Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGCall.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGObjCRuntime.h"
     19 #include "CGRecordLayout.h"
     20 #include "CodeGenModule.h"
     21 #include "TargetInfo.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/AST/Attr.h"
     25 #include "clang/Frontend/CodeGenOptions.h"
     26 #include "llvm/ADT/Hashing.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/Intrinsics.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/IR/MDBuilder.h"
     31 #include "llvm/Support/ConvertUTF.h"
     32 
     33 using namespace clang;
     34 using namespace CodeGen;
     35 
     36 //===--------------------------------------------------------------------===//
     37 //                        Miscellaneous Helper Methods
     38 //===--------------------------------------------------------------------===//
     39 
     40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
     41   unsigned addressSpace =
     42     cast<llvm::PointerType>(value->getType())->getAddressSpace();
     43 
     44   llvm::PointerType *destType = Int8PtrTy;
     45   if (addressSpace)
     46     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
     47 
     48   if (value->getType() == destType) return value;
     49   return Builder.CreateBitCast(value, destType);
     50 }
     51 
     52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
     53 /// block.
     54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
     55                                                     const Twine &Name) {
     56   if (!Builder.isNamePreserving())
     57     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
     58   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
     59 }
     60 
     61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
     62                                      llvm::Value *Init) {
     63   auto *Store = new llvm::StoreInst(Init, Var);
     64   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
     65   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
     66 }
     67 
     68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
     69                                                 const Twine &Name) {
     70   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
     71   // FIXME: Should we prefer the preferred type alignment here?
     72   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     73   Alloc->setAlignment(Align.getQuantity());
     74   return Alloc;
     75 }
     76 
     77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
     78                                                  const Twine &Name) {
     79   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
     80   // FIXME: Should we prefer the preferred type alignment here?
     81   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     82   Alloc->setAlignment(Align.getQuantity());
     83   return Alloc;
     84 }
     85 
     86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
     87 /// expression and compare the result against zero, returning an Int1Ty value.
     88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
     89   PGO.setCurrentStmt(E);
     90   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
     91     llvm::Value *MemPtr = EmitScalarExpr(E);
     92     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
     93   }
     94 
     95   QualType BoolTy = getContext().BoolTy;
     96   if (!E->getType()->isAnyComplexType())
     97     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
     98 
     99   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
    100 }
    101 
    102 /// EmitIgnoredExpr - Emit code to compute the specified expression,
    103 /// ignoring the result.
    104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
    105   if (E->isRValue())
    106     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
    107 
    108   // Just emit it as an l-value and drop the result.
    109   EmitLValue(E);
    110 }
    111 
    112 /// EmitAnyExpr - Emit code to compute the specified expression which
    113 /// can have any type.  The result is returned as an RValue struct.
    114 /// If this is an aggregate expression, AggSlot indicates where the
    115 /// result should be returned.
    116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
    117                                     AggValueSlot aggSlot,
    118                                     bool ignoreResult) {
    119   switch (getEvaluationKind(E->getType())) {
    120   case TEK_Scalar:
    121     return RValue::get(EmitScalarExpr(E, ignoreResult));
    122   case TEK_Complex:
    123     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
    124   case TEK_Aggregate:
    125     if (!ignoreResult && aggSlot.isIgnored())
    126       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
    127     EmitAggExpr(E, aggSlot);
    128     return aggSlot.asRValue();
    129   }
    130   llvm_unreachable("bad evaluation kind");
    131 }
    132 
    133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
    134 /// always be accessible even if no aggregate location is provided.
    135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
    136   AggValueSlot AggSlot = AggValueSlot::ignored();
    137 
    138   if (hasAggregateEvaluationKind(E->getType()))
    139     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
    140   return EmitAnyExpr(E, AggSlot);
    141 }
    142 
    143 /// EmitAnyExprToMem - Evaluate an expression into a given memory
    144 /// location.
    145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
    146                                        llvm::Value *Location,
    147                                        Qualifiers Quals,
    148                                        bool IsInit) {
    149   // FIXME: This function should take an LValue as an argument.
