1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define ATRACE_TAG ATRACE_TAG_DALVIK 18 19 #include "thread.h" 20 21 #include <cutils/trace.h> 22 #include <pthread.h> 23 #include <signal.h> 24 #include <sys/resource.h> 25 #include <sys/time.h> 26 27 #include <algorithm> 28 #include <bitset> 29 #include <cerrno> 30 #include <iostream> 31 #include <list> 32 33 #include "arch/context.h" 34 #include "base/mutex.h" 35 #include "class_linker-inl.h" 36 #include "class_linker.h" 37 #include "debugger.h" 38 #include "dex_file-inl.h" 39 #include "entrypoints/entrypoint_utils.h" 40 #include "entrypoints/quick/quick_alloc_entrypoints.h" 41 #include "gc_map.h" 42 #include "gc/accounting/card_table-inl.h" 43 #include "gc/allocator/rosalloc.h" 44 #include "gc/heap.h" 45 #include "gc/space/space.h" 46 #include "handle_scope-inl.h" 47 #include "handle_scope.h" 48 #include "indirect_reference_table-inl.h" 49 #include "jni_internal.h" 50 #include "mirror/art_field-inl.h" 51 #include "mirror/art_method-inl.h" 52 #include "mirror/class_loader.h" 53 #include "mirror/class-inl.h" 54 #include "mirror/object_array-inl.h" 55 #include "mirror/stack_trace_element.h" 56 #include "monitor.h" 57 #include "object_lock.h" 58 #include "quick_exception_handler.h" 59 #include "quick/quick_method_frame_info.h" 60 #include "reflection.h" 61 #include "runtime.h" 62 #include "scoped_thread_state_change.h" 63 #include "ScopedLocalRef.h" 64 #include "ScopedUtfChars.h" 65 #include "stack.h" 66 #include "thread_list.h" 67 #include "thread-inl.h" 68 #include "utils.h" 69 #include "verifier/dex_gc_map.h" 70 #include "verify_object-inl.h" 71 #include "vmap_table.h" 72 #include "well_known_classes.h" 73 74 namespace art { 75 76 bool Thread::is_started_ = false; 77 pthread_key_t Thread::pthread_key_self_; 78 ConditionVariable* Thread::resume_cond_ = nullptr; 79 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA); 80 81 static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; 82 83 void Thread::InitCardTable() { 84 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); 85 } 86 87 static void UnimplementedEntryPoint() { 88 UNIMPLEMENTED(FATAL); 89 } 90 91 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints, 92 PortableEntryPoints* ppoints, QuickEntryPoints* qpoints); 93 94 void Thread::InitTlsEntryPoints() { 95 // Insert a placeholder so we can easily tell if we call an unimplemented entry point. 96 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints); 97 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + 98 sizeof(tlsPtr_.quick_entrypoints)); 99 for (uintptr_t* it = begin; it != end; ++it) { 100 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); 101 } 102 InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints, 103 &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints); 104 } 105 106 void Thread::ResetQuickAllocEntryPointsForThread() { 107 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints); 108 } 109 110 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) { 111 tlsPtr_.deoptimization_shadow_frame = sf; 112 } 113 114 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) { 115 tls64_.deoptimization_return_value.SetJ(ret_val.GetJ()); 116 } 117 118 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) { 119 ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame; 120 tlsPtr_.deoptimization_shadow_frame = nullptr; 121 ret_val->SetJ(tls64_.deoptimization_return_value.GetJ()); 122 return sf; 123 } 124 125 void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) { 126 sf->SetLink(tlsPtr_.shadow_frame_under_construction); 127 tlsPtr_.shadow_frame_under_construction = sf; 128 } 129 130 void Thread::ClearShadowFrameUnderConstruction() { 131 CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction); 132 tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink(); 133 } 134 135 void Thread::InitTid() { 136 tls32_.tid = ::art::GetTid(); 137 } 138 139 void Thread::InitAfterFork() { 140 // One thread (us) survived the fork, but we have a new tid so we need to 141 // update the value stashed in this Thread*. 142 InitTid(); 143 } 144 145 void* Thread::CreateCallback(void* arg) { 146 Thread* self = reinterpret_cast<Thread*>(arg); 147 Runtime* runtime = Runtime::Current(); 148 if (runtime == nullptr) { 149 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; 150 return nullptr; 151 } 152 { 153 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true 154 // after self->Init(). 155 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); 156 // Check that if we got here we cannot be shutting down (as shutdown should never have started 157 // while threads are being born). 158 CHECK(!runtime->IsShuttingDownLocked()); 159 self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); 160 Runtime::Current()->EndThreadBirth(); 161 } 162 { 163 ScopedObjectAccess soa(self); 164 165 // Copy peer into self, deleting global reference when done. 166 CHECK(self->tlsPtr_.jpeer != nullptr); 167 self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer); 168 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer); 169 self->tlsPtr_.jpeer = nullptr; 170 self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str()); 171 172 mirror::ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority); 173 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer)); 174 Dbg::PostThreadStart(self); 175 176 // Invoke the 'run' method of our java.lang.Thread. 177 mirror::Object* receiver = self->tlsPtr_.opeer; 178 jmethodID mid = WellKnownClasses::java_lang_Thread_run; 179 InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr); 180 } 181 // Detach and delete self. 182 Runtime::Current()->GetThreadList()->Unregister(self); 183 184 return nullptr; 185 } 186 187 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, 188 mirror::Object* thread_peer) { 189 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer); 190 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer))); 191 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_ 192 // to stop it from going away. 193 if (kIsDebugBuild) { 194 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); 195 if (result != nullptr && !result->IsSuspended()) { 196 Locks::thread_list_lock_->AssertHeld(soa.Self()); 197 } 198 } 199 return result; 200 } 201 202 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, 203 jobject java_thread) { 204 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread)); 205 } 206 207 static size_t FixStackSize(size_t stack_size) { 208 // A stack size of zero means "use the default". 209 if (stack_size == 0) { 210 stack_size = Runtime::Current()->GetDefaultStackSize(); 211 } 212 213 // Dalvik used the bionic pthread default stack size for native threads, 214 // so include that here to support apps that expect large native stacks. 215 stack_size += 1 * MB; 216 217 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. 218 if (stack_size < PTHREAD_STACK_MIN) { 219 stack_size = PTHREAD_STACK_MIN; 220 } 221 222 if (Runtime::Current()->ExplicitStackOverflowChecks()) { 223 // It's likely that callers are trying to ensure they have at least a certain amount of 224 // stack space, so we should add our reserved space on top of what they requested, rather 225 // than implicitly take it away from them. 226 stack_size += GetStackOverflowReservedBytes(kRuntimeISA); 227 } else { 228 // If we are going to use implicit stack checks, allocate space for the protected 229 // region at the bottom of the stack. 230 stack_size += Thread::kStackOverflowImplicitCheckSize + 231 GetStackOverflowReservedBytes(kRuntimeISA); 232 } 233 234 // Some systems require the stack size to be a multiple of the system page size, so round up. 235 stack_size = RoundUp(stack_size, kPageSize); 236 237 return stack_size; 238 } 239 240 // Global variable to prevent the compiler optimizing away the page reads for the stack. 241 byte dont_optimize_this; 242 243 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack 244 // overflow is detected. It is located right below the stack_begin_. 245 // 246 // There is a little complexity here that deserves a special mention. On some 247 // architectures, the stack created using a VM_GROWSDOWN flag 248 // to prevent memory being allocated when it's not needed. This flag makes the 249 // kernel only allocate memory for the stack by growing down in memory. Because we 250 // want to put an mprotected region far away from that at the stack top, we need 251 // to make sure the pages for the stack are mapped in before we call mprotect. We do 252 // this by reading every page from the stack bottom (highest address) to the stack top. 253 // We then madvise this away. 254 void Thread::InstallImplicitProtection() { 255 byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 256 byte* stack_himem = tlsPtr_.stack_end; 257 byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) & 258 ~(kPageSize - 1)); // Page containing current top of stack. 259 260 // First remove the protection on the protected region as will want to read and 261 // write it. This may fail (on the first attempt when the stack is not mapped) 262 // but we ignore that. 263 UnprotectStack(); 264 265 // Map in the stack. This must be done by reading from the 266 // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN 267 // in the kernel. Any access more than a page below the current SP might cause 268 // a segv. 269 270 // Read every page from the high address to the low. 271 for (byte* p = stack_top; p >= pregion; p -= kPageSize) { 272 dont_optimize_this = *p; 273 } 274 275 VLOG(threads) << "installing stack protected region at " << std::hex << 276 static_cast<void*>(pregion) << " to " << 277 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1); 278 279 // Protect the bottom of the stack to prevent read/write to it. 280 ProtectStack(); 281 282 // Tell the kernel that we won't be needing these pages any more. 283 // NB. madvise will probably write zeroes into the memory (on linux it does). 284 uint32_t unwanted_size = stack_top - pregion - kPageSize; 285 madvise(pregion, unwanted_size, MADV_DONTNEED); 286 } 287 288 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { 289 CHECK(java_peer != nullptr); 290 Thread* self = static_cast<JNIEnvExt*>(env)->self; 291 Runtime* runtime = Runtime::Current(); 292 293 // Atomically start the birth of the thread ensuring the runtime isn't shutting down. 294 bool thread_start_during_shutdown = false; 295 { 296 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 297 if (runtime->IsShuttingDownLocked()) { 298 thread_start_during_shutdown = true; 299 } else { 300 runtime->StartThreadBirth(); 301 } 302 } 303 if (thread_start_during_shutdown) { 304 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError")); 305 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); 306 return; 307 } 308 309 Thread* child_thread = new Thread(is_daemon); 310 // Use global JNI ref to hold peer live while child thread starts. 