Home | History | Annotate | Download | only in test
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 //
     32 // Tests for Google Test itself.  This verifies that the basic constructs of
     33 // Google Test work.
     34 
     35 #include "gtest/gtest.h"
     36 
     37 // Verifies that the command line flag variables can be accessed
     38 // in code once <gtest/gtest.h> has been #included.
     39 // Do not move it after other #includes.
     40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
     41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
     42       || testing::GTEST_FLAG(break_on_failure)
     43       || testing::GTEST_FLAG(catch_exceptions)
     44       || testing::GTEST_FLAG(color) != "unknown"
     45       || testing::GTEST_FLAG(filter) != "unknown"
     46       || testing::GTEST_FLAG(list_tests)
     47       || testing::GTEST_FLAG(output) != "unknown"
     48       || testing::GTEST_FLAG(print_time)
     49       || testing::GTEST_FLAG(random_seed)
     50       || testing::GTEST_FLAG(repeat) > 0
     51       || testing::GTEST_FLAG(show_internal_stack_frames)
     52       || testing::GTEST_FLAG(shuffle)
     53       || testing::GTEST_FLAG(stack_trace_depth) > 0
     54       || testing::GTEST_FLAG(stream_result_to) != "unknown"
     55       || testing::GTEST_FLAG(throw_on_failure);
     56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
     57 }
     58 
     59 #include <limits.h>  // For INT_MAX.
     60 #include <stdlib.h>
     61 #include <string.h>
     62 #include <time.h>
     63 
     64 #include <map>
     65 #include <vector>
     66 #include <ostream>
     67 
     68 #include "gtest/gtest-spi.h"
     69 
     70 // Indicates that this translation unit is part of Google Test's
     71 // implementation.  It must come before gtest-internal-inl.h is
     72 // included, or there will be a compiler error.  This trick is to
     73 // prevent a user from accidentally including gtest-internal-inl.h in
     74 // his code.
     75 #define GTEST_IMPLEMENTATION_ 1
     76 #include "src/gtest-internal-inl.h"
     77 #undef GTEST_IMPLEMENTATION_
     78 
     79 namespace testing {
     80 namespace internal {
     81 
     82 #if GTEST_CAN_STREAM_RESULTS_
     83 
     84 class StreamingListenerTest : public Test {
     85  public:
     86   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
     87    public:
     88     // Sends a string to the socket.
     89     virtual void Send(const string& message) { output_ += message; }
     90 
     91     string output_;
     92   };
     93 
     94   StreamingListenerTest()
     95       : fake_sock_writer_(new FakeSocketWriter),
     96         streamer_(fake_sock_writer_),
     97         test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
     98 
     99  protected:
    100   string* output() { return &(fake_sock_writer_->output_); }
    101 
    102   FakeSocketWriter* const fake_sock_writer_;
    103   StreamingListener streamer_;
    104   UnitTest unit_test_;
    105   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
    106 };
    107 
    108 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
    109   *output() = "";
    110   streamer_.OnTestProgramEnd(unit_test_);
    111   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
    112 }
    113 
    114 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
    115   *output() = "";
    116   streamer_.OnTestIterationEnd(unit_test_, 42);
    117   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
    118 }
    119 
    120 TEST_F(StreamingListenerTest, OnTestCaseStart) {
    121   *output() = "";
    122   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
    123   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
    124 }
    125 
    126 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
    127   *output() = "";
    128   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
    129   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
    130 }
    131 
    132 TEST_F(StreamingListenerTest, OnTestStart) {
    133   *output() = "";
    134   streamer_.OnTestStart(test_info_obj_);
    135   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
    136 }
    137 
    138 TEST_F(StreamingListenerTest, OnTestEnd) {
    139   *output() = "";
    140   streamer_.OnTestEnd(test_info_obj_);
    141   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
    142 }
    143 
    144 TEST_F(StreamingListenerTest, OnTestPartResult) {
    145   *output() = "";
    146   streamer_.OnTestPartResult(TestPartResult(
    147       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
    148 
    149   // Meta characters in the failure message should be properly escaped.
    150   EXPECT_EQ(
    151       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
    152       *output());
    153 }
    154 
    155 #endif  // GTEST_CAN_STREAM_RESULTS_
    156 
    157 // Provides access to otherwise private parts of the TestEventListeners class
    158 // that are needed to test it.
    159 class TestEventListenersAccessor {
    160  public:
    161   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
    162     return listeners->repeater();
    163   }
    164 
    165   static void SetDefaultResultPrinter(TestEventListeners* listeners,
    166                                       TestEventListener* listener) {
    167     listeners->SetDefaultResultPrinter(listener);
    168   }
    169   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
    170                                      TestEventListener* listener) {
    171     listeners->SetDefaultXmlGenerator(listener);
    172   }
    173 
    174   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
    175     return listeners.EventForwardingEnabled();
    176   }
    177 
    178   static void SuppressEventForwarding(TestEventListeners* listeners) {
    179     listeners->SuppressEventForwarding();
    180   }
    181 };
    182 
    183 class UnitTestRecordPropertyTestHelper : public Test {
    184  protected:
    185   UnitTestRecordPropertyTestHelper() {}
    186 
    187   // Forwards to UnitTest::RecordProperty() to bypass access controls.
    188   void UnitTestRecordProperty(const char* key, const std::string& value) {
    189     unit_test_.RecordProperty(key, value);
    190   }
    191 
    192   UnitTest unit_test_;
    193 };
    194 
    195 }  // namespace internal
    196 }  // namespace testing
    197 
    198 using testing::AssertionFailure;
    199 using testing::AssertionResult;
    200 using testing::AssertionSuccess;
    201 using testing::DoubleLE;
    202 using testing::EmptyTestEventListener;
    203 using testing::Environment;
    204 using testing::FloatLE;
    205 using testing::GTEST_FLAG(also_run_disabled_tests);
    206 using testing::GTEST_FLAG(break_on_failure);
    207 using testing::GTEST_FLAG(catch_exceptions);
    208 using testing::GTEST_FLAG(color);
    209 using testing::GTEST_FLAG(death_test_use_fork);
    210 using testing::GTEST_FLAG(filter);
    211 using testing::GTEST_FLAG(list_tests);
    212 using testing::GTEST_FLAG(output);
    213 using testing::GTEST_FLAG(print_time);
    214 using testing::GTEST_FLAG(random_seed);
    215 using testing::GTEST_FLAG(repeat);
    216 using testing::GTEST_FLAG(show_internal_stack_frames);
    217 using testing::GTEST_FLAG(shuffle);
    218 using testing::GTEST_FLAG(stack_trace_depth);
    219 using testing::GTEST_FLAG(stream_result_to);
    220 using testing::GTEST_FLAG(throw_on_failure);
    221 using testing::IsNotSubstring;
    222 using testing::IsSubstring;
    223 using testing::Message;
    224 using testing::ScopedFakeTestPartResultReporter;
    225 using testing::StaticAssertTypeEq;
    226 using testing::Test;
    227 using testing::TestCase;
    228 using testing::TestEventListeners;
    229 using testing::TestInfo;
    230 using testing::TestPartResult;
    231 using testing::TestPartResultArray;
    232 using testing::TestProperty;
    233 using testing::TestResult;
    234 using testing::TimeInMillis;
    235 using testing::UnitTest;
    236 using testing::internal::AddReference;
    237 using testing::internal::AlwaysFalse;
    238 using testing::internal::AlwaysTrue;
    239 using testing::internal::AppendUserMessage;
    240 using testing::internal::ArrayAwareFind;
    241 using testing::internal::ArrayEq;
    242 using testing::internal::CodePointToUtf8;
    243 using testing::internal::CompileAssertTypesEqual;
    244 using testing::internal::CopyArray;
    245 using testing::internal::CountIf;
    246 using testing::internal::EqFailure;
    247 using testing::internal::FloatingPoint;
    248 using testing::internal::ForEach;
    249 using testing::internal::FormatEpochTimeInMillisAsIso8601;
    250 using testing::internal::FormatTimeInMillisAsSeconds;
    251 using testing::internal::GTestFlagSaver;
    252 using testing::internal::GetCurrentOsStackTraceExceptTop;
    253 using testing::internal::GetElementOr;
    254 using testing::internal::GetNextRandomSeed;
    255 using testing::internal::GetRandomSeedFromFlag;
    256 using testing::internal::GetTestTypeId;
    257 using testing::internal::GetTimeInMillis;
    258 using testing::internal::GetTypeId;
    259 using testing::internal::GetUnitTestImpl;
    260 using testing::internal::ImplicitlyConvertible;
    261 using testing::internal::Int32;
    262 using testing::internal::Int32FromEnvOrDie;
    263 using testing::internal::IsAProtocolMessage;
    264 using testing::internal::IsContainer;
    265 using testing::internal::IsContainerTest;
    266 using testing::internal::IsNotContainer;
    267 using testing::internal::NativeArray;
    268 using testing::internal::ParseInt32Flag;
    269 using testing::internal::RelationToSourceCopy;
    270 using testing::internal::RelationToSourceReference;
    271 using testing::internal::RemoveConst;
    272 using testing::internal::RemoveReference;
    273 using testing::internal::ShouldRunTestOnShard;
    274 using testing::internal::ShouldShard;
    275 using testing::internal::ShouldUseColor;
    276 using testing::internal::Shuffle;
    277 using testing::internal::ShuffleRange;
    278 using testing::internal::SkipPrefix;
    279 using testing::internal::StreamableToString;
    280 using testing::internal::String;
    281 using testing::internal::TestEventListenersAccessor;
    282 using testing::internal::TestResultAccessor;
    283 using testing::internal::UInt32;
    284 using testing::internal::WideStringToUtf8;
    285 using testing::internal::edit_distance::CalculateOptimalEdits;
    286 using testing::internal::edit_distance::CreateUnifiedDiff;
    287 using testing::internal::edit_distance::EditType;
    288 using testing::internal::kMaxRandomSeed;
    289 using testing::internal::kTestTypeIdInGoogleTest;
    290 using testing::internal::scoped_ptr;
    291 using testing::kMaxStackTraceDepth;
    292 
    293 #if GTEST_HAS_STREAM_REDIRECTION
    294 using testing::internal::CaptureStdout;
    295 using testing::internal::GetCapturedStdout;
    296 #endif
    297 
    298 #if GTEST_IS_THREADSAFE
    299 using testing::internal::ThreadWithParam;
    300 #endif
    301 
    302 class TestingVector : public std::vector<int> {
    303 };
    304 
    305 ::std::ostream& operator<<(::std::ostream& os,
    306                            const TestingVector& vector) {
    307   os << "{ ";
    308   for (size_t i = 0; i < vector.size(); i++) {
    309     os << vector[i] << " ";
    310   }
    311   os << "}";
    312   return os;
    313 }
    314 
    315 // This line tests that we can define tests in an unnamed namespace.
    316 namespace {
    317 
    318 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
    319   const int seed = GetRandomSeedFromFlag(0);
    320   EXPECT_LE(1, seed);
    321   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
    322 }
    323 
    324 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
    325   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
    326   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
    327   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
    328   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    329             GetRandomSeedFromFlag(kMaxRandomSeed));
    330 }
    331 
    332 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
    333   const int seed1 = GetRandomSeedFromFlag(-1);
    334   EXPECT_LE(1, seed1);
    335   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
    336 
    337   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
    338   EXPECT_LE(1, seed2);
    339   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
    340 }
    341 
    342 TEST(GetNextRandomSeedTest, WorksForValidInput) {
    343   EXPECT_EQ(2, GetNextRandomSeed(1));
    344   EXPECT_EQ(3, GetNextRandomSeed(2));
    345   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    346             GetNextRandomSeed(kMaxRandomSeed - 1));
    347   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
    348 
    349   // We deliberately don't test GetNextRandomSeed() with invalid
    350   // inputs, as that requires death tests, which are expensive.  This
    351   // is fine as GetNextRandomSeed() is internal and has a
    352   // straightforward definition.
    353 }
    354 
    355 static void ClearCurrentTestPartResults() {
    356   TestResultAccessor::ClearTestPartResults(
    357       GetUnitTestImpl()->current_test_result());
    358 }
    359 
    360 // Tests GetTypeId.
    361 
    362 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
    363   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
    364   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
    365 }
    366 
    367 class SubClassOfTest : public Test {};
    368 class AnotherSubClassOfTest : public Test {};
    369 
    370 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
    371   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
    372   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
    373   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
    374   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
    375   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
    376   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
    377 }
    378 
    379 // Verifies that GetTestTypeId() returns the same value, no matter it
    380 // is called from inside Google Test or outside of it.
    381 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
    382   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
    383 }
    384 
    385 // Tests FormatTimeInMillisAsSeconds().
    386 
    387 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
    388   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
    389 }
    390 
    391 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
    392   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
    393   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
    394   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
    395   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
    396   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
    397 }
    398 
    399 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
    400   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
    401   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
    402   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
    403   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
    404   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
    405 }
    406 
    407 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
    408 // for particular dates below was verified in Python using
    409 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
    410 
    411 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
    412 // have to set up a particular timezone to obtain predictable results.
    413 class FormatEpochTimeInMillisAsIso8601Test : public Test {
    414  public:
    415   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
    416   // 32 bits, even when 64-bit integer types are available.  We have to
    417   // force the constants to have a 64-bit type here.
    418   static const TimeInMillis kMillisPerSec = 1000;
    419 
    420  private:
    421   virtual void SetUp() {
    422     saved_tz_ = NULL;
    423 
    424     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* getenv, strdup: deprecated */)
    425     if (getenv("TZ"))
    426       saved_tz_ = strdup(getenv("TZ"));
    427     GTEST_DISABLE_MSC_WARNINGS_POP_()
    428 
    429     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
    430     // cannot use the local time zone because the function's output depends
    431     // on the time zone.
    432     SetTimeZone("UTC+00");
    433   }
    434 
    435   virtual void TearDown() {
    436     SetTimeZone(saved_tz_);
    437     free(const_cast<char*>(saved_tz_));
    438     saved_tz_ = NULL;
    439   }
    440 
    441   static void SetTimeZone(const char* time_zone) {
    442     // tzset() distinguishes between the TZ variable being present and empty
    443     // and not being present, so we have to consider the case of time_zone
    444     // being NULL.
    445 #if _MSC_VER
    446     // ...Unless it's MSVC, whose standard library's _putenv doesn't
    447     // distinguish between an empty and a missing variable.
    448     const std::string env_var =
    449         std::string("TZ=") + (time_zone ? time_zone : "");
    450     _putenv(env_var.c_str());
    451     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
    452     tzset();
    453     GTEST_DISABLE_MSC_WARNINGS_POP_()
    454 #else
    455     if (time_zone) {
    456       setenv(("TZ"), time_zone, 1);
    457     } else {
    458       unsetenv("TZ");
    459     }
    460     tzset();
    461 #endif
    462   }
    463 
    464   const char* saved_tz_;
    465 };
    466 
    467 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
    468 
    469 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
    470   EXPECT_EQ("2011-10-31T18:52:42",
    471             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
    472 }
    473 
    474 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
    475   EXPECT_EQ(
    476       "2011-10-31T18:52:42",
    477       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
    478 }
    479 
    480 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
    481   EXPECT_EQ("2011-09-03T05:07:02",
    482             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
    483 }
    484 
    485 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
    486   EXPECT_EQ("2011-09-28T17:08:22",
    487             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
    488 }
    489 
    490 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
    491   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
    492 }
    493 
    494 #if GTEST_CAN_COMPARE_NULL
    495 
    496 # ifdef __BORLANDC__
    497 // Silences warnings: "Condition is always true", "Unreachable code"
    498 #  pragma option push -w-ccc -w-rch
    499 # endif
    500 
    501 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
    502 // pointer literal.
    503 TEST(NullLiteralTest, IsTrueForNullLiterals) {
    504   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
    505   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
    506   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
    507   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
    508 }
    509 
    510 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
    511 // pointer literal.
    512 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
    513   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
    514   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
    515   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
    516   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
    517 }
    518 
    519 # ifdef __BORLANDC__
    520 // Restores warnings after previous "#pragma option push" suppressed them.
    521 #  pragma option pop
    522 # endif
    523 
    524 #endif  // GTEST_CAN_COMPARE_NULL
    525 //
    526 // Tests CodePointToUtf8().
    527 
    528 // Tests that the NUL character L'\0' is encoded correctly.
    529 TEST(CodePointToUtf8Test, CanEncodeNul) {
    530   EXPECT_EQ("", CodePointToUtf8(L'\0'));
    531 }
    532 
    533 // Tests that ASCII characters are encoded correctly.
    534 TEST(CodePointToUtf8Test, CanEncodeAscii) {
    535   EXPECT_EQ("a", CodePointToUtf8(L'a'));
    536   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
    537   EXPECT_EQ("&", CodePointToUtf8(L'&'));
    538   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
    539 }
    540 
    541 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    542 // as 110xxxxx 10xxxxxx.
    543 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
    544   // 000 1101 0011 => 110-00011 10-010011
    545   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
    546 
    547   // 101 0111 0110 => 110-10101 10-110110
    548   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
    549   // in wide strings and wide chars. In order to accomodate them, we have to
    550   // introduce such character constants as integers.
    551   EXPECT_EQ("\xD5\xB6",
    552             CodePointToUtf8(static_cast<wchar_t>(0x576)));
    553 }
    554 
    555 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    556 // as 1110xxxx 10xxxxxx 10xxxxxx.
    557 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
    558   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    559   EXPECT_EQ("\xE0\xA3\x93",
    560             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
    561 
    562   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    563   EXPECT_EQ("\xEC\x9D\x8D",
    564             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
    565 }
    566 
    567 #if !GTEST_WIDE_STRING_USES_UTF16_
    568 // Tests in this group require a wchar_t to hold > 16 bits, and thus
    569 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
    570 // 16-bit wide. This code may not compile on those systems.
    571 
    572 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    573 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
    574 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
    575   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    576   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
    577 
    578   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
    579   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
    580 
    581   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    582   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
    583 }
    584 
    585 // Tests that encoding an invalid code-point generates the expected result.
    586 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
    587   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
    588 }
    589 
    590 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    591 
    592 // Tests WideStringToUtf8().
    593 
    594 // Tests that the NUL character L'\0' is encoded correctly.
    595 TEST(WideStringToUtf8Test, CanEncodeNul) {
    596   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
    597   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
    598 }
    599 
    600 // Tests that ASCII strings are encoded correctly.
    601 TEST(WideStringToUtf8Test, CanEncodeAscii) {
    602   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
    603   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
    604   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
    605   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
    606 }
    607 
    608 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    609 // as 110xxxxx 10xxxxxx.
    610 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
    611   // 000 1101 0011 => 110-00011 10-010011
    612   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
    613   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
    614 
    615   // 101 0111 0110 => 110-10101 10-110110
    616   const wchar_t s[] = { 0x576, '\0' };
    617   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
    618   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
    619 }
    620 
    621 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    622 // as 1110xxxx 10xxxxxx 10xxxxxx.
    623 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
    624   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    625   const wchar_t s1[] = { 0x8D3, '\0' };
    626   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
    627   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
    628 
    629   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    630   const wchar_t s2[] = { 0xC74D, '\0' };
    631   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
    632   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
    633 }
    634 
    635 // Tests that the conversion stops when the function encounters \0 character.
    636 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
    637   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
    638 }
    639 
    640 // Tests that the conversion stops when the function reaches the limit
    641 // specified by the 'length' parameter.
    642 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
    643   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
    644 }
    645 
    646 #if !GTEST_WIDE_STRING_USES_UTF16_
    647 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    648 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
    649 // on the systems using UTF-16 encoding.
    650 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
    651   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    652   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
    653   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
    654 
    655   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    656   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
    657   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
    658 }
    659 
    660 // Tests that encoding an invalid code-point generates the expected result.
    661 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
    662   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
    663                WideStringToUtf8(L"\xABCDFF", -1).c_str());
    664 }
    665 #else  // !GTEST_WIDE_STRING_USES_UTF16_
    666 // Tests that surrogate pairs are encoded correctly on the systems using
    667 // UTF-16 encoding in the wide strings.
    668 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
    669   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
    670   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
    671 }
    672 
    673 // Tests that encoding an invalid UTF-16 surrogate pair
    674 // generates the expected result.
    675 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
    676   // Leading surrogate is at the end of the string.
    677   const wchar_t s1[] = { 0xD800, '\0' };
    678   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
    679   // Leading surrogate is not followed by the trailing surrogate.
    680   const wchar_t s2[] = { 0xD800, 'M', '\0' };
    681   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
    682   // Trailing surrogate appearas without a leading surrogate.
    683   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
    684   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
    685 }
    686 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    687 
    688 // Tests that codepoint concatenation works correctly.
    689 #if !GTEST_WIDE_STRING_USES_UTF16_
    690 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    691   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
    692   EXPECT_STREQ(
    693       "\xF4\x88\x98\xB4"
    694           "\xEC\x9D\x8D"
    695           "\n"
    696           "\xD5\xB6"
    697           "\xE0\xA3\x93"
    698           "\xF4\x88\x98\xB4",
    699       WideStringToUtf8(s, -1).c_str());
    700 }
    701 #else
    702 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    703   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
    704   EXPECT_STREQ(
    705       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
    706       WideStringToUtf8(s, -1).c_str());
    707 }
    708 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    709 
    710 // Tests the Random class.
    711 
    712 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
    713   testing::internal::Random random(42);
    714   EXPECT_DEATH_IF_SUPPORTED(
    715       random.Generate(0),
    716       "Cannot generate a number in the range \\[0, 0\\)");
    717   EXPECT_DEATH_IF_SUPPORTED(
    718       random.Generate(testing::internal::Random::kMaxRange + 1),
    719       "Generation of a number in \\[0, 2147483649\\) was requested, "
    720       "but this can only generate numbers in \\[0, 2147483648\\)");
    721 }
    722 
    723 TEST(RandomTest, GeneratesNumbersWithinRange) {
    724   const UInt32 kRange = 10000;
    725   testing::internal::Random random(12345);
    726   for (int i = 0; i < 10; i++) {
    727     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
    728   }
    729 
    730   testing::internal::Random random2(testing::internal::Random::kMaxRange);
    731   for (int i = 0; i < 10; i++) {
    732     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
    733   }
    734 }
    735 
    736 TEST(RandomTest, RepeatsWhenReseeded) {
    737   const int kSeed = 123;
    738   const int kArraySize = 10;
    739   const UInt32 kRange = 10000;
    740   UInt32 values[kArraySize];
    741 
    742   testing::internal::Random random(kSeed);
    743   for (int i = 0; i < kArraySize; i++) {
    744     values[i] = random.Generate(kRange);
    745   }
    746 
    747   random.Reseed(kSeed);
    748   for (int i = 0; i < kArraySize; i++) {
    749     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
    750   }
    751 }
    752 
    753 // Tests STL container utilities.
    754 
    755 // Tests CountIf().
    756 
    757 static bool IsPositive(int n) { return n > 0; }
    758 
    759 TEST(ContainerUtilityTest, CountIf) {
    760   std::vector<int> v;
    761   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
    762 
    763   v.push_back(-1);
    764   v.push_back(0);
    765   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
    766 
    767   v.push_back(2);
    768   v.push_back(-10);
    769   v.push_back(10);
    770   EXPECT_EQ(2, CountIf(v, IsPositive));
    771 }
    772 
    773 // Tests ForEach().
    774 
    775 static int g_sum = 0;
    776 static void Accumulate(int n) { g_sum += n; }
    777 
    778 TEST(ContainerUtilityTest, ForEach) {
    779   std::vector<int> v;
    780   g_sum = 0;
    781   ForEach(v, Accumulate);
    782   EXPECT_EQ(0, g_sum);  // Works for an empty container;
    783 
    784   g_sum = 0;
    785   v.push_back(1);
    786   ForEach(v, Accumulate);
    787   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
    788 
    789   g_sum = 0;
    790   v.push_back(20);
    791   v.push_back(300);
    792   ForEach(v, Accumulate);
    793   EXPECT_EQ(321, g_sum);
    794 }
    795 
    796 // Tests GetElementOr().
    797 TEST(ContainerUtilityTest, GetElementOr) {
    798   std::vector<char> a;
    799   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
    800 
    801   a.push_back('a');
    802   a.push_back('b');
    803   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
    804   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
    805   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
    806   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
    807 }
    808 
    809 TEST(ContainerUtilityDeathTest, ShuffleRange) {
    810   std::vector<int> a;
    811   a.push_back(0);
    812   a.push_back(1);
    813   a.push_back(2);
    814   testing::internal::Random random(1);
    815 
    816   EXPECT_DEATH_IF_SUPPORTED(
    817       ShuffleRange(&random, -1, 1, &a),
    818       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
    819   EXPECT_DEATH_IF_SUPPORTED(
    820       ShuffleRange(&random, 4, 4, &a),
    821       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
    822   EXPECT_DEATH_IF_SUPPORTED(
    823       ShuffleRange(&random, 3, 2, &a),
    824       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
    825   EXPECT_DEATH_IF_SUPPORTED(
    826       ShuffleRange(&random, 3, 4, &a),
    827       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
    828 }
    829 
    830 class VectorShuffleTest : public Test {
    831  protected:
    832   static const int kVectorSize = 20;
    833 
    834   VectorShuffleTest() : random_(1) {
    835     for (int i = 0; i < kVectorSize; i++) {
    836       vector_.push_back(i);
    837     }
    838   }
    839 
    840   static bool VectorIsCorrupt(const TestingVector& vector) {
    841     if (kVectorSize != static_cast<int>(vector.size())) {
    842       return true;
    843     }
    844 
    845     bool found_in_vector[kVectorSize] = { false };
    846     for (size_t i = 0; i < vector.size(); i++) {
    847       const int e = vector[i];
    848       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
    849         return true;
    850       }
    851       found_in_vector[e] = true;
    852     }
    853 
    854     // Vector size is correct, elements' range is correct, no
    855     // duplicate elements.  Therefore no corruption has occurred.
    856     return false;
    857   }
    858 
    859   static bool VectorIsNotCorrupt(const TestingVector& vector) {
    860     return !VectorIsCorrupt(vector);
    861   }
    862 
    863   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
    864     for (int i = begin; i < end; i++) {
    865       if (i != vector[i]) {
    866         return true;
    867       }
    868     }
    869     return false;
    870   }
    871 
    872   static bool RangeIsUnshuffled(
    873       const TestingVector& vector, int begin, int end) {
    874     return !RangeIsShuffled(vector, begin, end);
    875   }
    876 
    877   static bool VectorIsShuffled(const TestingVector& vector) {
    878     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
    879   }
    880 
    881   static bool VectorIsUnshuffled(const TestingVector& vector) {
    882     return !VectorIsShuffled(vector);
    883   }
    884 
    885   testing::internal::Random random_;
    886   TestingVector vector_;
    887 };  // class VectorShuffleTest
    888 
    889 const int VectorShuffleTest::kVectorSize;
    890 
    891 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
    892   // Tests an empty range at the beginning...
    893   ShuffleRange(&random_, 0, 0, &vector_);
    894   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    895   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    896 
    897   // ...in the middle...
    898   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
    899   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    900   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    901 
    902   // ...at the end...
    903   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
    904   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    905   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    906 
    907   // ...and past the end.
    908   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
    909   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    910   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    911 }
    912 
    913 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
    914   // Tests a size one range at the beginning...
    915   ShuffleRange(&random_, 0, 1, &vector_);
    916   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    917   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    918 
    919   // ...in the middle...
    920   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
    921   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    922   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    923 
    924   // ...and at the end.
    925   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
    926   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    927   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    928 }
    929 
    930 // Because we use our own random number generator and a fixed seed,
    931 // we can guarantee that the following "random" tests will succeed.
    932 
    933 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
    934   Shuffle(&random_, &vector_);
    935   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    936   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
    937 
    938   // Tests the first and last elements in particular to ensure that
    939   // there are no off-by-one problems in our shuffle algorithm.
    940   EXPECT_NE(0, vector_[0]);
    941   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
    942 }
    943 
    944 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
    945   const int kRangeSize = kVectorSize/2;
    946 
    947   ShuffleRange(&random_, 0, kRangeSize, &vector_);
    948 
    949   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    950   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
    951   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
    952 }
    953 
    954 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
    955   const int kRangeSize = kVectorSize / 2;
    956   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
    957 
    958   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    959   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    960   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
    961 }
    962 
    963 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
    964   int kRangeSize = kVectorSize/3;
    965   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
    966 
    967   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    968   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    969   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
    970   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
    971 }
    972 
    973 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
    974   TestingVector vector2;
    975   for (int i = 0; i < kVectorSize; i++) {
    976     vector2.push_back(i);
    977   }
    978 
    979   random_.Reseed(1234);
    980   Shuffle(&random_, &vector_);
    981   random_.Reseed(1234);
    982   Shuffle(&random_, &vector2);
    983 
    984   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    985   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
    986 
    987   for (int i = 0; i < kVectorSize; i++) {
    988     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
    989   }
    990 }
    991 
    992 // Tests the size of the AssertHelper class.
    993 
    994 TEST(AssertHelperTest, AssertHelperIsSmall) {
    995   // To avoid breaking clients that use lots of assertions in one
    996   // function, we cannot grow the size of AssertHelper.
    997   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
    998 }
    999 
   1000 // Tests String::EndsWithCaseInsensitive().
   1001 TEST(StringTest, EndsWithCaseInsensitive) {
   1002   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
   1003   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
   1004   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
   1005   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
   1006 
   1007   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
   1008   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
   1009   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
   1010 }
   1011 
   1012 // C++Builder's preprocessor is buggy; it fails to expand macros that
   1013 // appear in macro parameters after wide char literals.  Provide an alias
   1014 // for NULL as a workaround.
   1015 static const wchar_t* const kNull = NULL;
   1016 
   1017 // Tests String::CaseInsensitiveWideCStringEquals
   1018 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
   1019   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
   1020   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
   1021   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
   1022   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
   1023   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
   1024   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
   1025   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
   1026   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
   1027 }
   1028 
   1029 #if GTEST_OS_WINDOWS
   1030 
   1031 // Tests String::ShowWideCString().
