1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "callee_save_frame.h" 18 #include "common_throws.h" 19 #include "dex_file-inl.h" 20 #include "dex_instruction-inl.h" 21 #include "entrypoints/entrypoint_utils-inl.h" 22 #include "gc/accounting/card_table-inl.h" 23 #include "instruction_set.h" 24 #include "interpreter/interpreter.h" 25 #include "mirror/art_method-inl.h" 26 #include "mirror/class-inl.h" 27 #include "mirror/dex_cache-inl.h" 28 #include "mirror/object-inl.h" 29 #include "mirror/object_array-inl.h" 30 #include "runtime.h" 31 #include "scoped_thread_state_change.h" 32 33 namespace art { 34 35 // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. 36 class QuickArgumentVisitor { 37 // Number of bytes for each out register in the caller method's frame. 38 static constexpr size_t kBytesStackArgLocation = 4; 39 // Frame size in bytes of a callee-save frame for RefsAndArgs. 40 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 41 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs); 42 #if defined(__arm__) 43 // The callee save frame is pointed to by SP. 44 // | argN | | 45 // | ... | | 46 // | arg4 | | 47 // | arg3 spill | | Caller's frame 48 // | arg2 spill | | 49 // | arg1 spill | | 50 // | Method* | --- 51 // | LR | 52 // | ... | callee saves 53 // | R3 | arg3 54 // | R2 | arg2 55 // | R1 | arg1 56 // | R0 | padding 57 // | Method* | <- sp 58 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 59 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 60 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 61 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 62 arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 63 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 64 arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 65 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 66 arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 67 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 68 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 69 } 70 #elif defined(__aarch64__) 71 // The callee save frame is pointed to by SP. 72 // | argN | | 73 // | ... | | 74 // | arg4 | | 75 // | arg3 spill | | Caller's frame 76 // | arg2 spill | | 77 // | arg1 spill | | 78 // | Method* | --- 79 // | LR | 80 // | X29 | 81 // | : | 82 // | X20 | 83 // | X7 | 84 // | : | 85 // | X1 | 86 // | D7 | 87 // | : | 88 // | D0 | 89 // | | padding 90 // | Method* | <- sp 91 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 92 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 93 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 94 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 95 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 96 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 97 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 98 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 99 arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 100 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 101 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 102 } 103 #elif defined(__mips__) 104 // The callee save frame is pointed to by SP. 105 // | argN | | 106 // | ... | | 107 // | arg4 | | 108 // | arg3 spill | | Caller's frame 109 // | arg2 spill | | 110 // | arg1 spill | | 111 // | Method* | --- 112 // | RA | 113 // | ... | callee saves 114 // | A3 | arg3 115 // | A2 | arg2 116 // | A1 | arg1 117 // | A0/Method* | <- sp 118 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 119 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 120 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 121 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 122 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 123 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address. 124 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 125 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 126 } 127 #elif defined(__i386__) 128 // The callee save frame is pointed to by SP. 129 // | argN | | 130 // | ... | | 131 // | arg4 | | 132 // | arg3 spill | | Caller's frame 133 // | arg2 spill | | 134 // | arg1 spill | | 135 // | Method* | --- 136 // | Return | 137 // | EBP,ESI,EDI | callee saves 138 // | EBX | arg3 139 // | EDX | arg2 140 // | ECX | arg1 141 // | EAX/Method* | <- sp 142 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 143 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 144 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 145 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 146 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 147 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address. 148 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 149 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 150 } 151 #elif defined(__x86_64__) 152 // The callee save frame is pointed to by SP. 153 // | argN | | 154 // | ... | | 155 // | reg. arg spills | | Caller's frame 156 // | Method* | --- 157 // | Return | 158 // | R15 | callee save 159 // | R14 | callee save 160 // | R13 | callee save 161 // | R12 | callee save 162 // | R9 | arg5 163 // | R8 | arg4 164 // | RSI/R6 | arg1 165 // | RBP/R5 | callee save 166 // | RBX/R3 | callee save 167 // | RDX/R2 | arg2 168 // | RCX/R1 | arg3 169 // | XMM7 | float arg 8 170 // | XMM6 | float arg 7 171 // | XMM5 | float arg 6 172 // | XMM4 | float arg 5 173 // | XMM3 | float arg 4 174 // | XMM2 | float arg 3 175 // | XMM1 | float arg 2 176 // | XMM0 | float arg 1 177 // | Padding | 178 // | RDI/Method* | <- sp 179 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 180 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 181 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 182 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 183 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. 184 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. 185 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 186 switch (gpr_index) { 187 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); 188 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); 189 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); 190 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); 191 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); 192 default: 193 LOG(FATAL) << "Unexpected GPR index: " << gpr_index; 194 return 0; 195 } 196 } 197 #else 198 #error "Unsupported architecture" 199 #endif 200 201 public: 202 // Special handling for proxy methods. Proxy methods are instance methods so the 203 // 'this' object is the 1st argument. They also have the same frame layout as the 204 // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the 205 // 1st GPR. 206 static mirror::Object* GetProxyThisObject(StackReference<mirror::ArtMethod>* sp) 207 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 208 CHECK(sp->AsMirrorPtr()->IsProxyMethod()); 209 CHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, sp->AsMirrorPtr()->GetFrameSizeInBytes()); 210 CHECK_GT(kNumQuickGprArgs, 0u); 211 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR. 212 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset + 213 GprIndexToGprOffset(kThisGprIndex); 214 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset; 215 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr(); 216 } 217 218 static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp) 219 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 220 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 221 byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; 222 return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr(); 223 } 224 225 // For the given quick ref and args quick frame, return the caller's PC. 226 static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp) 227 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 228 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 229 byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; 230 return *reinterpret_cast<uintptr_t*>(lr); 231 } 232 233 QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty, 234 uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : 235 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), 236 gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), 237 fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), 238 stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize 239 + StackArgumentStartFromShorty(is_static, shorty, shorty_len)), 240 gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid), 241 is_split_long_or_double_(false) {} 242 243 virtual ~QuickArgumentVisitor() {} 244 245 virtual void Visit() = 0; 246 247 Primitive::Type