311 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer); 312 stack_size = FixStackSize(stack_size); 313 314 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to 315 // assign it. 316 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 317 reinterpret_cast<jlong>(child_thread)); 318 319 pthread_t new_pthread; 320 pthread_attr_t attr; 321 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); 322 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); 323 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); 324 int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread); 325 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); 326 327 if (pthread_create_result != 0) { 328 // pthread_create(3) failed, so clean up. 329 { 330 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 331 runtime->EndThreadBirth(); 332 } 333 // Manually delete the global reference since Thread::Init will not have been run. 334 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer); 335 child_thread->tlsPtr_.jpeer = nullptr; 336 delete child_thread; 337 child_thread = nullptr; 338 // TODO: remove from thread group? 339 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0); 340 { 341 std::string msg(StringPrintf("pthread_create (%s stack) failed: %s", 342 PrettySize(stack_size).c_str(), strerror(pthread_create_result))); 343 ScopedObjectAccess soa(env); 344 soa.Self()->ThrowOutOfMemoryError(msg.c_str()); 345 } 346 } 347 } 348 349 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) { 350 // This function does all the initialization that must be run by the native thread it applies to. 351 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so 352 // we can handshake with the corresponding native thread when it's ready.) Check this native 353 // thread hasn't been through here already... 354 CHECK(Thread::Current() == nullptr); 355 SetUpAlternateSignalStack(); 356 InitCpu(); 357 InitTlsEntryPoints(); 358 RemoveSuspendTrigger(); 359 InitCardTable(); 360 InitTid(); 361 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this 362 // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). 363 tlsPtr_.pthread_self = pthread_self(); 364 CHECK(is_started_); 365 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); 366 DCHECK_EQ(Thread::Current(), this); 367 368 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this); 369 InitStackHwm(); 370 371 tlsPtr_.jni_env = new JNIEnvExt(this, java_vm); 372 thread_list->Register(this); 373 } 374 375 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group, 376 bool create_peer) { 377 Thread* self; 378 Runtime* runtime = Runtime::Current(); 379 if (runtime == nullptr) { 380 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name; 381 return nullptr; 382 } 383 { 384 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); 385 if (runtime->IsShuttingDownLocked()) { 386 LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name; 387 return nullptr; 388 } else { 389 Runtime::Current()->StartThreadBirth(); 390 self = new Thread(as_daemon); 391 self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); 392 Runtime::Current()->EndThreadBirth(); 393 } 394 } 395 396 CHECK_NE(self->GetState(), kRunnable); 397 self->SetState(kNative); 398 399 // If we're the main thread, ClassLinker won't be created until after we're attached, 400 // so that thread needs a two-stage attach. Regular threads don't need this hack. 401 // In the compiler, all threads need this hack, because no-one's going to be getting 402 // a native peer! 403 if (create_peer) { 404 self->CreatePeer(thread_name, as_daemon, thread_group); 405 } else { 406 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. 407 if (thread_name != nullptr) { 408 self->tlsPtr_.name->assign(thread_name); 409 ::art::SetThreadName(thread_name); 410 } else if (self->GetJniEnv()->check_jni) { 411 LOG(WARNING) << *Thread::Current() << " attached without supplying a name"; 412 } 413 } 414 415 { 416 ScopedObjectAccess soa(self); 417 Dbg::PostThreadStart(self); 418 } 419 420 return self; 421 } 422 423 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { 424 Runtime* runtime = Runtime::Current(); 425 CHECK(runtime->IsStarted()); 426 JNIEnv* env = tlsPtr_.jni_env; 427 428 if (thread_group == nullptr) { 429 thread_group = runtime->GetMainThreadGroup(); 430 } 431 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); 432 if (name != nullptr && thread_name.get() == nullptr) { 433 CHECK(IsExceptionPending()); 434 return; 435 } 436 jint thread_priority = GetNativePriority(); 437 jboolean thread_is_daemon = as_daemon; 438 439 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); 440 if (peer.get() == nullptr) { 441 CHECK(IsExceptionPending()); 442 return; 443 } 444 { 445 ScopedObjectAccess soa(this); 446 tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get()); 447 } 448 env->CallNonvirtualVoidMethod(peer.get(), 449 WellKnownClasses::java_lang_Thread, 450 WellKnownClasses::java_lang_Thread_init, 451 thread_group, thread_name.get(), thread_priority, thread_is_daemon); 452 AssertNoPendingException(); 453 454 Thread* self = this; 455 DCHECK_EQ(self, Thread::Current()); 456 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer, 457 reinterpret_cast<jlong>(self)); 458 459 ScopedObjectAccess soa(self); 460 StackHandleScope<1> hs(self); 461 Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa))); 462 if (peer_thread_name.Get() == nullptr) { 463 // The Thread constructor should have set the Thread.name to a 464 // non-null value. However, because we can run without code 465 // available (in the compiler, in tests), we manually assign the 466 // fields the constructor should have set. 467 if (runtime->IsActiveTransaction()) { 468 InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); 469 } else { 470 InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); 471 } 472 peer_thread_name.Assign(GetThreadName(soa)); 473 } 474 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. 475 if (peer_thread_name.Get() != nullptr) { 476 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); 477 } 478 } 479 480 template<bool kTransactionActive> 481 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group, 482 jobject thread_name, jint thread_priority) { 483 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)-> 484 SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon); 485 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)-> 486 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group)); 487 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)-> 488 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name)); 489 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)-> 490 SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority); 491 } 492 493 void Thread::SetThreadName(const char* name) { 494 tlsPtr_.name->assign(name); 495 ::art::SetThreadName(name); 496 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); 497 } 498 499 void Thread::InitStackHwm() { 500 void* read_stack_base; 501 size_t read_stack_size; 502 size_t read_guard_size; 503 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size); 504 505 // This is included in the SIGQUIT output, but it's useful here for thread debugging. 506 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)", 507 read_stack_base, 508 PrettySize(read_stack_size).c_str(), 509 PrettySize(read_guard_size).c_str()); 510 511 tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base); 512 tlsPtr_.stack_size = read_stack_size; 513 514 // The minimum stack size we can cope with is the overflow reserved bytes (typically 515 // 8K) + the protected region size (4K) + another page (4K). Typically this will 516 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes 517 // between 8K and 12K. 518 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize 519 + 4 * KB; 520 if (read_stack_size <= min_stack) { 521 LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size 522 << " bytes)"; 523 } 524 525 // TODO: move this into the Linux GetThreadStack implementation. 526 #if !defined(__APPLE__) 527 // If we're the main thread, check whether we were run with an unlimited stack. In that case, 528 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection 529 // will be broken because we'll die long before we get close to 2GB. 530 bool is_main_thread = (::art::GetTid() == getpid()); 531 if (is_main_thread) { 532 rlimit stack_limit; 533 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { 534 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; 535 } 536 if (stack_limit.rlim_cur == RLIM_INFINITY) { 537 // Find the default stack size for new threads... 538 pthread_attr_t default_attributes; 539 size_t default_stack_size; 540 CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query"); 541 CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size), 542 "default stack size query"); 543 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query"); 544 545 // ...and use that as our limit. 546 size_t old_stack_size = read_stack_size; 547 tlsPtr_.stack_size = default_stack_size; 548 tlsPtr_.stack_begin += (old_stack_size - default_stack_size); 549 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" 550 << " to " << PrettySize(default_stack_size) 551 << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin); 552 } 553 } 554 #endif 555 556 // Set stack_end_ to the bottom of the stack saving space of stack overflows 557 558 Runtime* runtime = Runtime::Current(); 559 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler(); 560 ResetDefaultStackEnd(); 561 562 // Install the protected region if we are doing implicit overflow checks. 563 if (implicit_stack_check) { 564 // The thread might have protected region at the bottom. We need 565 // to install our own region so we need to move the limits 566 // of the stack to make room for it. 567 568 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize; 569 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize; 570 tlsPtr_.stack_size -= read_guard_size; 571 572 InstallImplicitProtection(); 573 } 574 575 // Sanity check. 