    150   switch (getEvaluationKind(E->getType())) {
    151   case TEK_Complex:
    152     EmitComplexExprIntoLValue(E,
    153                          MakeNaturalAlignAddrLValue(Location, E->getType()),
    154                               /*isInit*/ false);
    155     return;
    156 
    157   case TEK_Aggregate: {
    158     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
    159     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
    160                                          AggValueSlot::IsDestructed_t(IsInit),
    161                                          AggValueSlot::DoesNotNeedGCBarriers,
    162                                          AggValueSlot::IsAliased_t(!IsInit)));
    163     return;
    164   }
    165 
    166   case TEK_Scalar: {
    167     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
    168     LValue LV = MakeAddrLValue(Location, E->getType());
    169     EmitStoreThroughLValue(RV, LV);
    170     return;
    171   }
    172   }
    173   llvm_unreachable("bad evaluation kind");
    174 }
    175 
    176 static void
    177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
    178                      const Expr *E, llvm::Value *ReferenceTemporary) {
    179   // Objective-C++ ARC:
    180   //   If we are binding a reference to a temporary that has ownership, we
    181   //   need to perform retain/release operations on the temporary.
    182   //
    183   // FIXME: This should be looking at E, not M.
    184   if (CGF.getLangOpts().ObjCAutoRefCount &&
    185       M->getType()->isObjCLifetimeType()) {
    186     QualType ObjCARCReferenceLifetimeType = M->getType();
    187     switch (Qualifiers::ObjCLifetime Lifetime =
    188                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
    189     case Qualifiers::OCL_None:
    190     case Qualifiers::OCL_ExplicitNone:
    191       // Carry on to normal cleanup handling.
    192       break;
    193 
    194     case Qualifiers::OCL_Autoreleasing:
    195       // Nothing to do; cleaned up by an autorelease pool.
    196       return;
    197 
    198     case Qualifiers::OCL_Strong:
    199     case Qualifiers::OCL_Weak:
    200       switch (StorageDuration Duration = M->getStorageDuration()) {
    201       case SD_Static:
    202         // Note: we intentionally do not register a cleanup to release
    203         // the object on program termination.
    204         return;
    205 
    206       case SD_Thread:
    207         // FIXME: We should probably register a cleanup in this case.
    208         return;
    209 
    210       case SD_Automatic:
    211       case SD_FullExpression:
    212         assert(!ObjCARCReferenceLifetimeType->isArrayType());
    213         CodeGenFunction::Destroyer *Destroy;
    214         CleanupKind CleanupKind;
    215         if (Lifetime == Qualifiers::OCL_Strong) {
    216           const ValueDecl *VD = M->getExtendingDecl();
    217           bool Precise =
    218               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
    219           CleanupKind = CGF.getARCCleanupKind();
    220           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
    221                             : &CodeGenFunction::destroyARCStrongImprecise;
    222         } else {
    223           // __weak objects always get EH cleanups; otherwise, exceptions
    224           // could cause really nasty crashes instead of mere leaks.
    225           CleanupKind = NormalAndEHCleanup;
    226           Destroy = &CodeGenFunction::destroyARCWeak;
    227         }
    228         if (Duration == SD_FullExpression)
    229           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
    230                           ObjCARCReferenceLifetimeType, *Destroy,
    231                           CleanupKind & EHCleanup);
    232         else
    233           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
    234                                           ObjCARCReferenceLifetimeType,
    235                                           *Destroy, CleanupKind & EHCleanup);
    236         return;
    237 
    238       case SD_Dynamic:
    239         llvm_unreachable("temporary cannot have dynamic storage duration");
    240       }
    241       llvm_unreachable("unknown storage duration");
    242     }
    243   }
    244 
    245   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
    246   if (const RecordType *RT =
    247           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
    248     // Get the destructor for the reference temporary.
    249     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    250     if (!ClassDecl->hasTrivialDestructor())
    251       ReferenceTemporaryDtor = ClassDecl->getDestructor();
    252   }
    253 
    254   if (!ReferenceTemporaryDtor)
    255     return;
    256 
    257   // Call the destructor for the temporary.
