Home | History | Annotate | Download | only in synchronization
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <algorithm>
      6 #include <vector>
      7 
      8 #include "base/logging.h"
      9 #include "base/synchronization/waitable_event.h"
     10 #include "base/synchronization/condition_variable.h"
     11 #include "base/synchronization/lock.h"
     12 #include "base/threading/thread_restrictions.h"
     13 
     14 // -----------------------------------------------------------------------------
     15 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
     16 // support cross-process events (where one process can signal an event which
     17 // others are waiting on). Because of this, we can avoid having one thread per
     18 // listener in several cases.
     19 //
     20 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
     21 // waiter is either an async wait, in which case we have a Task and the
     22 // MessageLoop to run it on, or a blocking wait, in which case we have the
     23 // condition variable to signal.
     24 //
     25 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
     26 // waits can be canceled, which means grabbing the lock and removing oneself
     27 // from the list.
     28 //
     29 // Waiting on multiple events is handled by adding a single, synchronous wait to
     30 // the wait-list of many events. An event passes a pointer to itself when
     31 // firing a waiter and so we can store that pointer to find out which event
     32 // triggered.
     33 // -----------------------------------------------------------------------------
     34 
     35 namespace base {
     36 
     37 // -----------------------------------------------------------------------------
     38 // This is just an abstract base class for waking the two types of waiters
     39 // -----------------------------------------------------------------------------
     40 WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
     41     : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
     42 }
     43 
     44 WaitableEvent::~WaitableEvent() {
     45 }
     46 
     47 void WaitableEvent::Reset() {
     48   base::AutoLock locked(kernel_->lock_);
     49   kernel_->signaled_ = false;
     50 }
     51 
     52 void WaitableEvent::Signal() {
     53   base::AutoLock locked(kernel_->lock_);
     54 
     55   if (kernel_->signaled_)
     56     return;
     57 
     58   if (kernel_->manual_reset_) {
     59     SignalAll();
     60     kernel_->signaled_ = true;
     61   } else {
     62     // In the case of auto reset, if no waiters were woken, we remain
     63     // signaled.
     64     if (!SignalOne())
     65       kernel_->signaled_ = true;
     66   }
     67 }
     68 
     69 bool WaitableEvent::IsSignaled() {
     70   base::AutoLock locked(kernel_->lock_);
     71 
     72   const bool result = kernel_->signaled_;
     73   if (result && !kernel_->manual_reset_)
     74     kernel_->signaled_ = false;
     75   return result;
     76 }
     77 
     78 // -----------------------------------------------------------------------------
     79 // Synchronous waits
     80 
     81 // -----------------------------------------------------------------------------
     82 // This is a synchronous waiter. The thread is waiting on the given condition
     83 // variable and the fired flag in this object.
     84 // -----------------------------------------------------------------------------
     85 class SyncWaiter : public WaitableEvent::Waiter {
     86  public:
     87   SyncWaiter()
     88       : fired_(false),
     89         signaling_event_(NULL),
     90         lock_(),
     91         cv_(&lock_) {
     92   }
     93 
     94   virtual bool Fire(WaitableEvent* signaling_event) OVERRIDE {
     95     base::AutoLock locked(lock_);
     96 
     97     if (fired_)
     98       return false;
     99 
    100     fired_ = true;
    101     signaling_event_ = signaling_event;
    102 
    103     cv_.Broadcast();
    104 
    105     // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
    106     // the blocking thread's stack.  There is no |delete this;| in Fire.  The
    107     // SyncWaiter object is destroyed when it goes out of scope.
    108 
    109     return true;
    110   }
    111 
    112   WaitableEvent* signaling_event() const {
    113     return signaling_event_;
    114   }
    115 
    116   // ---------------------------------------------------------------------------
    117   // These waiters are always stack allocated and don't delete themselves. Thus
    118   // there's no problem and the ABA tag is the same as the object pointer.
    119   // ---------------------------------------------------------------------------
    120   virtual bool Compare(void* tag) OVERRIDE {
    121     return this == tag;
    122   }
    123 
    124   // ---------------------------------------------------------------------------
    125   // Called with lock held.
    126   // ---------------------------------------------------------------------------
    127   bool fired() const {
    128     return fired_;
    129   }
    130 
    131   // ---------------------------------------------------------------------------
    132   // During a TimedWait, we need a way to make sure that an auto-reset
    133   // WaitableEvent doesn't think that this event has been signaled between
    134   // unlocking it and removing it from the wait-list. Called with lock held.
