Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 
     31 #include "ceres/gradient_checking_cost_function.h"
     32 
     33 #include <algorithm>
     34 #include <cmath>
     35 #include <numeric>
     36 #include <string>
     37 #include <vector>
     38 
     39 #include "ceres/cost_function.h"
     40 #include "ceres/internal/eigen.h"
     41 #include "ceres/internal/scoped_ptr.h"
     42 #include "ceres/parameter_block.h"
     43 #include "ceres/problem.h"
     44 #include "ceres/problem_impl.h"
     45 #include "ceres/program.h"
     46 #include "ceres/residual_block.h"
     47 #include "ceres/dynamic_numeric_diff_cost_function.h"
     48 #include "ceres/stringprintf.h"
     49 #include "ceres/types.h"
     50 #include "glog/logging.h"
     51 
     52 namespace ceres {
     53 namespace internal {
     54 namespace {
     55 
     56 // True if x and y have an absolute relative difference less than
     57 // relative_precision and false otherwise. Stores the relative and absolute
     58 // difference in relative/absolute_error if non-NULL.
     59 bool IsClose(double x, double y, double relative_precision,
     60              double *relative_error,
     61              double *absolute_error) {
     62   double local_absolute_error;
     63   double local_relative_error;
     64   if (!absolute_error) {
     65     absolute_error = &local_absolute_error;
     66   }
     67   if (!relative_error) {
     68     relative_error = &local_relative_error;
     69   }
     70   *absolute_error = fabs(x - y);
     71   *relative_error = *absolute_error / max(fabs(x), fabs(y));
     72   if (x == 0 || y == 0) {
     73     // If x or y is exactly zero, then relative difference doesn't have any
     74     // meaning. Take the absolute difference instead.
     75     *relative_error = *absolute_error;
     76   }
     77   return fabs(*relative_error) < fabs(relative_precision);
     78 }
     79 
     80 class GradientCheckingCostFunction : public CostFunction {
     81  public:
     82   GradientCheckingCostFunction(const CostFunction* function,
     83                                double relative_step_size,
     84                                double relative_precision,
     85                                const string& extra_info)
     86       : function_(function),
     87         relative_precision_(relative_precision),
     88         extra_info_(extra_info) {
     89     DynamicNumericDiffCostFunction<CostFunction, CENTRAL>*
     90         finite_diff_cost_function =
     91         new DynamicNumericDiffCostFunction<CostFunction, CENTRAL>(
     92             function,
     93             DO_NOT_TAKE_OWNERSHIP,
     94             relative_step_size);
     95 
     96     const vector<int32>& parameter_block_sizes =
     97         function->parameter_block_sizes();
     98     for (int i = 0; i < parameter_block_sizes.size(); ++i) {
     99       finite_diff_cost_function->AddParameterBlock(parameter_block_sizes[i]);
    100     }
    101     *mutable_parameter_block_sizes() = parameter_block_sizes;
    102     set_num_residuals(function->num_residuals());
    103     finite_diff_cost_function->SetNumResiduals(num_residuals());
    104     finite_diff_cost_function_.reset(finite_diff_cost_function);
    105   }
    106 
    107   virtual ~GradientCheckingCostFunction() { }
    108 
    109   virtual bool Evaluate(double const* const* parameters,
    110                         double* residuals,
    111                         double** jacobians) const {
    112     if (!jacobians) {
    113       // Nothing to check in this case; just forward.
    114       return function_->Evaluate(parameters, residuals, NULL);
    115     }
    116 
    117     int num_residuals = function_->num_residuals();
    118 
    119     // Make space for the jacobians of the two methods.
