymbolTypeAny: return eAddressClassUnknown; 855 case eSymbolTypeAbsolute: return eAddressClassUnknown; 856 857 case eSymbolTypeCode: 858 case eSymbolTypeTrampoline: 859 case eSymbolTypeResolver: 860 if (m_header.cputype == llvm::MachO::CPUTypeARM) 861 { 862 // For ARM we have a bit in the n_desc field of the symbol 863 // that tells us ARM/Thumb which is bit 0x0008. 864 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 865 return eAddressClassCodeAlternateISA; 866 } 867 return eAddressClassCode; 868 869 case eSymbolTypeData: return eAddressClassData; 870 case eSymbolTypeRuntime: return eAddressClassRuntime; 871 case eSymbolTypeException: return eAddressClassRuntime; 872 case eSymbolTypeSourceFile: return eAddressClassDebug; 873 case eSymbolTypeHeaderFile: return eAddressClassDebug; 874 case eSymbolTypeObjectFile: return eAddressClassDebug; 875 case eSymbolTypeCommonBlock: return eAddressClassDebug; 876 case eSymbolTypeBlock: return eAddressClassDebug; 877 case eSymbolTypeLocal: return eAddressClassData; 878 case eSymbolTypeParam: return eAddressClassData; 879 case eSymbolTypeVariable: return eAddressClassData; 880 case eSymbolTypeVariableType: return eAddressClassDebug; 881 case eSymbolTypeLineEntry: return eAddressClassDebug; 882 case eSymbolTypeLineHeader: return eAddressClassDebug; 883 case eSymbolTypeScopeBegin: return eAddressClassDebug; 884 case eSymbolTypeScopeEnd: return eAddressClassDebug; 885 case eSymbolTypeAdditional: return eAddressClassUnknown; 886 case eSymbolTypeCompiler: return eAddressClassDebug; 887 case eSymbolTypeInstrumentation:return eAddressClassDebug; 888 case eSymbolTypeUndefined: return eAddressClassUnknown; 889 case eSymbolTypeObjCClass: return eAddressClassRuntime; 890 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 891 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 892 } 893 } 894 } 895 return eAddressClassUnknown; 896 } 897 898 Symtab * 899 ObjectFileMachO::GetSymtab() 900 { 901 ModuleSP module_sp(GetModule()); 902 if (module_sp) 903 { 904 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 905 if (m_symtab_ap.get() == NULL) 906 { 907 m_symtab_ap.reset(new Symtab(this)); 908 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 909 ParseSymtab (); 910 m_symtab_ap->Finalize (); 911 } 912 } 913 return m_symtab_ap.get(); 914 } 915 916 bool 917 ObjectFileMachO::IsStripped () 918 { 919 if (m_dysymtab.cmd == 0) 920 { 921 ModuleSP module_sp(GetModule()); 922 if (module_sp) 923 { 924 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 925 for (uint32_t i=0; i<m_header.ncmds; ++i) 926 { 927 const lldb::offset_t load_cmd_offset = offset; 928 929 load_command lc; 930 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 931 break; 932 if (lc.cmd == LoadCommandDynamicSymtabInfo) 933 { 934 m_dysymtab.cmd = lc.cmd; 935 m_dysymtab.cmdsize = lc.cmdsize; 936 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 937 { 938 // Clear m_dysymtab if we were unable to read all items from the load command 939 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 940 } 941 } 942 offset = load_cmd_offset + lc.cmdsize; 943 } 944 } 945 } 946 if (m_dysymtab.cmd) 947 return m_dysymtab.nlocalsym == 0; 948 return false; 949 } 950 951 void 952 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 953 { 954 if (!m_sections_ap.get()) 955 { 956 m_sections_ap.reset(new SectionList()); 957 958 const bool is_dsym = (m_header.filetype == HeaderFileTypeDSYM); 959 lldb::user_id_t segID = 0; 960 lldb::user_id_t sectID = 0; 961 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 962 uint32_t i; 963 const bool is_core = GetType() == eTypeCoreFile; 964 //bool dump_sections = false; 965 ModuleSP module_sp (GetModule()); 966 // First look up any LC_ENCRYPTION_INFO load commands 967 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 968 EncryptedFileRanges encrypted_file_ranges; 969 encryption_info_command encryption_cmd; 970 for (i=0; i<m_header.ncmds; ++i) 971 { 972 const lldb::offset_t load_cmd_offset = offset; 973 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 974 break; 975 976 if (encryption_cmd.cmd == LoadCommandEncryptionInfo) 977 { 978 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 979 { 980 if (encryption_cmd.cryptid != 0) 981 { 982 EncryptedFileRanges::Entry entry; 983 entry.SetRangeBase(encryption_cmd.cryptoff); 984 entry.SetByteSize(encryption_cmd.cryptsize); 985 encrypted_file_ranges.Append(entry); 986 } 987 } 988 } 989 offset = load_cmd_offset + encryption_cmd.cmdsize; 990 } 991 992 offset = MachHeaderSizeFromMagic(m_header.magic); 993 994 struct segment_command_64 load_cmd; 995 for (i=0; i<m_header.ncmds; ++i) 996 { 997 const lldb::offset_t load_cmd_offset = offset; 998 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 999 break; 1000 1001 if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64) 1002 { 1003 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1004 { 1005 bool add_section = true; 1006 bool add_to_unified = true; 1007 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1008 1009 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1010 if (is_dsym && unified_section_sp) 1011 { 1012 if (const_segname == GetSegmentNameLINKEDIT()) 1013 { 1014 // We need to keep the __LINKEDIT segment private to this object file only 1015 add_to_unified = false; 1016 } 1017 else 1018 { 1019 // This is the dSYM file and this section has already been created by 1020 // the object file, no need to create it. 1021 add_section = false; 1022 } 1023 } 1024 load_cmd.vmaddr = m_data.GetAddress(&offset); 1025 load_cmd.vmsize = m_data.GetAddress(&offset); 1026 load_cmd.fileoff = m_data.GetAddress(&offset); 1027 load_cmd.filesize = m_data.GetAddress(&offset); 1028 if (m_length != 0 && load_cmd.filesize != 0) 1029 { 1030 if (load_cmd.fileoff > m_length) 1031 { 1032 // We have a load command that says it extends past the end of hte file. This is likely 1033 // a corrupt file. We don't have any way to return an error condition here (this method 1034 // was likely invokved from something like ObjectFile::GetSectionList()) -- all we can do 1035 // is null out the SectionList vector and if a process has been set up, dump a message 1036 // to stdout. The most common case here is core file debugging with a truncated file. 1037 const char *lc_segment_name = load_cmd.cmd == LoadCommandSegment64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1038 GetModule()->ReportError("is a corrupt mach-o file: load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 ")", 1039 i, 1040 lc_segment_name, 1041 load_cmd.fileoff, 1042 m_length); 1043 1044 load_cmd.fileoff = 0; 1045 load_cmd.filesize = 0; 1046 } 1047 1048 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1049 { 1050 // We have a load command that says it extends past the end of hte file. This is likely 1051 // a corrupt file. We don't have any way to return an error condition here (this method 1052 // was likely invokved from something like ObjectFile::GetSectionList()) -- all we can do 1053 // is null out the SectionList vector and if a process has been set up, dump a message 1054 // to stdout. The most common case here is core file debugging with a truncated file. 1055 const char *lc_segment_name = load_cmd.cmd == LoadCommandSegment64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1056 GetModule()->ReportError("is a corrupt mach-o file: load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated", 1057 i, 1058 lc_segment_name, 1059 load_cmd.fileoff + load_cmd.filesize, 1060 m_length); 1061 1062 // Tuncase the length 1063 load_cmd.filesize = m_length - load_cmd.fileoff; 1064 } 1065 } 1066 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1067 { 1068 1069 const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0; 1070 1071 // Keep a list of mach segments around in case we need to 1072 // get at data that isn't stored in the abstracted Sections. 1073 m_mach_segments.push_back (load_cmd); 1074 1075 // Use a segment ID of the segment index shifted left by 8 so they 1076 // never conflict with any of the sections. 1077 SectionSP segment_sp; 1078 if (add_section && (const_segname || is_core)) 1079 { 1080 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1081 this, // Object file to which this sections belongs 1082 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1083 const_segname, // Name of this section 1084 eSectionTypeContainer, // This section is a container of other sections. 1085 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1086 load_cmd.vmsize, // VM size in bytes of this section 1087 load_cmd.fileoff, // Offset to the data for this section in the file 1088 load_cmd.filesize, // Size in bytes of this section as found in the the file 1089 load_cmd.flags)); // Flags for this section 1090 1091 segment_sp->SetIsEncrypted (segment_is_encrypted); 1092 m_sections_ap->AddSection(segment_sp); 1093 if (add_to_unified) 1094 unified_section_list.AddSection(segment_sp); 1095 } 1096 else if (unified_section_sp) 1097 { 1098 m_sections_ap->AddSection(unified_section_sp); 1099 } 1100 1101 struct section_64 sect64; 1102 ::memset (§64, 0, sizeof(sect64)); 1103 // Push a section into our mach sections for the section at 1104 // index zero (NListSectionNoSection) if we don't have any 1105 // mach sections yet... 1106 if (m_mach_sections.empty()) 1107 m_mach_sections.push_back(sect64); 1108 uint32_t segment_sect_idx; 1109 const lldb::user_id_t first_segment_sectID = sectID + 1; 1110 1111 1112 const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8; 1113 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1114 { 1115 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1116 break; 1117 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1118 break; 1119 sect64.addr = m_data.GetAddress(&offset); 1120 sect64.size = m_data.GetAddress(&offset); 1121 1122 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1123 break; 1124 1125 // Keep a list of mach sections around in case we need to 1126 // get at data that isn't stored in the abstracted Sections. 1127 m_mach_sections.push_back (sect64); 1128 1129 if (add_section) 1130 { 1131 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1132 if (!const_segname) 1133 { 1134 // We have a segment with no name so we need to conjure up 1135 // segments that correspond to the section's segname if there 1136 // isn't already such a section. If there is such a section, 1137 // we resize the section so that it spans all sections. 1138 // We also mark these sections as fake so address matches don't 1139 // hit if they land in the gaps between the child sections. 1140 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1141 segment_sp = unified_section_list.FindSectionByName (const_segname); 1142 if (segment_sp.get()) 1143 { 1144 Section *segment = segment_sp.get(); 1145 // Grow the section size as needed. 1146 const lldb::addr_t sect64_min_addr = sect64.addr; 1147 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1148 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1149 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1150 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1151 if (sect64_min_addr >= curr_seg_min_addr) 1152 { 1153 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1154 // Only grow the section size if needed 1155 if (new_seg_byte_size > curr_seg_byte_size) 1156 segment->SetByteSize (new_seg_byte_size); 1157 } 1158 else 1159 { 1160 // We need to change the base address of the segment and 1161 // adjust the child section offsets for all existing children. 1162 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1163 segment->Slide(slide_amount, false); 1164 segment->GetChildren().Slide(-slide_amount, false); 1165 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1166 } 1167 1168 // Grow the section size as needed. 1169 if (sect64.offset) 1170 { 1171 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1172 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1173 1174 const lldb::addr_t section_min_file_offset = sect64.offset; 1175 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1176 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1177 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1178 segment->SetFileOffset (new_file_offset); 1179 segment->SetFileSize (new_file_size); 1180 } 1181 } 1182 else 1183 { 1184 // Create a fake section for the section's named segment 1185 segment_sp.reset(new Section (segment_sp, // Parent section 1186 module_sp, // Module to which this section belongs 1187 this, // Object file to which this section belongs 1188 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1189 const_segname, // Name of this section 1190 eSectionTypeContainer, // This section is a container of other sections. 