Home | History | Annotate | Download | only in IterativeSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2012, 2014 Kolja Brix <brix (at) igpm.rwth-aaachen.de>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_GMRES_H
     12 #define EIGEN_GMRES_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 /**
     19  * Generalized Minimal Residual Algorithm based on the
     20  * Arnoldi algorithm implemented with Householder reflections.
     21  *
     22  * Parameters:
     23  *  \param mat       matrix of linear system of equations
     24  *  \param Rhs       right hand side vector of linear system of equations
     25  *  \param x         on input: initial guess, on output: solution
     26  *  \param precond   preconditioner used
     27  *  \param iters     on input: maximum number of iterations to perform
     28  *                   on output: number of iterations performed
     29  *  \param restart   number of iterations for a restart
     30  *  \param tol_error on input: residual tolerance
     31  *                   on output: residuum achieved
     32  *
     33  * \sa IterativeMethods::bicgstab()
     34  *
     35  *
     36  * For references, please see:
     37  *
     38  * Saad, Y. and Schultz, M. H.
     39  * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
     40  * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
     41  *
     42  * Saad, Y.
     43  * Iterative Methods for Sparse Linear Systems.
     44  * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
     45  *
     46  * Walker, H. F.
     47  * Implementations of the GMRES method.
     48  * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
     49  *
     50  * Walker, H. F.
     51  * Implementation of the GMRES Method using Householder Transformations.
     52  * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
     53  *
     54  */
     55 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
     56 bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
     57 		int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
     58 
     59 	using std::sqrt;
     60 	using std::abs;
     61 
     62 	typedef typename Dest::RealScalar RealScalar;
     63 	typedef typename Dest::Scalar Scalar;
     64 	typedef Matrix < Scalar, Dynamic, 1 > VectorType;
     65 	typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
     66 
     67 	RealScalar tol = tol_error;
     68 	const int maxIters = iters;
     69 	iters = 0;
     70 
     71 	const int m = mat.rows();
     72 
     73 	VectorType p0 = rhs - mat*x;
     74 	VectorType r0 = precond.solve(p0);
     75 
     76 	// is initial guess already good enough?
     77 	if(abs(r0.norm()) < tol) {
     78 		return true;
     79 	}
     80 
     81 	VectorType w = VectorType::Zero(restart + 1);
     82 
     83 	FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix
     84 	VectorType tau = VectorType::Zero(restart + 1);
     85 	std::vector < JacobiRotation < Scalar > > G(restart);
     86 
     87 	// generate first Householder vector
     88 	VectorType e(m-1);
     89 	RealScalar beta;
     90 	r0.makeHouseholder(e, tau.coeffRef(0), beta);
     91 	w(0)=(Scalar) beta;
     92 	H.bottomLeftCorner(m - 1, 1) = e;
     93 
     94 	for (int k = 1; k <= restart; ++k) {
     95 
     96 		++iters;
     97 
     98 		VectorType v = VectorType::Unit(m, k - 1), workspace(m);
     99 
    100 		// apply Householder reflections H_{1} ... H_{k-1} to v
    101 		for (int i = k - 1; i >= 0; --i) {
    102 			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
    103 		}
    104 
    105 		// apply matrix M to v:  v = mat * v;
    106 		VectorType t=mat*v;
    107 		v=precond.solve(t);
    108 
    109 		// apply Householder reflections H_{k-1} ... H_{1} to v
    110 		for (int i = 0; i < k; ++i) {
    111 			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
    112 		}
    113 
    114 		if (v.tail(m - k).norm() != 0.0) {
    115 
    116 			if (k <= restart) {
    117 
    118 				// generate new Householder vector
    119                                   VectorType e(m - k - 1);
    120 				RealScalar beta;
    121 				v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
    122 				H.col(k).tail(m - k - 1) = e;
    123 
    124 				// apply Householder reflection H_{k} to v
    125 				v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
    126 
    127 			}
    128                 }
    129 
    130                 if (k > 1) {
    131                         for (int i = 0; i < k - 1; ++i) {
    132                                 // apply old Givens rotations to v
    133                                 v.applyOnTheLeft(i, i + 1, G[i].adjoint());
    134                         }
    135                 }
    136 
    137                 if (k<m && v(k) != (Scalar) 0) {