    135   // ---------------------------------------------------------------------------
    136   void Disable() {
    137     fired_ = true;
    138   }
    139 
    140   base::Lock* lock() {
    141     return &lock_;
    142   }
    143 
    144   base::ConditionVariable* cv() {
    145     return &cv_;
    146   }
    147 
    148  private:
    149   bool fired_;
    150   WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
    151   base::Lock lock_;
    152   base::ConditionVariable cv_;
    153 };
    154 
    155 void WaitableEvent::Wait() {
    156   bool result = TimedWait(TimeDelta::FromSeconds(-1));
    157   DCHECK(result) << "TimedWait() should never fail with infinite timeout";
    158 }
    159 
    160 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
    161   base::ThreadRestrictions::AssertWaitAllowed();
    162   const TimeTicks end_time(TimeTicks::Now() + max_time);
    163   const bool finite_time = max_time.ToInternalValue() >= 0;
    164 
    165   kernel_->lock_.Acquire();
    166   if (kernel_->signaled_) {
    167     if (!kernel_->manual_reset_) {
    168       // In this case we were signaled when we had no waiters. Now that
    169       // someone has waited upon us, we can automatically reset.
    170       kernel_->signaled_ = false;
    171     }
    172 
    173     kernel_->lock_.Release();
    174     return true;
    175   }
    176 
    177   SyncWaiter sw;
    178   sw.lock()->Acquire();
    179 
    180   Enqueue(&sw);
    181   kernel_->lock_.Release();
    182   // We are violating locking order here by holding the SyncWaiter lock but not
    183   // the WaitableEvent lock. However, this is safe because we don't lock @lock_
    184   // again before unlocking it.
    185 
    186   for (;;) {
    187     const TimeTicks current_time(TimeTicks::Now());
    188 
    189     if (sw.fired() || (finite_time && current_time >= end_time)) {
    190       const bool return_value = sw.fired();
    191 
    192       // We can't acquire @lock_ before releasing the SyncWaiter lock (because
    193       // of locking order), however, in between the two a signal could be fired
    194       // and @sw would accept it, however we will still return false, so the
    195       // signal would be lost on an auto-reset WaitableEvent. Thus we call
    196       // Disable which makes sw::Fire return false.
    197       sw.Disable();
    198       sw.lock()->Release();
    199 
    200       // This is a bug that has been enshrined in the interface of
    201       // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
    202       // even though it'll always return false in that case. However, taking
    203       // the lock ensures that |Signal| has completed before we return and
    204       // means that a WaitableEvent can synchronise its own destruction.
    205       kernel_->lock_.Acquire();
    206       kernel_->Dequeue(&sw, &sw);
    207       kernel_->lock_.Release();
    208 
    209       return return_value;
    210     }
    211 
    212     if (finite_time) {
    213       const TimeDelta max_wait(end_time - current_time);
    214       sw.cv()->TimedWait(max_wait);
    215     } else {
    216       sw.cv()->Wait();
    217     }
    218   }
    219 }
    220 
    221 // -----------------------------------------------------------------------------
    222 // Synchronous waiting on multiple objects.
    223 
    224 static bool  // StrictWeakOrdering
    225 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
    226              const std::pair<WaitableEvent*, unsigned> &b) {
    227   return a.first < b.first;
    228 }
    229 
    230 // static
    231 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
    232                                size_t count) {
    233   base::ThreadRestrictions::AssertWaitAllowed();
    234   DCHECK(count) << "Cannot wait on no events";
    235 
    236   // We need to acquire the locks in a globally consistent order. Thus we sort
    237   // the array of waitables by address. We actually sort a pairs so that we can
    238   // map back to the original index values later.
    239   std::vector<std::pair<WaitableEvent*, size_t> > waitables;
    240   waitables.reserve(count);
    241   for (size_t i = 0; i < count; ++i)
    242     waitables.push_back(std::make_pair(raw_waitables[i], i));
    243 
    244   DCHECK_EQ(count, waitables.size());
    245 
    246   sort(waitables.begin(), waitables.end(), cmp_fst_addr);
    247 
    248   // The set of waitables must be distinct. Since we have just sorted by
    249   // address, we can check this cheaply by comparing pairs of consecutive
    250   // elements.
    251   for (size_t i = 0; i < waitables.size() - 1; ++i) {
    252     DCHECK(waitables[i].first != waitables[i+1].first);
    253   }
    254 
    255   SyncWaiter sw;
    256 
    257   const size_t r = EnqueueMany(&waitables[0], count, &sw);
    258   if (r) {
    259     // One of the events is already signaled. The SyncWaiter has not been
    260     // enqueued anywhere. EnqueueMany returns the count of remaining waitables
    261     // when the signaled one was seen, so the index of the signaled event is
    262     // @count - @r.
    263     return waitables[count - r].second;
    264   }
    265 
    266   // At this point, we hold the locks on all the WaitableEvents and we have
    267   // enqueued our waiter in them all.
    268   sw.lock()->Acquire();
    269     // Release the WaitableEvent locks in the reverse order
    270     for (size_t i = 0; i < count; ++i) {
    271       waitables[count - (1 + i)].first->kernel_->lock_.Release();
    272     }
    273 
    274     for (;;) {
    275       if (sw.fired())
    276         break;
    277 
    278       sw.cv()->Wait();
    279     }
    280   sw.lock()->Release();
    281 
    282   // The address of the WaitableEvent which fired is stored in the SyncWaiter.