1191 sect64.addr, // File VM address == addresses as they are found in the object file 1192 sect64.size, // VM size in bytes of this section 1193 sect64.offset, // Offset to the data for this section in the file 1194 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file 1195 load_cmd.flags)); // Flags for this section 1196 segment_sp->SetIsFake(true); 1197 1198 m_sections_ap->AddSection(segment_sp); 1199 if (add_to_unified) 1200 unified_section_list.AddSection(segment_sp); 1201 segment_sp->SetIsEncrypted (segment_is_encrypted); 1202 } 1203 } 1204 assert (segment_sp.get()); 1205 1206 uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType; 1207 static ConstString g_sect_name_objc_data ("__objc_data"); 1208 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1209 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1210 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1211 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1212 static ConstString g_sect_name_objc_const ("__objc_const"); 1213 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1214 static ConstString g_sect_name_cfstring ("__cfstring"); 1215 1216 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1217 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1218 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1219 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1220 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1221 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1222 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1223 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1224 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1225 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1226 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1227 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1228 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1229 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1230 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1231 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1232 static ConstString g_sect_name_DATA ("__DATA"); 1233 static ConstString g_sect_name_TEXT ("__TEXT"); 1234 1235 SectionType sect_type = eSectionTypeOther; 1236 1237 if (section_name == g_sect_name_dwarf_debug_abbrev) 1238 sect_type = eSectionTypeDWARFDebugAbbrev; 1239 else if (section_name == g_sect_name_dwarf_debug_aranges) 1240 sect_type = eSectionTypeDWARFDebugAranges; 1241 else if (section_name == g_sect_name_dwarf_debug_frame) 1242 sect_type = eSectionTypeDWARFDebugFrame; 1243 else if (section_name == g_sect_name_dwarf_debug_info) 1244 sect_type = eSectionTypeDWARFDebugInfo; 1245 else if (section_name == g_sect_name_dwarf_debug_line) 1246 sect_type = eSectionTypeDWARFDebugLine; 1247 else if (section_name == g_sect_name_dwarf_debug_loc) 1248 sect_type = eSectionTypeDWARFDebugLoc; 1249 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1250 sect_type = eSectionTypeDWARFDebugMacInfo; 1251 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1252 sect_type = eSectionTypeDWARFDebugPubNames; 1253 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1254 sect_type = eSectionTypeDWARFDebugPubTypes; 1255 else if (section_name == g_sect_name_dwarf_debug_ranges) 1256 sect_type = eSectionTypeDWARFDebugRanges; 1257 else if (section_name == g_sect_name_dwarf_debug_str) 1258 sect_type = eSectionTypeDWARFDebugStr; 1259 else if (section_name == g_sect_name_dwarf_apple_names) 1260 sect_type = eSectionTypeDWARFAppleNames; 1261 else if (section_name == g_sect_name_dwarf_apple_types) 1262 sect_type = eSectionTypeDWARFAppleTypes; 1263 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1264 sect_type = eSectionTypeDWARFAppleNamespaces; 1265 else if (section_name == g_sect_name_dwarf_apple_objc) 1266 sect_type = eSectionTypeDWARFAppleObjC; 1267 else if (section_name == g_sect_name_objc_selrefs) 1268 sect_type = eSectionTypeDataCStringPointers; 1269 else if (section_name == g_sect_name_objc_msgrefs) 1270 sect_type = eSectionTypeDataObjCMessageRefs; 1271 else if (section_name == g_sect_name_eh_frame) 1272 sect_type = eSectionTypeEHFrame; 1273 else if (section_name == g_sect_name_cfstring) 1274 sect_type = eSectionTypeDataObjCCFStrings; 1275 else if (section_name == g_sect_name_objc_data || 1276 section_name == g_sect_name_objc_classrefs || 1277 section_name == g_sect_name_objc_superrefs || 1278 section_name == g_sect_name_objc_const || 1279 section_name == g_sect_name_objc_classlist) 1280 { 1281 sect_type = eSectionTypeDataPointers; 1282 } 1283 1284 if (sect_type == eSectionTypeOther) 1285 { 1286 switch (mach_sect_type) 1287 { 1288 // TODO: categorize sections by other flags for regular sections 1289 case SectionTypeRegular: 1290 if (segment_sp->GetName() == g_sect_name_TEXT) 1291 sect_type = eSectionTypeCode; 1292 else if (segment_sp->GetName() == g_sect_name_DATA) 1293 sect_type = eSectionTypeData; 1294 else 1295 sect_type = eSectionTypeOther; 1296 break; 1297 case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break; 1298 case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1299 case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1300 case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1301 case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1302 case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1303 case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1304 case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1305 case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1306 case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1307 case SectionTypeCoalesced: sect_type = eSectionTypeOther; break; 1308 case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break; 1309 case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1310 case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1311 case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break; 1312 case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break; 1313 default: break; 1314 } 1315 } 1316 1317 SectionSP section_sp(new Section (segment_sp, 1318 module_sp, 1319 this, 1320 ++sectID, 1321 section_name, 1322 sect_type, 1323 sect64.addr - segment_sp->GetFileAddress(), 1324 sect64.size, 1325 sect64.offset, 1326 sect64.offset == 0 ? 0 : sect64.size, 1327 sect64.flags)); 1328 // Set the section to be encrypted to match the segment 1329 1330 bool section_is_encrypted = false; 1331 if (!segment_is_encrypted && load_cmd.filesize != 0) 1332 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1333 1334 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1335 segment_sp->GetChildren().AddSection(section_sp); 1336 1337 if (segment_sp->IsFake()) 1338 { 1339 segment_sp.reset(); 1340 const_segname.Clear(); 1341 } 1342 } 1343 } 1344 if (segment_sp && is_dsym) 1345 { 1346 if (first_segment_sectID <= sectID) 1347 { 1348 lldb::user_id_t sect_uid; 1349 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1350 { 1351 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1352 SectionSP next_section_sp; 1353 if (sect_uid + 1 <= sectID) 1354 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1355 1356 if (curr_section_sp.get()) 1357 { 1358 if (curr_section_sp->GetByteSize() == 0) 1359 { 1360 if (next_section_sp.get() != NULL) 1361 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1362 else 1363 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1364 } 1365 } 1366 } 1367 } 1368 } 1369 } 1370 } 1371 } 1372 else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo) 1373 { 1374 m_dysymtab.cmd = load_cmd.cmd; 1375 m_dysymtab.cmdsize = load_cmd.cmdsize; 1376 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1377 } 1378 1379 offset = load_cmd_offset + load_cmd.cmdsize; 1380 } 1381 1382 // StreamFile s(stdout, false); // REMOVE THIS LINE 1383 // s.Printf ("Sections for %s:\n", m_file.GetPath().c_str());// REMOVE THIS LINE 1384 // m_sections_ap->Dump(&s, NULL, true, UINT32_MAX);// REMOVE THIS LINE 1385 } 1386 } 1387 1388 class MachSymtabSectionInfo 1389 { 1390 public: 1391 1392 MachSymtabSectionInfo (SectionList *section_list) : 1393 m_section_list (section_list), 1394 m_section_infos() 1395 { 1396 // Get the number of sections down to a depth of 1 to include 1397 // all segments and their sections, but no other sections that 1398 // may be added for debug map or 1399 m_section_infos.resize(section_list->GetNumSections(1)); 1400 } 1401 1402 1403 SectionSP 1404 GetSection (uint8_t n_sect, addr_t file_addr) 1405 { 1406 if (n_sect == 0) 1407 return SectionSP(); 1408 if (n_sect < m_section_infos.size()) 1409 { 1410 if (!m_section_infos[n_sect].section_sp) 1411 { 1412 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1413 m_section_infos[n_sect].section_sp = section_sp; 1414 if (section_sp) 1415 { 1416 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1417 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1418 } 1419 else 1420 { 1421 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1422 } 1423 } 1424 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1425 { 1426 // Symbol is in section. 1427 return m_section_infos[n_sect].section_sp; 1428 } 1429 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1430 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1431 { 1432 // Symbol is in section with zero size, but has the same start 1433 // address as the section. This can happen with linker symbols 1434 // (symbols that start with the letter 'l' or 'L'. 1435 return m_section_infos[n_sect].section_sp; 1436 } 1437 } 1438 return m_section_list->FindSectionContainingFileAddress(file_addr); 1439 } 1440 1441 protected: 1442 struct SectionInfo 1443 { 1444 SectionInfo () : 1445 vm_range(), 1446 section_sp () 1447 { 1448 } 1449 1450 VMRange vm_range; 1451 SectionSP section_sp; 1452 }; 1453 SectionList *m_section_list; 1454 std::vector<SectionInfo> m_section_infos; 1455 }; 1456 1457 size_t 1458 ObjectFileMachO::ParseSymtab () 1459 { 1460 Timer scoped_timer(__PRETTY_FUNCTION__, 1461 "ObjectFileMachO::ParseSymtab () module = %s", 1462 m_file.GetFilename().AsCString("")); 1463 ModuleSP module_sp (GetModule()); 1464 if (!module_sp) 1465 return 0; 1466 1467 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 1468 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 1469 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 1470 FunctionStarts function_starts; 1471 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1472 uint32_t i; 1473 1474 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 1475 1476 for (i=0; i<m_header.ncmds; ++i) 1477 { 1478 const lldb::offset_t cmd_offset = offset; 1479 // Read in the load command and load command size 1480 struct load_command lc; 1481 if (m_data.GetU32(&offset, &lc, 2) == NULL) 1482 break; 1483 // Watch for the symbol table load command 1484 switch (lc.cmd) 1485 { 1486 case LoadCommandSymtab: 1487 symtab_load_command.cmd = lc.cmd; 1488 symtab_load_command.cmdsize = lc.cmdsize; 1489 // Read in the rest of the symtab load command 1490 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 1491 return 0; 1492 if (symtab_load_command.symoff == 0) 1493 { 1494 if (log) 1495 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 1496 return 0; 1497 } 1498 1499 if (symtab_load_command.stroff == 0) 1500 { 1501 if (log) 1502 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 1503 return 0; 1504 } 1505 1506 if (symtab_load_command.nsyms == 0) 1507 { 1508 if (log) 1509 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 1510 return 0; 1511 } 1512 1513 if (symtab_load_command.strsize == 0) 1514 { 1515 if (log) 1516 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 1517 return 0; 1518 } 1519 break; 1520 1521 case LoadCommandFunctionStarts: 1522 function_starts_load_command.cmd = lc.cmd; 1523 function_starts_load_command.cmdsize = lc.cmdsize; 1524 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 1525 bzero (&function_starts_load_command, sizeof(function_starts_load_command)); 1526 break; 1527 1528 default: 1529 break; 1530 } 1531 offset = cmd_offset + lc.cmdsize; 1532 } 1533 1534 if (symtab_load_command.cmd) 1535 { 1536 Symtab *symtab = m_symtab_ap.get(); 1537 SectionList *section_list = GetSectionList(); 1538 if (section_list == NULL) 1539 return 0; 1540 1541 ProcessSP process_sp (m_process_wp.lock()); 1542 Process *process = process_sp.get(); 1543 1544 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 1545 const ByteOrder byte_order = m_data.GetByteOrder(); 1546 bool bit_width_32 = addr_byte_size == 4; 1547 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 1548 1549 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 1550 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 1551 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 1552 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 1553 1554 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 1555 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 1556 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 1557 if (process) 1558 { 1559 Target &target = process->GetTarget(); 1560 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 1561 // Reading mach file from memory in a process or core file... 1562 1563 if (linkedit_section_sp) 1564 { 1565 const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 1566 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 1567 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 1568 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 1569 1570 bool data_was_read = false; 1571 1572 #if defined (__APPLE__) && defined (__arm__) 1573 if (m_header.flags & 0x80000000u) 1574 { 1575 // This mach-o memory file is in the dyld shared cache. If this 1576 // program is not remote and this is iOS, then this process will 1577 // share the same shared cache as the process we are debugging and 1578 // we can read the entire __LINKEDIT from the address space in this 1579 // process. This is a needed optimization that is used for local iOS 1580 // debugging only since all shared libraries in the shared cache do 1581 // not have corresponding files that exist in the file system of the 1582 // device. They have been combined into a single file. This means we 1583 // always have to load these files from memory. All of the symbol and 1584 // string tables from all of the __LINKEDIT sections from the shared 1585 // libraries in the shared cache have been merged into a single large 1586 // symbol and string table. Reading all of this symbol and string table 1587 // data across can slow down debug launch times, so we optimize this by 1588 // reading the memory for the __LINKEDIT section from this process. 