   1032 TEST(StringTest, ShowWideCString) {
   1033   EXPECT_STREQ("(null)",
   1034                String::ShowWideCString(NULL).c_str());
   1035   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
   1036   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
   1037 }
   1038 
   1039 # if GTEST_OS_WINDOWS_MOBILE
   1040 TEST(StringTest, AnsiAndUtf16Null) {
   1041   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
   1042   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
   1043 }
   1044 
   1045 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
   1046   const char* ansi = String::Utf16ToAnsi(L"str");
   1047   EXPECT_STREQ("str", ansi);
   1048   delete [] ansi;
   1049   const WCHAR* utf16 = String::AnsiToUtf16("str");
   1050   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
   1051   delete [] utf16;
   1052 }
   1053 
   1054 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
   1055   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
   1056   EXPECT_STREQ(".:\\ \"*?", ansi);
   1057   delete [] ansi;
   1058   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
   1059   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
   1060   delete [] utf16;
   1061 }
   1062 # endif  // GTEST_OS_WINDOWS_MOBILE
   1063 
   1064 #endif  // GTEST_OS_WINDOWS
   1065 
   1066 // Tests TestProperty construction.
   1067 TEST(TestPropertyTest, StringValue) {
   1068   TestProperty property("key", "1");
   1069   EXPECT_STREQ("key", property.key());
   1070   EXPECT_STREQ("1", property.value());
   1071 }
   1072 
   1073 // Tests TestProperty replacing a value.
   1074 TEST(TestPropertyTest, ReplaceStringValue) {
   1075   TestProperty property("key", "1");
   1076   EXPECT_STREQ("1", property.value());
   1077   property.SetValue("2");
   1078   EXPECT_STREQ("2", property.value());
   1079 }
   1080 
   1081 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
   1082 // functions (i.e. their definitions cannot be inlined at the call
   1083 // sites), or C++Builder won't compile the code.
   1084 static void AddFatalFailure() {
   1085   FAIL() << "Expected fatal failure.";
   1086 }
   1087 
   1088 static void AddNonfatalFailure() {
   1089   ADD_FAILURE() << "Expected non-fatal failure.";
   1090 }
   1091 
   1092 class ScopedFakeTestPartResultReporterTest : public Test {
   1093  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   1094   enum FailureMode {
   1095     FATAL_FAILURE,
   1096     NONFATAL_FAILURE
   1097   };
   1098   static void AddFailure(FailureMode failure) {
   1099     if (failure == FATAL_FAILURE) {
   1100       AddFatalFailure();
   1101     } else {
   1102       AddNonfatalFailure();
   1103     }
   1104   }
   1105 };
   1106 
   1107 // Tests that ScopedFakeTestPartResultReporter intercepts test
   1108 // failures.
   1109 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
   1110   TestPartResultArray results;
   1111   {
   1112     ScopedFakeTestPartResultReporter reporter(
   1113         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
   1114         &results);
   1115     AddFailure(NONFATAL_FAILURE);
   1116     AddFailure(FATAL_FAILURE);
   1117   }
   1118 
   1119   EXPECT_EQ(2, results.size());
   1120   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1121   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1122 }
   1123 
   1124 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
   1125   TestPartResultArray results;
   1126   {
   1127     // Tests, that the deprecated constructor still works.
   1128     ScopedFakeTestPartResultReporter reporter(&results);
   1129     AddFailure(NONFATAL_FAILURE);
   1130   }
   1131   EXPECT_EQ(1, results.size());
   1132 }
   1133 
   1134 #if GTEST_IS_THREADSAFE
   1135 
   1136 class ScopedFakeTestPartResultReporterWithThreadsTest
   1137   : public ScopedFakeTestPartResultReporterTest {
   1138  protected:
   1139   static void AddFailureInOtherThread(FailureMode failure) {
   1140     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
   1141     thread.Join();
   1142   }
   1143 };
   1144 
   1145 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
   1146        InterceptsTestFailuresInAllThreads) {
   1147   TestPartResultArray results;
   1148   {
   1149     ScopedFakeTestPartResultReporter reporter(
   1150         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
   1151     AddFailure(NONFATAL_FAILURE);
   1152     AddFailure(FATAL_FAILURE);
   1153     AddFailureInOtherThread(NONFATAL_FAILURE);
   1154     AddFailureInOtherThread(FATAL_FAILURE);
   1155   }
   1156 
   1157   EXPECT_EQ(4, results.size());
   1158   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1159   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1160   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
   1161   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
   1162 }
   1163 
   1164 #endif  // GTEST_IS_THREADSAFE
   1165 
   1166 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
   1167 // work even if the failure is generated in a called function rather than
   1168 // the current context.
   1169 
   1170 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
   1171 
   1172 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
   1173   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
   1174 }
   1175 
   1176 #if GTEST_HAS_GLOBAL_STRING
   1177 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
   1178   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
   1179 }
   1180 #endif
   1181 
   1182 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
   1183   EXPECT_FATAL_FAILURE(AddFatalFailure(),
   1184                        ::std::string("Expected fatal failure."));
   1185 }
   1186 
   1187 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
   1188   // We have another test below to verify that the macro catches fatal
   1189   // failures generated on another thread.
   1190   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
   1191                                       "Expected fatal failure.");
   1192 }
   1193 
   1194 #ifdef __BORLANDC__
   1195 // Silences warnings: "Condition is always true"
   1196 # pragma option push -w-ccc
   1197 #endif
   1198 
   1199 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
   1200 // function even when the statement in it contains ASSERT_*.
   1201 
   1202 int NonVoidFunction() {
   1203   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1204   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1205   return 0;
   1206 }
   1207 
   1208 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
   1209   NonVoidFunction();
   1210 }
   1211 
   1212 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
   1213 // current function even though 'statement' generates a fatal failure.
   1214 
   1215 void DoesNotAbortHelper(bool* aborted) {
   1216   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1217   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1218 
   1219   *aborted = false;
   1220 }
   1221 
   1222 #ifdef __BORLANDC__
   1223 // Restores warnings after previous "#pragma option push" suppressed them.
   1224 # pragma option pop
   1225 #endif
   1226 
   1227 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
   1228   bool aborted = true;
   1229   DoesNotAbortHelper(&aborted);
   1230   EXPECT_FALSE(aborted);
   1231 }
   1232 
   1233 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1234 // statement that contains a macro which expands to code containing an
   1235 // unprotected comma.
   1236 
   1237 static int global_var = 0;
   1238 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
   1239 
   1240 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1241 #ifndef __BORLANDC__
   1242   // ICE's in C++Builder.
   1243   EXPECT_FATAL_FAILURE({
   1244     GTEST_USE_UNPROTECTED_COMMA_;
   1245     AddFatalFailure();
   1246   }, "");
   1247 #endif
   1248 
   1249   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
   1250     GTEST_USE_UNPROTECTED_COMMA_;
   1251     AddFatalFailure();
   1252   }, "");
   1253 }
   1254 
   1255 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
   1256 
   1257 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
   1258 
   1259 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
   1260   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1261                           "Expected non-fatal failure.");
   1262 }
   1263 
   1264 #if GTEST_HAS_GLOBAL_STRING
   1265 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
   1266   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1267                           ::string("Expected non-fatal failure."));
   1268 }
   1269 #endif
   1270 
   1271 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
   1272   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1273                           ::std::string("Expected non-fatal failure."));
   1274 }
   1275 
   1276 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
   1277   // We have another test below to verify that the macro catches
   1278   // non-fatal failures generated on another thread.
   1279   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
   1280                                          "Expected non-fatal failure.");
   1281 }
   1282 
   1283 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1284 // statement that contains a macro which expands to code containing an
   1285 // unprotected comma.
   1286 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1287   EXPECT_NONFATAL_FAILURE({
   1288     GTEST_USE_UNPROTECTED_COMMA_;
   1289     AddNonfatalFailure();
   1290   }, "");
   1291 
   1292   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
   1293     GTEST_USE_UNPROTECTED_COMMA_;
   1294     AddNonfatalFailure();
   1295   }, "");
   1296 }
   1297 
   1298 #if GTEST_IS_THREADSAFE
   1299 
   1300 typedef ScopedFakeTestPartResultReporterWithThreadsTest
   1301     ExpectFailureWithThreadsTest;
   1302 
   1303 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
   1304   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
   1305                                       "Expected fatal failure.");
   1306 }
   1307 
   1308 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
   1309   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
   1310       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
   1311 }
   1312 
   1313 #endif  // GTEST_IS_THREADSAFE
   1314 
   1315 // Tests the TestProperty class.
   1316 
   1317 TEST(TestPropertyTest, ConstructorWorks) {
   1318   const TestProperty property("key", "value");
   1319   EXPECT_STREQ("key", property.key());
   1320   EXPECT_STREQ("value", property.value());
   1321 }
   1322 
   1323 TEST(TestPropertyTest, SetValue) {
   1324   TestProperty property("key", "value_1");
   1325   EXPECT_STREQ("key", property.key());
   1326   property.SetValue("value_2");
   1327   EXPECT_STREQ("key", property.key());
   1328   EXPECT_STREQ("value_2", property.value());
   1329 }
   1330 
   1331 // Tests the TestResult class
   1332 
   1333 // The test fixture for testing TestResult.
   1334 class TestResultTest : public Test {
   1335  protected:
   1336   typedef std::vector<TestPartResult> TPRVector;
   1337 
   1338   // We make use of 2 TestPartResult objects,
   1339   TestPartResult * pr1, * pr2;
   1340 
   1341   // ... and 3 TestResult objects.
   1342   TestResult * r0, * r1, * r2;
   1343 
   1344   virtual void SetUp() {
   1345     // pr1 is for success.
   1346     pr1 = new TestPartResult(TestPartResult::kSuccess,
   1347                              "foo/bar.cc",
   1348                              10,
   1349                              "Success!");
   1350 
   1351     // pr2 is for fatal failure.
   1352     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
   1353                              "foo/bar.cc",
   1354                              -1,  // This line number means "unknown"
   1355                              "Failure!");
   1356 
   1357     // Creates the TestResult objects.
   1358     r0 = new TestResult();
   1359     r1 = new TestResult();
   1360     r2 = new TestResult();
   1361 
   1362     // In order to test TestResult, we need to modify its internal
   1363     // state, in particular the TestPartResult vector it holds.
   1364     // test_part_results() returns a const reference to this vector.
   1365     // We cast it to a non-const object s.t. it can be modified (yes,
   1366     // this is a hack).
   1367     TPRVector* results1 = const_cast<TPRVector*>(
   1368         &TestResultAccessor::test_part_results(*r1));
   1369     TPRVector* results2 = const_cast<TPRVector*>(
   1370         &TestResultAccessor::test_part_results(*r2));
   1371 
   1372     // r0 is an empty TestResult.
   1373 
   1374     // r1 contains a single SUCCESS TestPartResult.
   1375     results1->push_back(*pr1);
   1376 
   1377     // r2 contains a SUCCESS, and a FAILURE.
   1378     results2->push_back(*pr1);
   1379     results2->push_back(*pr2);
   1380   }
   1381 
   1382   virtual void TearDown() {
   1383     delete pr1;
   1384     delete pr2;
   1385 
   1386     delete r0;
   1387     delete r1;
   1388     delete r2;
   1389   }
   1390 
   1391   // Helper that compares two two TestPartResults.
   1392   static void CompareTestPartResult(const TestPartResult& expected,
   1393                                     const TestPartResult& actual) {
   1394     EXPECT_EQ(expected.type(), actual.type());
   1395     EXPECT_STREQ(expected.file_name(), actual.file_name());
   1396     EXPECT_EQ(expected.line_number(), actual.line_number());
   1397     EXPECT_STREQ(expected.summary(), actual.summary());
   1398     EXPECT_STREQ(expected.message(), actual.message());
   1399     EXPECT_EQ(expected.passed(), actual.passed());
   1400     EXPECT_EQ(expected.failed(), actual.failed());
   1401     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
   1402     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
   1403   }
   1404 };
   1405 
   1406 // Tests TestResult::total_part_count().
   1407 TEST_F(TestResultTest, total_part_count) {
   1408   ASSERT_EQ(0, r0->total_part_count());
   1409   ASSERT_EQ(1, r1->total_part_count());
   1410   ASSERT_EQ(2, r2->total_part_count());
   1411 }
   1412 
   1413 // Tests TestResult::Passed().
   1414 TEST_F(TestResultTest, Passed) {
   1415   ASSERT_TRUE(r0->Passed());
   1416   ASSERT_TRUE(r1->Passed());
   1417   ASSERT_FALSE(r2->Passed());
   1418 }
   1419 
   1420 // Tests TestResult::Failed().
   1421 TEST_F(TestResultTest, Failed) {
   1422   ASSERT_FALSE(r0->Failed());
   1423   ASSERT_FALSE(r1->Failed());
   1424   ASSERT_TRUE(r2->Failed());
   1425 }
   1426 
   1427 // Tests TestResult::GetTestPartResult().
   1428 
   1429 typedef TestResultTest TestResultDeathTest;
   1430 
   1431 TEST_F(TestResultDeathTest, GetTestPartResult) {
   1432   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
   1433   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
   1434   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
   1435   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
   1436 }
   1437 
   1438 // Tests TestResult has no properties when none are added.
   1439 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
   1440   TestResult test_result;
   1441   ASSERT_EQ(0, test_result.test_property_count());
   1442 }
   1443 
   1444 // Tests TestResult has the expected property when added.
   1445 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
   1446   TestResult test_result;
   1447   TestProperty property("key_1", "1");
   1448   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
   1449   ASSERT_EQ(1, test_result.test_property_count());
   1450   const TestProperty& actual_property = test_result.GetTestProperty(0);
   1451   EXPECT_STREQ("key_1", actual_property.key());
   1452   EXPECT_STREQ("1", actual_property.value());
   1453 }
   1454 
   1455 // Tests TestResult has multiple properties when added.
   1456 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
   1457   TestResult test_result;
   1458   TestProperty property_1("key_1", "1");
   1459   TestProperty property_2("key_2", "2");
   1460   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
   1461   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
   1462   ASSERT_EQ(2, test_result.test_property_count());
   1463   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1464   EXPECT_STREQ("key_1", actual_property_1.key());
   1465   EXPECT_STREQ("1", actual_property_1.value());
   1466 
   1467   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1468   EXPECT_STREQ("key_2", actual_property_2.key());
   1469   EXPECT_STREQ("2", actual_property_2.value());
   1470 }
   1471 
   1472 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   1473 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
   1474   TestResult test_result;
   1475   TestProperty property_1_1("key_1", "1");
   1476   TestProperty property_2_1("key_2", "2");
   1477   TestProperty property_1_2("key_1", "12");
   1478   TestProperty property_2_2("key_2", "22");
   1479   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
   1480   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
   1481   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
   1482   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
   1483 
   1484   ASSERT_EQ(2, test_result.test_property_count());
   1485   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1486   EXPECT_STREQ("key_1", actual_property_1.key());
   1487   EXPECT_STREQ("12", actual_property_1.value());
   1488 
   1489   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1490   EXPECT_STREQ("key_2", actual_property_2.key());
   1491   EXPECT_STREQ("22", actual_property_2.value());
   1492 }
   1493 
   1494 // Tests TestResult::GetTestProperty().
   1495 TEST(TestResultPropertyTest, GetTestProperty) {
   1496   TestResult test_result;
   1497   TestProperty property_1("key_1", "1");
   1498   TestProperty property_2("key_2", "2");
   1499   TestProperty property_3("key_3", "3");
   1500   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
   1501   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
   1502   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
   1503 
   1504   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
   1505   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
   1506   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
   1507 
   1508   EXPECT_STREQ("key_1", fetched_property_1.key());
   1509   EXPECT_STREQ("1", fetched_property_1.value());
   1510 
   1511   EXPECT_STREQ("key_2", fetched_property_2.key());
   1512   EXPECT_STREQ("2", fetched_property_2.value());
   1513 
   1514   EXPECT_STREQ("key_3", fetched_property_3.key());
   1515   EXPECT_STREQ("3", fetched_property_3.value());
   1516 
   1517   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
   1518   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
   1519 }
   1520 
   1521 // Tests that GTestFlagSaver works on Windows and Mac.
   1522 
   1523 class GTestFlagSaverTest : public Test {
   1524  protected:
   1525   // Saves the Google Test flags such that we can restore them later, and
   1526   // then sets them to their default values.  This will be called
   1527   // before the first test in this test case is run.
   1528   static void SetUpTestCase() {
   1529     saver_ = new GTestFlagSaver;
   1530 
   1531     GTEST_FLAG(also_run_disabled_tests) = false;
   1532     GTEST_FLAG(break_on_failure) = false;
   1533     GTEST_FLAG(catch_exceptions) = false;
   1534     GTEST_FLAG(death_test_use_fork) = false;
   1535     GTEST_FLAG(color) = "auto";
   1536     GTEST_FLAG(filter) = "";
   1537     GTEST_FLAG(list_tests) = false;
   1538     GTEST_FLAG(output) = "";
   1539     GTEST_FLAG(print_time) = true;
   1540     GTEST_FLAG(random_seed) = 0;
   1541     GTEST_FLAG(repeat) = 1;
   1542     GTEST_FLAG(shuffle) = false;
   1543     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   1544     GTEST_FLAG(stream_result_to) = "";
   1545     GTEST_FLAG(throw_on_failure) = false;
   1546   }
   1547 
   1548   // Restores the Google Test flags that the tests have modified.  This will
   1549   // be called after the last test in this test case is run.
   1550   static void TearDownTestCase() {
   1551     delete saver_;
   1552     saver_ = NULL;
   1553   }
   1554 
   1555   // Verifies that the Google Test flags have their default values, and then
   1556   // modifies each of them.
   1557   void VerifyAndModifyFlags() {
   1558     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
   1559     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
   1560     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
   1561     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
   1562     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
   1563     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
   1564     EXPECT_FALSE(GTEST_FLAG(list_tests));
   1565     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
   1566     EXPECT_TRUE(GTEST_FLAG(print_time));
   1567     EXPECT_EQ(0, GTEST_FLAG(random_seed));
   1568     EXPECT_EQ(1, GTEST_FLAG(repeat));
   1569     EXPECT_FALSE(GTEST_FLAG(shuffle));
   1570     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
   1571     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
   1572     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
   1573 
   1574     GTEST_FLAG(also_run_disabled_tests) = true;
   1575     GTEST_FLAG(break_on_failure) = true;
   1576     GTEST_FLAG(catch_exceptions) = true;
   1577     GTEST_FLAG(color) = "no";
   1578     GTEST_FLAG(death_test_use_fork) = true;
   1579     GTEST_FLAG(filter) = "abc";
   1580     GTEST_FLAG(list_tests) = true;
   1581     GTEST_FLAG(output) = "xml:foo.xml";
   1582     GTEST_FLAG(print_time) = false;
   1583     GTEST_FLAG(random_seed) = 1;
   1584     GTEST_FLAG(repeat) = 100;
   1585     GTEST_FLAG(shuffle) = true;
   1586     GTEST_FLAG(stack_trace_depth) = 1;
   1587     GTEST_FLAG(stream_result_to) = "localhost:1234";
   1588     GTEST_FLAG(throw_on_failure) = true;
   1589   }
   1590 
   1591  private:
   1592   // For saving Google Test flags during this test case.
   1593   static GTestFlagSaver* saver_;
   1594 };
   1595 
   1596 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
   1597 
   1598 // Google Test doesn't guarantee the order of tests.  The following two
   1599 // tests are designed to work regardless of their order.
   1600 
   1601 // Modifies the Google Test flags in the test body.
   1602 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
   1603   VerifyAndModifyFlags();
   1604 }
   1605 
   1606 // Verifies that the Google Test flags in the body of the previous test were
   1607 // restored to their original values.
   1608 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
   1609   VerifyAndModifyFlags();
   1610 }
   1611 
   1612 // Sets an environment variable with the given name to the given
   1613 // value.  If the value argument is "", unsets the environment
   1614 // variable.  The caller must ensure that both arguments are not NULL.
   1615 static void SetEnv(const char* name, const char* value) {
   1616 #if GTEST_OS_WINDOWS_MOBILE
   1617   // Environment variables are not supported on Windows CE.
   1618   return;
   1619 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
   1620   // C++Builder's putenv only stores a pointer to its parameter; we have to
   1621   // ensure that the string remains valid as long as it might be needed.
   1622   // We use an std::map to do so.
   1623   static std::map<std::string, std::string*> added_env;
   1624 
   1625   // Because putenv stores a pointer to the string buffer, we can't delete the
   1626   // previous string (if present) until after it's replaced.
   1627   std::string *prev_env = NULL;
   1628   if (added_env.find(name) != added_env.end()) {
   1629     prev_env = added_env[name];
   1630   }
   1631   added_env[name] = new std::string(
   1632       (Message() << name << "=" << value).GetString());
   1633 
   1634   // The standard signature of putenv accepts a 'char*' argument. Other
   1635   // implementations, like C++Builder's, accept a 'const char*'.
   1636   // We cast away the 'const' since that would work for both variants.
   1637   putenv(const_cast<char*>(added_env[name]->c_str()));
   1638   delete prev_env;
   1639 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
   1640   _putenv((Message() << name << "=" << value).GetString().c_str());
   1641 #else
   1642   if (*value == '\0') {
   1643     unsetenv(name);
   1644   } else {
   1645     setenv(name, value, 1);
   1646   }
   1647 #endif  // GTEST_OS_WINDOWS_MOBILE
   1648 }
   1649 
   1650 #if !GTEST_OS_WINDOWS_MOBILE
   1651 // Environment variables are not supported on Windows CE.
   1652 
   1653 using testing::internal::Int32FromGTestEnv;
   1654 
   1655 // Tests Int32FromGTestEnv().
   1656 
   1657 // Tests that Int32FromGTestEnv() returns the default value when the
   1658 // environment variable is not set.
   1659 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
   1660   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
   1661   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
   1662 }
   1663 
   1664 // Tests that Int32FromGTestEnv() returns the default value when the
   1665 // environment variable overflows as an Int32.
   1666 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
   1667   printf("(expecting 2 warnings)\n");
   1668 
   1669   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
   1670   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
   1671 
   1672   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
   1673   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
   1674 }
   1675 
   1676 // Tests that Int32FromGTestEnv() returns the default value when the
   1677 // environment variable does not represent a valid decimal integer.
   1678 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
   1679   printf("(expecting 2 warnings)\n");
   1680 
   1681   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
   1682   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
   1683 
   1684   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
   1685   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
   1686 }
   1687 
   1688 // Tests that Int32FromGTestEnv() parses and returns the value of the
   1689 // environment variable when it represents a valid decimal integer in
   1690 // the range of an Int32.
   1691 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
   1692   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
   1693   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
   1694 
   1695   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
   1696   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
   1697 }
   1698 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1699 
   1700 // Tests ParseInt32Flag().
   1701 
   1702 // Tests that ParseInt32Flag() returns false and doesn't change the
   1703 // output value when the flag has wrong format
   1704 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
   1705   Int32 value = 123;
   1706   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
   1707   EXPECT_EQ(123, value);
   1708 
   1709   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
   1710   EXPECT_EQ(123, value);
   1711 }
   1712 
   1713 // Tests that ParseInt32Flag() returns false and doesn't change the
   1714 // output value when the flag overflows as an Int32.
   1715 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
   1716   printf("(expecting 2 warnings)\n");
   1717 
   1718   Int32 value = 123;
   1719   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
   1720   EXPECT_EQ(123, value);
   1721 
   1722   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
   1723   EXPECT_EQ(123, value);
   1724 }
   1725 
   1726 // Tests that ParseInt32Flag() returns false and doesn't change the
   1727 // output value when the flag does not represent a valid decimal
   1728 // integer.
   1729 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
   1730   printf("(expecting 2 warnings)\n");
   1731 
   1732   Int32 value = 123;
   1733   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
   1734   EXPECT_EQ(123, value);
   1735 
   1736   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
   1737   EXPECT_EQ(123, value);
   1738 }
   1739 
   1740 // Tests that ParseInt32Flag() parses the value of the flag and
   1741 // returns true when the flag represents a valid decimal integer in
   1742 // the range of an Int32.
   1743 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
   1744   Int32 value = 123;
   1745   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
   1746   EXPECT_EQ(456, value);
   1747 
   1748   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
   1749                              "abc", &value));
   1750   EXPECT_EQ(-789, value);
   1751 }
   1752 
   1753 // Tests that Int32FromEnvOrDie() parses the value of the var or
   1754 // returns the correct default.
   1755 // Environment variables are not supported on Windows CE.
   1756 #if !GTEST_OS_WINDOWS_MOBILE
   1757 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
   1758   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1759   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
   1760   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1761   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
   1762   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1763 }
   1764 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1765 
   1766 // Tests that Int32FromEnvOrDie() aborts with an error message
   1767 // if the variable is not an Int32.
   1768 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
   1769   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
   1770   EXPECT_DEATH_IF_SUPPORTED(
   1771       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1772       ".*");
   1773 }
   1774 
   1775 // Tests that Int32FromEnvOrDie() aborts with an error message
   1776 // if the variable cannot be represnted by an Int32.
   1777 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
   1778   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
   1779   EXPECT_DEATH_IF_SUPPORTED(
   1780       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1781       ".*");
   1782 }
   1783 
   1784 // Tests that ShouldRunTestOnShard() selects all tests
   1785 // where there is 1 shard.
   1786 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
   1787   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
   1788   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
   1789   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
   1790   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
   1791   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
   1792 }
   1793 
   1794 class ShouldShardTest : public testing::Test {
   1795  protected:
   1796   virtual void SetUp() {
   1797     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
   1798     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
   1799   }
   1800 
   1801   virtual void TearDown() {
   1802     SetEnv(index_var_, "");
   1803     SetEnv(total_var_, "");
   1804   }
   1805 
   1806   const char* index_var_;
   1807   const char* total_var_;
   1808 };
   1809 
   1810 // Tests that sharding is disabled if neither of the environment variables
   1811 // are set.
   1812 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
   1813   SetEnv(index_var_, "");
   1814   SetEnv(total_var_, "");
   1815 
   1816   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1817   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1818 }
   1819 
   1820 // Tests that sharding is not enabled if total_shards  == 1.
   1821 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
   1822   SetEnv(index_var_, "0");
   1823   SetEnv(total_var_, "1");
   1824   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1825   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1826 }
   1827 
   1828 // Tests that sharding is enabled if total_shards > 1 and
   1829 // we are not in a death test subprocess.
   1830 // Environment variables are not supported on Windows CE.
   1831 #if !GTEST_OS_WINDOWS_MOBILE
   1832 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
   1833   SetEnv(index_var_, "4");
   1834   SetEnv(total_var_, "22");
   1835   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1836   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1837 
   1838   SetEnv(index_var_, "8");
   1839   SetEnv(total_var_, "9");
   1840   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1841   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1842 
   1843   SetEnv(index_var_, "0");
   1844   SetEnv(total_var_, "9");
   1845   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1846   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1847 }
   1848 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1849 
   1850 // Tests that we exit in error if the sharding values are not valid.
   1851 
   1852 typedef ShouldShardTest ShouldShardDeathTest;
   1853 
   1854 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
   1855   SetEnv(index_var_, "4");
   1856   SetEnv(total_var_, "4");
   1857   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1858 
   1859   SetEnv(index_var_, "4");
   1860   SetEnv(total_var_, "-2");
   1861   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1862 
   1863   SetEnv(index_var_, "5");
   1864   SetEnv(total_var_, "");
   1865   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1866 
   1867   SetEnv(index_var_, "");
   1868   SetEnv(total_var_, "5");
   1869   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1870 }
   1871 
   1872 // Tests that ShouldRunTestOnShard is a partition when 5
   1873 // shards are used.
   1874 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
   1875   // Choose an arbitrary number of tests and shards.
   1876   const int num_tests = 17;
   1877   const int num_shards = 5;
   1878 
   1879   // Check partitioning: each test should be on exactly 1 shard.
   1880   for (int test_id = 0; test_id < num_tests; test_id++) {
   1881     int prev_selected_shard_index = -1;
   1882     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1883       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
   1884         if (prev_selected_shard_index < 0) {
   1885           prev_selected_shard_index = shard_index;
   1886         } else {
   1887           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
   1888             << shard_index << " are both selected to run test " << test_id;
   1889         }
   1890       }
   1891     }
   1892   }
   1893 
   1894   // Check balance: This is not required by the sharding protocol, but is a
   1895   // desirable property for performance.
   1896   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1897     int num_tests_on_shard = 0;
   1898     for (int test_id = 0; test_id < num_tests; test_id++) {
   1899       num_tests_on_shard +=
   1900         ShouldRunTestOnShard(num_shards, shard_index, test_id);
   1901     }
   1902     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
   1903   }
   1904 }
   1905 
   1906 // For the same reason we are not explicitly testing everything in the
   1907 // Test class, there are no separate tests for the following classes
   1908 // (except for some trivial cases):
   1909 //
   1910 //   TestCase, UnitTest, UnitTestResultPrinter.
   1911 //
   1912 // Similarly, there are no separate tests for the following macros:
   1913 //
   1914 //   TEST, TEST_F, RUN_ALL_TESTS
   1915 
   1916 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
   1917   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
   1918   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
   1919 }
   1920 
   1921 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
   1922   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
   1923   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
   1924 }
   1925 
   1926 // When a property using a reserved key is supplied to this function, it
   1927 // tests that a non-fatal failure is added, a fatal failure is not added,
   1928 // and that the property is not recorded.
   1929 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1930     const TestResult& test_result, const char* key) {
   1931   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
   1932   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
   1933                                                   << "' recorded unexpectedly.";
   1934 }
   1935 
   1936 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   1937     const char* key) {
   1938   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
   1939   ASSERT_TRUE(test_info != NULL);
   1940   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
   1941                                                         key);
   1942 }
   1943 
   1944 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1945     const char* key) {
   1946   const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
   1947   ASSERT_TRUE(test_case != NULL);
   1948   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1949       test_case->ad_hoc_test_result(), key);
   1950 }
   1951 
   1952 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   1953     const char* key) {
   1954   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1955       UnitTest::GetInstance()->ad_hoc_test_result(), key);
   1956 }
   1957 
   1958 // Tests that property recording functions in UnitTest outside of tests
   1959 // functions correcly.  Creating a separate instance of UnitTest ensures it
   1960 // is in a state similar to the UnitTest's singleton's between tests.