    138                         // determine next Givens rotation
    139                         G[k - 1].makeGivens(v(k - 1), v(k));
    140 
    141                         // apply Givens rotation to v and w
    142                         v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
    143                         w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
    144 
    145                 }
    146 
    147                 // insert coefficients into upper matrix triangle
    148                 H.col(k - 1).head(k) = v.head(k);
    149 
    150                 bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
    151 
    152                 if (stop || k == restart) {
    153 
    154                         // solve upper triangular system
    155                         VectorType y = w.head(k);
    156                         H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
    157 
    158                         // use Horner-like scheme to calculate solution vector
    159                         VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
    160 
    161                         // apply Householder reflection H_{k} to x_new
    162                         x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
    163 
    164                         for (int i = k - 2; i >= 0; --i) {
    165                                 x_new += y(i) * VectorType::Unit(m, i);
    166                                 // apply Householder reflection H_{i} to x_new
    167                                 x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
    168                         }
    169 
    170                         x += x_new;
    171 
    172                         if (stop) {
    173                                 return true;
    174                         } else {
    175                                 k=0;
    176 
    177                                 // reset data for a restart  r0 = rhs - mat * x;
    178                                 VectorType p0=mat*x;
    179                                 VectorType p1=precond.solve(p0);
    180                                 r0 = rhs - p1;
    181 //                                 r0_sqnorm = r0.squaredNorm();
    182                                 w = VectorType::Zero(restart + 1);
    183                                 H = FMatrixType::Zero(m, restart + 1);
    184                                 tau = VectorType::Zero(restart + 1);
    185 
    186                                 // generate first Householder vector
    187                                 RealScalar beta;
    188                                 r0.makeHouseholder(e, tau.coeffRef(0), beta);
    189                                 w(0)=(Scalar) beta;
    190                                 H.bottomLeftCorner(m - 1, 1) = e;
    191 
    192                         }
    193 
    194                 }
    195 
    196 
    197 
    198 	}
    199 
    200 	return false;
    201 
    202 }
    203 
    204 }
    205 
    206 template< typename _MatrixType,
    207           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
    208 class GMRES;
    209 
    210 namespace internal {
    211 
    212 template< typename _MatrixType, typename _Preconditioner>
    213 struct traits<GMRES<_MatrixType,_Preconditioner> >
    214 {
    215   typedef _MatrixType MatrixType;
    216   typedef _Preconditioner Preconditioner;
    217 };
    218 
    219 }
    220 
    221 /** \ingroup IterativeLinearSolvers_Module
    222   * \brief A GMRES solver for sparse square problems
    223   *
    224   * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
    225   * residual method. The vectors x and b can be either dense or sparse.
    226   *
    227   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
    228   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
    229   *
    230   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
    231   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
    232   * and NumTraits<Scalar>::epsilon() for the tolerance.
    233   *
    234   * This class can be used as the direct solver classes. Here is a typical usage example:
    235   * \code
    236   * int n = 10000;
    237   * VectorXd x(n), b(n);
    238   * SparseMatrix<double> A(n,n);
    239   * // fill A and b
    240   * GMRES<SparseMatrix<double> > solver(A);
    241   * x = solver.solve(b);
    242   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
    243   * std::cout << "estimated error: " << solver.error()      << std::endl;
    244   * // update b, and solve again
    245   * x = solver.solve(b);
    246   * \endcode
    247   *
    248   * By default the iterations start with x=0 as an initial guess of the solution.