GetParamPrimitiveType() const { 248 return cur_type_; 249 } 250 251 byte* GetParamAddress() const { 252 if (!kQuickSoftFloatAbi) { 253 Primitive::Type type = GetParamPrimitiveType(); 254 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { 255 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 256 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 257 } 258 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 259 } 260 } 261 if (gpr_index_ < kNumQuickGprArgs) { 262 return gpr_args_ + GprIndexToGprOffset(gpr_index_); 263 } 264 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 265 } 266 267 bool IsSplitLongOrDouble() const { 268 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { 269 return is_split_long_or_double_; 270 } else { 271 return false; // An optimization for when GPR and FPRs are 64bit. 272 } 273 } 274 275 bool IsParamAReference() const { 276 return GetParamPrimitiveType() == Primitive::kPrimNot; 277 } 278 279 bool IsParamALongOrDouble() const { 280 Primitive::Type type = GetParamPrimitiveType(); 281 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; 282 } 283 284 uint64_t ReadSplitLongParam() const { 285 DCHECK(IsSplitLongOrDouble()); 286 uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress()); 287 uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_); 288 return (low_half & 0xffffffffULL) | (high_half << 32); 289 } 290 291 void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 292 // This implementation doesn't support reg-spill area for hard float 293 // ABI targets such as x86_64 and aarch64. So, for those targets whose 294 // 'kQuickSoftFloatAbi' is 'false': 295 // (a) 'stack_args_' should point to the first method's argument 296 // (b) whatever the argument type it is, the 'stack_index_' should 297 // be moved forward along with every visiting. 298 gpr_index_ = 0; 299 fpr_index_ = 0; 300 stack_index_ = 0; 301 if (!is_static_) { // Handle this. 302 cur_type_ = Primitive::kPrimNot; 303 is_split_long_or_double_ = false; 304 Visit(); 305 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) { 306 stack_index_++; 307 } 308 if (kNumQuickGprArgs > 0) { 309 gpr_index_++; 310 } 311 } 312 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { 313 cur_type_ = Primitive::GetType(shorty_[shorty_index]); 314 switch (cur_type_) { 315 case Primitive::kPrimNot: 316 case Primitive::kPrimBoolean: 317 case Primitive::kPrimByte: 318 case Primitive::kPrimChar: 319 case Primitive::kPrimShort: 320 case Primitive::kPrimInt: 321 is_split_long_or_double_ = false; 322 Visit(); 323 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { 324 stack_index_++; 325 } 326 if (gpr_index_ < kNumQuickGprArgs) { 327 gpr_index_++; 328 } 329 break; 330 case Primitive::kPrimFloat: 331 is_split_long_or_double_ = false; 332 Visit(); 333 if (kQuickSoftFloatAbi) { 334 if (gpr_index_ < kNumQuickGprArgs) { 335 gpr_index_++; 336 } else { 337 stack_index_++; 338 } 339 } else { 340 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 341 fpr_index_++; 342 } 343 stack_index_++; 344 } 345 break; 346 case Primitive::kPrimDouble: 347 case Primitive::kPrimLong: 348 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { 349 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && 350 ((gpr_index_ + 1) == kNumQuickGprArgs); 351 Visit(); 352 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { 353 if (kBytesStackArgLocation == 4) { 354 stack_index_+= 2; 355 } else { 356 CHECK_EQ(kBytesStackArgLocation, 8U); 357 stack_index_++; 358 } 359 } 360 if (gpr_index_ < kNumQuickGprArgs) { 361 gpr_index_++; 362 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { 363 if (gpr_index_ < kNumQuickGprArgs) { 364 gpr_index_++; 365 } else if (kQuickSoftFloatAbi) { 366 stack_index_++; 367 } 368 } 369 } 370 } else { 371 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && 372 ((fpr_index_ + 1) == kNumQuickFprArgs); 373 Visit(); 374 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 375 fpr_index_++; 376 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { 377 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 378 fpr_index_++; 379 } 380 } 381 } 382 if (kBytesStackArgLocation == 4) { 383 stack_index_+= 2; 384 } else { 385 CHECK_EQ(kBytesStackArgLocation, 8U); 386 stack_index_++; 387 } 388 } 389 break; 390 default: 391 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; 392 } 393 } 394 } 395 396 private: 397 static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty, 398 uint32_t shorty_len) { 399 if (kQuickSoftFloatAbi) { 400 CHECK_EQ(kNumQuickFprArgs, 0U); 401 return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA)) 402 + sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */; 403 } else { 404 // For now, there is no reg-spill area for the targets with 405 // hard float ABI. So, the offset pointing to the first method's 406 // parameter ('this' for non-static methods) should be returned. 407 return sizeof(StackReference<mirror::ArtMethod>); // Skip StackReference<ArtMethod>. 408 } 409 } 410 411 protected: 412 const bool is_static_; 413 const char* const shorty_; 414 const uint32_t shorty_len_; 415 416 private: 417 byte* const gpr_args_; // Address of GPR arguments in callee save frame. 418 byte* const fpr_args_; // Address of FPR arguments in callee save frame. 419 byte* const stack_args_; // Address of stack arguments in caller's frame. 420 uint32_t gpr_index_; // Index into spilled GPRs. 421 uint32_t fpr_index_; // Index into spilled FPRs. 422 uint32_t stack_index_; // Index into arguments on the stack. 423 // The current type of argument during VisitArguments. 424 Primitive::Type cur_type_; 425 // Does a 64bit parameter straddle the register and stack arguments? 426 bool is_split_long_or_double_; 427 }; 428 429 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It 430 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module. 431 extern "C" mirror::Object* artQuickGetProxyThisObject(StackReference<mirror::ArtMethod>* sp) 432 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 433 return QuickArgumentVisitor::GetProxyThisObject(sp); 434 } 435 436 // Visits arguments on the stack placing them into the shadow frame. 437 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { 438 public: 439 BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 440 const char* shorty, uint32_t shorty_len, ShadowFrame* sf, 441 size_t first_arg_reg) : 442 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} 443 444 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 445 446 private: 447 ShadowFrame* const sf_; 448 uint32_t cur_reg_; 449 450 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); 451 }; 452 453 void BuildQuickShadowFrameVisitor::Visit() { 454 Primitive::Type type = GetParamPrimitiveType(); 455 switch (type) { 456 case Primitive::kPrimLong: // Fall-through. 457 case Primitive::kPrimDouble: 458 if (IsSplitLongOrDouble()) { 459 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); 460 } else { 461 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); 462 } 463 ++cur_reg_; 464 break; 465 case Primitive::kPrimNot: { 466 StackReference<mirror::Object>* stack_ref = 467 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 468 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); 469 } 470 break; 471 case Primitive::kPrimBoolean: // Fall-through. 472 case Primitive::kPrimByte: // Fall-through. 473 case Primitive::kPrimChar: // Fall-through. 474 case Primitive::kPrimShort: // Fall-through. 475 case Primitive::kPrimInt: // Fall-through. 476 case Primitive::kPrimFloat: 477 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); 478 break; 479 case Primitive::kPrimVoid: 480 LOG(FATAL) << "UNREACHABLE"; 481 break; 482 } 483 ++cur_reg_; 484 } 485 486 extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self, 487 StackReference<mirror::ArtMethod>* sp) 488 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 489 // Ensure we don't get thread suspension until the object arguments are safely in the shadow 490 // frame. 491 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 492 493 if (method->IsAbstract()) { 494 ThrowAbstractMethodError(method); 495 return 0; 496 } else { 497 DCHECK(!method->IsNative()) << PrettyMethod(method); 498 const char* old_cause = self->StartAssertNoThreadSuspension( 499 "Building interpreter shadow frame"); 500 const DexFile::CodeItem* code_item = method->GetCodeItem(); 501 DCHECK(code_item != nullptr) << PrettyMethod(method); 502 uint16_t num_regs = code_item->registers_size_; 503 void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); 504 // No last shadow coming from quick. 