Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
      6 #define V8_X64_MACRO_ASSEMBLER_X64_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/frames.h"
     11 #include "src/globals.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // Default scratch register used by MacroAssembler (and other code that needs
     17 // a spare register). The register isn't callee save, and not used by the
     18 // function calling convention.
     19 const Register kScratchRegister = { 10 };      // r10.
     20 const Register kSmiConstantRegister = { 12 };  // r12 (callee save).
     21 const Register kRootRegister = { 13 };         // r13 (callee save).
     22 // Value of smi in kSmiConstantRegister.
     23 const int kSmiConstantRegisterValue = 1;
     24 // Actual value of root register is offset from the root array's start
     25 // to take advantage of negitive 8-bit displacement values.
     26 const int kRootRegisterBias = 128;
     27 
     28 // Convenience for platform-independent signatures.
     29 typedef Operand MemOperand;
     30 
     31 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     32 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     33 enum PointersToHereCheck {
     34   kPointersToHereMaybeInteresting,
     35   kPointersToHereAreAlwaysInteresting
     36 };
     37 
     38 enum SmiOperationConstraint {
     39   PRESERVE_SOURCE_REGISTER,
     40   BAILOUT_ON_NO_OVERFLOW,
     41   BAILOUT_ON_OVERFLOW,
     42   NUMBER_OF_CONSTRAINTS
     43 };
     44 
     45 STATIC_ASSERT(NUMBER_OF_CONSTRAINTS <= 8);
     46 
     47 class SmiOperationExecutionMode : public EnumSet<SmiOperationConstraint, byte> {
     48  public:
     49   SmiOperationExecutionMode() : EnumSet<SmiOperationConstraint, byte>(0) { }
     50   explicit SmiOperationExecutionMode(byte bits)
     51       : EnumSet<SmiOperationConstraint, byte>(bits) { }
     52 };
     53 
     54 #ifdef DEBUG
     55 bool AreAliased(Register reg1,
     56                 Register reg2,
     57                 Register reg3 = no_reg,
     58                 Register reg4 = no_reg,
     59                 Register reg5 = no_reg,
     60                 Register reg6 = no_reg,
     61                 Register reg7 = no_reg,
     62                 Register reg8 = no_reg);
     63 #endif
     64 
     65 // Forward declaration.
     66 class JumpTarget;
     67 
     68 struct SmiIndex {
     69   SmiIndex(Register index_register, ScaleFactor scale)
     70       : reg(index_register),
     71         scale(scale) {}
     72   Register reg;
     73   ScaleFactor scale;
     74 };
     75 
     76 
     77 // MacroAssembler implements a collection of frequently used macros.
     78 class MacroAssembler: public Assembler {
     79  public:
     80   // The isolate parameter can be NULL if the macro assembler should
     81   // not use isolate-dependent functionality. In this case, it's the
     82   // responsibility of the caller to never invoke such function on the
     83   // macro assembler.
     84   MacroAssembler(Isolate* isolate, void* buffer, int size);
     85 
     86   // Prevent the use of the RootArray during the lifetime of this
     87   // scope object.
     88   class NoRootArrayScope BASE_EMBEDDED {
     89    public:
     90     explicit NoRootArrayScope(MacroAssembler* assembler)
     91         : variable_(&assembler->root_array_available_),
     92           old_value_(assembler->root_array_available_) {
     93       assembler->root_array_available_ = false;
     94     }
     95     ~NoRootArrayScope() {
     96       *variable_ = old_value_;
     97     }
     98    private:
     99     bool* variable_;
    100     bool old_value_;
    101   };
    102 
    103   // Operand pointing to an external reference.
    104   // May emit code to set up the scratch register. The operand is
    105   // only guaranteed to be correct as long as the scratch register
    106   // isn't changed.
    107   // If the operand is used more than once, use a scratch register
    108   // that is guaranteed not to be clobbered.
    109   Operand ExternalOperand(ExternalReference reference,
    110                           Register scratch = kScratchRegister);
    111   // Loads and stores the value of an external reference.
    112   // Special case code for load and store to take advantage of
    113   // load_rax/store_rax if possible/necessary.
    114   // For other operations, just use:
    115   //   Operand operand = ExternalOperand(extref);
    116   //   operation(operand, ..);
    117   void Load(Register destination, ExternalReference source);
    118   void Store(ExternalReference destination, Register source);
    119   // Loads the address of the external reference into the destination
    120   // register.
    121   void LoadAddress(Register destination, ExternalReference source);
    122   // Returns the size of the code generated by LoadAddress.
    123   // Used by CallSize(ExternalReference) to find the size of a call.
    124   int LoadAddressSize(ExternalReference source);
    125   // Pushes the address of the external reference onto the stack.
    126   void PushAddress(ExternalReference source);
    127 
    128   // Operations on roots in the root-array.
    129   void LoadRoot(Register destination, Heap::RootListIndex index);
    130   void StoreRoot(Register source, Heap::RootListIndex index);
    131   // Load a root value where the index (or part of it) is variable.
    132   // The variable_offset register is added to the fixed_offset value
    133   // to get the index into the root-array.
    134   void LoadRootIndexed(Register destination,
    135                        Register variable_offset,
    136                        int fixed_offset);
    137   void CompareRoot(Register with, Heap::RootListIndex index);
    138   void CompareRoot(const Operand& with, Heap::RootListIndex index);
    139   void PushRoot(Heap::RootListIndex index);
    140 
    141   // These functions do not arrange the registers in any particular order so
    142   // they are not useful for calls that can cause a GC.  The caller can
    143   // exclude up to 3 registers that do not need to be saved and restored.
    144   void PushCallerSaved(SaveFPRegsMode fp_mode,
    145                        Register exclusion1 = no_reg,
    146                        Register exclusion2 = no_reg,
    147                        Register exclusion3 = no_reg);
    148   void PopCallerSaved(SaveFPRegsMode fp_mode,
    149                       Register exclusion1 = no_reg,
    150                       Register exclusion2 = no_reg,
    151                       Register exclusion3 = no_reg);
    152 
    153 // ---------------------------------------------------------------------------
    154 // GC Support
    155 
    156 
    157   enum RememberedSetFinalAction {
    158     kReturnAtEnd,
    159     kFallThroughAtEnd
    160   };
    161 
    162   // Record in the remembered set the fact that we have a pointer to new space
    163   // at the address pointed to by the addr register.  Only works if addr is not
    164   // in new space.
    165   void RememberedSetHelper(Register object,  // Used for debug code.
    166                            Register addr,
    167                            Register scratch,
    168                            SaveFPRegsMode save_fp,
    169                            RememberedSetFinalAction and_then);
    170 
    171   void CheckPageFlag(Register object,
    172                      Register scratch,
    173                      int mask,
    174                      Condition cc,
    175                      Label* condition_met,
    176                      Label::Distance condition_met_distance = Label::kFar);
    177 
    178   void CheckMapDeprecated(Handle<Map> map,
    179                           Register scratch,
    180                           Label* if_deprecated);
    181 
    182   // Check if object is in new space.  Jumps if the object is not in new space.
    183   // The register scratch can be object itself, but scratch will be clobbered.
    184   void JumpIfNotInNewSpace(Register object,
    185                            Register scratch,
    186                            Label* branch,
    187                            Label::Distance distance = Label::kFar) {
    188     InNewSpace(object, scratch, not_equal, branch, distance);
    189   }
    190 
    191   // Check if object is in new space.  Jumps if the object is in new space.
    192   // The register scratch can be object itself, but it will be clobbered.
    193   void JumpIfInNewSpace(Register object,
    194                         Register scratch,
    195                         Label* branch,
    196                         Label::Distance distance = Label::kFar) {
    197     InNewSpace(object, scratch, equal, branch, distance);
    198   }
    199 
    200   // Check if an object has the black incremental marking color.  Also uses rcx!
    201   void JumpIfBlack(Register object,
    202                    Register scratch0,
    203                    Register scratch1,
    204                    Label* on_black,
    205                    Label::Distance on_black_distance = Label::kFar);
    206 
    207   // Detects conservatively whether an object is data-only, i.e. it does need to
    208   // be scanned by the garbage collector.
