1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h" 6 7 // Some headers on Android are missing cdefs: crbug.com/172337. 8 // (We can't use OS_ANDROID here since build_config.h is not included). 9 #if defined(ANDROID) 10 #include <sys/cdefs.h> 11 #endif 12 13 #include <errno.h> 14 #include <fcntl.h> 15 #include <linux/filter.h> 16 #include <signal.h> 17 #include <string.h> 18 #include <sys/prctl.h> 19 #include <sys/stat.h> 20 #include <sys/syscall.h> 21 #include <sys/types.h> 22 #include <sys/wait.h> 23 #include <time.h> 24 #include <unistd.h> 25 26 #include <limits> 27 28 #include "base/compiler_specific.h" 29 #include "base/logging.h" 30 #include "base/macros.h" 31 #include "base/memory/scoped_ptr.h" 32 #include "base/posix/eintr_wrapper.h" 33 #include "sandbox/linux/seccomp-bpf/codegen.h" 34 #include "sandbox/linux/seccomp-bpf/die.h" 35 #include "sandbox/linux/seccomp-bpf/errorcode.h" 36 #include "sandbox/linux/seccomp-bpf/instruction.h" 37 #include "sandbox/linux/seccomp-bpf/linux_seccomp.h" 38 #include "sandbox/linux/seccomp-bpf/sandbox_bpf_policy.h" 39 #include "sandbox/linux/seccomp-bpf/syscall.h" 40 #include "sandbox/linux/seccomp-bpf/syscall_iterator.h" 41 #include "sandbox/linux/seccomp-bpf/trap.h" 42 #include "sandbox/linux/seccomp-bpf/verifier.h" 43 #include "sandbox/linux/services/linux_syscalls.h" 44 45 namespace sandbox { 46 47 namespace { 48 49 const int kExpectedExitCode = 100; 50 51 #if defined(__i386__) || defined(__x86_64__) 52 const bool kIsIntel = true; 53 #else 54 const bool kIsIntel = false; 55 #endif 56 #if defined(__x86_64__) && defined(__ILP32__) 57 const bool kIsX32 = true; 58 #else 59 const bool kIsX32 = false; 60 #endif 61 62 const int kSyscallsRequiredForUnsafeTraps[] = { 63 __NR_rt_sigprocmask, 64 __NR_rt_sigreturn, 65 #if defined(__NR_sigprocmask) 66 __NR_sigprocmask, 67 #endif 68 #if defined(__NR_sigreturn) 69 __NR_sigreturn, 70 #endif 71 }; 72 73 bool HasExactlyOneBit(uint64_t x) { 74 // Common trick; e.g., see http://stackoverflow.com/a/108329. 75 return x != 0 && (x & (x - 1)) == 0; 76 } 77 78 #if !defined(NDEBUG) 79 void WriteFailedStderrSetupMessage(int out_fd) { 80 const char* error_string = strerror(errno); 81 static const char msg[] = 82 "You have reproduced a puzzling issue.\n" 83 "Please, report to crbug.com/152530!\n" 84 "Failed to set up stderr: "; 85 if (HANDLE_EINTR(write(out_fd, msg, sizeof(msg) - 1)) > 0 && error_string && 86 HANDLE_EINTR(write(out_fd, error_string, strlen(error_string))) > 0 && 87 HANDLE_EINTR(write(out_fd, "\n", 1))) { 88 } 89 } 90 #endif // !defined(NDEBUG) 91 92 // We define a really simple sandbox policy. It is just good enough for us 93 // to tell that the sandbox has actually been activated. 94 class ProbePolicy : public SandboxBPFPolicy { 95 public: 96 ProbePolicy() {} 97 virtual ErrorCode EvaluateSyscall(SandboxBPF*, int sysnum) const OVERRIDE { 98 switch (sysnum) { 99 case __NR_getpid: 100 // Return EPERM so that we can check that the filter actually ran. 101 return ErrorCode(EPERM); 102 case __NR_exit_group: 103 // Allow exit() with a non-default return code. 104 return ErrorCode(ErrorCode::ERR_ALLOWED); 105 default: 106 // Make everything else fail in an easily recognizable way. 107 return ErrorCode(EINVAL); 108 } 109 } 110 111 private: 112 DISALLOW_COPY_AND_ASSIGN(ProbePolicy); 113 }; 114 115 void ProbeProcess(void) { 116 if (syscall(__NR_getpid) < 0 && errno == EPERM) { 117 syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode)); 118 } 119 } 120 121 class AllowAllPolicy : public SandboxBPFPolicy { 122 public: 123 AllowAllPolicy() {} 124 virtual ErrorCode EvaluateSyscall(SandboxBPF*, int sysnum) const OVERRIDE { 125 DCHECK(SandboxBPF::IsValidSyscallNumber(sysnum)); 126 return ErrorCode(ErrorCode::ERR_ALLOWED); 127 } 128 129 private: 130 DISALLOW_COPY_AND_ASSIGN(AllowAllPolicy); 131 }; 132 133 void TryVsyscallProcess(void) { 134 time_t current_time; 135 // time() is implemented as a vsyscall. With an older glibc, with 136 // vsyscall=emulate and some versions of the seccomp BPF patch 137 // we may get SIGKILL-ed. Detect this! 138 if (time(¤t_time) != static_cast<time_t>(-1)) { 139 syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode)); 140 } 141 } 142 143 bool IsSingleThreaded(int proc_fd) { 144 if (proc_fd < 0) { 145 // Cannot determine whether program is single-threaded. Hope for 146 // the best... 147 return true; 148 } 149 150 struct stat sb; 151 int task = -1; 152 if ((task = openat(proc_fd, "self/task", O_RDONLY | O_DIRECTORY)) < 0 || 153 fstat(task, &sb) != 0 || sb.st_nlink != 3 || IGNORE_EINTR(close(task))) { 154 if (task >= 0) { 155 if (IGNORE_EINTR(close(task))) { 156 } 157 } 158 return false; 159 } 160 return true; 161 } 162 163 bool IsDenied(const ErrorCode& code) { 164 return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP || 165 (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) && 166 code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO)); 167 } 168 169 // Function that can be passed as a callback function to CodeGen::Traverse(). 170 // Checks whether the "insn" returns an UnsafeTrap() ErrorCode. If so, it 171 // sets the "bool" variable pointed to by "aux". 