   1961 class UnitTestRecordPropertyTest :
   1962     public testing::internal::UnitTestRecordPropertyTestHelper {
   1963  public:
   1964   static void SetUpTestCase() {
   1965     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1966         "disabled");
   1967     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1968         "errors");
   1969     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1970         "failures");
   1971     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1972         "name");
   1973     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1974         "tests");
   1975     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1976         "time");
   1977 
   1978     Test::RecordProperty("test_case_key_1", "1");
   1979     const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
   1980     ASSERT_TRUE(test_case != NULL);
   1981 
   1982     ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
   1983     EXPECT_STREQ("test_case_key_1",
   1984                  test_case->ad_hoc_test_result().GetTestProperty(0).key());
   1985     EXPECT_STREQ("1",
   1986                  test_case->ad_hoc_test_result().GetTestProperty(0).value());
   1987   }
   1988 };
   1989 
   1990 // Tests TestResult has the expected property when added.
   1991 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
   1992   UnitTestRecordProperty("key_1", "1");
   1993 
   1994   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
   1995 
   1996   EXPECT_STREQ("key_1",
   1997                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   1998   EXPECT_STREQ("1",
   1999                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2000 }
   2001 
   2002 // Tests TestResult has multiple properties when added.
   2003 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
   2004   UnitTestRecordProperty("key_1", "1");
   2005   UnitTestRecordProperty("key_2", "2");
   2006 
   2007   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
   2008 
   2009   EXPECT_STREQ("key_1",
   2010                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2011   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2012 
   2013   EXPECT_STREQ("key_2",
   2014                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
   2015   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
   2016 }
   2017 
   2018 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   2019 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
   2020   UnitTestRecordProperty("key_1", "1");
   2021   UnitTestRecordProperty("key_2", "2");
   2022   UnitTestRecordProperty("key_1", "12");
   2023   UnitTestRecordProperty("key_2", "22");
   2024 
   2025   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
   2026 
   2027   EXPECT_STREQ("key_1",
   2028                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2029   EXPECT_STREQ("12",
   2030                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2031 
   2032   EXPECT_STREQ("key_2",
   2033                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
   2034   EXPECT_STREQ("22",
   2035                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
   2036 }
   2037 
   2038 TEST_F(UnitTestRecordPropertyTest,
   2039        AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
   2040   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2041       "name");
   2042   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2043       "value_param");
   2044   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2045       "type_param");
   2046   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2047       "status");
   2048   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2049       "time");
   2050   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2051       "classname");
   2052 }
   2053 
   2054 TEST_F(UnitTestRecordPropertyTest,
   2055        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
   2056   EXPECT_NONFATAL_FAILURE(
   2057       Test::RecordProperty("name", "1"),
   2058       "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
   2059       " are reserved");
   2060 }
   2061 
   2062 class UnitTestRecordPropertyTestEnvironment : public Environment {
   2063  public:
   2064   virtual void TearDown() {
   2065     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2066         "tests");
   2067     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2068         "failures");
   2069     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2070         "disabled");
   2071     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2072         "errors");
   2073     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2074         "name");
   2075     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2076         "timestamp");
   2077     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2078         "time");
   2079     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2080         "random_seed");
   2081   }
   2082 };
   2083 
   2084 // This will test property recording outside of any test or test case.
   2085 static Environment* record_property_env =
   2086     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
   2087 
   2088 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
   2089 // of various arities.  They do not attempt to be exhaustive.  Rather,
   2090 // view them as smoke tests that can be easily reviewed and verified.
   2091 // A more complete set of tests for predicate assertions can be found
   2092 // in gtest_pred_impl_unittest.cc.
   2093 
   2094 // First, some predicates and predicate-formatters needed by the tests.
   2095 
   2096 // Returns true iff the argument is an even number.
   2097 bool IsEven(int n) {
   2098   return (n % 2) == 0;
   2099 }
   2100 
   2101 // A functor that returns true iff the argument is an even number.
   2102 struct IsEvenFunctor {
   2103   bool operator()(int n) { return IsEven(n); }
   2104 };
   2105 
   2106 // A predicate-formatter function that asserts the argument is an even
   2107 // number.
   2108 AssertionResult AssertIsEven(const char* expr, int n) {
   2109   if (IsEven(n)) {
   2110     return AssertionSuccess();
   2111   }
   2112 
   2113   Message msg;
   2114   msg << expr << " evaluates to " << n << ", which is not even.";
   2115   return AssertionFailure(msg);
   2116 }
   2117 
   2118 // A predicate function that returns AssertionResult for use in
   2119 // EXPECT/ASSERT_TRUE/FALSE.
   2120 AssertionResult ResultIsEven(int n) {
   2121   if (IsEven(n))
   2122     return AssertionSuccess() << n << " is even";
   2123   else
   2124     return AssertionFailure() << n << " is odd";
   2125 }
   2126 
   2127 // A predicate function that returns AssertionResult but gives no
   2128 // explanation why it succeeds. Needed for testing that
   2129 // EXPECT/ASSERT_FALSE handles such functions correctly.
   2130 AssertionResult ResultIsEvenNoExplanation(int n) {
   2131   if (IsEven(n))
   2132     return AssertionSuccess();
   2133   else
   2134     return AssertionFailure() << n << " is odd";
   2135 }
   2136 
   2137 // A predicate-formatter functor that asserts the argument is an even
   2138 // number.
   2139 struct AssertIsEvenFunctor {
   2140   AssertionResult operator()(const char* expr, int n) {
   2141     return AssertIsEven(expr, n);
   2142   }
   2143 };
   2144 
   2145 // Returns true iff the sum of the arguments is an even number.
   2146 bool SumIsEven2(int n1, int n2) {
   2147   return IsEven(n1 + n2);
   2148 }
   2149 
   2150 // A functor that returns true iff the sum of the arguments is an even
   2151 // number.
   2152 struct SumIsEven3Functor {
   2153   bool operator()(int n1, int n2, int n3) {
   2154     return IsEven(n1 + n2 + n3);
   2155   }
   2156 };
   2157 
   2158 // A predicate-formatter function that asserts the sum of the
   2159 // arguments is an even number.
   2160 AssertionResult AssertSumIsEven4(
   2161     const char* e1, const char* e2, const char* e3, const char* e4,
   2162     int n1, int n2, int n3, int n4) {
   2163   const int sum = n1 + n2 + n3 + n4;
   2164   if (IsEven(sum)) {
   2165     return AssertionSuccess();
   2166   }
   2167 
   2168   Message msg;
   2169   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
   2170       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
   2171       << ") evaluates to " << sum << ", which is not even.";
   2172   return AssertionFailure(msg);
   2173 }
   2174 
   2175 // A predicate-formatter functor that asserts the sum of the arguments
   2176 // is an even number.
   2177 struct AssertSumIsEven5Functor {
   2178   AssertionResult operator()(
   2179       const char* e1, const char* e2, const char* e3, const char* e4,
   2180       const char* e5, int n1, int n2, int n3, int n4, int n5) {
   2181     const int sum = n1 + n2 + n3 + n4 + n5;
   2182     if (IsEven(sum)) {
   2183       return AssertionSuccess();
   2184     }
   2185 
   2186     Message msg;
   2187     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
   2188         << " ("
   2189         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
   2190         << ") evaluates to " << sum << ", which is not even.";
   2191     return AssertionFailure(msg);
   2192   }
   2193 };
   2194 
   2195 
   2196 // Tests unary predicate assertions.
   2197 
   2198 // Tests unary predicate assertions that don't use a custom formatter.
   2199 TEST(Pred1Test, WithoutFormat) {
   2200   // Success cases.
   2201   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
   2202   ASSERT_PRED1(IsEven, 4);
   2203 
   2204   // Failure cases.
   2205   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2206     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
   2207   }, "This failure is expected.");
   2208   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
   2209                        "evaluates to false");
   2210 }
   2211 
   2212 // Tests unary predicate assertions that use a custom formatter.
   2213 TEST(Pred1Test, WithFormat) {
   2214   // Success cases.
   2215   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
   2216   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
   2217     << "This failure is UNEXPECTED!";
   2218 
   2219   // Failure cases.
   2220   const int n = 5;
   2221   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
   2222                           "n evaluates to 5, which is not even.");
   2223   EXPECT_FATAL_FAILURE({  // NOLINT
   2224     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
   2225   }, "This failure is expected.");
   2226 }
   2227 
   2228 // Tests that unary predicate assertions evaluates their arguments
   2229 // exactly once.
   2230 TEST(Pred1Test, SingleEvaluationOnFailure) {
   2231   // A success case.
   2232   static int n = 0;
   2233   EXPECT_PRED1(IsEven, n++);
   2234   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
   2235 
   2236   // A failure case.
   2237   EXPECT_FATAL_FAILURE({  // NOLINT
   2238     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
   2239         << "This failure is expected.";
   2240   }, "This failure is expected.");
   2241   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
   2242 }
   2243 
   2244 
   2245 // Tests predicate assertions whose arity is >= 2.
   2246 
   2247 // Tests predicate assertions that don't use a custom formatter.
   2248 TEST(PredTest, WithoutFormat) {
   2249   // Success cases.
   2250   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
   2251   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
   2252 
   2253   // Failure cases.
   2254   const int n1 = 1;
   2255   const int n2 = 2;
   2256   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2257     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
   2258   }, "This failure is expected.");
   2259   EXPECT_FATAL_FAILURE({  // NOLINT
   2260     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
   2261   }, "evaluates to false");
   2262 }
   2263 
   2264 // Tests predicate assertions that use a custom formatter.
   2265 TEST(PredTest, WithFormat) {
   2266   // Success cases.
   2267   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
   2268     "This failure is UNEXPECTED!";
   2269   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
   2270 
   2271   // Failure cases.
   2272   const int n1 = 1;
   2273   const int n2 = 2;
   2274   const int n3 = 4;
   2275   const int n4 = 6;
   2276   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2277     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
   2278   }, "evaluates to 13, which is not even.");
   2279   EXPECT_FATAL_FAILURE({  // NOLINT
   2280     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
   2281         << "This failure is expected.";
   2282   }, "This failure is expected.");
   2283 }
   2284 
   2285 // Tests that predicate assertions evaluates their arguments
   2286 // exactly once.
   2287 TEST(PredTest, SingleEvaluationOnFailure) {
   2288   // A success case.
   2289   int n1 = 0;
   2290   int n2 = 0;
   2291   EXPECT_PRED2(SumIsEven2, n1++, n2++);
   2292   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2293   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2294 
   2295   // Another success case.
   2296   n1 = n2 = 0;
   2297   int n3 = 0;
   2298   int n4 = 0;
   2299   int n5 = 0;
   2300   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
   2301                       n1++, n2++, n3++, n4++, n5++)
   2302                         << "This failure is UNEXPECTED!";
   2303   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2304   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2305   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2306   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2307   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
   2308 
   2309   // A failure case.
   2310   n1 = n2 = n3 = 0;
   2311   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2312     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
   2313         << "This failure is expected.";
   2314   }, "This failure is expected.");
   2315   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2316   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2317   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2318 
   2319   // Another failure case.
   2320   n1 = n2 = n3 = n4 = 0;
   2321   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2322     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
   2323   }, "evaluates to 1, which is not even.");
   2324   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2325   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2326   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2327   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2328 }
   2329 
   2330 
   2331 // Some helper functions for testing using overloaded/template
   2332 // functions with ASSERT_PREDn and EXPECT_PREDn.
   2333 
   2334 bool IsPositive(double x) {
   2335   return x > 0;
   2336 }
   2337 
   2338 template <typename T>
   2339 bool IsNegative(T x) {
   2340   return x < 0;
   2341 }
   2342 
   2343 template <typename T1, typename T2>
   2344 bool GreaterThan(T1 x1, T2 x2) {
   2345   return x1 > x2;
   2346 }
   2347 
   2348 // Tests that overloaded functions can be used in *_PRED* as long as
   2349 // their types are explicitly specified.
   2350 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
   2351   // C++Builder requires C-style casts rather than static_cast.
   2352   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
   2353   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
   2354 }
   2355 
   2356 // Tests that template functions can be used in *_PRED* as long as
   2357 // their types are explicitly specified.
   2358 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
   2359   EXPECT_PRED1(IsNegative<int>, -5);
   2360   // Makes sure that we can handle templates with more than one
   2361   // parameter.
   2362   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
   2363 }
   2364 
   2365 
   2366 // Some helper functions for testing using overloaded/template
   2367 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
   2368 
   2369 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
   2370   return n > 0 ? AssertionSuccess() :
   2371       AssertionFailure(Message() << "Failure");
   2372 }
   2373 
   2374 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
   2375   return x > 0 ? AssertionSuccess() :
   2376       AssertionFailure(Message() << "Failure");
   2377 }
   2378 
   2379 template <typename T>
   2380 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
   2381   return x < 0 ? AssertionSuccess() :
   2382       AssertionFailure(Message() << "Failure");
   2383 }
   2384 
   2385 template <typename T1, typename T2>
   2386 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
   2387                              const T1& x1, const T2& x2) {
   2388   return x1 == x2 ? AssertionSuccess() :
   2389       AssertionFailure(Message() << "Failure");
   2390 }
   2391 
   2392 // Tests that overloaded functions can be used in *_PRED_FORMAT*
   2393 // without explicitly specifying their types.
   2394 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
   2395   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
   2396   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
   2397 }
   2398 
   2399 // Tests that template functions can be used in *_PRED_FORMAT* without
   2400 // explicitly specifying their types.
   2401 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
   2402   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
   2403   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
   2404 }
   2405 
   2406 
   2407 // Tests string assertions.
   2408 
   2409 // Tests ASSERT_STREQ with non-NULL arguments.
   2410 TEST(StringAssertionTest, ASSERT_STREQ) {
   2411   const char * const p1 = "good";
   2412   ASSERT_STREQ(p1, p1);
   2413 
   2414   // Let p2 have the same content as p1, but be at a different address.
   2415   const char p2[] = "good";
   2416   ASSERT_STREQ(p1, p2);
   2417 
   2418   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
   2419                        "Expected: \"bad\"");
   2420 }
   2421 
   2422 // Tests ASSERT_STREQ with NULL arguments.
   2423 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
   2424   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
   2425   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
   2426                        "non-null");
   2427 }
   2428 
   2429 // Tests ASSERT_STREQ with NULL arguments.
   2430 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
   2431   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
   2432                        "non-null");
   2433 }
   2434 
   2435 // Tests ASSERT_STRNE.
   2436 TEST(StringAssertionTest, ASSERT_STRNE) {
   2437   ASSERT_STRNE("hi", "Hi");
   2438   ASSERT_STRNE("Hi", NULL);
   2439   ASSERT_STRNE(NULL, "Hi");
   2440   ASSERT_STRNE("", NULL);
   2441   ASSERT_STRNE(NULL, "");
   2442   ASSERT_STRNE("", "Hi");
   2443   ASSERT_STRNE("Hi", "");
   2444   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
   2445                        "\"Hi\" vs \"Hi\"");
   2446 }
   2447 
   2448 // Tests ASSERT_STRCASEEQ.
   2449 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
   2450   ASSERT_STRCASEEQ("hi", "Hi");
   2451   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
   2452 
   2453   ASSERT_STRCASEEQ("", "");
   2454   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
   2455                        "(ignoring case)");
   2456 }
   2457 
   2458 // Tests ASSERT_STRCASENE.
   2459 TEST(StringAssertionTest, ASSERT_STRCASENE) {
   2460   ASSERT_STRCASENE("hi1", "Hi2");
   2461   ASSERT_STRCASENE("Hi", NULL);
   2462   ASSERT_STRCASENE(NULL, "Hi");
   2463   ASSERT_STRCASENE("", NULL);
   2464   ASSERT_STRCASENE(NULL, "");
   2465   ASSERT_STRCASENE("", "Hi");
   2466   ASSERT_STRCASENE("Hi", "");
   2467   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
   2468                        "(ignoring case)");
   2469 }
   2470 
   2471 // Tests *_STREQ on wide strings.
   2472 TEST(StringAssertionTest, STREQ_Wide) {
   2473   // NULL strings.
   2474   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
   2475 
   2476   // Empty strings.
   2477   ASSERT_STREQ(L"", L"");
   2478 
   2479   // Non-null vs NULL.
   2480   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
   2481                           "non-null");
   2482 
   2483   // Equal strings.
   2484   EXPECT_STREQ(L"Hi", L"Hi");
   2485 
   2486   // Unequal strings.
   2487   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
   2488                           "Abc");
   2489 
   2490   // Strings containing wide characters.
   2491   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
   2492                           "abc");
   2493 
   2494   // The streaming variation.
   2495   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2496     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
   2497   }, "Expected failure");
   2498 }
   2499 
   2500 // Tests *_STRNE on wide strings.
   2501 TEST(StringAssertionTest, STRNE_Wide) {
   2502   // NULL strings.
   2503   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2504     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
   2505   }, "");
   2506 
   2507   // Empty strings.
   2508   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
   2509                           "L\"\"");
   2510 
   2511   // Non-null vs NULL.
   2512   ASSERT_STRNE(L"non-null", NULL);
   2513 
   2514   // Equal strings.
   2515   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
   2516                           "L\"Hi\"");
   2517 
   2518   // Unequal strings.
   2519   EXPECT_STRNE(L"abc", L"Abc");
   2520 
   2521   // Strings containing wide characters.
   2522   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
   2523                           "abc");
   2524 
   2525   // The streaming variation.
   2526   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
   2527 }
   2528 
   2529 // Tests for ::testing::IsSubstring().
   2530 
   2531 // Tests that IsSubstring() returns the correct result when the input
   2532 // argument type is const char*.
   2533 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
   2534   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
   2535   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
   2536   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
   2537 
   2538   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
   2539   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
   2540 }
   2541 
   2542 // Tests that IsSubstring() returns the correct result when the input
   2543 // argument type is const wchar_t*.
   2544 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
   2545   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
   2546   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
   2547   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
   2548 
   2549   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
   2550   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
   2551 }
   2552 
   2553 // Tests that IsSubstring() generates the correct message when the input
   2554 // argument type is const char*.
   2555 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
   2556   EXPECT_STREQ("Value of: needle_expr\n"
   2557                "  Actual: \"needle\"\n"
   2558                "Expected: a substring of haystack_expr\n"
   2559                "Which is: \"haystack\"",
   2560                IsSubstring("needle_expr", "haystack_expr",
   2561                            "needle", "haystack").failure_message());
   2562 }
   2563 
   2564 // Tests that IsSubstring returns the correct result when the input
   2565 // argument type is ::std::string.
   2566 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
   2567   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
   2568   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
   2569 }
   2570 
   2571 #if GTEST_HAS_STD_WSTRING
   2572 // Tests that IsSubstring returns the correct result when the input
   2573 // argument type is ::std::wstring.
   2574 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
   2575   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2576   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2577 }
   2578 
   2579 // Tests that IsSubstring() generates the correct message when the input
   2580 // argument type is ::std::wstring.
   2581 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
   2582   EXPECT_STREQ("Value of: needle_expr\n"
   2583                "  Actual: L\"needle\"\n"
   2584                "Expected: a substring of haystack_expr\n"
   2585                "Which is: L\"haystack\"",
   2586                IsSubstring(
   2587                    "needle_expr", "haystack_expr",
   2588                    ::std::wstring(L"needle"), L"haystack").failure_message());
   2589 }
   2590 
   2591 #endif  // GTEST_HAS_STD_WSTRING
   2592 
   2593 // Tests for ::testing::IsNotSubstring().
   2594 
   2595 // Tests that IsNotSubstring() returns the correct result when the input
   2596 // argument type is const char*.
   2597 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
   2598   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
   2599   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
   2600 }
   2601 
   2602 // Tests that IsNotSubstring() returns the correct result when the input
   2603 // argument type is const wchar_t*.
   2604 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
   2605   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
   2606   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
   2607 }
   2608 
   2609 // Tests that IsNotSubstring() generates the correct message when the input
   2610 // argument type is const wchar_t*.
   2611 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
   2612   EXPECT_STREQ("Value of: needle_expr\n"
   2613                "  Actual: L\"needle\"\n"
   2614                "Expected: not a substring of haystack_expr\n"
   2615                "Which is: L\"two needles\"",
   2616                IsNotSubstring(
   2617                    "needle_expr", "haystack_expr",
   2618                    L"needle", L"two needles").failure_message());
   2619 }
   2620 
   2621 // Tests that IsNotSubstring returns the correct result when the input
   2622 // argument type is ::std::string.
   2623 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
   2624   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
   2625   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
   2626 }
   2627 
   2628 // Tests that IsNotSubstring() generates the correct message when the input
   2629 // argument type is ::std::string.
   2630 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
   2631   EXPECT_STREQ("Value of: needle_expr\n"
   2632                "  Actual: \"needle\"\n"
   2633                "Expected: not a substring of haystack_expr\n"
   2634                "Which is: \"two needles\"",
   2635                IsNotSubstring(
   2636                    "needle_expr", "haystack_expr",
   2637                    ::std::string("needle"), "two needles").failure_message());
   2638 }
   2639 
   2640 #if GTEST_HAS_STD_WSTRING
   2641 
   2642 // Tests that IsNotSubstring returns the correct result when the input
   2643 // argument type is ::std::wstring.
   2644 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
   2645   EXPECT_FALSE(
   2646       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2647   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2648 }
   2649 
   2650 #endif  // GTEST_HAS_STD_WSTRING
   2651 
   2652 // Tests floating-point assertions.
   2653 
   2654 template <typename RawType>
   2655 class FloatingPointTest : public Test {
   2656  protected:
   2657   // Pre-calculated numbers to be used by the tests.
   2658   struct TestValues {
   2659     RawType close_to_positive_zero;
   2660     RawType close_to_negative_zero;
   2661     RawType further_from_negative_zero;
   2662 
   2663     RawType close_to_one;
   2664     RawType further_from_one;
   2665 
   2666     RawType infinity;
   2667     RawType close_to_infinity;
   2668     RawType further_from_infinity;
   2669 
   2670     RawType nan1;
   2671     RawType nan2;
   2672   };
   2673 
   2674   typedef typename testing::internal::FloatingPoint<RawType> Floating;
   2675   typedef typename Floating::Bits Bits;
   2676 
   2677   virtual void SetUp() {
   2678     const size_t max_ulps = Floating::kMaxUlps;
   2679 
   2680     // The bits that represent 0.0.
   2681     const Bits zero_bits = Floating(0).bits();
   2682 
   2683     // Makes some numbers close to 0.0.
   2684     values_.close_to_positive_zero = Floating::ReinterpretBits(
   2685         zero_bits + max_ulps/2);
   2686     values_.close_to_negative_zero = -Floating::ReinterpretBits(
   2687         zero_bits + max_ulps - max_ulps/2);
   2688     values_.further_from_negative_zero = -Floating::ReinterpretBits(
   2689         zero_bits + max_ulps + 1 - max_ulps/2);
   2690 
   2691     // The bits that represent 1.0.
   2692     const Bits one_bits = Floating(1).bits();
   2693 
   2694     // Makes some numbers close to 1.0.
   2695     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
   2696     values_.further_from_one = Floating::ReinterpretBits(
   2697         one_bits + max_ulps + 1);
   2698 
   2699     // +infinity.
   2700     values_.infinity = Floating::Infinity();
   2701 
   2702     // The bits that represent +infinity.
   2703     const Bits infinity_bits = Floating(values_.infinity).bits();
   2704 
   2705     // Makes some numbers close to infinity.
   2706     values_.close_to_infinity = Floating::ReinterpretBits(
   2707         infinity_bits - max_ulps);
   2708     values_.further_from_infinity = Floating::ReinterpretBits(
   2709         infinity_bits - max_ulps - 1);
   2710 
   2711     // Makes some NAN's.  Sets the most significant bit of the fraction so that
   2712     // our NaN's are quiet; trying to process a signaling NaN would raise an
   2713     // exception if our environment enables floating point exceptions.
   2714     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2715         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
   2716     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2717         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
   2718   }
   2719 
   2720   void TestSize() {
   2721     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
   2722   }
   2723 
   2724   static TestValues values_;
   2725 };
   2726 
   2727 template <typename RawType>
   2728 typename FloatingPointTest<RawType>::TestValues
   2729     FloatingPointTest<RawType>::values_;
   2730 
   2731 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
   2732 typedef FloatingPointTest<float> FloatTest;
   2733 
   2734 // Tests that the size of Float::Bits matches the size of float.
   2735 TEST_F(FloatTest, Size) {
   2736   TestSize();
   2737 }
   2738 
   2739 // Tests comparing with +0 and -0.
   2740 TEST_F(FloatTest, Zeros) {
   2741   EXPECT_FLOAT_EQ(0.0, -0.0);
   2742   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
   2743                           "1.0");
   2744   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
   2745                        "1.5");
   2746 }
   2747 
   2748 // Tests comparing numbers close to 0.
   2749 //
   2750 // This ensures that *_FLOAT_EQ handles the sign correctly and no
   2751 // overflow occurs when comparing numbers whose absolute value is very
   2752 // small.
   2753 TEST_F(FloatTest, AlmostZeros) {
   2754   // In C++Builder, names within local classes (such as used by
   2755   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2756   // scoping class.  Use a static local alias as a workaround.
   2757   // We use the assignment syntax since some compilers, like Sun Studio,
   2758   // don't allow initializing references using construction syntax
   2759   // (parentheses).
   2760   static const FloatTest::TestValues& v = this->values_;
   2761 
   2762   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
   2763   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
   2764   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2765 
   2766   EXPECT_FATAL_FAILURE({  // NOLINT
   2767     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
   2768                     v.further_from_negative_zero);
   2769   }, "v.further_from_negative_zero");
   2770 }
   2771 
   2772 // Tests comparing numbers close to each other.
   2773 TEST_F(FloatTest, SmallDiff) {
   2774   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
   2775   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
   2776                           "values_.further_from_one");
   2777 }
   2778 
   2779 // Tests comparing numbers far apart.
   2780 TEST_F(FloatTest, LargeDiff) {
   2781   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
   2782                           "3.0");
   2783 }
   2784 
   2785 // Tests comparing with infinity.
   2786 //
   2787 // This ensures that no overflow occurs when comparing numbers whose
   2788 // absolute value is very large.
   2789 TEST_F(FloatTest, Infinity) {
   2790   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
   2791   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
   2792 #if !GTEST_OS_SYMBIAN
   2793   // Nokia's STLport crashes if we try to output infinity or NaN.
   2794   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
   2795                           "-values_.infinity");
   2796 
   2797   // This is interesting as the representations of infinity and nan1
   2798   // are only 1 DLP apart.
   2799   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
   2800                           "values_.nan1");
   2801 #endif  // !GTEST_OS_SYMBIAN
   2802 }
   2803 
   2804 // Tests that comparing with NAN always returns false.
   2805 TEST_F(FloatTest, NaN) {
   2806 #if !GTEST_OS_SYMBIAN
   2807 // Nokia's STLport crashes if we try to output infinity or NaN.
   2808 
   2809   // In C++Builder, names within local classes (such as used by
   2810   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2811   // scoping class.  Use a static local alias as a workaround.
   2812   // We use the assignment syntax since some compilers, like Sun Studio,
   2813   // don't allow initializing references using construction syntax
   2814   // (parentheses).
   2815   static const FloatTest::TestValues& v = this->values_;
   2816 
   2817   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
   2818                           "v.nan1");
   2819   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
   2820                           "v.nan2");
   2821   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
   2822                           "v.nan1");
   2823 
   2824   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
   2825                        "v.infinity");
   2826 #endif  // !GTEST_OS_SYMBIAN
   2827 }
   2828 
   2829 // Tests that *_FLOAT_EQ are reflexive.
   2830 TEST_F(FloatTest, Reflexive) {
   2831   EXPECT_FLOAT_EQ(0.0, 0.0);
   2832   EXPECT_FLOAT_EQ(1.0, 1.0);
   2833   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
   2834 }
   2835 
   2836 // Tests that *_FLOAT_EQ are commutative.
   2837 TEST_F(FloatTest, Commutative) {
   2838   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
   2839   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
   2840 
   2841   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
   2842   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
   2843                           "1.0");
   2844 }
   2845 
   2846 // Tests EXPECT_NEAR.
   2847 TEST_F(FloatTest, EXPECT_NEAR) {
   2848   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
   2849   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
   2850   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2851                           "The difference between 1.0f and 1.5f is 0.5, "
   2852                           "which exceeds 0.25f");
   2853   // To work around a bug in gcc 2.95.0, there is intentionally no
   2854   // space after the first comma in the previous line.
   2855 }
   2856 
   2857 // Tests ASSERT_NEAR.
   2858 TEST_F(FloatTest, ASSERT_NEAR) {
   2859   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
   2860   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
   2861   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2862                        "The difference between 1.0f and 1.5f is 0.5, "
   2863                        "which exceeds 0.25f");
   2864   // To work around a bug in gcc 2.95.0, there is intentionally no
   2865   // space after the first comma in the previous line.
   2866 }
   2867 
   2868 // Tests the cases where FloatLE() should succeed.
   2869 TEST_F(FloatTest, FloatLESucceeds) {
   2870   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
   2871   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
   2872 
   2873   // or when val1 is greater than, but almost equals to, val2.
   2874   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
   2875 }
   2876 
   2877 // Tests the cases where FloatLE() should fail.
   2878 TEST_F(FloatTest, FloatLEFails) {
   2879   // When val1 is greater than val2 by a large margin,
   2880   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
   2881                           "(2.0f) <= (1.0f)");
   2882 
   2883   // or by a small yet non-negligible margin,
   2884   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2885     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
   2886   }, "(values_.further_from_one) <= (1.0f)");
   2887 
   2888 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2889   // Nokia's STLport crashes if we try to output infinity or NaN.
   2890   // C++Builder gives bad results for ordered comparisons involving NaNs
   2891   // due to compiler bugs.
   2892   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2893     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
   2894   }, "(values_.nan1) <= (values_.infinity)");
   2895   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2896     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
   2897   }, "(-values_.infinity) <= (values_.nan1)");
   2898   EXPECT_FATAL_FAILURE({  // NOLINT
   2899     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
   2900   }, "(values_.nan1) <= (values_.nan1)");
   2901 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2902 }
   2903 
   2904 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
   2905 typedef FloatingPointTest<double> DoubleTest;
   2906 
   2907 // Tests that the size of Double::Bits matches the size of double.