    209   void JumpIfDataObject(Register value,
    210                         Register scratch,
    211                         Label* not_data_object,
    212                         Label::Distance not_data_object_distance);
    213 
    214   // Checks the color of an object.  If the object is already grey or black
    215   // then we just fall through, since it is already live.  If it is white and
    216   // we can determine that it doesn't need to be scanned, then we just mark it
    217   // black and fall through.  For the rest we jump to the label so the
    218   // incremental marker can fix its assumptions.
    219   void EnsureNotWhite(Register object,
    220                       Register scratch1,
    221                       Register scratch2,
    222                       Label* object_is_white_and_not_data,
    223                       Label::Distance distance);
    224 
    225   // Notify the garbage collector that we wrote a pointer into an object.
    226   // |object| is the object being stored into, |value| is the object being
    227   // stored.  value and scratch registers are clobbered by the operation.
    228   // The offset is the offset from the start of the object, not the offset from
    229   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    230   void RecordWriteField(
    231       Register object,
    232       int offset,
    233       Register value,
    234       Register scratch,
    235       SaveFPRegsMode save_fp,
    236       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    237       SmiCheck smi_check = INLINE_SMI_CHECK,
    238       PointersToHereCheck pointers_to_here_check_for_value =
    239           kPointersToHereMaybeInteresting);
    240 
    241   // As above, but the offset has the tag presubtracted.  For use with
    242   // Operand(reg, off).
    243   void RecordWriteContextSlot(
    244       Register context,
    245       int offset,
    246       Register value,
    247       Register scratch,
    248       SaveFPRegsMode save_fp,
    249       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    250       SmiCheck smi_check = INLINE_SMI_CHECK,
    251       PointersToHereCheck pointers_to_here_check_for_value =
    252           kPointersToHereMaybeInteresting) {
    253     RecordWriteField(context,
    254                      offset + kHeapObjectTag,
    255                      value,
    256                      scratch,
    257                      save_fp,
    258                      remembered_set_action,
    259                      smi_check,
    260                      pointers_to_here_check_for_value);
    261   }
    262 
    263   // Notify the garbage collector that we wrote a pointer into a fixed array.
    264   // |array| is the array being stored into, |value| is the
    265   // object being stored.  |index| is the array index represented as a non-smi.
    266   // All registers are clobbered by the operation RecordWriteArray
    267   // filters out smis so it does not update the write barrier if the
    268   // value is a smi.
    269   void RecordWriteArray(
    270       Register array,
    271       Register value,
    272       Register index,
    273       SaveFPRegsMode save_fp,
    274       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    275       SmiCheck smi_check = INLINE_SMI_CHECK,
    276       PointersToHereCheck pointers_to_here_check_for_value =
    277           kPointersToHereMaybeInteresting);
    278 
    279   void RecordWriteForMap(
    280       Register object,
    281       Register map,
    282       Register dst,
    283       SaveFPRegsMode save_fp);
    284 
    285   // For page containing |object| mark region covering |address|
    286   // dirty. |object| is the object being stored into, |value| is the
    287   // object being stored. The address and value registers are clobbered by the
    288   // operation.  RecordWrite filters out smis so it does not update
    289   // the write barrier if the value is a smi.
    290   void RecordWrite(
    291       Register object,
    292       Register address,
    293       Register value,
    294       SaveFPRegsMode save_fp,
    295       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    296       SmiCheck smi_check = INLINE_SMI_CHECK,
    297       PointersToHereCheck pointers_to_here_check_for_value =
    298           kPointersToHereMaybeInteresting);
    299 
    300   // ---------------------------------------------------------------------------
    301   // Debugger Support
    302 
    303   void DebugBreak();
    304 
    305   // Generates function and stub prologue code.
    306   void StubPrologue();
    307   void Prologue(bool code_pre_aging);
    308 
    309   // Enter specific kind of exit frame; either in normal or
    310   // debug mode. Expects the number of arguments in register rax and
    311   // sets up the number of arguments in register rdi and the pointer
    312   // to the first argument in register rsi.
    313   //
    314   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
    315   // accessible via StackSpaceOperand.
    316   void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
    317 
    318   // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
    319   // memory (not GCed) on the stack accessible via StackSpaceOperand.
    320   void EnterApiExitFrame(int arg_stack_space);
    321 
    322   // Leave the current exit frame. Expects/provides the return value in
    323   // register rax:rdx (untouched) and the pointer to the first
    324   // argument in register rsi.
    325   void LeaveExitFrame(bool save_doubles = false);
    326 
    327   // Leave the current exit frame. Expects/provides the return value in
    328   // register rax (untouched).
    329   void LeaveApiExitFrame(bool restore_context);
    330 
    331   // Push and pop the registers that can hold pointers.
    332   void PushSafepointRegisters() { Pushad(); }
    333   void PopSafepointRegisters() { Popad(); }
    334   // Store the value in register src in the safepoint register stack
    335   // slot for register dst.
    336   void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm);
    337   void StoreToSafepointRegisterSlot(Register dst, Register src);
    338   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    339 
    340   void InitializeRootRegister() {
    341     ExternalReference roots_array_start =
    342         ExternalReference::roots_array_start(isolate());
    343     Move(kRootRegister, roots_array_start);
    344     addp(kRootRegister, Immediate(kRootRegisterBias));
    345   }
    346 
    347   // ---------------------------------------------------------------------------
    348   // JavaScript invokes
    349 
    350   // Invoke the JavaScript function code by either calling or jumping.
    351   void InvokeCode(Register code,
    352                   const ParameterCount& expected,
    353                   const ParameterCount& actual,
    354                   InvokeFlag flag,
    355                   const CallWrapper& call_wrapper);
    356 
    357   // Invoke the JavaScript function in the given register. Changes the
    358   // current context to the context in the function before invoking.
    359   void InvokeFunction(Register function,
    360                       const ParameterCount& actual,
    361                       InvokeFlag flag,
    362                       const CallWrapper& call_wrapper);
    363 
    364   void InvokeFunction(Register function,
    365                       const ParameterCount& expected,
    366                       const ParameterCount& actual,
    367                       InvokeFlag flag,
    368                       const CallWrapper& call_wrapper);
    369 
    370   void InvokeFunction(Handle<JSFunction> function,
    371                       const ParameterCount& expected,
    372                       const ParameterCount& actual,
    373                       InvokeFlag flag,
    374                       const CallWrapper& call_wrapper);
    375 
    376   // Invoke specified builtin JavaScript function. Adds an entry to
    377   // the unresolved list if the name does not resolve.
    378   void InvokeBuiltin(Builtins::JavaScript id,
    379                      InvokeFlag flag,
    380                      const CallWrapper& call_wrapper = NullCallWrapper());
    381 
    382   // Store the function for the given builtin in the target register.
    383   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
    384 
    385   // Store the code object for the given builtin in the target register.
    386   void GetBuiltinEntry(Register target, Builtins::JavaScript id);
    387 
    388 
    389   // ---------------------------------------------------------------------------
    390   // Smi tagging, untagging and operations on tagged smis.
    391 
    392   // Support for constant splitting.
    393   bool IsUnsafeInt(const int32_t x);
    394   void SafeMove(Register dst, Smi* src);
    395   void SafePush(Smi* src);
    396 
    397   void InitializeSmiConstantRegister() {
    398     Move(kSmiConstantRegister, Smi::FromInt(kSmiConstantRegisterValue),
    399          Assembler::RelocInfoNone());
    400   }
    401 
    402   // Conversions between tagged smi values and non-tagged integer values.
    403 
    404   // Tag an integer value. The result must be known to be a valid smi value.
    405   // Only uses the low 32 bits of the src register. Sets the N and Z flags
    406   // based on the value of the resulting smi.
    407   void Integer32ToSmi(Register dst, Register src);
    408 
    409   // Stores an integer32 value into a memory field that already holds a smi.
    410   void Integer32ToSmiField(const Operand& dst, Register src);
    411 
    412   // Adds constant to src and tags the result as a smi.
    413   // Result must be a valid smi.
    414   void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
    415 
    416   // Convert smi to 32-bit integer. I.e., not sign extended into
    417   // high 32 bits of destination.
    418   void SmiToInteger32(Register dst, Register src);
    419   void SmiToInteger32(Register dst, const Operand& src);
    420 
    421   // Convert smi to 64-bit integer (sign extended if necessary).
    422   void SmiToInteger64(Register dst, Register src);
    423   void SmiToInteger64(Register dst, const Operand& src);
    424 
    425   // Multiply a positive smi's integer value by a power of two.