172 void CheckForUnsafeErrorCodes(Instruction* insn, void* aux) { 173 bool* is_unsafe = static_cast<bool*>(aux); 174 if (!*is_unsafe) { 175 if (BPF_CLASS(insn->code) == BPF_RET && insn->k > SECCOMP_RET_TRAP && 176 insn->k - SECCOMP_RET_TRAP <= SECCOMP_RET_DATA) { 177 if (!Trap::IsSafeTrapId(insn->k & SECCOMP_RET_DATA)) { 178 *is_unsafe = true; 179 } 180 } 181 } 182 } 183 184 // A Trap() handler that returns an "errno" value. The value is encoded 185 // in the "aux" parameter. 186 intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) { 187 // TrapFnc functions report error by following the native kernel convention 188 // of returning an exit code in the range of -1..-4096. They do not try to 189 // set errno themselves. The glibc wrapper that triggered the SIGSYS will 190 // ultimately do so for us. 191 int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA; 192 return -err; 193 } 194 195 // Function that can be passed as a callback function to CodeGen::Traverse(). 196 // Checks whether the "insn" returns an errno value from a BPF filter. If so, 197 // it rewrites the instruction to instead call a Trap() handler that does 198 // the same thing. "aux" is ignored. 199 void RedirectToUserspace(Instruction* insn, void* aux) { 200 // When inside an UnsafeTrap() callback, we want to allow all system calls. 201 // This means, we must conditionally disable the sandbox -- and that's not 202 // something that kernel-side BPF filters can do, as they cannot inspect 203 // any state other than the syscall arguments. 204 // But if we redirect all error handlers to user-space, then we can easily 205 // make this decision. 206 // The performance penalty for this extra round-trip to user-space is not 207 // actually that bad, as we only ever pay it for denied system calls; and a 208 // typical program has very few of these. 209 SandboxBPF* sandbox = static_cast<SandboxBPF*>(aux); 210 if (BPF_CLASS(insn->code) == BPF_RET && 211 (insn->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) { 212 insn->k = sandbox->Trap(ReturnErrno, 213 reinterpret_cast<void*>(insn->k & SECCOMP_RET_DATA)).err(); 214 } 215 } 216 217 // This wraps an existing policy and changes its behavior to match the changes 218 // made by RedirectToUserspace(). This is part of the framework that allows BPF 219 // evaluation in userland. 220 // TODO(markus): document the code inside better. 221 class RedirectToUserSpacePolicyWrapper : public SandboxBPFPolicy { 222 public: 223 explicit RedirectToUserSpacePolicyWrapper( 224 const SandboxBPFPolicy* wrapped_policy) 225 : wrapped_policy_(wrapped_policy) { 226 DCHECK(wrapped_policy_); 227 } 228 229 virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox_compiler, 230 int system_call_number) const OVERRIDE { 231 ErrorCode err = 232 wrapped_policy_->EvaluateSyscall(sandbox_compiler, system_call_number); 233 ChangeErrnoToTraps(&err, sandbox_compiler); 234 return err; 235 } 236 237 virtual ErrorCode InvalidSyscall( 238 SandboxBPF* sandbox_compiler) const OVERRIDE { 239 return ReturnErrnoViaTrap(sandbox_compiler, ENOSYS); 240 } 241 242 private: 243 ErrorCode ReturnErrnoViaTrap(SandboxBPF* sandbox_compiler, int err) const { 244 return sandbox_compiler->Trap(ReturnErrno, reinterpret_cast<void*>(err)); 245 } 246 247 // ChangeErrnoToTraps recursivly iterates through the ErrorCode 248 // converting any ERRNO to a userspace trap 249 void ChangeErrnoToTraps(ErrorCode* err, SandboxBPF* sandbox_compiler) const { 250 if (err->error_type() == ErrorCode::ET_SIMPLE && 251 (err->err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) { 252 // Have an errno, need to change this to a trap 253 *err = 254 ReturnErrnoViaTrap(sandbox_compiler, err->err() & SECCOMP_RET_DATA); 255 return; 256 } else if (err->error_type() == ErrorCode::ET_COND) { 257 // Need to explore both paths 258 ChangeErrnoToTraps((ErrorCode*)err->passed(), sandbox_compiler); 259 ChangeErrnoToTraps((ErrorCode*)err->failed(), sandbox_compiler); 260 return; 261 } else if (err->error_type() == ErrorCode::ET_TRAP) { 262 return; 263 } else if (err->error_type() == ErrorCode::ET_SIMPLE && 264 (err->err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ALLOW) { 265 return; 266 } 267 NOTREACHED(); 268 } 269 270 const SandboxBPFPolicy* wrapped_policy_; 271 DISALLOW_COPY_AND_ASSIGN(RedirectToUserSpacePolicyWrapper); 272 }; 273 274 intptr_t BPFFailure(const struct arch_seccomp_data&, void* aux) { 275 SANDBOX_DIE(static_cast<char*>(aux)); 276 } 277 278 } // namespace 279 280 SandboxBPF::SandboxBPF() 281 : quiet_(false), 282 proc_fd_(-1), 283 conds_(new Conds), 284 sandbox_has_started_(false) {} 285 286 SandboxBPF::~SandboxBPF() { 287 // It is generally unsafe to call any memory allocator operations or to even 288 // call arbitrary destructors after having installed a new policy. We just 289 // have no way to tell whether this policy would allow the system calls that 290 // the constructors can trigger. 291 // So, we normally destroy all of our complex state prior to starting the 292 // sandbox. But this won't happen, if the Sandbox object was created and 293 // never actually used to set up a sandbox. So, just in case, we are 294 // destroying any remaining state. 