505 ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory)); 506 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; 507 uint32_t shorty_len = 0; 508 const char* shorty = method->GetShorty(&shorty_len); 509 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, 510 shadow_frame, first_arg_reg); 511 shadow_frame_builder.VisitArguments(); 512 // Push a transition back into managed code onto the linked list in thread. 513 ManagedStack fragment; 514 self->PushManagedStackFragment(&fragment); 515 self->PushShadowFrame(shadow_frame); 516 self->EndAssertNoThreadSuspension(old_cause); 517 518 if (method->IsStatic() && !method->GetDeclaringClass()->IsInitialized()) { 519 // Ensure static method's class is initialized. 520 StackHandleScope<1> hs(self); 521 Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass())); 522 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(h_class, true, true)) { 523 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method); 524 self->PopManagedStackFragment(fragment); 525 return 0; 526 } 527 } 528 529 StackHandleScope<1> hs(self); 530 MethodHelper mh(hs.NewHandle(method)); 531 JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame); 532 // Pop transition. 533 self->PopManagedStackFragment(fragment); 534 // No need to restore the args since the method has already been run by the interpreter. 535 return result.GetJ(); 536 } 537 } 538 539 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted 540 // to jobjects. 541 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { 542 public: 543 BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 544 const char* shorty, uint32_t shorty_len, 545 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : 546 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} 547 548 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 549 550 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 551 552 private: 553 ScopedObjectAccessUnchecked* const soa_; 554 std::vector<jvalue>* const args_; 555 // References which we must update when exiting in case the GC moved the objects. 556 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 557 558 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); 559 }; 560 561 void BuildQuickArgumentVisitor::Visit() { 562 jvalue val; 563 Primitive::Type type = GetParamPrimitiveType(); 564 switch (type) { 565 case Primitive::kPrimNot: { 566 StackReference<mirror::Object>* stack_ref = 567 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 568 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 569 references_.push_back(std::make_pair(val.l, stack_ref)); 570 break; 571 } 572 case Primitive::kPrimLong: // Fall-through. 573 case Primitive::kPrimDouble: 574 if (IsSplitLongOrDouble()) { 575 val.j = ReadSplitLongParam(); 576 } else { 577 val.j = *reinterpret_cast<jlong*>(GetParamAddress()); 578 } 579 break; 580 case Primitive::kPrimBoolean: // Fall-through. 581 case Primitive::kPrimByte: // Fall-through. 582 case Primitive::kPrimChar: // Fall-through. 583 case Primitive::kPrimShort: // Fall-through. 584 case Primitive::kPrimInt: // Fall-through. 585 case Primitive::kPrimFloat: 586 val.i = *reinterpret_cast<jint*>(GetParamAddress()); 587 break; 588 case Primitive::kPrimVoid: 589 LOG(FATAL) << "UNREACHABLE"; 590 val.j = 0; 591 break; 592 } 593 args_->push_back(val); 594 } 595 596 void BuildQuickArgumentVisitor::FixupReferences() { 597 // Fixup any references which may have changed. 598 for (const auto& pair : references_) { 599 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 600 soa_->Env()->DeleteLocalRef(pair.first); 601 } 602 } 603 604 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method 605 // which is responsible for recording callee save registers. We explicitly place into jobjects the 606 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a 607 // field within the proxy object, which will box the primitive arguments and deal with error cases. 608 extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method, 609 mirror::Object* receiver, 610 Thread* self, StackReference<mirror::ArtMethod>* sp) 611 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 612 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); 613 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); 614 // Ensure we don't get thread suspension until the object arguments are safely in jobjects. 615 const char* old_cause = 616 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); 617 // Register the top of the managed stack, making stack crawlable. 618 DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method); 619 self->SetTopOfStack(sp, 0); 620 DCHECK_EQ(proxy_method->GetFrameSizeInBytes(), 621 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()) 622 << PrettyMethod(proxy_method); 623 self->VerifyStack(); 624 // Start new JNI local reference state. 625 JNIEnvExt* env = self->GetJniEnv(); 626 ScopedObjectAccessUnchecked soa(env); 627 ScopedJniEnvLocalRefState env_state(env); 628 // Create local ref. copies of proxy method and the receiver. 629 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); 630 631 // Placing arguments into args vector and remove the receiver. 632 mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(); 633 CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " " 634 << PrettyMethod(non_proxy_method); 635 std::vector<jvalue> args; 636 uint32_t shorty_len = 0; 637 const char* shorty = proxy_method->GetShorty(&shorty_len); 638 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); 639 640 local_ref_visitor.VisitArguments(); 641 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); 642 args.erase(args.begin()); 643 644 // Convert proxy method into expected interface method. 645 mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod(); 646 DCHECK(interface_method != NULL) << PrettyMethod(proxy_method); 647 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); 648 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method); 649 650 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code 651 // that performs allocations. 652 self->EndAssertNoThreadSuspension(old_cause); 653 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); 654 // Restore references which might have moved. 655 local_ref_visitor.FixupReferences(); 656 return result.GetJ(); 657 } 658 659 // Read object references held in arguments from quick frames and place in a JNI local references, 660 // so they don't get garbage collected. 661 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { 662 public: 663 RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 664 const char* shorty, uint32_t shorty_len, 665 ScopedObjectAccessUnchecked* soa) : 666 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} 667 668 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 669 670 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 671 672 private: 673 ScopedObjectAccessUnchecked* const soa_; 674 // References which we must update when exiting in case the GC moved the objects. 675 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; 676 677 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); 678 }; 679 680 void RememberForGcArgumentVisitor::Visit() { 681 if (IsParamAReference()) { 682 StackReference<mirror::Object>* stack_ref = 683 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 684 jobject reference = 685 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 686 references_.push_back(std::make_pair(reference, stack_ref)); 687 } 688 } 689 690 void RememberForGcArgumentVisitor::FixupReferences() { 691 // Fixup any references which may have changed. 