    426   // Provides result as 64-bit integer value.
    427   void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
    428                                              Register src,
    429                                              int power);
    430 
    431   // Divide a positive smi's integer value by a power of two.
    432   // Provides result as 32-bit integer value.
    433   void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
    434                                            Register src,
    435                                            int power);
    436 
    437   // Perform the logical or of two smi values and return a smi value.
    438   // If either argument is not a smi, jump to on_not_smis and retain
    439   // the original values of source registers. The destination register
    440   // may be changed if it's not one of the source registers.
    441   void SmiOrIfSmis(Register dst,
    442                    Register src1,
    443                    Register src2,
    444                    Label* on_not_smis,
    445                    Label::Distance near_jump = Label::kFar);
    446 
    447 
    448   // Simple comparison of smis.  Both sides must be known smis to use these,
    449   // otherwise use Cmp.
    450   void SmiCompare(Register smi1, Register smi2);
    451   void SmiCompare(Register dst, Smi* src);
    452   void SmiCompare(Register dst, const Operand& src);
    453   void SmiCompare(const Operand& dst, Register src);
    454   void SmiCompare(const Operand& dst, Smi* src);
    455   // Compare the int32 in src register to the value of the smi stored at dst.
    456   void SmiCompareInteger32(const Operand& dst, Register src);
    457   // Sets sign and zero flags depending on value of smi in register.
    458   void SmiTest(Register src);
    459 
    460   // Functions performing a check on a known or potential smi. Returns
    461   // a condition that is satisfied if the check is successful.
    462 
    463   // Is the value a tagged smi.
    464   Condition CheckSmi(Register src);
    465   Condition CheckSmi(const Operand& src);
    466 
    467   // Is the value a non-negative tagged smi.
    468   Condition CheckNonNegativeSmi(Register src);
    469 
    470   // Are both values tagged smis.
    471   Condition CheckBothSmi(Register first, Register second);
    472 
    473   // Are both values non-negative tagged smis.
    474   Condition CheckBothNonNegativeSmi(Register first, Register second);
    475 
    476   // Are either value a tagged smi.
    477   Condition CheckEitherSmi(Register first,
    478                            Register second,
    479                            Register scratch = kScratchRegister);
    480 
    481   // Is the value the minimum smi value (since we are using
    482   // two's complement numbers, negating the value is known to yield
    483   // a non-smi value).
    484   Condition CheckIsMinSmi(Register src);
    485 
    486   // Checks whether an 32-bit integer value is a valid for conversion
    487   // to a smi.
    488   Condition CheckInteger32ValidSmiValue(Register src);
    489 
    490   // Checks whether an 32-bit unsigned integer value is a valid for
    491   // conversion to a smi.
    492   Condition CheckUInteger32ValidSmiValue(Register src);
    493 
    494   // Check whether src is a Smi, and set dst to zero if it is a smi,
    495   // and to one if it isn't.
    496   void CheckSmiToIndicator(Register dst, Register src);
    497   void CheckSmiToIndicator(Register dst, const Operand& src);
    498 
    499   // Test-and-jump functions. Typically combines a check function
    500   // above with a conditional jump.
    501 
    502   // Jump if the value can be represented by a smi.
    503   void JumpIfValidSmiValue(Register src, Label* on_valid,
    504                            Label::Distance near_jump = Label::kFar);
    505 
    506   // Jump if the value cannot be represented by a smi.
    507   void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
    508                               Label::Distance near_jump = Label::kFar);
    509 
    510   // Jump if the unsigned integer value can be represented by a smi.
    511   void JumpIfUIntValidSmiValue(Register src, Label* on_valid,
    512                                Label::Distance near_jump = Label::kFar);
    513 
    514   // Jump if the unsigned integer value cannot be represented by a smi.
    515   void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
    516                                   Label::Distance near_jump = Label::kFar);
    517 
    518   // Jump to label if the value is a tagged smi.
    519   void JumpIfSmi(Register src,
    520                  Label* on_smi,
    521                  Label::Distance near_jump = Label::kFar);
    522 
    523   // Jump to label if the value is not a tagged smi.
    524   void JumpIfNotSmi(Register src,
    525                     Label* on_not_smi,
    526                     Label::Distance near_jump = Label::kFar);
    527 
    528   // Jump to label if the value is not a non-negative tagged smi.
    529   void JumpUnlessNonNegativeSmi(Register src,
    530                                 Label* on_not_smi,
    531                                 Label::Distance near_jump = Label::kFar);
    532 
    533   // Jump to label if the value, which must be a tagged smi, has value equal
    534   // to the constant.
    535   void JumpIfSmiEqualsConstant(Register src,
    536                                Smi* constant,
    537                                Label* on_equals,
    538                                Label::Distance near_jump = Label::kFar);
    539 
    540   // Jump if either or both register are not smi values.
    541   void JumpIfNotBothSmi(Register src1,
    542                         Register src2,
    543                         Label* on_not_both_smi,
    544                         Label::Distance near_jump = Label::kFar);
    545 
    546   // Jump if either or both register are not non-negative smi values.
    547   void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
    548                                     Label* on_not_both_smi,
    549                                     Label::Distance near_jump = Label::kFar);
    550 
    551   // Operations on tagged smi values.
    552 
    553   // Smis represent a subset of integers. The subset is always equivalent to
    554   // a two's complement interpretation of a fixed number of bits.
    555 
    556   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    557   // No overflow testing on the result is done.
    558   void SmiAddConstant(Register dst, Register src, Smi* constant);
    559 
    560   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    561   // No overflow testing on the result is done.
    562   void SmiAddConstant(const Operand& dst, Smi* constant);
    563 
    564   // Add an integer constant to a tagged smi, giving a tagged smi as result,
    565   // or jumping to a label if the result cannot be represented by a smi.
    566   void SmiAddConstant(Register dst,
    567                       Register src,
    568                       Smi* constant,
    569                       SmiOperationExecutionMode mode,
    570                       Label* bailout_label,
    571                       Label::Distance near_jump = Label::kFar);
    572 
    573   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    574   // result. No testing on the result is done. Sets the N and Z flags
    575   // based on the value of the resulting integer.
    576   void SmiSubConstant(Register dst, Register src, Smi* constant);
    577 
    578   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    579   // result, or jumping to a label if the result cannot be represented by a smi.
    580   void SmiSubConstant(Register dst,
    581                       Register src,
    582                       Smi* constant,
    583                       SmiOperationExecutionMode mode,
    584                       Label* bailout_label,
    585                       Label::Distance near_jump = Label::kFar);
    586 
    587   // Negating a smi can give a negative zero or too large positive value.
    588   // NOTICE: This operation jumps on success, not failure!
    589   void SmiNeg(Register dst,
    590               Register src,
    591               Label* on_smi_result,
    592               Label::Distance near_jump = Label::kFar);
    593 
    594   // Adds smi values and return the result as a smi.
    595   // If dst is src1, then src1 will be destroyed if the operation is
    596   // successful, otherwise kept intact.
    597   void SmiAdd(Register dst,
    598               Register src1,
    599               Register src2,
    600               Label* on_not_smi_result,
    601               Label::Distance near_jump = Label::kFar);
    602   void SmiAdd(Register dst,
    603               Register src1,
    604               const Operand& src2,
    605               Label* on_not_smi_result,
    606               Label::Distance near_jump = Label::kFar);
    607 
    608   void SmiAdd(Register dst,
    609               Register src1,
    610               Register src2);
    611 
    612   // Subtracts smi values and return the result as a smi.
    613   // If dst is src1, then src1 will be destroyed if the operation is
    614   // successful, otherwise kept intact.
    615   void SmiSub(Register dst,
    616               Register src1,
    617               Register src2,
    618               Label* on_not_smi_result,
    619               Label::Distance near_jump = Label::kFar);
    620   void SmiSub(Register dst,
    621               Register src1,
    622               const Operand& src2,
    623               Label* on_not_smi_result,
    624               Label::Distance near_jump = Label::kFar);
    625 
    626   void SmiSub(Register dst,
    627               Register src1,
    628               Register src2);
    629 
    630   void SmiSub(Register dst,
    631               Register src1,
    632               const Operand& src2);
    633 
    634   // Multiplies smi values and return the result as a smi,
    635   // if possible.