   2908 TEST_F(DoubleTest, Size) {
   2909   TestSize();
   2910 }
   2911 
   2912 // Tests comparing with +0 and -0.
   2913 TEST_F(DoubleTest, Zeros) {
   2914   EXPECT_DOUBLE_EQ(0.0, -0.0);
   2915   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
   2916                           "1.0");
   2917   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
   2918                        "1.0");
   2919 }
   2920 
   2921 // Tests comparing numbers close to 0.
   2922 //
   2923 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
   2924 // overflow occurs when comparing numbers whose absolute value is very
   2925 // small.
   2926 TEST_F(DoubleTest, AlmostZeros) {
   2927   // In C++Builder, names within local classes (such as used by
   2928   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2929   // scoping class.  Use a static local alias as a workaround.
   2930   // We use the assignment syntax since some compilers, like Sun Studio,
   2931   // don't allow initializing references using construction syntax
   2932   // (parentheses).
   2933   static const DoubleTest::TestValues& v = this->values_;
   2934 
   2935   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
   2936   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
   2937   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2938 
   2939   EXPECT_FATAL_FAILURE({  // NOLINT
   2940     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
   2941                      v.further_from_negative_zero);
   2942   }, "v.further_from_negative_zero");
   2943 }
   2944 
   2945 // Tests comparing numbers close to each other.
   2946 TEST_F(DoubleTest, SmallDiff) {
   2947   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
   2948   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
   2949                           "values_.further_from_one");
   2950 }
   2951 
   2952 // Tests comparing numbers far apart.
   2953 TEST_F(DoubleTest, LargeDiff) {
   2954   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
   2955                           "3.0");
   2956 }
   2957 
   2958 // Tests comparing with infinity.
   2959 //
   2960 // This ensures that no overflow occurs when comparing numbers whose
   2961 // absolute value is very large.
   2962 TEST_F(DoubleTest, Infinity) {
   2963   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
   2964   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
   2965 #if !GTEST_OS_SYMBIAN
   2966   // Nokia's STLport crashes if we try to output infinity or NaN.
   2967   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
   2968                           "-values_.infinity");
   2969 
   2970   // This is interesting as the representations of infinity_ and nan1_
   2971   // are only 1 DLP apart.
   2972   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
   2973                           "values_.nan1");
   2974 #endif  // !GTEST_OS_SYMBIAN
   2975 }
   2976 
   2977 // Tests that comparing with NAN always returns false.
   2978 TEST_F(DoubleTest, NaN) {
   2979 #if !GTEST_OS_SYMBIAN
   2980   // In C++Builder, names within local classes (such as used by
   2981   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2982   // scoping class.  Use a static local alias as a workaround.
   2983   // We use the assignment syntax since some compilers, like Sun Studio,
   2984   // don't allow initializing references using construction syntax
   2985   // (parentheses).
   2986   static const DoubleTest::TestValues& v = this->values_;
   2987 
   2988   // Nokia's STLport crashes if we try to output infinity or NaN.
   2989   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
   2990                           "v.nan1");
   2991   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
   2992   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
   2993   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
   2994                        "v.infinity");
   2995 #endif  // !GTEST_OS_SYMBIAN
   2996 }
   2997 
   2998 // Tests that *_DOUBLE_EQ are reflexive.
   2999 TEST_F(DoubleTest, Reflexive) {
   3000   EXPECT_DOUBLE_EQ(0.0, 0.0);
   3001   EXPECT_DOUBLE_EQ(1.0, 1.0);
   3002 #if !GTEST_OS_SYMBIAN
   3003   // Nokia's STLport crashes if we try to output infinity or NaN.
   3004   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
   3005 #endif  // !GTEST_OS_SYMBIAN
   3006 }
   3007 
   3008 // Tests that *_DOUBLE_EQ are commutative.
   3009 TEST_F(DoubleTest, Commutative) {
   3010   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
   3011   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
   3012 
   3013   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
   3014   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
   3015                           "1.0");
   3016 }
   3017 
   3018 // Tests EXPECT_NEAR.
   3019 TEST_F(DoubleTest, EXPECT_NEAR) {
   3020   EXPECT_NEAR(-1.0, -1.1, 0.2);
   3021   EXPECT_NEAR(2.0, 3.0, 1.0);
   3022   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3023                           "The difference between 1.0 and 1.5 is 0.5, "
   3024                           "which exceeds 0.25");
   3025   // To work around a bug in gcc 2.95.0, there is intentionally no
   3026   // space after the first comma in the previous statement.
   3027 }
   3028 
   3029 // Tests ASSERT_NEAR.
   3030 TEST_F(DoubleTest, ASSERT_NEAR) {
   3031   ASSERT_NEAR(-1.0, -1.1, 0.2);
   3032   ASSERT_NEAR(2.0, 3.0, 1.0);
   3033   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3034                        "The difference between 1.0 and 1.5 is 0.5, "
   3035                        "which exceeds 0.25");
   3036   // To work around a bug in gcc 2.95.0, there is intentionally no
   3037   // space after the first comma in the previous statement.
   3038 }
   3039 
   3040 // Tests the cases where DoubleLE() should succeed.
   3041 TEST_F(DoubleTest, DoubleLESucceeds) {
   3042   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
   3043   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
   3044 
   3045   // or when val1 is greater than, but almost equals to, val2.
   3046   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
   3047 }
   3048 
   3049 // Tests the cases where DoubleLE() should fail.
   3050 TEST_F(DoubleTest, DoubleLEFails) {
   3051   // When val1 is greater than val2 by a large margin,
   3052   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
   3053                           "(2.0) <= (1.0)");
   3054 
   3055   // or by a small yet non-negligible margin,
   3056   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3057     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
   3058   }, "(values_.further_from_one) <= (1.0)");
   3059 
   3060 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3061   // Nokia's STLport crashes if we try to output infinity or NaN.
   3062   // C++Builder gives bad results for ordered comparisons involving NaNs
   3063   // due to compiler bugs.
   3064   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3065     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
   3066   }, "(values_.nan1) <= (values_.infinity)");
   3067   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3068     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
   3069   }, " (-values_.infinity) <= (values_.nan1)");
   3070   EXPECT_FATAL_FAILURE({  // NOLINT
   3071     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
   3072   }, "(values_.nan1) <= (values_.nan1)");
   3073 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3074 }
   3075 
   3076 
   3077 // Verifies that a test or test case whose name starts with DISABLED_ is
   3078 // not run.
   3079 
   3080 // A test whose name starts with DISABLED_.
   3081 // Should not run.
   3082 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
   3083   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3084 }
   3085 
   3086 // A test whose name does not start with DISABLED_.
   3087 // Should run.
   3088 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
   3089   EXPECT_EQ(1, 1);
   3090 }
   3091 
   3092 // A test case whose name starts with DISABLED_.
   3093 // Should not run.
   3094 TEST(DISABLED_TestCase, TestShouldNotRun) {
   3095   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3096 }
   3097 
   3098 // A test case and test whose names start with DISABLED_.
   3099 // Should not run.
   3100 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
   3101   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3102 }
   3103 
   3104 // Check that when all tests in a test case are disabled, SetupTestCase() and
   3105 // TearDownTestCase() are not called.
   3106 class DisabledTestsTest : public Test {
   3107  protected:
   3108   static void SetUpTestCase() {
   3109     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3110               "SetupTestCase() should not be called.";
   3111   }
   3112 
   3113   static void TearDownTestCase() {
   3114     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3115               "TearDownTestCase() should not be called.";
   3116   }
   3117 };
   3118 
   3119 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
   3120   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3121 }
   3122 
   3123 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
   3124   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3125 }
   3126 
   3127 // Tests that disabled typed tests aren't run.
   3128 
   3129 #if GTEST_HAS_TYPED_TEST
   3130 
   3131 template <typename T>
   3132 class TypedTest : public Test {
   3133 };
   3134 
   3135 typedef testing::Types<int, double> NumericTypes;
   3136 TYPED_TEST_CASE(TypedTest, NumericTypes);
   3137 
   3138 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
   3139   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3140 }
   3141 
   3142 template <typename T>
   3143 class DISABLED_TypedTest : public Test {
   3144 };
   3145 
   3146 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
   3147 
   3148 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
   3149   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3150 }
   3151 
   3152 #endif  // GTEST_HAS_TYPED_TEST
   3153 
   3154 // Tests that disabled type-parameterized tests aren't run.
   3155 
   3156 #if GTEST_HAS_TYPED_TEST_P
   3157 
   3158 template <typename T>
   3159 class TypedTestP : public Test {
   3160 };
   3161 
   3162 TYPED_TEST_CASE_P(TypedTestP);
   3163 
   3164 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
   3165   FAIL() << "Unexpected failure: "
   3166          << "Disabled type-parameterized test should not run.";
   3167 }
   3168 
   3169 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
   3170 
   3171 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
   3172 
   3173 template <typename T>
   3174 class DISABLED_TypedTestP : public Test {
   3175 };
   3176 
   3177 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
   3178 
   3179 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
   3180   FAIL() << "Unexpected failure: "
   3181          << "Disabled type-parameterized test should not run.";
   3182 }
   3183 
   3184 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
   3185 
   3186 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
   3187 
   3188 #endif  // GTEST_HAS_TYPED_TEST_P
   3189 
   3190 // Tests that assertion macros evaluate their arguments exactly once.
   3191 
   3192 class SingleEvaluationTest : public Test {
   3193  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   3194   // This helper function is needed by the FailedASSERT_STREQ test
   3195   // below.  It's public to work around C++Builder's bug with scoping local
   3196   // classes.
   3197   static void CompareAndIncrementCharPtrs() {
   3198     ASSERT_STREQ(p1_++, p2_++);
   3199   }
   3200 
   3201   // This helper function is needed by the FailedASSERT_NE test below.  It's
   3202   // public to work around C++Builder's bug with scoping local classes.
   3203   static void CompareAndIncrementInts() {
   3204     ASSERT_NE(a_++, b_++);
   3205   }
   3206 
   3207  protected:
   3208   SingleEvaluationTest() {
   3209     p1_ = s1_;
   3210     p2_ = s2_;
   3211     a_ = 0;
   3212     b_ = 0;
   3213   }
   3214 
   3215   static const char* const s1_;
   3216   static const char* const s2_;
   3217   static const char* p1_;
   3218   static const char* p2_;
   3219 
   3220   static int a_;
   3221   static int b_;
   3222 };
   3223 
   3224 const char* const SingleEvaluationTest::s1_ = "01234";
   3225 const char* const SingleEvaluationTest::s2_ = "abcde";
   3226 const char* SingleEvaluationTest::p1_;
   3227 const char* SingleEvaluationTest::p2_;
   3228 int SingleEvaluationTest::a_;
   3229 int SingleEvaluationTest::b_;
   3230 
   3231 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
   3232 // exactly once.
   3233 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
   3234   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
   3235                        "p2_++");
   3236   EXPECT_EQ(s1_ + 1, p1_);
   3237   EXPECT_EQ(s2_ + 1, p2_);
   3238 }
   3239 
   3240 // Tests that string assertion arguments are evaluated exactly once.
   3241 TEST_F(SingleEvaluationTest, ASSERT_STR) {
   3242   // successful EXPECT_STRNE
   3243   EXPECT_STRNE(p1_++, p2_++);
   3244   EXPECT_EQ(s1_ + 1, p1_);
   3245   EXPECT_EQ(s2_ + 1, p2_);
   3246 
   3247   // failed EXPECT_STRCASEEQ
   3248   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
   3249                           "ignoring case");
   3250   EXPECT_EQ(s1_ + 2, p1_);
   3251   EXPECT_EQ(s2_ + 2, p2_);
   3252 }
   3253 
   3254 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
   3255 // once.
   3256 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
   3257   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
   3258                        "(a_++) != (b_++)");
   3259   EXPECT_EQ(1, a_);
   3260   EXPECT_EQ(1, b_);
   3261 }
   3262 
   3263 // Tests that assertion arguments are evaluated exactly once.
   3264 TEST_F(SingleEvaluationTest, OtherCases) {
   3265   // successful EXPECT_TRUE
   3266   EXPECT_TRUE(0 == a_++);  // NOLINT
   3267   EXPECT_EQ(1, a_);
   3268 
   3269   // failed EXPECT_TRUE
   3270   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
   3271   EXPECT_EQ(2, a_);
   3272 
   3273   // successful EXPECT_GT
   3274   EXPECT_GT(a_++, b_++);
   3275   EXPECT_EQ(3, a_);
   3276   EXPECT_EQ(1, b_);
   3277 
   3278   // failed EXPECT_LT
   3279   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
   3280   EXPECT_EQ(4, a_);
   3281   EXPECT_EQ(2, b_);
   3282 
   3283   // successful ASSERT_TRUE
   3284   ASSERT_TRUE(0 < a_++);  // NOLINT
   3285   EXPECT_EQ(5, a_);
   3286 
   3287   // successful ASSERT_GT
   3288   ASSERT_GT(a_++, b_++);
   3289   EXPECT_EQ(6, a_);
   3290   EXPECT_EQ(3, b_);
   3291 }
   3292 
   3293 #if GTEST_HAS_EXCEPTIONS
   3294 
   3295 void ThrowAnInteger() {
   3296   throw 1;
   3297 }
   3298 
   3299 // Tests that assertion arguments are evaluated exactly once.
   3300 TEST_F(SingleEvaluationTest, ExceptionTests) {
   3301   // successful EXPECT_THROW
   3302   EXPECT_THROW({  // NOLINT
   3303     a_++;
   3304     ThrowAnInteger();
   3305   }, int);
   3306   EXPECT_EQ(1, a_);
   3307 
   3308   // failed EXPECT_THROW, throws different
   3309   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
   3310     a_++;
   3311     ThrowAnInteger();
   3312   }, bool), "throws a different type");
   3313   EXPECT_EQ(2, a_);
   3314 
   3315   // failed EXPECT_THROW, throws nothing
   3316   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
   3317   EXPECT_EQ(3, a_);
   3318 
   3319   // successful EXPECT_NO_THROW
   3320   EXPECT_NO_THROW(a_++);
   3321   EXPECT_EQ(4, a_);
   3322 
   3323   // failed EXPECT_NO_THROW
   3324   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
   3325     a_++;
   3326     ThrowAnInteger();
   3327   }), "it throws");
   3328   EXPECT_EQ(5, a_);
   3329 
   3330   // successful EXPECT_ANY_THROW
   3331   EXPECT_ANY_THROW({  // NOLINT
   3332     a_++;
   3333     ThrowAnInteger();
   3334   });
   3335   EXPECT_EQ(6, a_);
   3336 
   3337   // failed EXPECT_ANY_THROW
   3338   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
   3339   EXPECT_EQ(7, a_);
   3340 }
   3341 
   3342 #endif  // GTEST_HAS_EXCEPTIONS
   3343 
   3344 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
   3345 class NoFatalFailureTest : public Test {
   3346  protected:
   3347   void Succeeds() {}
   3348   void FailsNonFatal() {
   3349     ADD_FAILURE() << "some non-fatal failure";
   3350   }
   3351   void Fails() {
   3352     FAIL() << "some fatal failure";
   3353   }
   3354 
   3355   void DoAssertNoFatalFailureOnFails() {
   3356     ASSERT_NO_FATAL_FAILURE(Fails());
   3357     ADD_FAILURE() << "shold not reach here.";
   3358   }
   3359 
   3360   void DoExpectNoFatalFailureOnFails() {
   3361     EXPECT_NO_FATAL_FAILURE(Fails());
   3362     ADD_FAILURE() << "other failure";
   3363   }
   3364 };
   3365 
   3366 TEST_F(NoFatalFailureTest, NoFailure) {
   3367   EXPECT_NO_FATAL_FAILURE(Succeeds());
   3368   ASSERT_NO_FATAL_FAILURE(Succeeds());
   3369 }
   3370 
   3371 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
   3372   EXPECT_NONFATAL_FAILURE(
   3373       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
   3374       "some non-fatal failure");
   3375   EXPECT_NONFATAL_FAILURE(
   3376       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
   3377       "some non-fatal failure");
   3378 }
   3379 
   3380 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
   3381   TestPartResultArray gtest_failures;
   3382   {
   3383     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3384     DoAssertNoFatalFailureOnFails();
   3385   }
   3386   ASSERT_EQ(2, gtest_failures.size());
   3387   EXPECT_EQ(TestPartResult::kFatalFailure,
   3388             gtest_failures.GetTestPartResult(0).type());
   3389   EXPECT_EQ(TestPartResult::kFatalFailure,
   3390             gtest_failures.GetTestPartResult(1).type());
   3391   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3392                       gtest_failures.GetTestPartResult(0).message());
   3393   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3394                       gtest_failures.GetTestPartResult(1).message());
   3395 }
   3396 
   3397 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
   3398   TestPartResultArray gtest_failures;
   3399   {
   3400     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3401     DoExpectNoFatalFailureOnFails();
   3402   }
   3403   ASSERT_EQ(3, gtest_failures.size());
   3404   EXPECT_EQ(TestPartResult::kFatalFailure,
   3405             gtest_failures.GetTestPartResult(0).type());
   3406   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3407             gtest_failures.GetTestPartResult(1).type());
   3408   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3409             gtest_failures.GetTestPartResult(2).type());
   3410   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3411                       gtest_failures.GetTestPartResult(0).message());
   3412   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3413                       gtest_failures.GetTestPartResult(1).message());
   3414   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
   3415                       gtest_failures.GetTestPartResult(2).message());
   3416 }
   3417 
   3418 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
   3419   TestPartResultArray gtest_failures;
   3420   {
   3421     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3422     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
   3423   }
   3424   ASSERT_EQ(2, gtest_failures.size());
   3425   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3426             gtest_failures.GetTestPartResult(0).type());
   3427   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3428             gtest_failures.GetTestPartResult(1).type());
   3429   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
   3430                       gtest_failures.GetTestPartResult(0).message());
   3431   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
   3432                       gtest_failures.GetTestPartResult(1).message());
   3433 }
   3434 
   3435 // Tests non-string assertions.
   3436 
   3437 std::string EditsToString(const std::vector<EditType>& edits) {
   3438   std::string out;
   3439   for (size_t i = 0; i < edits.size(); ++i) {
   3440     static const char kEdits[] = " +-/";
   3441     out.append(1, kEdits[edits[i]]);
   3442   }
   3443   return out;
   3444 }
   3445 
   3446 std::vector<size_t> CharsToIndices(const std::string& str) {
   3447   std::vector<size_t> out;
   3448   for (size_t i = 0; i < str.size(); ++i) {
   3449     out.push_back(str[i]);
   3450   }
   3451   return out;
   3452 }
   3453 
   3454 std::vector<std::string> CharsToLines(const std::string& str) {
   3455   std::vector<std::string> out;
   3456   for (size_t i = 0; i < str.size(); ++i) {
   3457     out.push_back(str.substr(i, 1));
   3458   }
   3459   return out;
   3460 }
   3461 
   3462 TEST(EditDistance, TestCases) {
   3463   struct Case {
   3464     int line;
   3465     const char* left;
   3466     const char* right;
   3467     const char* expected_edits;
   3468     const char* expected_diff;
   3469   };
   3470   static const Case kCases[] = {
   3471       // No change.
   3472       {__LINE__, "A", "A", " ", ""},
   3473       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
   3474       // Simple adds.
   3475       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
   3476       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
   3477       // Simple removes.
   3478       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
   3479       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
   3480       // Simple replaces.
   3481       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
   3482       {__LINE__, "ABCD", "abcd", "////",
   3483        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
   3484       // Path finding.
   3485       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
   3486        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
   3487       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
   3488        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
   3489       {__LINE__, "ABCDE", "BCDCD", "-   +/",
   3490        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
   3491       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
   3492        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
   3493        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
   3494       {}};
   3495   for (const Case* c = kCases; c->left; ++c) {
   3496     EXPECT_TRUE(c->expected_edits ==
   3497                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
   3498                                                     CharsToIndices(c->right))))
   3499         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
   3500         << EditsToString(CalculateOptimalEdits(
   3501                CharsToIndices(c->left), CharsToIndices(c->right))) << ">";
   3502     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
   3503                                                       CharsToLines(c->right)))
   3504         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
   3505         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
   3506         << ">";
   3507   }
   3508 }
   3509 
   3510 // Tests EqFailure(), used for implementing *EQ* assertions.
   3511 TEST(AssertionTest, EqFailure) {
   3512   const std::string foo_val("5"), bar_val("6");
   3513   const std::string msg1(
   3514       EqFailure("foo", "bar", foo_val, bar_val, false)
   3515       .failure_message());
   3516   EXPECT_STREQ(
   3517       "Value of: bar\n"
   3518       "  Actual: 6\n"
   3519       "Expected: foo\n"
   3520       "Which is: 5",
   3521       msg1.c_str());
   3522 
   3523   const std::string msg2(
   3524       EqFailure("foo", "6", foo_val, bar_val, false)
   3525       .failure_message());
   3526   EXPECT_STREQ(
   3527       "Value of: 6\n"
   3528       "Expected: foo\n"
   3529       "Which is: 5",
   3530       msg2.c_str());
   3531 
   3532   const std::string msg3(
   3533       EqFailure("5", "bar", foo_val, bar_val, false)
   3534       .failure_message());
   3535   EXPECT_STREQ(
   3536       "Value of: bar\n"
   3537       "  Actual: 6\n"
   3538       "Expected: 5",
   3539       msg3.c_str());
   3540 
   3541   const std::string msg4(
   3542       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
   3543   EXPECT_STREQ(
   3544       "Value of: 6\n"
   3545       "Expected: 5",
   3546       msg4.c_str());
   3547 
   3548   const std::string msg5(
   3549       EqFailure("foo", "bar",
   3550                 std::string("\"x\""), std::string("\"y\""),
   3551                 true).failure_message());
   3552   EXPECT_STREQ(
   3553       "Value of: bar\n"
   3554       "  Actual: \"y\"\n"
   3555       "Expected: foo (ignoring case)\n"
   3556       "Which is: \"x\"",
   3557       msg5.c_str());
   3558 }
   3559 
   3560 TEST(AssertionTest, EqFailureWithDiff) {
   3561   const std::string left(
   3562       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
   3563   const std::string right(
   3564       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
   3565   const std::string msg1(
   3566       EqFailure("left", "right", left, right, false).failure_message());
   3567   EXPECT_STREQ(
   3568       "Value of: right\n"
   3569       "  Actual: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
   3570       "Expected: left\n"
   3571       "Which is: "
   3572       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
   3573       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
   3574       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
   3575       msg1.c_str());
   3576 }
   3577 
   3578 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
   3579 TEST(AssertionTest, AppendUserMessage) {
   3580   const std::string foo("foo");
   3581 
   3582   Message msg;
   3583   EXPECT_STREQ("foo",
   3584                AppendUserMessage(foo, msg).c_str());
   3585 
   3586   msg << "bar";
   3587   EXPECT_STREQ("foo\nbar",
   3588                AppendUserMessage(foo, msg).c_str());
   3589 }
   3590 
   3591 #ifdef __BORLANDC__
   3592 // Silences warnings: "Condition is always true", "Unreachable code"
   3593 # pragma option push -w-ccc -w-rch
   3594 #endif
   3595 
   3596 // Tests ASSERT_TRUE.
   3597 TEST(AssertionTest, ASSERT_TRUE) {
   3598   ASSERT_TRUE(2 > 1);  // NOLINT
   3599   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
   3600                        "2 < 1");
   3601 }
   3602 
   3603 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
   3604 TEST(AssertionTest, AssertTrueWithAssertionResult) {
   3605   ASSERT_TRUE(ResultIsEven(2));
   3606 #ifndef __BORLANDC__
   3607   // ICE's in C++Builder.
   3608   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
   3609                        "Value of: ResultIsEven(3)\n"
   3610                        "  Actual: false (3 is odd)\n"
   3611                        "Expected: true");
   3612 #endif
   3613   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
   3614   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
   3615                        "Value of: ResultIsEvenNoExplanation(3)\n"
   3616                        "  Actual: false (3 is odd)\n"
   3617                        "Expected: true");
   3618 }
   3619 
   3620 // Tests ASSERT_FALSE.
   3621 TEST(AssertionTest, ASSERT_FALSE) {
   3622   ASSERT_FALSE(2 < 1);  // NOLINT
   3623   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
   3624                        "Value of: 2 > 1\n"
   3625                        "  Actual: true\n"
   3626                        "Expected: false");
   3627 }
   3628 
   3629 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
   3630 TEST(AssertionTest, AssertFalseWithAssertionResult) {
   3631   ASSERT_FALSE(ResultIsEven(3));
   3632 #ifndef __BORLANDC__
   3633   // ICE's in C++Builder.
   3634   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
   3635                        "Value of: ResultIsEven(2)\n"
   3636                        "  Actual: true (2 is even)\n"
   3637                        "Expected: false");
   3638 #endif
   3639   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
   3640   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
   3641                        "Value of: ResultIsEvenNoExplanation(2)\n"
   3642                        "  Actual: true\n"
   3643                        "Expected: false");
   3644 }
   3645 
   3646 #ifdef __BORLANDC__
   3647 // Restores warnings after previous "#pragma option push" supressed them
   3648 # pragma option pop
   3649 #endif
   3650 
   3651 // Tests using ASSERT_EQ on double values.  The purpose is to make
   3652 // sure that the specialization we did for integer and anonymous enums
   3653 // isn't used for double arguments.
   3654 TEST(ExpectTest, ASSERT_EQ_Double) {
   3655   // A success.
   3656   ASSERT_EQ(5.6, 5.6);
   3657 
   3658   // A failure.
   3659   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
   3660                        "5.1");
   3661 }
   3662 
   3663 // Tests ASSERT_EQ.
   3664 TEST(AssertionTest, ASSERT_EQ) {
   3665   ASSERT_EQ(5, 2 + 3);
   3666   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
   3667                        "Value of: 2*3\n"
   3668                        "  Actual: 6\n"
   3669                        "Expected: 5");
   3670 }
   3671 
   3672 // Tests ASSERT_EQ(NULL, pointer).
   3673 #if GTEST_CAN_COMPARE_NULL
   3674 TEST(AssertionTest, ASSERT_EQ_NULL) {
   3675   // A success.
   3676   const char* p = NULL;
   3677   // Some older GCC versions may issue a spurious waring in this or the next
   3678   // assertion statement. This warning should not be suppressed with
   3679   // static_cast since the test verifies the ability to use bare NULL as the
   3680   // expected parameter to the macro.
   3681   ASSERT_EQ(NULL, p);
   3682 
   3683   // A failure.
   3684   static int n = 0;
   3685   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
   3686                        "Value of: &n\n");
   3687 }
   3688 #endif  // GTEST_CAN_COMPARE_NULL
   3689 
   3690 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
   3691 // treated as a null pointer by the compiler, we need to make sure
   3692 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
   3693 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
   3694 TEST(ExpectTest, ASSERT_EQ_0) {
   3695   int n = 0;
   3696 
   3697   // A success.
   3698   ASSERT_EQ(0, n);
   3699 
   3700   // A failure.
   3701   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
   3702                        "Expected: 0");
   3703 }
   3704 
   3705 // Tests ASSERT_NE.
   3706 TEST(AssertionTest, ASSERT_NE) {
   3707   ASSERT_NE(6, 7);
   3708   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
   3709                        "Expected: ('a') != ('a'), "
   3710                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   3711 }
   3712 
   3713 // Tests ASSERT_LE.
   3714 TEST(AssertionTest, ASSERT_LE) {
   3715   ASSERT_LE(2, 3);
   3716   ASSERT_LE(2, 2);
   3717   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
   3718                        "Expected: (2) <= (0), actual: 2 vs 0");
   3719 }
   3720 
   3721 // Tests ASSERT_LT.
   3722 TEST(AssertionTest, ASSERT_LT) {
   3723   ASSERT_LT(2, 3);
   3724   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
   3725                        "Expected: (2) < (2), actual: 2 vs 2");
   3726 }
   3727 
   3728 // Tests ASSERT_GE.
   3729 TEST(AssertionTest, ASSERT_GE) {
   3730   ASSERT_GE(2, 1);
   3731   ASSERT_GE(2, 2);
   3732   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
   3733                        "Expected: (2) >= (3), actual: 2 vs 3");
   3734 }
   3735 
   3736 // Tests ASSERT_GT.
   3737 TEST(AssertionTest, ASSERT_GT) {
   3738   ASSERT_GT(2, 1);
   3739   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
   3740                        "Expected: (2) > (2), actual: 2 vs 2");
   3741 }
   3742 
   3743 #if GTEST_HAS_EXCEPTIONS
   3744 
   3745 void ThrowNothing() {}
   3746 
   3747 // Tests ASSERT_THROW.
   3748 TEST(AssertionTest, ASSERT_THROW) {
   3749   ASSERT_THROW(ThrowAnInteger(), int);
   3750 
   3751 # ifndef __BORLANDC__
   3752 
   3753   // ICE's in C++Builder 2007 and 2009.
   3754   EXPECT_FATAL_FAILURE(
   3755       ASSERT_THROW(ThrowAnInteger(), bool),
   3756       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
   3757       "  Actual: it throws a different type.");
   3758 # endif
   3759 
   3760   EXPECT_FATAL_FAILURE(
   3761       ASSERT_THROW(ThrowNothing(), bool),
   3762       "Expected: ThrowNothing() throws an exception of type bool.\n"
   3763       "  Actual: it throws nothing.");
   3764 }
   3765 
   3766 // Tests ASSERT_NO_THROW.
   3767 TEST(AssertionTest, ASSERT_NO_THROW) {
   3768   ASSERT_NO_THROW(ThrowNothing());
   3769   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
   3770                        "Expected: ThrowAnInteger() doesn't throw an exception."
   3771                        "\n  Actual: it throws.");
   3772 }
   3773 
   3774 // Tests ASSERT_ANY_THROW.