576 int stack_variable; 577 CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end)); 578 } 579 580 void Thread::ShortDump(std::ostream& os) const { 581 os << "Thread["; 582 if (GetThreadId() != 0) { 583 // If we're in kStarting, we won't have a thin lock id or tid yet. 584 os << GetThreadId() 585 << ",tid=" << GetTid() << ','; 586 } 587 os << GetState() 588 << ",Thread*=" << this 589 << ",peer=" << tlsPtr_.opeer 590 << ",\"" << *tlsPtr_.name << "\"" 591 << "]"; 592 } 593 594 void Thread::Dump(std::ostream& os) const { 595 DumpState(os); 596 DumpStack(os); 597 } 598 599 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const { 600 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); 601 return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr; 602 } 603 604 void Thread::GetThreadName(std::string& name) const { 605 name.assign(*tlsPtr_.name); 606 } 607 608 uint64_t Thread::GetCpuMicroTime() const { 609 #if defined(HAVE_POSIX_CLOCKS) 610 clockid_t cpu_clock_id; 611 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id); 612 timespec now; 613 clock_gettime(cpu_clock_id, &now); 614 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); 615 #else 616 UNIMPLEMENTED(WARNING); 617 return -1; 618 #endif 619 } 620 621 // Attempt to rectify locks so that we dump thread list with required locks before exiting. 622 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { 623 LOG(ERROR) << *thread << " suspend count already zero."; 624 Locks::thread_suspend_count_lock_->Unlock(self); 625 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 626 Locks::mutator_lock_->SharedTryLock(self); 627 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 628 LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; 629 } 630 } 631 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 632 Locks::thread_list_lock_->TryLock(self); 633 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 634 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; 635 } 636 } 637 std::ostringstream ss; 638 Runtime::Current()->GetThreadList()->DumpLocked(ss); 639 LOG(FATAL) << ss.str(); 640 } 641 642 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) { 643 if (kIsDebugBuild) { 644 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count) 645 << delta << " " << tls32_.debug_suspend_count << " " << this; 646 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this; 647 Locks::thread_suspend_count_lock_->AssertHeld(self); 648 if (this != self && !IsSuspended()) { 649 Locks::thread_list_lock_->AssertHeld(self); 650 } 651 } 652 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) { 653 UnsafeLogFatalForSuspendCount(self, this); 654 return; 655 } 656 657 tls32_.suspend_count += delta; 658 if (for_debugger) { 659 tls32_.debug_suspend_count += delta; 660 } 661 662 if (tls32_.suspend_count == 0) { 663 AtomicClearFlag(kSuspendRequest); 664 } else { 665 AtomicSetFlag(kSuspendRequest); 666 TriggerSuspend(); 667 } 668 } 669 670 void Thread::RunCheckpointFunction() { 671 Closure *checkpoints[kMaxCheckpoints]; 672 673 // Grab the suspend_count lock and copy the current set of 674 // checkpoints. Then clear the list and the flag. The RequestCheckpoint 675 // function will also grab this lock so we prevent a race between setting 676 // the kCheckpointRequest flag and clearing it. 677 { 678 MutexLock mu(this, *Locks::thread_suspend_count_lock_); 679 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { 680 checkpoints[i] = tlsPtr_.checkpoint_functions[i]; 681 tlsPtr_.checkpoint_functions[i] = nullptr; 682 } 683 AtomicClearFlag(kCheckpointRequest); 684 } 685 686 // Outside the lock, run all the checkpoint functions that 687 // we collected. 688 bool found_checkpoint = false; 689 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { 690 if (checkpoints[i] != nullptr) { 691 ATRACE_BEGIN("Checkpoint function"); 692 checkpoints[i]->Run(this); 693 ATRACE_END(); 694 found_checkpoint = true; 695 } 696 } 697 CHECK(found_checkpoint); 698 } 699 700 bool Thread::RequestCheckpoint(Closure* function) { 701 union StateAndFlags old_state_and_flags; 702 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 703 if (old_state_and_flags.as_struct.state != kRunnable) { 704 return false; // Fail, thread is suspended and so can't run a checkpoint. 705 } 706 707 uint32_t available_checkpoint = kMaxCheckpoints; 708 for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) { 709 if (tlsPtr_.checkpoint_functions[i] == nullptr) { 710 available_checkpoint = i; 711 break; 712 } 713 } 714 if (available_checkpoint == kMaxCheckpoints) { 715 // No checkpoint functions available, we can't run a checkpoint 716 return false; 717 } 718 tlsPtr_.checkpoint_functions[available_checkpoint] = function; 719 720 // Checkpoint function installed now install flag bit. 721 // We must be runnable to request a checkpoint. 722 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable); 723 union StateAndFlags new_state_and_flags; 724 new_state_and_flags.as_int = old_state_and_flags.as_int; 725 new_state_and_flags.as_struct.flags |= kCheckpointRequest; 726 bool success = 727 tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int, 728 new_state_and_flags.as_int); 729 if (UNLIKELY(!success)) { 730 // The thread changed state before the checkpoint was installed. 731 CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function); 732 tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr; 733 } else { 734 CHECK_EQ(ReadFlag(kCheckpointRequest), true); 735 TriggerSuspend(); 736 } 737 return success; 738 } 739 740 void Thread::FullSuspendCheck() { 741 VLOG(threads) << this << " self-suspending"; 742 ATRACE_BEGIN("Full suspend check"); 743 // Make thread appear suspended to other threads, release mutator_lock_. 744 TransitionFromRunnableToSuspended(kSuspended); 745 // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_. 746 TransitionFromSuspendedToRunnable(); 747 ATRACE_END(); 748 VLOG(threads) << this << " self-reviving"; 749 } 750 751 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { 752 std::string group_name; 753 int priority; 754 bool is_daemon = false; 755 Thread* self = Thread::Current(); 756 757 // Don't do this if we are aborting since the GC may have all the threads suspended. This will 758 // cause ScopedObjectAccessUnchecked to deadlock. 759 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) { 760 ScopedObjectAccessUnchecked soa(self); 761 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority) 762 ->GetInt(thread->tlsPtr_.opeer); 763 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon) 764 ->GetBoolean(thread->tlsPtr_.opeer); 765 766 mirror::Object* thread_group = 767 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer); 768 769 if (thread_group != nullptr) { 770 mirror::ArtField* group_name_field = 771 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); 772 mirror::String* group_name_string = 773 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group)); 774 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>"; 775 } 776 } else { 777 priority = GetNativePriority(); 778 } 779 780 std::string scheduler_group_name(GetSchedulerGroupName(tid)); 781 if (scheduler_group_name.empty()) { 782 scheduler_group_name = "default"; 783 } 784 785 if (thread != nullptr) { 786 os << '"' << *thread->tlsPtr_.name << '"'; 787 if (is_daemon) { 788 os << " daemon"; 789 } 790 os << " prio=" << priority 791 << " tid=" << thread->GetThreadId() 792 << " " << thread->GetState(); 793 if (thread->IsStillStarting()) { 794 os << " (still starting up)"; 795 } 796 os << "\n"; 797 } else { 798 os << '"' << ::art::GetThreadName(tid) << '"' 799 << " prio=" << priority 800 << " (not attached)\n"; 801 } 802 803 if (thread != nullptr) { 804 MutexLock mu(self, *Locks::thread_suspend_count_lock_); 805 os << " | group=\"" << group_name << "\"" 806 << " sCount=" << thread->tls32_.suspend_count 807 << " dsCount=" << thread->tls32_.debug_suspend_count 808 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer) 809 << " self=" << reinterpret_cast<const void*>(thread) << "\n"; 810 } 811 812 os << " | sysTid=" << tid 813 << " nice=" << getpriority(PRIO_PROCESS, tid) 814 << " cgrp=" << scheduler_group_name; 815 if (thread != nullptr) { 816 int policy; 817 sched_param sp; 818 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp), 819 __FUNCTION__); 820 os << " sched=" << policy << "/" << sp.sched_priority 821 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self); 822 } 823 os << "\n"; 824 825 // Grab the scheduler stats for this thread. 826 std::string scheduler_stats; 827 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { 828 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. 829 } else { 830 scheduler_stats = "0 0 0"; 831 } 832 833 char native_thread_state = '?'; 834 int utime = 0; 835 int stime = 0; 836 int task_cpu = 0; 837 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu); 838 839 os << " | state=" << native_thread_state 840 << " schedstat=( " << scheduler_stats << " )" 841 << " utm=" << utime 842 << " stm=" << stime 843 << " core=" << task_cpu 844 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; 845 if (thread != nullptr) { 846 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-" 847 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize=" 848 << PrettySize(thread->tlsPtr_.stack_size) << "\n"; 849 // Dump the held mutexes. 850 os << " | held mutexes="; 851 for (size_t i = 0; i < kLockLevelCount; ++i) { 852 if (i != kMonitorLock) { 853 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i)); 854 if (mutex != nullptr) { 855 os << " \"" << mutex->GetName() << "\""; 856 if (mutex->IsReaderWriterMutex()) { 857 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex); 858 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) { 859 os << "(exclusive held)"; 860 } else { 861 os << "(shared held)"; 862 } 863 } 864 } 865 } 866 } 867 os << "\n"; 868 } 869 } 870 871 void Thread::DumpState(std::ostream& os) const { 872 Thread::DumpState(os, this, GetTid()); 873 } 874 875 struct StackDumpVisitor : public StackVisitor { 876 StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate) 877 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 878 : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate), 879 last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) { 880 } 881 882 virtual ~StackDumpVisitor() { 883 if (frame_count == 0) { 884 os << " (no managed stack frames)\n"; 885 } 886 } 887 888 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 889 mirror::ArtMethod* m = GetMethod(); 890 if (m->IsRuntimeMethod()) { 891 return true; 892 } 893 const int kMaxRepetition = 3; 894 mirror::Class* c = m->GetDeclaringClass(); 895 mirror::DexCache* dex_cache = c->GetDexCache(); 896 int line_number = -1; 897 if (dex_cache != nullptr) { // be tolerant of bad input 898 const DexFile& dex_file = *dex_cache->GetDexFile(); 899 line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false)); 900 } 901 if (line_number == last_line_number && last_method == m) { 902 ++repetition_count; 903 } else { 904 if (repetition_count >= kMaxRepetition) { 905 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; 906 } 907 repetition_count = 0; 908 last_line_number = line_number; 909 last_method = m; 910 } 911 if (repetition_count < kMaxRepetition) { 912 os << " at " << PrettyMethod(m, false); 913 if (m->IsNative()) { 914 os << "(Native method)"; 915 } else { 916 const char* source_file(m->GetDeclaringClassSourceFile()); 917 os << "(" << (source_file != nullptr ? source_file : "unavailable") 918 << ":" << line_number << ")"; 919 } 920 os << "\n"; 921 if (frame_count == 0) { 922 Monitor::DescribeWait(os, thread); 923 } 924 if (can_allocate) { 925 // Visit locks, but do not abort on errors. This would trigger a nested abort. 