Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2006-2009 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_SCOPED_PTR_H__
      6 #define BASE_SCOPED_PTR_H__
      7 
      8 //  This is an implementation designed to match the anticipated future TR2
      9 //  implementation of the scoped_ptr class, and its closely-related brethren,
     10 //  scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
     11 //
     12 //  See http://wiki/Main/ScopedPointerInterface for the spec that drove this
     13 //  file.
     14 
     15 #include <assert.h>
     16 #include <stdlib.h>
     17 #include <cstddef>
     18 
     19 #ifdef OS_EMBEDDED_QNX
     20 // NOTE(akirmse):
     21 // The C++ standard says that <stdlib.h> declares both ::foo and std::foo
     22 // But this isn't done in QNX version 6.3.2 200709062316.
     23 using std::free;
     24 using std::malloc;
     25 using std::realloc;
     26 #endif
     27 
     28 template <class C> class scoped_ptr;
     29 template <class C, class Free> class scoped_ptr_malloc;
     30 template <class C> class scoped_array;
     31 
     32 template <class C>
     33 scoped_ptr<C> make_scoped_ptr(C *);
     34 
     35 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
     36 // automatically deletes the pointer it holds (if any).
     37 // That is, scoped_ptr<T> owns the T object that it points to.
     38 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
     39 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
     40 // dereference it, you get the threadsafety guarantees of T.
     41 //
     42 // The size of a scoped_ptr is small:
     43 // sizeof(scoped_ptr<C>) == sizeof(C*)
     44 template <class C>
     45 class scoped_ptr {
     46  public:
     47 
     48   // The element type
     49   typedef C element_type;
     50 
     51   // Constructor.  Defaults to intializing with NULL.
     52   // There is no way to create an uninitialized scoped_ptr.
     53   // The input parameter must be allocated with new.
     54   explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
     55 
     56   // Destructor.  If there is a C object, delete it.
     57   // We don't need to test ptr_ == NULL because C++ does that for us.
     58   ~scoped_ptr() {
     59     enum { type_must_be_complete = sizeof(C) };
     60     delete ptr_;
     61   }
     62 
     63   // Reset.  Deletes the current owned object, if any.
     64   // Then takes ownership of a new object, if given.
     65   // this->reset(this->get()) works.
     66   void reset(C* p = NULL) {
     67     if (p != ptr_) {
     68       enum { type_must_be_complete = sizeof(C) };
     69       delete ptr_;
     70       ptr_ = p;
     71     }
     72   }
     73 
     74   // Accessors to get the owned object.
     75   // operator* and operator-> will assert() if there is no current object.
     76   C& operator*() const {
     77     assert(ptr_ != NULL);
     78     return *ptr_;
     79   }
     80   C* operator->() const  {
     81     assert(ptr_ != NULL);
     82     return ptr_;
     83   }
     84   C* get() const { return ptr_; }
     85 
     86   // Comparison operators.
     87   // These return whether a scoped_ptr and a raw pointer refer to
     88   // the same object, not just to two different but equal objects.
     89   bool operator==(const C* p) const { return ptr_ == p; }
     90   bool operator!=(const C* p) const { return ptr_ != p; }
     91 
     92   // Swap two scoped pointers.
     93   void swap(scoped_ptr& p2) {
     94     C* tmp = ptr_;
     95     ptr_ = p2.ptr_;
     96     p2.ptr_ = tmp;
     97   }
     98 
     99   // Release a pointer.
    100   // The return value is the current pointer held by this object.
    101   // If this object holds a NULL pointer, the return value is NULL.
    102   // After this operation, this object will hold a NULL pointer,
    103   // and will not own the object any more.
    104   C* release() {
    105     C* retVal = ptr_;
    106     ptr_ = NULL;
    107     return retVal;
    108   }
    109 
    110  private:
    111   C* ptr_;
    112 
    113   // google3 friend class that can access copy ctor (although if it actually
    114   // calls a copy ctor, there will be a problem) see below
    115   friend scoped_ptr<C> make_scoped_ptr<C>(C *p);
    116 
    117   // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
    118   // make sense, and if C2 == C, it still doesn't make sense because you should
    119   // never have the same object owned by two different scoped_ptrs.