    258   switch (M->getStorageDuration()) {
    259   case SD_Static:
    260   case SD_Thread: {
    261     llvm::Constant *CleanupFn;
    262     llvm::Constant *CleanupArg;
    263     if (E->getType()->isArrayType()) {
    264       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
    265           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
    266           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
    267           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
    268       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
    269     } else {
    270       CleanupFn =
    271         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
    272       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
    273     }
    274     CGF.CGM.getCXXABI().registerGlobalDtor(
    275         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
    276     break;
    277   }
    278 
    279   case SD_FullExpression:
    280     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
    281                     CodeGenFunction::destroyCXXObject,
    282                     CGF.getLangOpts().Exceptions);
    283     break;
    284 
    285   case SD_Automatic:
    286     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
    287                                     ReferenceTemporary, E->getType(),
    288                                     CodeGenFunction::destroyCXXObject,
    289                                     CGF.getLangOpts().Exceptions);
    290     break;
    291 
    292   case SD_Dynamic:
    293     llvm_unreachable("temporary cannot have dynamic storage duration");
    294   }
    295 }
    296 
    297 static llvm::Value *
    298 createReferenceTemporary(CodeGenFunction &CGF,
    299                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
    300   switch (M->getStorageDuration()) {
    301   case SD_FullExpression:
    302   case SD_Automatic:
    303     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
    304 
    305   case SD_Thread:
    306   case SD_Static:
    307     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
    308 
    309   case SD_Dynamic:
    310     llvm_unreachable("temporary can't have dynamic storage duration");
    311   }
    312   llvm_unreachable("unknown storage duration");
    313 }
    314 
    315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
    316                                            const MaterializeTemporaryExpr *M) {
    317   const Expr *E = M->GetTemporaryExpr();
    318 
    319   if (getLangOpts().ObjCAutoRefCount &&
    320       M->getType()->isObjCLifetimeType() &&
    321       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
    322       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
    323     // FIXME: Fold this into the general case below.
    324     llvm::Value *Object = createReferenceTemporary(*this, M, E);
    325     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
    326 
    327     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
    328       // We should not have emitted the initializer for this temporary as a
    329       // constant.
    330       assert(!Var->hasInitializer());
    331       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    332     }
    333 
    334     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
    335 
    336     pushTemporaryCleanup(*this, M, E, Object);
    337     return RefTempDst;
    338   }
    339 
    340   SmallVector<const Expr *, 2> CommaLHSs;
    341   SmallVector<SubobjectAdjustment, 2> Adjustments;
    342   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
    343 
    344   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
    345     EmitIgnoredExpr(CommaLHSs[I]);
    346 
    347   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
    348     if (opaque->getType()->isRecordType()) {
    349       assert(Adjustments.empty());
    350       return EmitOpaqueValueLValue(opaque);
    351     }
    352   }
    353 
    354   // Create and initialize the reference temporary.
    355   llvm::Value *Object = createReferenceTemporary(*this, M, E);
    356   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
    357     // If the temporary is a global and has a constant initializer, we may
    358     // have already initialized it.
    359     if (!Var->hasInitializer()) {
    360       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    361       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    362     }
    363   } else {
    364     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    365   }
    366   pushTemporaryCleanup(*this, M, E, Object);
    367 
    368   // Perform derived-to-base casts and/or field accesses, to get from the
    369   // temporary object we created (and, potentially, for which we extended
    370   // the lifetime) to the subobject we're binding the reference to.
    371   for (unsigned I = Adjustments.size(); I != 0; --I) {
    372     SubobjectAdjustment &Adjustment = Adjustments[I-1];
    373     switch (Adjustment.Kind) {
    374     case SubobjectAdjustment::DerivedToBaseAdjustment:
    375       Object =
    376           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
    377                                 Adjustment.DerivedToBase.BasePath->path_begin(),
    378                                 Adjustment.DerivedToBase.BasePath->path_end(),
    379                                 /*NullCheckValue=*/ false);
    380       break;
    381 
    382     case SubobjectAdjustment::FieldAdjustment: {
    383       LValue LV = MakeAddrLValue(Object, E->getType());
    384       LV = EmitLValueForField(LV, Adjustment.Field);
    385       assert(LV.isSimple() &&
    386              "materialized temporary field is not a simple lvalue");
    387       Object = LV.getAddress();
    388       break;
    389     }
    390 
    391     case SubobjectAdjustment::MemberPointerAdjustment: {
    392       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
    393       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
    394           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
    395       break;
    396     }
    397     }
    398   }
    399 
    400   return MakeAddrLValue(Object, M->getType());
    401 }
    402 
    403 RValue
    404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
    405   // Emit the expression as an lvalue.
    406   LValue LV = EmitLValue(E);
    407   assert(LV.isSimple());
    408   llvm::Value *Value = LV.getAddress();
    409 
    410   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
    411     // C++11 [dcl.ref]p5 (as amended by core issue 453):
    412     //   If a glvalue to which a reference is directly bound designates neither
    413     //   an existing object or function of an appropriate type nor a region of
    414     //   storage of suitable size and alignment to contain an object of the
    415     //   reference's type, the behavior is undefined.