926 Monitor::VisitLocks(this, DumpLockedObject, &os, false); 927 } 928 } 929 930 ++frame_count; 931 return true; 932 } 933 934 static void DumpLockedObject(mirror::Object* o, void* context) 935 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 936 std::ostream& os = *reinterpret_cast<std::ostream*>(context); 937 os << " - locked "; 938 if (o == nullptr) { 939 os << "an unknown object"; 940 } else { 941 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) && 942 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) { 943 // Getting the identity hashcode here would result in lock inflation and suspension of the 944 // current thread, which isn't safe if this is the only runnable thread. 945 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o), 946 PrettyTypeOf(o).c_str()); 947 } else { 948 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str()); 949 } 950 } 951 os << "\n"; 952 } 953 954 std::ostream& os; 955 const Thread* thread; 956 const bool can_allocate; 957 mirror::ArtMethod* last_method; 958 int last_line_number; 959 int repetition_count; 960 int frame_count; 961 }; 962 963 static bool ShouldShowNativeStack(const Thread* thread) 964 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 965 ThreadState state = thread->GetState(); 966 967 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. 968 if (state > kWaiting && state < kStarting) { 969 return true; 970 } 971 972 // In an Object.wait variant or Thread.sleep? That's not interesting. 973 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) { 974 return false; 975 } 976 977 // Threads with no managed stack frames should be shown. 978 const ManagedStack* managed_stack = thread->GetManagedStack(); 979 if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL && 980 managed_stack->GetTopShadowFrame() == NULL)) { 981 return true; 982 } 983 984 // In some other native method? That's interesting. 985 // We don't just check kNative because native methods will be in state kSuspended if they're 986 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the 987 // thread-startup states if it's early enough in their life cycle (http://b/7432159). 988 mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr); 989 return current_method != nullptr && current_method->IsNative(); 990 } 991 992 void Thread::DumpJavaStack(std::ostream& os) const { 993 // Dumping the Java stack involves the verifier for locks. The verifier operates under the 994 // assumption that there is no exception pending on entry. Thus, stash any pending exception. 995 // TODO: Find a way to avoid const_cast. 996 StackHandleScope<3> scope(const_cast<Thread*>(this)); 997 Handle<mirror::Throwable> exc; 998 Handle<mirror::Object> throw_location_this_object; 999 Handle<mirror::ArtMethod> throw_location_method; 1000 uint32_t throw_location_dex_pc; 1001 bool have_exception = false; 1002 if (IsExceptionPending()) { 1003 ThrowLocation exc_location; 1004 exc = scope.NewHandle(GetException(&exc_location)); 1005 throw_location_this_object = scope.NewHandle(exc_location.GetThis()); 1006 throw_location_method = scope.NewHandle(exc_location.GetMethod()); 1007 throw_location_dex_pc = exc_location.GetDexPc(); 1008 const_cast<Thread*>(this)->ClearException(); 1009 have_exception = true; 1010 } 1011 1012 std::unique_ptr<Context> context(Context::Create()); 1013 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), 1014 !tls32_.throwing_OutOfMemoryError); 1015 dumper.WalkStack(); 1016 1017 if (have_exception) { 1018 ThrowLocation exc_location(throw_location_this_object.Get(), 1019 throw_location_method.Get(), 1020 throw_location_dex_pc); 1021 const_cast<Thread*>(this)->SetException(exc_location, exc.Get()); 1022 } 1023 } 1024 1025 void Thread::DumpStack(std::ostream& os) const { 1026 // TODO: we call this code when dying but may not have suspended the thread ourself. The 1027 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit 1028 // the race with the thread_suspend_count_lock_). 1029 bool dump_for_abort = (gAborting > 0); 1030 bool safe_to_dump = (this == Thread::Current() || IsSuspended()); 1031 if (!kIsDebugBuild) { 1032 // We always want to dump the stack for an abort, however, there is no point dumping another 1033 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk. 1034 safe_to_dump = (safe_to_dump || dump_for_abort); 1035 } 1036 if (safe_to_dump) { 1037 // If we're currently in native code, dump that stack before dumping the managed stack. 1038 if (dump_for_abort || ShouldShowNativeStack(this)) { 1039 DumpKernelStack(os, GetTid(), " kernel: ", false); 1040 DumpNativeStack(os, GetTid(), " native: ", GetCurrentMethod(nullptr, !dump_for_abort)); 1041 } 1042 DumpJavaStack(os); 1043 } else { 1044 os << "Not able to dump stack of thread that isn't suspended"; 1045 } 1046 } 1047 1048 void Thread::ThreadExitCallback(void* arg) { 1049 Thread* self = reinterpret_cast<Thread*>(arg); 1050 if (self->tls32_.thread_exit_check_count == 0) { 1051 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's " 1052 "going to use a pthread_key_create destructor?): " << *self; 1053 CHECK(is_started_); 1054 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); 1055 self->tls32_.thread_exit_check_count = 1; 1056 } else { 1057 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; 1058 } 1059 } 1060 1061 void Thread::Startup() { 1062 CHECK(!is_started_); 1063 is_started_ = true; 1064 { 1065 // MutexLock to keep annotalysis happy. 1066 // 1067 // Note we use nullptr for the thread because Thread::Current can 1068 // return garbage since (is_started_ == true) and 1069 // Thread::pthread_key_self_ is not yet initialized. 1070 // This was seen on glibc. 1071 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_); 1072 resume_cond_ = new ConditionVariable("Thread resumption condition variable", 1073 *Locks::thread_suspend_count_lock_); 1074 } 1075 1076 // Allocate a TLS slot. 1077 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); 1078 1079 // Double-check the TLS slot allocation. 1080 if (pthread_getspecific(pthread_key_self_) != nullptr) { 1081 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr"; 1082 } 1083 } 1084 1085 void Thread::FinishStartup() { 1086 Runtime* runtime = Runtime::Current(); 1087 CHECK(runtime->IsStarted()); 1088 1089 // Finish attaching the main thread. 1090 ScopedObjectAccess soa(Thread::Current()); 1091 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); 1092 1093 Runtime::Current()->GetClassLinker()->RunRootClinits(); 1094 } 1095 1096 void Thread::Shutdown() { 1097 CHECK(is_started_); 1098 is_started_ = false; 1099 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); 1100 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); 1101 if (resume_cond_ != nullptr) { 1102 delete resume_cond_; 1103 resume_cond_ = nullptr; 1104 } 1105 } 1106 1107 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) { 1108 wait_mutex_ = new Mutex("a thread wait mutex"); 1109 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_); 1110 tlsPtr_.debug_invoke_req = new DebugInvokeReq; 1111 tlsPtr_.single_step_control = new SingleStepControl; 1112 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>; 1113 tlsPtr_.name = new std::string(kThreadNameDuringStartup); 1114 tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf))); 1115 1116 CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread); 1117 tls32_.state_and_flags.as_struct.flags = 0; 1118 tls32_.state_and_flags.as_struct.state = kNative; 1119 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes)); 1120 std::fill(tlsPtr_.rosalloc_runs, 1121 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets, 1122 gc::allocator::RosAlloc::GetDedicatedFullRun()); 1123 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { 1124 tlsPtr_.checkpoint_functions[i] = nullptr; 1125 } 1126 } 1127 1128 bool Thread::IsStillStarting() const { 1129 // You might think you can check whether the state is kStarting, but for much of thread startup, 1130 // the thread is in kNative; it might also be in kVmWait. 1131 // You might think you can check whether the peer is nullptr, but the peer is actually created and 1132 // assigned fairly early on, and needs to be. 1133 // It turns out that the last thing to change is the thread name; that's a good proxy for "has 1134 // this thread _ever_ entered kRunnable". 1135 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) || 1136 (*tlsPtr_.name == kThreadNameDuringStartup); 1137 } 1138 1139 void Thread::AssertNoPendingException() const { 1140 if (UNLIKELY(IsExceptionPending())) { 1141 ScopedObjectAccess soa(Thread::Current()); 1142 mirror::Throwable* exception = GetException(nullptr); 1143 LOG(FATAL) << "No pending exception expected: " << exception->Dump(); 1144 } 1145 } 1146 1147 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const { 1148 if (UNLIKELY(IsExceptionPending())) { 1149 ScopedObjectAccess soa(Thread::Current()); 1150 mirror::Throwable* exception = GetException(nullptr); 1151 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: " 1152 << exception->Dump(); 1153 } 1154 } 1155 1156 static void MonitorExitVisitor(mirror::Object** object, void* arg, const RootInfo& /*root_info*/) 1157 NO_THREAD_SAFETY_ANALYSIS { 1158 Thread* self = reinterpret_cast<Thread*>(arg); 1159 mirror::Object* entered_monitor = *object; 1160 if (self->HoldsLock(entered_monitor)) { 1161 LOG(WARNING) << "Calling MonitorExit on object " 1162 << object << " (" << PrettyTypeOf(entered_monitor) << ")" 1163 << " left locked by native thread " 1164 << *Thread::Current() << " which is detaching"; 1165 entered_monitor->MonitorExit(self); 1166 } 1167 } 1168 1169 void Thread::Destroy() { 1170 Thread* self = this; 1171 DCHECK_EQ(self, Thread::Current()); 1172 1173 if (tlsPtr_.opeer != nullptr) { 1174 ScopedObjectAccess soa(self); 1175 // We may need to call user-supplied managed code, do this before final clean-up. 1176 HandleUncaughtExceptions(soa); 1177 RemoveFromThreadGroup(soa); 1178 1179 // this.nativePeer = 0; 1180 if (Runtime::Current()->IsActiveTransaction()) { 1181 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) 1182 ->SetLong<true>(tlsPtr_.opeer, 0); 1183 } else { 1184 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) 1185 ->SetLong<false>(tlsPtr_.opeer, 0); 1186 } 1187 Dbg::PostThreadDeath(self); 1188 1189 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone 1190 // who is waiting. 