Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/schur_eliminator.h"
     32 
     33 #include "Eigen/Dense"
     34 #include "ceres/block_random_access_dense_matrix.h"
     35 #include "ceres/block_sparse_matrix.h"
     36 #include "ceres/casts.h"
     37 #include "ceres/detect_structure.h"
     38 #include "ceres/internal/eigen.h"
     39 #include "ceres/internal/scoped_ptr.h"
     40 #include "ceres/linear_least_squares_problems.h"
     41 #include "ceres/test_util.h"
     42 #include "ceres/triplet_sparse_matrix.h"
     43 #include "ceres/types.h"
     44 #include "glog/logging.h"
     45 #include "gtest/gtest.h"
     46 
     47 // TODO(sameeragarwal): Reduce the size of these tests and redo the
     48 // parameterization to be more efficient.
     49 
     50 namespace ceres {
     51 namespace internal {
     52 
     53 class SchurEliminatorTest : public ::testing::Test {
     54  protected:
     55   void SetUpFromId(int id) {
     56     scoped_ptr<LinearLeastSquaresProblem>
     57         problem(CreateLinearLeastSquaresProblemFromId(id));
     58     CHECK_NOTNULL(problem.get());
     59     SetupHelper(problem.get());
     60   }
     61 
     62   void SetupHelper(LinearLeastSquaresProblem* problem) {
     63     A.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
     64     b.reset(problem->b.release());
     65     D.reset(problem->D.release());
     66 
     67     num_eliminate_blocks = problem->num_eliminate_blocks;
     68     num_eliminate_cols = 0;
     69     const CompressedRowBlockStructure* bs = A->block_structure();
     70 
     71     for (int i = 0; i < num_eliminate_blocks; ++i) {
     72       num_eliminate_cols += bs->cols[i].size;
     73     }
     74   }
     75 
     76   // Compute the golden values for the reduced linear system and the
     77   // solution to the linear least squares problem using dense linear
     78   // algebra.
     79   void ComputeReferenceSolution(const Vector& D) {
     80     Matrix J;
     81     A->ToDenseMatrix(&J);
     82     VectorRef f(b.get(), J.rows());
     83 
     84     Matrix H  =  (D.cwiseProduct(D)).asDiagonal();
     85     H.noalias() += J.transpose() * J;
     86 
     87     const Vector g = J.transpose() * f;
     88     const int schur_size = J.cols() - num_eliminate_cols;
     89 
     90     lhs_expected.resize(schur_size, schur_size);
     91     lhs_expected.setZero();
     92 
     93     rhs_expected.resize(schur_size);
     94     rhs_expected.setZero();
     95 
     96     sol_expected.resize(J.cols());
     97     sol_expected.setZero();
     98 
     99     Matrix P = H.block(0, 0, num_eliminate_cols, num_eliminate_cols);
    100     Matrix Q = H.block(0,
    101                        num_eliminate_cols,
    102                        num_eliminate_cols,
    103                        schur_size);
    104     Matrix R = H.block(num_eliminate_cols,
    105                        num_eliminate_cols,
    106                        schur_size,
    107                        schur_size);
    108     int row = 0;
    109     const CompressedRowBlockStructure* bs = A->block_structure();
    110     for (int i = 0; i < num_eliminate_blocks; ++i) {
    111       const int block_size =  bs->cols[i].size;
    112       P.block(row, row,  block_size, block_size) =
    113           P
    114           .block(row, row,  block_size, block_size)
    115           .llt()
    116           .solve(Matrix::Identity(block_size, block_size));
    117       row += block_size;
    118     }
    119 
    120     lhs_expected
    121         .triangularView<Eigen::Upper>() = R - Q.transpose() * P * Q;
    122     rhs_expected =
    123         g.tail(schur_size) - Q.transpose() * P * g.head(num_eliminate_cols);
    124     sol_expected = H.llt().solve(g);
    125   }
    126 
    127   void EliminateSolveAndCompare(const VectorRef& diagonal,
    128                                 bool use_static_structure,
    129                                 const double relative_tolerance) {
    130     const CompressedRowBlockStructure* bs = A->block_structure();
    131     const int num_col_blocks = bs->cols.size();
    132     vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
    133     for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
    134       blocks[i - num_eliminate_blocks] = bs->cols[i].size;
    135     }
    136 
    137     BlockRandomAccessDenseMatrix lhs(blocks);
    138 
    139     const int num_cols = A->num_cols();
    140     const int schur_size = lhs.num_rows();
    141 
    142     Vector rhs(schur_size);
    143 
    144     LinearSolver::Options options;
    145     options.elimination_groups.push_back(num_eliminate_blocks);
    146     if (use_static_structure) {
    147       DetectStructure(*bs,
    148                       num_eliminate_blocks,
    149                       &options.row_block_size,
    150                       &options.e_block_size,
    151                       &options.f_block_size);
    152     }
    153 
    154     scoped_ptr<SchurEliminatorBase> eliminator;
    155     eliminator.reset(SchurEliminatorBase::Create(options));
    156     eliminator->Init(num_eliminate_blocks, A->block_structure());
    157     eliminator->Eliminate(A.get(), b.get(), diagonal.data(), &lhs, rhs.data());
    158 
    159     MatrixRef lhs_ref(lhs.mutable_values(), lhs.num_rows(), lhs.num_cols());
    160     Vector reduced_sol  =
    161         lhs_ref
    162         .selfadjointView<Eigen::Upper>()
    163         .llt()
    164         .solve(rhs);
    165 
    166     // Solution to the linear least squares problem.
    167     Vector sol(num_cols);
    168     sol.setZero();
    169     sol.tail(schur_size) = reduced_sol;
    170     eliminator->BackSubstitute(A.get(),
    171                                b.get(),
    172                                diagonal.data(),
    173                                reduced_sol.data(),
    174                                sol.data());
    175 
    176     Matrix delta = (lhs_ref - lhs_expected).selfadjointView<Eigen::Upper>();
    177     double diff = delta.norm();
    178     EXPECT_NEAR(diff / lhs_expected.norm(), 0.0, relative_tolerance);
    179     EXPECT_NEAR((rhs - rhs_expected).norm() / rhs_expected.norm(), 0.0,
    180                 relative_tolerance);
    181     EXPECT_NEAR((sol - sol_expected).norm() / sol_expected.norm(), 0.0,
    182                 relative_tolerance);
    183   }
    184 
    185   scoped_ptr<BlockSparseMatrix> A;
    186   scoped_array<double> b;
    187   scoped_array<double> D;
    188   int num_eliminate_blocks;
    189   int num_eliminate_cols;
    190 
    191   Matrix lhs_expected;
    192   Vector rhs_expected;
    193   Vector sol_expected;
    194 };
    195 
    196 TEST_F(SchurEliminatorTest, ScalarProblem) {
    197   SetUpFromId(2);
    198   Vector zero(A->num_cols());
    199   zero.setZero();
    200 
    201   ComputeReferenceSolution(VectorRef(zero.data(), A->num_cols()));
    202   EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), true, 1e-14);
    203   EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), false, 1e-14);
    204 
    205   ComputeReferenceSolution(VectorRef(D.get(), A->num_cols()));
    206   EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14);
    207   EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14);
    208 }
    209 
    210 }  // namespace internal
    211 }  // namespace ceres
    212