295 // The "if ()" statements are technically superfluous. But let's be explicit 296 // that we really don't want to run any code, when we already destroyed 297 // objects before setting up the sandbox. 298 if (conds_) { 299 delete conds_; 300 } 301 } 302 303 bool SandboxBPF::IsValidSyscallNumber(int sysnum) { 304 return SyscallIterator::IsValid(sysnum); 305 } 306 307 bool SandboxBPF::RunFunctionInPolicy(void (*code_in_sandbox)(), 308 scoped_ptr<SandboxBPFPolicy> policy) { 309 // Block all signals before forking a child process. This prevents an 310 // attacker from manipulating our test by sending us an unexpected signal. 311 sigset_t old_mask, new_mask; 312 if (sigfillset(&new_mask) || sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) { 313 SANDBOX_DIE("sigprocmask() failed"); 314 } 315 int fds[2]; 316 if (pipe2(fds, O_NONBLOCK | O_CLOEXEC)) { 317 SANDBOX_DIE("pipe() failed"); 318 } 319 320 if (fds[0] <= 2 || fds[1] <= 2) { 321 SANDBOX_DIE("Process started without standard file descriptors"); 322 } 323 324 // This code is using fork() and should only ever run single-threaded. 325 // Most of the code below is "async-signal-safe" and only minor changes 326 // would be needed to support threads. 327 DCHECK(IsSingleThreaded(proc_fd_)); 328 pid_t pid = fork(); 329 if (pid < 0) { 330 // Die if we cannot fork(). We would probably fail a little later 331 // anyway, as the machine is likely very close to running out of 332 // memory. 333 // But what we don't want to do is return "false", as a crafty 334 // attacker might cause fork() to fail at will and could trick us 335 // into running without a sandbox. 336 sigprocmask(SIG_SETMASK, &old_mask, NULL); // OK, if it fails 337 SANDBOX_DIE("fork() failed unexpectedly"); 338 } 339 340 // In the child process 341 if (!pid) { 342 // Test a very simple sandbox policy to verify that we can 343 // successfully turn on sandboxing. 344 Die::EnableSimpleExit(); 345 346 errno = 0; 347 if (IGNORE_EINTR(close(fds[0]))) { 348 // This call to close() has been failing in strange ways. See 349 // crbug.com/152530. So we only fail in debug mode now. 350 #if !defined(NDEBUG) 351 WriteFailedStderrSetupMessage(fds[1]); 352 SANDBOX_DIE(NULL); 353 #endif 354 } 355 if (HANDLE_EINTR(dup2(fds[1], 2)) != 2) { 356 // Stderr could very well be a file descriptor to .xsession-errors, or 357 // another file, which could be backed by a file system that could cause 358 // dup2 to fail while trying to close stderr. It's important that we do 359 // not fail on trying to close stderr. 360 // If dup2 fails here, we will continue normally, this means that our 361 // parent won't cause a fatal failure if something writes to stderr in 362 // this child. 363 #if !defined(NDEBUG) 364 // In DEBUG builds, we still want to get a report. 365 WriteFailedStderrSetupMessage(fds[1]); 366 SANDBOX_DIE(NULL); 367 #endif 368 } 369 if (IGNORE_EINTR(close(fds[1]))) { 370 // This call to close() has been failing in strange ways. See 371 // crbug.com/152530. So we only fail in debug mode now. 372 #if !defined(NDEBUG) 373 WriteFailedStderrSetupMessage(fds[1]); 374 SANDBOX_DIE(NULL); 375 #endif 376 } 377 378 SetSandboxPolicy(policy.release()); 379 if (!StartSandbox(PROCESS_SINGLE_THREADED)) { 380 SANDBOX_DIE(NULL); 381 } 382 383 // Run our code in the sandbox. 384 code_in_sandbox(); 385 386 // code_in_sandbox() is not supposed to return here. 387 SANDBOX_DIE(NULL); 388 } 389 390 // In the parent process. 391 if (IGNORE_EINTR(close(fds[1]))) { 392 SANDBOX_DIE("close() failed"); 393 } 394 if (sigprocmask(SIG_SETMASK, &old_mask, NULL)) { 395 SANDBOX_DIE("sigprocmask() failed"); 396 } 397 int status; 398 if (HANDLE_EINTR(waitpid(pid, &status, 0)) != pid) { 399 SANDBOX_DIE("waitpid() failed unexpectedly"); 400 } 401 bool rc = WIFEXITED(status) && WEXITSTATUS(status) == kExpectedExitCode; 402 403 // If we fail to support sandboxing, there might be an additional 404 // error message. If so, this was an entirely unexpected and fatal 405 // failure. We should report the failure and somebody must fix 406 // things. This is probably a security-critical bug in the sandboxing 407 // code. 408 if (!rc) { 409 char buf[4096]; 410 ssize_t len = HANDLE_EINTR(read(fds[0], buf, sizeof(buf) - 1)); 411 if (len > 0) { 412 while (len > 1 && buf[len - 1] == '\n') { 413 --len; 414 } 415 buf[len] = '\000'; 416 SANDBOX_DIE(buf); 417 } 418 } 419 if (IGNORE_EINTR(close(fds[0]))) { 420 SANDBOX_DIE("close() failed"); 421 } 422 423 return rc; 424 } 425 426 bool SandboxBPF::KernelSupportSeccompBPF() { 427 return RunFunctionInPolicy(ProbeProcess, 428 scoped_ptr<SandboxBPFPolicy>(new ProbePolicy())) && 429 RunFunctionInPolicy( 430 TryVsyscallProcess, 431 scoped_ptr<SandboxBPFPolicy>(new AllowAllPolicy())); 432 } 433 434 // static 435 SandboxBPF::SandboxStatus SandboxBPF::SupportsSeccompSandbox(int proc_fd) { 436 // It the sandbox is currently active, we clearly must have support for 437 // sandboxing. 