1191 mirror::Object* lock = 1192 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer); 1193 // (This conditional is only needed for tests, where Thread.lock won't have been set.) 1194 if (lock != nullptr) { 1195 StackHandleScope<1> hs(self); 1196 Handle<mirror::Object> h_obj(hs.NewHandle(lock)); 1197 ObjectLock<mirror::Object> locker(self, h_obj); 1198 locker.NotifyAll(); 1199 } 1200 } 1201 1202 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. 1203 if (tlsPtr_.jni_env != nullptr) { 1204 tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, RootInfo(kRootVMInternal)); 1205 } 1206 } 1207 1208 Thread::~Thread() { 1209 if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) { 1210 // If pthread_create fails we don't have a jni env here. 1211 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer); 1212 tlsPtr_.jpeer = nullptr; 1213 } 1214 tlsPtr_.opeer = nullptr; 1215 1216 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run? 1217 if (initialized) { 1218 delete tlsPtr_.jni_env; 1219 tlsPtr_.jni_env = nullptr; 1220 } 1221 CHECK_NE(GetState(), kRunnable); 1222 CHECK_NE(ReadFlag(kCheckpointRequest), true); 1223 CHECK(tlsPtr_.checkpoint_functions[0] == nullptr); 1224 CHECK(tlsPtr_.checkpoint_functions[1] == nullptr); 1225 CHECK(tlsPtr_.checkpoint_functions[2] == nullptr); 1226 1227 // We may be deleting a still born thread. 1228 SetStateUnsafe(kTerminated); 1229 1230 delete wait_cond_; 1231 delete wait_mutex_; 1232 1233 if (tlsPtr_.long_jump_context != nullptr) { 1234 delete tlsPtr_.long_jump_context; 1235 } 1236 1237 if (initialized) { 1238 CleanupCpu(); 1239 } 1240 1241 delete tlsPtr_.debug_invoke_req; 1242 delete tlsPtr_.single_step_control; 1243 delete tlsPtr_.instrumentation_stack; 1244 delete tlsPtr_.name; 1245 delete tlsPtr_.stack_trace_sample; 1246 free(tlsPtr_.nested_signal_state); 1247 1248 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this); 1249 1250 TearDownAlternateSignalStack(); 1251 } 1252 1253 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) { 1254 if (!IsExceptionPending()) { 1255 return; 1256 } 1257 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer)); 1258 ScopedThreadStateChange tsc(this, kNative); 1259 1260 // Get and clear the exception. 1261 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred()); 1262 tlsPtr_.jni_env->ExceptionClear(); 1263 1264 // If the thread has its own handler, use that. 1265 ScopedLocalRef<jobject> handler(tlsPtr_.jni_env, 1266 tlsPtr_.jni_env->GetObjectField(peer.get(), 1267 WellKnownClasses::java_lang_Thread_uncaughtHandler)); 1268 if (handler.get() == nullptr) { 1269 // Otherwise use the thread group's default handler. 1270 handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(), 1271 WellKnownClasses::java_lang_Thread_group)); 1272 } 1273 1274 // Call the handler. 1275 tlsPtr_.jni_env->CallVoidMethod(handler.get(), 1276 WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException, 1277 peer.get(), exception.get()); 1278 1279 // If the handler threw, clear that exception too. 1280 tlsPtr_.jni_env->ExceptionClear(); 1281 } 1282 1283 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) { 1284 // this.group.removeThread(this); 1285 // group can be null if we're in the compiler or a test. 1286 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group) 1287 ->GetObject(tlsPtr_.opeer); 1288 if (ogroup != nullptr) { 1289 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup)); 1290 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer)); 1291 ScopedThreadStateChange tsc(soa.Self(), kNative); 1292 tlsPtr_.jni_env->CallVoidMethod(group.get(), 1293 WellKnownClasses::java_lang_ThreadGroup_removeThread, 1294 peer.get()); 1295 } 1296 } 1297 1298 size_t Thread::NumHandleReferences() { 1299 size_t count = 0; 1300 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { 1301 count += cur->NumberOfReferences(); 1302 } 1303 return count; 1304 } 1305 1306 bool Thread::HandleScopeContains(jobject obj) const { 1307 StackReference<mirror::Object>* hs_entry = 1308 reinterpret_cast<StackReference<mirror::Object>*>(obj); 1309 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { 1310 if (cur->Contains(hs_entry)) { 1311 return true; 1312 } 1313 } 1314 // JNI code invoked from portable code uses shadow frames rather than the handle scope. 1315 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry); 1316 } 1317 1318 void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) { 1319 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { 1320 size_t num_refs = cur->NumberOfReferences(); 1321 for (size_t j = 0; j < num_refs; ++j) { 1322 mirror::Object* object = cur->GetReference(j); 1323 if (object != nullptr) { 1324 mirror::Object* old_obj = object; 1325 visitor(&object, arg, RootInfo(kRootNativeStack, thread_id)); 1326 if (old_obj != object) { 1327 cur->SetReference(j, object); 1328 } 1329 } 1330 } 1331 } 1332 } 1333 1334 mirror::Object* Thread::DecodeJObject(jobject obj) const { 1335 Locks::mutator_lock_->AssertSharedHeld(this); 1336 if (obj == nullptr) { 1337 return nullptr; 1338 } 1339 IndirectRef ref = reinterpret_cast<IndirectRef>(obj); 1340 IndirectRefKind kind = GetIndirectRefKind(ref); 1341 mirror::Object* result; 1342 // The "kinds" below are sorted by the frequency we expect to encounter them. 1343 if (kind == kLocal) { 1344 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals; 1345 // Local references do not need a read barrier. 1346 result = locals.Get<kWithoutReadBarrier>(ref); 1347 } else if (kind == kHandleScopeOrInvalid) { 1348 // TODO: make stack indirect reference table lookup more efficient. 1349 // Check if this is a local reference in the handle scope. 1350 if (LIKELY(HandleScopeContains(obj))) { 1351 // Read from handle scope. 1352 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr(); 1353 VerifyObject(result); 1354 } else { 1355 result = kInvalidIndirectRefObject; 1356 } 1357 } else if (kind == kGlobal) { 1358 JavaVMExt* const vm = Runtime::Current()->GetJavaVM(); 1359 result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref); 1360 } else { 1361 DCHECK_EQ(kind, kWeakGlobal); 1362 result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref); 1363 if (result == kClearedJniWeakGlobal) { 1364 // This is a special case where it's okay to return nullptr. 1365 return nullptr; 1366 } 1367 } 1368 1369 if (UNLIKELY(result == nullptr)) { 1370 JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj); 1371 } 1372 return result; 1373 } 1374 1375 // Implements java.lang.Thread.interrupted. 1376 bool Thread::Interrupted() { 1377 MutexLock mu(Thread::Current(), *wait_mutex_); 1378 bool interrupted = IsInterruptedLocked(); 1379 SetInterruptedLocked(false); 1380 return interrupted; 1381 } 1382 1383 // Implements java.lang.Thread.isInterrupted. 1384 bool Thread::IsInterrupted() { 1385 MutexLock mu(Thread::Current(), *wait_mutex_); 1386 return IsInterruptedLocked(); 1387 } 1388 1389 void Thread::Interrupt(Thread* self) { 1390 MutexLock mu(self, *wait_mutex_); 1391 if (interrupted_) { 1392 return; 1393 } 1394 interrupted_ = true; 1395 NotifyLocked(self); 1396 } 1397 1398 void Thread::Notify() { 1399 Thread* self = Thread::Current(); 1400 MutexLock mu(self, *wait_mutex_); 1401 NotifyLocked(self); 1402 } 1403 1404 void Thread::NotifyLocked(Thread* self) { 1405 if (wait_monitor_ != nullptr) { 1406 wait_cond_->Signal(self); 1407 } 1408 } 1409 1410 class CountStackDepthVisitor : public StackVisitor { 1411 public: 1412 explicit CountStackDepthVisitor(Thread* thread) 1413 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1414 : StackVisitor(thread, nullptr), 1415 depth_(0), skip_depth_(0), skipping_(true) {} 1416 1417 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1418 // We want to skip frames up to and including the exception's constructor. 1419 // Note we also skip the frame if it doesn't have a method (namely the callee 1420 // save frame) 1421 mirror::ArtMethod* m = GetMethod(); 1422 if (skipping_ && !m->IsRuntimeMethod() && 1423 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { 1424 skipping_ = false; 1425 } 1426 if (!skipping_) { 1427 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). 1428 ++depth_; 1429 } 1430 } else { 1431 ++skip_depth_; 1432 } 1433 return true; 1434 } 1435 1436 int GetDepth() const { 1437 return depth_; 1438 } 1439 1440 int GetSkipDepth() const { 1441 return skip_depth_; 1442 } 1443 1444 private: 1445 uint32_t depth_; 1446 uint32_t skip_depth_; 1447 bool skipping_; 1448 }; 1449 1450 template<bool kTransactionActive> 1451 class BuildInternalStackTraceVisitor : public StackVisitor { 1452 public: 1453 explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth) 1454 : StackVisitor(thread, nullptr), self_(self), 1455 skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {} 1456 1457 bool Init(int depth) 1458 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1459 // Allocate method trace with an extra slot that will hold the PC trace 1460 StackHandleScope<1> hs(self_); 1461 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 1462 Handle<mirror::ObjectArray<mirror::Object>> method_trace( 1463 hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1))); 1464 if (method_trace.Get() == nullptr) { 1465 return false; 1466 } 1467 mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth); 1468 if (dex_pc_trace == nullptr) { 1469 return false; 1470 } 1471 // Save PC trace in last element of method trace, also places it into the 1472 // object graph. 1473 // We are called from native: use non-transactional mode. 1474 method_trace->Set<kTransactionActive>(depth, dex_pc_trace); 1475 // Set the Object*s and assert that no thread suspension is now possible. 1476 const char* last_no_suspend_cause = 1477 self_->StartAssertNoThreadSuspension("Building internal stack trace"); 1478 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause; 1479 method_trace_ = method_trace.Get(); 1480 dex_pc_trace_ = dex_pc_trace; 1481 return true; 1482 } 1483 1484 virtual ~BuildInternalStackTraceVisitor() { 1485 if (method_trace_ != nullptr) { 1486 self_->EndAssertNoThreadSuspension(nullptr); 1487 } 1488 } 1489 1490 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1491 if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) { 1492 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. 1493 } 1494 if (skip_depth_ > 0) { 1495 skip_depth_--; 1496 return true; 1497 } 1498 mirror::ArtMethod* m = GetMethod(); 1499 if (m->IsRuntimeMethod()) { 1500 return true; // Ignore runtime frames (in particular callee save). 