    249   * One can control the start using the solveWithGuess() method. Here is a step by
    250   * step execution example starting with a random guess and printing the evolution
    251   * of the estimated error:
    252   * * \code
    253   * x = VectorXd::Random(n);
    254   * solver.setMaxIterations(1);
    255   * int i = 0;
    256   * do {
    257   *   x = solver.solveWithGuess(b,x);
    258   *   std::cout << i << " : " << solver.error() << std::endl;
    259   *   ++i;
    260   * } while (solver.info()!=Success && i<100);
    261   * \endcode
    262   * Note that such a step by step excution is slightly slower.
    263   *
    264   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
    265   */
    266 template< typename _MatrixType, typename _Preconditioner>
    267 class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
    268 {
    269   typedef IterativeSolverBase<GMRES> Base;
    270   using Base::mp_matrix;
    271   using Base::m_error;
    272   using Base::m_iterations;
    273   using Base::m_info;
    274   using Base::m_isInitialized;
    275 
    276 private:
    277   int m_restart;
    278 
    279 public:
    280   typedef _MatrixType MatrixType;
    281   typedef typename MatrixType::Scalar Scalar;
    282   typedef typename MatrixType::Index Index;
    283   typedef typename MatrixType::RealScalar RealScalar;
    284   typedef _Preconditioner Preconditioner;
    285 
    286 public:
    287 
    288   /** Default constructor. */
    289   GMRES() : Base(), m_restart(30) {}
    290 
    291   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    292     *
    293     * This constructor is a shortcut for the default constructor followed
    294     * by a call to compute().
    295     *
    296     * \warning this class stores a reference to the matrix A as well as some
    297     * precomputed values that depend on it. Therefore, if \a A is changed
    298     * this class becomes invalid. Call compute() to update it with the new
    299     * matrix A, or modify a copy of A.
    300     */
    301   GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
    302 
    303   ~GMRES() {}
    304 
    305   /** Get the number of iterations after that a restart is performed.
    306     */
    307   int get_restart() { return m_restart; }
    308 
    309   /** Set the number of iterations after that a restart is performed.
    310     *  \param restart   number of iterations for a restarti, default is 30.
    311     */
    312   void set_restart(const int restart) { m_restart=restart; }
    313 
    314   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    315     * \a x0 as an initial solution.
    316     *
    317     * \sa compute()
    318     */
    319   template<typename Rhs,typename Guess>
    320   inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
    321   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
    322   {
    323     eigen_assert(m_isInitialized && "GMRES is not initialized.");
    324     eigen_assert(Base::rows()==b.rows()
    325               && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
    326     return internal::solve_retval_with_guess
    327             <GMRES, Rhs, Guess>(*this, b.derived(), x0);
    328   }
    329 
    330   /** \internal */
    331   template<typename Rhs,typename Dest>
    332   void _solveWithGuess(const Rhs& b, Dest& x) const
    333   {
    334     bool failed = false;
    335     for(int j=0; j<b.cols(); ++j)
    336     {
    337       m_iterations = Base::maxIterations();
    338       m_error = Base::m_tolerance;
    339 
    340       typename Dest::ColXpr xj(x,j);
    341       if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
    342         failed = true;
    343     }
    344     m_info = failed ? NumericalIssue
    345            : m_error <= Base::m_tolerance ? Success
    346            : NoConvergence;
    347     m_isInitialized = true;
    348   }
    349 
    350   /** \internal */
    351   template<typename Rhs,typename Dest>
    352   void _solve(const Rhs& b, Dest& x) const
    353   {
    354     x = b;
    355     if(x.squaredNorm() == 0) return; // Check Zero right hand side
    356     _solveWithGuess(b,x);
    357   }
    358 
    359 protected:
    360 
    361 };
    362 
    363 
    364 namespace internal {
    365 
    366   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
    367 struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
    368   : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
    369 {
    370   typedef GMRES<_MatrixType, _Preconditioner> Dec;
    371   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    372 
    373   template<typename Dest> void evalTo(Dest& dst) const
    374   {
    375     dec()._solve(rhs(),dst);
    376   }
    377 };
    378 
    379 } // end namespace internal
    380 
    381 } // end namespace Eigen
    382 
    383 #endif // EIGEN_GMRES_H
    384