692 for (const auto& pair : references_) { 693 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 694 soa_->Env()->DeleteLocalRef(pair.first); 695 } 696 } 697 698 // Lazily resolve a method for quick. Called by stub code. 699 extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called, 700 mirror::Object* receiver, 701 Thread* self, 702 StackReference<mirror::ArtMethod>* sp) 703 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 704 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 705 // Start new JNI local reference state 706 JNIEnvExt* env = self->GetJniEnv(); 707 ScopedObjectAccessUnchecked soa(env); 708 ScopedJniEnvLocalRefState env_state(env); 709 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); 710 711 // Compute details about the called method (avoid GCs) 712 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 713 mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); 714 InvokeType invoke_type; 715 const DexFile* dex_file; 716 uint32_t dex_method_idx; 717 if (called->IsRuntimeMethod()) { 718 uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp)); 719 const DexFile::CodeItem* code; 720 dex_file = caller->GetDexFile(); 721 code = caller->GetCodeItem(); 722 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 723 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 724 Instruction::Code instr_code = instr->Opcode(); 725 bool is_range; 726 switch (instr_code) { 727 case Instruction::INVOKE_DIRECT: 728 invoke_type = kDirect; 729 is_range = false; 730 break; 731 case Instruction::INVOKE_DIRECT_RANGE: 732 invoke_type = kDirect; 733 is_range = true; 734 break; 735 case Instruction::INVOKE_STATIC: 736 invoke_type = kStatic; 737 is_range = false; 738 break; 739 case Instruction::INVOKE_STATIC_RANGE: 740 invoke_type = kStatic; 741 is_range = true; 742 break; 743 case Instruction::INVOKE_SUPER: 744 invoke_type = kSuper; 745 is_range = false; 746 break; 747 case Instruction::INVOKE_SUPER_RANGE: 748 invoke_type = kSuper; 749 is_range = true; 750 break; 751 case Instruction::INVOKE_VIRTUAL: 752 invoke_type = kVirtual; 753 is_range = false; 754 break; 755 case Instruction::INVOKE_VIRTUAL_RANGE: 756 invoke_type = kVirtual; 757 is_range = true; 758 break; 759 case Instruction::INVOKE_INTERFACE: 760 invoke_type = kInterface; 761 is_range = false; 762 break; 763 case Instruction::INVOKE_INTERFACE_RANGE: 764 invoke_type = kInterface; 765 is_range = true; 766 break; 767 default: 768 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL); 769 // Avoid used uninitialized warnings. 770 invoke_type = kDirect; 771 is_range = false; 772 } 773 dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); 774 } else { 775 invoke_type = kStatic; 776 dex_file = called->GetDexFile(); 777 dex_method_idx = called->GetDexMethodIndex(); 778 } 779 uint32_t shorty_len; 780 const char* shorty = 781 dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); 782 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); 783 visitor.VisitArguments(); 784 self->EndAssertNoThreadSuspension(old_cause); 785 bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; 786 // Resolve method filling in dex cache. 787 if (UNLIKELY(called->IsRuntimeMethod())) { 788 StackHandleScope<1> hs(self); 789 mirror::Object* dummy = nullptr; 790 HandleWrapper<mirror::Object> h_receiver( 791 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); 792 called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type); 793 } 794 const void* code = NULL; 795 if (LIKELY(!self->IsExceptionPending())) { 796 // Incompatible class change should have been handled in resolve method. 797 CHECK(!called->CheckIncompatibleClassChange(invoke_type)) 798 << PrettyMethod(called) << " " << invoke_type; 799 if (virtual_or_interface) { 800 // Refine called method based on receiver. 801 CHECK(receiver != nullptr) << invoke_type; 802 803 mirror::ArtMethod* orig_called = called; 804 if (invoke_type == kVirtual) { 805 called = receiver->GetClass()->FindVirtualMethodForVirtual(called); 806 } else { 807 called = receiver->GetClass()->FindVirtualMethodForInterface(called); 808 } 809 810 CHECK(called != nullptr) << PrettyMethod(orig_called) << " " 811 << PrettyTypeOf(receiver) << " " 812 << invoke_type << " " << orig_called->GetVtableIndex(); 813 814 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index 815 // of the sharpened method. 816 if (called->HasSameDexCacheResolvedMethods(caller)) { 817 caller->SetDexCacheResolvedMethod(called->GetDexMethodIndex(), called); 818 } else { 819 // Calling from one dex file to another, need to compute the method index appropriate to 820 // the caller's dex file. Since we get here only if the original called was a runtime 821 // method, we've got the correct dex_file and a dex_method_idx from above. 822 DCHECK_EQ(caller->GetDexFile(), dex_file); 823 StackHandleScope<1> hs(self); 824 MethodHelper mh(hs.NewHandle(called)); 825 uint32_t method_index = mh.FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx); 826 if (method_index != DexFile::kDexNoIndex) { 827 caller->SetDexCacheResolvedMethod(method_index, called); 828 } 829 } 830 } else if (invoke_type == kStatic) { 831 const auto called_dex_method_idx = called->GetDexMethodIndex(); 832 // For static invokes, we may dispatch to the static method in the superclass but resolve 833 // using the subclass. To prevent getting slow paths on each invoke, we force set the 834 // resolved method for the super class dex method index if we are in the same dex file. 835 // b/19175856 836 if (called->GetDexFile() == dex_file && dex_method_idx != called_dex_method_idx) { 837 called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called); 838 } 839 } 840 // Ensure that the called method's class is initialized. 841 StackHandleScope<1> hs(soa.Self()); 842 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); 843 linker->EnsureInitialized(called_class, true, true); 844 if (LIKELY(called_class->IsInitialized())) { 845 code = called->GetEntryPointFromQuickCompiledCode(); 846 } else if (called_class->IsInitializing()) { 847 if (invoke_type == kStatic) { 848 // Class is still initializing, go to oat and grab code (trampoline must be left in place 849 // until class is initialized to stop races between threads). 850 code = linker->GetQuickOatCodeFor(called); 851 } else { 852 // No trampoline for non-static methods. 853 code = called->GetEntryPointFromQuickCompiledCode(); 854 } 855 } else { 856 DCHECK(called_class->IsErroneous()); 857 } 858 } 859 CHECK_EQ(code == NULL, self->IsExceptionPending()); 860 // Fixup any locally saved objects may have moved during a GC. 861 visitor.FixupReferences(); 862 // Place called method in callee-save frame to be placed as first argument to quick method. 863 sp->Assign(called); 864 return code; 865 } 866 867 /* 868 * This class uses a couple of observations to unite the different calling conventions through 869 * a few constants. 870 * 871 * 1) Number of registers used for passing is normally even, so counting down has no penalty for 872 * possible alignment. 873 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point 874 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote 875 * when we have to split things 876 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats 877 * and we can use Int handling directly. 878 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code 879 * necessary when widening. Also, widening of Ints will take place implicitly, and the 880 * extension should be compatible with Aarch64, which mandates copying the available bits 881 * into LSB and leaving the rest unspecified. 882 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on 883 * the stack. 884 * 6) There is only little endian. 885 * 886 * 887 * Actual work is supposed to be done in a delegate of the template type. The interface is as 888 * follows: 889 * 890 * void PushGpr(uintptr_t): Add a value for the next GPR 891 * 892 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need 893 * padding, that is, think the architecture is 32b and aligns 64b. 894 * 895 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to 896 * split this if necessary. The current state will have aligned, if 897 * necessary. 898 * 899 * void PushStack(uintptr_t): Push a value to the stack. 900 * 901 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, 902 * as this might be important for null initialization. 903 * Must return the jobject, that is, the reference to the 904 * entry in the HandleScope (nullptr if necessary). 905 * 906 */ 907 template<class T> class BuildNativeCallFrameStateMachine { 908 public: 909 #if defined(__arm__) 910 // TODO: These are all dummy values! 911 static constexpr bool kNativeSoftFloatAbi = true; 912 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 913 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 914 915 static constexpr size_t kRegistersNeededForLong = 2; 916 static constexpr size_t kRegistersNeededForDouble = 2; 917 static constexpr bool kMultiRegistersAligned = true; 918 static constexpr bool kMultiRegistersWidened = false; 919 static constexpr bool kAlignLongOnStack = true; 920 static constexpr bool kAlignDoubleOnStack = true; 921 #elif defined(__aarch64__) 922 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 923 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. 924 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 925 926 static constexpr size_t kRegistersNeededForLong = 1; 927 static constexpr size_t kRegistersNeededForDouble = 1; 928 static constexpr bool kMultiRegistersAligned = false; 929 static constexpr bool kMultiRegistersWidened = false; 930 static constexpr bool kAlignLongOnStack = false; 931 static constexpr bool kAlignDoubleOnStack = false; 932 #elif defined(__mips__) 933 // TODO: These are all dummy values! 