    636   // If dst is src1, then src1 will be destroyed, even if
    637   // the operation is unsuccessful.
    638   void SmiMul(Register dst,
    639               Register src1,
    640               Register src2,
    641               Label* on_not_smi_result,
    642               Label::Distance near_jump = Label::kFar);
    643 
    644   // Divides one smi by another and returns the quotient.
    645   // Clobbers rax and rdx registers.
    646   void SmiDiv(Register dst,
    647               Register src1,
    648               Register src2,
    649               Label* on_not_smi_result,
    650               Label::Distance near_jump = Label::kFar);
    651 
    652   // Divides one smi by another and returns the remainder.
    653   // Clobbers rax and rdx registers.
    654   void SmiMod(Register dst,
    655               Register src1,
    656               Register src2,
    657               Label* on_not_smi_result,
    658               Label::Distance near_jump = Label::kFar);
    659 
    660   // Bitwise operations.
    661   void SmiNot(Register dst, Register src);
    662   void SmiAnd(Register dst, Register src1, Register src2);
    663   void SmiOr(Register dst, Register src1, Register src2);
    664   void SmiXor(Register dst, Register src1, Register src2);
    665   void SmiAndConstant(Register dst, Register src1, Smi* constant);
    666   void SmiOrConstant(Register dst, Register src1, Smi* constant);
    667   void SmiXorConstant(Register dst, Register src1, Smi* constant);
    668 
    669   void SmiShiftLeftConstant(Register dst,
    670                             Register src,
    671                             int shift_value,
    672                             Label* on_not_smi_result = NULL,
    673                             Label::Distance near_jump = Label::kFar);
    674   void SmiShiftLogicalRightConstant(Register dst,
    675                                     Register src,
    676                                     int shift_value,
    677                                     Label* on_not_smi_result,
    678                                     Label::Distance near_jump = Label::kFar);
    679   void SmiShiftArithmeticRightConstant(Register dst,
    680                                        Register src,
    681                                        int shift_value);
    682 
    683   // Shifts a smi value to the left, and returns the result if that is a smi.
    684   // Uses and clobbers rcx, so dst may not be rcx.
    685   void SmiShiftLeft(Register dst,
    686                     Register src1,
    687                     Register src2,
    688                     Label* on_not_smi_result = NULL,
    689                     Label::Distance near_jump = Label::kFar);
    690   // Shifts a smi value to the right, shifting in zero bits at the top, and
    691   // returns the unsigned intepretation of the result if that is a smi.
    692   // Uses and clobbers rcx, so dst may not be rcx.
    693   void SmiShiftLogicalRight(Register dst,
    694                             Register src1,
    695                             Register src2,
    696                             Label* on_not_smi_result,
    697                             Label::Distance near_jump = Label::kFar);
    698   // Shifts a smi value to the right, sign extending the top, and
    699   // returns the signed intepretation of the result. That will always
    700   // be a valid smi value, since it's numerically smaller than the
    701   // original.
    702   // Uses and clobbers rcx, so dst may not be rcx.
    703   void SmiShiftArithmeticRight(Register dst,
    704                                Register src1,
    705                                Register src2);
    706 
    707   // Specialized operations
    708 
    709   // Select the non-smi register of two registers where exactly one is a
    710   // smi. If neither are smis, jump to the failure label.
    711   void SelectNonSmi(Register dst,
    712                     Register src1,
    713                     Register src2,
    714                     Label* on_not_smis,
    715                     Label::Distance near_jump = Label::kFar);
    716 
    717   // Converts, if necessary, a smi to a combination of number and
    718   // multiplier to be used as a scaled index.
    719   // The src register contains a *positive* smi value. The shift is the
    720   // power of two to multiply the index value by (e.g.
    721   // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
    722   // The returned index register may be either src or dst, depending
    723   // on what is most efficient. If src and dst are different registers,
    724   // src is always unchanged.
    725   SmiIndex SmiToIndex(Register dst, Register src, int shift);
    726 
    727   // Converts a positive smi to a negative index.
    728   SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
    729 
    730   // Add the value of a smi in memory to an int32 register.
    731   // Sets flags as a normal add.
    732   void AddSmiField(Register dst, const Operand& src);
    733 
    734   // Basic Smi operations.
    735   void Move(Register dst, Smi* source) {
    736     LoadSmiConstant(dst, source);
    737   }
    738 
    739   void Move(const Operand& dst, Smi* source) {
    740     Register constant = GetSmiConstant(source);
    741     movp(dst, constant);
    742   }
    743 
    744   void Push(Smi* smi);
    745 
    746   // Save away a raw integer with pointer size on the stack as two integers
    747   // masquerading as smis so that the garbage collector skips visiting them.
    748   void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister);
    749   // Reconstruct a raw integer with pointer size from two integers masquerading
    750   // as smis on the top of stack.
    751   void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister);
    752 
    753   void Test(const Operand& dst, Smi* source);
    754 
    755 
    756   // ---------------------------------------------------------------------------
    757   // String macros.
    758 
    759   // Generate code to do a lookup in the number string cache. If the number in
    760   // the register object is found in the cache the generated code falls through
    761   // with the result in the result register. The object and the result register
    762   // can be the same. If the number is not found in the cache the code jumps to
    763   // the label not_found with only the content of register object unchanged.
    764   void LookupNumberStringCache(Register object,
    765                                Register result,
    766                                Register scratch1,
    767                                Register scratch2,
    768                                Label* not_found);
    769 
    770   // If object is a string, its map is loaded into object_map.
    771   void JumpIfNotString(Register object,
    772                        Register object_map,
    773                        Label* not_string,
    774                        Label::Distance near_jump = Label::kFar);
    775 
    776 
    777   void JumpIfNotBothSequentialOneByteStrings(
    778       Register first_object, Register second_object, Register scratch1,
    779       Register scratch2, Label* on_not_both_flat_one_byte,
    780       Label::Distance near_jump = Label::kFar);
    781 
    782   // Check whether the instance type represents a flat one-byte string. Jump
    783   // to the label if not. If the instance type can be scratched specify same
    784   // register for both instance type and scratch.
    785   void JumpIfInstanceTypeIsNotSequentialOneByte(
    786       Register instance_type, Register scratch,
    787       Label* on_not_flat_one_byte_string,
    788       Label::Distance near_jump = Label::kFar);
    789 
    790   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
    791       Register first_object_instance_type, Register second_object_instance_type,
    792       Register scratch1, Register scratch2, Label* on_fail,
    793       Label::Distance near_jump = Label::kFar);
    794 
    795   void EmitSeqStringSetCharCheck(Register string,
    796                                  Register index,
    797                                  Register value,
    798                                  uint32_t encoding_mask);
    799 
    800   // Checks if the given register or operand is a unique name
    801   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
    802                                        Label::Distance distance = Label::kFar);
    803   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
    804                                        Label::Distance distance = Label::kFar);
    805 
    806   // ---------------------------------------------------------------------------
    807   // Macro instructions.
    808 
    809   // Load/store with specific representation.
    810   void Load(Register dst, const Operand& src, Representation r);
    811   void Store(const Operand& dst, Register src, Representation r);
    812 
    813   // Load a register with a long value as efficiently as possible.
    814   void Set(Register dst, int64_t x);
    815   void Set(const Operand& dst, intptr_t x);
    816 
    817   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
    818   // hinders register renaming and makes dependence chains longer. So we use
    819   // xorps to clear the dst register before cvtsi2sd to solve this issue.
    820   void Cvtlsi2sd(XMMRegister dst, Register src);
    821   void Cvtlsi2sd(XMMRegister dst, const Operand& src);
    822 
    823   // Move if the registers are not identical.
    824   void Move(Register target, Register source);
    825 
    826   // TestBit and Load SharedFunctionInfo special field.
    827   void TestBitSharedFunctionInfoSpecialField(Register base,
    828                                              int offset,
    829                                              int bit_index);
    830   void LoadSharedFunctionInfoSpecialField(Register dst,
    831                                           Register base,
    832                                           int offset);
    833 
    834   // Handle support
    835   void Move(Register dst, Handle<Object> source);
    836   void Move(const Operand& dst, Handle<Object> source);
    837   void Cmp(Register dst, Handle<Object> source);
    838   void Cmp(const Operand& dst, Handle<Object> source);
    839   void Cmp(Register dst, Smi* src);
    840   void Cmp(const Operand& dst, Smi* src);
    841   void Push(Handle<Object> source);
    842 
    843   // Load a heap object and handle the case of new-space objects by
    844   // indirecting via a global cell.