1589 1590 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 1591 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 1592 bool use_lldb_cache = true; 1593 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 1594 { 1595 use_lldb_cache = false; 1596 ModuleSP module_sp (GetModule()); 1597 if (module_sp) 1598 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 1599 1600 } 1601 1602 PlatformSP platform_sp (target.GetPlatform()); 1603 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 1604 { 1605 data_was_read = true; 1606 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 1607 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 1608 if (function_starts_load_command.cmd) 1609 { 1610 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 1611 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 1612 } 1613 } 1614 } 1615 #endif 1616 1617 if (!data_was_read) 1618 { 1619 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 1620 if (nlist_data_sp) 1621 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 1622 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 1623 //if (strtab_data_sp) 1624 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 1625 if (m_dysymtab.nindirectsyms != 0) 1626 { 1627 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 1628 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 1629 if (indirect_syms_data_sp) 1630 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 1631 } 1632 if (function_starts_load_command.cmd) 1633 { 1634 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 1635 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 1636 if (func_start_data_sp) 1637 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 1638 } 1639 } 1640 } 1641 } 1642 else 1643 { 1644 nlist_data.SetData (m_data, 1645 symtab_load_command.symoff, 1646 nlist_data_byte_size); 1647 strtab_data.SetData (m_data, 1648 symtab_load_command.stroff, 1649 strtab_data_byte_size); 1650 if (m_dysymtab.nindirectsyms != 0) 1651 { 1652 indirect_symbol_index_data.SetData (m_data, 1653 m_dysymtab.indirectsymoff, 1654 m_dysymtab.nindirectsyms * 4); 1655 } 1656 if (function_starts_load_command.cmd) 1657 { 1658 function_starts_data.SetData (m_data, 1659 function_starts_load_command.dataoff, 1660 function_starts_load_command.datasize); 1661 } 1662 } 1663 1664 if (nlist_data.GetByteSize() == 0) 1665 { 1666 if (log) 1667 module_sp->LogMessage(log, "failed to read nlist data"); 1668 return 0; 1669 } 1670 1671 1672 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 1673 if (!have_strtab_data) 1674 { 1675 if (process) 1676 { 1677 if (strtab_addr == LLDB_INVALID_ADDRESS) 1678 { 1679 if (log) 1680 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 1681 return 0; 1682 } 1683 } 1684 else 1685 { 1686 if (log) 1687 module_sp->LogMessage(log, "failed to read strtab data"); 1688 return 0; 1689 } 1690 } 1691 1692 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 1693 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 1694 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 1695 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 1696 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 1697 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 1698 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 1699 SectionSP eh_frame_section_sp; 1700 if (text_section_sp.get()) 1701 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 1702 else 1703 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 1704 1705 const bool is_arm = (m_header.cputype == llvm::MachO::CPUTypeARM); 1706 1707 // lldb works best if it knows the start addresss of all functions in a module. 1708 // Linker symbols or debug info are normally the best source of information for start addr / size but 1709 // they may be stripped in a released binary. 1710 // Two additional sources of information exist in Mach-O binaries: 1711 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 1712 // binary, relative to the text section. 1713 // eh_frame - the eh_frame FDEs have the start addr & size of each function 1714 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 1715 // Binaries built to run on older releases may need to use eh_frame information. 1716 1717 if (text_section_sp && function_starts_data.GetByteSize()) 1718 { 1719 FunctionStarts::Entry function_start_entry; 1720 function_start_entry.data = false; 1721 lldb::offset_t function_start_offset = 0; 1722 function_start_entry.addr = text_section_sp->GetFileAddress(); 1723 uint64_t delta; 1724 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 1725 { 1726 // Now append the current entry 1727 function_start_entry.addr += delta; 1728 function_starts.Append(function_start_entry); 1729 } 1730 } 1731 else 1732 { 1733 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 1734 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 1735 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 1736 // the module. 1737 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 1738 { 1739 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindGCC, true); 1740 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 1741 eh_frame.GetFunctionAddressAndSizeVector (functions); 1742 addr_t text_base_addr = text_section_sp->GetFileAddress(); 1743 size_t count = functions.GetSize(); 1744 for (size_t i = 0; i < count; ++i) 1745 { 1746 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 1747 if (func) 1748 { 1749 FunctionStarts::Entry function_start_entry; 1750 function_start_entry.addr = func->base - text_base_addr; 1751 function_starts.Append(function_start_entry); 1752 } 1753 } 1754 } 1755 } 1756 1757 const size_t function_starts_count = function_starts.GetSize(); 1758 1759 const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection; 1760 1761 lldb::offset_t nlist_data_offset = 0; 1762 1763 uint32_t N_SO_index = UINT32_MAX; 1764 1765 MachSymtabSectionInfo section_info (section_list); 1766 std::vector<uint32_t> N_FUN_indexes; 1767 std::vector<uint32_t> N_NSYM_indexes; 1768 std::vector<uint32_t> N_INCL_indexes; 1769 std::vector<uint32_t> N_BRAC_indexes; 1770 std::vector<uint32_t> N_COMM_indexes; 1771 typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap; 1772 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 1773 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 1774 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 1775 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 1776 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 1777 // Any symbols that get merged into another will get an entry 1778 // in this map so we know 1779 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 1780 uint32_t nlist_idx = 0; 1781 Symbol *symbol_ptr = NULL; 1782 1783 uint32_t sym_idx = 0; 1784 Symbol *sym = NULL; 1785 size_t num_syms = 0; 1786 std::string memory_symbol_name; 1787 uint32_t unmapped_local_symbols_found = 0; 1788 1789 #if defined (__APPLE__) && defined (__arm__) 1790 1791 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 1792 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 1793 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 1794 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 1795 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 1796 // nlist parser to ignore all LOCAL symbols. 1797 1798 if (m_header.flags & 0x80000000u) 1799 { 1800 // Before we can start mapping the DSC, we need to make certain the target process is actually 1801 // using the cache we can find. 1802 1803 // Next we need to determine the correct path for the dyld shared cache. 1804 1805 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 1806 char dsc_path[PATH_MAX]; 1807 1808 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 1809 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 1810 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 1811 header_arch.GetArchitectureName()); 1812 1813 FileSpec dsc_filespec(dsc_path, false); 1814 1815 // We need definitions of two structures in the on-disk DSC, copy them here manually 1816 struct lldb_copy_dyld_cache_header_v0 1817 { 1818 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 1819 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 1820 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 1821 uint32_t imagesOffset; 1822 uint32_t imagesCount; 1823 uint64_t dyldBaseAddress; 1824 uint64_t codeSignatureOffset; 1825 uint64_t codeSignatureSize; 1826 uint64_t slideInfoOffset; 1827 uint64_t slideInfoSize; 1828 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 1829 uint64_t localSymbolsSize; // size of local symbols information 1830 }; 1831 struct lldb_copy_dyld_cache_header_v1 1832 { 1833 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 1834 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 1835 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 1836 uint32_t imagesOffset; 1837 uint32_t imagesCount; 1838 uint64_t dyldBaseAddress; 1839 uint64_t codeSignatureOffset; 1840 uint64_t codeSignatureSize; 1841 uint64_t slideInfoOffset; 1842 uint64_t slideInfoSize; 1843 uint64_t localSymbolsOffset; 1844 uint64_t localSymbolsSize; 1845 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 1846 }; 1847 1848 struct lldb_copy_dyld_cache_mapping_info 1849 { 1850 uint64_t address; 1851 uint64_t size; 1852 uint64_t fileOffset; 1853 uint32_t maxProt; 1854 uint32_t initProt; 1855 }; 1856 1857 struct lldb_copy_dyld_cache_local_symbols_info 1858 { 1859 uint32_t nlistOffset; 1860 uint32_t nlistCount; 1861 uint32_t stringsOffset; 1862 uint32_t stringsSize; 1863 uint32_t entriesOffset; 1864 uint32_t entriesCount; 1865 }; 1866 struct lldb_copy_dyld_cache_local_symbols_entry 1867 { 1868 uint32_t dylibOffset; 1869 uint32_t nlistStartIndex; 1870 uint32_t nlistCount; 1871 }; 1872 1873 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 1874 The dyld_cache_local_symbols_info structure gives us three things: 1875 1. The start and count of the nlist records in the dyld_shared_cache file 1876 2. The start and size of the strings for these nlist records 1877 3. The start and count of dyld_cache_local_symbols_entry entries 1878 1879 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 1880 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 1881 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 1882 and the count of how many nlist records there are for this dylib/framework. 1883 */ 1884 1885 // Process the dsc header to find the unmapped symbols 1886 // 1887 // Save some VM space, do not map the entire cache in one shot. 1888 1889 DataBufferSP dsc_data_sp; 1890 dsc_data_sp = dsc_filespec.MemoryMapFileContents(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 1891 1892 if (dsc_data_sp) 1893 { 1894 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 1895 1896 char version_str[17]; 1897 int version = -1; 1898 lldb::offset_t offset = 0; 1899 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 1900 version_str[16] = '\0'; 1901 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 1902 { 1903 int v; 1904 if (::sscanf (version_str + 6, "%d", &v) == 1) 1905 { 1906 version = v; 1907 } 1908 } 1909 1910 UUID dsc_uuid; 1911 if (version >= 1) 1912 { 1913 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 1914 uint8_t uuid_bytes[sizeof (uuid_t)]; 1915 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 1916 dsc_uuid.SetBytes (uuid_bytes); 1917 } 1918 1919 bool uuid_match = true; 1920 if (dsc_uuid.IsValid() && process) 1921 { 1922 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 1923 1924 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 1925 { 1926 // The on-disk dyld_shared_cache file is not the same as the one in this 1927 // process' memory, don't use it. 1928 uuid_match = false; 1929 ModuleSP module_sp (GetModule()); 1930 if (module_sp) 1931 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 1932 } 1933 } 1934 1935 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 1936 1937 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 1938 1939 // If the mappingOffset points to a location inside the header, we've 1940 // opened an old dyld shared cache, and should not proceed further. 1941 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 1942 { 1943 1944 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContents(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 1945 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 1946 offset = 0; 1947 1948 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 1949 // in the shared library cache need to be adjusted by an offset to match up with the 1950 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 1951 // recorded in mapping_offset_value. 1952 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 1953 1954 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 1955 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 1956 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 1957 1958 if (localSymbolsOffset && localSymbolsSize) 1959 { 1960 // Map the local symbols 1961 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContents(localSymbolsOffset, localSymbolsSize)) 1962 { 1963 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 1964 1965 offset = 0; 1966 1967 // Read the local_symbols_infos struct in one shot 1968 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 1969 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 1970 1971 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 1972 1973 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 1974 1975 offset = local_symbols_info.entriesOffset; 1976 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 1977 { 1978 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 1979 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 1980 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 1981 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 1982 1983 if (header_file_offset == local_symbols_entry.dylibOffset) 1984 { 1985 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 1986 1987 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 1988 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 1989 num_syms = symtab->GetNumSymbols(); 1990 1991 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 1992 uint32_t string_table_offset = local_symbols_info.stringsOffset; 1993 1994 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 1995 { 1996 ///////////////////////////// 1997 { 1998 struct nlist_64 nlist; 1999 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2000 break; 2001 2002 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2003 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2004 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2005 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2006 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2007 2008 SymbolType type = eSymbolTypeInvalid; 2009 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2010 2011 if (symbol_name == NULL) 2012 { 2013 // No symbol should be NULL, even the symbols with no 2014 // string values should have an offset zero which points 2015 // to an empty C-string 2016 Host::SystemLog (Host::eSystemLogError, 2017 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2018 entry_index, 2019 nlist.n_strx, 2020 module_sp->GetFileSpec().GetPath().c_str()); 2021 continue; 2022 } 2023 if (symbol_name[0] == '\0') 2024 symbol_name = NULL; 2025 2026 const char *symbol_name_non_abi_mangled = NULL; 2027 2028 SectionSP symbol_section; 2029 uint32_t symbol_byte_size = 0; 2030 bool add_nlist = true; 2031 bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); 2032 bool demangled_is_synthesized = false; 2033 bool is_gsym = false; 2034 2035 assert (sym_idx < num_syms); 2036 2037 sym[sym_idx].SetDebug (is_debug); 2038 2039 if (is_debug) 2040 { 2041 switch (nlist.n_type) 2042 { 2043 case StabGlobalSymbol: 2044 // N_GSYM -- global symbol: name,,NO_SECT,type,0 2045 // Sometimes the N_GSYM value contains the address. 