934 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. 935 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 936 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 937 938 static constexpr size_t kRegistersNeededForLong = 2; 939 static constexpr size_t kRegistersNeededForDouble = 2; 940 static constexpr bool kMultiRegistersAligned = true; 941 static constexpr bool kMultiRegistersWidened = true; 942 static constexpr bool kAlignLongOnStack = false; 943 static constexpr bool kAlignDoubleOnStack = false; 944 #elif defined(__i386__) 945 // TODO: Check these! 946 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp 947 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 948 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 949 950 static constexpr size_t kRegistersNeededForLong = 2; 951 static constexpr size_t kRegistersNeededForDouble = 2; 952 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways 953 static constexpr bool kMultiRegistersWidened = false; 954 static constexpr bool kAlignLongOnStack = false; 955 static constexpr bool kAlignDoubleOnStack = false; 956 #elif defined(__x86_64__) 957 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 958 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. 959 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 960 961 static constexpr size_t kRegistersNeededForLong = 1; 962 static constexpr size_t kRegistersNeededForDouble = 1; 963 static constexpr bool kMultiRegistersAligned = false; 964 static constexpr bool kMultiRegistersWidened = false; 965 static constexpr bool kAlignLongOnStack = false; 966 static constexpr bool kAlignDoubleOnStack = false; 967 #else 968 #error "Unsupported architecture" 969 #endif 970 971 public: 972 explicit BuildNativeCallFrameStateMachine(T* delegate) 973 : gpr_index_(kNumNativeGprArgs), 974 fpr_index_(kNumNativeFprArgs), 975 stack_entries_(0), 976 delegate_(delegate) { 977 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff 978 // the next register is even; counting down is just to make the compiler happy... 979 CHECK_EQ(kNumNativeGprArgs % 2, 0U); 980 CHECK_EQ(kNumNativeFprArgs % 2, 0U); 981 } 982 983 virtual ~BuildNativeCallFrameStateMachine() {} 984 985 bool HavePointerGpr() { 986 return gpr_index_ > 0; 987 } 988 989 void AdvancePointer(const void* val) { 990 if (HavePointerGpr()) { 991 gpr_index_--; 992 PushGpr(reinterpret_cast<uintptr_t>(val)); 993 } else { 994 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b 995 PushStack(reinterpret_cast<uintptr_t>(val)); 996 gpr_index_ = 0; 997 } 998 } 999 1000 bool HaveHandleScopeGpr() { 1001 return gpr_index_ > 0; 1002 } 1003 1004 void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1005 uintptr_t handle = PushHandle(ptr); 1006 if (HaveHandleScopeGpr()) { 1007 gpr_index_--; 1008 PushGpr(handle); 1009 } else { 1010 stack_entries_++; 1011 PushStack(handle); 1012 gpr_index_ = 0; 1013 } 1014 } 1015 1016 bool HaveIntGpr() { 1017 return gpr_index_ > 0; 1018 } 1019 1020 void AdvanceInt(uint32_t val) { 1021 if (HaveIntGpr()) { 1022 gpr_index_--; 1023 PushGpr(val); 1024 } else { 1025 stack_entries_++; 1026 PushStack(val); 1027 gpr_index_ = 0; 1028 } 1029 } 1030 1031 bool HaveLongGpr() { 1032 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); 1033 } 1034 1035 bool LongGprNeedsPadding() { 1036 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1037 kAlignLongOnStack && // and when it needs alignment 1038 (gpr_index_ & 1) == 1; // counter is odd, see constructor 1039 } 1040 1041 bool LongStackNeedsPadding() { 1042 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1043 kAlignLongOnStack && // and when it needs 8B alignment 1044 (stack_entries_ & 1) == 1; // counter is odd 1045 } 1046 1047 void AdvanceLong(uint64_t val) { 1048 if (HaveLongGpr()) { 1049 if (LongGprNeedsPadding()) { 1050 PushGpr(0); 1051 gpr_index_--; 1052 } 1053 if (kRegistersNeededForLong == 1) { 1054 PushGpr(static_cast<uintptr_t>(val)); 1055 } else { 1056 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1057 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1058 } 1059 gpr_index_ -= kRegistersNeededForLong; 1060 } else { 1061 if (LongStackNeedsPadding()) { 1062 PushStack(0); 1063 stack_entries_++; 1064 } 1065 if (kRegistersNeededForLong == 1) { 1066 PushStack(static_cast<uintptr_t>(val)); 1067 stack_entries_++; 1068 } else { 1069 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1070 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1071 stack_entries_ += 2; 1072 } 1073 gpr_index_ = 0; 1074 } 1075 } 1076 1077 bool HaveFloatFpr() { 1078 return fpr_index_ > 0; 1079 } 1080 1081 void AdvanceFloat(float val) { 1082 if (kNativeSoftFloatAbi) { 1083 AdvanceInt(bit_cast<float, uint32_t>(val)); 1084 } else { 1085 if (HaveFloatFpr()) { 1086 fpr_index_--; 1087 if (kRegistersNeededForDouble == 1) { 1088 if (kMultiRegistersWidened) { 1089 PushFpr8(bit_cast<double, uint64_t>(val)); 1090 } else { 1091 // No widening, just use the bits. 1092 PushFpr8(bit_cast<float, uint64_t>(val)); 1093 } 1094 } else { 1095 PushFpr4(val); 1096 } 1097 } else { 1098 stack_entries_++; 1099 if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) { 1100 // Need to widen before storing: Note the "double" in the template instantiation. 1101 // Note: We need to jump through those hoops to make the compiler happy. 1102 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); 1103 PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val))); 1104 } else { 1105 PushStack(bit_cast<float, uintptr_t>(val)); 1106 } 1107 fpr_index_ = 0; 1108 } 1109 } 1110 } 1111 1112 bool HaveDoubleFpr() { 1113 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); 1114 } 1115 1116 bool DoubleFprNeedsPadding() { 1117 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1118 kAlignDoubleOnStack && // and when it needs alignment 1119 (fpr_index_ & 1) == 1; // counter is odd, see constructor 1120 } 1121 1122 bool DoubleStackNeedsPadding() { 1123 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1124 kAlignDoubleOnStack && // and when it needs 8B alignment 1125 (stack_entries_ & 1) == 1; // counter is odd 1126 } 1127 1128 void AdvanceDouble(uint64_t val) { 1129 if (kNativeSoftFloatAbi) { 1130 AdvanceLong(val); 1131 } else { 1132 if (HaveDoubleFpr()) { 1133 if (DoubleFprNeedsPadding()) { 1134 PushFpr4(0); 1135 fpr_index_--; 1136 } 1137 PushFpr8(val); 1138 fpr_index_ -= kRegistersNeededForDouble; 1139 } else { 1140 if (DoubleStackNeedsPadding()) { 1141 PushStack(0); 1142 stack_entries_++; 1143 } 1144 if (kRegistersNeededForDouble == 1) { 1145 PushStack(static_cast<uintptr_t>(val)); 1146 stack_entries_++; 1147 } else { 1148 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1149 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1150 stack_entries_ += 2; 1151 } 1152 fpr_index_ = 0; 1153 } 1154 } 1155 } 1156 1157 uint32_t getStackEntries() { 1158 return stack_entries_; 1159 } 1160 1161 uint32_t getNumberOfUsedGprs() { 1162 return kNumNativeGprArgs - gpr_index_; 1163 } 1164 1165 uint32_t getNumberOfUsedFprs() { 1166 return kNumNativeFprArgs - fpr_index_; 1167 } 1168 1169 private: 1170 void PushGpr(uintptr_t val) { 1171 delegate_->PushGpr(val); 1172 } 1173 void PushFpr4(float val) { 1174 delegate_->PushFpr4(val); 1175 } 1176 void PushFpr8(uint64_t val) { 1177 delegate_->PushFpr8(val); 1178 } 1179 void PushStack(uintptr_t val) { 1180 delegate_->PushStack(val); 1181 } 1182 uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1183 return delegate_->PushHandle(ref); 1184 } 1185 1186 uint32_t gpr_index_; // Number of free GPRs 1187 uint32_t fpr_index_; // Number of free FPRs 1188 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not 1189 // extended 1190 T* delegate_; // What Push implementation gets called 1191 }; 1192 1193 // Computes the sizes of register stacks and call stack area. Handling of references can be extended 1194 // in subclasses. 1195 // 1196 // To handle native pointers, use "L" in the shorty for an object reference, which simulates 1197 // them with handles. 1198 class ComputeNativeCallFrameSize { 1199 public: 1200 ComputeNativeCallFrameSize() : num_stack_entries_(0) {} 1201 1202 virtual ~ComputeNativeCallFrameSize() {} 1203 1204 uint32_t GetStackSize() { 1205 return num_stack_entries_ * sizeof(uintptr_t); 1206 } 1207 1208 uint8_t* LayoutCallStack(uint8_t* sp8) { 1209 sp8 -= GetStackSize(); 1210 // Align by kStackAlignment. 