    845   void MoveHeapObject(Register result, Handle<Object> object);
    846 
    847   // Load a global cell into a register.
    848   void LoadGlobalCell(Register dst, Handle<Cell> cell);
    849 
    850   // Emit code to discard a non-negative number of pointer-sized elements
    851   // from the stack, clobbering only the rsp register.
    852   void Drop(int stack_elements);
    853   // Emit code to discard a positive number of pointer-sized elements
    854   // from the stack under the return address which remains on the top,
    855   // clobbering the rsp register.
    856   void DropUnderReturnAddress(int stack_elements,
    857                               Register scratch = kScratchRegister);
    858 
    859   void Call(Label* target) { call(target); }
    860   void Push(Register src);
    861   void Push(const Operand& src);
    862   void PushQuad(const Operand& src);
    863   void Push(Immediate value);
    864   void PushImm32(int32_t imm32);
    865   void Pop(Register dst);
    866   void Pop(const Operand& dst);
    867   void PopQuad(const Operand& dst);
    868   void PushReturnAddressFrom(Register src) { pushq(src); }
    869   void PopReturnAddressTo(Register dst) { popq(dst); }
    870   void Move(Register dst, ExternalReference ext) {
    871     movp(dst, reinterpret_cast<void*>(ext.address()),
    872          RelocInfo::EXTERNAL_REFERENCE);
    873   }
    874 
    875   // Loads a pointer into a register with a relocation mode.
    876   void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
    877     // This method must not be used with heap object references. The stored
    878     // address is not GC safe. Use the handle version instead.
    879     DCHECK(rmode > RelocInfo::LAST_GCED_ENUM);
    880     movp(dst, ptr, rmode);
    881   }
    882 
    883   void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) {
    884     AllowDeferredHandleDereference using_raw_address;
    885     DCHECK(!RelocInfo::IsNone(rmode));
    886     DCHECK(value->IsHeapObject());
    887     DCHECK(!isolate()->heap()->InNewSpace(*value));
    888     movp(dst, reinterpret_cast<void*>(value.location()), rmode);
    889   }
    890 
    891   // Control Flow
    892   void Jump(Address destination, RelocInfo::Mode rmode);
    893   void Jump(ExternalReference ext);
    894   void Jump(const Operand& op);
    895   void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
    896 
    897   void Call(Address destination, RelocInfo::Mode rmode);
    898   void Call(ExternalReference ext);
    899   void Call(const Operand& op);
    900   void Call(Handle<Code> code_object,
    901             RelocInfo::Mode rmode,
    902             TypeFeedbackId ast_id = TypeFeedbackId::None());
    903 
    904   // The size of the code generated for different call instructions.
    905   int CallSize(Address destination) {
    906     return kCallSequenceLength;
    907   }
    908   int CallSize(ExternalReference ext);
    909   int CallSize(Handle<Code> code_object) {
    910     // Code calls use 32-bit relative addressing.
    911     return kShortCallInstructionLength;
    912   }
    913   int CallSize(Register target) {
    914     // Opcode: REX_opt FF /2 m64
    915     return (target.high_bit() != 0) ? 3 : 2;
    916   }
    917   int CallSize(const Operand& target) {
    918     // Opcode: REX_opt FF /2 m64
    919     return (target.requires_rex() ? 2 : 1) + target.operand_size();
    920   }
    921 
    922   // Emit call to the code we are currently generating.
    923   void CallSelf() {
    924     Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
    925     Call(self, RelocInfo::CODE_TARGET);
    926   }
    927 
    928   // Non-x64 instructions.
    929   // Push/pop all general purpose registers.
    930   // Does not push rsp/rbp nor any of the assembler's special purpose registers
    931   // (kScratchRegister, kSmiConstantRegister, kRootRegister).
    932   void Pushad();
    933   void Popad();
    934   // Sets the stack as after performing Popad, without actually loading the
    935   // registers.
    936   void Dropad();
    937 
    938   // Compare object type for heap object.
    939   // Always use unsigned comparisons: above and below, not less and greater.
    940   // Incoming register is heap_object and outgoing register is map.
    941   // They may be the same register, and may be kScratchRegister.
    942   void CmpObjectType(Register heap_object, InstanceType type, Register map);
    943 
    944   // Compare instance type for map.
    945   // Always use unsigned comparisons: above and below, not less and greater.
    946   void CmpInstanceType(Register map, InstanceType type);
    947 
    948   // Check if a map for a JSObject indicates that the object has fast elements.
    949   // Jump to the specified label if it does not.
    950   void CheckFastElements(Register map,
    951                          Label* fail,
    952                          Label::Distance distance = Label::kFar);
    953 
    954   // Check if a map for a JSObject indicates that the object can have both smi
    955   // and HeapObject elements.  Jump to the specified label if it does not.
    956   void CheckFastObjectElements(Register map,
    957                                Label* fail,
    958                                Label::Distance distance = Label::kFar);
    959 
    960   // Check if a map for a JSObject indicates that the object has fast smi only
    961   // elements.  Jump to the specified label if it does not.
    962   void CheckFastSmiElements(Register map,
    963                             Label* fail,
    964                             Label::Distance distance = Label::kFar);
    965 
    966   // Check to see if maybe_number can be stored as a double in
    967   // FastDoubleElements. If it can, store it at the index specified by index in
    968   // the FastDoubleElements array elements, otherwise jump to fail.  Note that
    969   // index must not be smi-tagged.
    970   void StoreNumberToDoubleElements(Register maybe_number,
    971                                    Register elements,
    972                                    Register index,
    973                                    XMMRegister xmm_scratch,
    974                                    Label* fail,
    975                                    int elements_offset = 0);
    976 
    977   // Compare an object's map with the specified map.
    978   void CompareMap(Register obj, Handle<Map> map);
    979 
    980   // Check if the map of an object is equal to a specified map and branch to
    981   // label if not. Skip the smi check if not required (object is known to be a
    982   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    983   // against maps that are ElementsKind transition maps of the specified map.
    984   void CheckMap(Register obj,
    985                 Handle<Map> map,
    986                 Label* fail,
    987                 SmiCheckType smi_check_type);
    988 
    989   // Check if the map of an object is equal to a specified map and branch to a
    990   // specified target if equal. Skip the smi check if not required (object is
    991   // known to be a heap object)
    992   void DispatchMap(Register obj,
    993                    Register unused,
    994                    Handle<Map> map,
    995                    Handle<Code> success,
    996                    SmiCheckType smi_check_type);
    997 
    998   // Check if the object in register heap_object is a string. Afterwards the
    999   // register map contains the object map and the register instance_type
   1000   // contains the instance_type. The registers map and instance_type can be the
   1001   // same in which case it contains the instance type afterwards. Either of the
   1002   // registers map and instance_type can be the same as heap_object.
   1003   Condition IsObjectStringType(Register heap_object,
   1004                                Register map,
   1005                                Register instance_type);
   1006 
   1007   // Check if the object in register heap_object is a name. Afterwards the
   1008   // register map contains the object map and the register instance_type
   1009   // contains the instance_type. The registers map and instance_type can be the
   1010   // same in which case it contains the instance type afterwards. Either of the
   1011   // registers map and instance_type can be the same as heap_object.
   1012   Condition IsObjectNameType(Register heap_object,
   1013                              Register map,
   1014                              Register instance_type);
   1015 
   1016   // FCmp compares and pops the two values on top of the FPU stack.