   3775 TEST(AssertionTest, ASSERT_ANY_THROW) {
   3776   ASSERT_ANY_THROW(ThrowAnInteger());
   3777   EXPECT_FATAL_FAILURE(
   3778       ASSERT_ANY_THROW(ThrowNothing()),
   3779       "Expected: ThrowNothing() throws an exception.\n"
   3780       "  Actual: it doesn't.");
   3781 }
   3782 
   3783 #endif  // GTEST_HAS_EXCEPTIONS
   3784 
   3785 // Makes sure we deal with the precedence of <<.  This test should
   3786 // compile.
   3787 TEST(AssertionTest, AssertPrecedence) {
   3788   ASSERT_EQ(1 < 2, true);
   3789   bool false_value = false;
   3790   ASSERT_EQ(true && false_value, false);
   3791 }
   3792 
   3793 // A subroutine used by the following test.
   3794 void TestEq1(int x) {
   3795   ASSERT_EQ(1, x);
   3796 }
   3797 
   3798 // Tests calling a test subroutine that's not part of a fixture.
   3799 TEST(AssertionTest, NonFixtureSubroutine) {
   3800   EXPECT_FATAL_FAILURE(TestEq1(2),
   3801                        "Value of: x");
   3802 }
   3803 
   3804 // An uncopyable class.
   3805 class Uncopyable {
   3806  public:
   3807   explicit Uncopyable(int a_value) : value_(a_value) {}
   3808 
   3809   int value() const { return value_; }
   3810   bool operator==(const Uncopyable& rhs) const {
   3811     return value() == rhs.value();
   3812   }
   3813  private:
   3814   // This constructor deliberately has no implementation, as we don't
   3815   // want this class to be copyable.
   3816   Uncopyable(const Uncopyable&);  // NOLINT
   3817 
   3818   int value_;
   3819 };
   3820 
   3821 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
   3822   return os << value.value();
   3823 }
   3824 
   3825 
   3826 bool IsPositiveUncopyable(const Uncopyable& x) {
   3827   return x.value() > 0;
   3828 }
   3829 
   3830 // A subroutine used by the following test.
   3831 void TestAssertNonPositive() {
   3832   Uncopyable y(-1);
   3833   ASSERT_PRED1(IsPositiveUncopyable, y);
   3834 }
   3835 // A subroutine used by the following test.
   3836 void TestAssertEqualsUncopyable() {
   3837   Uncopyable x(5);
   3838   Uncopyable y(-1);
   3839   ASSERT_EQ(x, y);
   3840 }
   3841 
   3842 // Tests that uncopyable objects can be used in assertions.
   3843 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
   3844   Uncopyable x(5);
   3845   ASSERT_PRED1(IsPositiveUncopyable, x);
   3846   ASSERT_EQ(x, x);
   3847   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
   3848     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3849   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
   3850     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3851 }
   3852 
   3853 // Tests that uncopyable objects can be used in expects.
   3854 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
   3855   Uncopyable x(5);
   3856   EXPECT_PRED1(IsPositiveUncopyable, x);
   3857   Uncopyable y(-1);
   3858   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
   3859     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3860   EXPECT_EQ(x, x);
   3861   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
   3862     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3863 }
   3864 
   3865 enum NamedEnum {
   3866   kE1 = 0,
   3867   kE2 = 1
   3868 };
   3869 
   3870 TEST(AssertionTest, NamedEnum) {
   3871   EXPECT_EQ(kE1, kE1);
   3872   EXPECT_LT(kE1, kE2);
   3873   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
   3874   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
   3875 }
   3876 
   3877 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
   3878 // anonymous enums in assertions.  Therefore the following test is not
   3879 // done on Mac.
   3880 // Sun Studio and HP aCC also reject this code.
   3881 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
   3882 
   3883 // Tests using assertions with anonymous enums.
   3884 enum {
   3885   kCaseA = -1,
   3886 
   3887 # if GTEST_OS_LINUX
   3888 
   3889   // We want to test the case where the size of the anonymous enum is
   3890   // larger than sizeof(int), to make sure our implementation of the
   3891   // assertions doesn't truncate the enums.  However, MSVC
   3892   // (incorrectly) doesn't allow an enum value to exceed the range of
   3893   // an int, so this has to be conditionally compiled.
   3894   //
   3895   // On Linux, kCaseB and kCaseA have the same value when truncated to
   3896   // int size.  We want to test whether this will confuse the
   3897   // assertions.
   3898   kCaseB = testing::internal::kMaxBiggestInt,
   3899 
   3900 # else
   3901 
   3902   kCaseB = INT_MAX,
   3903 
   3904 # endif  // GTEST_OS_LINUX
   3905 
   3906   kCaseC = 42
   3907 };
   3908 
   3909 TEST(AssertionTest, AnonymousEnum) {
   3910 # if GTEST_OS_LINUX
   3911 
   3912   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
   3913 
   3914 # endif  // GTEST_OS_LINUX
   3915 
   3916   EXPECT_EQ(kCaseA, kCaseA);
   3917   EXPECT_NE(kCaseA, kCaseB);
   3918   EXPECT_LT(kCaseA, kCaseB);
   3919   EXPECT_LE(kCaseA, kCaseB);
   3920   EXPECT_GT(kCaseB, kCaseA);
   3921   EXPECT_GE(kCaseA, kCaseA);
   3922   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
   3923                           "(kCaseA) >= (kCaseB)");
   3924   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
   3925                           "-1 vs 42");
   3926 
   3927   ASSERT_EQ(kCaseA, kCaseA);
   3928   ASSERT_NE(kCaseA, kCaseB);
   3929   ASSERT_LT(kCaseA, kCaseB);
   3930   ASSERT_LE(kCaseA, kCaseB);
   3931   ASSERT_GT(kCaseB, kCaseA);
   3932   ASSERT_GE(kCaseA, kCaseA);
   3933 
   3934 # ifndef __BORLANDC__
   3935 
   3936   // ICE's in C++Builder.
   3937   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
   3938                        "Value of: kCaseB");
   3939   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3940                        "Actual: 42");
   3941 # endif
   3942 
   3943   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3944                        "Which is: -1");
   3945 }
   3946 
   3947 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
   3948 
   3949 #if GTEST_OS_WINDOWS
   3950 
   3951 static HRESULT UnexpectedHRESULTFailure() {
   3952   return E_UNEXPECTED;
   3953 }
   3954 
   3955 static HRESULT OkHRESULTSuccess() {
   3956   return S_OK;
   3957 }
   3958 
   3959 static HRESULT FalseHRESULTSuccess() {
   3960   return S_FALSE;
   3961 }
   3962 
   3963 // HRESULT assertion tests test both zero and non-zero
   3964 // success codes as well as failure message for each.
   3965 //
   3966 // Windows CE doesn't support message texts.
   3967 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
   3968   EXPECT_HRESULT_SUCCEEDED(S_OK);
   3969   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
   3970 
   3971   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3972     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3973     "  Actual: 0x8000FFFF");
   3974 }
   3975 
   3976 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
   3977   ASSERT_HRESULT_SUCCEEDED(S_OK);
   3978   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
   3979 
   3980   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3981     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3982     "  Actual: 0x8000FFFF");
   3983 }
   3984 
   3985 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
   3986   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
   3987 
   3988   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
   3989     "Expected: (OkHRESULTSuccess()) fails.\n"
   3990     "  Actual: 0x0");
   3991   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
   3992     "Expected: (FalseHRESULTSuccess()) fails.\n"
   3993     "  Actual: 0x1");
   3994 }
   3995 
   3996 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
   3997   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
   3998 
   3999 # ifndef __BORLANDC__
   4000 
   4001   // ICE's in C++Builder 2007 and 2009.
   4002   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
   4003     "Expected: (OkHRESULTSuccess()) fails.\n"
   4004     "  Actual: 0x0");
   4005 # endif
   4006 
   4007   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
   4008     "Expected: (FalseHRESULTSuccess()) fails.\n"
   4009     "  Actual: 0x1");
   4010 }
   4011 
   4012 // Tests that streaming to the HRESULT macros works.
   4013 TEST(HRESULTAssertionTest, Streaming) {
   4014   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   4015   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   4016   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   4017   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   4018 
   4019   EXPECT_NONFATAL_FAILURE(
   4020       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   4021       "expected failure");
   4022 
   4023 # ifndef __BORLANDC__
   4024 
   4025   // ICE's in C++Builder 2007 and 2009.
   4026   EXPECT_FATAL_FAILURE(
   4027       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   4028       "expected failure");
   4029 # endif
   4030 
   4031   EXPECT_NONFATAL_FAILURE(
   4032       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
   4033       "expected failure");
   4034 
   4035   EXPECT_FATAL_FAILURE(
   4036       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
   4037       "expected failure");
   4038 }
   4039 
   4040 #endif  // GTEST_OS_WINDOWS
   4041 
   4042 #ifdef __BORLANDC__
   4043 // Silences warnings: "Condition is always true", "Unreachable code"
   4044 # pragma option push -w-ccc -w-rch
   4045 #endif
   4046 
   4047 // Tests that the assertion macros behave like single statements.
   4048 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
   4049   if (AlwaysFalse())
   4050     ASSERT_TRUE(false) << "This should never be executed; "
   4051                           "It's a compilation test only.";
   4052 
   4053   if (AlwaysTrue())
   4054     EXPECT_FALSE(false);
   4055   else
   4056     ;  // NOLINT
   4057 
   4058   if (AlwaysFalse())
   4059     ASSERT_LT(1, 3);
   4060 
   4061   if (AlwaysFalse())
   4062     ;  // NOLINT
   4063   else
   4064     EXPECT_GT(3, 2) << "";
   4065 }
   4066 
   4067 #if GTEST_HAS_EXCEPTIONS
   4068 // Tests that the compiler will not complain about unreachable code in the
   4069 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
   4070 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
   4071   int n = 0;
   4072 
   4073   EXPECT_THROW(throw 1, int);
   4074   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
   4075   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
   4076   EXPECT_NO_THROW(n++);
   4077   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
   4078   EXPECT_ANY_THROW(throw 1);
   4079   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
   4080 }
   4081 
   4082 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
   4083   if (AlwaysFalse())
   4084     EXPECT_THROW(ThrowNothing(), bool);
   4085 
   4086   if (AlwaysTrue())
   4087     EXPECT_THROW(ThrowAnInteger(), int);
   4088   else
   4089     ;  // NOLINT
   4090 
   4091   if (AlwaysFalse())
   4092     EXPECT_NO_THROW(ThrowAnInteger());
   4093 
   4094   if (AlwaysTrue())
   4095     EXPECT_NO_THROW(ThrowNothing());
   4096   else
   4097     ;  // NOLINT
   4098 
   4099   if (AlwaysFalse())
   4100     EXPECT_ANY_THROW(ThrowNothing());
   4101 
   4102   if (AlwaysTrue())
   4103     EXPECT_ANY_THROW(ThrowAnInteger());
   4104   else
   4105     ;  // NOLINT
   4106 }
   4107 #endif  // GTEST_HAS_EXCEPTIONS
   4108 
   4109 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
   4110   if (AlwaysFalse())
   4111     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
   4112                                     << "It's a compilation test only.";
   4113   else
   4114     ;  // NOLINT
   4115 
   4116   if (AlwaysFalse())
   4117     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
   4118   else
   4119     ;  // NOLINT
   4120 
   4121   if (AlwaysTrue())
   4122     EXPECT_NO_FATAL_FAILURE(SUCCEED());
   4123   else
   4124     ;  // NOLINT
   4125 
   4126   if (AlwaysFalse())
   4127     ;  // NOLINT
   4128   else
   4129     ASSERT_NO_FATAL_FAILURE(SUCCEED());
   4130 }
   4131 
   4132 // Tests that the assertion macros work well with switch statements.
   4133 TEST(AssertionSyntaxTest, WorksWithSwitch) {
   4134   switch (0) {
   4135     case 1:
   4136       break;
   4137     default:
   4138       ASSERT_TRUE(true);
   4139   }
   4140 
   4141   switch (0)
   4142     case 0:
   4143       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
   4144 
   4145   // Binary assertions are implemented using a different code path
   4146   // than the Boolean assertions.  Hence we test them separately.
   4147   switch (0) {
   4148     case 1:
   4149     default:
   4150       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
   4151   }
   4152 
   4153   switch (0)
   4154     case 0:
   4155       EXPECT_NE(1, 2);
   4156 }
   4157 
   4158 #if GTEST_HAS_EXCEPTIONS
   4159 
   4160 void ThrowAString() {
   4161     throw "std::string";
   4162 }
   4163 
   4164 // Test that the exception assertion macros compile and work with const
   4165 // type qualifier.
   4166 TEST(AssertionSyntaxTest, WorksWithConst) {
   4167     ASSERT_THROW(ThrowAString(), const char*);
   4168 
   4169     EXPECT_THROW(ThrowAString(), const char*);
   4170 }
   4171 
   4172 #endif  // GTEST_HAS_EXCEPTIONS
   4173 
   4174 }  // namespace
   4175 
   4176 namespace testing {
   4177 
   4178 // Tests that Google Test tracks SUCCEED*.
   4179 TEST(SuccessfulAssertionTest, SUCCEED) {
   4180   SUCCEED();
   4181   SUCCEED() << "OK";
   4182   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
   4183 }
   4184 
   4185 // Tests that Google Test doesn't track successful EXPECT_*.
   4186 TEST(SuccessfulAssertionTest, EXPECT) {
   4187   EXPECT_TRUE(true);
   4188   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4189 }
   4190 
   4191 // Tests that Google Test doesn't track successful EXPECT_STR*.
   4192 TEST(SuccessfulAssertionTest, EXPECT_STR) {
   4193   EXPECT_STREQ("", "");
   4194   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4195 }
   4196 
   4197 // Tests that Google Test doesn't track successful ASSERT_*.
   4198 TEST(SuccessfulAssertionTest, ASSERT) {
   4199   ASSERT_TRUE(true);
   4200   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4201 }
   4202 
   4203 // Tests that Google Test doesn't track successful ASSERT_STR*.
   4204 TEST(SuccessfulAssertionTest, ASSERT_STR) {
   4205   ASSERT_STREQ("", "");
   4206   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4207 }
   4208 
   4209 }  // namespace testing
   4210 
   4211 namespace {
   4212 
   4213 // Tests the message streaming variation of assertions.
   4214 
   4215 TEST(AssertionWithMessageTest, EXPECT) {
   4216   EXPECT_EQ(1, 1) << "This should succeed.";
   4217   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
   4218                           "Expected failure #1");
   4219   EXPECT_LE(1, 2) << "This should succeed.";
   4220   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
   4221                           "Expected failure #2.");
   4222   EXPECT_GE(1, 0) << "This should succeed.";
   4223   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
   4224                           "Expected failure #3.");
   4225 
   4226   EXPECT_STREQ("1", "1") << "This should succeed.";
   4227   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
   4228                           "Expected failure #4.");
   4229   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
   4230   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
   4231                           "Expected failure #5.");
   4232 
   4233   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
   4234   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
   4235                           "Expected failure #6.");
   4236   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
   4237 }
   4238 
   4239 TEST(AssertionWithMessageTest, ASSERT) {
   4240   ASSERT_EQ(1, 1) << "This should succeed.";
   4241   ASSERT_NE(1, 2) << "This should succeed.";
   4242   ASSERT_LE(1, 2) << "This should succeed.";
   4243   ASSERT_LT(1, 2) << "This should succeed.";
   4244   ASSERT_GE(1, 0) << "This should succeed.";
   4245   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
   4246                        "Expected failure.");
   4247 }
   4248 
   4249 TEST(AssertionWithMessageTest, ASSERT_STR) {
   4250   ASSERT_STREQ("1", "1") << "This should succeed.";
   4251   ASSERT_STRNE("1", "2") << "This should succeed.";
   4252   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
   4253   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
   4254                        "Expected failure.");
   4255 }
   4256 
   4257 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
   4258   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
   4259   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
   4260   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
   4261                        "Expect failure.");
   4262   // To work around a bug in gcc 2.95.0, there is intentionally no
   4263   // space after the first comma in the previous statement.
   4264 }
   4265 
   4266 // Tests using ASSERT_FALSE with a streamed message.
   4267 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
   4268   ASSERT_FALSE(false) << "This shouldn't fail.";
   4269   EXPECT_FATAL_FAILURE({  // NOLINT
   4270     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
   4271                        << " evaluates to " << true;
   4272   }, "Expected failure");
   4273 }
   4274 
   4275 // Tests using FAIL with a streamed message.
   4276 TEST(AssertionWithMessageTest, FAIL) {
   4277   EXPECT_FATAL_FAILURE(FAIL() << 0,
   4278                        "0");
   4279 }
   4280 
   4281 // Tests using SUCCEED with a streamed message.
   4282 TEST(AssertionWithMessageTest, SUCCEED) {
   4283   SUCCEED() << "Success == " << 1;
   4284 }
   4285 
   4286 // Tests using ASSERT_TRUE with a streamed message.
   4287 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
   4288   ASSERT_TRUE(true) << "This should succeed.";
   4289   ASSERT_TRUE(true) << true;
   4290   EXPECT_FATAL_FAILURE({  // NOLINT
   4291     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
   4292                        << static_cast<char *>(NULL);
   4293   }, "(null)(null)");
   4294 }
   4295 
   4296 #if GTEST_OS_WINDOWS
   4297 // Tests using wide strings in assertion messages.
   4298 TEST(AssertionWithMessageTest, WideStringMessage) {
   4299   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4300     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
   4301   }, "This failure is expected.");
   4302   EXPECT_FATAL_FAILURE({  // NOLINT
   4303     ASSERT_EQ(1, 2) << "This failure is "
   4304                     << L"expected too.\x8120";
   4305   }, "This failure is expected too.");
   4306 }
   4307 #endif  // GTEST_OS_WINDOWS
   4308 
   4309 // Tests EXPECT_TRUE.
   4310 TEST(ExpectTest, EXPECT_TRUE) {
   4311   EXPECT_TRUE(true) << "Intentional success";
   4312   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
   4313                           "Intentional failure #1.");
   4314   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
   4315                           "Intentional failure #2.");
   4316   EXPECT_TRUE(2 > 1);  // NOLINT
   4317   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
   4318                           "Value of: 2 < 1\n"
   4319                           "  Actual: false\n"
   4320                           "Expected: true");
   4321   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
   4322                           "2 > 3");
   4323 }
   4324 
   4325 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
   4326 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
   4327   EXPECT_TRUE(ResultIsEven(2));
   4328   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
   4329                           "Value of: ResultIsEven(3)\n"
   4330                           "  Actual: false (3 is odd)\n"
   4331                           "Expected: true");
   4332   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
   4333   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
   4334                           "Value of: ResultIsEvenNoExplanation(3)\n"
   4335                           "  Actual: false (3 is odd)\n"
   4336                           "Expected: true");
   4337 }
   4338 
   4339 // Tests EXPECT_FALSE with a streamed message.
   4340 TEST(ExpectTest, EXPECT_FALSE) {
   4341   EXPECT_FALSE(2 < 1);  // NOLINT
   4342   EXPECT_FALSE(false) << "Intentional success";
   4343   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
   4344                           "Intentional failure #1.");
   4345   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
   4346                           "Intentional failure #2.");
   4347   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
   4348                           "Value of: 2 > 1\n"
   4349                           "  Actual: true\n"
   4350                           "Expected: false");
   4351   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
   4352                           "2 < 3");
   4353 }
   4354 
   4355 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
   4356 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
   4357   EXPECT_FALSE(ResultIsEven(3));
   4358   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
   4359                           "Value of: ResultIsEven(2)\n"
   4360                           "  Actual: true (2 is even)\n"
   4361                           "Expected: false");
   4362   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
   4363   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
   4364                           "Value of: ResultIsEvenNoExplanation(2)\n"
   4365                           "  Actual: true\n"
   4366                           "Expected: false");
   4367 }
   4368 
   4369 #ifdef __BORLANDC__
   4370 // Restores warnings after previous "#pragma option push" supressed them
   4371 # pragma option pop
   4372 #endif
   4373 
   4374 // Tests EXPECT_EQ.
   4375 TEST(ExpectTest, EXPECT_EQ) {
   4376   EXPECT_EQ(5, 2 + 3);
   4377   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
   4378                           "Value of: 2*3\n"
   4379                           "  Actual: 6\n"
   4380                           "Expected: 5");
   4381   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
   4382                           "2 - 3");
   4383 }
   4384 
   4385 // Tests using EXPECT_EQ on double values.  The purpose is to make
   4386 // sure that the specialization we did for integer and anonymous enums
   4387 // isn't used for double arguments.
   4388 TEST(ExpectTest, EXPECT_EQ_Double) {
   4389   // A success.
   4390   EXPECT_EQ(5.6, 5.6);
   4391 
   4392   // A failure.
   4393   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
   4394                           "5.1");
   4395 }
   4396 
   4397 #if GTEST_CAN_COMPARE_NULL
   4398 // Tests EXPECT_EQ(NULL, pointer).
   4399 TEST(ExpectTest, EXPECT_EQ_NULL) {
   4400   // A success.
   4401   const char* p = NULL;
   4402   // Some older GCC versions may issue a spurious warning in this or the next
   4403   // assertion statement. This warning should not be suppressed with
   4404   // static_cast since the test verifies the ability to use bare NULL as the
   4405   // expected parameter to the macro.
   4406   EXPECT_EQ(NULL, p);
   4407 
   4408   // A failure.
   4409   int n = 0;
   4410   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
   4411                           "Value of: &n\n");
   4412 }
   4413 #endif  // GTEST_CAN_COMPARE_NULL
   4414 
   4415 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
   4416 // treated as a null pointer by the compiler, we need to make sure
   4417 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
   4418 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
   4419 TEST(ExpectTest, EXPECT_EQ_0) {
   4420   int n = 0;
   4421 
   4422   // A success.
   4423   EXPECT_EQ(0, n);
   4424 
   4425   // A failure.
   4426   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
   4427                           "Expected: 0");
   4428 }
   4429 
   4430 // Tests EXPECT_NE.
   4431 TEST(ExpectTest, EXPECT_NE) {
   4432   EXPECT_NE(6, 7);
   4433 
   4434   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
   4435                           "Expected: ('a') != ('a'), "
   4436                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   4437   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
   4438                           "2");
   4439   char* const p0 = NULL;
   4440   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
   4441                           "p0");
   4442   // Only way to get the Nokia compiler to compile the cast
   4443   // is to have a separate void* variable first. Putting
   4444   // the two casts on the same line doesn't work, neither does
   4445   // a direct C-style to char*.
   4446   void* pv1 = (void*)0x1234;  // NOLINT
   4447   char* const p1 = reinterpret_cast<char*>(pv1);
   4448   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
   4449                           "p1");
   4450 }
   4451 
   4452 // Tests EXPECT_LE.
   4453 TEST(ExpectTest, EXPECT_LE) {
   4454   EXPECT_LE(2, 3);
   4455   EXPECT_LE(2, 2);
   4456   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
   4457                           "Expected: (2) <= (0), actual: 2 vs 0");
   4458   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
   4459                           "(1.1) <= (0.9)");
   4460 }
   4461 
   4462 // Tests EXPECT_LT.
   4463 TEST(ExpectTest, EXPECT_LT) {
   4464   EXPECT_LT(2, 3);
   4465   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
   4466                           "Expected: (2) < (2), actual: 2 vs 2");
   4467   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
   4468                           "(2) < (1)");
   4469 }
   4470 
   4471 // Tests EXPECT_GE.
   4472 TEST(ExpectTest, EXPECT_GE) {
   4473   EXPECT_GE(2, 1);
   4474   EXPECT_GE(2, 2);
   4475   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
   4476                           "Expected: (2) >= (3), actual: 2 vs 3");
   4477   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
   4478                           "(0.9) >= (1.1)");
   4479 }
   4480 
   4481 // Tests EXPECT_GT.
   4482 TEST(ExpectTest, EXPECT_GT) {
   4483   EXPECT_GT(2, 1);
   4484   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
   4485                           "Expected: (2) > (2), actual: 2 vs 2");
   4486   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
   4487                           "(2) > (3)");
   4488 }
   4489 
   4490 #if GTEST_HAS_EXCEPTIONS
   4491 
   4492 // Tests EXPECT_THROW.
   4493 TEST(ExpectTest, EXPECT_THROW) {
   4494   EXPECT_THROW(ThrowAnInteger(), int);
   4495   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
   4496                           "Expected: ThrowAnInteger() throws an exception of "
   4497                           "type bool.\n  Actual: it throws a different type.");
   4498   EXPECT_NONFATAL_FAILURE(
   4499       EXPECT_THROW(ThrowNothing(), bool),
   4500       "Expected: ThrowNothing() throws an exception of type bool.\n"
   4501       "  Actual: it throws nothing.");
   4502 }
   4503 
   4504 // Tests EXPECT_NO_THROW.
   4505 TEST(ExpectTest, EXPECT_NO_THROW) {
   4506   EXPECT_NO_THROW(ThrowNothing());
   4507   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
   4508                           "Expected: ThrowAnInteger() doesn't throw an "
   4509                           "exception.\n  Actual: it throws.");
   4510 }
   4511 
   4512 // Tests EXPECT_ANY_THROW.
   4513 TEST(ExpectTest, EXPECT_ANY_THROW) {
   4514   EXPECT_ANY_THROW(ThrowAnInteger());
   4515   EXPECT_NONFATAL_FAILURE(
   4516       EXPECT_ANY_THROW(ThrowNothing()),
   4517       "Expected: ThrowNothing() throws an exception.\n"
   4518       "  Actual: it doesn't.");
   4519 }
   4520 
   4521 #endif  // GTEST_HAS_EXCEPTIONS
   4522 
   4523 // Make sure we deal with the precedence of <<.
   4524 TEST(ExpectTest, ExpectPrecedence) {
   4525   EXPECT_EQ(1 < 2, true);
   4526   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
   4527                           "Value of: true && false");
   4528 }
   4529 
   4530 
   4531 // Tests the StreamableToString() function.
   4532 
   4533 // Tests using StreamableToString() on a scalar.
   4534 TEST(StreamableToStringTest, Scalar) {
   4535   EXPECT_STREQ("5", StreamableToString(5).c_str());
   4536 }
   4537 
   4538 // Tests using StreamableToString() on a non-char pointer.
   4539 TEST(StreamableToStringTest, Pointer) {
   4540   int n = 0;
   4541   int* p = &n;
   4542   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
   4543 }
   4544 
   4545 // Tests using StreamableToString() on a NULL non-char pointer.
   4546 TEST(StreamableToStringTest, NullPointer) {
   4547   int* p = NULL;
   4548   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4549 }
   4550 
   4551 // Tests using StreamableToString() on a C string.
   4552 TEST(StreamableToStringTest, CString) {
   4553   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
   4554 }
   4555 
   4556 // Tests using StreamableToString() on a NULL C string.
   4557 TEST(StreamableToStringTest, NullCString) {
   4558   char* p = NULL;
   4559   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4560 }
   4561 
   4562 // Tests using streamable values as assertion messages.
   4563 
   4564 // Tests using std::string as an assertion message.
   4565 TEST(StreamableTest, string) {
   4566   static const std::string str(
   4567       "This failure message is a std::string, and is expected.");
   4568   EXPECT_FATAL_FAILURE(FAIL() << str,
   4569                        str.c_str());
   4570 }
   4571 
   4572 // Tests that we can output strings containing embedded NULs.
   4573 // Limited to Linux because we can only do this with std::string's.
   4574 TEST(StreamableTest, stringWithEmbeddedNUL) {
   4575   static const char char_array_with_nul[] =
   4576       "Here's a NUL\0 and some more string";
   4577   static const std::string string_with_nul(char_array_with_nul,
   4578                                            sizeof(char_array_with_nul)
   4579                                            - 1);  // drops the trailing NUL
   4580   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
   4581                        "Here's a NUL\\0 and some more string");
   4582 }
   4583 
   4584 // Tests that we can output a NUL char.
   4585 TEST(StreamableTest, NULChar) {
   4586   EXPECT_FATAL_FAILURE({  // NOLINT
   4587     FAIL() << "A NUL" << '\0' << " and some more string";
   4588   }, "A NUL\\0 and some more string");
   4589 }
   4590 
   4591 // Tests using int as an assertion message.
   4592 TEST(StreamableTest, int) {
   4593   EXPECT_FATAL_FAILURE(FAIL() << 900913,
   4594                        "900913");
   4595 }
   4596 
   4597 // Tests using NULL char pointer as an assertion message.
   4598 //
   4599 // In MSVC, streaming a NULL char * causes access violation.  Google Test
   4600 // implemented a workaround (substituting "(null)" for NULL).  This
   4601 // tests whether the workaround works.
   4602 TEST(StreamableTest, NullCharPtr) {
   4603   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
   4604                        "(null)");
   4605 }
   4606 
   4607 // Tests that basic IO manipulators (endl, ends, and flush) can be
   4608 // streamed to testing::Message.
   4609 TEST(StreamableTest, BasicIoManip) {
   4610   EXPECT_FATAL_FAILURE({  // NOLINT
   4611     FAIL() << "Line 1." << std::endl
   4612            << "A NUL char " << std::ends << std::flush << " in line 2.";
   4613   }, "Line 1.\nA NUL char \\0 in line 2.");
   4614 }
   4615 
   4616 // Tests the macros that haven't been covered so far.
   4617 
   4618 void AddFailureHelper(bool* aborted) {
   4619   *aborted = true;
   4620   ADD_FAILURE() << "Intentional failure.";
   4621   *aborted = false;
   4622 }
   4623 
   4624 // Tests ADD_FAILURE.
   4625 TEST(MacroTest, ADD_FAILURE) {
   4626   bool aborted = true;
   4627   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
   4628                           "Intentional failure.");
   4629   EXPECT_FALSE(aborted);
   4630 }
   4631 
   4632 // Tests ADD_FAILURE_AT.
   4633 TEST(MacroTest, ADD_FAILURE_AT) {
   4634   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
   4635   // the failure message contains the user-streamed part.
   4636   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
   4637 
   4638   // Verifies that the user-streamed part is optional.
   4639   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
   4640 
   4641   // Unfortunately, we cannot verify that the failure message contains
   4642   // the right file path and line number the same way, as
   4643   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
   4644   // line number.  Instead, we do that in gtest_output_test_.cc.
   4645 }
   4646 
   4647 // Tests FAIL.
