Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/line_search_direction.h"
     32 #include "ceres/line_search_minimizer.h"
     33 #include "ceres/low_rank_inverse_hessian.h"
     34 #include "ceres/internal/eigen.h"
     35 #include "glog/logging.h"
     36 
     37 namespace ceres {
     38 namespace internal {
     39 
     40 class SteepestDescent : public LineSearchDirection {
     41  public:
     42   virtual ~SteepestDescent() {}
     43   bool NextDirection(const LineSearchMinimizer::State& previous,
     44                      const LineSearchMinimizer::State& current,
     45                      Vector* search_direction) {
     46     *search_direction = -current.gradient;
     47     return true;
     48   }
     49 };
     50 
     51 class NonlinearConjugateGradient : public LineSearchDirection {
     52  public:
     53   NonlinearConjugateGradient(const NonlinearConjugateGradientType type,
     54                              const double function_tolerance)
     55       : type_(type),
     56         function_tolerance_(function_tolerance) {
     57   }
     58 
     59   bool NextDirection(const LineSearchMinimizer::State& previous,
     60                      const LineSearchMinimizer::State& current,
     61                      Vector* search_direction) {
     62     double beta = 0.0;
     63     Vector gradient_change;
     64     switch (type_) {
     65       case FLETCHER_REEVES:
     66         beta = current.gradient_squared_norm / previous.gradient_squared_norm;
     67         break;
     68       case POLAK_RIBIERE:
     69         gradient_change = current.gradient - previous.gradient;
     70         beta = (current.gradient.dot(gradient_change) /
     71                 previous.gradient_squared_norm);
     72         break;
     73       case HESTENES_STIEFEL:
     74         gradient_change = current.gradient - previous.gradient;
     75         beta =  (current.gradient.dot(gradient_change) /
     76                  previous.search_direction.dot(gradient_change));
     77         break;
     78       default:
     79         LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " << type_;
     80     }
     81 
     82     *search_direction =  -current.gradient + beta * previous.search_direction;
     83     const double directional_derivative =
     84         current.gradient.dot(*search_direction);
     85     if (directional_derivative > -function_tolerance_) {
     86       LOG(WARNING) << "Restarting non-linear conjugate gradients: "
     87                    << directional_derivative;
     88       *search_direction = -current.gradient;
     89     };
     90 
     91     return true;
     92   }
     93 
     94  private:
     95   const NonlinearConjugateGradientType type_;
     96   const double function_tolerance_;
     97 };
     98 
     99 class LBFGS : public LineSearchDirection {
    100  public:
    101   LBFGS(const int num_parameters,
    102         const int max_lbfgs_rank,
    103         const bool use_approximate_eigenvalue_bfgs_scaling)
    104       : low_rank_inverse_hessian_(num_parameters,
    105                                   max_lbfgs_rank,
    106                                   use_approximate_eigenvalue_bfgs_scaling),
    107         is_positive_definite_(true) {}
    108 
    109   virtual ~LBFGS() {}
    110 
    111   bool NextDirection(const LineSearchMinimizer::State& previous,
    112                      const LineSearchMinimizer::State& current,
    113                      Vector* search_direction) {
    114     CHECK(is_positive_definite_)
    115         << "Ceres bug: NextDirection() called on L-BFGS after inverse Hessian "
    116         << "approximation has become indefinite, please contact the "
    117         << "developers!";
    118 
    119     low_rank_inverse_hessian_.Update(
    120         previous.search_direction * previous.step_size,
    121         current.gradient - previous.gradient);
    122 
    123     search_direction->setZero();
    124     low_rank_inverse_hessian_.RightMultiply(current.gradient.data(),
    125                                             search_direction->data());
    126     *search_direction *= -1.0;
    127 
    128     if (search_direction->dot(current.gradient) >= 0.0) {
    129       LOG(WARNING) << "Numerical failure in L-BFGS update: inverse Hessian "
    130                    << "approximation is not positive definite, and thus "
    131                    << "initial gradient for search direction is positive: "
    132                    << search_direction->dot(current.gradient);
    133       is_positive_definite_ = false;
    134       return false;
    135     }
    136 
    137     return true;
    138   }
    139 
    140  private:
    141   LowRankInverseHessian low_rank_inverse_hessian_;
    142   bool is_positive_definite_;
    143 };
    144 
    145 class BFGS : public LineSearchDirection {
    146  public:
    147   BFGS(const int num_parameters,
    148        const bool use_approximate_eigenvalue_scaling)
    149       : num_parameters_(num_parameters),
    150         use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
    151         initialized_(false),
    152         is_positive_definite_(true) {
    153     LOG_IF(WARNING, num_parameters_ >= 1e3)
    154         << "BFGS line search being created with: " << num_parameters_
    155         << " parameters, this will allocate a dense approximate inverse Hessian"
    156         << " of size: " << num_parameters_ << " x " << num_parameters_
    157         << ", consider using the L-BFGS memory-efficient line search direction "
    158         << "instead.";
    159     // Construct inverse_hessian_ after logging warning about size s.t. if the
    160     // allocation crashes us, the log will highlight what the issue likely was.