1211 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1212 return sp8; 1213 } 1214 1215 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) { 1216 // Assumption is OK right now, as we have soft-float arm 1217 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; 1218 sp8 -= fregs * sizeof(uintptr_t); 1219 *start_fpr = reinterpret_cast<uint32_t*>(sp8); 1220 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; 1221 sp8 -= iregs * sizeof(uintptr_t); 1222 *start_gpr = reinterpret_cast<uintptr_t*>(sp8); 1223 return sp8; 1224 } 1225 1226 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, 1227 uint32_t** start_fpr) { 1228 // Native call stack. 1229 sp8 = LayoutCallStack(sp8); 1230 *start_stack = reinterpret_cast<uintptr_t*>(sp8); 1231 1232 // Put fprs and gprs below. 1233 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); 1234 1235 // Return the new bottom. 1236 return sp8; 1237 } 1238 1239 virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) 1240 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {} 1241 1242 void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1243 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); 1244 1245 WalkHeader(&sm); 1246 1247 for (uint32_t i = 1; i < shorty_len; ++i) { 1248 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); 1249 switch (cur_type_) { 1250 case Primitive::kPrimNot: 1251 sm.AdvanceHandleScope( 1252 reinterpret_cast<mirror::Object*>(0x12345678)); 1253 break; 1254 1255 case Primitive::kPrimBoolean: 1256 case Primitive::kPrimByte: 1257 case Primitive::kPrimChar: 1258 case Primitive::kPrimShort: 1259 case Primitive::kPrimInt: 1260 sm.AdvanceInt(0); 1261 break; 1262 case Primitive::kPrimFloat: 1263 sm.AdvanceFloat(0); 1264 break; 1265 case Primitive::kPrimDouble: 1266 sm.AdvanceDouble(0); 1267 break; 1268 case Primitive::kPrimLong: 1269 sm.AdvanceLong(0); 1270 break; 1271 default: 1272 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; 1273 } 1274 } 1275 1276 num_stack_entries_ = sm.getStackEntries(); 1277 } 1278 1279 void PushGpr(uintptr_t /* val */) { 1280 // not optimizing registers, yet 1281 } 1282 1283 void PushFpr4(float /* val */) { 1284 // not optimizing registers, yet 1285 } 1286 1287 void PushFpr8(uint64_t /* val */) { 1288 // not optimizing registers, yet 1289 } 1290 1291 void PushStack(uintptr_t /* val */) { 1292 // counting is already done in the superclass 1293 } 1294 1295 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { 1296 return reinterpret_cast<uintptr_t>(nullptr); 1297 } 1298 1299 protected: 1300 uint32_t num_stack_entries_; 1301 }; 1302 1303 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { 1304 public: 1305 ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {} 1306 1307 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs 1308 // is at *m = sp. Will update to point to the bottom of the save frame. 1309 // 1310 // Note: assumes ComputeAll() has been run before. 1311 void LayoutCalleeSaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table, 1312 uint32_t* handle_scope_entries) 1313 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1314 mirror::ArtMethod* method = (*m)->AsMirrorPtr(); 1315 1316 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); 1317 1318 // First, fix up the layout of the callee-save frame. 1319 // We have to squeeze in the HandleScope, and relocate the method pointer. 1320 1321 // "Free" the slot for the method. 1322 sp8 += kPointerSize; // In the callee-save frame we use a full pointer. 1323 1324 // Under the callee saves put handle scope and new method stack reference. 1325 *handle_scope_entries = num_handle_scope_references_; 1326 1327 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); 1328 size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>); 1329 1330 sp8 -= scope_and_method; 1331 // Align by kStackAlignment. 1332 sp8 = reinterpret_cast<uint8_t*>(RoundDown( 1333 reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1334 1335 uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>); 1336 *table = reinterpret_cast<HandleScope*>(sp8_table); 1337 (*table)->SetNumberOfReferences(num_handle_scope_references_); 1338 1339 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. 1340 uint8_t* method_pointer = sp8; 1341 StackReference<mirror::ArtMethod>* new_method_ref = 1342 reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer); 1343 new_method_ref->Assign(method); 1344 *m = new_method_ref; 1345 } 1346 1347 // Adds space for the cookie. Note: may leave stack unaligned. 1348 void LayoutCookie(uint8_t** sp) { 1349 // Reference cookie and padding 1350 *sp -= 8; 1351 } 1352 1353 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. 1354 // Returns the new bottom. Note: this may be unaligned. 1355 uint8_t* LayoutJNISaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table, 1356 uint32_t* handle_scope_entries) 1357 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1358 // First, fix up the layout of the callee-save frame. 1359 // We have to squeeze in the HandleScope, and relocate the method pointer. 1360 LayoutCalleeSaveFrame(m, sp, table, handle_scope_entries); 1361 1362 // The bottom of the callee-save frame is now where the method is, *m. 1363 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); 1364 1365 // Add space for cookie. 1366 LayoutCookie(&sp8); 1367 1368 return sp8; 1369 } 1370 1371 // WARNING: After this, *sp won't be pointing to the method anymore! 1372 uint8_t* ComputeLayout(StackReference<mirror::ArtMethod>** m, bool is_static, const char* shorty, 1373 uint32_t shorty_len, HandleScope** table, uint32_t* handle_scope_entries, 1374 uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr) 1375 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1376 Walk(shorty, shorty_len); 1377 1378 // JNI part. 1379 uint8_t* sp8 = LayoutJNISaveFrame(m, reinterpret_cast<void*>(*m), table, handle_scope_entries); 1380 1381 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); 1382 1383 // Return the new bottom. 1384 return sp8; 1385 } 1386 1387 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; 1388 1389 // Add JNIEnv* and jobj/jclass before the shorty-derived elements. 1390 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE 1391 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1392 1393 private: 1394 uint32_t num_handle_scope_references_; 1395 }; 1396 1397 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { 1398 num_handle_scope_references_++; 1399 return reinterpret_cast<uintptr_t>(nullptr); 1400 } 1401 1402 void ComputeGenericJniFrameSize::WalkHeader( 1403 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { 1404 // JNIEnv 1405 sm->AdvancePointer(nullptr); 1406 1407 // Class object or this as first argument 1408 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1409 } 1410 1411 // Class to push values to three separate regions. Used to fill the native call part. Adheres to 1412 // the template requirements of BuildGenericJniFrameStateMachine. 1413 class FillNativeCall { 1414 public: 1415 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : 1416 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} 1417 1418 virtual ~FillNativeCall() {} 1419 1420 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { 1421 cur_gpr_reg_ = gpr_regs; 1422 cur_fpr_reg_ = fpr_regs; 1423 cur_stack_arg_ = stack_args; 1424 } 1425 1426 void PushGpr(uintptr_t val) { 1427 *cur_gpr_reg_ = val; 1428 cur_gpr_reg_++; 1429 } 1430 1431 void PushFpr4(float val) { 1432 *cur_fpr_reg_ = val; 1433 cur_fpr_reg_++; 1434 } 1435 1436 void PushFpr8(uint64_t val) { 1437 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); 1438 *tmp = val; 1439 cur_fpr_reg_ += 2; 1440 } 1441 1442 void PushStack(uintptr_t val) { 1443 *cur_stack_arg_ = val; 1444 cur_stack_arg_++; 1445 } 1446 1447 virtual uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1448 LOG(FATAL) << "(Non-JNI) Native call does not use handles."; 1449 return 0U; 1450 } 1451 1452 private: 1453 uintptr_t* cur_gpr_reg_; 1454 uint32_t* cur_fpr_reg_; 1455 uintptr_t* cur_stack_arg_; 1456 }; 1457 1458 // Visits arguments on the stack placing them into a region lower down the stack for the benefit 1459 // of transitioning into native code. 1460 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { 1461 public: 1462 BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod>** sp, bool is_static, 1463 const char* shorty, uint32_t shorty_len, Thread* self) 1464 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), 1465 jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) { 1466 ComputeGenericJniFrameSize fsc; 1467 uintptr_t* start_gpr_reg; 1468 uint32_t* start_fpr_reg; 1469 uintptr_t* start_stack_arg; 1470 uint32_t handle_scope_entries; 1471 bottom_of_used_area_ = fsc.ComputeLayout(sp, is_static, shorty, shorty_len, &handle_scope_, 1472 &handle_scope_entries, &start_stack_arg, 1473 &start_gpr_reg, &start_fpr_reg); 1474 1475 handle_scope_->SetNumberOfReferences(handle_scope_entries); 1476 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); 1477 1478 // jni environment is always first argument 1479 sm_.AdvancePointer(self->GetJniEnv()); 1480 1481 if (is_static) { 1482 sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass()); 1483 } 1484 } 1485 1486 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 1487 1488 void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1489 1490 StackReference<mirror::Object>* GetFirstHandleScopeEntry() 1491 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1492 return handle_scope_->GetHandle(0).GetReference(); 1493 } 1494 1495 jobject GetFirstHandleScopeJObject() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1496 return handle_scope_->GetHandle(0).ToJObject(); 1497 } 1498 1499 void* GetBottomOfUsedArea() { 1500 return bottom_of_used_area_; 1501 } 1502 1503 private: 1504 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. 