   4648 TEST(MacroTest, FAIL) {
   4649   EXPECT_FATAL_FAILURE(FAIL(),
   4650                        "Failed");
   4651   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
   4652                        "Intentional failure.");
   4653 }
   4654 
   4655 // Tests SUCCEED
   4656 TEST(MacroTest, SUCCEED) {
   4657   SUCCEED();
   4658   SUCCEED() << "Explicit success.";
   4659 }
   4660 
   4661 // Tests for EXPECT_EQ() and ASSERT_EQ().
   4662 //
   4663 // These tests fail *intentionally*, s.t. the failure messages can be
   4664 // generated and tested.
   4665 //
   4666 // We have different tests for different argument types.
   4667 
   4668 // Tests using bool values in {EXPECT|ASSERT}_EQ.
   4669 TEST(EqAssertionTest, Bool) {
   4670   EXPECT_EQ(true,  true);
   4671   EXPECT_FATAL_FAILURE({
   4672       bool false_value = false;
   4673       ASSERT_EQ(false_value, true);
   4674     }, "Value of: true");
   4675 }
   4676 
   4677 // Tests using int values in {EXPECT|ASSERT}_EQ.
   4678 TEST(EqAssertionTest, Int) {
   4679   ASSERT_EQ(32, 32);
   4680   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
   4681                           "33");
   4682 }
   4683 
   4684 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
   4685 TEST(EqAssertionTest, Time_T) {
   4686   EXPECT_EQ(static_cast<time_t>(0),
   4687             static_cast<time_t>(0));
   4688   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
   4689                                  static_cast<time_t>(1234)),
   4690                        "1234");
   4691 }
   4692 
   4693 // Tests using char values in {EXPECT|ASSERT}_EQ.
   4694 TEST(EqAssertionTest, Char) {
   4695   ASSERT_EQ('z', 'z');
   4696   const char ch = 'b';
   4697   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
   4698                           "ch");
   4699   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
   4700                           "ch");
   4701 }
   4702 
   4703 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
   4704 TEST(EqAssertionTest, WideChar) {
   4705   EXPECT_EQ(L'b', L'b');
   4706 
   4707   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
   4708                           "Value of: L'x'\n"
   4709                           "  Actual: L'x' (120, 0x78)\n"
   4710                           "Expected: L'\0'\n"
   4711                           "Which is: L'\0' (0, 0x0)");
   4712 
   4713   static wchar_t wchar;
   4714   wchar = L'b';
   4715   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
   4716                           "wchar");
   4717   wchar = 0x8119;
   4718   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
   4719                        "Value of: wchar");
   4720 }
   4721 
   4722 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
   4723 TEST(EqAssertionTest, StdString) {
   4724   // Compares a const char* to an std::string that has identical
   4725   // content.
   4726   ASSERT_EQ("Test", ::std::string("Test"));
   4727 
   4728   // Compares two identical std::strings.
   4729   static const ::std::string str1("A * in the middle");
   4730   static const ::std::string str2(str1);
   4731   EXPECT_EQ(str1, str2);
   4732 
   4733   // Compares a const char* to an std::string that has different
   4734   // content
   4735   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
   4736                           "\"test\"");
   4737 
   4738   // Compares an std::string to a char* that has different content.
   4739   char* const p1 = const_cast<char*>("foo");
   4740   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
   4741                           "p1");
   4742 
   4743   // Compares two std::strings that have different contents, one of
   4744   // which having a NUL character in the middle.  This should fail.
   4745   static ::std::string str3(str1);
   4746   str3.at(2) = '\0';
   4747   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
   4748                        "Value of: str3\n"
   4749                        "  Actual: \"A \\0 in the middle\"");
   4750 }
   4751 
   4752 #if GTEST_HAS_STD_WSTRING
   4753 
   4754 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
   4755 TEST(EqAssertionTest, StdWideString) {
   4756   // Compares two identical std::wstrings.
   4757   const ::std::wstring wstr1(L"A * in the middle");
   4758   const ::std::wstring wstr2(wstr1);
   4759   ASSERT_EQ(wstr1, wstr2);
   4760 
   4761   // Compares an std::wstring to a const wchar_t* that has identical
   4762   // content.
   4763   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4764   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
   4765 
   4766   // Compares an std::wstring to a const wchar_t* that has different
   4767   // content.
   4768   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4769   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4770     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
   4771   }, "kTestX8120");
   4772 
   4773   // Compares two std::wstrings that have different contents, one of
   4774   // which having a NUL character in the middle.
   4775   ::std::wstring wstr3(wstr1);
   4776   wstr3.at(2) = L'\0';
   4777   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
   4778                           "wstr3");
   4779 
   4780   // Compares a wchar_t* to an std::wstring that has different
   4781   // content.
   4782   EXPECT_FATAL_FAILURE({  // NOLINT
   4783     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
   4784   }, "");
   4785 }
   4786 
   4787 #endif  // GTEST_HAS_STD_WSTRING
   4788 
   4789 #if GTEST_HAS_GLOBAL_STRING
   4790 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
   4791 TEST(EqAssertionTest, GlobalString) {
   4792   // Compares a const char* to a ::string that has identical content.
   4793   EXPECT_EQ("Test", ::string("Test"));
   4794 
   4795   // Compares two identical ::strings.
   4796   const ::string str1("A * in the middle");
   4797   const ::string str2(str1);
   4798   ASSERT_EQ(str1, str2);
   4799 
   4800   // Compares a ::string to a const char* that has different content.
   4801   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
   4802                           "test");
   4803 
   4804   // Compares two ::strings that have different contents, one of which
   4805   // having a NUL character in the middle.
   4806   ::string str3(str1);
   4807   str3.at(2) = '\0';
   4808   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
   4809                           "str3");
   4810 
   4811   // Compares a ::string to a char* that has different content.
   4812   EXPECT_FATAL_FAILURE({  // NOLINT
   4813     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
   4814   }, "");
   4815 }
   4816 
   4817 #endif  // GTEST_HAS_GLOBAL_STRING
   4818 
   4819 #if GTEST_HAS_GLOBAL_WSTRING
   4820 
   4821 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
   4822 TEST(EqAssertionTest, GlobalWideString) {
   4823   // Compares two identical ::wstrings.
   4824   static const ::wstring wstr1(L"A * in the middle");
   4825   static const ::wstring wstr2(wstr1);
   4826   EXPECT_EQ(wstr1, wstr2);
   4827 
   4828   // Compares a const wchar_t* to a ::wstring that has identical content.
   4829   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4830   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
   4831 
   4832   // Compares a const wchar_t* to a ::wstring that has different
   4833   // content.
   4834   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4835   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4836     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
   4837   }, "Test\\x8119");
   4838 
   4839   // Compares a wchar_t* to a ::wstring that has different content.
   4840   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
   4841   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
   4842                           "bar");
   4843 
   4844   // Compares two ::wstrings that have different contents, one of which
   4845   // having a NUL character in the middle.
   4846   static ::wstring wstr3;
   4847   wstr3 = wstr1;
   4848   wstr3.at(2) = L'\0';
   4849   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
   4850                        "wstr3");
   4851 }
   4852 
   4853 #endif  // GTEST_HAS_GLOBAL_WSTRING
   4854 
   4855 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
   4856 TEST(EqAssertionTest, CharPointer) {
   4857   char* const p0 = NULL;
   4858   // Only way to get the Nokia compiler to compile the cast
   4859   // is to have a separate void* variable first. Putting
   4860   // the two casts on the same line doesn't work, neither does
   4861   // a direct C-style to char*.
   4862   void* pv1 = (void*)0x1234;  // NOLINT
   4863   void* pv2 = (void*)0xABC0;  // NOLINT
   4864   char* const p1 = reinterpret_cast<char*>(pv1);
   4865   char* const p2 = reinterpret_cast<char*>(pv2);
   4866   ASSERT_EQ(p1, p1);
   4867 
   4868   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4869                           "Value of: p2");
   4870   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4871                           "p2");
   4872   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
   4873                                  reinterpret_cast<char*>(0xABC0)),
   4874                        "ABC0");
   4875 }
   4876 
   4877 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
   4878 TEST(EqAssertionTest, WideCharPointer) {
   4879   wchar_t* const p0 = NULL;
   4880   // Only way to get the Nokia compiler to compile the cast
   4881   // is to have a separate void* variable first. Putting
   4882   // the two casts on the same line doesn't work, neither does
   4883   // a direct C-style to char*.
   4884   void* pv1 = (void*)0x1234;  // NOLINT
   4885   void* pv2 = (void*)0xABC0;  // NOLINT
   4886   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
   4887   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
   4888   EXPECT_EQ(p0, p0);
   4889 
   4890   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4891                           "Value of: p2");
   4892   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4893                           "p2");
   4894   void* pv3 = (void*)0x1234;  // NOLINT
   4895   void* pv4 = (void*)0xABC0;  // NOLINT
   4896   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
   4897   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
   4898   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
   4899                           "p4");
   4900 }
   4901 
   4902 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
   4903 TEST(EqAssertionTest, OtherPointer) {
   4904   ASSERT_EQ(static_cast<const int*>(NULL),
   4905             static_cast<const int*>(NULL));
   4906   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
   4907                                  reinterpret_cast<const int*>(0x1234)),
   4908                        "0x1234");
   4909 }
   4910 
   4911 // A class that supports binary comparison operators but not streaming.
   4912 class UnprintableChar {
   4913  public:
   4914   explicit UnprintableChar(char ch) : char_(ch) {}
   4915 
   4916   bool operator==(const UnprintableChar& rhs) const {
   4917     return char_ == rhs.char_;
   4918   }
   4919   bool operator!=(const UnprintableChar& rhs) const {
   4920     return char_ != rhs.char_;
   4921   }
   4922   bool operator<(const UnprintableChar& rhs) const {
   4923     return char_ < rhs.char_;
   4924   }
   4925   bool operator<=(const UnprintableChar& rhs) const {
   4926     return char_ <= rhs.char_;
   4927   }
   4928   bool operator>(const UnprintableChar& rhs) const {
   4929     return char_ > rhs.char_;
   4930   }
   4931   bool operator>=(const UnprintableChar& rhs) const {
   4932     return char_ >= rhs.char_;
   4933   }
   4934 
   4935  private:
   4936   char char_;
   4937 };
   4938 
   4939 // Tests that ASSERT_EQ() and friends don't require the arguments to
   4940 // be printable.
   4941 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
   4942   const UnprintableChar x('x'), y('y');
   4943   ASSERT_EQ(x, x);
   4944   EXPECT_NE(x, y);
   4945   ASSERT_LT(x, y);
   4946   EXPECT_LE(x, y);
   4947   ASSERT_GT(y, x);
   4948   EXPECT_GE(x, x);
   4949 
   4950   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
   4951   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
   4952   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
   4953   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
   4954   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
   4955 
   4956   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
   4957   // variables, so we have to write UnprintableChar('x') instead of x.
   4958 #ifndef __BORLANDC__
   4959   // ICE's in C++Builder.
   4960   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
   4961                        "1-byte object <78>");
   4962   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4963                        "1-byte object <78>");
   4964 #endif
   4965   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4966                        "1-byte object <79>");
   4967   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4968                        "1-byte object <78>");
   4969   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4970                        "1-byte object <79>");
   4971 }
   4972 
   4973 // Tests the FRIEND_TEST macro.
   4974 
   4975 // This class has a private member we want to test.  We will test it
   4976 // both in a TEST and in a TEST_F.
   4977 class Foo {
   4978  public:
   4979   Foo() {}
   4980 
   4981  private:
   4982   int Bar() const { return 1; }
   4983 
   4984   // Declares the friend tests that can access the private member
   4985   // Bar().
   4986   FRIEND_TEST(FRIEND_TEST_Test, TEST);
   4987   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
   4988 };
   4989 
   4990 // Tests that the FRIEND_TEST declaration allows a TEST to access a
   4991 // class's private members.  This should compile.
   4992 TEST(FRIEND_TEST_Test, TEST) {
   4993   ASSERT_EQ(1, Foo().Bar());
   4994 }
   4995 
   4996 // The fixture needed to test using FRIEND_TEST with TEST_F.
   4997 class FRIEND_TEST_Test2 : public Test {
   4998  protected:
   4999   Foo foo;
   5000 };
   5001 
   5002 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
   5003 // class's private members.  This should compile.
   5004 TEST_F(FRIEND_TEST_Test2, TEST_F) {
   5005   ASSERT_EQ(1, foo.Bar());
   5006 }
   5007 
   5008 // Tests the life cycle of Test objects.
   5009 
   5010 // The test fixture for testing the life cycle of Test objects.
   5011 //
   5012 // This class counts the number of live test objects that uses this
   5013 // fixture.
   5014 class TestLifeCycleTest : public Test {
   5015  protected:
   5016   // Constructor.  Increments the number of test objects that uses
   5017   // this fixture.
   5018   TestLifeCycleTest() { count_++; }
   5019 
   5020   // Destructor.  Decrements the number of test objects that uses this
   5021   // fixture.
   5022   ~TestLifeCycleTest() { count_--; }
   5023 
   5024   // Returns the number of live test objects that uses this fixture.
   5025   int count() const { return count_; }
   5026 
   5027  private:
   5028   static int count_;
   5029 };
   5030 
   5031 int TestLifeCycleTest::count_ = 0;
   5032 
   5033 // Tests the life cycle of test objects.
   5034 TEST_F(TestLifeCycleTest, Test1) {
   5035   // There should be only one test object in this test case that's
   5036   // currently alive.
   5037   ASSERT_EQ(1, count());
   5038 }
   5039 
   5040 // Tests the life cycle of test objects.
   5041 TEST_F(TestLifeCycleTest, Test2) {
   5042   // After Test1 is done and Test2 is started, there should still be
   5043   // only one live test object, as the object for Test1 should've been
   5044   // deleted.
   5045   ASSERT_EQ(1, count());
   5046 }
   5047 
   5048 }  // namespace
   5049 
   5050 // Tests that the copy constructor works when it is NOT optimized away by
   5051 // the compiler.
   5052 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
   5053   // Checks that the copy constructor doesn't try to dereference NULL pointers
   5054   // in the source object.
   5055   AssertionResult r1 = AssertionSuccess();
   5056   AssertionResult r2 = r1;
   5057   // The following line is added to prevent the compiler from optimizing
   5058   // away the constructor call.
   5059   r1 << "abc";
   5060 
   5061   AssertionResult r3 = r1;
   5062   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
   5063   EXPECT_STREQ("abc", r1.message());
   5064 }
   5065 
   5066 // Tests that AssertionSuccess and AssertionFailure construct
   5067 // AssertionResult objects as expected.
   5068 TEST(AssertionResultTest, ConstructionWorks) {
   5069   AssertionResult r1 = AssertionSuccess();
   5070   EXPECT_TRUE(r1);
   5071   EXPECT_STREQ("", r1.message());
   5072 
   5073   AssertionResult r2 = AssertionSuccess() << "abc";
   5074   EXPECT_TRUE(r2);
   5075   EXPECT_STREQ("abc", r2.message());
   5076 
   5077   AssertionResult r3 = AssertionFailure();
   5078   EXPECT_FALSE(r3);
   5079   EXPECT_STREQ("", r3.message());
   5080 
   5081   AssertionResult r4 = AssertionFailure() << "def";
   5082   EXPECT_FALSE(r4);
   5083   EXPECT_STREQ("def", r4.message());
   5084 
   5085   AssertionResult r5 = AssertionFailure(Message() << "ghi");
   5086   EXPECT_FALSE(r5);
   5087   EXPECT_STREQ("ghi", r5.message());
   5088 }
   5089 
   5090 // Tests that the negation flips the predicate result but keeps the message.
   5091 TEST(AssertionResultTest, NegationWorks) {
   5092   AssertionResult r1 = AssertionSuccess() << "abc";
   5093   EXPECT_FALSE(!r1);
   5094   EXPECT_STREQ("abc", (!r1).message());
   5095 
   5096   AssertionResult r2 = AssertionFailure() << "def";
   5097   EXPECT_TRUE(!r2);
   5098   EXPECT_STREQ("def", (!r2).message());
   5099 }
   5100 
   5101 TEST(AssertionResultTest, StreamingWorks) {
   5102   AssertionResult r = AssertionSuccess();
   5103   r << "abc" << 'd' << 0 << true;
   5104   EXPECT_STREQ("abcd0true", r.message());
   5105 }
   5106 
   5107 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
   5108   AssertionResult r = AssertionSuccess();
   5109   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
   5110   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
   5111 }
   5112 
   5113 // The next test uses explicit conversion operators -- a C++11 feature.
   5114 #if GTEST_LANG_CXX11
   5115 
   5116 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
   5117   struct ExplicitlyConvertibleToBool {
   5118     explicit operator bool() const { return value; }
   5119     bool value;
   5120   };
   5121   ExplicitlyConvertibleToBool v1 = {false};
   5122   ExplicitlyConvertibleToBool v2 = {true};
   5123   EXPECT_FALSE(v1);
   5124   EXPECT_TRUE(v2);
   5125 }
   5126 
   5127 #endif  // GTEST_LANG_CXX11
   5128 
   5129 struct ConvertibleToAssertionResult {
   5130   operator AssertionResult() const { return AssertionResult(true); }
   5131 };
   5132 
   5133 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
   5134   ConvertibleToAssertionResult obj;
   5135   EXPECT_TRUE(obj);
   5136 }
   5137 
   5138 // Tests streaming a user type whose definition and operator << are
   5139 // both in the global namespace.
   5140 class Base {
   5141  public:
   5142   explicit Base(int an_x) : x_(an_x) {}
   5143   int x() const { return x_; }
   5144  private:
   5145   int x_;
   5146 };
   5147 std::ostream& operator<<(std::ostream& os,
   5148                          const Base& val) {
   5149   return os << val.x();
   5150 }
   5151 std::ostream& operator<<(std::ostream& os,
   5152                          const Base* pointer) {
   5153   return os << "(" << pointer->x() << ")";
   5154 }
   5155 
   5156 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
   5157   Message msg;
   5158   Base a(1);
   5159 
   5160   msg << a << &a;  // Uses ::operator<<.
   5161   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5162 }
   5163 
   5164 // Tests streaming a user type whose definition and operator<< are
   5165 // both in an unnamed namespace.
   5166 namespace {
   5167 class MyTypeInUnnamedNameSpace : public Base {
   5168  public:
   5169   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
   5170 };
   5171 std::ostream& operator<<(std::ostream& os,
   5172                          const MyTypeInUnnamedNameSpace& val) {
   5173   return os << val.x();
   5174 }
   5175 std::ostream& operator<<(std::ostream& os,
   5176                          const MyTypeInUnnamedNameSpace* pointer) {
   5177   return os << "(" << pointer->x() << ")";
   5178 }
   5179 }  // namespace
   5180 
   5181 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
   5182   Message msg;
   5183   MyTypeInUnnamedNameSpace a(1);
   5184 
   5185   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
   5186   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5187 }
   5188 
   5189 // Tests streaming a user type whose definition and operator<< are
   5190 // both in a user namespace.
   5191 namespace namespace1 {
   5192 class MyTypeInNameSpace1 : public Base {
   5193  public:
   5194   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
   5195 };
   5196 std::ostream& operator<<(std::ostream& os,
   5197                          const MyTypeInNameSpace1& val) {
   5198   return os << val.x();
   5199 }
   5200 std::ostream& operator<<(std::ostream& os,
   5201                          const MyTypeInNameSpace1* pointer) {
   5202   return os << "(" << pointer->x() << ")";
   5203 }
   5204 }  // namespace namespace1
   5205 
   5206 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
   5207   Message msg;
   5208   namespace1::MyTypeInNameSpace1 a(1);
   5209 
   5210   msg << a << &a;  // Uses namespace1::operator<<.
   5211   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5212 }
   5213 
   5214 // Tests streaming a user type whose definition is in a user namespace
   5215 // but whose operator<< is in the global namespace.
   5216 namespace namespace2 {
   5217 class MyTypeInNameSpace2 : public ::Base {
   5218  public:
   5219   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
   5220 };
   5221 }  // namespace namespace2
   5222 std::ostream& operator<<(std::ostream& os,
   5223                          const namespace2::MyTypeInNameSpace2& val) {
   5224   return os << val.x();
   5225 }
   5226 std::ostream& operator<<(std::ostream& os,
   5227                          const namespace2::MyTypeInNameSpace2* pointer) {
   5228   return os << "(" << pointer->x() << ")";
   5229 }
   5230 
   5231 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
   5232   Message msg;
   5233   namespace2::MyTypeInNameSpace2 a(1);
   5234 
   5235   msg << a << &a;  // Uses ::operator<<.
   5236   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5237 }
   5238 
   5239 // Tests streaming NULL pointers to testing::Message.
   5240 TEST(MessageTest, NullPointers) {
   5241   Message msg;
   5242   char* const p1 = NULL;
   5243   unsigned char* const p2 = NULL;
   5244   int* p3 = NULL;
   5245   double* p4 = NULL;
   5246   bool* p5 = NULL;
   5247   Message* p6 = NULL;
   5248 
   5249   msg << p1 << p2 << p3 << p4 << p5 << p6;
   5250   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
   5251                msg.GetString().c_str());
   5252 }
   5253 
   5254 // Tests streaming wide strings to testing::Message.
   5255 TEST(MessageTest, WideStrings) {
   5256   // Streams a NULL of type const wchar_t*.
   5257   const wchar_t* const_wstr = NULL;
   5258   EXPECT_STREQ("(null)",
   5259                (Message() << const_wstr).GetString().c_str());
   5260 
   5261   // Streams a NULL of type wchar_t*.
   5262   wchar_t* wstr = NULL;
   5263   EXPECT_STREQ("(null)",
   5264                (Message() << wstr).GetString().c_str());
   5265 
   5266   // Streams a non-NULL of type const wchar_t*.
   5267   const_wstr = L"abc\x8119";
   5268   EXPECT_STREQ("abc\xe8\x84\x99",
   5269                (Message() << const_wstr).GetString().c_str());
   5270 
   5271   // Streams a non-NULL of type wchar_t*.
   5272   wstr = const_cast<wchar_t*>(const_wstr);
   5273   EXPECT_STREQ("abc\xe8\x84\x99",
   5274                (Message() << wstr).GetString().c_str());
   5275 }
   5276 
   5277 
   5278 // This line tests that we can define tests in the testing namespace.
   5279 namespace testing {
   5280 
   5281 // Tests the TestInfo class.
   5282 
   5283 class TestInfoTest : public Test {
   5284  protected:
   5285   static const TestInfo* GetTestInfo(const char* test_name) {
   5286     const TestCase* const test_case = GetUnitTestImpl()->
   5287         GetTestCase("TestInfoTest", "", NULL, NULL);
   5288 
   5289     for (int i = 0; i < test_case->total_test_count(); ++i) {
   5290       const TestInfo* const test_info = test_case->GetTestInfo(i);
   5291       if (strcmp(test_name, test_info->name()) == 0)
   5292         return test_info;
   5293     }
   5294     return NULL;
   5295   }
   5296 
   5297   static const TestResult* GetTestResult(
   5298       const TestInfo* test_info) {
   5299     return test_info->result();
   5300   }
   5301 };
   5302 
   5303 // Tests TestInfo::test_case_name() and TestInfo::name().
   5304 TEST_F(TestInfoTest, Names) {
   5305   const TestInfo* const test_info = GetTestInfo("Names");
   5306 
   5307   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
   5308   ASSERT_STREQ("Names", test_info->name());
   5309 }
   5310 
   5311 // Tests TestInfo::result().
   5312 TEST_F(TestInfoTest, result) {
   5313   const TestInfo* const test_info = GetTestInfo("result");
   5314 
   5315   // Initially, there is no TestPartResult for this test.
   5316   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5317 
   5318   // After the previous assertion, there is still none.
   5319   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5320 }
   5321 
   5322 // Tests setting up and tearing down a test case.
   5323 
   5324 class SetUpTestCaseTest : public Test {
   5325  protected:
   5326   // This will be called once before the first test in this test case
   5327   // is run.
   5328   static void SetUpTestCase() {
   5329     printf("Setting up the test case . . .\n");
   5330 
   5331     // Initializes some shared resource.  In this simple example, we
   5332     // just create a C string.  More complex stuff can be done if
   5333     // desired.
   5334     shared_resource_ = "123";
   5335 
   5336     // Increments the number of test cases that have been set up.
   5337     counter_++;
   5338 
   5339     // SetUpTestCase() should be called only once.
   5340     EXPECT_EQ(1, counter_);
   5341   }
   5342 
   5343   // This will be called once after the last test in this test case is
   5344   // run.
   5345   static void TearDownTestCase() {
   5346     printf("Tearing down the test case . . .\n");
   5347 
   5348     // Decrements the number of test cases that have been set up.
   5349     counter_--;
   5350 
   5351     // TearDownTestCase() should be called only once.
   5352     EXPECT_EQ(0, counter_);
   5353 
   5354     // Cleans up the shared resource.
   5355     shared_resource_ = NULL;
   5356   }
   5357 
   5358   // This will be called before each test in this test case.
   5359   virtual void SetUp() {
   5360     // SetUpTestCase() should be called only once, so counter_ should
   5361     // always be 1.
   5362     EXPECT_EQ(1, counter_);
   5363   }
   5364 
   5365   // Number of test cases that have been set up.
   5366   static int counter_;
   5367 
   5368   // Some resource to be shared by all tests in this test case.
   5369   static const char* shared_resource_;
   5370 };
   5371 
   5372 int SetUpTestCaseTest::counter_ = 0;
   5373 const char* SetUpTestCaseTest::shared_resource_ = NULL;
   5374 
   5375 // A test that uses the shared resource.
   5376 TEST_F(SetUpTestCaseTest, Test1) {
   5377   EXPECT_STRNE(NULL, shared_resource_);
   5378 }
   5379 
   5380 // Another test that uses the shared resource.
   5381 TEST_F(SetUpTestCaseTest, Test2) {
   5382   EXPECT_STREQ("123", shared_resource_);
   5383 }
   5384 
   5385 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
   5386 
   5387 // The Flags struct stores a copy of all Google Test flags.
   5388 struct Flags {
   5389   // Constructs a Flags struct where each flag has its default value.
   5390   Flags() : also_run_disabled_tests(false),
   5391             break_on_failure(false),
   5392             catch_exceptions(false),
   5393             death_test_use_fork(false),
   5394             filter(""),
   5395             list_tests(false),
   5396             output(""),
   5397             print_time(true),
   5398             random_seed(0),
   5399             repeat(1),
   5400             shuffle(false),
   5401             stack_trace_depth(kMaxStackTraceDepth),
   5402             stream_result_to(""),
   5403             throw_on_failure(false) {}
   5404 
   5405   // Factory methods.
   5406 
   5407   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
   5408   // the given value.
   5409   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
   5410     Flags flags;
   5411     flags.also_run_disabled_tests = also_run_disabled_tests;
   5412     return flags;
   5413   }
   5414 
   5415   // Creates a Flags struct where the gtest_break_on_failure flag has
   5416   // the given value.
   5417   static Flags BreakOnFailure(bool break_on_failure) {
   5418     Flags flags;
   5419     flags.break_on_failure = break_on_failure;
   5420     return flags;
   5421   }
   5422 
   5423   // Creates a Flags struct where the gtest_catch_exceptions flag has
   5424   // the given value.
   5425   static Flags CatchExceptions(bool catch_exceptions) {
   5426     Flags flags;
   5427     flags.catch_exceptions = catch_exceptions;
   5428     return flags;
   5429   }
   5430 
   5431   // Creates a Flags struct where the gtest_death_test_use_fork flag has
   5432   // the given value.
   5433   static Flags DeathTestUseFork(bool death_test_use_fork) {
   5434     Flags flags;
   5435     flags.death_test_use_fork = death_test_use_fork;
   5436     return flags;
   5437   }
   5438 
   5439   // Creates a Flags struct where the gtest_filter flag has the given
   5440   // value.
   5441   static Flags Filter(const char* filter) {
   5442     Flags flags;
   5443     flags.filter = filter;
   5444     return flags;
   5445   }
   5446 
   5447   // Creates a Flags struct where the gtest_list_tests flag has the
   5448   // given value.
   5449   static Flags ListTests(bool list_tests) {
   5450     Flags flags;
   5451     flags.list_tests = list_tests;
   5452     return flags;
   5453   }
   5454 
   5455   // Creates a Flags struct where the gtest_output flag has the given
   5456   // value.
   5457   static Flags Output(const char* output) {
   5458     Flags flags;
   5459     flags.output = output;
   5460     return flags;
   5461   }
   5462 
   5463   // Creates a Flags struct where the gtest_print_time flag has the given
   5464   // value.
   5465   static Flags PrintTime(bool print_time) {
   5466     Flags flags;
   5467     flags.print_time = print_time;
   5468     return flags;
   5469   }
   5470 
   5471   // Creates a Flags struct where the gtest_random_seed flag has
   5472   // the given value.
   5473   static Flags RandomSeed(Int32 random_seed) {
   5474     Flags flags;
   5475     flags.random_seed = random_seed;
   5476     return flags;
   5477   }
   5478 
   5479   // Creates a Flags struct where the gtest_repeat flag has the given
   5480   // value.
   5481   static Flags Repeat(Int32 repeat) {
   5482     Flags flags;
   5483     flags.repeat = repeat;
   5484     return flags;
   5485   }
   5486 
   5487   // Creates a Flags struct where the gtest_shuffle flag has
   5488   // the given value.
   5489   static Flags Shuffle(bool shuffle) {
   5490     Flags flags;
   5491     flags.shuffle = shuffle;
   5492     return flags;
   5493   }
   5494 
   5495   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
   5496   // the given value.
   5497   static Flags StackTraceDepth(Int32 stack_trace_depth) {
   5498     Flags flags;
   5499     flags.stack_trace_depth = stack_trace_depth;
   5500     return flags;
   5501   }
   5502 
   5503   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
   5504   // the given value.
   5505   static Flags StreamResultTo(const char* stream_result_to) {
   5506     Flags flags;
   5507     flags.stream_result_to = stream_result_to;
   5508     return flags;
   5509   }
   5510 
   5511   // Creates a Flags struct where the gtest_throw_on_failure flag has
   5512   // the given value.