    120   template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
    121   template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
    122 
    123   // Disallow evil constructors
    124   scoped_ptr(const scoped_ptr&);
    125   void operator=(const scoped_ptr&);
    126 };
    127 
    128 // Free functions
    129 template <class C>
    130 inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
    131   p1.swap(p2);
    132 }
    133 
    134 template <class C>
    135 inline bool operator==(const C* p1, const scoped_ptr<C>& p2) {
    136   return p1 == p2.get();
    137 }
    138 
    139 template <class C>
    140 inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) {
    141   return p1 == p2.get();
    142 }
    143 
    144 template <class C>
    145 inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) {
    146   return p1 != p2.get();
    147 }
    148 
    149 template <class C>
    150 inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) {
    151   return p1 != p2.get();
    152 }
    153 
    154 template <class C>
    155 scoped_ptr<C> make_scoped_ptr(C *p) {
    156   // This does nothing but to return a scoped_ptr of the type that the passed
    157   // pointer is of.  (This eliminates the need to specify the name of T when
    158   // making a scoped_ptr that is used anonymously/temporarily.)  From an
    159   // access control point of view, we construct an unnamed scoped_ptr here
    160   // which we return and thus copy-construct.  Hence, we need to have access
    161   // to scoped_ptr::scoped_ptr(scoped_ptr const &).  However, it is guaranteed
    162   // that we never actually call the copy constructor, which is a good thing
    163   // as we would call the temporary's object destructor (and thus delete p)
    164   // if we actually did copy some object, here.
    165   return scoped_ptr<C>(p);
    166 }
    167 
    168 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
    169 // with new [] and the destructor deletes objects with delete [].
    170 //
    171 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
    172 // or is NULL.  A scoped_array<C> owns the object that it points to.
    173 // scoped_array<T> is thread-compatible, and once you index into it,
    174 // the returned objects have only the threadsafety guarantees of T.
    175 //
    176 // Size: sizeof(scoped_array<C>) == sizeof(C*)
    177 template <class C>
    178 class scoped_array {
    179  public:
    180 
    181   // The element type
    182   typedef C element_type;
    183 
    184   // Constructor.  Defaults to intializing with NULL.
    185   // There is no way to create an uninitialized scoped_array.
    186   // The input parameter must be allocated with new [].
    187   explicit scoped_array(C* p = NULL) : array_(p) { }
    188 
    189   // Destructor.  If there is a C object, delete it.
    190   // We don't need to test ptr_ == NULL because C++ does that for us.
    191   ~scoped_array() {
    192     enum { type_must_be_complete = sizeof(C) };
    193     delete[] array_;
    194   }
    195 
    196   // Reset.  Deletes the current owned object, if any.
    197   // Then takes ownership of a new object, if given.
    198   // this->reset(this->get()) works.
    199   void reset(C* p = NULL) {
    200     if (p != array_) {
    201       enum { type_must_be_complete = sizeof(C) };
    202       delete[] array_;
    203       array_ = p;
    204     }
    205   }
    206 
    207   // Get one element of the current object.
    208   // Will assert() if there is no current object, or index i is negative.
    209   C& operator[](std::ptrdiff_t i) const {
    210     assert(i >= 0);
    211     assert(array_ != NULL);
    212     return array_[i];
    213   }
    214 
    215   // Get a pointer to the zeroth element of the current object.
    216   // If there is no current object, return NULL.
    217   C* get() const {
    218     return array_;
    219   }
    220 
    221   // Comparison operators.
    222   // These return whether a scoped_array and a raw pointer refer to
    223   // the same array, not just to two different but equal arrays.
    224   bool operator==(const C* p) const { return array_ == p; }
    225   bool operator!=(const C* p) const { return array_ != p; }
    226 
    227   // Swap two scoped arrays.
    228   void swap(scoped_array& p2) {
    229     C* tmp = array_;
    230     array_ = p2.array_;
    231     p2.array_ = tmp;
    232   }
    233 
    234   // Release an array.
    235   // The return value is the current pointer held by this object.
    236   // If this object holds a NULL pointer, the return value is NULL.
    237   // After this operation, this object will hold a NULL pointer,
    238   // and will not own the object any more.
    239   C* release() {
    240     C* retVal = array_;
    241     array_ = NULL;
    242     return retVal;
    243   }
    244 
    245  private:
    246   C* array_;
    247 
    248   // Forbid comparison of different scoped_array types.
    249   template <class C2> bool operator==(scoped_array<C2> const& p2) const;
    250   template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
    251 
    252   // Disallow evil constructors
    253   scoped_array(const scoped_array&);
    254   void operator=(const scoped_array&);
    255 };
    256 
    257 // Free functions
    258 template <class C>
    259 inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
    260   p1.swap(p2);
    261 }
    262 
    263 template <class C>
    264 inline bool operator==(const C* p1, const scoped_array<C>& p2) {
    265   return p1 == p2.get();
    266 }
    267 
    268 template <class C>
    269 inline bool operator==(const C* p1, const scoped_array<const C>& p2) {
    270   return p1 == p2.get();
    271 }
    272 
    273 template <class C>
    274 inline bool operator!=(const C* p1, const scoped_array<C>& p2) {
    275   return p1 != p2.get();
    276 }
    277 
    278 template <class C>
    279 inline bool operator!=(const C* p1, const scoped_array<const C>& p2) {
    280   return p1 != p2.get();
    281 }
    282 
    283 // This class wraps the c library function free() in a class that can be
    284 // passed as a template argument to scoped_ptr_malloc below.