   1017   // The flag results are similar to integer cmp, but requires unsigned
   1018   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
   1019   void FCmp();
   1020 
   1021   void ClampUint8(Register reg);
   1022 
   1023   void ClampDoubleToUint8(XMMRegister input_reg,
   1024                           XMMRegister temp_xmm_reg,
   1025                           Register result_reg);
   1026 
   1027   void SlowTruncateToI(Register result_reg, Register input_reg,
   1028       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
   1029 
   1030   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
   1031   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
   1032 
   1033   void DoubleToI(Register result_reg, XMMRegister input_reg,
   1034                  XMMRegister scratch, MinusZeroMode minus_zero_mode,
   1035                  Label* lost_precision, Label* is_nan, Label* minus_zero,
   1036                  Label::Distance dst = Label::kFar);
   1037 
   1038   void LoadUint32(XMMRegister dst, Register src);
   1039 
   1040   void LoadInstanceDescriptors(Register map, Register descriptors);
   1041   void EnumLength(Register dst, Register map);
   1042   void NumberOfOwnDescriptors(Register dst, Register map);
   1043 
   1044   template<typename Field>
   1045   void DecodeField(Register reg) {
   1046     static const int shift = Field::kShift;
   1047     static const int mask = Field::kMask >> Field::kShift;
   1048     if (shift != 0) {
   1049       shrp(reg, Immediate(shift));
   1050     }
   1051     andp(reg, Immediate(mask));
   1052   }
   1053 
   1054   template<typename Field>
   1055   void DecodeFieldToSmi(Register reg) {
   1056     if (SmiValuesAre32Bits()) {
   1057       andp(reg, Immediate(Field::kMask));
   1058       shlp(reg, Immediate(kSmiShift - Field::kShift));
   1059     } else {
   1060       static const int shift = Field::kShift;
   1061       static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
   1062       DCHECK(SmiValuesAre31Bits());
   1063       DCHECK(kSmiShift == kSmiTagSize);
   1064       DCHECK((mask & 0x80000000u) == 0);
   1065       if (shift < kSmiShift) {
   1066         shlp(reg, Immediate(kSmiShift - shift));
   1067       } else if (shift > kSmiShift) {
   1068         sarp(reg, Immediate(shift - kSmiShift));
   1069       }
   1070       andp(reg, Immediate(mask));
   1071     }
   1072   }
   1073 
   1074   // Abort execution if argument is not a number, enabled via --debug-code.
   1075   void AssertNumber(Register object);
   1076 
   1077   // Abort execution if argument is a smi, enabled via --debug-code.
   1078   void AssertNotSmi(Register object);
   1079 
   1080   // Abort execution if argument is not a smi, enabled via --debug-code.
   1081   void AssertSmi(Register object);
   1082   void AssertSmi(const Operand& object);
   1083 
   1084   // Abort execution if a 64 bit register containing a 32 bit payload does not
   1085   // have zeros in the top 32 bits, enabled via --debug-code.
   1086   void AssertZeroExtended(Register reg);
   1087 
   1088   // Abort execution if argument is not a string, enabled via --debug-code.
   1089   void AssertString(Register object);
   1090 
   1091   // Abort execution if argument is not a name, enabled via --debug-code.
   1092   void AssertName(Register object);
   1093 
   1094   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1095   // via --debug-code.
   1096   void AssertUndefinedOrAllocationSite(Register object);
   1097 
   1098   // Abort execution if argument is not the root value with the given index,
   1099   // enabled via --debug-code.
   1100   void AssertRootValue(Register src,
   1101                        Heap::RootListIndex root_value_index,
   1102                        BailoutReason reason);
   1103 
   1104   // ---------------------------------------------------------------------------
   1105   // Exception handling
   1106 
   1107   // Push a new try handler and link it into try handler chain.
   1108   void PushTryHandler(StackHandler::Kind kind, int handler_index);
   1109 
   1110   // Unlink the stack handler on top of the stack from the try handler chain.
   1111   void PopTryHandler();
   1112 
   1113   // Activate the top handler in the try hander chain and pass the
   1114   // thrown value.
   1115   void Throw(Register value);
   1116 
   1117   // Propagate an uncatchable exception out of the current JS stack.
   1118   void ThrowUncatchable(Register value);
   1119 
   1120   // ---------------------------------------------------------------------------
   1121   // Inline caching support
   1122 
   1123   // Generate code for checking access rights - used for security checks
   1124   // on access to global objects across environments. The holder register
   1125   // is left untouched, but the scratch register and kScratchRegister,
   1126   // which must be different, are clobbered.
   1127   void CheckAccessGlobalProxy(Register holder_reg,
   1128                               Register scratch,
   1129                               Label* miss);
   1130 
   1131   void GetNumberHash(Register r0, Register scratch);
   1132 
   1133   void LoadFromNumberDictionary(Label* miss,
   1134                                 Register elements,
   1135                                 Register key,
   1136                                 Register r0,
   1137                                 Register r1,
   1138                                 Register r2,
   1139                                 Register result);
   1140 
   1141 
   1142   // ---------------------------------------------------------------------------
   1143   // Allocation support
   1144 
   1145   // Allocate an object in new space or old pointer space. If the given space
   1146   // is exhausted control continues at the gc_required label. The allocated
   1147   // object is returned in result and end of the new object is returned in
   1148   // result_end. The register scratch can be passed as no_reg in which case
   1149   // an additional object reference will be added to the reloc info. The
   1150   // returned pointers in result and result_end have not yet been tagged as
   1151   // heap objects. If result_contains_top_on_entry is true the content of
   1152   // result is known to be the allocation top on entry (could be result_end
   1153   // from a previous call). If result_contains_top_on_entry is true scratch
   1154   // should be no_reg as it is never used.
   1155   void Allocate(int object_size,
   1156                 Register result,
   1157                 Register result_end,
   1158                 Register scratch,
   1159                 Label* gc_required,
   1160                 AllocationFlags flags);
   1161 
   1162   void Allocate(int header_size,
   1163                 ScaleFactor element_size,
   1164                 Register element_count,
   1165                 Register result,
   1166                 Register result_end,
   1167                 Register scratch,
   1168                 Label* gc_required,
   1169                 AllocationFlags flags);
   1170 
   1171   void Allocate(Register object_size,
   1172                 Register result,
   1173                 Register result_end,
   1174                 Register scratch,
   1175                 Label* gc_required,
   1176                 AllocationFlags flags);
   1177 
   1178   // Undo allocation in new space. The object passed and objects allocated after
   1179   // it will no longer be allocated. Make sure that no pointers are left to the
   1180   // object(s) no longer allocated as they would be invalid when allocation is
   1181   // un-done.
   1182   void UndoAllocationInNewSpace(Register object);
   1183 
   1184   // Allocate a heap number in new space with undefined value. Returns
   1185   // tagged pointer in result register, or jumps to gc_required if new
   1186   // space is full.
   1187   void AllocateHeapNumber(Register result,
   1188                           Register scratch,
   1189                           Label* gc_required,
   1190                           MutableMode mode = IMMUTABLE);
   1191 
   1192   // Allocate a sequential string. All the header fields of the string object
   1193   // are initialized.
   1194   void AllocateTwoByteString(Register result,
   1195                              Register length,
   1196                              Register scratch1,
   1197                              Register scratch2,
   1198                              Register scratch3,
   1199                              Label* gc_required);
   1200   void AllocateOneByteString(Register result, Register length,
   1201                              Register scratch1, Register scratch2,
   1202                              Register scratch3, Label* gc_required);
   1203 
   1204   // Allocate a raw cons string object. Only the map field of the result is
   1205   // initialized.
   1206   void AllocateTwoByteConsString(Register result,
   1207                           Register scratch1,
   1208                           Register scratch2,
   1209                           Label* gc_required);
   1210   void AllocateOneByteConsString(Register result, Register scratch1,
   1211                                  Register scratch2, Label* gc_required);
   1212 
   1213   // Allocate a raw sliced string object. Only the map field of the result is
   1214   // initialized.
   1215   void AllocateTwoByteSlicedString(Register result,
   1216                             Register scratch1,
   1217                             Register scratch2,
   1218                             Label* gc_required);
   1219   void AllocateOneByteSlicedString(Register result, Register scratch1,
   1220                                    Register scratch2, Label* gc_required);
   1221 
   1222   // ---------------------------------------------------------------------------
   1223   // Support functions.
   1224 
   1225   // Check if result is zero and op is negative.
   1226   void NegativeZeroTest(Register result, Register op, Label* then_label);
   1227 
   1228   // Check if result is zero and op is negative in code using jump targets.
   1229   void NegativeZeroTest(CodeGenerator* cgen,
   1230                         Register result,
   1231                         Register op,
   1232                         JumpTarget* then_target);
   1233 
   1234   // Check if result is zero and any of op1 and op2 are negative.
   1235   // Register scratch is destroyed, and it must be different from op2.