1501 } 1502 method_trace_->Set<kTransactionActive>(count_, m); 1503 dex_pc_trace_->Set<kTransactionActive>(count_, 1504 m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc()); 1505 ++count_; 1506 return true; 1507 } 1508 1509 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const { 1510 return method_trace_; 1511 } 1512 1513 private: 1514 Thread* const self_; 1515 // How many more frames to skip. 1516 int32_t skip_depth_; 1517 // Current position down stack trace. 1518 uint32_t count_; 1519 // Array of dex PC values. 1520 mirror::IntArray* dex_pc_trace_; 1521 // An array of the methods on the stack, the last entry is a reference to the PC trace. 1522 mirror::ObjectArray<mirror::Object>* method_trace_; 1523 }; 1524 1525 template<bool kTransactionActive> 1526 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { 1527 // Compute depth of stack 1528 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this)); 1529 count_visitor.WalkStack(); 1530 int32_t depth = count_visitor.GetDepth(); 1531 int32_t skip_depth = count_visitor.GetSkipDepth(); 1532 1533 // Build internal stack trace. 1534 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(), 1535 const_cast<Thread*>(this), 1536 skip_depth); 1537 if (!build_trace_visitor.Init(depth)) { 1538 return nullptr; // Allocation failed. 1539 } 1540 build_trace_visitor.WalkStack(); 1541 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace(); 1542 if (kIsDebugBuild) { 1543 for (int32_t i = 0; i < trace->GetLength(); ++i) { 1544 CHECK(trace->Get(i) != nullptr); 1545 } 1546 } 1547 return soa.AddLocalReference<jobjectArray>(trace); 1548 } 1549 template jobject Thread::CreateInternalStackTrace<false>( 1550 const ScopedObjectAccessAlreadyRunnable& soa) const; 1551 template jobject Thread::CreateInternalStackTrace<true>( 1552 const ScopedObjectAccessAlreadyRunnable& soa) const; 1553 1554 jobjectArray Thread::InternalStackTraceToStackTraceElementArray( 1555 const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array, 1556 int* stack_depth) { 1557 // Decode the internal stack trace into the depth, method trace and PC trace 1558 int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1; 1559 1560 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 1561 1562 jobjectArray result; 1563 1564 if (output_array != nullptr) { 1565 // Reuse the array we were given. 1566 result = output_array; 1567 // ...adjusting the number of frames we'll write to not exceed the array length. 1568 const int32_t traces_length = 1569 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength(); 1570 depth = std::min(depth, traces_length); 1571 } else { 1572 // Create java_trace array and place in local reference table 1573 mirror::ObjectArray<mirror::StackTraceElement>* java_traces = 1574 class_linker->AllocStackTraceElementArray(soa.Self(), depth); 1575 if (java_traces == nullptr) { 1576 return nullptr; 1577 } 1578 result = soa.AddLocalReference<jobjectArray>(java_traces); 1579 } 1580 1581 if (stack_depth != nullptr) { 1582 *stack_depth = depth; 1583 } 1584 1585 for (int32_t i = 0; i < depth; ++i) { 1586 mirror::ObjectArray<mirror::Object>* method_trace = 1587 soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal); 1588 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) 1589 mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i)); 1590 int32_t line_number; 1591 StackHandleScope<3> hs(soa.Self()); 1592 auto class_name_object(hs.NewHandle<mirror::String>(nullptr)); 1593 auto source_name_object(hs.NewHandle<mirror::String>(nullptr)); 1594 if (method->IsProxyMethod()) { 1595 line_number = -1; 1596 class_name_object.Assign(method->GetDeclaringClass()->GetName()); 1597 // source_name_object intentionally left null for proxy methods 1598 } else { 1599 mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth)); 1600 uint32_t dex_pc = pc_trace->Get(i); 1601 line_number = method->GetLineNumFromDexPC(dex_pc); 1602 // Allocate element, potentially triggering GC 1603 // TODO: reuse class_name_object via Class::name_? 1604 const char* descriptor = method->GetDeclaringClassDescriptor(); 1605 CHECK(descriptor != nullptr); 1606 std::string class_name(PrettyDescriptor(descriptor)); 1607 class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str())); 1608 if (class_name_object.Get() == nullptr) { 1609 return nullptr; 1610 } 1611 const char* source_file = method->GetDeclaringClassSourceFile(); 1612 if (source_file != nullptr) { 1613 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); 1614 if (source_name_object.Get() == nullptr) { 1615 return nullptr; 1616 } 1617 } 1618 } 1619 const char* method_name = method->GetName(); 1620 CHECK(method_name != nullptr); 1621 Handle<mirror::String> method_name_object( 1622 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name))); 1623 if (method_name_object.Get() == nullptr) { 1624 return nullptr; 1625 } 1626 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc( 1627 soa.Self(), class_name_object, method_name_object, source_name_object, line_number); 1628 if (obj == nullptr) { 1629 return nullptr; 1630 } 1631 // We are called from native: use non-transactional mode. 1632 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj); 1633 } 1634 return result; 1635 } 1636 1637 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location, 1638 const char* exception_class_descriptor, const char* fmt, ...) { 1639 va_list args; 1640 va_start(args, fmt); 1641 ThrowNewExceptionV(throw_location, exception_class_descriptor, 1642 fmt, args); 1643 va_end(args); 1644 } 1645 1646 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location, 1647 const char* exception_class_descriptor, 1648 const char* fmt, va_list ap) { 1649 std::string msg; 1650 StringAppendV(&msg, fmt, ap); 1651 ThrowNewException(throw_location, exception_class_descriptor, msg.c_str()); 1652 } 1653 1654 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor, 1655 const char* msg) { 1656 // Callers should either clear or call ThrowNewWrappedException. 1657 AssertNoPendingExceptionForNewException(msg); 1658 ThrowNewWrappedException(throw_location, exception_class_descriptor, msg); 1659 } 1660 1661 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location, 1662 const char* exception_class_descriptor, 1663 const char* msg) { 1664 DCHECK_EQ(this, Thread::Current()); 1665 ScopedObjectAccessUnchecked soa(this); 1666 StackHandleScope<5> hs(soa.Self()); 1667 // Ensure we don't forget arguments over object allocation. 1668 Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis())); 1669 Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod())); 1670 // Ignore the cause throw location. TODO: should we report this as a re-throw? 1671 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr))); 1672 bool is_exception_reported = IsExceptionReportedToInstrumentation(); 1673 ClearException(); 1674 Runtime* runtime = Runtime::Current(); 1675 1676 mirror::ClassLoader* cl = nullptr; 1677 if (saved_throw_method.Get() != nullptr) { 1678 cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader(); 1679 } 1680 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl)); 1681 Handle<mirror::Class> exception_class( 1682 hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor, 1683 class_loader))); 1684 if (UNLIKELY(exception_class.Get() == nullptr)) { 1685 CHECK(IsExceptionPending()); 1686 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); 1687 return; 1688 } 1689 1690 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) { 1691 DCHECK(IsExceptionPending()); 1692 return; 1693 } 1694 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass()); 1695 Handle<mirror::Throwable> exception( 1696 hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this)))); 1697 1698 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception. 1699 if (exception.Get() == nullptr) { 1700 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(), 1701 throw_location.GetDexPc()); 1702 SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 1703 SetExceptionReportedToInstrumentation(is_exception_reported); 1704 return; 1705 } 1706 1707 // Choose an appropriate constructor and set up the arguments. 1708 const char* signature; 1709 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr); 1710 if (msg != nullptr) { 1711 // Ensure we remember this and the method over the String allocation. 1712 msg_string.reset( 1713 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg))); 1714 if (UNLIKELY(msg_string.get() == nullptr)) { 1715 CHECK(IsExceptionPending()); // OOME. 1716 return; 1717 } 1718 if (cause.get() == nullptr) { 1719 signature = "(Ljava/lang/String;)V"; 1720 } else { 1721 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; 1722 } 1723 } else { 1724 if (cause.get() == nullptr) { 1725 signature = "()V"; 1726 } else { 1727 signature = "(Ljava/lang/Throwable;)V"; 1728 } 1729 } 1730 mirror::ArtMethod* exception_init_method = 1731 exception_class->FindDeclaredDirectMethod("<init>", signature); 1732 1733 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in " 1734 << PrettyDescriptor(exception_class_descriptor); 1735 1736 if (UNLIKELY(!runtime->IsStarted())) { 1737 // Something is trying to throw an exception without a started runtime, which is the common 1738 // case in the compiler. We won't be able to invoke the constructor of the exception, so set 1739 // the exception fields directly. 1740 if (msg != nullptr) { 1741 exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get()))); 1742 } 1743 if (cause.get() != nullptr) { 1744 exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get()))); 1745 } 1746 ScopedLocalRef<jobject> trace(GetJniEnv(), 1747 Runtime::Current()->IsActiveTransaction() 1748 ? CreateInternalStackTrace<true>(soa) 1749 : CreateInternalStackTrace<false>(soa)); 1750 if (trace.get() != nullptr) { 1751 exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get()))); 1752 } 1753 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(), 1754 throw_location.GetDexPc()); 1755 SetException(gc_safe_throw_location, exception.Get()); 1756 SetExceptionReportedToInstrumentation(is_exception_reported); 1757 } else { 1758 jvalue jv_args[2]; 1759 size_t i = 0; 1760 1761 if (msg != nullptr) { 1762 jv_args[i].l = msg_string.get(); 1763 ++i; 1764 } 1765 if (cause.get() != nullptr) { 1766 jv_args[i].l = cause.get(); 1767 ++i; 1768 } 1769 InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args); 1770 if (LIKELY(!IsExceptionPending())) { 1771 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(), 1772 throw_location.GetDexPc()); 1773 SetException(gc_safe_throw_location, exception.Get()); 1774 SetExceptionReportedToInstrumentation(is_exception_reported); 1775 } 1776 } 1777 } 1778 1779 void Thread::ThrowOutOfMemoryError(const char* msg) { 1780 LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", 1781 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : "")); 1782 ThrowLocation throw_location = GetCurrentLocationForThrow(); 1783 if (!tls32_.throwing_OutOfMemoryError) { 1784 tls32_.throwing_OutOfMemoryError = true; 1785 ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg); 1786 tls32_.throwing_OutOfMemoryError = false; 1787 } else { 1788 Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one. 1789 SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 1790 } 1791 } 1792 1793 Thread* Thread::CurrentFromGdb() { 1794 return Thread::Current(); 1795 } 1796 1797 void Thread::DumpFromGdb() const { 1798 std::ostringstream ss; 1799 Dump(ss); 1800 std::string str(ss.str()); 1801 // log to stderr for debugging command line processes 1802 std::cerr << str; 1803 #ifdef HAVE_ANDROID_OS 1804 // log to logcat for debugging frameworks processes 1805 LOG(INFO) << str; 1806 #endif 1807 } 1808 1809 // Explicitly instantiate 32 and 64bit thread offset dumping support. 