   5513   static Flags ThrowOnFailure(bool throw_on_failure) {
   5514     Flags flags;
   5515     flags.throw_on_failure = throw_on_failure;
   5516     return flags;
   5517   }
   5518 
   5519   // These fields store the flag values.
   5520   bool also_run_disabled_tests;
   5521   bool break_on_failure;
   5522   bool catch_exceptions;
   5523   bool death_test_use_fork;
   5524   const char* filter;
   5525   bool list_tests;
   5526   const char* output;
   5527   bool print_time;
   5528   Int32 random_seed;
   5529   Int32 repeat;
   5530   bool shuffle;
   5531   Int32 stack_trace_depth;
   5532   const char* stream_result_to;
   5533   bool throw_on_failure;
   5534 };
   5535 
   5536 // Fixture for testing InitGoogleTest().
   5537 class InitGoogleTestTest : public Test {
   5538  protected:
   5539   // Clears the flags before each test.
   5540   virtual void SetUp() {
   5541     GTEST_FLAG(also_run_disabled_tests) = false;
   5542     GTEST_FLAG(break_on_failure) = false;
   5543     GTEST_FLAG(catch_exceptions) = false;
   5544     GTEST_FLAG(death_test_use_fork) = false;
   5545     GTEST_FLAG(filter) = "";
   5546     GTEST_FLAG(list_tests) = false;
   5547     GTEST_FLAG(output) = "";
   5548     GTEST_FLAG(print_time) = true;
   5549     GTEST_FLAG(random_seed) = 0;
   5550     GTEST_FLAG(repeat) = 1;
   5551     GTEST_FLAG(shuffle) = false;
   5552     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   5553     GTEST_FLAG(stream_result_to) = "";
   5554     GTEST_FLAG(throw_on_failure) = false;
   5555   }
   5556 
   5557   // Asserts that two narrow or wide string arrays are equal.
   5558   template <typename CharType>
   5559   static void AssertStringArrayEq(size_t size1, CharType** array1,
   5560                                   size_t size2, CharType** array2) {
   5561     ASSERT_EQ(size1, size2) << " Array sizes different.";
   5562 
   5563     for (size_t i = 0; i != size1; i++) {
   5564       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
   5565     }
   5566   }
   5567 
   5568   // Verifies that the flag values match the expected values.
   5569   static void CheckFlags(const Flags& expected) {
   5570     EXPECT_EQ(expected.also_run_disabled_tests,
   5571               GTEST_FLAG(also_run_disabled_tests));
   5572     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
   5573     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
   5574     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
   5575     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
   5576     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
   5577     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
   5578     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
   5579     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
   5580     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
   5581     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
   5582     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
   5583     EXPECT_STREQ(expected.stream_result_to,
   5584                  GTEST_FLAG(stream_result_to).c_str());
   5585     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
   5586   }
   5587 
   5588   // Parses a command line (specified by argc1 and argv1), then
   5589   // verifies that the flag values are expected and that the
   5590   // recognized flags are removed from the command line.
   5591   template <typename CharType>
   5592   static void TestParsingFlags(int argc1, const CharType** argv1,
   5593                                int argc2, const CharType** argv2,
   5594                                const Flags& expected, bool should_print_help) {
   5595     const bool saved_help_flag = ::testing::internal::g_help_flag;
   5596     ::testing::internal::g_help_flag = false;
   5597 
   5598 #if GTEST_HAS_STREAM_REDIRECTION
   5599     CaptureStdout();
   5600 #endif
   5601 
   5602     // Parses the command line.
   5603     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
   5604 
   5605 #if GTEST_HAS_STREAM_REDIRECTION
   5606     const std::string captured_stdout = GetCapturedStdout();
   5607 #endif
   5608 
   5609     // Verifies the flag values.
   5610     CheckFlags(expected);
   5611 
   5612     // Verifies that the recognized flags are removed from the command
   5613     // line.
   5614     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
   5615 
   5616     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
   5617     // help message for the flags it recognizes.
   5618     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
   5619 
   5620 #if GTEST_HAS_STREAM_REDIRECTION
   5621     const char* const expected_help_fragment =
   5622         "This program contains tests written using";
   5623     if (should_print_help) {
   5624       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
   5625     } else {
   5626       EXPECT_PRED_FORMAT2(IsNotSubstring,
   5627                           expected_help_fragment, captured_stdout);
   5628     }
   5629 #endif  // GTEST_HAS_STREAM_REDIRECTION
   5630 
   5631     ::testing::internal::g_help_flag = saved_help_flag;
   5632   }
   5633 
   5634   // This macro wraps TestParsingFlags s.t. the user doesn't need
   5635   // to specify the array sizes.
   5636 
   5637 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
   5638   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
   5639                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
   5640                    expected, should_print_help)
   5641 };
   5642 
   5643 // Tests parsing an empty command line.
   5644 TEST_F(InitGoogleTestTest, Empty) {
   5645   const char* argv[] = {
   5646     NULL
   5647   };
   5648 
   5649   const char* argv2[] = {
   5650     NULL
   5651   };
   5652 
   5653   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5654 }
   5655 
   5656 // Tests parsing a command line that has no flag.
   5657 TEST_F(InitGoogleTestTest, NoFlag) {
   5658   const char* argv[] = {
   5659     "foo.exe",
   5660     NULL
   5661   };
   5662 
   5663   const char* argv2[] = {
   5664     "foo.exe",
   5665     NULL
   5666   };
   5667 
   5668   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5669 }
   5670 
   5671 // Tests parsing a bad --gtest_filter flag.
   5672 TEST_F(InitGoogleTestTest, FilterBad) {
   5673   const char* argv[] = {
   5674     "foo.exe",
   5675     "--gtest_filter",
   5676     NULL
   5677   };
   5678 
   5679   const char* argv2[] = {
   5680     "foo.exe",
   5681     "--gtest_filter",
   5682     NULL
   5683   };
   5684 
   5685   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
   5686 }
   5687 
   5688 // Tests parsing an empty --gtest_filter flag.
   5689 TEST_F(InitGoogleTestTest, FilterEmpty) {
   5690   const char* argv[] = {
   5691     "foo.exe",
   5692     "--gtest_filter=",
   5693     NULL
   5694   };
   5695 
   5696   const char* argv2[] = {
   5697     "foo.exe",
   5698     NULL
   5699   };
   5700 
   5701   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
   5702 }
   5703 
   5704 // Tests parsing a non-empty --gtest_filter flag.
   5705 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
   5706   const char* argv[] = {
   5707     "foo.exe",
   5708     "--gtest_filter=abc",
   5709     NULL
   5710   };
   5711 
   5712   const char* argv2[] = {
   5713     "foo.exe",
   5714     NULL
   5715   };
   5716 
   5717   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
   5718 }
   5719 
   5720 // Tests parsing --gtest_break_on_failure.
   5721 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
   5722   const char* argv[] = {
   5723     "foo.exe",
   5724     "--gtest_break_on_failure",
   5725     NULL
   5726 };
   5727 
   5728   const char* argv2[] = {
   5729     "foo.exe",
   5730     NULL
   5731   };
   5732 
   5733   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5734 }
   5735 
   5736 // Tests parsing --gtest_break_on_failure=0.
   5737 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
   5738   const char* argv[] = {
   5739     "foo.exe",
   5740     "--gtest_break_on_failure=0",
   5741     NULL
   5742   };
   5743 
   5744   const char* argv2[] = {
   5745     "foo.exe",
   5746     NULL
   5747   };
   5748 
   5749   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5750 }
   5751 
   5752 // Tests parsing --gtest_break_on_failure=f.
   5753 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
   5754   const char* argv[] = {
   5755     "foo.exe",
   5756     "--gtest_break_on_failure=f",
   5757     NULL
   5758   };
   5759 
   5760   const char* argv2[] = {
   5761     "foo.exe",
   5762     NULL
   5763   };
   5764 
   5765   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5766 }
   5767 
   5768 // Tests parsing --gtest_break_on_failure=F.
   5769 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
   5770   const char* argv[] = {
   5771     "foo.exe",
   5772     "--gtest_break_on_failure=F",
   5773     NULL
   5774   };
   5775 
   5776   const char* argv2[] = {
   5777     "foo.exe",
   5778     NULL
   5779   };
   5780 
   5781   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5782 }
   5783 
   5784 // Tests parsing a --gtest_break_on_failure flag that has a "true"
   5785 // definition.
   5786 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
   5787   const char* argv[] = {
   5788     "foo.exe",
   5789     "--gtest_break_on_failure=1",
   5790     NULL
   5791   };
   5792 
   5793   const char* argv2[] = {
   5794     "foo.exe",
   5795     NULL
   5796   };
   5797 
   5798   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5799 }
   5800 
   5801 // Tests parsing --gtest_catch_exceptions.
   5802 TEST_F(InitGoogleTestTest, CatchExceptions) {
   5803   const char* argv[] = {
   5804     "foo.exe",
   5805     "--gtest_catch_exceptions",
   5806     NULL
   5807   };
   5808 
   5809   const char* argv2[] = {
   5810     "foo.exe",
   5811     NULL
   5812   };
   5813 
   5814   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
   5815 }
   5816 
   5817 // Tests parsing --gtest_death_test_use_fork.
   5818 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
   5819   const char* argv[] = {
   5820     "foo.exe",
   5821     "--gtest_death_test_use_fork",
   5822     NULL
   5823   };
   5824 
   5825   const char* argv2[] = {
   5826     "foo.exe",
   5827     NULL
   5828   };
   5829 
   5830   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
   5831 }
   5832 
   5833 // Tests having the same flag twice with different values.  The
   5834 // expected behavior is that the one coming last takes precedence.
   5835 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
   5836   const char* argv[] = {
   5837     "foo.exe",
   5838     "--gtest_filter=a",
   5839     "--gtest_filter=b",
   5840     NULL
   5841   };
   5842 
   5843   const char* argv2[] = {
   5844     "foo.exe",
   5845     NULL
   5846   };
   5847 
   5848   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
   5849 }
   5850 
   5851 // Tests having an unrecognized flag on the command line.
   5852 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
   5853   const char* argv[] = {
   5854     "foo.exe",
   5855     "--gtest_break_on_failure",
   5856     "bar",  // Unrecognized by Google Test.
   5857     "--gtest_filter=b",
   5858     NULL
   5859   };
   5860 
   5861   const char* argv2[] = {
   5862     "foo.exe",
   5863     "bar",
   5864     NULL
   5865   };
   5866 
   5867   Flags flags;
   5868   flags.break_on_failure = true;
   5869   flags.filter = "b";
   5870   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
   5871 }
   5872 
   5873 // Tests having a --gtest_list_tests flag
   5874 TEST_F(InitGoogleTestTest, ListTestsFlag) {
   5875     const char* argv[] = {
   5876       "foo.exe",
   5877       "--gtest_list_tests",
   5878       NULL
   5879     };
   5880 
   5881     const char* argv2[] = {
   5882       "foo.exe",
   5883       NULL
   5884     };
   5885 
   5886     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5887 }
   5888 
   5889 // Tests having a --gtest_list_tests flag with a "true" value
   5890 TEST_F(InitGoogleTestTest, ListTestsTrue) {
   5891     const char* argv[] = {
   5892       "foo.exe",
   5893       "--gtest_list_tests=1",
   5894       NULL
   5895     };
   5896 
   5897     const char* argv2[] = {
   5898       "foo.exe",
   5899       NULL
   5900     };
   5901 
   5902     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5903 }
   5904 
   5905 // Tests having a --gtest_list_tests flag with a "false" value
   5906 TEST_F(InitGoogleTestTest, ListTestsFalse) {
   5907     const char* argv[] = {
   5908       "foo.exe",
   5909       "--gtest_list_tests=0",
   5910       NULL
   5911     };
   5912 
   5913     const char* argv2[] = {
   5914       "foo.exe",
   5915       NULL
   5916     };
   5917 
   5918     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5919 }
   5920 
   5921 // Tests parsing --gtest_list_tests=f.
   5922 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
   5923   const char* argv[] = {
   5924     "foo.exe",
   5925     "--gtest_list_tests=f",
   5926     NULL
   5927   };
   5928 
   5929   const char* argv2[] = {
   5930     "foo.exe",
   5931     NULL
   5932   };
   5933 
   5934   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5935 }
   5936 
   5937 // Tests parsing --gtest_list_tests=F.
   5938 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
   5939   const char* argv[] = {
   5940     "foo.exe",
   5941     "--gtest_list_tests=F",
   5942     NULL
   5943   };
   5944 
   5945   const char* argv2[] = {
   5946     "foo.exe",
   5947     NULL
   5948   };
   5949 
   5950   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5951 }
   5952 
   5953 // Tests parsing --gtest_output (invalid).
   5954 TEST_F(InitGoogleTestTest, OutputEmpty) {
   5955   const char* argv[] = {
   5956     "foo.exe",
   5957     "--gtest_output",
   5958     NULL
   5959   };
   5960 
   5961   const char* argv2[] = {
   5962     "foo.exe",
   5963     "--gtest_output",
   5964     NULL
   5965   };
   5966 
   5967   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
   5968 }
   5969 
   5970 // Tests parsing --gtest_output=xml
   5971 TEST_F(InitGoogleTestTest, OutputXml) {
   5972   const char* argv[] = {
   5973     "foo.exe",
   5974     "--gtest_output=xml",
   5975     NULL
   5976   };
   5977 
   5978   const char* argv2[] = {
   5979     "foo.exe",
   5980     NULL
   5981   };
   5982 
   5983   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
   5984 }
   5985 
   5986 // Tests parsing --gtest_output=xml:file
   5987 TEST_F(InitGoogleTestTest, OutputXmlFile) {
   5988   const char* argv[] = {
   5989     "foo.exe",
   5990     "--gtest_output=xml:file",
   5991     NULL
   5992   };
   5993 
   5994   const char* argv2[] = {
   5995     "foo.exe",
   5996     NULL
   5997   };
   5998 
   5999   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
   6000 }
   6001 
   6002 // Tests parsing --gtest_output=xml:directory/path/
   6003 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
   6004   const char* argv[] = {
   6005     "foo.exe",
   6006     "--gtest_output=xml:directory/path/",
   6007     NULL
   6008   };
   6009 
   6010   const char* argv2[] = {
   6011     "foo.exe",
   6012     NULL
   6013   };
   6014 
   6015   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6016                             Flags::Output("xml:directory/path/"), false);
   6017 }
   6018 
   6019 // Tests having a --gtest_print_time flag
   6020 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
   6021     const char* argv[] = {
   6022       "foo.exe",
   6023       "--gtest_print_time",
   6024       NULL
   6025     };
   6026 
   6027     const char* argv2[] = {
   6028       "foo.exe",
   6029       NULL
   6030     };
   6031 
   6032     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   6033 }
   6034 
   6035 // Tests having a --gtest_print_time flag with a "true" value
   6036 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
   6037     const char* argv[] = {
   6038       "foo.exe",
   6039       "--gtest_print_time=1",
   6040       NULL
   6041     };
   6042 
   6043     const char* argv2[] = {
   6044       "foo.exe",
   6045       NULL
   6046     };
   6047 
   6048     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   6049 }
   6050 
   6051 // Tests having a --gtest_print_time flag with a "false" value
   6052 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
   6053     const char* argv[] = {
   6054       "foo.exe",
   6055       "--gtest_print_time=0",
   6056       NULL
   6057     };
   6058 
   6059     const char* argv2[] = {
   6060       "foo.exe",
   6061       NULL
   6062     };
   6063 
   6064     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   6065 }
   6066 
   6067 // Tests parsing --gtest_print_time=f.
   6068 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
   6069   const char* argv[] = {
   6070     "foo.exe",
   6071     "--gtest_print_time=f",
   6072     NULL
   6073   };
   6074 
   6075   const char* argv2[] = {
   6076     "foo.exe",
   6077     NULL
   6078   };
   6079 
   6080   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   6081 }
   6082 
   6083 // Tests parsing --gtest_print_time=F.
   6084 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
   6085   const char* argv[] = {
   6086     "foo.exe",
   6087     "--gtest_print_time=F",
   6088     NULL
   6089   };
   6090 
   6091   const char* argv2[] = {
   6092     "foo.exe",
   6093     NULL
   6094   };
   6095 
   6096   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   6097 }
   6098 
   6099 // Tests parsing --gtest_random_seed=number
   6100 TEST_F(InitGoogleTestTest, RandomSeed) {
   6101   const char* argv[] = {
   6102     "foo.exe",
   6103     "--gtest_random_seed=1000",
   6104     NULL
   6105   };
   6106 
   6107   const char* argv2[] = {
   6108     "foo.exe",
   6109     NULL
   6110   };
   6111 
   6112   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
   6113 }
   6114 
   6115 // Tests parsing --gtest_repeat=number
   6116 TEST_F(InitGoogleTestTest, Repeat) {
   6117   const char* argv[] = {
   6118     "foo.exe",
   6119     "--gtest_repeat=1000",
   6120     NULL
   6121   };
   6122 
   6123   const char* argv2[] = {
   6124     "foo.exe",
   6125     NULL
   6126   };
   6127 
   6128   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
   6129 }
   6130 
   6131 // Tests having a --gtest_also_run_disabled_tests flag
   6132 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
   6133     const char* argv[] = {
   6134       "foo.exe",
   6135       "--gtest_also_run_disabled_tests",
   6136       NULL
   6137     };
   6138 
   6139     const char* argv2[] = {
   6140       "foo.exe",
   6141       NULL
   6142     };
   6143 
   6144     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6145                               Flags::AlsoRunDisabledTests(true), false);
   6146 }
   6147 
   6148 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
   6149 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
   6150     const char* argv[] = {
   6151       "foo.exe",
   6152       "--gtest_also_run_disabled_tests=1",
   6153       NULL
   6154     };
   6155 
   6156     const char* argv2[] = {
   6157       "foo.exe",
   6158       NULL
   6159     };
   6160 
   6161     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6162                               Flags::AlsoRunDisabledTests(true), false);
   6163 }
   6164 
   6165 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
   6166 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
   6167     const char* argv[] = {
   6168       "foo.exe",
   6169       "--gtest_also_run_disabled_tests=0",
   6170       NULL
   6171     };
   6172 
   6173     const char* argv2[] = {
   6174       "foo.exe",
   6175       NULL
   6176     };
   6177 
   6178     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6179                               Flags::AlsoRunDisabledTests(false), false);
   6180 }
   6181 
   6182 // Tests parsing --gtest_shuffle.
   6183 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
   6184   const char* argv[] = {
   6185     "foo.exe",
   6186     "--gtest_shuffle",
   6187     NULL
   6188 };
   6189 
   6190   const char* argv2[] = {
   6191     "foo.exe",
   6192     NULL
   6193   };
   6194 
   6195   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6196 }
   6197 
   6198 // Tests parsing --gtest_shuffle=0.
   6199 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
   6200   const char* argv[] = {
   6201     "foo.exe",
   6202     "--gtest_shuffle=0",
   6203     NULL
   6204   };
   6205 
   6206   const char* argv2[] = {
   6207     "foo.exe",
   6208     NULL
   6209   };
   6210 
   6211   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
   6212 }
   6213 
   6214 // Tests parsing a --gtest_shuffle flag that has a "true"
   6215 // definition.
   6216 TEST_F(InitGoogleTestTest, ShuffleTrue) {
   6217   const char* argv[] = {
   6218     "foo.exe",
   6219     "--gtest_shuffle=1",
   6220     NULL
   6221   };
   6222 
   6223   const char* argv2[] = {
   6224     "foo.exe",
   6225     NULL
   6226   };
   6227 
   6228   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6229 }
   6230 
   6231 // Tests parsing --gtest_stack_trace_depth=number.
   6232 TEST_F(InitGoogleTestTest, StackTraceDepth) {
   6233   const char* argv[] = {
   6234     "foo.exe",
   6235     "--gtest_stack_trace_depth=5",
   6236     NULL
   6237   };
   6238 
   6239   const char* argv2[] = {
   6240     "foo.exe",
   6241     NULL
   6242   };
   6243 
   6244   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
   6245 }
   6246 
   6247 TEST_F(InitGoogleTestTest, StreamResultTo) {
   6248   const char* argv[] = {
   6249     "foo.exe",
   6250     "--gtest_stream_result_to=localhost:1234",
   6251     NULL
   6252   };
   6253 
   6254   const char* argv2[] = {
   6255     "foo.exe",
   6256     NULL
   6257   };
   6258 
   6259   GTEST_TEST_PARSING_FLAGS_(
   6260       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
   6261 }
   6262 
   6263 // Tests parsing --gtest_throw_on_failure.
   6264 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
   6265   const char* argv[] = {
   6266     "foo.exe",
   6267     "--gtest_throw_on_failure",
   6268     NULL
   6269 };
   6270 
   6271   const char* argv2[] = {
   6272     "foo.exe",
   6273     NULL
   6274   };
   6275 
   6276   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6277 }
   6278 
   6279 // Tests parsing --gtest_throw_on_failure=0.
   6280 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
   6281   const char* argv[] = {
   6282     "foo.exe",
   6283     "--gtest_throw_on_failure=0",
   6284     NULL
   6285   };
   6286 
   6287   const char* argv2[] = {
   6288     "foo.exe",
   6289     NULL
   6290   };
   6291 
   6292   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
   6293 }
   6294 
   6295 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
   6296 // definition.
   6297 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
   6298   const char* argv[] = {
   6299     "foo.exe",
   6300     "--gtest_throw_on_failure=1",
   6301     NULL
   6302   };
   6303 
   6304   const char* argv2[] = {
   6305     "foo.exe",
   6306     NULL
   6307   };
   6308 
   6309   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6310 }
   6311 
   6312 #if GTEST_OS_WINDOWS
   6313 // Tests parsing wide strings.
   6314 TEST_F(InitGoogleTestTest, WideStrings) {
   6315   const wchar_t* argv[] = {
   6316     L"foo.exe",
   6317     L"--gtest_filter=Foo*",
   6318     L"--gtest_list_tests=1",
   6319     L"--gtest_break_on_failure",
   6320     L"--non_gtest_flag",
   6321     NULL
   6322   };
   6323 
   6324   const wchar_t* argv2[] = {
   6325     L"foo.exe",
   6326     L"--non_gtest_flag",
   6327     NULL
   6328   };
   6329 
   6330   Flags expected_flags;
   6331   expected_flags.break_on_failure = true;
   6332   expected_flags.filter = "Foo*";
   6333   expected_flags.list_tests = true;
   6334 
   6335   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
   6336 }
   6337 #endif  // GTEST_OS_WINDOWS
   6338 
   6339 // Tests current_test_info() in UnitTest.
   6340 class CurrentTestInfoTest : public Test {
   6341  protected:
   6342   // Tests that current_test_info() returns NULL before the first test in
   6343   // the test case is run.
   6344   static void SetUpTestCase() {
   6345     // There should be no tests running at this point.
   6346     const TestInfo* test_info =
   6347       UnitTest::GetInstance()->current_test_info();
   6348     EXPECT_TRUE(test_info == NULL)
   6349         << "There should be no tests running at this point.";
   6350   }
   6351 
   6352   // Tests that current_test_info() returns NULL after the last test in
   6353   // the test case has run.
   6354   static void TearDownTestCase() {
   6355     const TestInfo* test_info =
   6356       UnitTest::GetInstance()->current_test_info();
   6357     EXPECT_TRUE(test_info == NULL)
   6358         << "There should be no tests running at this point.";
   6359   }
   6360 };
   6361 
   6362 // Tests that current_test_info() returns TestInfo for currently running
   6363 // test by checking the expected test name against the actual one.
   6364 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
   6365   const TestInfo* test_info =
   6366     UnitTest::GetInstance()->current_test_info();
   6367   ASSERT_TRUE(NULL != test_info)
   6368       << "There is a test running so we should have a valid TestInfo.";
   6369   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6370       << "Expected the name of the currently running test case.";
   6371   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
   6372       << "Expected the name of the currently running test.";
   6373 }
   6374 
   6375 // Tests that current_test_info() returns TestInfo for currently running
   6376 // test by checking the expected test name against the actual one.  We
   6377 // use this test to see that the TestInfo object actually changed from
   6378 // the previous invocation.
   6379 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
   6380   const TestInfo* test_info =
   6381     UnitTest::GetInstance()->current_test_info();
   6382   ASSERT_TRUE(NULL != test_info)
   6383       << "There is a test running so we should have a valid TestInfo.";
   6384   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6385       << "Expected the name of the currently running test case.";
   6386   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
   6387       << "Expected the name of the currently running test.";
   6388 }
   6389 
   6390 }  // namespace testing
   6391 
   6392 // These two lines test that we can define tests in a namespace that
   6393 // has the name "testing" and is nested in another namespace.
   6394 namespace my_namespace {
   6395 namespace testing {
   6396 
   6397 // Makes sure that TEST knows to use ::testing::Test instead of
   6398 // ::my_namespace::testing::Test.
   6399 class Test {};
   6400 
   6401 // Makes sure that an assertion knows to use ::testing::Message instead of
   6402 // ::my_namespace::testing::Message.
   6403 class Message {};
   6404 
   6405 // Makes sure that an assertion knows to use
   6406 // ::testing::AssertionResult instead of
   6407 // ::my_namespace::testing::AssertionResult.
   6408 class AssertionResult {};
   6409 
   6410 // Tests that an assertion that should succeed works as expected.
   6411 TEST(NestedTestingNamespaceTest, Success) {
   6412   EXPECT_EQ(1, 1) << "This shouldn't fail.";
   6413 }
   6414 
   6415 // Tests that an assertion that should fail works as expected.
   6416 TEST(NestedTestingNamespaceTest, Failure) {
   6417   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
   6418                        "This failure is expected.");
   6419 }
   6420 
   6421 }  // namespace testing
   6422 }  // namespace my_namespace
   6423 
   6424 // Tests that one can call superclass SetUp and TearDown methods--
   6425 // that is, that they are not private.
   6426 // No tests are based on this fixture; the test "passes" if it compiles
   6427 // successfully.
   6428 class ProtectedFixtureMethodsTest : public Test {
   6429  protected:
   6430   virtual void SetUp() {
   6431     Test::SetUp();
   6432   }
   6433   virtual void TearDown() {
   6434     Test::TearDown();
   6435   }
   6436 };
   6437 
   6438 // StreamingAssertionsTest tests the streaming versions of a representative
   6439 // sample of assertions.
   6440 TEST(StreamingAssertionsTest, Unconditional) {
   6441   SUCCEED() << "expected success";
   6442   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
   6443                           "expected failure");
   6444   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
   6445                        "expected failure");
   6446 }
   6447 
   6448 #ifdef __BORLANDC__
   6449 // Silences warnings: "Condition is always true", "Unreachable code"
   6450 # pragma option push -w-ccc -w-rch
   6451 #endif
   6452 
   6453 TEST(StreamingAssertionsTest, Truth) {
   6454   EXPECT_TRUE(true) << "unexpected failure";
   6455   ASSERT_TRUE(true) << "unexpected failure";
   6456   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
   6457                           "expected failure");
   6458   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
   6459                        "expected failure");
   6460 }
   6461 
   6462 TEST(StreamingAssertionsTest, Truth2) {
   6463   EXPECT_FALSE(false) << "unexpected failure";
   6464   ASSERT_FALSE(false) << "unexpected failure";
   6465   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
   6466                           "expected failure");
   6467   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
   6468                        "expected failure");
   6469 }
   6470 
   6471 #ifdef __BORLANDC__
   6472 // Restores warnings after previous "#pragma option push" supressed them
   6473 # pragma option pop
   6474 #endif
   6475 
   6476 TEST(StreamingAssertionsTest, IntegerEquals) {
   6477   EXPECT_EQ(1, 1) << "unexpected failure";
   6478   ASSERT_EQ(1, 1) << "unexpected failure";
   6479   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
   6480                           "expected failure");
   6481   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
   6482                        "expected failure");
   6483 }
   6484 
   6485 TEST(StreamingAssertionsTest, IntegerLessThan) {
   6486   EXPECT_LT(1, 2) << "unexpected failure";
   6487   ASSERT_LT(1, 2) << "unexpected failure";
   6488   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
   6489                           "expected failure");
   6490   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
   6491                        "expected failure");
   6492 }
   6493 
   6494 TEST(StreamingAssertionsTest, StringsEqual) {
   6495   EXPECT_STREQ("foo", "foo") << "unexpected failure";
   6496   ASSERT_STREQ("foo", "foo") << "unexpected failure";
   6497   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
   6498                           "expected failure");
   6499   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
   6500                        "expected failure");
   6501 }
   6502 
   6503 TEST(StreamingAssertionsTest, StringsNotEqual) {
   6504   EXPECT_STRNE("foo", "bar") << "unexpected failure";
   6505   ASSERT_STRNE("foo", "bar") << "unexpected failure";
   6506   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
   6507                           "expected failure");
   6508   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
   6509                        "expected failure");
   6510 }
   6511 
   6512 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
   6513   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6514   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6515   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
   6516                           "expected failure");
   6517   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
   6518                        "expected failure");
   6519 }
   6520 
   6521 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
   6522   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
   6523   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
   6524   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
   6525                           "expected failure");
   6526   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
   6527                        "expected failure");
   6528 }
   6529 
   6530 TEST(StreamingAssertionsTest, FloatingPointEquals) {
   6531   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6532   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6533   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6534                           "expected failure");
   6535   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6536                        "expected failure");
   6537 }
   6538 
   6539 #if GTEST_HAS_EXCEPTIONS
   6540 
   6541 TEST(StreamingAssertionsTest, Throw) {
   6542   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6543   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6544   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
   6545                           "expected failure", "expected failure");
   6546   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
   6547                        "expected failure", "expected failure");
   6548 }
   6549 
   6550 TEST(StreamingAssertionsTest, NoThrow) {
   6551   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6552   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6553   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
   6554                           "expected failure", "expected failure");
   6555   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
   6556                        "expected failure", "expected failure");
   6557 }
   6558 
   6559 TEST(StreamingAssertionsTest, AnyThrow) {
   6560   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6561   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6562   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
   6563                           "expected failure", "expected failure");
   6564   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
   6565                        "expected failure", "expected failure");
   6566 }
   6567 
   6568 #endif  // GTEST_HAS_EXCEPTIONS
   6569 
   6570 // Tests that Google Test correctly decides whether to use colors in the output.