    161     inverse_hessian_ = Matrix::Identity(num_parameters, num_parameters);
    162   }
    163 
    164   virtual ~BFGS() {}
    165 
    166   bool NextDirection(const LineSearchMinimizer::State& previous,
    167                      const LineSearchMinimizer::State& current,
    168                      Vector* search_direction) {
    169     CHECK(is_positive_definite_)
    170         << "Ceres bug: NextDirection() called on BFGS after inverse Hessian "
    171         << "approximation has become indefinite, please contact the "
    172         << "developers!";
    173 
    174     const Vector delta_x = previous.search_direction * previous.step_size;
    175     const Vector delta_gradient = current.gradient - previous.gradient;
    176     const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
    177 
    178     // The (L)BFGS algorithm explicitly requires that the secant equation:
    179     //
    180     //   B_{k+1} * s_k = y_k
    181     //
    182     // Is satisfied at each iteration, where B_{k+1} is the approximated
    183     // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and
    184     // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be
    185     // positive definite, this is equivalent to the condition:
    186     //
    187     //   s_k^T * y_k > 0     [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]
    188     //
    189     // This condition would always be satisfied if the function was strictly
    190     // convex, alternatively, it is always satisfied provided that a Wolfe line
    191     // search is used (even if the function is not strictly convex).  See [1]
    192     // (p138) for a proof.
    193     //
    194     // Although Ceres will always use a Wolfe line search when using (L)BFGS,
    195     // practical implementation considerations mean that the line search
    196     // may return a point that satisfies only the Armijo condition, and thus
    197     // could violate the Secant equation.  As such, we will only use a step
    198     // to update the Hessian approximation if:
    199     //
    200     //   s_k^T * y_k > tolerance
    201     //
    202     // It is important that tolerance is very small (and >=0), as otherwise we
    203     // might skip the update too often and fail to capture important curvature
    204     // information in the Hessian.  For example going from 1e-10 -> 1e-14
    205     // improves the NIST benchmark score from 43/54 to 53/54.
    206     //
    207     // [1] Nocedal J, Wright S, Numerical Optimization, 2nd Ed. Springer, 1999.
    208     //
    209     // TODO(alexs.mac): Consider using Damped BFGS update instead of
    210     // skipping update.
    211     const double kBFGSSecantConditionHessianUpdateTolerance = 1e-14;
    212     if (delta_x_dot_delta_gradient <=
    213         kBFGSSecantConditionHessianUpdateTolerance) {
    214       VLOG(2) << "Skipping BFGS Update, delta_x_dot_delta_gradient too "
    215               << "small: " << delta_x_dot_delta_gradient << ", tolerance: "
    216               << kBFGSSecantConditionHessianUpdateTolerance
    217               << " (Secant condition).";
    218     } else {
    219       // Update dense inverse Hessian approximation.
    220 
    221       if (!initialized_ && use_approximate_eigenvalue_scaling_) {
    222         // Rescale the initial inverse Hessian approximation (H_0) to be
    223         // iteratively updated so that it is of similar 'size' to the true
    224         // inverse Hessian at the start point.  As shown in [1]:
    225         //
    226         //   \gamma = (delta_gradient_{0}' * delta_x_{0}) /
    227         //            (delta_gradient_{0}' * delta_gradient_{0})
    228         //
    229         // Satisfies:
    230         //
    231         //   (1 / \lambda_m) <= \gamma <= (1 / \lambda_1)
    232         //
    233         // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues
    234         // of the true initial Hessian (not the inverse) respectively. Thus,
    235         // \gamma is an approximate eigenvalue of the true inverse Hessian, and
    236         // choosing: H_0 = I * \gamma will yield a starting point that has a
    237         // similar scale to the true inverse Hessian.  This technique is widely
    238         // reported to often improve convergence, however this is not
    239         // universally true, particularly if there are errors in the initial
    240         // gradients, or if there are significant differences in the sensitivity
    241         // of the problem to the parameters (i.e. the range of the magnitudes of
    242         // the components of the gradient is large).
    243         //
    244         // The original origin of this rescaling trick is somewhat unclear, the
    245         // earliest reference appears to be Oren [1], however it is widely
    246         // discussed without specific attributation in various texts including
    247         // [2] (p143).
    248         //
    249         // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms
    250         //     Part II: Implementation and experiments, Management Science,
    251         //     20(5), 863-874, 1974.
    252         // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
    253         const double approximate_eigenvalue_scale =
    254             delta_x_dot_delta_gradient / delta_gradient.dot(delta_gradient);
    255         inverse_hessian_ *= approximate_eigenvalue_scale;
    256 
    257         VLOG(4) << "Applying approximate_eigenvalue_scale: "
    258                 << approximate_eigenvalue_scale << " to initial inverse "
    259                 << "Hessian approximation.";
    260       }
    261       initialized_ = true;
    262 
    263       // Efficient O(num_parameters^2) BFGS update [2].