438 if (status_ == STATUS_ENABLED) { 439 return status_; 440 } 441 442 // Even if the sandbox was previously available, something might have 443 // changed in our run-time environment. Check one more time. 444 if (status_ == STATUS_AVAILABLE) { 445 if (!IsSingleThreaded(proc_fd)) { 446 status_ = STATUS_UNAVAILABLE; 447 } 448 return status_; 449 } 450 451 if (status_ == STATUS_UNAVAILABLE && IsSingleThreaded(proc_fd)) { 452 // All state transitions resulting in STATUS_UNAVAILABLE are immediately 453 // preceded by STATUS_AVAILABLE. Furthermore, these transitions all 454 // happen, if and only if they are triggered by the process being multi- 455 // threaded. 456 // In other words, if a single-threaded process is currently in the 457 // STATUS_UNAVAILABLE state, it is safe to assume that sandboxing is 458 // actually available. 459 status_ = STATUS_AVAILABLE; 460 return status_; 461 } 462 463 // If we have not previously checked for availability of the sandbox or if 464 // we otherwise don't believe to have a good cached value, we have to 465 // perform a thorough check now. 466 if (status_ == STATUS_UNKNOWN) { 467 // We create our own private copy of a "Sandbox" object. This ensures that 468 // the object does not have any policies configured, that might interfere 469 // with the tests done by "KernelSupportSeccompBPF()". 470 SandboxBPF sandbox; 471 472 // By setting "quiet_ = true" we suppress messages for expected and benign 473 // failures (e.g. if the current kernel lacks support for BPF filters). 474 sandbox.quiet_ = true; 475 sandbox.set_proc_fd(proc_fd); 476 status_ = sandbox.KernelSupportSeccompBPF() ? STATUS_AVAILABLE 477 : STATUS_UNSUPPORTED; 478 479 // As we are performing our tests from a child process, the run-time 480 // environment that is visible to the sandbox is always guaranteed to be 481 // single-threaded. Let's check here whether the caller is single- 482 // threaded. Otherwise, we mark the sandbox as temporarily unavailable. 483 if (status_ == STATUS_AVAILABLE && !IsSingleThreaded(proc_fd)) { 484 status_ = STATUS_UNAVAILABLE; 485 } 486 } 487 return status_; 488 } 489 490 // static 491 SandboxBPF::SandboxStatus 492 SandboxBPF::SupportsSeccompThreadFilterSynchronization() { 493 // Applying NO_NEW_PRIVS, a BPF filter, and synchronizing the filter across 494 // the thread group are all handled atomically by this syscall. 495 const int rv = syscall( 496 __NR_seccomp, SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, NULL); 497 498 if (rv == -1 && errno == EFAULT) { 499 return STATUS_AVAILABLE; 500 } else { 501 // TODO(jln): turn these into DCHECK after 417888 is considered fixed. 502 CHECK_EQ(-1, rv); 503 CHECK(ENOSYS == errno || EINVAL == errno); 504 return STATUS_UNSUPPORTED; 505 } 506 } 507 508 void SandboxBPF::set_proc_fd(int proc_fd) { proc_fd_ = proc_fd; } 509 510 bool SandboxBPF::StartSandbox(SandboxThreadState thread_state) { 511 CHECK(thread_state == PROCESS_SINGLE_THREADED || 512 thread_state == PROCESS_MULTI_THREADED); 513 514 if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) { 515 SANDBOX_DIE( 516 "Trying to start sandbox, even though it is known to be " 517 "unavailable"); 518 return false; 519 } else if (sandbox_has_started_ || !conds_) { 520 SANDBOX_DIE( 521 "Cannot repeatedly start sandbox. Create a separate Sandbox " 522 "object instead."); 523 return false; 524 } 525 if (proc_fd_ < 0) { 526 proc_fd_ = open("/proc", O_RDONLY | O_DIRECTORY); 527 } 528 if (proc_fd_ < 0) { 529 // For now, continue in degraded mode, if we can't access /proc. 530 // In the future, we might want to tighten this requirement. 531 } 532 533 bool supports_tsync = 534 SupportsSeccompThreadFilterSynchronization() == STATUS_AVAILABLE; 535 536 if (thread_state == PROCESS_SINGLE_THREADED) { 537 if (!IsSingleThreaded(proc_fd_)) { 538 SANDBOX_DIE("Cannot start sandbox; process is already multi-threaded"); 539 return false; 540 } 541 } else if (thread_state == PROCESS_MULTI_THREADED) { 542 if (IsSingleThreaded(proc_fd_)) { 543 SANDBOX_DIE("Cannot start sandbox; " 544 "process may be single-threaded when reported as not"); 545 return false; 546 } 547 if (!supports_tsync) { 548 SANDBOX_DIE("Cannot start sandbox; kernel does not support synchronizing " 549 "filters for a threadgroup"); 550 return false; 551 } 552 } 553 554 // We no longer need access to any files in /proc. We want to do this 555 // before installing the filters, just in case that our policy denies 556 // close(). 557 if (proc_fd_ >= 0) { 558 if (IGNORE_EINTR(close(proc_fd_))) { 559 SANDBOX_DIE("Failed to close file descriptor for /proc"); 560 return false; 561 } 562 proc_fd_ = -1; 563 } 564 565 // Install the filters. 566 InstallFilter(supports_tsync || thread_state == PROCESS_MULTI_THREADED); 567 568 // We are now inside the sandbox. 569 status_ = STATUS_ENABLED; 570 571 return true; 572 } 573 574 void SandboxBPF::PolicySanityChecks(SandboxBPFPolicy* policy) { 575 if (!IsDenied(policy->InvalidSyscall(this))) { 576 SANDBOX_DIE("Policies should deny invalid system calls."); 577 } 578 return; 579 } 580 581 // Don't take a scoped_ptr here, polymorphism make their use awkward. 