2046 2047 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2048 // have the same address, but we want to ensure that we always find only the real symbol, 2049 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2050 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2051 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2052 // same address. 2053 2054 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 2055 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 2056 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 2057 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 2058 add_nlist = false; 2059 else 2060 { 2061 is_gsym = true; 2062 sym[sym_idx].SetExternal(true); 2063 if (nlist.n_value != 0) 2064 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2065 type = eSymbolTypeData; 2066 } 2067 break; 2068 2069 case StabFunctionName: 2070 // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 2071 type = eSymbolTypeCompiler; 2072 break; 2073 2074 case StabFunction: 2075 // N_FUN -- procedure: name,,n_sect,linenumber,address 2076 if (symbol_name) 2077 { 2078 type = eSymbolTypeCode; 2079 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2080 2081 N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; 2082 // We use the current number of symbols in the symbol table in lieu of 2083 // using nlist_idx in case we ever start trimming entries out 2084 N_FUN_indexes.push_back(sym_idx); 2085 } 2086 else 2087 { 2088 type = eSymbolTypeCompiler; 2089 2090 if ( !N_FUN_indexes.empty() ) 2091 { 2092 // Copy the size of the function into the original STAB entry so we don't have 2093 // to hunt for it later 2094 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2095 N_FUN_indexes.pop_back(); 2096 // We don't really need the end function STAB as it contains the size which 2097 // we already placed with the original symbol, so don't add it if we want a 2098 // minimal symbol table 2099 add_nlist = false; 2100 } 2101 } 2102 break; 2103 2104 case StabStaticSymbol: 2105 // N_STSYM -- static symbol: name,,n_sect,type,address 2106 N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; 2107 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2108 type = eSymbolTypeData; 2109 break; 2110 2111 case StabLocalCommon: 2112 // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address 2113 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2114 type = eSymbolTypeCommonBlock; 2115 break; 2116 2117 case StabBeginSymbol: 2118 // N_BNSYM 2119 // We use the current number of symbols in the symbol table in lieu of 2120 // using nlist_idx in case we ever start trimming entries out 2121 // Skip these if we want minimal symbol tables 2122 add_nlist = false; 2123 break; 2124 2125 case StabEndSymbol: 2126 // N_ENSYM 2127 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2128 // so that we can always skip the entire symbol if we need to navigate 2129 // more quickly at the source level when parsing STABS 2130 // Skip these if we want minimal symbol tables 2131 add_nlist = false; 2132 break; 2133 2134 2135 case StabSourceFileOptions: 2136 // N_OPT - emitted with gcc2_compiled and in gcc source 2137 type = eSymbolTypeCompiler; 2138 break; 2139 2140 case StabRegisterSymbol: 2141 // N_RSYM - register sym: name,,NO_SECT,type,register 2142 type = eSymbolTypeVariable; 2143 break; 2144 2145 case StabSourceLine: 2146 // N_SLINE - src line: 0,,n_sect,linenumber,address 2147 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2148 type = eSymbolTypeLineEntry; 2149 break; 2150 2151 case StabStructureType: 2152 // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset 2153 type = eSymbolTypeVariableType; 2154 break; 2155 2156 case StabSourceFileName: 2157 // N_SO - source file name 2158 type = eSymbolTypeSourceFile; 2159 if (symbol_name == NULL) 2160 { 2161 add_nlist = false; 2162 if (N_SO_index != UINT32_MAX) 2163 { 2164 // Set the size of the N_SO to the terminating index of this N_SO 2165 // so that we can always skip the entire N_SO if we need to navigate 2166 // more quickly at the source level when parsing STABS 2167 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2168 symbol_ptr->SetByteSize(sym_idx); 2169 symbol_ptr->SetSizeIsSibling(true); 2170 } 2171 N_NSYM_indexes.clear(); 2172 N_INCL_indexes.clear(); 2173 N_BRAC_indexes.clear(); 2174 N_COMM_indexes.clear(); 2175 N_FUN_indexes.clear(); 2176 N_SO_index = UINT32_MAX; 2177 } 2178 else 2179 { 2180 // We use the current number of symbols in the symbol table in lieu of 2181 // using nlist_idx in case we ever start trimming entries out 2182 const bool N_SO_has_full_path = symbol_name[0] == '/'; 2183 if (N_SO_has_full_path) 2184 { 2185 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2186 { 2187 // We have two consecutive N_SO entries where the first contains a directory 2188 // and the second contains a full path. 2189 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 2190 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2191 add_nlist = false; 2192 } 2193 else 2194 { 2195 // This is the first entry in a N_SO that contains a directory or 2196 // a full path to the source file 2197 N_SO_index = sym_idx; 2198 } 2199 } 2200 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2201 { 2202 // This is usually the second N_SO entry that contains just the filename, 2203 // so here we combine it with the first one if we are minimizing the symbol table 2204 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 2205 if (so_path && so_path[0]) 2206 { 2207 std::string full_so_path (so_path); 2208 const size_t double_slash_pos = full_so_path.find("//"); 2209 if (double_slash_pos != std::string::npos) 2210 { 2211 // The linker has been generating bad N_SO entries with doubled up paths 2212 // in the format "%s%s" where the first stirng in the DW_AT_comp_dir, 2213 // and the second is the directory for the source file so you end up with 2214 // a path that looks like "/tmp/src//tmp/src/" 2215 FileSpec so_dir(so_path, false); 2216 if (!so_dir.Exists()) 2217 { 2218 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 2219 if (so_dir.Exists()) 2220 { 2221 // Trim off the incorrect path 2222 full_so_path.erase(0, double_slash_pos + 1); 2223 } 2224 } 2225 } 2226 if (*full_so_path.rbegin() != '/') 2227 full_so_path += '/'; 2228 full_so_path += symbol_name; 2229 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 2230 add_nlist = false; 2231 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2232 } 2233 } 2234 else 2235 { 2236 // This could be a relative path to a N_SO 2237 N_SO_index = sym_idx; 2238 } 2239 } 2240 break; 2241 2242 case StabObjectFileName: 2243 // N_OSO - object file name: name,,0,0,st_mtime 2244 type = eSymbolTypeObjectFile; 2245 break; 2246 2247 case StabLocalSymbol: 2248 // N_LSYM - local sym: name,,NO_SECT,type,offset 2249 type = eSymbolTypeLocal; 2250 break; 2251 2252 //---------------------------------------------------------------------- 2253 // INCL scopes 2254 //---------------------------------------------------------------------- 2255 case StabBeginIncludeFileName: 2256 // N_BINCL - include file beginning: name,,NO_SECT,0,sum 2257 // We use the current number of symbols in the symbol table in lieu of 2258 // using nlist_idx in case we ever start trimming entries out 2259 N_INCL_indexes.push_back(sym_idx); 2260 type = eSymbolTypeScopeBegin; 2261 break; 2262 2263 case StabEndIncludeFile: 2264 // N_EINCL - include file end: name,,NO_SECT,0,0 2265 // Set the size of the N_BINCL to the terminating index of this N_EINCL 2266 // so that we can always skip the entire symbol if we need to navigate 2267 // more quickly at the source level when parsing STABS 2268 if ( !N_INCL_indexes.empty() ) 2269 { 2270 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 2271 symbol_ptr->SetByteSize(sym_idx + 1); 2272 symbol_ptr->SetSizeIsSibling(true); 2273 N_INCL_indexes.pop_back(); 2274 } 2275 type = eSymbolTypeScopeEnd; 2276 break; 2277 2278 case StabIncludeFileName: 2279 // N_SOL - #included file name: name,,n_sect,0,address 2280 type = eSymbolTypeHeaderFile; 2281 2282 // We currently don't use the header files on darwin 2283 add_nlist = false; 2284 break; 2285 2286 case StabCompilerParameters: 2287 // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 2288 type = eSymbolTypeCompiler; 2289 break; 2290 2291 case StabCompilerVersion: 2292 // N_VERSION - compiler version: name,,NO_SECT,0,0 2293 type = eSymbolTypeCompiler; 2294 break; 2295 2296 case StabCompilerOptLevel: 2297 // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 2298 type = eSymbolTypeCompiler; 2299 break; 2300 2301 case StabParameter: 2302 // N_PSYM - parameter: name,,NO_SECT,type,offset 2303 type = eSymbolTypeVariable; 2304 break; 2305 2306 case StabAlternateEntry: 2307 // N_ENTRY - alternate entry: name,,n_sect,linenumber,address 2308 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2309 type = eSymbolTypeLineEntry; 2310 break; 2311 2312 //---------------------------------------------------------------------- 2313 // Left and Right Braces 2314 //---------------------------------------------------------------------- 2315 case StabLeftBracket: 2316 // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address 2317 // We use the current number of symbols in the symbol table in lieu of 2318 // using nlist_idx in case we ever start trimming entries out 2319 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2320 N_BRAC_indexes.push_back(sym_idx); 2321 type = eSymbolTypeScopeBegin; 2322 break; 2323 2324 case StabRightBracket: 2325 // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address 2326 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 2327 // so that we can always skip the entire symbol if we need to navigate 2328 // more quickly at the source level when parsing STABS 2329 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2330 if ( !N_BRAC_indexes.empty() ) 2331 { 2332 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 2333 symbol_ptr->SetByteSize(sym_idx + 1); 2334 symbol_ptr->SetSizeIsSibling(true); 2335 N_BRAC_indexes.pop_back(); 2336 } 2337 type = eSymbolTypeScopeEnd; 2338 break; 2339 2340 case StabDeletedIncludeFile: 2341 // N_EXCL - deleted include file: name,,NO_SECT,0,sum 2342 type = eSymbolTypeHeaderFile; 2343 break; 2344 2345 //---------------------------------------------------------------------- 2346 // COMM scopes 2347 //---------------------------------------------------------------------- 2348 case StabBeginCommon: 2349 // N_BCOMM - begin common: name,,NO_SECT,0,0 2350 // We use the current number of symbols in the symbol table in lieu of 2351 // using nlist_idx in case we ever start trimming entries out 2352 type = eSymbolTypeScopeBegin; 2353 N_COMM_indexes.push_back(sym_idx); 2354 break; 2355 2356 case StabEndCommonLocal: 2357 // N_ECOML - end common (local name): 0,,n_sect,0,address 2358 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2359 // Fall through 2360 2361 case StabEndCommon: 2362 // N_ECOMM - end common: name,,n_sect,0,0 2363 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 2364 // so that we can always skip the entire symbol if we need to navigate 2365 // more quickly at the source level when parsing STABS 2366 if ( !N_COMM_indexes.empty() ) 2367 { 2368 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 2369 symbol_ptr->SetByteSize(sym_idx + 1); 2370 symbol_ptr->SetSizeIsSibling(true); 2371 N_COMM_indexes.pop_back(); 2372 } 2373 type = eSymbolTypeScopeEnd; 2374 break; 2375 2376 case StabLength: 2377 // N_LENG - second stab entry with length information 2378 type = eSymbolTypeAdditional; 2379 break; 2380 2381 default: break; 2382 } 2383 } 2384 else 2385 { 2386 //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; 2387 uint8_t n_type = NlistMaskType & nlist.n_type; 2388 sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); 2389 2390 switch (n_type) 2391 { 2392 case NListTypeIndirect: // N_INDR - Fall through 2393 case NListTypePreboundUndefined:// N_PBUD - Fall through 2394 case NListTypeUndefined: // N_UNDF 2395 type = eSymbolTypeUndefined; 2396 break; 2397 2398 case NListTypeAbsolute: // N_ABS 2399 type = eSymbolTypeAbsolute; 2400 break; 2401 2402 case NListTypeSection: // N_SECT 2403 { 2404 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2405 2406 if (symbol_section == NULL) 2407 { 2408 // TODO: warn about this? 2409 add_nlist = false; 2410 break; 2411 } 2412 2413 if (TEXT_eh_frame_sectID == nlist.n_sect) 2414 { 2415 type = eSymbolTypeException; 2416 } 2417 else 2418 { 2419 uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; 2420 2421 switch (section_type) 2422 { 2423 case SectionTypeRegular: break; // regular section 2424 //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section 2425 case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings 2426 case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals 2427 case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals 2428 case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 2429 case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 2430 case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 2431 case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 2432 case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization 2433 case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination 2434 //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced 2435 //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 2436 case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 2437 case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals 2438 case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; 2439 case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; 2440 default: break; 2441 } 2442 2443 if (type == eSymbolTypeInvalid) 2444 { 2445 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 2446 if (symbol_section->IsDescendant (text_section_sp.get())) 2447 { 2448 if (symbol_section->IsClear(SectionAttrUserPureInstructions | 2449 SectionAttrUserSelfModifyingCode | 2450 SectionAttrSytemSomeInstructions)) 2451 type = eSymbolTypeData; 2452 else 2453 type = eSymbolTypeCode; 2454 } 2455 else if (symbol_section->IsDescendant(data_section_sp.get())) 2456 { 2457 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 2458 { 2459 type = eSymbolTypeRuntime; 2460 2461 if (symbol_name && 2462 symbol_name[0] == '_' && 2463 symbol_name[1] == 'O' && 2464 symbol_name[2] == 'B') 2465 { 2466 llvm::StringRef symbol_name_ref(symbol_name); 2467 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2468 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2469 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2470 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2471 { 2472 symbol_name_non_abi_mangled = symbol_name + 1; 2473 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2474 type = eSymbolTypeObjCClass; 2475 demangled_is_synthesized = true; 2476 } 2477 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2478 { 2479 symbol_name_non_abi_mangled = symbol_name + 1; 2480 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2481 type = eSymbolTypeObjCMetaClass; 2482 demangled_is_synthesized = true; 2483 } 2484 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2485 { 2486 symbol_name_non_abi_mangled = symbol_name + 1; 2487 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2488 type = eSymbolTypeObjCIVar; 2489 demangled_is_synthesized = true; 2490 } 2491 } 2492 } 2493 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 2494 { 2495 type = eSymbolTypeException; 2496 } 2497 else 2498 { 2499 type = eSymbolTypeData; 2500 } 2501 } 2502 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 2503 { 2504 type = eSymbolTypeTrampoline; 2505 } 2506 else if (symbol_section->IsDescendant(objc_section_sp.get())) 2507 { 2508 type = eSymbolTypeRuntime; 2509 if (symbol_name && symbol_name[0] == '.') 