    283   WaitableEvent *const signaled_event = sw.signaling_event();
    284   // This will store the index of the raw_waitables which fired.
    285   size_t signaled_index = 0;
    286 
    287   // Take the locks of each WaitableEvent in turn (except the signaled one) and
    288   // remove our SyncWaiter from the wait-list
    289   for (size_t i = 0; i < count; ++i) {
    290     if (raw_waitables[i] != signaled_event) {
    291       raw_waitables[i]->kernel_->lock_.Acquire();
    292         // There's no possible ABA issue with the address of the SyncWaiter here
    293         // because it lives on the stack. Thus the tag value is just the pointer
    294         // value again.
    295         raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
    296       raw_waitables[i]->kernel_->lock_.Release();
    297     } else {
    298       // By taking this lock here we ensure that |Signal| has completed by the
    299       // time we return, because |Signal| holds this lock. This matches the
    300       // behaviour of |Wait| and |TimedWait|.
    301       raw_waitables[i]->kernel_->lock_.Acquire();
    302       raw_waitables[i]->kernel_->lock_.Release();
    303       signaled_index = i;
    304     }
    305   }
    306 
    307   return signaled_index;
    308 }
    309 
    310 // -----------------------------------------------------------------------------
    311 // If return value == 0:
    312 //   The locks of the WaitableEvents have been taken in order and the Waiter has
    313 //   been enqueued in the wait-list of each. None of the WaitableEvents are
    314 //   currently signaled
    315 // else:
    316 //   None of the WaitableEvent locks are held. The Waiter has not been enqueued
    317 //   in any of them and the return value is the index of the first WaitableEvent
    318 //   which was signaled, from the end of the array.
    319 // -----------------------------------------------------------------------------
    320 // static
    321 size_t WaitableEvent::EnqueueMany
    322     (std::pair<WaitableEvent*, size_t>* waitables,
    323      size_t count, Waiter* waiter) {
    324   if (!count)
    325     return 0;
    326 
    327   waitables[0].first->kernel_->lock_.Acquire();
    328     if (waitables[0].first->kernel_->signaled_) {
    329       if (!waitables[0].first->kernel_->manual_reset_)
    330         waitables[0].first->kernel_->signaled_ = false;
    331       waitables[0].first->kernel_->lock_.Release();
    332       return count;
    333     }
    334 
    335     const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
    336     if (r) {
    337       waitables[0].first->kernel_->lock_.Release();
    338     } else {
    339       waitables[0].first->Enqueue(waiter);
    340     }
    341 
    342     return r;
    343 }
    344 
    345 // -----------------------------------------------------------------------------
    346 
    347 
    348 // -----------------------------------------------------------------------------
    349 // Private functions...
    350 
    351 WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset,
    352                                                         bool initially_signaled)
    353     : manual_reset_(manual_reset),
    354       signaled_(initially_signaled) {
    355 }
    356 
    357 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
    358 }
    359 
    360 // -----------------------------------------------------------------------------
    361 // Wake all waiting waiters. Called with lock held.
    362 // -----------------------------------------------------------------------------
    363 bool WaitableEvent::SignalAll() {
    364   bool signaled_at_least_one = false;
    365 
    366   for (std::list<Waiter*>::iterator
    367        i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
    368     if ((*i)->Fire(this))
    369       signaled_at_least_one = true;
    370   }
    371 
    372   kernel_->waiters_.clear();
    373   return signaled_at_least_one;
    374 }
    375 
    376 // ---------------------------------------------------------------------------
    377 // Try to wake a single waiter. Return true if one was woken. Called with lock
    378 // held.
    379 // ---------------------------------------------------------------------------
    380 bool WaitableEvent::SignalOne() {
    381   for (;;) {
    382     if (kernel_->waiters_.empty())
    383       return false;
    384 
    385     const bool r = (*kernel_->waiters_.begin())->Fire(this);
    386     kernel_->waiters_.pop_front();
    387     if (r)
    388       return true;
    389   }
    390 }
    391 
    392 // -----------------------------------------------------------------------------
    393 // Add a waiter to the list of those waiting. Called with lock held.
    394 // -----------------------------------------------------------------------------
    395 void WaitableEvent::Enqueue(Waiter* waiter) {
    396   kernel_->waiters_.push_back(waiter);
    397 }
    398 
    399 // -----------------------------------------------------------------------------
    400 // Remove a waiter from the list of those waiting. Return true if the waiter was
    401 // actually removed. Called with lock held.
    402 // -----------------------------------------------------------------------------
    403 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
    404   for (std::list<Waiter*>::iterator
    405        i = waiters_.begin(); i != waiters_.end(); ++i) {
    406     if (*i == waiter && (*i)->Compare(tag)) {
    407       waiters_.erase(i);
    408       return true;
    409     }
    410   }
    411 
    412   return false;
    413 }
    414 
    415 // -----------------------------------------------------------------------------
    416 
    417 }  // namespace base
    418