582 void SandboxBPF::SetSandboxPolicy(SandboxBPFPolicy* policy) { 583 DCHECK(!policy_); 584 if (sandbox_has_started_ || !conds_) { 585 SANDBOX_DIE("Cannot change policy after sandbox has started"); 586 } 587 PolicySanityChecks(policy); 588 policy_.reset(policy); 589 } 590 591 void SandboxBPF::InstallFilter(bool must_sync_threads) { 592 // We want to be very careful in not imposing any requirements on the 593 // policies that are set with SetSandboxPolicy(). This means, as soon as 594 // the sandbox is active, we shouldn't be relying on libraries that could 595 // be making system calls. This, for example, means we should avoid 596 // using the heap and we should avoid using STL functions. 597 // Temporarily copy the contents of the "program" vector into a 598 // stack-allocated array; and then explicitly destroy that object. 599 // This makes sure we don't ex- or implicitly call new/delete after we 600 // installed the BPF filter program in the kernel. Depending on the 601 // system memory allocator that is in effect, these operators can result 602 // in system calls to things like munmap() or brk(). 603 Program* program = AssembleFilter(false /* force_verification */); 604 605 struct sock_filter bpf[program->size()]; 606 const struct sock_fprog prog = {static_cast<unsigned short>(program->size()), 607 bpf}; 608 memcpy(bpf, &(*program)[0], sizeof(bpf)); 609 delete program; 610 611 // Make an attempt to release memory that is no longer needed here, rather 612 // than in the destructor. Try to avoid as much as possible to presume of 613 // what will be possible to do in the new (sandboxed) execution environment. 614 delete conds_; 615 conds_ = NULL; 616 policy_.reset(); 617 618 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { 619 SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to enable no-new-privs"); 620 } 621 622 // Install BPF filter program. If the thread state indicates multi-threading 623 // support, then the kernel hass the seccomp system call. Otherwise, fall 624 // back on prctl, which requires the process to be single-threaded. 625 if (must_sync_threads) { 626 int rv = syscall(__NR_seccomp, SECCOMP_SET_MODE_FILTER, 627 SECCOMP_FILTER_FLAG_TSYNC, reinterpret_cast<const char*>(&prog)); 628 if (rv) { 629 SANDBOX_DIE(quiet_ ? NULL : 630 "Kernel refuses to turn on and synchronize threads for BPF filters"); 631 } 632 } else { 633 if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) { 634 SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to turn on BPF filters"); 635 } 636 } 637 638 sandbox_has_started_ = true; 639 } 640 641 SandboxBPF::Program* SandboxBPF::AssembleFilter(bool force_verification) { 642 #if !defined(NDEBUG) 643 force_verification = true; 644 #endif 645 646 // Verify that the user pushed a policy. 647 DCHECK(policy_); 648 649 // Assemble the BPF filter program. 650 CodeGen* gen = new CodeGen(); 651 if (!gen) { 652 SANDBOX_DIE("Out of memory"); 653 } 654 655 bool has_unsafe_traps; 656 Instruction* head = CompilePolicy(gen, &has_unsafe_traps); 657 658 // Turn the DAG into a vector of instructions. 659 Program* program = new Program(); 660 gen->Compile(head, program); 661 delete gen; 662 663 // Make sure compilation resulted in BPF program that executes 664 // correctly. Otherwise, there is an internal error in our BPF compiler. 665 // There is really nothing the caller can do until the bug is fixed. 666 if (force_verification) { 667 // Verification is expensive. We only perform this step, if we are 668 // compiled in debug mode, or if the caller explicitly requested 669 // verification. 670 VerifyProgram(*program, has_unsafe_traps); 671 } 672 673 return program; 674 } 675 676 Instruction* SandboxBPF::CompilePolicy(CodeGen* gen, bool* has_unsafe_traps) { 677 // A compiled policy consists of three logical parts: 678 // 1. Check that the "arch" field matches the expected architecture. 679 // 2. If the policy involves unsafe traps, check if the syscall was 680 // invoked by Syscall::Call, and then allow it unconditionally. 681 // 3. Check the system call number and jump to the appropriate compiled 682 // system call policy number. 683 return CheckArch( 684 gen, MaybeAddEscapeHatch(gen, has_unsafe_traps, DispatchSyscall(gen))); 685 } 686 687 Instruction* SandboxBPF::CheckArch(CodeGen* gen, Instruction* passed) { 688 // If the architecture doesn't match SECCOMP_ARCH, disallow the 689 // system call. 690 return gen->MakeInstruction( 691 BPF_LD + BPF_W + BPF_ABS, 692 SECCOMP_ARCH_IDX, 693 gen->MakeInstruction( 694 BPF_JMP + BPF_JEQ + BPF_K, 695 SECCOMP_ARCH, 696 passed, 697 RetExpression(gen, 698 Kill("Invalid audit architecture in BPF filter")))); 699 } 700 701 Instruction* SandboxBPF::MaybeAddEscapeHatch(CodeGen* gen, 702 bool* has_unsafe_traps, 703 Instruction* rest) { 704 // If there is at least one UnsafeTrap() in our program, the entire sandbox 705 // is unsafe. We need to modify the program so that all non- 706 // SECCOMP_RET_ALLOW ErrorCodes are handled in user-space. This will then 707 // allow us to temporarily disable sandboxing rules inside of callbacks to 708 // UnsafeTrap(). 709 *has_unsafe_traps = false; 710 gen->Traverse(rest, CheckForUnsafeErrorCodes, has_unsafe_traps); 711 if (!*has_unsafe_traps) { 712 // If no unsafe traps, then simply return |rest|. 