2510 { 2511 llvm::StringRef symbol_name_ref(symbol_name); 2512 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 2513 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 2514 { 2515 symbol_name_non_abi_mangled = symbol_name; 2516 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 2517 type = eSymbolTypeObjCClass; 2518 demangled_is_synthesized = true; 2519 } 2520 } 2521 } 2522 } 2523 } 2524 } 2525 break; 2526 } 2527 } 2528 2529 if (add_nlist) 2530 { 2531 uint64_t symbol_value = nlist.n_value; 2532 if (symbol_name_non_abi_mangled) 2533 { 2534 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 2535 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 2536 } 2537 else 2538 { 2539 bool symbol_name_is_mangled = false; 2540 2541 if (symbol_name && symbol_name[0] == '_') 2542 { 2543 symbol_name_is_mangled = symbol_name[1] == '_'; 2544 symbol_name++; // Skip the leading underscore 2545 } 2546 2547 if (symbol_name) 2548 { 2549 ConstString const_symbol_name(symbol_name); 2550 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 2551 if (is_gsym && is_debug) 2552 N_GSYM_name_to_sym_idx[sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()] = sym_idx; 2553 } 2554 } 2555 if (symbol_section) 2556 { 2557 const addr_t section_file_addr = symbol_section->GetFileAddress(); 2558 if (symbol_byte_size == 0 && function_starts_count > 0) 2559 { 2560 addr_t symbol_lookup_file_addr = nlist.n_value; 2561 // Do an exact address match for non-ARM addresses, else get the closest since 2562 // the symbol might be a thumb symbol which has an address with bit zero set 2563 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 2564 if (is_arm && func_start_entry) 2565 { 2566 // Verify that the function start address is the symbol address (ARM) 2567 // or the symbol address + 1 (thumb) 2568 if (func_start_entry->addr != symbol_lookup_file_addr && 2569 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 2570 { 2571 // Not the right entry, NULL it out... 2572 func_start_entry = NULL; 2573 } 2574 } 2575 if (func_start_entry) 2576 { 2577 func_start_entry->data = true; 2578 2579 addr_t symbol_file_addr = func_start_entry->addr; 2580 uint32_t symbol_flags = 0; 2581 if (is_arm) 2582 { 2583 if (symbol_file_addr & 1) 2584 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 2585 symbol_file_addr &= 0xfffffffffffffffeull; 2586 } 2587 2588 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 2589 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 2590 if (next_func_start_entry) 2591 { 2592 addr_t next_symbol_file_addr = next_func_start_entry->addr; 2593 // Be sure the clear the Thumb address bit when we calculate the size 2594 // from the current and next address 2595 if (is_arm) 2596 next_symbol_file_addr &= 0xfffffffffffffffeull; 2597 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 2598 } 2599 else 2600 { 2601 symbol_byte_size = section_end_file_addr - symbol_file_addr; 2602 } 2603 } 2604 } 2605 symbol_value -= section_file_addr; 2606 } 2607 2608 if (is_debug == false) 2609 { 2610 if (type == eSymbolTypeCode) 2611 { 2612 // See if we can find a N_FUN entry for any code symbols. 2613 // If we do find a match, and the name matches, then we 2614 // can merge the two into just the function symbol to avoid 2615 // duplicate entries in the symbol table 2616 ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); 2617 if (pos != N_FUN_addr_to_sym_idx.end()) 2618 { 2619 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 2620 { 2621 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 2622 // We just need the flags from the linker symbol, so put these flags 2623 // into the N_FUN flags to avoid duplicate symbols in the symbol table 2624 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2625 sym[sym_idx].Clear(); 2626 continue; 2627 } 2628 } 2629 } 2630 else if (type == eSymbolTypeData) 2631 { 2632 // See if we can find a N_STSYM entry for any data symbols. 2633 // If we do find a match, and the name matches, then we 2634 // can merge the two into just the Static symbol to avoid 2635 // duplicate entries in the symbol table 2636 ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); 2637 if (pos != N_STSYM_addr_to_sym_idx.end()) 2638 { 2639 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 2640 { 2641 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 2642 // We just need the flags from the linker symbol, so put these flags 2643 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 2644 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2645 sym[sym_idx].Clear(); 2646 continue; 2647 } 2648 } 2649 else 2650 { 2651 // Combine N_GSYM stab entries with the non stab symbol 2652 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()); 2653 if (pos != N_GSYM_name_to_sym_idx.end()) 2654 { 2655 const uint32_t GSYM_sym_idx = pos->second; 2656 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 2657 // Copy the address, because often the N_GSYM address has an invalid address of zero 2658 // when the global is a common symbol 2659 sym[GSYM_sym_idx].GetAddress().SetSection (symbol_section); 2660 sym[GSYM_sym_idx].GetAddress().SetOffset (symbol_value); 2661 // We just need the flags from the linker symbol, so put these flags 2662 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 2663 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2664 sym[sym_idx].Clear(); 2665 continue; 2666 } 2667 } 2668 } 2669 } 2670 2671 sym[sym_idx].SetID (nlist_idx); 2672 sym[sym_idx].SetType (type); 2673 sym[sym_idx].GetAddress().SetSection (symbol_section); 2674 sym[sym_idx].GetAddress().SetOffset (symbol_value); 2675 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2676 2677 if (symbol_byte_size > 0) 2678 sym[sym_idx].SetByteSize(symbol_byte_size); 2679 2680 if (demangled_is_synthesized) 2681 sym[sym_idx].SetDemangledNameIsSynthesized(true); 2682 ++sym_idx; 2683 } 2684 else 2685 { 2686 sym[sym_idx].Clear(); 2687 } 2688 2689 } 2690 ///////////////////////////// 2691 } 2692 break; // No more entries to consider 2693 } 2694 } 2695 } 2696 } 2697 } 2698 } 2699 } 2700 2701 // Must reset this in case it was mutated above! 2702 nlist_data_offset = 0; 2703 #endif 2704 2705 // If the sym array was not created while parsing the DSC unmapped 2706 // symbols, create it now. 2707 if (sym == NULL) 2708 { 2709 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 2710 num_syms = symtab->GetNumSymbols(); 2711 } 2712 2713 if (unmapped_local_symbols_found) 2714 { 2715 assert(m_dysymtab.ilocalsym == 0); 2716 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 2717 nlist_idx = m_dysymtab.nlocalsym; 2718 } 2719 else 2720 { 2721 nlist_idx = 0; 2722 } 2723 2724 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 2725 { 2726 struct nlist_64 nlist; 2727 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2728 break; 2729 2730 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 2731 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 2732 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 2733 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 2734 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 2735 2736 SymbolType type = eSymbolTypeInvalid; 2737 const char *symbol_name = NULL; 2738 2739 if (have_strtab_data) 2740 { 2741 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 2742 2743 if (symbol_name == NULL) 2744 { 2745 // No symbol should be NULL, even the symbols with no 2746 // string values should have an offset zero which points 2747 // to an empty C-string 2748 Host::SystemLog (Host::eSystemLogError, 2749 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2750 nlist_idx, 2751 nlist.n_strx, 2752 module_sp->GetFileSpec().GetPath().c_str()); 2753 continue; 2754 } 2755 if (symbol_name[0] == '\0') 2756 symbol_name = NULL; 2757 } 2758 else 2759 { 2760 const addr_t str_addr = strtab_addr + nlist.n_strx; 2761 Error str_error; 2762 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 2763 symbol_name = memory_symbol_name.c_str(); 2764 } 2765 const char *symbol_name_non_abi_mangled = NULL; 2766 2767 SectionSP symbol_section; 2768 lldb::addr_t symbol_byte_size = 0; 2769 bool add_nlist = true; 2770 bool is_gsym = false; 2771 bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); 2772 bool demangled_is_synthesized = false; 2773 2774 assert (sym_idx < num_syms); 2775 2776 sym[sym_idx].SetDebug (is_debug); 2777 2778 if (is_debug) 2779 { 2780 switch (nlist.n_type) 2781 { 2782 case StabGlobalSymbol: 2783 // N_GSYM -- global symbol: name,,NO_SECT,type,0 2784 // Sometimes the N_GSYM value contains the address. 2785 2786 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2787 // have the same address, but we want to ensure that we always find only the real symbol, 2788 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2789 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2790 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2791 // same address. 2792 2793 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 2794 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 2795 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 2796 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 2797 add_nlist = false; 2798 else 2799 { 2800 is_gsym = true; 2801 sym[sym_idx].SetExternal(true); 2802 if (nlist.n_value != 0) 2803 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2804 type = eSymbolTypeData; 2805 } 2806 break; 2807 2808 case StabFunctionName: 2809 // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 2810 type = eSymbolTypeCompiler; 2811 break; 2812 2813 case StabFunction: 2814 // N_FUN -- procedure: name,,n_sect,linenumber,address 2815 if (symbol_name) 2816 { 2817 type = eSymbolTypeCode; 2818 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2819 2820 N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; 2821 // We use the current number of symbols in the symbol table in lieu of 2822 // using nlist_idx in case we ever start trimming entries out 2823 N_FUN_indexes.push_back(sym_idx); 2824 } 2825 else 2826 { 2827 type = eSymbolTypeCompiler; 2828 2829 if ( !N_FUN_indexes.empty() ) 2830 { 2831 // Copy the size of the function into the original STAB entry so we don't have 2832 // to hunt for it later 2833 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2834 N_FUN_indexes.pop_back(); 2835 // We don't really need the end function STAB as it contains the size which 2836 // we already placed with the original symbol, so don't add it if we want a 2837 // minimal symbol table 2838 add_nlist = false; 2839 } 2840 } 2841 break; 2842 2843 case StabStaticSymbol: 2844 // N_STSYM -- static symbol: name,,n_sect,type,address 2845 N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; 2846 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2847 type = eSymbolTypeData; 2848 break; 2849 2850 case StabLocalCommon: 2851 // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address 2852 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2853 type = eSymbolTypeCommonBlock; 2854 break; 2855 2856 case StabBeginSymbol: 2857 // N_BNSYM 2858 // We use the current number of symbols in the symbol table in lieu of 2859 // using nlist_idx in case we ever start trimming entries out 2860 // Skip these if we want minimal symbol tables 2861 add_nlist = false; 2862 break; 2863 2864 case StabEndSymbol: 2865 // N_ENSYM 2866 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2867 // so that we can always skip the entire symbol if we need to navigate 2868 // more quickly at the source level when parsing STABS 2869 // Skip these if we want minimal symbol tables 2870 add_nlist = false; 2871 break; 2872 2873 2874 case StabSourceFileOptions: 2875 // N_OPT - emitted with gcc2_compiled and in gcc source 2876 type = eSymbolTypeCompiler; 2877 break; 2878 2879 case StabRegisterSymbol: 2880 // N_RSYM - register sym: name,,NO_SECT,type,register 2881 type = eSymbolTypeVariable; 2882 break; 2883 2884 case StabSourceLine: 2885 // N_SLINE - src line: 0,,n_sect,linenumber,address 2886 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2887 type = eSymbolTypeLineEntry; 2888 break; 2889 2890 case StabStructureType: 2891 // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset 2892 type = eSymbolTypeVariableType; 2893 break; 2894 2895 case StabSourceFileName: 2896 // N_SO - source file name 2897 type = eSymbolTypeSourceFile; 2898 if (symbol_name == NULL) 2899 { 2900 add_nlist = false; 2901 if (N_SO_index != UINT32_MAX) 2902 { 2903 // Set the size of the N_SO to the terminating index of this N_SO 2904 // so that we can always skip the entire N_SO if we need to navigate 2905 // more quickly at the source level when parsing STABS 2906 