1505 class FillJniCall FINAL : public FillNativeCall { 1506 public: 1507 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, 1508 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args), 1509 handle_scope_(handle_scope), cur_entry_(0) {} 1510 1511 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1512 1513 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { 1514 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); 1515 handle_scope_ = scope; 1516 cur_entry_ = 0U; 1517 } 1518 1519 void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1520 // Initialize padding entries. 1521 size_t expected_slots = handle_scope_->NumberOfReferences(); 1522 while (cur_entry_ < expected_slots) { 1523 handle_scope_->GetHandle(cur_entry_++).Assign(nullptr); 1524 } 1525 DCHECK_NE(cur_entry_, 0U); 1526 } 1527 1528 private: 1529 HandleScope* handle_scope_; 1530 size_t cur_entry_; 1531 }; 1532 1533 HandleScope* handle_scope_; 1534 FillJniCall jni_call_; 1535 void* bottom_of_used_area_; 1536 1537 BuildNativeCallFrameStateMachine<FillJniCall> sm_; 1538 1539 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); 1540 }; 1541 1542 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { 1543 uintptr_t tmp; 1544 Handle<mirror::Object> h = handle_scope_->GetHandle(cur_entry_); 1545 h.Assign(ref); 1546 tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); 1547 cur_entry_++; 1548 return tmp; 1549 } 1550 1551 void BuildGenericJniFrameVisitor::Visit() { 1552 Primitive::Type type = GetParamPrimitiveType(); 1553 switch (type) { 1554 case Primitive::kPrimLong: { 1555 jlong long_arg; 1556 if (IsSplitLongOrDouble()) { 1557 long_arg = ReadSplitLongParam(); 1558 } else { 1559 long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); 1560 } 1561 sm_.AdvanceLong(long_arg); 1562 break; 1563 } 1564 case Primitive::kPrimDouble: { 1565 uint64_t double_arg; 1566 if (IsSplitLongOrDouble()) { 1567 // Read into union so that we don't case to a double. 1568 double_arg = ReadSplitLongParam(); 1569 } else { 1570 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); 1571 } 1572 sm_.AdvanceDouble(double_arg); 1573 break; 1574 } 1575 case Primitive::kPrimNot: { 1576 StackReference<mirror::Object>* stack_ref = 1577 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 1578 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); 1579 break; 1580 } 1581 case Primitive::kPrimFloat: 1582 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); 1583 break; 1584 case Primitive::kPrimBoolean: // Fall-through. 1585 case Primitive::kPrimByte: // Fall-through. 1586 case Primitive::kPrimChar: // Fall-through. 1587 case Primitive::kPrimShort: // Fall-through. 1588 case Primitive::kPrimInt: // Fall-through. 1589 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); 1590 break; 1591 case Primitive::kPrimVoid: 1592 LOG(FATAL) << "UNREACHABLE"; 1593 break; 1594 } 1595 } 1596 1597 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { 1598 // Clear out rest of the scope. 1599 jni_call_.ResetRemainingScopeSlots(); 1600 // Install HandleScope. 1601 self->PushHandleScope(handle_scope_); 1602 } 1603 1604 #if defined(__arm__) || defined(__aarch64__) 1605 extern "C" void* artFindNativeMethod(); 1606 #else 1607 extern "C" void* artFindNativeMethod(Thread* self); 1608 #endif 1609 1610 uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) { 1611 if (lock != nullptr) { 1612 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); 1613 } else { 1614 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); 1615 } 1616 } 1617 1618 void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) { 1619 if (lock != nullptr) { 1620 JniMethodEndSynchronized(cookie, lock, self); 1621 } else { 1622 JniMethodEnd(cookie, self); 1623 } 1624 } 1625 1626 /* 1627 * Initializes an alloca region assumed to be directly below sp for a native call: 1628 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. 1629 * The final element on the stack is a pointer to the native code. 1630 * 1631 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. 1632 * We need to fix this, as the handle scope needs to go into the callee-save frame. 1633 * 1634 * The return of this function denotes: 1635 * 1) How many bytes of the alloca can be released, if the value is non-negative. 1636 * 2) An error, if the value is negative. 1637 */ 1638 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, 1639 StackReference<mirror::ArtMethod>* sp) 1640 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1641 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1642 DCHECK(called->IsNative()) << PrettyMethod(called, true); 1643 uint32_t shorty_len = 0; 1644 const char* shorty = called->GetShorty(&shorty_len); 1645 1646 // Run the visitor. 1647 BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), shorty, shorty_len, self); 1648 visitor.VisitArguments(); 1649 visitor.FinalizeHandleScope(self); 1650 1651 // Fix up managed-stack things in Thread. 1652 self->SetTopOfStack(sp, 0); 1653 1654 self->VerifyStack(); 1655 1656 // Start JNI, save the cookie. 1657 uint32_t cookie; 1658 if (called->IsSynchronized()) { 1659 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); 1660 if (self->IsExceptionPending()) { 1661 self->PopHandleScope(); 1662 // A negative value denotes an error. 1663 return GetTwoWordFailureValue(); 1664 } 1665 } else { 1666 cookie = JniMethodStart(self); 1667 } 1668 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1669 *(sp32 - 1) = cookie; 1670 1671 // Retrieve the stored native code. 1672 void* nativeCode = called->GetEntryPointFromJni(); 1673 1674 // There are two cases for the content of nativeCode: 1675 // 1) Pointer to the native function. 1676 // 2) Pointer to the trampoline for native code binding. 1677 // In the second case, we need to execute the binding and continue with the actual native function 1678 // pointer. 1679 DCHECK(nativeCode != nullptr); 1680 if (nativeCode == GetJniDlsymLookupStub()) { 1681 #if defined(__arm__) || defined(__aarch64__) 1682 nativeCode = artFindNativeMethod(); 1683 #else 1684 nativeCode = artFindNativeMethod(self); 1685 #endif 1686 1687 if (nativeCode == nullptr) { 1688 DCHECK(self->IsExceptionPending()); // There should be an exception pending now. 1689 1690 // End JNI, as the assembly will move to deliver the exception. 1691 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; 1692 if (shorty[0] == 'L') { 1693 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock); 1694 } else { 1695 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1696 } 1697 1698 return GetTwoWordFailureValue(); 1699 } 1700 // Note that the native code pointer will be automatically set by artFindNativeMethod(). 1701 } 1702 1703 // Return native code addr(lo) and bottom of alloca address(hi). 1704 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), 1705 reinterpret_cast<uintptr_t>(nativeCode)); 1706 } 1707 1708 /* 1709 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and 1710 * unlocking. 1711 */ 1712 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f) 1713 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1714 StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame(); 1715 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1716 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1717 uint32_t cookie = *(sp32 - 1); 1718 1719 jobject lock = nullptr; 1720 if (called->IsSynchronized()) { 1721 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) 1722 + sizeof(StackReference<mirror::ArtMethod>)); 1723 lock = table->GetHandle(0).ToJObject(); 1724 } 1725 1726 char return_shorty_char = called->GetShorty()[0]; 1727 1728 if (return_shorty_char == 'L') { 1729 return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock); 1730 } else { 1731 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1732 1733 switch (return_shorty_char) { 1734 case 'F': { 1735 if (kRuntimeISA == kX86) { 1736 // Convert back the result to float. 