    120     const vector<int32>& block_sizes = function_->parameter_block_sizes();
    121     vector<Matrix> term_jacobians(block_sizes.size());
    122     vector<Matrix> finite_difference_jacobians(block_sizes.size());
    123     vector<double*> term_jacobian_pointers(block_sizes.size());
    124     vector<double*> finite_difference_jacobian_pointers(block_sizes.size());
    125     for (int i = 0; i < block_sizes.size(); i++) {
    126       term_jacobians[i].resize(num_residuals, block_sizes[i]);
    127       term_jacobian_pointers[i] = term_jacobians[i].data();
    128       finite_difference_jacobians[i].resize(num_residuals, block_sizes[i]);
    129       finite_difference_jacobian_pointers[i] =
    130           finite_difference_jacobians[i].data();
    131     }
    132 
    133     // Evaluate the derivative using the user supplied code.
    134     if (!function_->Evaluate(parameters,
    135                              residuals,
    136                              &term_jacobian_pointers[0])) {
    137       LOG(WARNING) << "Function evaluation failed.";
    138       return false;
    139     }
    140 
    141     // Evaluate the derivative using numeric derivatives.
    142     finite_diff_cost_function_->Evaluate(
    143         parameters,
    144         residuals,
    145         &finite_difference_jacobian_pointers[0]);
    146 
    147     // See if any elements have relative error larger than the threshold.
    148     int num_bad_jacobian_components = 0;
    149     double worst_relative_error = 0;
    150 
    151     // Accumulate the error message for all the jacobians, since it won't get
    152     // output if there are no bad jacobian components.
    153     string m;
    154     for (int k = 0; k < block_sizes.size(); k++) {
    155       // Copy the original jacobian blocks into the jacobians array.
    156       if (jacobians[k] != NULL) {
    157         MatrixRef(jacobians[k],
    158                   term_jacobians[k].rows(),
    159                   term_jacobians[k].cols()) = term_jacobians[k];
    160       }
    161 
    162       StringAppendF(&m,
    163                     "========== "
    164                     "Jacobian for " "block %d: (%ld by %ld)) "
    165                     "==========\n",
    166                     k,
    167                     static_cast<long>(term_jacobians[k].rows()),
    168                     static_cast<long>(term_jacobians[k].cols()));
    169       // The funny spacing creates appropriately aligned column headers.
    170       m += " block  row  col        user dx/dy    num diff dx/dy         "
    171            "abs error    relative error         parameter          residual\n";
    172 
    173       for (int i = 0; i < term_jacobians[k].rows(); i++) {
    174         for (int j = 0; j < term_jacobians[k].cols(); j++) {
    175           double term_jacobian = term_jacobians[k](i, j);
    176           double finite_jacobian = finite_difference_jacobians[k](i, j);
    177           double relative_error, absolute_error;
    178           bool bad_jacobian_entry =
    179               !IsClose(term_jacobian,
    180                        finite_jacobian,
    181                        relative_precision_,
    182                        &relative_error,
    183                        &absolute_error);
    184           worst_relative_error = std::max(worst_relative_error,
    185                                           relative_error);
    186 
    187           StringAppendF(&m, "%6d %4d %4d %17g %17g %17g %17g %17g %17g",
    188                         k, i, j,
    189                         term_jacobian, finite_jacobian,
    190                         absolute_error, relative_error,
    191                         parameters[k][j],
    192                         residuals[i]);
    193 
    194           if (bad_jacobian_entry) {
    195             num_bad_jacobian_components++;
    196             StringAppendF(
    197                 &m, " ------ (%d,%d,%d) Relative error worse than %g",
    198                 k, i, j, relative_precision_);
    199           }
    200           m += "\n";
    201         }
    202       }
    203     }
    204 
    205     // Since there were some bad errors, dump comprehensive debug info.