713 return rest; 714 } 715 716 // If our BPF program has unsafe jumps, enable support for them. This 717 // test happens very early in the BPF filter program. Even before we 718 // consider looking at system call numbers. 719 // As support for unsafe jumps essentially defeats all the security 720 // measures that the sandbox provides, we print a big warning message -- 721 // and of course, we make sure to only ever enable this feature if it 722 // is actually requested by the sandbox policy. 723 if (Syscall::Call(-1) == -1 && errno == ENOSYS) { 724 SANDBOX_DIE( 725 "Support for UnsafeTrap() has not yet been ported to this " 726 "architecture"); 727 } 728 729 for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) { 730 if (!policy_->EvaluateSyscall(this, kSyscallsRequiredForUnsafeTraps[i]) 731 .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))) { 732 SANDBOX_DIE( 733 "Policies that use UnsafeTrap() must unconditionally allow all " 734 "required system calls"); 735 } 736 } 737 738 if (!Trap::EnableUnsafeTrapsInSigSysHandler()) { 739 // We should never be able to get here, as UnsafeTrap() should never 740 // actually return a valid ErrorCode object unless the user set the 741 // CHROME_SANDBOX_DEBUGGING environment variable; and therefore, 742 // "has_unsafe_traps" would always be false. But better double-check 743 // than enabling dangerous code. 744 SANDBOX_DIE("We'd rather die than enable unsafe traps"); 745 } 746 gen->Traverse(rest, RedirectToUserspace, this); 747 748 // Allow system calls, if they originate from our magic return address 749 // (which we can query by calling Syscall::Call(-1)). 750 uint64_t syscall_entry_point = 751 static_cast<uint64_t>(static_cast<uintptr_t>(Syscall::Call(-1))); 752 uint32_t low = static_cast<uint32_t>(syscall_entry_point); 753 uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32); 754 755 // BPF cannot do native 64-bit comparisons, so we have to compare 756 // both 32-bit halves of the instruction pointer. If they match what 757 // we expect, we return ERR_ALLOWED. If either or both don't match, 758 // we continue evalutating the rest of the sandbox policy. 759 // 760 // For simplicity, we check the full 64-bit instruction pointer even 761 // on 32-bit architectures. 762 return gen->MakeInstruction( 763 BPF_LD + BPF_W + BPF_ABS, 764 SECCOMP_IP_LSB_IDX, 765 gen->MakeInstruction( 766 BPF_JMP + BPF_JEQ + BPF_K, 767 low, 768 gen->MakeInstruction( 769 BPF_LD + BPF_W + BPF_ABS, 770 SECCOMP_IP_MSB_IDX, 771 gen->MakeInstruction( 772 BPF_JMP + BPF_JEQ + BPF_K, 773 hi, 774 RetExpression(gen, ErrorCode(ErrorCode::ERR_ALLOWED)), 775 rest)), 776 rest)); 777 } 778 779 Instruction* SandboxBPF::DispatchSyscall(CodeGen* gen) { 780 // Evaluate all possible system calls and group their ErrorCodes into 781 // ranges of identical codes. 782 Ranges ranges; 783 FindRanges(&ranges); 784 785 // Compile the system call ranges to an optimized BPF jumptable 786 Instruction* jumptable = AssembleJumpTable(gen, ranges.begin(), ranges.end()); 787 788 // Grab the system call number, so that we can check it and then 789 // execute the jump table. 790 return gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 791 SECCOMP_NR_IDX, 792 CheckSyscallNumber(gen, jumptable)); 793 } 794 795 Instruction* SandboxBPF::CheckSyscallNumber(CodeGen* gen, Instruction* passed) { 796 if (kIsIntel) { 797 // On Intel architectures, verify that system call numbers are in the 798 // expected number range. 799 Instruction* invalidX32 = 800 RetExpression(gen, Kill("Illegal mixing of system call ABIs")); 801 if (kIsX32) { 802 // The newer x32 API always sets bit 30. 803 return gen->MakeInstruction( 804 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, passed, invalidX32); 805 } else { 806 // The older i386 and x86-64 APIs clear bit 30 on all system calls. 807 return gen->MakeInstruction( 808 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, passed); 809 } 810 } 811 812 // TODO(mdempsky): Similar validation for other architectures? 813 return passed; 814 } 815 816 void SandboxBPF::VerifyProgram(const Program& program, bool has_unsafe_traps) { 817 // If we previously rewrote the BPF program so that it calls user-space 818 // whenever we return an "errno" value from the filter, then we have to 819 // wrap our system call evaluator to perform the same operation. Otherwise, 820 // the verifier would also report a mismatch in return codes. 821 scoped_ptr<const RedirectToUserSpacePolicyWrapper> redirected_policy( 822 new RedirectToUserSpacePolicyWrapper(policy_.get())); 823 824 const char* err = NULL; 825 if (!Verifier::VerifyBPF(this, 826 program, 827 has_unsafe_traps ? *redirected_policy : *policy_, 828 &err)) { 829 CodeGen::PrintProgram(program); 830 SANDBOX_DIE(err); 831 } 832 } 833 834 void SandboxBPF::FindRanges(Ranges* ranges) { 835 // Please note that "struct seccomp_data" defines system calls as a signed 836 // int32_t, but BPF instructions always operate on unsigned quantities. We 837 // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL, 838 // and then verifying that the rest of the number range (both positive and 839 // negative) all return the same ErrorCode. 