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2907 symbol_ptr->SetByteSize(sym_idx); 2908 symbol_ptr->SetSizeIsSibling(true); 2909 } 2910 N_NSYM_indexes.clear(); 2911 N_INCL_indexes.clear(); 2912 N_BRAC_indexes.clear(); 2913 N_COMM_indexes.clear(); 2914 N_FUN_indexes.clear(); 2915 N_SO_index = UINT32_MAX; 2916 } 2917 else 2918 { 2919 // We use the current number of symbols in the symbol table in lieu of 2920 // using nlist_idx in case we ever start trimming entries out 2921 const bool N_SO_has_full_path = symbol_name[0] == '/'; 2922 if (N_SO_has_full_path) 2923 { 2924 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2925 { 2926 // We have two consecutive N_SO entries where the first contains a directory 2927 // and the second contains a full path. 2928 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 2929 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2930 add_nlist = false; 2931 } 2932 else 2933 { 2934 // This is the first entry in a N_SO that contains a directory or 2935 // a full path to the source file 2936 N_SO_index = sym_idx; 2937 } 2938 } 2939 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2940 { 2941 // This is usually the second N_SO entry that contains just the filename, 2942 // so here we combine it with the first one if we are minimizing the symbol table 2943 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 2944 if (so_path && so_path[0]) 2945 { 2946 std::string full_so_path (so_path); 2947 const size_t double_slash_pos = full_so_path.find("//"); 2948 if (double_slash_pos != std::string::npos) 2949 { 2950 // The linker has been generating bad N_SO entries with doubled up paths 2951 // in the format "%s%s" where the first stirng in the DW_AT_comp_dir, 2952 // and the second is the directory for the source file so you end up with 2953 // a path that looks like "/tmp/src//tmp/src/" 2954 FileSpec so_dir(so_path, false); 2955 if (!so_dir.Exists()) 2956 { 2957 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 2958 if (so_dir.Exists()) 2959 { 2960 // Trim off the incorrect path 2961 full_so_path.erase(0, double_slash_pos + 1); 2962 } 2963 } 2964 } 2965 if (*full_so_path.rbegin() != '/') 2966 full_so_path += '/'; 2967 full_so_path += symbol_name; 2968 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 2969 add_nlist = false; 2970 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2971 } 2972 } 2973 else 2974 { 2975 // This could be a relative path to a N_SO 2976 N_SO_index = sym_idx; 2977 } 2978 } 2979 2980 break; 2981 2982 case StabObjectFileName: 2983 // N_OSO - object file name: name,,0,0,st_mtime 2984 type = eSymbolTypeObjectFile; 2985 break; 2986 2987 case StabLocalSymbol: 2988 // N_LSYM - local sym: name,,NO_SECT,type,offset 2989 type = eSymbolTypeLocal; 2990 break; 2991 2992 //---------------------------------------------------------------------- 2993 // INCL scopes 2994 //---------------------------------------------------------------------- 2995 case StabBeginIncludeFileName: 2996 // N_BINCL - include file beginning: name,,NO_SECT,0,sum 2997 // We use the current number of symbols in the symbol table in lieu of 2998 // using nlist_idx in case we ever start trimming entries out 2999 N_INCL_indexes.push_back(sym_idx); 3000 type = eSymbolTypeScopeBegin; 3001 break; 3002 3003 case StabEndIncludeFile: 3004 // N_EINCL - include file end: name,,NO_SECT,0,0 3005 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3006 // so that we can always skip the entire symbol if we need to navigate 3007 // more quickly at the source level when parsing STABS 3008 if ( !N_INCL_indexes.empty() ) 3009 { 3010 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3011 symbol_ptr->SetByteSize(sym_idx + 1); 3012 symbol_ptr->SetSizeIsSibling(true); 3013 N_INCL_indexes.pop_back(); 3014 } 3015 type = eSymbolTypeScopeEnd; 3016 break; 3017 3018 case StabIncludeFileName: 3019 // N_SOL - #included file name: name,,n_sect,0,address 3020 type = eSymbolTypeHeaderFile; 3021 3022 // We currently don't use the header files on darwin 3023 add_nlist = false; 3024 break; 3025 3026 case StabCompilerParameters: 3027 // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 3028 type = eSymbolTypeCompiler; 3029 break; 3030 3031 case StabCompilerVersion: 3032 // N_VERSION - compiler version: name,,NO_SECT,0,0 3033 type = eSymbolTypeCompiler; 3034 break; 3035 3036 case StabCompilerOptLevel: 3037 // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 3038 type = eSymbolTypeCompiler; 3039 break; 3040 3041 case StabParameter: 3042 // N_PSYM - parameter: name,,NO_SECT,type,offset 3043 type = eSymbolTypeVariable; 3044 break; 3045 3046 case StabAlternateEntry: 3047 // N_ENTRY - alternate entry: name,,n_sect,linenumber,address 3048 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3049 type = eSymbolTypeLineEntry; 3050 break; 3051 3052 //---------------------------------------------------------------------- 3053 // Left and Right Braces 3054 //---------------------------------------------------------------------- 3055 case StabLeftBracket: 3056 // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address 3057 // We use the current number of symbols in the symbol table in lieu of 3058 // using nlist_idx in case we ever start trimming entries out 3059 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3060 N_BRAC_indexes.push_back(sym_idx); 3061 type = eSymbolTypeScopeBegin; 3062 break; 3063 3064 case StabRightBracket: 3065 // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address 3066 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3067 // so that we can always skip the entire symbol if we need to navigate 3068 // more quickly at the source level when parsing STABS 3069 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3070 if ( !N_BRAC_indexes.empty() ) 3071 { 3072 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3073 symbol_ptr->SetByteSize(sym_idx + 1); 3074 symbol_ptr->SetSizeIsSibling(true); 3075 N_BRAC_indexes.pop_back(); 3076 } 3077 type = eSymbolTypeScopeEnd; 3078 break; 3079 3080 case StabDeletedIncludeFile: 3081 // N_EXCL - deleted include file: name,,NO_SECT,0,sum 3082 type = eSymbolTypeHeaderFile; 3083 break; 3084 3085 //---------------------------------------------------------------------- 3086 // COMM scopes 3087 //---------------------------------------------------------------------- 3088 case StabBeginCommon: 3089 // N_BCOMM - begin common: name,,NO_SECT,0,0 3090 // We use the current number of symbols in the symbol table in lieu of 3091 // using nlist_idx in case we ever start trimming entries out 3092 type = eSymbolTypeScopeBegin; 3093 N_COMM_indexes.push_back(sym_idx); 3094 break; 3095 3096 case StabEndCommonLocal: 3097 // N_ECOML - end common (local name): 0,,n_sect,0,address 3098 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3099 // Fall through 3100 3101 case StabEndCommon: 3102 // N_ECOMM - end common: name,,n_sect,0,0 3103 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3104 // so that we can always skip the entire symbol if we need to navigate 3105 // more quickly at the source level when parsing STABS 3106 if ( !N_COMM_indexes.empty() ) 3107 { 3108 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3109 symbol_ptr->SetByteSize(sym_idx + 1); 3110 symbol_ptr->SetSizeIsSibling(true); 3111 N_COMM_indexes.pop_back(); 3112 } 3113 type = eSymbolTypeScopeEnd; 3114 break; 3115 3116 case StabLength: 3117 // N_LENG - second stab entry with length information 3118 type = eSymbolTypeAdditional; 3119 break; 3120 3121 default: break; 3122 } 3123 } 3124 else 3125 { 3126 //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; 3127 uint8_t n_type = NlistMaskType & nlist.n_type; 3128 sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); 3129 3130 switch (n_type) 3131 { 3132 case NListTypeIndirect: // N_INDR - Fall through 3133 case NListTypePreboundUndefined:// N_PBUD - Fall through 3134 case NListTypeUndefined: // N_UNDF 3135 type = eSymbolTypeUndefined; 3136 break; 3137 3138 case NListTypeAbsolute: // N_ABS 3139 type = eSymbolTypeAbsolute; 3140 break; 3141 3142 case NListTypeSection: // N_SECT 3143 { 3144 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3145 3146 if (!symbol_section) 3147 { 3148 // TODO: warn about this? 3149 add_nlist = false; 3150 break; 3151 } 3152 3153 if (TEXT_eh_frame_sectID == nlist.n_sect) 3154 { 3155 type = eSymbolTypeException; 3156 } 3157 else 3158 { 3159 uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; 3160 3161 switch (section_type) 3162 { 3163 case SectionTypeRegular: break; // regular section 3164 //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section 3165 case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings 3166 case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals 3167 case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals 3168 case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3169 case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3170 case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3171 case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3172 case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3173 case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination 3174 //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced 3175 //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 3176 case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3177 case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals 3178 case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; 3179 case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; 3180 default: break; 3181 } 3182 3183 if (type == eSymbolTypeInvalid) 3184 { 3185 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3186 if (symbol_section->IsDescendant (text_section_sp.get())) 3187 { 3188 if (symbol_section->IsClear(SectionAttrUserPureInstructions | 3189 SectionAttrUserSelfModifyingCode | 3190 SectionAttrSytemSomeInstructions)) 3191 type = eSymbolTypeData; 3192 else 3193 type = eSymbolTypeCode; 3194 } 3195 else 3196 if (symbol_section->IsDescendant(data_section_sp.get())) 3197 { 3198 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3199 { 3200 type = eSymbolTypeRuntime; 3201 3202 if (symbol_name && 3203 symbol_name[0] == '_' && 3204 symbol_name[1] == 'O' && 3205 symbol_name[2] == 'B') 3206 { 3207 llvm::StringRef symbol_name_ref(symbol_name); 3208 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 3209 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 3210 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 3211 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3212 { 3213 symbol_name_non_abi_mangled = symbol_name + 1; 3214 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3215 type = eSymbolTypeObjCClass; 3216 demangled_is_synthesized = true; 3217 } 3218 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3219 { 3220 symbol_name_non_abi_mangled = symbol_name + 1; 3221 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3222 type = eSymbolTypeObjCMetaClass; 3223 demangled_is_synthesized = true; 3224 } 3225 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3226 { 3227 symbol_name_non_abi_mangled = symbol_name + 1; 3228 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3229 type = eSymbolTypeObjCIVar; 3230 demangled_is_synthesized = true; 3231 } 3232 } 3233 } 3234 else 3235 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3236 { 3237 type = eSymbolTypeException; 3238 } 3239 else 3240 { 3241 type = eSymbolTypeData; 3242 } 3243 } 3244 else 3245 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3246 { 3247 type = eSymbolTypeTrampoline; 3248 } 3249 else 3250 if (symbol_section->IsDescendant(objc_section_sp.get())) 3251 { 3252 type = eSymbolTypeRuntime; 3253 if (symbol_name && symbol_name[0] == '.') 3254 { 3255 llvm::StringRef symbol_name_ref(symbol_name); 3256 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3257 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3258 { 3259 symbol_name_non_abi_mangled = symbol_name; 3260 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3261 type = eSymbolTypeObjCClass; 3262 demangled_is_synthesized = true; 3263 } 3264 } 3265 } 3266 } 3267 } 3268 } 3269 break; 3270 } 3271 } 3272 3273 if (add_nlist) 3274 { 3275 uint64_t symbol_value = nlist.n_value; 3276 3277 if (symbol_name_non_abi_mangled) 3278 { 3279 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3280 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3281 } 3282 else 3283 { 3284 bool symbol_name_is_mangled = false; 3285 3286 if (symbol_name && symbol_name[0] == '_') 3287 { 3288 symbol_name_is_mangled = symbol_name[1] == '_'; 3289 symbol_name++; // Skip the leading underscore 3290 } 3291 3292 if (symbol_name) 3293 { 3294 ConstString const_symbol_name(symbol_name); 3295 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3296 if (is_gsym && is_debug) 3297 { 3298 N_GSYM_name_to_sym_idx[sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()] = sym_idx; 3299 } 3300 } 3301 } 3302 if (symbol_section) 3303 { 3304 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3305 if (symbol_byte_size == 0 && function_starts_count > 0) 3306 { 3307 addr_t symbol_lookup_file_addr = nlist.n_value; 3308 // Do an exact address match for non-ARM addresses, else get the closest since 3309 // the symbol might be a thumb symbol which has an address with bit zero set 3310 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3311 if (is_arm && func_start_entry) 3312 { 3313 // Verify that the function start address is the symbol address (ARM) 3314 // or the symbol address + 1 (thumb) 3315 if (func_start_entry->addr != symbol_lookup_file_addr && 3316 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3317 { 3318 // Not the right entry, NULL it out... 3319 func_start_entry = NULL; 3320 } 3321 } 3322 if (func_start_entry) 3323 { 3324 func_start_entry->data = true; 3325 3326 addr_t symbol_file_addr = func_start_entry->addr; 3327 if (is_arm) 3328 symbol_file_addr &= 0xfffffffffffffffeull; 3329 3330 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3331 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3332 if (next_func_start_entry) 3333 { 3334 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3335 // Be sure the clear the Thumb address bit when we calculate the size 3336 // from the current and next address 3337 if (is_arm) 3338 next_symbol_file_addr &= 0xfffffffffffffffeull; 3339 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3340 } 3341 else 3342 { 3343 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3344 } 3345 } 3346 } 3347 symbol_value -= section_file_addr; 3348 } 3349 3350 if (is_debug == false) 3351 { 3352 if (type == eSymbolTypeCode) 3353 { 3354 // See if we can find a N_FUN entry for any code symbols. 