    206     if (num_bad_jacobian_components) {
    207       string header = StringPrintf("Detected %d bad jacobian component(s). "
    208                                    "Worst relative error was %g.\n",
    209                                    num_bad_jacobian_components,
    210                                    worst_relative_error);
    211       if (!extra_info_.empty()) {
    212         header += "Extra info for this residual: " + extra_info_ + "\n";
    213       }
    214       LOG(WARNING) << "\n" << header << m;
    215     }
    216     return true;
    217   }
    218 
    219  private:
    220   const CostFunction* function_;
    221   internal::scoped_ptr<CostFunction> finite_diff_cost_function_;
    222   double relative_precision_;
    223   string extra_info_;
    224 };
    225 
    226 }  // namespace
    227 
    228 CostFunction *CreateGradientCheckingCostFunction(
    229     const CostFunction *cost_function,
    230     double relative_step_size,
    231     double relative_precision,
    232     const string& extra_info) {
    233   return new GradientCheckingCostFunction(cost_function,
    234                                           relative_step_size,
    235                                           relative_precision,
    236                                           extra_info);
    237 }
    238 
    239 ProblemImpl* CreateGradientCheckingProblemImpl(ProblemImpl* problem_impl,
    240                                                double relative_step_size,
    241                                                double relative_precision) {
    242   // We create new CostFunctions by wrapping the original CostFunction
    243   // in a gradient checking CostFunction. So its okay for the
    244   // ProblemImpl to take ownership of it and destroy it. The
    245   // LossFunctions and LocalParameterizations are reused and since
    246   // they are owned by problem_impl, gradient_checking_problem_impl
    247   // should not take ownership of it.
    248   Problem::Options gradient_checking_problem_options;
    249   gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP;
    250   gradient_checking_problem_options.loss_function_ownership =
    251       DO_NOT_TAKE_OWNERSHIP;
    252   gradient_checking_problem_options.local_parameterization_ownership =
    253       DO_NOT_TAKE_OWNERSHIP;
    254 
    255   ProblemImpl* gradient_checking_problem_impl = new ProblemImpl(
    256       gradient_checking_problem_options);
    257 
    258   Program* program = problem_impl->mutable_program();
    259 
    260   // For every ParameterBlock in problem_impl, create a new parameter
    261   // block with the same local parameterization and constancy.
    262   const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
    263   for (int i = 0; i < parameter_blocks.size(); ++i) {
    264     ParameterBlock* parameter_block = parameter_blocks[i];
    265     gradient_checking_problem_impl->AddParameterBlock(
    266         parameter_block->mutable_user_state(),
    267         parameter_block->Size(),
    268         parameter_block->mutable_local_parameterization());
    269 
    270     if (parameter_block->IsConstant()) {
    271       gradient_checking_problem_impl->SetParameterBlockConstant(
    272           parameter_block->mutable_user_state());
    273     }
    274   }
    275 
    276   // For every ResidualBlock in problem_impl, create a new
    277   // ResidualBlock by wrapping its CostFunction inside a
    278   // GradientCheckingCostFunction.
    279   const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
    280   for (int i = 0; i < residual_blocks.size(); ++i) {
    281     ResidualBlock* residual_block = residual_blocks[i];
    282 
    283     // Build a human readable string which identifies the
    284     // ResidualBlock. This is used by the GradientCheckingCostFunction
    285     // when logging debugging information.
    286     string extra_info = StringPrintf(
    287         "Residual block id %d; depends on parameters [", i);
    288     vector<double*> parameter_blocks;
    289     for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) {
    290       ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
    291       parameter_blocks.push_back(parameter_block->mutable_user_state());
    292       StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state());
    293       extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]";
    294     }
    295 
    296     // Wrap the original CostFunction in a GradientCheckingCostFunction.
    297     CostFunction* gradient_checking_cost_function =
    298         CreateGradientCheckingCostFunction(residual_block->cost_function(),
    299                                            relative_step_size,
    300                                            relative_precision,
    301                                            extra_info);
    302 
    303     // The const_cast is necessary because
    304     // ProblemImpl::AddResidualBlock can potentially take ownership of
    305     // the LossFunction, but in this case we are guaranteed that this
    306     // will not be the case, so this const_cast is harmless.
    307     gradient_checking_problem_impl->AddResidualBlock(
    308         gradient_checking_cost_function,
    309         const_cast<LossFunction*>(residual_block->loss_function()),
    310         parameter_blocks);
    311   }
    312 
    313   return gradient_checking_problem_impl;
    314 }
    315 
    316 
    317 }  // namespace internal
    318 }  // namespace ceres
    319