840 const ErrorCode invalid_err = policy_->InvalidSyscall(this); 841 uint32_t old_sysnum = 0; 842 ErrorCode old_err = IsValidSyscallNumber(old_sysnum) 843 ? policy_->EvaluateSyscall(this, old_sysnum) 844 : invalid_err; 845 846 for (SyscallIterator iter(false); !iter.Done();) { 847 uint32_t sysnum = iter.Next(); 848 ErrorCode err = 849 IsValidSyscallNumber(sysnum) 850 ? policy_->EvaluateSyscall(this, static_cast<int>(sysnum)) 851 : invalid_err; 852 if (!err.Equals(old_err) || iter.Done()) { 853 ranges->push_back(Range(old_sysnum, sysnum - 1, old_err)); 854 old_sysnum = sysnum; 855 old_err = err; 856 } 857 } 858 } 859 860 Instruction* SandboxBPF::AssembleJumpTable(CodeGen* gen, 861 Ranges::const_iterator start, 862 Ranges::const_iterator stop) { 863 // We convert the list of system call ranges into jump table that performs 864 // a binary search over the ranges. 865 // As a sanity check, we need to have at least one distinct ranges for us 866 // to be able to build a jump table. 867 if (stop - start <= 0) { 868 SANDBOX_DIE("Invalid set of system call ranges"); 869 } else if (stop - start == 1) { 870 // If we have narrowed things down to a single range object, we can 871 // return from the BPF filter program. 872 return RetExpression(gen, start->err); 873 } 874 875 // Pick the range object that is located at the mid point of our list. 876 // We compare our system call number against the lowest valid system call 877 // number in this range object. If our number is lower, it is outside of 878 // this range object. If it is greater or equal, it might be inside. 879 Ranges::const_iterator mid = start + (stop - start) / 2; 880 881 // Sub-divide the list of ranges and continue recursively. 882 Instruction* jf = AssembleJumpTable(gen, start, mid); 883 Instruction* jt = AssembleJumpTable(gen, mid, stop); 884 return gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf); 885 } 886 887 Instruction* SandboxBPF::RetExpression(CodeGen* gen, const ErrorCode& err) { 888 switch (err.error_type()) { 889 case ErrorCode::ET_COND: 890 return CondExpression(gen, err); 891 case ErrorCode::ET_SIMPLE: 892 case ErrorCode::ET_TRAP: 893 return gen->MakeInstruction(BPF_RET + BPF_K, err.err()); 894 default: 895 SANDBOX_DIE("ErrorCode is not suitable for returning from a BPF program"); 896 } 897 } 898 899 Instruction* SandboxBPF::CondExpression(CodeGen* gen, const ErrorCode& cond) { 900 // Sanity check that |cond| makes sense. 901 if (cond.argno_ < 0 || cond.argno_ >= 6) { 902 SANDBOX_DIE("sandbox_bpf: invalid argument number"); 903 } 904 if (cond.width_ != ErrorCode::TP_32BIT && 905 cond.width_ != ErrorCode::TP_64BIT) { 906 SANDBOX_DIE("sandbox_bpf: invalid argument width"); 907 } 908 if (cond.mask_ == 0) { 909 SANDBOX_DIE("sandbox_bpf: zero mask is invalid"); 910 } 911 if ((cond.value_ & cond.mask_) != cond.value_) { 912 SANDBOX_DIE("sandbox_bpf: value contains masked out bits"); 913 } 914 if (cond.width_ == ErrorCode::TP_32BIT && 915 ((cond.mask_ >> 32) != 0 || (cond.value_ >> 32) != 0)) { 916 SANDBOX_DIE("sandbox_bpf: test exceeds argument size"); 917 } 918 // TODO(mdempsky): Reject TP_64BIT on 32-bit platforms. For now we allow it 919 // because some SandboxBPF unit tests exercise it. 920 921 Instruction* passed = RetExpression(gen, *cond.passed_); 922 Instruction* failed = RetExpression(gen, *cond.failed_); 923 924 // We want to emit code to check "(arg & mask) == value" where arg, mask, and 925 // value are 64-bit values, but the BPF machine is only 32-bit. We implement 926 // this by independently testing the upper and lower 32-bits and continuing to 927 // |passed| if both evaluate true, or to |failed| if either evaluate false. 928 return CondExpressionHalf( 929 gen, 930 cond, 931 UpperHalf, 932 CondExpressionHalf(gen, cond, LowerHalf, passed, failed), 933 failed); 934 } 935 936 Instruction* SandboxBPF::CondExpressionHalf(CodeGen* gen, 937 const ErrorCode& cond, 938 ArgHalf half, 939 Instruction* passed, 940 Instruction* failed) { 941 if (cond.width_ == ErrorCode::TP_32BIT && half == UpperHalf) { 942 // Special logic for sanity checking the upper 32-bits of 32-bit system 943 // call arguments. 944 945 // TODO(mdempsky): Compile Unexpected64bitArgument() just per program. 946 Instruction* invalid_64bit = RetExpression(gen, Unexpected64bitArgument()); 947 948 const uint32_t upper = SECCOMP_ARG_MSB_IDX(cond.argno_); 949 const uint32_t lower = SECCOMP_ARG_LSB_IDX(cond.argno_); 950 951 if (sizeof(void*) == 4) { 952 // On 32-bit platforms, the upper 32-bits should always be 0: 953 // LDW [upper] 954 // JEQ 0, passed, invalid 955 return gen->MakeInstruction( 956 BPF_LD + BPF_W + BPF_ABS, 957 upper, 958 gen->MakeInstruction( 959 BPF_JMP + BPF_JEQ + BPF_K, 0, passed, invalid_64bit)); 960 } 961 962 // On 64-bit platforms, the upper 32-bits may be 0 or ~0; but we only allow 963 // ~0 if the sign bit of the lower 32-bits is set too: 964 // LDW [upper] 965 // JEQ 0, passed, (next) 966 // JEQ ~0, (next), invalid 967 // LDW [lower] 968 // JSET (1<<31), passed, invalid 969 // 970 // TODO(mdempsky): The JSET instruction could perhaps jump to passed->next 971 // instead, as the first instruction of passed should be "LDW [lower]". 