3355 // If we do find a match, and the name matches, then we 3356 // can merge the two into just the function symbol to avoid 3357 // duplicate entries in the symbol table 3358 ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); 3359 if (pos != N_FUN_addr_to_sym_idx.end()) 3360 { 3361 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3362 { 3363 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3364 // We just need the flags from the linker symbol, so put these flags 3365 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3366 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3367 sym[sym_idx].Clear(); 3368 continue; 3369 } 3370 } 3371 } 3372 else if (type == eSymbolTypeData) 3373 { 3374 // See if we can find a N_STSYM entry for any data symbols. 3375 // If we do find a match, and the name matches, then we 3376 // can merge the two into just the Static symbol to avoid 3377 // duplicate entries in the symbol table 3378 ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); 3379 if (pos != N_STSYM_addr_to_sym_idx.end()) 3380 { 3381 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3382 { 3383 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3384 // We just need the flags from the linker symbol, so put these flags 3385 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3386 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3387 sym[sym_idx].Clear(); 3388 continue; 3389 } 3390 } 3391 else 3392 { 3393 // Combine N_GSYM stab entries with the non stab symbol 3394 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()); 3395 if (pos != N_GSYM_name_to_sym_idx.end()) 3396 { 3397 const uint32_t GSYM_sym_idx = pos->second; 3398 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3399 // Copy the address, because often the N_GSYM address has an invalid address of zero 3400 // when the global is a common symbol 3401 sym[GSYM_sym_idx].GetAddress().SetSection (symbol_section); 3402 sym[GSYM_sym_idx].GetAddress().SetOffset (symbol_value); 3403 // We just need the flags from the linker symbol, so put these flags 3404 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3405 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3406 sym[sym_idx].Clear(); 3407 continue; 3408 } 3409 } 3410 } 3411 } 3412 3413 sym[sym_idx].SetID (nlist_idx); 3414 sym[sym_idx].SetType (type); 3415 sym[sym_idx].GetAddress().SetSection (symbol_section); 3416 sym[sym_idx].GetAddress().SetOffset (symbol_value); 3417 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3418 3419 if (symbol_byte_size > 0) 3420 sym[sym_idx].SetByteSize(symbol_byte_size); 3421 3422 if (demangled_is_synthesized) 3423 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3424 3425 ++sym_idx; 3426 } 3427 else 3428 { 3429 sym[sym_idx].Clear(); 3430 } 3431 3432 } 3433 3434 // STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value 3435 // is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all 3436 // such entries by figuring out what the address for the global is by looking up this non-STAB 3437 // entry and copying the value into the debug symbol's value to save us the hassle in the 3438 // debug symbol parser. 3439 3440 Symbol *global_symbol = NULL; 3441 for (nlist_idx = 0; 3442 nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL; 3443 nlist_idx++) 3444 { 3445 if (global_symbol->GetAddress().GetFileAddress() == 0) 3446 { 3447 std::vector<uint32_t> indexes; 3448 if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0) 3449 { 3450 std::vector<uint32_t>::const_iterator pos; 3451 std::vector<uint32_t>::const_iterator end = indexes.end(); 3452 for (pos = indexes.begin(); pos != end; ++pos) 3453 { 3454 symbol_ptr = symtab->SymbolAtIndex(*pos); 3455 if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false) 3456 { 3457 global_symbol->GetAddress() = symbol_ptr->GetAddress(); 3458 break; 3459 } 3460 } 3461 } 3462 } 3463 } 3464 3465 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 3466 3467 if (function_starts_count > 0) 3468 { 3469 char synthetic_function_symbol[PATH_MAX]; 3470 uint32_t num_synthetic_function_symbols = 0; 3471 for (i=0; i<function_starts_count; ++i) 3472 { 3473 if (function_starts.GetEntryRef (i).data == false) 3474 ++num_synthetic_function_symbols; 3475 } 3476 3477 if (num_synthetic_function_symbols > 0) 3478 { 3479 if (num_syms < sym_idx + num_synthetic_function_symbols) 3480 { 3481 num_syms = sym_idx + num_synthetic_function_symbols; 3482 sym = symtab->Resize (num_syms); 3483 } 3484 uint32_t synthetic_function_symbol_idx = 0; 3485 for (i=0; i<function_starts_count; ++i) 3486 { 3487 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 3488 if (func_start_entry->data == false) 3489 { 3490 addr_t symbol_file_addr = func_start_entry->addr; 3491 uint32_t symbol_flags = 0; 3492 if (is_arm) 3493 { 3494 if (symbol_file_addr & 1) 3495 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3496 symbol_file_addr &= 0xfffffffffffffffeull; 3497 } 3498 Address symbol_addr; 3499 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 3500 { 3501 SectionSP symbol_section (symbol_addr.GetSection()); 3502 uint32_t symbol_byte_size = 0; 3503 if (symbol_section) 3504 { 3505 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3506 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3507 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3508 if (next_func_start_entry) 3509 { 3510 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3511 if (is_arm) 3512 next_symbol_file_addr &= 0xfffffffffffffffeull; 3513 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3514 } 3515 else 3516 { 3517 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3518 } 3519 snprintf (synthetic_function_symbol, 3520 sizeof(synthetic_function_symbol), 3521 "___lldb_unnamed_function%u$$%s", 3522 ++synthetic_function_symbol_idx, 3523 module_sp->GetFileSpec().GetFilename().GetCString()); 3524 sym[sym_idx].SetID (synthetic_sym_id++); 3525 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 3526 sym[sym_idx].SetType (eSymbolTypeCode); 3527 sym[sym_idx].SetIsSynthetic (true); 3528 sym[sym_idx].GetAddress() = symbol_addr; 3529 if (symbol_flags) 3530 sym[sym_idx].SetFlags (symbol_flags); 3531 if (symbol_byte_size) 3532 sym[sym_idx].SetByteSize (symbol_byte_size); 3533 ++sym_idx; 3534 } 3535 } 3536 } 3537 } 3538 } 3539 } 3540 3541 // Trim our symbols down to just what we ended up with after 3542 // removing any symbols. 3543 if (sym_idx < num_syms) 3544 { 3545 num_syms = sym_idx; 3546 sym = symtab->Resize (num_syms); 3547 } 3548 3549 // Now synthesize indirect symbols 3550 if (m_dysymtab.nindirectsyms != 0) 3551 { 3552 if (indirect_symbol_index_data.GetByteSize()) 3553 { 3554 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 3555 3556 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 3557 { 3558 if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs) 3559 { 3560 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 3561 if (symbol_stub_byte_size == 0) 3562 continue; 3563 3564 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 3565 3566 if (num_symbol_stubs == 0) 3567 continue; 3568 3569 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 3570 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 3571 { 3572 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 3573 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 3574 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 3575 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 3576 { 3577 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 3578 if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal)) 3579 continue; 3580 3581 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 3582 Symbol *stub_symbol = NULL; 3583 if (index_pos != end_index_pos) 3584 { 3585 // We have a remapping from the original nlist index to 3586 // a current symbol index, so just look this up by index 3587 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 3588 } 3589 else 3590 { 3591 // We need to lookup a symbol using the original nlist 3592 // symbol index since this index is coming from the 3593 // S_SYMBOL_STUBS 3594 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 3595 } 3596 3597 if (stub_symbol) 3598 { 3599 Address so_addr(symbol_stub_addr, section_list); 3600 3601 if (stub_symbol->GetType() == eSymbolTypeUndefined) 3602 { 3603 // Change the external symbol into a trampoline that makes sense 3604 // These symbols were N_UNDF N_EXT, and are useless to us, so we 3605 // can re-use them so we don't have to make up a synthetic symbol 3606 // for no good reason. 3607 stub_symbol->SetType (eSymbolTypeTrampoline); 3608 stub_symbol->SetExternal (false); 3609 stub_symbol->GetAddress() = so_addr; 3610 stub_symbol->SetByteSize (symbol_stub_byte_size); 3611 } 3612 else 3613 { 3614 // Make a synthetic symbol to describe the trampoline stub 3615 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 3616 if (sym_idx >= num_syms) 3617 { 3618 sym = symtab->Resize (++num_syms); 3619 stub_symbol = NULL; // this pointer no longer valid 3620 } 3621 sym[sym_idx].SetID (synthetic_sym_id++); 3622 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 3623 sym[sym_idx].SetType (eSymbolTypeTrampoline); 3624 sym[sym_idx].SetIsSynthetic (true); 3625 sym[sym_idx].GetAddress() = so_addr; 3626 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 3627 ++sym_idx; 3628 } 3629 } 3630 else 3631 { 3632 if (log) 3633 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 3634 } 3635 } 3636 } 3637 } 3638 } 3639 } 3640 } 3641 3642 // StreamFile s(stdout, false); 3643 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 3644 // symtab->Dump(&s, NULL, eSortOrderNone); 3645 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 3646 symtab->CalculateSymbolSizes(); 3647 3648 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 3649 // symtab->Dump(&s, NULL, eSortOrderNone); 3650 3651 return symtab->GetNumSymbols(); 3652 } 3653 return 0; 3654 } 3655 3656 3657 void 3658 ObjectFileMachO::Dump (Stream *s) 3659 { 3660 ModuleSP module_sp(GetModule()); 3661 if (module_sp) 3662 { 3663 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3664 s->Printf("%p: ", this); 3665 s->Indent(); 3666 if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped) 3667 s->PutCString("ObjectFileMachO64"); 3668 else 3669 s->PutCString("ObjectFileMachO32"); 3670 3671 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 3672 3673 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 3674 3675 SectionList *sections = GetSectionList(); 3676 if (sections) 3677 sections->Dump(s, NULL, true, UINT32_MAX); 3678 3679 if (m_symtab_ap.get()) 3680 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 3681 } 3682 } 3683 3684 bool 3685 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 3686 const lldb_private::DataExtractor &data, 3687 lldb::offset_t lc_offset, 3688 lldb_private::UUID& uuid) 3689 { 3690 uint32_t i; 3691 struct uuid_command load_cmd; 3692 3693 lldb::offset_t offset = lc_offset; 3694 for (i=0; i<header.ncmds; ++i) 3695 { 3696 const lldb::offset_t cmd_offset = offset; 3697 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 3698 break; 3699 3700 if (load_cmd.cmd == LoadCommandUUID) 3701 { 3702 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 3703 3704 if (uuid_bytes) 3705 { 3706 // OpenCL on Mac OS X uses the same UUID for each of its object files. 3707 // We pretend these object files have no UUID to prevent crashing. 3708 3709 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 3710 0x3b, 0xa8, 3711 0x4b, 0x16, 3712 0xb6, 0xa4, 3713 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 3714 3715 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 3716 return false; 3717 3718 uuid.SetBytes (uuid_bytes); 3719 return true; 3720 } 3721 return false; 3722 } 3723 offset = cmd_offset + load_cmd.cmdsize; 3724 } 3725 return false; 3726 } 3727 3728 bool 3729 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 3730 { 3731 ModuleSP module_sp(GetModule()); 3732 if (module_sp) 3733 { 3734 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3735 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3736 return GetUUID (m_header, m_data, offset, *uuid); 3737 } 3738 return false; 3739 } 3740 3741 3742 uint32_t 3743 ObjectFileMachO::GetDependentModules (FileSpecList& files) 3744 { 3745 uint32_t count = 0; 3746 ModuleSP module_sp(GetModule()); 3747 if (module_sp) 3748 { 3749 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3750 struct load_command load_cmd; 3751 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3752 const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system 3753 uint32_t i; 3754 for (i=0; i<m_header.ncmds; ++i) 3755 { 3756 const uint32_t cmd_offset = offset; 3757 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 3758 break; 3759 3760 switch (load_cmd.cmd) 3761 { 3762 case LoadCommandDylibLoad: 3763 case LoadCommandDylibLoadWeak: 3764 case LoadCommandDylibReexport: 3765 case LoadCommandDynamicLinkerLoad: 3766 case LoadCommandFixedVMShlibLoad: 3767 case LoadCommandDylibLoadUpward: 3768 { 3769 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 3770 const char *path = m_data.PeekCStr(name_offset); 3771 // Skip any path that starts with '@' since these are usually: 3772 // @executable_path/.../file 3773 // @rpath/.../file 3774 if (path && path[0] != '@') 3775 { 3776 FileSpec file_spec(path, resolve_path); 3777 if (files.AppendIfUnique(file_spec)) 3778 count++; 3779 } 3780 } 3781 break; 3782 3783 default: 3784 break; 3785 } 3786 offset = cmd_offset + load_cmd.cmdsize; 3787 } 3788 } 3789 return count; 3790 } 3791 3792 lldb_private::Address 3793 ObjectFileMachO::GetEntryPointAddress () 3794 { 3795 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 3796 // is initialized to an invalid address, so we can just return that. 3797 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 3798 3799 if (!IsExecutable() || m_entry_point_address.IsValid()) 3800 return m_entry_point_address; 3801 3802 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 3803 // /usr/include/mach-o.h, but it is basically: 3804 // 3805 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 3806 // uint32_t count - this is the count of longs in the thread state data 3807 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 3808 // <repeat this trio> 3809 // 3810 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 3811 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 3812 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 3813 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 3814 // 3815 // For now we hard-code the offsets and flavors we need: 3816 // 3817 // 3818 3819 ModuleSP module_sp(GetModule()); 3820 if (module_sp) 3821 { 3822 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3823 struct load_command load_cmd; 3824 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3825 uint32_t i; 3826 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 3827 bool done = false; 3828 3829 for (i=0; i<m_header.ncmds; ++i) 3830 { 3831 const lldb::offset_t cmd_offset = offset; 3832 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 3833 break; 3834 3835 switch (load_cmd.cmd) 3836 { 3837 case LoadCommandUnixThread: 3838 case LoadCommandThread: 3839 { 3840 while (offset < cmd_offset + load_cmd.cmdsize) 3841 { 3842 uint32_t flavor = m_data.GetU32(&offset); 3843 uint32_t count = m_data.GetU32(&offset); 3844 if (count == 0) 3845 { 3846 // We've gotten off somehow, log and exit; 3847 return m_entry_point_address; 3848 } 3849 3850 switch (m_header.cputype) 3851 { 3852 case llvm::MachO::CPUTypeARM: 3853 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 3854 { 3855 offset += 60; // This is the offset of pc in the GPR thread state data structure. 