    264       //
    265       // Starting from dense BFGS update detailed in Nocedal [2] p140/177 and
    266       // using: y_k = delta_gradient, s_k = delta_x:
    267       //
    268       //   \rho_k = 1.0 / (s_k' * y_k)
    269       //   V_k = I - \rho_k * y_k * s_k'
    270       //   H_k = (V_k' * H_{k-1} * V_k) + (\rho_k * s_k * s_k')
    271       //
    272       // This update involves matrix, matrix products which naively O(N^3),
    273       // however we can exploit our knowledge that H_k is positive definite
    274       // and thus by defn. symmetric to reduce the cost of the update:
    275       //
    276       // Expanding the update above yields:
    277       //
    278       //   H_k = H_{k-1} +
    279       //         \rho_k * ( (1.0 + \rho_k * y_k' * H_k * y_k) * s_k * s_k' -
    280       //                    (s_k * y_k' * H_k + H_k * y_k * s_k') )
    281       //
    282       // Using: A = (s_k * y_k' * H_k), and the knowledge that H_k = H_k', the
    283       // last term simplifies to (A + A'). Note that although A is not symmetric
    284       // (A + A') is symmetric. For ease of construction we also define
    285       // B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k', which is by defn
    286       // symmetric due to construction from: s_k * s_k'.
    287       //
    288       // Now we can write the BFGS update as:
    289       //
    290       //   H_k = H_{k-1} + \rho_k * (B - (A + A'))
    291 
    292       // For efficiency, as H_k is by defn. symmetric, we will only maintain the
    293       // *lower* triangle of H_k (and all intermediary terms).
    294 
    295       const double rho_k = 1.0 / delta_x_dot_delta_gradient;
    296 
    297       // Calculate: A = s_k * y_k' * H_k
    298       Matrix A = delta_x * (delta_gradient.transpose() *
    299                             inverse_hessian_.selfadjointView<Eigen::Lower>());
    300 
    301       // Calculate scalar: (1 + \rho_k * y_k' * H_k * y_k)
    302       const double delta_x_times_delta_x_transpose_scale_factor =
    303           (1.0 + (rho_k * delta_gradient.transpose() *
    304                   inverse_hessian_.selfadjointView<Eigen::Lower>() *
    305                   delta_gradient));
    306       // Calculate: B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k'
    307       Matrix B = Matrix::Zero(num_parameters_, num_parameters_);
    308       B.selfadjointView<Eigen::Lower>().
    309           rankUpdate(delta_x, delta_x_times_delta_x_transpose_scale_factor);
    310 
    311       // Finally, update inverse Hessian approximation according to:
    312       // H_k = H_{k-1} + \rho_k * (B - (A + A')).  Note that (A + A') is
    313       // symmetric, even though A is not.
    314       inverse_hessian_.triangularView<Eigen::Lower>() +=
    315           rho_k * (B - A - A.transpose());
    316     }
    317 
    318     *search_direction =
    319         inverse_hessian_.selfadjointView<Eigen::Lower>() *
    320         (-1.0 * current.gradient);
    321 
    322     if (search_direction->dot(current.gradient) >= 0.0) {
    323       LOG(WARNING) << "Numerical failure in BFGS update: inverse Hessian "
    324                    << "approximation is not positive definite, and thus "
    325                    << "initial gradient for search direction is positive: "
    326                    << search_direction->dot(current.gradient);
    327       is_positive_definite_ = false;
    328       return false;
    329     }
    330 
    331     return true;
    332   }
    333 
    334  private:
    335   const int num_parameters_;
    336   const bool use_approximate_eigenvalue_scaling_;
    337   Matrix inverse_hessian_;
    338   bool initialized_;
    339   bool is_positive_definite_;
    340 };
    341 
    342 LineSearchDirection*
    343 LineSearchDirection::Create(const LineSearchDirection::Options& options) {
    344   if (options.type == STEEPEST_DESCENT) {
    345     return new SteepestDescent;
    346   }
    347 
    348   if (options.type == NONLINEAR_CONJUGATE_GRADIENT) {
    349     return new NonlinearConjugateGradient(
    350         options.nonlinear_conjugate_gradient_type,
    351         options.function_tolerance);
    352   }
    353 
    354   if (options.type == ceres::LBFGS) {
    355     return new ceres::internal::LBFGS(
    356         options.num_parameters,
    357         options.max_lbfgs_rank,
    358         options.use_approximate_eigenvalue_bfgs_scaling);
    359   }
    360 
    361   if (options.type == ceres::BFGS) {
    362     return new ceres::internal::BFGS(
    363         options.num_parameters,
    364         options.use_approximate_eigenvalue_bfgs_scaling);
    365   }
    366 
    367   LOG(ERROR) << "Unknown line search direction type: " << options.type;
    368   return NULL;
    369 }
    370 
    371 }  // namespace internal
    372 }  // namespace ceres
    373