   1236   void NegativeZeroTest(Register result, Register op1, Register op2,
   1237                         Register scratch, Label* then_label);
   1238 
   1239   // Try to get function prototype of a function and puts the value in
   1240   // the result register. Checks that the function really is a
   1241   // function and jumps to the miss label if the fast checks fail. The
   1242   // function register will be untouched; the other register may be
   1243   // clobbered.
   1244   void TryGetFunctionPrototype(Register function,
   1245                                Register result,
   1246                                Label* miss,
   1247                                bool miss_on_bound_function = false);
   1248 
   1249   // Picks out an array index from the hash field.
   1250   // Register use:
   1251   //   hash - holds the index's hash. Clobbered.
   1252   //   index - holds the overwritten index on exit.
   1253   void IndexFromHash(Register hash, Register index);
   1254 
   1255   // Find the function context up the context chain.
   1256   void LoadContext(Register dst, int context_chain_length);
   1257 
   1258   // Conditionally load the cached Array transitioned map of type
   1259   // transitioned_kind from the native context if the map in register
   1260   // map_in_out is the cached Array map in the native context of
   1261   // expected_kind.
   1262   void LoadTransitionedArrayMapConditional(
   1263       ElementsKind expected_kind,
   1264       ElementsKind transitioned_kind,
   1265       Register map_in_out,
   1266       Register scratch,
   1267       Label* no_map_match);
   1268 
   1269   // Load the global function with the given index.
   1270   void LoadGlobalFunction(int index, Register function);
   1271 
   1272   // Load the initial map from the global function. The registers
   1273   // function and map can be the same.
   1274   void LoadGlobalFunctionInitialMap(Register function, Register map);
   1275 
   1276   // ---------------------------------------------------------------------------
   1277   // Runtime calls
   1278 
   1279   // Call a code stub.
   1280   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
   1281 
   1282   // Tail call a code stub (jump).
   1283   void TailCallStub(CodeStub* stub);
   1284 
   1285   // Return from a code stub after popping its arguments.
   1286   void StubReturn(int argc);
   1287 
   1288   // Call a runtime routine.
   1289   void CallRuntime(const Runtime::Function* f,
   1290                    int num_arguments,
   1291                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1292 
   1293   // Call a runtime function and save the value of XMM registers.
   1294   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
   1295     const Runtime::Function* function = Runtime::FunctionForId(id);
   1296     CallRuntime(function, function->nargs, kSaveFPRegs);
   1297   }
   1298 
   1299   // Convenience function: Same as above, but takes the fid instead.
   1300   void CallRuntime(Runtime::FunctionId id,
   1301                    int num_arguments,
   1302                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1303     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
   1304   }
   1305 
   1306   // Convenience function: call an external reference.
   1307   void CallExternalReference(const ExternalReference& ext,
   1308                              int num_arguments);
   1309 
   1310   // Tail call of a runtime routine (jump).
   1311   // Like JumpToExternalReference, but also takes care of passing the number
   1312   // of parameters.
   1313   void TailCallExternalReference(const ExternalReference& ext,
   1314                                  int num_arguments,
   1315                                  int result_size);
   1316 
   1317   // Convenience function: tail call a runtime routine (jump).
   1318   void TailCallRuntime(Runtime::FunctionId fid,
   1319                        int num_arguments,
   1320                        int result_size);
   1321 
   1322   // Jump to a runtime routine.
   1323   void JumpToExternalReference(const ExternalReference& ext, int result_size);
   1324 
   1325   // Prepares stack to put arguments (aligns and so on).  WIN64 calling
   1326   // convention requires to put the pointer to the return value slot into
   1327   // rcx (rcx must be preserverd until CallApiFunctionAndReturn).  Saves
   1328   // context (rsi).  Clobbers rax.  Allocates arg_stack_space * kPointerSize
   1329   // inside the exit frame (not GCed) accessible via StackSpaceOperand.
   1330   void PrepareCallApiFunction(int arg_stack_space);
   1331 
   1332   // Calls an API function.  Allocates HandleScope, extracts returned value
   1333   // from handle and propagates exceptions.  Clobbers r14, r15, rbx and
   1334   // caller-save registers.  Restores context.  On return removes
   1335   // stack_space * kPointerSize (GCed).
   1336   void CallApiFunctionAndReturn(Register function_address,
   1337                                 ExternalReference thunk_ref,
   1338                                 Register thunk_last_arg,
   1339                                 int stack_space,
   1340                                 Operand return_value_operand,
   1341                                 Operand* context_restore_operand);
   1342 
   1343   // Before calling a C-function from generated code, align arguments on stack.
   1344   // After aligning the frame, arguments must be stored in rsp[0], rsp[8],
   1345   // etc., not pushed. The argument count assumes all arguments are word sized.
   1346   // The number of slots reserved for arguments depends on platform. On Windows
   1347   // stack slots are reserved for the arguments passed in registers. On other
   1348   // platforms stack slots are only reserved for the arguments actually passed
   1349   // on the stack.
   1350   void PrepareCallCFunction(int num_arguments);
   1351 
   1352   // Calls a C function and cleans up the space for arguments allocated
   1353   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1354   // garbage collection, since that might move the code and invalidate the
   1355   // return address (unless this is somehow accounted for by the called
   1356   // function).
   1357   void CallCFunction(ExternalReference function, int num_arguments);
   1358   void CallCFunction(Register function, int num_arguments);
   1359 
   1360   // Calculate the number of stack slots to reserve for arguments when calling a
   1361   // C function.
   1362   int ArgumentStackSlotsForCFunctionCall(int num_arguments);
   1363 
   1364   // ---------------------------------------------------------------------------
   1365   // Utilities
   1366 
   1367   void Ret();
   1368 
   1369   // Return and drop arguments from stack, where the number of arguments
   1370   // may be bigger than 2^16 - 1.  Requires a scratch register.
   1371   void Ret(int bytes_dropped, Register scratch);
   1372 
   1373   Handle<Object> CodeObject() {
   1374     DCHECK(!code_object_.is_null());
   1375     return code_object_;
   1376   }
   1377 
   1378   // Copy length bytes from source to destination.
   1379   // Uses scratch register internally (if you have a low-eight register
   1380   // free, do use it, otherwise kScratchRegister will be used).
   1381   // The min_length is a minimum limit on the value that length will have.
   1382   // The algorithm has some special cases that might be omitted if the string
   1383   // is known to always be long.
   1384   void CopyBytes(Register destination,
   1385                  Register source,
   1386                  Register length,
   1387                  int min_length = 0,
   1388                  Register scratch = kScratchRegister);
   1389 
   1390   // Initialize fields with filler values.  Fields starting at |start_offset|
   1391   // not including end_offset are overwritten with the value in |filler|.  At
   1392   // the end the loop, |start_offset| takes the value of |end_offset|.
   1393   void InitializeFieldsWithFiller(Register start_offset,
   1394                                   Register end_offset,
   1395                                   Register filler);
   1396 
   1397 
   1398   // Emit code for a truncating division by a constant. The dividend register is
   1399   // unchanged, the result is in rdx, and rax gets clobbered.
   1400   void TruncatingDiv(Register dividend, int32_t divisor);
   1401 
   1402   // ---------------------------------------------------------------------------
   1403   // StatsCounter support
   1404 
   1405   void SetCounter(StatsCounter* counter, int value);
   1406   void IncrementCounter(StatsCounter* counter, int value);
   1407   void DecrementCounter(StatsCounter* counter, int value);
   1408 
   1409 
   1410   // ---------------------------------------------------------------------------
   1411   // Debugging
   1412 
   1413   // Calls Abort(msg) if the condition cc is not satisfied.
   1414   // Use --debug_code to enable.
   1415   void Assert(Condition cc, BailoutReason reason);
   1416 
   1417   void AssertFastElements(Register elements);
   1418 
   1419   // Like Assert(), but always enabled.
   1420   void Check(Condition cc, BailoutReason reason);
   1421 
   1422   // Print a message to stdout and abort execution.
   1423   void Abort(BailoutReason msg);
   1424 
   1425   // Check that the stack is aligned.
   1426   void CheckStackAlignment();
   1427 
   1428   // Verify restrictions about code generated in stubs.