    285 class ScopedPtrMallocFree {
    286  public:
    287   inline void operator()(void* x) const {
    288     free(x);
    289   }
    290 };
    291 
    292 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
    293 // second template argument, the functor used to free the object.
    294 
    295 template<class C, class FreeProc = ScopedPtrMallocFree>
    296 class scoped_ptr_malloc {
    297  public:
    298 
    299   // The element type
    300   typedef C element_type;
    301 
    302   // Construction with no arguments sets ptr_ to NULL.
    303   // There is no way to create an uninitialized scoped_ptr.
    304   // The input parameter must be allocated with an allocator that matches the
    305   // Free functor.  For the default Free functor, this is malloc, calloc, or
    306   // realloc.
    307   explicit scoped_ptr_malloc(): ptr_(NULL) { }
    308 
    309   // Construct with a C*, and provides an error with a D*.
    310   template<class must_be_C>
    311   explicit scoped_ptr_malloc(must_be_C* p): ptr_(p) { }
    312 
    313   // Construct with a void*, such as you get from malloc.
    314   explicit scoped_ptr_malloc(void *p): ptr_(static_cast<C*>(p)) { }
    315 
    316   // Destructor.  If there is a C object, call the Free functor.
    317   ~scoped_ptr_malloc() {
    318     free_(ptr_);
    319   }
    320 
    321   // Reset.  Calls the Free functor on the current owned object, if any.
    322   // Then takes ownership of a new object, if given.
    323   // this->reset(this->get()) works.
    324   void reset(C* p = NULL) {
    325     if (ptr_ != p) {
    326       free_(ptr_);
    327       ptr_ = p;
    328     }
    329   }
    330 
    331   // Reallocates the existing pointer, and returns 'true' if
    332   // the reallcation is succesfull.  If the reallocation failed, then
    333   // the pointer remains in its previous state.
    334   //
    335   // Note: this calls realloc() directly, even if an alternate 'free'
    336   // functor is provided in the template instantiation.
    337   bool try_realloc(size_t new_size) {
    338     C* new_ptr = static_cast<C*>(realloc(ptr_, new_size));
    339     if (new_ptr == NULL) {
    340       return false;
    341     }
    342     ptr_ = new_ptr;
    343     return true;
    344   }
    345 
    346   // Get the current object.
    347   // operator* and operator-> will cause an assert() failure if there is
    348   // no current object.
    349   C& operator*() const {
    350     assert(ptr_ != NULL);
    351     return *ptr_;
    352   }
    353 
    354   C* operator->() const {
    355     assert(ptr_ != NULL);
    356     return ptr_;
    357   }
    358 
    359   C* get() const {
    360     return ptr_;
    361   }
    362 
    363   // Comparison operators.
    364   // These return whether a scoped_ptr_malloc and a plain pointer refer
    365   // to the same object, not just to two different but equal objects.
    366   // For compatibility with the boost-derived implementation, these
    367   // take non-const arguments.
    368   bool operator==(C* p) const {
    369     return ptr_ == p;
    370   }
    371 
    372   bool operator!=(C* p) const {
    373     return ptr_ != p;
    374   }
    375 
    376   // Swap two scoped pointers.
    377   void swap(scoped_ptr_malloc & b) {
    378     C* tmp = b.ptr_;
    379     b.ptr_ = ptr_;
    380     ptr_ = tmp;
    381   }
    382 
    383   // Release a pointer.
    384   // The return value is the current pointer held by this object.
    385   // If this object holds a NULL pointer, the return value is NULL.
    386   // After this operation, this object will hold a NULL pointer,
    387   // and will not own the object any more.
    388   C* release() {
    389     C* tmp = ptr_;
    390     ptr_ = NULL;
    391     return tmp;
    392   }
    393 
    394  private:
    395   C* ptr_;
    396 
    397   // no reason to use these: each scoped_ptr_malloc should have its own object
    398   template <class C2, class GP>
    399   bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
    400   template <class C2, class GP>
    401   bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
    402 
    403   static FreeProc const free_;
    404 
    405   // Disallow evil constructors
    406   scoped_ptr_malloc(const scoped_ptr_malloc&);
    407   void operator=(const scoped_ptr_malloc&);
    408 };
    409 
    410 template<class C, class FP>
    411 FP const scoped_ptr_malloc<C, FP>::free_ = FP();
    412 
    413 template<class C, class FP> inline
    414 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
    415   a.swap(b);
    416 }
    417 
    418 template<class C, class FP> inline
    419 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
    420   return p == b.get();
    421 }
    422 
    423 template<class C, class FP> inline
    424 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
    425   return p != b.get();
    426 }
    427 
    428 #endif  // BASE_SCOPED_PTR_H__
    429