   6571 
   6572 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
   6573   GTEST_FLAG(color) = "yes";
   6574 
   6575   SetEnv("TERM", "xterm");  // TERM supports colors.
   6576   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6577   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6578 
   6579   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6580   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6581   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6582 }
   6583 
   6584 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
   6585   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6586 
   6587   GTEST_FLAG(color) = "True";
   6588   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6589 
   6590   GTEST_FLAG(color) = "t";
   6591   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6592 
   6593   GTEST_FLAG(color) = "1";
   6594   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6595 }
   6596 
   6597 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
   6598   GTEST_FLAG(color) = "no";
   6599 
   6600   SetEnv("TERM", "xterm");  // TERM supports colors.
   6601   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6602   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6603 
   6604   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6605   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6606   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6607 }
   6608 
   6609 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
   6610   SetEnv("TERM", "xterm");  // TERM supports colors.
   6611 
   6612   GTEST_FLAG(color) = "F";
   6613   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6614 
   6615   GTEST_FLAG(color) = "0";
   6616   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6617 
   6618   GTEST_FLAG(color) = "unknown";
   6619   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6620 }
   6621 
   6622 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
   6623   GTEST_FLAG(color) = "auto";
   6624 
   6625   SetEnv("TERM", "xterm");  // TERM supports colors.
   6626   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6627   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
   6628 }
   6629 
   6630 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
   6631   GTEST_FLAG(color) = "auto";
   6632 
   6633 #if GTEST_OS_WINDOWS
   6634   // On Windows, we ignore the TERM variable as it's usually not set.
   6635 
   6636   SetEnv("TERM", "dumb");
   6637   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6638 
   6639   SetEnv("TERM", "");
   6640   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6641 
   6642   SetEnv("TERM", "xterm");
   6643   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6644 #else
   6645   // On non-Windows platforms, we rely on TERM to determine if the
   6646   // terminal supports colors.
   6647 
   6648   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6649   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6650 
   6651   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
   6652   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6653 
   6654   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
   6655   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6656 
   6657   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
   6658   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6659 
   6660   SetEnv("TERM", "xterm");  // TERM supports colors.
   6661   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6662 
   6663   SetEnv("TERM", "xterm-color");  // TERM supports colors.
   6664   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6665 
   6666   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
   6667   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6668 
   6669   SetEnv("TERM", "screen");  // TERM supports colors.
   6670   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6671 
   6672   SetEnv("TERM", "screen-256color");  // TERM supports colors.
   6673   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6674 
   6675   SetEnv("TERM", "linux");  // TERM supports colors.
   6676   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6677 
   6678   SetEnv("TERM", "cygwin");  // TERM supports colors.
   6679   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6680 #endif  // GTEST_OS_WINDOWS
   6681 }
   6682 
   6683 // Verifies that StaticAssertTypeEq works in a namespace scope.
   6684 
   6685 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
   6686 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
   6687     StaticAssertTypeEq<const int, const int>();
   6688 
   6689 // Verifies that StaticAssertTypeEq works in a class.
   6690 
   6691 template <typename T>
   6692 class StaticAssertTypeEqTestHelper {
   6693  public:
   6694   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
   6695 };
   6696 
   6697 TEST(StaticAssertTypeEqTest, WorksInClass) {
   6698   StaticAssertTypeEqTestHelper<bool>();
   6699 }
   6700 
   6701 // Verifies that StaticAssertTypeEq works inside a function.
   6702 
   6703 typedef int IntAlias;
   6704 
   6705 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
   6706   StaticAssertTypeEq<int, IntAlias>();
   6707   StaticAssertTypeEq<int*, IntAlias*>();
   6708 }
   6709 
   6710 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
   6711   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
   6712 
   6713   // We don't have a stack walker in Google Test yet.
   6714   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
   6715   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
   6716 }
   6717 
   6718 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6719   EXPECT_FALSE(HasNonfatalFailure());
   6720 }
   6721 
   6722 static void FailFatally() { FAIL(); }
   6723 
   6724 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
   6725   FailFatally();
   6726   const bool has_nonfatal_failure = HasNonfatalFailure();
   6727   ClearCurrentTestPartResults();
   6728   EXPECT_FALSE(has_nonfatal_failure);
   6729 }
   6730 
   6731 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6732   ADD_FAILURE();
   6733   const bool has_nonfatal_failure = HasNonfatalFailure();
   6734   ClearCurrentTestPartResults();
   6735   EXPECT_TRUE(has_nonfatal_failure);
   6736 }
   6737 
   6738 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6739   FailFatally();
   6740   ADD_FAILURE();
   6741   const bool has_nonfatal_failure = HasNonfatalFailure();
   6742   ClearCurrentTestPartResults();
   6743   EXPECT_TRUE(has_nonfatal_failure);
   6744 }
   6745 
   6746 // A wrapper for calling HasNonfatalFailure outside of a test body.
   6747 static bool HasNonfatalFailureHelper() {
   6748   return testing::Test::HasNonfatalFailure();
   6749 }
   6750 
   6751 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
   6752   EXPECT_FALSE(HasNonfatalFailureHelper());
   6753 }
   6754 
   6755 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
   6756   ADD_FAILURE();
   6757   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
   6758   ClearCurrentTestPartResults();
   6759   EXPECT_TRUE(has_nonfatal_failure);
   6760 }
   6761 
   6762 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6763   EXPECT_FALSE(HasFailure());
   6764 }
   6765 
   6766 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
   6767   FailFatally();
   6768   const bool has_failure = HasFailure();
   6769   ClearCurrentTestPartResults();
   6770   EXPECT_TRUE(has_failure);
   6771 }
   6772 
   6773 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6774   ADD_FAILURE();
   6775   const bool has_failure = HasFailure();
   6776   ClearCurrentTestPartResults();
   6777   EXPECT_TRUE(has_failure);
   6778 }
   6779 
   6780 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6781   FailFatally();
   6782   ADD_FAILURE();
   6783   const bool has_failure = HasFailure();
   6784   ClearCurrentTestPartResults();
   6785   EXPECT_TRUE(has_failure);
   6786 }
   6787 
   6788 // A wrapper for calling HasFailure outside of a test body.
   6789 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
   6790 
   6791 TEST(HasFailureTest, WorksOutsideOfTestBody) {
   6792   EXPECT_FALSE(HasFailureHelper());
   6793 }
   6794 
   6795 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
   6796   ADD_FAILURE();
   6797   const bool has_failure = HasFailureHelper();
   6798   ClearCurrentTestPartResults();
   6799   EXPECT_TRUE(has_failure);
   6800 }
   6801 
   6802 class TestListener : public EmptyTestEventListener {
   6803  public:
   6804   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
   6805   TestListener(int* on_start_counter, bool* is_destroyed)
   6806       : on_start_counter_(on_start_counter),
   6807         is_destroyed_(is_destroyed) {}
   6808 
   6809   virtual ~TestListener() {
   6810     if (is_destroyed_)
   6811       *is_destroyed_ = true;
   6812   }
   6813 
   6814  protected:
   6815   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6816     if (on_start_counter_ != NULL)
   6817       (*on_start_counter_)++;
   6818   }
   6819 
   6820  private:
   6821   int* on_start_counter_;
   6822   bool* is_destroyed_;
   6823 };
   6824 
   6825 // Tests the constructor.
   6826 TEST(TestEventListenersTest, ConstructionWorks) {
   6827   TestEventListeners listeners;
   6828 
   6829   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
   6830   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6831   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6832 }
   6833 
   6834 // Tests that the TestEventListeners destructor deletes all the listeners it
   6835 // owns.
   6836 TEST(TestEventListenersTest, DestructionWorks) {
   6837   bool default_result_printer_is_destroyed = false;
   6838   bool default_xml_printer_is_destroyed = false;
   6839   bool extra_listener_is_destroyed = false;
   6840   TestListener* default_result_printer = new TestListener(
   6841       NULL, &default_result_printer_is_destroyed);
   6842   TestListener* default_xml_printer = new TestListener(
   6843       NULL, &default_xml_printer_is_destroyed);
   6844   TestListener* extra_listener = new TestListener(
   6845       NULL, &extra_listener_is_destroyed);
   6846 
   6847   {
   6848     TestEventListeners listeners;
   6849     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
   6850                                                         default_result_printer);
   6851     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
   6852                                                        default_xml_printer);
   6853     listeners.Append(extra_listener);
   6854   }
   6855   EXPECT_TRUE(default_result_printer_is_destroyed);
   6856   EXPECT_TRUE(default_xml_printer_is_destroyed);
   6857   EXPECT_TRUE(extra_listener_is_destroyed);
   6858 }
   6859 
   6860 // Tests that a listener Append'ed to a TestEventListeners list starts
   6861 // receiving events.
   6862 TEST(TestEventListenersTest, Append) {
   6863   int on_start_counter = 0;
   6864   bool is_destroyed = false;
   6865   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6866   {
   6867     TestEventListeners listeners;
   6868     listeners.Append(listener);
   6869     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6870         *UnitTest::GetInstance());
   6871     EXPECT_EQ(1, on_start_counter);
   6872   }
   6873   EXPECT_TRUE(is_destroyed);
   6874 }
   6875 
   6876 // Tests that listeners receive events in the order they were appended to
   6877 // the list, except for *End requests, which must be received in the reverse
   6878 // order.
   6879 class SequenceTestingListener : public EmptyTestEventListener {
   6880  public:
   6881   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
   6882       : vector_(vector), id_(id) {}
   6883 
   6884  protected:
   6885   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6886     vector_->push_back(GetEventDescription("OnTestProgramStart"));
   6887   }
   6888 
   6889   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
   6890     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
   6891   }
   6892 
   6893   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
   6894                                     int /*iteration*/) {
   6895     vector_->push_back(GetEventDescription("OnTestIterationStart"));
   6896   }
   6897 
   6898   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
   6899                                   int /*iteration*/) {
   6900     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
   6901   }
   6902 
   6903  private:
   6904   std::string GetEventDescription(const char* method) {
   6905     Message message;
   6906     message << id_ << "." << method;
   6907     return message.GetString();
   6908   }
   6909 
   6910   std::vector<std::string>* vector_;
   6911   const char* const id_;
   6912 
   6913   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
   6914 };
   6915 
   6916 TEST(EventListenerTest, AppendKeepsOrder) {
   6917   std::vector<std::string> vec;
   6918   TestEventListeners listeners;
   6919   listeners.Append(new SequenceTestingListener(&vec, "1st"));
   6920   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
   6921   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
   6922 
   6923   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6924       *UnitTest::GetInstance());
   6925   ASSERT_EQ(3U, vec.size());
   6926   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
   6927   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
   6928   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
   6929 
   6930   vec.clear();
   6931   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
   6932       *UnitTest::GetInstance());
   6933   ASSERT_EQ(3U, vec.size());
   6934   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
   6935   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
   6936   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
   6937 
   6938   vec.clear();
   6939   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
   6940       *UnitTest::GetInstance(), 0);
   6941   ASSERT_EQ(3U, vec.size());
   6942   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
   6943   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
   6944   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
   6945 
   6946   vec.clear();
   6947   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
   6948       *UnitTest::GetInstance(), 0);
   6949   ASSERT_EQ(3U, vec.size());
   6950   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
   6951   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
   6952   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
   6953 }
   6954 
   6955 // Tests that a listener removed from a TestEventListeners list stops receiving
   6956 // events and is not deleted when the list is destroyed.
   6957 TEST(TestEventListenersTest, Release) {
   6958   int on_start_counter = 0;
   6959   bool is_destroyed = false;
   6960   // Although Append passes the ownership of this object to the list,
   6961   // the following calls release it, and we need to delete it before the
   6962   // test ends.
   6963   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6964   {
   6965     TestEventListeners listeners;
   6966     listeners.Append(listener);
   6967     EXPECT_EQ(listener, listeners.Release(listener));
   6968     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6969         *UnitTest::GetInstance());
   6970     EXPECT_TRUE(listeners.Release(listener) == NULL);
   6971   }
   6972   EXPECT_EQ(0, on_start_counter);
   6973   EXPECT_FALSE(is_destroyed);
   6974   delete listener;
   6975 }
   6976 
   6977 // Tests that no events are forwarded when event forwarding is disabled.
   6978 TEST(EventListenerTest, SuppressEventForwarding) {
   6979   int on_start_counter = 0;
   6980   TestListener* listener = new TestListener(&on_start_counter, NULL);
   6981 
   6982   TestEventListeners listeners;
   6983   listeners.Append(listener);
   6984   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6985   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
   6986   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6987   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6988       *UnitTest::GetInstance());
   6989   EXPECT_EQ(0, on_start_counter);
   6990 }
   6991 
   6992 // Tests that events generated by Google Test are not forwarded in
   6993 // death test subprocesses.
   6994 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
   6995   EXPECT_DEATH_IF_SUPPORTED({
   6996       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
   6997           *GetUnitTestImpl()->listeners())) << "expected failure";},
   6998       "expected failure");
   6999 }
   7000 
   7001 // Tests that a listener installed via SetDefaultResultPrinter() starts
   7002 // receiving events and is returned via default_result_printer() and that
   7003 // the previous default_result_printer is removed from the list and deleted.
   7004 TEST(EventListenerTest, default_result_printer) {
   7005   int on_start_counter = 0;
   7006   bool is_destroyed = false;
   7007   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7008 
   7009   TestEventListeners listeners;
   7010   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   7011 
   7012   EXPECT_EQ(listener, listeners.default_result_printer());
   7013 
   7014   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7015       *UnitTest::GetInstance());
   7016 
   7017   EXPECT_EQ(1, on_start_counter);
   7018 
   7019   // Replacing default_result_printer with something else should remove it
   7020   // from the list and destroy it.
   7021   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
   7022 
   7023   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   7024   EXPECT_TRUE(is_destroyed);
   7025 
   7026   // After broadcasting an event the counter is still the same, indicating
   7027   // the listener is not in the list anymore.
   7028   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7029       *UnitTest::GetInstance());
   7030   EXPECT_EQ(1, on_start_counter);
   7031 }
   7032 
   7033 // Tests that the default_result_printer listener stops receiving events
   7034 // when removed via Release and that is not owned by the list anymore.
   7035 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
   7036   int on_start_counter = 0;
   7037   bool is_destroyed = false;
   7038   // Although Append passes the ownership of this object to the list,
   7039   // the following calls release it, and we need to delete it before the
   7040   // test ends.
   7041   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7042   {
   7043     TestEventListeners listeners;
   7044     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   7045 
   7046     EXPECT_EQ(listener, listeners.Release(listener));
   7047     EXPECT_TRUE(listeners.default_result_printer() == NULL);
   7048     EXPECT_FALSE(is_destroyed);
   7049 
   7050     // Broadcasting events now should not affect default_result_printer.
   7051     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7052         *UnitTest::GetInstance());
   7053     EXPECT_EQ(0, on_start_counter);
   7054   }
   7055   // Destroying the list should not affect the listener now, too.
   7056   EXPECT_FALSE(is_destroyed);
   7057   delete listener;
   7058 }
   7059 
   7060 // Tests that a listener installed via SetDefaultXmlGenerator() starts
   7061 // receiving events and is returned via default_xml_generator() and that
   7062 // the previous default_xml_generator is removed from the list and deleted.
   7063 TEST(EventListenerTest, default_xml_generator) {
   7064   int on_start_counter = 0;
   7065   bool is_destroyed = false;
   7066   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7067 
   7068   TestEventListeners listeners;
   7069   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   7070 
   7071   EXPECT_EQ(listener, listeners.default_xml_generator());
   7072 
   7073   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7074       *UnitTest::GetInstance());
   7075 
   7076   EXPECT_EQ(1, on_start_counter);
   7077 
   7078   // Replacing default_xml_generator with something else should remove it
   7079   // from the list and destroy it.
   7080   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
   7081 
   7082   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   7083   EXPECT_TRUE(is_destroyed);
   7084 
   7085   // After broadcasting an event the counter is still the same, indicating
   7086   // the listener is not in the list anymore.
   7087   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7088       *UnitTest::GetInstance());
   7089   EXPECT_EQ(1, on_start_counter);
   7090 }
   7091 
   7092 // Tests that the default_xml_generator listener stops receiving events
   7093 // when removed via Release and that is not owned by the list anymore.
   7094 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
   7095   int on_start_counter = 0;
   7096   bool is_destroyed = false;
   7097   // Although Append passes the ownership of this object to the list,
   7098   // the following calls release it, and we need to delete it before the
   7099   // test ends.
   7100   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7101   {
   7102     TestEventListeners listeners;
   7103     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   7104 
   7105     EXPECT_EQ(listener, listeners.Release(listener));
   7106     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   7107     EXPECT_FALSE(is_destroyed);
   7108 
   7109     // Broadcasting events now should not affect default_xml_generator.
   7110     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7111         *UnitTest::GetInstance());
   7112     EXPECT_EQ(0, on_start_counter);
   7113   }
   7114   // Destroying the list should not affect the listener now, too.
   7115   EXPECT_FALSE(is_destroyed);
   7116   delete listener;
   7117 }
   7118 
   7119 // Sanity tests to ensure that the alternative, verbose spellings of
   7120 // some of the macros work.  We don't test them thoroughly as that
   7121 // would be quite involved.  Since their implementations are
   7122 // straightforward, and they are rarely used, we'll just rely on the
   7123 // users to tell us when they are broken.
   7124 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
   7125   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
   7126 
   7127   // GTEST_FAIL is the same as FAIL.
   7128   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
   7129                        "An expected failure");
   7130 
   7131   // GTEST_ASSERT_XY is the same as ASSERT_XY.
   7132 
   7133   GTEST_ASSERT_EQ(0, 0);
   7134   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
   7135                        "An expected failure");
   7136   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
   7137                        "An expected failure");
   7138 
   7139   GTEST_ASSERT_NE(0, 1);
   7140   GTEST_ASSERT_NE(1, 0);
   7141   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
   7142                        "An expected failure");
   7143 
   7144   GTEST_ASSERT_LE(0, 0);
   7145   GTEST_ASSERT_LE(0, 1);
   7146   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
   7147                        "An expected failure");
   7148 
   7149   GTEST_ASSERT_LT(0, 1);
   7150   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
   7151                        "An expected failure");
   7152   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
   7153                        "An expected failure");
   7154 
   7155   GTEST_ASSERT_GE(0, 0);
   7156   GTEST_ASSERT_GE(1, 0);
   7157   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
   7158                        "An expected failure");
   7159 
   7160   GTEST_ASSERT_GT(1, 0);
   7161   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
   7162                        "An expected failure");
   7163   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
   7164                        "An expected failure");
   7165 }
   7166 
   7167 // Tests for internal utilities necessary for implementation of the universal
   7168 // printing.
   7169 // TODO(vladl (at) google.com): Find a better home for them.
   7170 
   7171 class ConversionHelperBase {};
   7172 class ConversionHelperDerived : public ConversionHelperBase {};
   7173 
   7174 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
   7175 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
   7176   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
   7177                         const_true);
   7178   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
   7179 }
   7180 
   7181 // Tests that IsAProtocolMessage<T>::value is true when T is
   7182 // proto2::Message or a sub-class of it.
   7183 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
   7184   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
   7185   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
   7186 }
   7187 
   7188 // Tests that IsAProtocolMessage<T>::value is false when T is neither
   7189 // ProtocolMessage nor a sub-class of it.
   7190 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
   7191   EXPECT_FALSE(IsAProtocolMessage<int>::value);
   7192   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
   7193 }
   7194 
   7195 // Tests that CompileAssertTypesEqual compiles when the type arguments are
   7196 // equal.
   7197 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
   7198   CompileAssertTypesEqual<void, void>();
   7199   CompileAssertTypesEqual<int*, int*>();
   7200 }
   7201 
   7202 // Tests that RemoveReference does not affect non-reference types.
   7203 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
   7204   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
   7205   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
   7206 }
   7207 
   7208 // Tests that RemoveReference removes reference from reference types.
   7209 TEST(RemoveReferenceTest, RemovesReference) {
   7210   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
   7211   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
   7212 }
   7213 
   7214 // Tests GTEST_REMOVE_REFERENCE_.
   7215 
   7216 template <typename T1, typename T2>
   7217 void TestGTestRemoveReference() {
   7218   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
   7219 }
   7220 
   7221 TEST(RemoveReferenceTest, MacroVersion) {
   7222   TestGTestRemoveReference<int, int>();
   7223   TestGTestRemoveReference<const char, const char&>();
   7224 }
   7225 
   7226 
   7227 // Tests that RemoveConst does not affect non-const types.
   7228 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
   7229   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
   7230   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
   7231 }
   7232 
   7233 // Tests that RemoveConst removes const from const types.
   7234 TEST(RemoveConstTest, RemovesConst) {
   7235   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
   7236   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
   7237   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
   7238 }
   7239 
   7240 // Tests GTEST_REMOVE_CONST_.
   7241 
   7242 template <typename T1, typename T2>
   7243 void TestGTestRemoveConst() {
   7244   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
   7245 }
   7246 
   7247 TEST(RemoveConstTest, MacroVersion) {
   7248   TestGTestRemoveConst<int, int>();
   7249   TestGTestRemoveConst<double&, double&>();
   7250   TestGTestRemoveConst<char, const char>();
   7251 }
   7252 
   7253 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
   7254 
   7255 template <typename T1, typename T2>
   7256 void TestGTestRemoveReferenceAndConst() {
   7257   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
   7258 }
   7259 
   7260 TEST(RemoveReferenceToConstTest, Works) {
   7261   TestGTestRemoveReferenceAndConst<int, int>();
   7262   TestGTestRemoveReferenceAndConst<double, double&>();
   7263   TestGTestRemoveReferenceAndConst<char, const char>();
   7264   TestGTestRemoveReferenceAndConst<char, const char&>();
   7265   TestGTestRemoveReferenceAndConst<const char*, const char*>();
   7266 }
   7267 
   7268 // Tests that AddReference does not affect reference types.
   7269 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
   7270   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
   7271   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
   7272 }
   7273 
   7274 // Tests that AddReference adds reference to non-reference types.
   7275 TEST(AddReferenceTest, AddsReference) {
   7276   CompileAssertTypesEqual<int&, AddReference<int>::type>();
   7277   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
   7278 }
   7279 
   7280 // Tests GTEST_ADD_REFERENCE_.
   7281 
   7282 template <typename T1, typename T2>
   7283 void TestGTestAddReference() {
   7284   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
   7285 }
   7286 
   7287 TEST(AddReferenceTest, MacroVersion) {
   7288   TestGTestAddReference<int&, int>();
   7289   TestGTestAddReference<const char&, const char&>();
   7290 }
   7291 
   7292 // Tests GTEST_REFERENCE_TO_CONST_.
   7293 
   7294 template <typename T1, typename T2>
   7295 void TestGTestReferenceToConst() {
   7296   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
   7297 }
   7298 
   7299 TEST(GTestReferenceToConstTest, Works) {
   7300   TestGTestReferenceToConst<const char&, char>();
   7301   TestGTestReferenceToConst<const int&, const int>();
   7302   TestGTestReferenceToConst<const double&, double>();
   7303   TestGTestReferenceToConst<const std::string&, const std::string&>();
   7304 }
   7305 
   7306 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
   7307 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
   7308   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
   7309   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
   7310                         const_false);
   7311 }
   7312 
   7313 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
   7314 // be implicitly converted to T2.
   7315 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
   7316   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
   7317   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
   7318   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
   7319   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
   7320   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
   7321                                      const ConversionHelperBase&>::value));
   7322   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
   7323                                      ConversionHelperBase>::value));
   7324 }
   7325 
   7326 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
   7327 // cannot be implicitly converted to T2.
   7328 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
   7329   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
   7330   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
   7331   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
   7332   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
   7333                                       ConversionHelperDerived&>::value));
   7334 }
   7335 
   7336 // Tests IsContainerTest.
   7337 
   7338 class NonContainer {};
   7339 
   7340 TEST(IsContainerTestTest, WorksForNonContainer) {
   7341   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
   7342   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
   7343   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
   7344 }
   7345 
   7346 TEST(IsContainerTestTest, WorksForContainer) {
   7347   EXPECT_EQ(sizeof(IsContainer),
   7348             sizeof(IsContainerTest<std::vector<bool> >(0)));
   7349   EXPECT_EQ(sizeof(IsContainer),
   7350             sizeof(IsContainerTest<std::map<int, double> >(0)));
   7351 }
   7352 
   7353 // Tests ArrayEq().
   7354 
   7355 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
   7356   EXPECT_TRUE(ArrayEq(5, 5L));
   7357   EXPECT_FALSE(ArrayEq('a', 0));
   7358 }
   7359 
   7360 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
   7361   // Note that a and b are distinct but compatible types.
   7362   const int a[] = { 0, 1 };
   7363   long b[] = { 0, 1 };
   7364   EXPECT_TRUE(ArrayEq(a, b));
   7365   EXPECT_TRUE(ArrayEq(a, 2, b));
   7366 
   7367   b[0] = 2;
   7368   EXPECT_FALSE(ArrayEq(a, b));
   7369   EXPECT_FALSE(ArrayEq(a, 1, b));
   7370 }
   7371 
   7372 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
   7373   const char a[][3] = { "hi", "lo" };
   7374   const char b[][3] = { "hi", "lo" };
   7375   const char c[][3] = { "hi", "li" };
   7376 
   7377   EXPECT_TRUE(ArrayEq(a, b));
   7378   EXPECT_TRUE(ArrayEq(a, 2, b));
   7379 
   7380   EXPECT_FALSE(ArrayEq(a, c));
   7381   EXPECT_FALSE(ArrayEq(a, 2, c));
   7382 }
   7383 
   7384 // Tests ArrayAwareFind().
   7385 
   7386 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
   7387   const char a[] = "hello";
   7388   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
   7389   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
   7390 }
   7391 
   7392 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
   7393   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
   7394   const int b[2] = { 2, 3 };
   7395   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
   7396 
   7397   const int c[2] = { 6, 7 };
   7398   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
   7399 }
   7400 
   7401 // Tests CopyArray().
   7402 
   7403 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
   7404   int n = 0;
   7405   CopyArray('a', &n);
   7406   EXPECT_EQ('a', n);
   7407 }
   7408 
   7409 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
   7410   const char a[3] = "hi";
   7411   int b[3];
   7412 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7413   CopyArray(a, &b);
   7414   EXPECT_TRUE(ArrayEq(a, b));
   7415 #endif
   7416 
   7417   int c[3];
   7418   CopyArray(a, 3, c);
   7419   EXPECT_TRUE(ArrayEq(a, c));
   7420 }
   7421 
   7422 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
   7423   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
   7424   int b[2][3];
   7425 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7426   CopyArray(a, &b);
   7427   EXPECT_TRUE(ArrayEq(a, b));
   7428 #endif
   7429 
   7430   int c[2][3];
   7431   CopyArray(a, 2, c);
   7432   EXPECT_TRUE(ArrayEq(a, c));
   7433 }
   7434 
   7435 // Tests NativeArray.
   7436 
   7437 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
   7438   const int a[3] = { 0, 1, 2 };
   7439   NativeArray<int> na(a, 3, RelationToSourceReference());
   7440   EXPECT_EQ(3U, na.size());
   7441   EXPECT_EQ(a, na.begin());
   7442 }
   7443 
   7444 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
   7445   typedef int Array[2];
   7446   Array* a = new Array[1];
   7447   (*a)[0] = 0;
   7448   (*a)[1] = 1;
   7449   NativeArray<int> na(*a, 2, RelationToSourceCopy());
   7450   EXPECT_NE(*a, na.begin());
   7451   delete[] a;
   7452   EXPECT_EQ(0, na.begin()[0]);
   7453   EXPECT_EQ(1, na.begin()[1]);
   7454 
   7455   // We rely on the heap checker to verify that na deletes the copy of
   7456   // array.
   7457 }
   7458 
   7459 TEST(NativeArrayTest, TypeMembersAreCorrect) {
   7460   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
   7461   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
   7462 
   7463   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
   7464   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
   7465 }
   7466 
   7467 TEST(NativeArrayTest, MethodsWork) {
   7468   const int a[3] = { 0, 1, 2 };
   7469   NativeArray<int> na(a, 3, RelationToSourceCopy());
   7470   ASSERT_EQ(3U, na.size());
   7471   EXPECT_EQ(3, na.end() - na.begin());
   7472 
   7473   NativeArray<int>::const_iterator it = na.begin();
   7474   EXPECT_EQ(0, *it);
   7475   ++it;
   7476   EXPECT_EQ(1, *it);
   7477   it++;
   7478   EXPECT_EQ(2, *it);
   7479   ++it;
   7480   EXPECT_EQ(na.end(), it);
   7481 
   7482   EXPECT_TRUE(na == na);
   7483 
   7484   NativeArray<int> na2(a, 3, RelationToSourceReference());
   7485   EXPECT_TRUE(na == na2);
   7486 
   7487   const int b1[3] = { 0, 1, 1 };
   7488   const int b2[4] = { 0, 1, 2, 3 };
   7489   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
   7490   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
   7491 }
   7492 
   7493 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
   7494   const char a[2][3] = { "hi", "lo" };
   7495   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
   7496   ASSERT_EQ(2U, na.size());
   7497   EXPECT_EQ(a, na.begin());
   7498 }
   7499 
   7500 // Tests SkipPrefix().
   7501 
   7502 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
   7503   const char* const str = "hello";
   7504 
   7505   const char* p = str;
   7506   EXPECT_TRUE(SkipPrefix("", &p));
   7507   EXPECT_EQ(str, p);
   7508 
   7509   p = str;
   7510   EXPECT_TRUE(SkipPrefix("hell", &p));
   7511   EXPECT_EQ(str + 4, p);
   7512 }
   7513 
   7514 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
   7515   const char* const str = "world";
   7516 
   7517   const char* p = str;
   7518   EXPECT_FALSE(SkipPrefix("W", &p));
   7519   EXPECT_EQ(str, p);
   7520 
   7521   p = str;
   7522   EXPECT_FALSE(SkipPrefix("world!", &p));
   7523   EXPECT_EQ(str, p);
   7524 }
   7525 
   7526