   1429   void set_generating_stub(bool value) { generating_stub_ = value; }
   1430   bool generating_stub() { return generating_stub_; }
   1431   void set_has_frame(bool value) { has_frame_ = value; }
   1432   bool has_frame() { return has_frame_; }
   1433   inline bool AllowThisStubCall(CodeStub* stub);
   1434 
   1435   static int SafepointRegisterStackIndex(Register reg) {
   1436     return SafepointRegisterStackIndex(reg.code());
   1437   }
   1438 
   1439   // Activation support.
   1440   void EnterFrame(StackFrame::Type type);
   1441   void LeaveFrame(StackFrame::Type type);
   1442 
   1443   // Expects object in rax and returns map with validated enum cache
   1444   // in rax.  Assumes that any other register can be used as a scratch.
   1445   void CheckEnumCache(Register null_value,
   1446                       Label* call_runtime);
   1447 
   1448   // AllocationMemento support. Arrays may have an associated
   1449   // AllocationMemento object that can be checked for in order to pretransition
   1450   // to another type.
   1451   // On entry, receiver_reg should point to the array object.
   1452   // scratch_reg gets clobbered.
   1453   // If allocation info is present, condition flags are set to equal.
   1454   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1455                                        Register scratch_reg,
   1456                                        Label* no_memento_found);
   1457 
   1458   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
   1459                                          Register scratch_reg,
   1460                                          Label* memento_found) {
   1461     Label no_memento_found;
   1462     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
   1463                                     &no_memento_found);
   1464     j(equal, memento_found);
   1465     bind(&no_memento_found);
   1466   }
   1467 
   1468   // Jumps to found label if a prototype map has dictionary elements.
   1469   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
   1470                                         Register scratch1, Label* found);
   1471 
   1472  private:
   1473   // Order general registers are pushed by Pushad.
   1474   // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
   1475   static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
   1476   static const int kNumSafepointSavedRegisters = 11;
   1477   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
   1478 
   1479   bool generating_stub_;
   1480   bool has_frame_;
   1481   bool root_array_available_;
   1482 
   1483   // Returns a register holding the smi value. The register MUST NOT be
   1484   // modified. It may be the "smi 1 constant" register.
   1485   Register GetSmiConstant(Smi* value);
   1486 
   1487   int64_t RootRegisterDelta(ExternalReference other);
   1488 
   1489   // Moves the smi value to the destination register.
   1490   void LoadSmiConstant(Register dst, Smi* value);
   1491 
   1492   // This handle will be patched with the code object on installation.
   1493   Handle<Object> code_object_;
   1494 
   1495   // Helper functions for generating invokes.
   1496   void InvokePrologue(const ParameterCount& expected,
   1497                       const ParameterCount& actual,
   1498                       Handle<Code> code_constant,
   1499                       Register code_register,
   1500                       Label* done,
   1501                       bool* definitely_mismatches,
   1502                       InvokeFlag flag,
   1503                       Label::Distance near_jump = Label::kFar,
   1504                       const CallWrapper& call_wrapper = NullCallWrapper());
   1505 
   1506   void EnterExitFramePrologue(bool save_rax);
   1507 
   1508   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
   1509   // accessible via StackSpaceOperand.
   1510   void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
   1511 
   1512   void LeaveExitFrameEpilogue(bool restore_context);
   1513 
   1514   // Allocation support helpers.
   1515   // Loads the top of new-space into the result register.
   1516   // Otherwise the address of the new-space top is loaded into scratch (if
   1517   // scratch is valid), and the new-space top is loaded into result.
   1518   void LoadAllocationTopHelper(Register result,
   1519                                Register scratch,
   1520                                AllocationFlags flags);
   1521 
   1522   void MakeSureDoubleAlignedHelper(Register result,
   1523                                    Register scratch,
   1524                                    Label* gc_required,
   1525                                    AllocationFlags flags);
   1526 
   1527   // Update allocation top with value in result_end register.
   1528   // If scratch is valid, it contains the address of the allocation top.
   1529   void UpdateAllocationTopHelper(Register result_end,
   1530                                  Register scratch,
   1531                                  AllocationFlags flags);
   1532 
   1533   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1534   void InNewSpace(Register object,
   1535                   Register scratch,
   1536                   Condition cc,
   1537                   Label* branch,
   1538                   Label::Distance distance = Label::kFar);
   1539 
   1540   // Helper for finding the mark bits for an address.  Afterwards, the
   1541   // bitmap register points at the word with the mark bits and the mask
   1542   // the position of the first bit.  Uses rcx as scratch and leaves addr_reg
   1543   // unchanged.
   1544   inline void GetMarkBits(Register addr_reg,
   1545                           Register bitmap_reg,
   1546                           Register mask_reg);
   1547 
   1548   // Helper for throwing exceptions.  Compute a handler address and jump to
   1549   // it.  See the implementation for register usage.
   1550   void JumpToHandlerEntry();
   1551 
   1552   // Compute memory operands for safepoint stack slots.
   1553   Operand SafepointRegisterSlot(Register reg);
   1554   static int SafepointRegisterStackIndex(int reg_code) {
   1555     return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
   1556   }
   1557 
   1558   // Needs access to SafepointRegisterStackIndex for compiled frame
   1559   // traversal.
   1560   friend class StandardFrame;
   1561 };
   1562 
   1563 
   1564 // The code patcher is used to patch (typically) small parts of code e.g. for
   1565 // debugging and other types of instrumentation. When using the code patcher
   1566 // the exact number of bytes specified must be emitted. Is not legal to emit
   1567 // relocation information. If any of these constraints are violated it causes
   1568 // an assertion.
   1569 class CodePatcher {
   1570  public:
   1571   CodePatcher(byte* address, int size);
   1572   virtual ~CodePatcher();
   1573 
   1574   // Macro assembler to emit code.
   1575   MacroAssembler* masm() { return &masm_; }
   1576 
   1577  private:
   1578   byte* address_;  // The address of the code being patched.
   1579   int size_;  // Number of bytes of the expected patch size.
   1580   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1581 };
   1582 
   1583 
   1584 // -----------------------------------------------------------------------------
   1585 // Static helper functions.
   1586 
   1587 // Generate an Operand for loading a field from an object.
   1588 inline Operand FieldOperand(Register object, int offset) {
   1589   return Operand(object, offset - kHeapObjectTag);
   1590 }
   1591 
   1592 
   1593 // Generate an Operand for loading an indexed field from an object.
   1594 inline Operand FieldOperand(Register object,
   1595                             Register index,
   1596                             ScaleFactor scale,
   1597                             int offset) {
   1598   return Operand(object, index, scale, offset - kHeapObjectTag);
   1599 }
   1600 
   1601 
   1602 inline Operand ContextOperand(Register context, int index) {
   1603   return Operand(context, Context::SlotOffset(index));
   1604 }
   1605 
   1606 
   1607 inline Operand GlobalObjectOperand() {
   1608   return ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX);
   1609 }
   1610 
   1611 
   1612 // Provides access to exit frame stack space (not GCed).
   1613 inline Operand StackSpaceOperand(int index) {
   1614 #ifdef _WIN64
   1615   const int kShaddowSpace = 4;
   1616   return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
   1617 #else
   1618   return Operand(rsp, index * kPointerSize);
   1619 #endif
   1620 }
   1621 
   1622 
   1623 inline Operand StackOperandForReturnAddress(int32_t disp) {
   1624   return Operand(rsp, disp);
   1625 }
   1626 
   1627 
   1628 #ifdef GENERATED_CODE_COVERAGE
   1629 extern void LogGeneratedCodeCoverage(const char* file_line);
   1630 #define CODE_COVERAGE_STRINGIFY(x) #x
   1631 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1632 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1633 #define ACCESS_MASM(masm) {                                                  \
   1634     Address x64_coverage_function = FUNCTION_ADDR(LogGeneratedCodeCoverage); \
   1635     masm->pushfq();                                                          \
   1636     masm->Pushad();                                                          \
   1637     masm->Push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));            \
   1638     masm->Call(x64_coverage_function, RelocInfo::EXTERNAL_REFERENCE);        \
   1639     masm->Pop(rax);                                                          \
   1640     masm->Popad();                                                           \
   1641     masm->popfq();                                                           \
   1642   }                                                                          \
   1643   masm->
   1644 #else
   1645 #define ACCESS_MASM(masm) masm->
   1646 #endif
   1647 
   1648 } }  // namespace v8::internal
   1649 
   1650 #endif  // V8_X64_MACRO_ASSEMBLER_X64_H_
   1651