1810 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset); 1811 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset); 1812 1813 template<size_t ptr_size> 1814 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) { 1815 #define DO_THREAD_OFFSET(x, y) \ 1816 if (offset == x.Uint32Value()) { \ 1817 os << y; \ 1818 return; \ 1819 } 1820 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags") 1821 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table") 1822 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception") 1823 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer"); 1824 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env") 1825 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self") 1826 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end") 1827 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id") 1828 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method") 1829 DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc") 1830 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame") 1831 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope") 1832 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger") 1833 #undef DO_THREAD_OFFSET 1834 1835 #define INTERPRETER_ENTRY_POINT_INFO(x) \ 1836 if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 1837 os << #x; \ 1838 return; \ 1839 } 1840 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge) 1841 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge) 1842 #undef INTERPRETER_ENTRY_POINT_INFO 1843 1844 #define JNI_ENTRY_POINT_INFO(x) \ 1845 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 1846 os << #x; \ 1847 return; \ 1848 } 1849 JNI_ENTRY_POINT_INFO(pDlsymLookup) 1850 #undef JNI_ENTRY_POINT_INFO 1851 1852 #define PORTABLE_ENTRY_POINT_INFO(x) \ 1853 if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 1854 os << #x; \ 1855 return; \ 1856 } 1857 PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline) 1858 PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline) 1859 PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge) 1860 #undef PORTABLE_ENTRY_POINT_INFO 1861 1862 #define QUICK_ENTRY_POINT_INFO(x) \ 1863 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 1864 os << #x; \ 1865 return; \ 1866 } 1867 QUICK_ENTRY_POINT_INFO(pAllocArray) 1868 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved) 1869 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck) 1870 QUICK_ENTRY_POINT_INFO(pAllocObject) 1871 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved) 1872 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized) 1873 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck) 1874 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray) 1875 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck) 1876 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial) 1877 QUICK_ENTRY_POINT_INFO(pCheckCast) 1878 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage) 1879 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess) 1880 QUICK_ENTRY_POINT_INFO(pInitializeType) 1881 QUICK_ENTRY_POINT_INFO(pResolveString) 1882 QUICK_ENTRY_POINT_INFO(pSet32Instance) 1883 QUICK_ENTRY_POINT_INFO(pSet32Static) 1884 QUICK_ENTRY_POINT_INFO(pSet64Instance) 1885 QUICK_ENTRY_POINT_INFO(pSet64Static) 1886 QUICK_ENTRY_POINT_INFO(pSetObjInstance) 1887 QUICK_ENTRY_POINT_INFO(pSetObjStatic) 1888 QUICK_ENTRY_POINT_INFO(pGet32Instance) 1889 QUICK_ENTRY_POINT_INFO(pGet32Static) 1890 QUICK_ENTRY_POINT_INFO(pGet64Instance) 1891 QUICK_ENTRY_POINT_INFO(pGet64Static) 1892 QUICK_ENTRY_POINT_INFO(pGetObjInstance) 1893 QUICK_ENTRY_POINT_INFO(pGetObjStatic) 1894 QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck) 1895 QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck) 1896 QUICK_ENTRY_POINT_INFO(pAputObject) 1897 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData) 1898 QUICK_ENTRY_POINT_INFO(pJniMethodStart) 1899 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized) 1900 QUICK_ENTRY_POINT_INFO(pJniMethodEnd) 1901 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized) 1902 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference) 1903 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized) 1904 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline) 1905 QUICK_ENTRY_POINT_INFO(pLockObject) 1906 QUICK_ENTRY_POINT_INFO(pUnlockObject) 1907 QUICK_ENTRY_POINT_INFO(pCmpgDouble) 1908 QUICK_ENTRY_POINT_INFO(pCmpgFloat) 1909 QUICK_ENTRY_POINT_INFO(pCmplDouble) 1910 QUICK_ENTRY_POINT_INFO(pCmplFloat) 1911 QUICK_ENTRY_POINT_INFO(pFmod) 1912 QUICK_ENTRY_POINT_INFO(pL2d) 1913 QUICK_ENTRY_POINT_INFO(pFmodf) 1914 QUICK_ENTRY_POINT_INFO(pL2f) 1915 QUICK_ENTRY_POINT_INFO(pD2iz) 1916 QUICK_ENTRY_POINT_INFO(pF2iz) 1917 QUICK_ENTRY_POINT_INFO(pIdivmod) 1918 QUICK_ENTRY_POINT_INFO(pD2l) 1919 QUICK_ENTRY_POINT_INFO(pF2l) 1920 QUICK_ENTRY_POINT_INFO(pLdiv) 1921 QUICK_ENTRY_POINT_INFO(pLmod) 1922 QUICK_ENTRY_POINT_INFO(pLmul) 1923 QUICK_ENTRY_POINT_INFO(pShlLong) 1924 QUICK_ENTRY_POINT_INFO(pShrLong) 1925 QUICK_ENTRY_POINT_INFO(pUshrLong) 1926 QUICK_ENTRY_POINT_INFO(pIndexOf) 1927 QUICK_ENTRY_POINT_INFO(pStringCompareTo) 1928 QUICK_ENTRY_POINT_INFO(pMemcpy) 1929 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline) 1930 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline) 1931 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge) 1932 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck) 1933 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck) 1934 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck) 1935 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck) 1936 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck) 1937 QUICK_ENTRY_POINT_INFO(pTestSuspend) 1938 QUICK_ENTRY_POINT_INFO(pDeliverException) 1939 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds) 1940 QUICK_ENTRY_POINT_INFO(pThrowDivZero) 1941 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod) 1942 QUICK_ENTRY_POINT_INFO(pThrowNullPointer) 1943 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow) 1944 QUICK_ENTRY_POINT_INFO(pA64Load) 1945 QUICK_ENTRY_POINT_INFO(pA64Store) 1946 #undef QUICK_ENTRY_POINT_INFO 1947 1948 os << offset; 1949 } 1950 1951 void Thread::QuickDeliverException() { 1952 // Get exception from thread. 1953 ThrowLocation throw_location; 1954 mirror::Throwable* exception = GetException(&throw_location); 1955 CHECK(exception != nullptr); 1956 // Don't leave exception visible while we try to find the handler, which may cause class 1957 // resolution. 1958 bool is_exception_reported = IsExceptionReportedToInstrumentation(); 1959 ClearException(); 1960 bool is_deoptimization = (exception == GetDeoptimizationException()); 1961 QuickExceptionHandler exception_handler(this, is_deoptimization); 1962 if (is_deoptimization) { 1963 exception_handler.DeoptimizeStack(); 1964 } else { 1965 exception_handler.FindCatch(throw_location, exception, is_exception_reported); 1966 } 1967 exception_handler.UpdateInstrumentationStack(); 1968 exception_handler.DoLongJump(); 1969 LOG(FATAL) << "UNREACHABLE"; 1970 } 1971 1972 Context* Thread::GetLongJumpContext() { 1973 Context* result = tlsPtr_.long_jump_context; 1974 if (result == nullptr) { 1975 result = Context::Create(); 1976 } else { 1977 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared. 1978 result->Reset(); 1979 } 1980 return result; 1981 } 1982 1983 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is 1984 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack. 1985 struct CurrentMethodVisitor FINAL : public StackVisitor { 1986 CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error) 1987 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1988 : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0), 1989 abort_on_error_(abort_on_error) {} 1990 bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1991 mirror::ArtMethod* m = GetMethod(); 1992 if (m->IsRuntimeMethod()) { 1993 // Continue if this is a runtime method. 1994 return true; 1995 } 1996 if (context_ != nullptr) { 1997 this_object_ = GetThisObject(); 1998 } 1999 method_ = m; 2000 dex_pc_ = GetDexPc(abort_on_error_); 2001 return false; 2002 } 2003 mirror::Object* this_object_; 2004 mirror::ArtMethod* method_; 2005 uint32_t dex_pc_; 2006 const bool abort_on_error_; 2007 }; 2008 2009 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const { 2010 CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error); 2011 visitor.WalkStack(false); 2012 if (dex_pc != nullptr) { 2013 *dex_pc = visitor.dex_pc_; 2014 } 2015 return visitor.method_; 2016 } 2017 2018 ThrowLocation Thread::GetCurrentLocationForThrow() { 2019 Context* context = GetLongJumpContext(); 2020 CurrentMethodVisitor visitor(this, context, true); 2021 visitor.WalkStack(false); 2022 ReleaseLongJumpContext(context); 2023 return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_); 2024 } 2025 2026 bool Thread::HoldsLock(mirror::Object* object) const { 2027 if (object == nullptr) { 2028 return false; 2029 } 2030 return object->GetLockOwnerThreadId() == GetThreadId(); 2031 } 2032 2033 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). 