3856 start_address = m_data.GetU32(&offset); 3857 done = true; 3858 } 3859 break; 3860 case llvm::MachO::CPUTypeI386: 3861 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 3862 { 3863 offset += 40; // This is the offset of eip in the GPR thread state data structure. 3864 start_address = m_data.GetU32(&offset); 3865 done = true; 3866 } 3867 break; 3868 case llvm::MachO::CPUTypeX86_64: 3869 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 3870 { 3871 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 3872 start_address = m_data.GetU64(&offset); 3873 done = true; 3874 } 3875 break; 3876 default: 3877 return m_entry_point_address; 3878 } 3879 // Haven't found the GPR flavor yet, skip over the data for this flavor: 3880 if (done) 3881 break; 3882 offset += count * 4; 3883 } 3884 } 3885 break; 3886 case LoadCommandMain: 3887 { 3888 ConstString text_segment_name ("__TEXT"); 3889 uint64_t entryoffset = m_data.GetU64(&offset); 3890 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 3891 if (text_segment_sp) 3892 { 3893 done = true; 3894 start_address = text_segment_sp->GetFileAddress() + entryoffset; 3895 } 3896 } 3897 3898 default: 3899 break; 3900 } 3901 if (done) 3902 break; 3903 3904 // Go to the next load command: 3905 offset = cmd_offset + load_cmd.cmdsize; 3906 } 3907 3908 if (start_address != LLDB_INVALID_ADDRESS) 3909 { 3910 // We got the start address from the load commands, so now resolve that address in the sections 3911 // of this ObjectFile: 3912 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 3913 { 3914 m_entry_point_address.Clear(); 3915 } 3916 } 3917 else 3918 { 3919 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 3920 // "start" symbol in the main executable. 3921 3922 ModuleSP module_sp (GetModule()); 3923 3924 if (module_sp) 3925 { 3926 SymbolContextList contexts; 3927 SymbolContext context; 3928 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 3929 { 3930 if (contexts.GetContextAtIndex(0, context)) 3931 m_entry_point_address = context.symbol->GetAddress(); 3932 } 3933 } 3934 } 3935 } 3936 3937 return m_entry_point_address; 3938 3939 } 3940 3941 lldb_private::Address 3942 ObjectFileMachO::GetHeaderAddress () 3943 { 3944 lldb_private::Address header_addr; 3945 SectionList *section_list = GetSectionList(); 3946 if (section_list) 3947 { 3948 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 3949 if (text_segment_sp) 3950 { 3951 header_addr.SetSection (text_segment_sp); 3952 header_addr.SetOffset (0); 3953 } 3954 } 3955 return header_addr; 3956 } 3957 3958 uint32_t 3959 ObjectFileMachO::GetNumThreadContexts () 3960 { 3961 ModuleSP module_sp(GetModule()); 3962 if (module_sp) 3963 { 3964 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3965 if (!m_thread_context_offsets_valid) 3966 { 3967 m_thread_context_offsets_valid = true; 3968 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3969 FileRangeArray::Entry file_range; 3970 thread_command thread_cmd; 3971 for (uint32_t i=0; i<m_header.ncmds; ++i) 3972 { 3973 const uint32_t cmd_offset = offset; 3974 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 3975 break; 3976 3977 if (thread_cmd.cmd == LoadCommandThread) 3978 { 3979 file_range.SetRangeBase (offset); 3980 file_range.SetByteSize (thread_cmd.cmdsize - 8); 3981 m_thread_context_offsets.Append (file_range); 3982 } 3983 offset = cmd_offset + thread_cmd.cmdsize; 3984 } 3985 } 3986 } 3987 return m_thread_context_offsets.GetSize(); 3988 } 3989 3990 lldb::RegisterContextSP 3991 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 3992 { 3993 lldb::RegisterContextSP reg_ctx_sp; 3994 3995 ModuleSP module_sp(GetModule()); 3996 if (module_sp) 3997 { 3998 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3999 if (!m_thread_context_offsets_valid) 4000 GetNumThreadContexts (); 4001 4002 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 4003 if (thread_context_file_range) 4004 { 4005 4006 DataExtractor data (m_data, 4007 thread_context_file_range->GetRangeBase(), 4008 thread_context_file_range->GetByteSize()); 4009 4010 switch (m_header.cputype) 4011 { 4012 case llvm::MachO::CPUTypeARM: 4013 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 4014 break; 4015 4016 case llvm::MachO::CPUTypeI386: 4017 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 4018 break; 4019 4020 case llvm::MachO::CPUTypeX86_64: 4021 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 4022 break; 4023 } 4024 } 4025 } 4026 return reg_ctx_sp; 4027 } 4028 4029 4030 ObjectFile::Type 4031 ObjectFileMachO::CalculateType() 4032 { 4033 switch (m_header.filetype) 4034 { 4035 case HeaderFileTypeObject: // 0x1u MH_OBJECT 4036 if (GetAddressByteSize () == 4) 4037 { 4038 // 32 bit kexts are just object files, but they do have a valid 4039 // UUID load command. 4040 UUID uuid; 4041 if (GetUUID(&uuid)) 4042 { 4043 // this checking for the UUID load command is not enough 4044 // we could eventually look for the symbol named 4045 // "OSKextGetCurrentIdentifier" as this is required of kexts 4046 if (m_strata == eStrataInvalid) 4047 m_strata = eStrataKernel; 4048 return eTypeSharedLibrary; 4049 } 4050 } 4051 return eTypeObjectFile; 4052 4053 case HeaderFileTypeExecutable: return eTypeExecutable; // 0x2u MH_EXECUTE 4054 case HeaderFileTypeFixedVMShlib: return eTypeSharedLibrary; // 0x3u MH_FVMLIB 4055 case HeaderFileTypeCore: return eTypeCoreFile; // 0x4u MH_CORE 4056 case HeaderFileTypePreloadedExecutable: return eTypeSharedLibrary; // 0x5u MH_PRELOAD 4057 case HeaderFileTypeDynamicShlib: return eTypeSharedLibrary; // 0x6u MH_DYLIB 4058 case HeaderFileTypeDynamicLinkEditor: return eTypeDynamicLinker; // 0x7u MH_DYLINKER 4059 case HeaderFileTypeBundle: return eTypeSharedLibrary; // 0x8u MH_BUNDLE 4060 case HeaderFileTypeDynamicShlibStub: return eTypeStubLibrary; // 0x9u MH_DYLIB_STUB 4061 case HeaderFileTypeDSYM: return eTypeDebugInfo; // 0xAu MH_DSYM 4062 case HeaderFileTypeKextBundle: return eTypeSharedLibrary; // 0xBu MH_KEXT_BUNDLE 4063 default: 4064 break; 4065 } 4066 return eTypeUnknown; 4067 } 4068 4069 ObjectFile::Strata 4070 ObjectFileMachO::CalculateStrata() 4071 { 4072 switch (m_header.filetype) 4073 { 4074 case HeaderFileTypeObject: // 0x1u MH_OBJECT 4075 { 4076 // 32 bit kexts are just object files, but they do have a valid 4077 // UUID load command. 4078 UUID uuid; 4079 if (GetUUID(&uuid)) 4080 { 4081 // this checking for the UUID load command is not enough 4082 // we could eventually look for the symbol named 4083 // "OSKextGetCurrentIdentifier" as this is required of kexts 4084 if (m_type == eTypeInvalid) 4085 m_type = eTypeSharedLibrary; 4086 4087 return eStrataKernel; 4088 } 4089 } 4090 return eStrataUnknown; 4091 4092 case HeaderFileTypeExecutable: // 0x2u MH_EXECUTE 4093 // Check for the MH_DYLDLINK bit in the flags 4094 if (m_header.flags & HeaderFlagBitIsDynamicLinkObject) 4095 { 4096 return eStrataUser; 4097 } 4098 else 4099 { 4100 SectionList *section_list = GetSectionList(); 4101 if (section_list) 4102 { 4103 static ConstString g_kld_section_name ("__KLD"); 4104 if (section_list->FindSectionByName(g_kld_section_name)) 4105 return eStrataKernel; 4106 } 4107 } 4108 return eStrataRawImage; 4109 4110 case HeaderFileTypeFixedVMShlib: return eStrataUser; // 0x3u MH_FVMLIB 4111 case HeaderFileTypeCore: return eStrataUnknown; // 0x4u MH_CORE 4112 case HeaderFileTypePreloadedExecutable: return eStrataRawImage; // 0x5u MH_PRELOAD 4113 case HeaderFileTypeDynamicShlib: return eStrataUser; // 0x6u MH_DYLIB 4114 case HeaderFileTypeDynamicLinkEditor: return eStrataUser; // 0x7u MH_DYLINKER 4115 case HeaderFileTypeBundle: return eStrataUser; // 0x8u MH_BUNDLE 4116 case HeaderFileTypeDynamicShlibStub: return eStrataUser; // 0x9u MH_DYLIB_STUB 4117 case HeaderFileTypeDSYM: return eStrataUnknown; // 0xAu MH_DSYM 4118 case HeaderFileTypeKextBundle: return eStrataKernel; // 0xBu MH_KEXT_BUNDLE 4119 default: 4120 break; 4121 } 4122 return eStrataUnknown; 4123 } 4124 4125 4126 uint32_t 4127 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 4128 { 4129 ModuleSP module_sp(GetModule()); 4130 if (module_sp) 4131 { 4132 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4133 struct dylib_command load_cmd; 4134 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4135 uint32_t version_cmd = 0; 4136 uint64_t version = 0; 4137 uint32_t i; 4138 for (i=0; i<m_header.ncmds; ++i) 4139 { 4140 const lldb::offset_t cmd_offset = offset; 4141 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4142 break; 4143 4144 if (load_cmd.cmd == LoadCommandDylibIdent) 4145 { 4146 if (version_cmd == 0) 4147 { 4148 version_cmd = load_cmd.cmd; 4149 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 4150 break; 4151 version = load_cmd.dylib.current_version; 4152 } 4153 break; // Break for now unless there is another more complete version 4154 // number load command in the future. 4155 } 4156 offset = cmd_offset + load_cmd.cmdsize; 4157 } 4158 4159 if (version_cmd == LoadCommandDylibIdent) 4160 { 4161 if (versions != NULL && num_versions > 0) 4162 { 4163 if (num_versions > 0) 4164 versions[0] = (version & 0xFFFF0000ull) >> 16; 4165 if (num_versions > 1) 4166 versions[1] = (version & 0x0000FF00ull) >> 8; 4167 if (num_versions > 2) 4168 versions[2] = (version & 0x000000FFull); 4169 // Fill in an remaining version numbers with invalid values 4170 for (i=3; i<num_versions; ++i) 4171 versions[i] = UINT32_MAX; 4172 } 4173 // The LC_ID_DYLIB load command has a version with 3 version numbers 4174 // in it, so always return 3 4175 return 3; 4176 } 4177 } 4178 return false; 4179 } 4180 4181 bool 4182 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 4183 { 4184 ModuleSP module_sp(GetModule()); 4185 if (module_sp) 4186 { 4187 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4188 arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 4189 4190 // Files with type MH_PRELOAD are currently used in cases where the image 4191 // debugs at the addresses in the file itself. Below we set the OS to 4192 // unknown to make sure we use the DynamicLoaderStatic()... 4193 if (m_header.filetype == HeaderFileTypePreloadedExecutable) 4194 { 4195 arch.GetTriple().setOS (llvm::Triple::UnknownOS); 4196 } 4197 return true; 4198 } 4199 return false; 4200 } 4201 4202 4203 UUID 4204 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 4205 { 4206 UUID uuid; 4207 if (process) 4208 { 4209 addr_t all_image_infos = process->GetImageInfoAddress(); 4210 4211 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 4212 // or it may be the address of the dyld_all_image_infos structure (want). The first four 4213 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 4214 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 4215 4216 Error err; 4217 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 4218 if (version_or_magic != -1 4219 && version_or_magic != HeaderMagic32 4220 && version_or_magic != HeaderMagic32Swapped 4221 && version_or_magic != HeaderMagic64 4222 && version_or_magic != HeaderMagic64Swapped 4223 && version_or_magic >= 13) 4224 { 4225 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 4226 int wordsize = process->GetAddressByteSize(); 4227 if (wordsize == 8) 4228 { 4229 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 4230 } 4231 if (wordsize == 4) 4232 { 4233 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 4234 } 4235 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 4236 { 4237 uuid_t shared_cache_uuid; 4238 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 4239 { 4240 uuid.SetBytes (shared_cache_uuid); 4241 } 4242 } 4243 } 4244 } 4245 return uuid; 4246 } 4247 4248 UUID 4249 ObjectFileMachO::GetLLDBSharedCacheUUID () 4250 { 4251 UUID uuid; 4252 #if defined (__APPLE__) && defined (__arm__) 4253 uint8_t *(*dyld_get_all_image_infos)(void); 4254 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 4255 if (dyld_get_all_image_infos) 4256 { 4257 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 4258 if (dyld_all_image_infos_address) 4259 { 4260 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 4261 if (*version >= 13) 4262 { 4263 uuid_t *sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 4264 uuid.SetBytes (sharedCacheUUID_address); 4265 } 4266 } 4267 } 4268 #endif 4269 return uuid; 4270 } 4271 4272 4273 //------------------------------------------------------------------ 4274 // PluginInterface protocol 4275 //------------------------------------------------------------------ 4276 lldb_private::ConstString 4277 ObjectFileMachO::GetPluginName() 4278 { 4279 return GetPluginNameStatic(); 4280 } 4281 4282 uint32_t 4283 ObjectFileMachO::GetPluginVersion() 4284 { 4285 return 1; 4286 } 4287 4288