1737 double d = bit_cast<uint64_t, double>(result_f); 1738 return bit_cast<float, uint32_t>(static_cast<float>(d)); 1739 } else { 1740 return result_f; 1741 } 1742 } 1743 case 'D': 1744 return result_f; 1745 case 'Z': 1746 return result.z; 1747 case 'B': 1748 return result.b; 1749 case 'C': 1750 return result.c; 1751 case 'S': 1752 return result.s; 1753 case 'I': 1754 return result.i; 1755 case 'J': 1756 return result.j; 1757 case 'V': 1758 return 0; 1759 default: 1760 LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char; 1761 return 0; 1762 } 1763 } 1764 } 1765 1766 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value 1767 // for the method pointer. 1768 // 1769 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming 1770 // to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations). 1771 1772 template<InvokeType type, bool access_check> 1773 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1774 mirror::ArtMethod* caller_method, 1775 Thread* self, StackReference<mirror::ArtMethod>* sp); 1776 1777 template<InvokeType type, bool access_check> 1778 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1779 mirror::ArtMethod* caller_method, 1780 Thread* self, StackReference<mirror::ArtMethod>* sp) { 1781 mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, 1782 type); 1783 if (UNLIKELY(method == nullptr)) { 1784 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 1785 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 1786 uint32_t shorty_len; 1787 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); 1788 { 1789 // Remember the args in case a GC happens in FindMethodFromCode. 1790 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1791 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); 1792 visitor.VisitArguments(); 1793 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method, 1794 self); 1795 visitor.FixupReferences(); 1796 } 1797 1798 if (UNLIKELY(method == NULL)) { 1799 CHECK(self->IsExceptionPending()); 1800 return GetTwoWordFailureValue(); // Failure. 1801 } 1802 } 1803 DCHECK(!self->IsExceptionPending()); 1804 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1805 1806 // When we return, the caller will branch to this address, so it had better not be 0! 1807 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) 1808 << " location: " 1809 << method->GetDexFile()->GetLocation(); 1810 1811 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 1812 reinterpret_cast<uintptr_t>(method)); 1813 } 1814 1815 // Explicit artInvokeCommon template function declarations to please analysis tool. 1816 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ 1817 template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \ 1818 TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx, \ 1819 mirror::Object* this_object, \ 1820 mirror::ArtMethod* caller_method, \ 1821 Thread* self, \ 1822 StackReference<mirror::ArtMethod>* sp) \ 1823 1824 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); 1825 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); 1826 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); 1827 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); 1828 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); 1829 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); 1830 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); 1831 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); 1832 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); 1833 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); 1834 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL 1835 1836 // See comments in runtime_support_asm.S 1837 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( 1838 uint32_t method_idx, mirror::Object* this_object, 1839 mirror::ArtMethod* caller_method, Thread* self, 1840 StackReference<mirror::ArtMethod>* sp) 1841 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1842 return artInvokeCommon<kInterface, true>(method_idx, this_object, 1843 caller_method, self, sp); 1844 } 1845 1846 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( 1847 uint32_t method_idx, mirror::Object* this_object, 1848 mirror::ArtMethod* caller_method, Thread* self, 1849 StackReference<mirror::ArtMethod>* sp) 1850 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1851 return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, 1852 self, sp); 1853 } 1854 1855 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( 1856 uint32_t method_idx, mirror::Object* this_object, 1857 mirror::ArtMethod* caller_method, Thread* self, 1858 StackReference<mirror::ArtMethod>* sp) 1859 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1860 return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, 1861 self, sp); 1862 } 1863 1864 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( 1865 uint32_t method_idx, mirror::Object* this_object, 1866 mirror::ArtMethod* caller_method, Thread* self, 1867 StackReference<mirror::ArtMethod>* sp) 1868 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1869 return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, 1870 self, sp); 1871 } 1872 1873 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( 1874 uint32_t method_idx, mirror::Object* this_object, 1875 mirror::ArtMethod* caller_method, Thread* self, 1876 StackReference<mirror::ArtMethod>* sp) 1877 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1878 return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, 1879 self, sp); 1880 } 1881 1882 // Determine target of interface dispatch. This object is known non-null. 1883 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method, 1884 mirror::Object* this_object, 1885 mirror::ArtMethod* caller_method, 1886 Thread* self, 1887 StackReference<mirror::ArtMethod>* sp) 1888 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1889 mirror::ArtMethod* method; 1890 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { 1891 method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method); 1892 if (UNLIKELY(method == NULL)) { 1893 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 1894 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object, 1895 caller_method); 1896 return GetTwoWordFailureValue(); // Failure. 1897 } 1898 } else { 1899 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 1900 DCHECK(interface_method == Runtime::Current()->GetResolutionMethod()); 1901 1902 // Find the caller PC. 1903 constexpr size_t pc_offset = GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsAndArgs); 1904 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + pc_offset); 1905 1906 // Map the caller PC to a dex PC. 1907 uint32_t dex_pc = caller_method->ToDexPc(caller_pc); 1908 const DexFile::CodeItem* code = caller_method->GetCodeItem(); 1909 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 1910 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 1911 Instruction::Code instr_code = instr->Opcode(); 1912 CHECK(instr_code == Instruction::INVOKE_INTERFACE || 1913 instr_code == Instruction::INVOKE_INTERFACE_RANGE) 1914 << "Unexpected call into interface trampoline: " << instr->DumpString(NULL); 1915 uint32_t dex_method_idx; 1916 if (instr_code == Instruction::INVOKE_INTERFACE) { 1917 dex_method_idx = instr->VRegB_35c(); 1918 } else { 1919 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); 1920 dex_method_idx = instr->VRegB_3rc(); 1921 } 1922 1923 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache() 1924 ->GetDexFile(); 1925 uint32_t shorty_len; 1926 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), 1927 &shorty_len); 1928 { 1929 // Remember the args in case a GC happens in FindMethodFromCode. 1930 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1931 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); 1932 visitor.VisitArguments(); 1933 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method, 1934 self); 1935 visitor.FixupReferences(); 1936 } 1937 1938 if (UNLIKELY(method == nullptr)) { 1939 CHECK(self->IsExceptionPending()); 1940 return GetTwoWordFailureValue(); // Failure. 1941 } 1942 } 1943 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1944 1945 // When we return, the caller will branch to this address, so it had better not be 0! 1946 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) 1947 << " location: " << method->GetDexFile()->GetLocation(); 1948 1949 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 1950 reinterpret_cast<uintptr_t>(method)); 1951 } 1952 1953 } // namespace art 1954