2034 template <typename RootVisitor> 2035 class ReferenceMapVisitor : public StackVisitor { 2036 public: 2037 ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor) 2038 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 2039 : StackVisitor(thread, context), visitor_(visitor) {} 2040 2041 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2042 if (false) { 2043 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod()) 2044 << StringPrintf("@ PC:%04x", GetDexPc()); 2045 } 2046 ShadowFrame* shadow_frame = GetCurrentShadowFrame(); 2047 if (shadow_frame != nullptr) { 2048 VisitShadowFrame(shadow_frame); 2049 } else { 2050 VisitQuickFrame(); 2051 } 2052 return true; 2053 } 2054 2055 void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2056 mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress(); 2057 visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this); 2058 mirror::ArtMethod* m = *method_addr; 2059 DCHECK(m != nullptr); 2060 size_t num_regs = shadow_frame->NumberOfVRegs(); 2061 if (m->IsNative() || shadow_frame->HasReferenceArray()) { 2062 // handle scope for JNI or References for interpreter. 2063 for (size_t reg = 0; reg < num_regs; ++reg) { 2064 mirror::Object* ref = shadow_frame->GetVRegReference(reg); 2065 if (ref != nullptr) { 2066 mirror::Object* new_ref = ref; 2067 visitor_(&new_ref, reg, this); 2068 if (new_ref != ref) { 2069 shadow_frame->SetVRegReference(reg, new_ref); 2070 } 2071 } 2072 } 2073 } else { 2074 // Java method. 2075 // Portable path use DexGcMap and store in Method.native_gc_map_. 2076 const uint8_t* gc_map = m->GetNativeGcMap(sizeof(void*)); 2077 CHECK(gc_map != nullptr) << PrettyMethod(m); 2078 verifier::DexPcToReferenceMap dex_gc_map(gc_map); 2079 uint32_t dex_pc = shadow_frame->GetDexPC(); 2080 const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc); 2081 DCHECK(reg_bitmap != nullptr); 2082 num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs); 2083 for (size_t reg = 0; reg < num_regs; ++reg) { 2084 if (TestBitmap(reg, reg_bitmap)) { 2085 mirror::Object* ref = shadow_frame->GetVRegReference(reg); 2086 if (ref != nullptr) { 2087 mirror::Object* new_ref = ref; 2088 visitor_(&new_ref, reg, this); 2089 if (new_ref != ref) { 2090 shadow_frame->SetVRegReference(reg, new_ref); 2091 } 2092 } 2093 } 2094 } 2095 } 2096 } 2097 2098 private: 2099 void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2100 StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame(); 2101 mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr(); 2102 mirror::ArtMethod* old_method = m; 2103 visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this); 2104 if (m != old_method) { 2105 cur_quick_frame->Assign(m); 2106 } 2107 2108 // Process register map (which native and runtime methods don't have) 2109 if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) { 2110 const uint8_t* native_gc_map = m->GetNativeGcMap(sizeof(void*)); 2111 CHECK(native_gc_map != nullptr) << PrettyMethod(m); 2112 const DexFile::CodeItem* code_item = m->GetCodeItem(); 2113 DCHECK(code_item != nullptr) << PrettyMethod(m); // Can't be nullptr or how would we compile its instructions? 2114 NativePcOffsetToReferenceMap map(native_gc_map); 2115 size_t num_regs = std::min(map.RegWidth() * 8, 2116 static_cast<size_t>(code_item->registers_size_)); 2117 if (num_regs > 0) { 2118 Runtime* runtime = Runtime::Current(); 2119 const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*)); 2120 uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point); 2121 const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset); 2122 DCHECK(reg_bitmap != nullptr); 2123 const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point); 2124 const VmapTable vmap_table(m->GetVmapTable(code_pointer, sizeof(void*))); 2125 QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer); 2126 // For all dex registers in the bitmap 2127 StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame(); 2128 DCHECK(cur_quick_frame != nullptr); 2129 for (size_t reg = 0; reg < num_regs; ++reg) { 2130 // Does this register hold a reference? 2131 if (TestBitmap(reg, reg_bitmap)) { 2132 uint32_t vmap_offset; 2133 if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) { 2134 int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset, 2135 kReferenceVReg); 2136 // This is sound as spilled GPRs will be word sized (ie 32 or 64bit). 2137 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg)); 2138 if (*ref_addr != nullptr) { 2139 visitor_(ref_addr, reg, this); 2140 } 2141 } else { 2142 StackReference<mirror::Object>* ref_addr = 2143 reinterpret_cast<StackReference<mirror::Object>*>( 2144 GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(), 2145 frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg)); 2146 mirror::Object* ref = ref_addr->AsMirrorPtr(); 2147 if (ref != nullptr) { 2148 mirror::Object* new_ref = ref; 2149 visitor_(&new_ref, reg, this); 2150 if (ref != new_ref) { 2151 ref_addr->Assign(new_ref); 2152 } 2153 } 2154 } 2155 } 2156 } 2157 } 2158 } 2159 } 2160 2161 static bool TestBitmap(size_t reg, const uint8_t* reg_vector) { 2162 return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0; 2163 } 2164 2165 // Visitor for when we visit a root. 2166 const RootVisitor& visitor_; 2167 }; 2168 2169 class RootCallbackVisitor { 2170 public: 2171 RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid) 2172 : callback_(callback), arg_(arg), tid_(tid) {} 2173 2174 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const { 2175 callback_(obj, arg_, JavaFrameRootInfo(tid_, stack_visitor, vreg)); 2176 } 2177 2178 private: 2179 RootCallback* const callback_; 2180 void* const arg_; 2181 const uint32_t tid_; 2182 }; 2183 2184 void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) { 2185 VerifyObject(class_loader_override); 2186 tlsPtr_.class_loader_override = class_loader_override; 2187 } 2188 2189 void Thread::VisitRoots(RootCallback* visitor, void* arg) { 2190 uint32_t thread_id = GetThreadId(); 2191 if (tlsPtr_.opeer != nullptr) { 2192 visitor(&tlsPtr_.opeer, arg, RootInfo(kRootThreadObject, thread_id)); 2193 } 2194 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) { 2195 visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, 2196 RootInfo(kRootNativeStack, thread_id)); 2197 } 2198 tlsPtr_.throw_location.VisitRoots(visitor, arg); 2199 if (tlsPtr_.class_loader_override != nullptr) { 2200 visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, 2201 RootInfo(kRootNativeStack, thread_id)); 2202 } 2203 if (tlsPtr_.monitor_enter_object != nullptr) { 2204 visitor(&tlsPtr_.monitor_enter_object, arg, RootInfo(kRootNativeStack, thread_id)); 2205 } 2206 tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, RootInfo(kRootJNILocal, thread_id)); 2207 tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, RootInfo(kRootJNIMonitor, thread_id)); 2208 HandleScopeVisitRoots(visitor, arg, thread_id); 2209 if (tlsPtr_.debug_invoke_req != nullptr) { 2210 tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, RootInfo(kRootDebugger, thread_id)); 2211 } 2212 if (tlsPtr_.single_step_control != nullptr) { 2213 tlsPtr_.single_step_control->VisitRoots(visitor, arg, RootInfo(kRootDebugger, thread_id)); 2214 } 2215 if (tlsPtr_.deoptimization_shadow_frame != nullptr) { 2216 RootCallbackVisitor visitorToCallback(visitor, arg, thread_id); 2217 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback); 2218 for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr; 2219 shadow_frame = shadow_frame->GetLink()) { 2220 mapper.VisitShadowFrame(shadow_frame); 2221 } 2222 } 2223 if (tlsPtr_.shadow_frame_under_construction != nullptr) { 2224 RootCallbackVisitor visitor_to_callback(visitor, arg, thread_id); 2225 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback); 2226 for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction; 2227 shadow_frame != nullptr; 2228 shadow_frame = shadow_frame->GetLink()) { 2229 mapper.VisitShadowFrame(shadow_frame); 2230 } 2231 } 2232 // Visit roots on this thread's stack 2233 Context* context = GetLongJumpContext(); 2234 RootCallbackVisitor visitor_to_callback(visitor, arg, thread_id); 2235 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback); 2236 mapper.WalkStack(); 2237 ReleaseLongJumpContext(context); 2238 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) { 2239 if (frame.this_object_ != nullptr) { 2240 visitor(&frame.this_object_, arg, RootInfo(kRootVMInternal, thread_id)); 2241 } 2242 DCHECK(frame.method_ != nullptr); 2243 visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, 2244 RootInfo(kRootVMInternal, thread_id)); 2245 } 2246 } 2247 2248 static void VerifyRoot(mirror::Object** root, void* /*arg*/, const RootInfo& /*root_info*/) 2249 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2250 VerifyObject(*root); 2251 } 2252 2253 void Thread::VerifyStackImpl() { 2254 std::unique_ptr<Context> context(Context::Create()); 2255 RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId()); 2256 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback); 2257 mapper.WalkStack(); 2258 } 2259 2260 // Set the stack end to that to be used during a stack overflow 2261 void Thread::SetStackEndForStackOverflow() { 2262 // During stack overflow we allow use of the full stack. 2263 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) { 2264 // However, we seem to have already extended to use the full stack. 2265 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " 2266 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?"; 2267 DumpStack(LOG(ERROR)); 2268 LOG(FATAL) << "Recursive stack overflow."; 2269 } 2270 2271 tlsPtr_.stack_end = tlsPtr_.stack_begin; 2272 2273 // Remove the stack overflow protection if is it set up. 2274 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks(); 2275 if (implicit_stack_check) { 2276 if (!UnprotectStack()) { 2277 LOG(ERROR) << "Unable to remove stack protection for stack overflow"; 2278 } 2279 } 2280 } 2281 2282 void Thread::SetTlab(byte* start, byte* end) { 2283 DCHECK_LE(start, end); 2284 tlsPtr_.thread_local_start = start; 2285 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start; 2286 tlsPtr_.thread_local_end = end; 2287 tlsPtr_.thread_local_objects = 0; 2288 } 2289 2290 bool Thread::HasTlab() const { 2291 bool has_tlab = tlsPtr_.thread_local_pos != nullptr; 2292 if (has_tlab) { 2293 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr); 2294 } else { 2295 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr); 2296 } 2297 return has_tlab; 2298 } 2299 2300 std::ostream& operator<<(std::ostream& os, const Thread& thread) { 2301 thread.ShortDump(os); 2302 return os; 2303 } 2304 2305 void Thread::ProtectStack() { 2306 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 2307 VLOG(threads) << "Protecting stack at " << pregion; 2308 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) { 2309 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. " 2310 "Reason: " 2311 << strerror(errno) << " size: " << kStackOverflowProtectedSize; 2312 } 2313 } 2314 2315 bool Thread::UnprotectStack() { 2316 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 2317 VLOG(threads) << "Unprotecting stack at " << pregion; 2318 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0; 2319 } 2320 2321 2322 } // namespace art 2323