972 return gen->MakeInstruction( 973 BPF_LD + BPF_W + BPF_ABS, 974 upper, 975 gen->MakeInstruction( 976 BPF_JMP + BPF_JEQ + BPF_K, 977 0, 978 passed, 979 gen->MakeInstruction( 980 BPF_JMP + BPF_JEQ + BPF_K, 981 std::numeric_limits<uint32_t>::max(), 982 gen->MakeInstruction( 983 BPF_LD + BPF_W + BPF_ABS, 984 lower, 985 gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, 986 1U << 31, 987 passed, 988 invalid_64bit)), 989 invalid_64bit))); 990 } 991 992 const uint32_t idx = (half == UpperHalf) ? SECCOMP_ARG_MSB_IDX(cond.argno_) 993 : SECCOMP_ARG_LSB_IDX(cond.argno_); 994 const uint32_t mask = (half == UpperHalf) ? cond.mask_ >> 32 : cond.mask_; 995 const uint32_t value = (half == UpperHalf) ? cond.value_ >> 32 : cond.value_; 996 997 // Emit a suitable instruction sequence for (arg & mask) == value. 998 999 // For (arg & 0) == 0, just return passed. 1000 if (mask == 0) { 1001 CHECK_EQ(0U, value); 1002 return passed; 1003 } 1004 1005 // For (arg & ~0) == value, emit: 1006 // LDW [idx] 1007 // JEQ value, passed, failed 1008 if (mask == std::numeric_limits<uint32_t>::max()) { 1009 return gen->MakeInstruction( 1010 BPF_LD + BPF_W + BPF_ABS, 1011 idx, 1012 gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed)); 1013 } 1014 1015 // For (arg & mask) == 0, emit: 1016 // LDW [idx] 1017 // JSET mask, failed, passed 1018 // (Note: failed and passed are intentionally swapped.) 1019 if (value == 0) { 1020 return gen->MakeInstruction( 1021 BPF_LD + BPF_W + BPF_ABS, 1022 idx, 1023 gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, failed, passed)); 1024 } 1025 1026 // For (arg & x) == x where x is a single-bit value, emit: 1027 // LDW [idx] 1028 // JSET mask, passed, failed 1029 if (mask == value && HasExactlyOneBit(mask)) { 1030 return gen->MakeInstruction( 1031 BPF_LD + BPF_W + BPF_ABS, 1032 idx, 1033 gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, passed, failed)); 1034 } 1035 1036 // Generic fallback: 1037 // LDW [idx] 1038 // AND mask 1039 // JEQ value, passed, failed 1040 return gen->MakeInstruction( 1041 BPF_LD + BPF_W + BPF_ABS, 1042 idx, 1043 gen->MakeInstruction( 1044 BPF_ALU + BPF_AND + BPF_K, 1045 mask, 1046 gen->MakeInstruction( 1047 BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed))); 1048 } 1049 1050 ErrorCode SandboxBPF::Unexpected64bitArgument() { 1051 return Kill("Unexpected 64bit argument detected"); 1052 } 1053 1054 ErrorCode SandboxBPF::Trap(Trap::TrapFnc fnc, const void* aux) { 1055 return ErrorCode(fnc, aux, true /* Safe Trap */); 1056 } 1057 1058 ErrorCode SandboxBPF::UnsafeTrap(Trap::TrapFnc fnc, const void* aux) { 1059 return ErrorCode(fnc, aux, false /* Unsafe Trap */); 1060 } 1061 1062 bool SandboxBPF::IsRequiredForUnsafeTrap(int sysno) { 1063 for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) { 1064 if (sysno == kSyscallsRequiredForUnsafeTraps[i]) { 1065 return true; 1066 } 1067 } 1068 return false; 1069 } 1070 1071 intptr_t SandboxBPF::ForwardSyscall(const struct arch_seccomp_data& args) { 1072 return Syscall::Call(args.nr, 1073 static_cast<intptr_t>(args.args[0]), 1074 static_cast<intptr_t>(args.args[1]), 1075 static_cast<intptr_t>(args.args[2]), 1076 static_cast<intptr_t>(args.args[3]), 1077 static_cast<intptr_t>(args.args[4]), 1078 static_cast<intptr_t>(args.args[5])); 1079 } 1080 1081 ErrorCode SandboxBPF::CondMaskedEqual(int argno, 1082 ErrorCode::ArgType width, 1083 uint64_t mask, 1084 uint64_t value, 1085 const ErrorCode& passed, 1086 const ErrorCode& failed) { 1087 return ErrorCode(argno, 1088 width, 1089 mask, 1090 value, 1091 &*conds_->insert(passed).first, 1092 &*conds_->insert(failed).first); 1093 } 1094 1095 ErrorCode SandboxBPF::Cond(int argno, 1096 ErrorCode::ArgType width, 1097 ErrorCode::Operation op, 1098 uint64_t value, 1099 const ErrorCode& passed, 1100 const ErrorCode& failed) { 1101 // CondExpression() currently rejects mask==0 as invalid, but there are 1102 // SandboxBPF unit tests that (questionably) expect OP_HAS_{ANY,ALL}_BITS to 1103 // work with value==0. To keep those tests working for now, we specially 1104 // convert value==0 here. 1105 1106 switch (op) { 1107 case ErrorCode::OP_EQUAL: { 1108 // Convert to "(arg & ~0) == value". 1109 const uint64_t mask = (width == ErrorCode::TP_64BIT) 1110 ? std::numeric_limits<uint64_t>::max() 1111 : std::numeric_limits<uint32_t>::max(); 1112 return CondMaskedEqual(argno, width, mask, value, passed, failed); 1113 } 1114 1115 case ErrorCode::OP_HAS_ALL_BITS: 1116 if (value == 0) { 1117 // Always passes. 1118 return passed; 1119 } 1120 // Convert to "(arg & value) == value". 1121 return CondMaskedEqual(argno, width, value, value, passed, failed); 1122 1123 case ErrorCode::OP_HAS_ANY_BITS: 1124 if (value == 0) { 1125 // Always fails. 1126 return failed; 1127 } 1128 // Convert to "(arg & value) == 0", but swap passed and failed. 1129 return CondMaskedEqual(argno, width, value, 0, failed, passed); 1130 1131 default: 1132 SANDBOX_DIE("Not implemented"); 1133 } 1134 } 1135 1136 ErrorCode SandboxBPF::Kill(const char* msg) { 1137 return Trap(BPFFailure, const_cast<char*>(msg)); 1138 } 1139 1140 SandboxBPF::SandboxStatus SandboxBPF::status_ = STATUS_UNKNOWN; 1141 1142 } // namespace sandbox 1143