    416     QualType Ty = E->getType();
    417     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
    418   }
    419 
    420   return RValue::get(Value);
    421 }
    422 
    423 
    424 /// getAccessedFieldNo - Given an encoded value and a result number, return the
    425 /// input field number being accessed.
    426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
    427                                              const llvm::Constant *Elts) {
    428   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
    429       ->getZExtValue();
    430 }
    431 
    432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
    433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
    434                                     llvm::Value *High) {
    435   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
    436   llvm::Value *K47 = Builder.getInt64(47);
    437   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
    438   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
    439   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
    440   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
    441   return Builder.CreateMul(B1, KMul);
    442 }
    443 
    444 bool CodeGenFunction::sanitizePerformTypeCheck() const {
    445   return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize |
    446          SanOpts->Vptr;
    447 }
    448 
    449 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
    450                                     llvm::Value *Address,
    451                                     QualType Ty, CharUnits Alignment) {
    452   if (!sanitizePerformTypeCheck())
    453     return;
    454 
    455   // Don't check pointers outside the default address space. The null check
    456   // isn't correct, the object-size check isn't supported by LLVM, and we can't
    457   // communicate the addresses to the runtime handler for the vptr check.
    458   if (Address->getType()->getPointerAddressSpace())
    459     return;
    460 
    461   llvm::Value *Cond = nullptr;
    462   llvm::BasicBlock *Done = nullptr;
    463 
    464   if (SanOpts->Null) {
    465     // The glvalue must not be an empty glvalue.
    466     Cond = Builder.CreateICmpNE(
    467         Address, llvm::Constant::getNullValue(Address->getType()));
    468 
    469     if (TCK == TCK_DowncastPointer) {
    470       // When performing a pointer downcast, it's OK if the value is null.
    471       // Skip the remaining checks in that case.
    472       Done = createBasicBlock("null");
    473       llvm::BasicBlock *Rest = createBasicBlock("not.null");
    474       Builder.CreateCondBr(Cond, Rest, Done);
    475       EmitBlock(Rest);
    476       Cond = nullptr;
    477     }
    478   }
    479 
    480   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
    481     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
    482 
    483     // The glvalue must refer to a large enough storage region.
    484     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
    485     //        to check this.
    486     // FIXME: Get object address space
    487     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
    488     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
    489     llvm::Value *Min = Builder.getFalse();
    490     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
    491     llvm::Value *LargeEnough =
    492         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
    493                               llvm::ConstantInt::get(IntPtrTy, Size));
    494     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
    495   }
    496 
    497   uint64_t AlignVal = 0;
    498 
    499   if (SanOpts->Alignment) {
    500     AlignVal = Alignment.getQuantity();
    501     if (!Ty->isIncompleteType() && !AlignVal)
    502       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
    503 
    504     // The glvalue must be suitably aligned.
    505     if (AlignVal) {
    506       llvm::Value *Align =
    507           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
    508                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
    509       llvm::Value *Aligned =
    510         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
    511       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
    512     }
    513   }
    514 
    515   if (Cond) {
    516     llvm::Constant *StaticData[] = {
    517       EmitCheckSourceLocation(Loc),
    518       EmitCheckTypeDescriptor(Ty),
    519       llvm::ConstantInt::get(SizeTy, AlignVal),
    520       llvm::ConstantInt::get(Int8Ty, TCK)
    521     };
    522     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
    523   }
    524 
    525   // If possible, check that the vptr indicates that there is a subobject of
    526   // type Ty at offset zero within this object.
    527   //
    528   // C++11 [basic.life]p5,6:
    529   //   [For storage which does not refer to an object within its lifetime]
    530   //   The program has undefined behavior if:
    531   //    -- the [pointer or glvalue] is used to access a non-static data member
    532   //       or call a non-static member function
    533   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    534   if (SanOpts->Vptr &&
    535       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
    536        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
    537       RD && RD->hasDefinition() && RD->isDynamicClass()) {
    538     // Compute a hash of the mangled name of the type.
    539     //
    540     // FIXME: This is not guaranteed to be deterministic! Move to a
    541     //        fingerprinting mechanism once LLVM provides one. For the time
    542     //        being the implementation happens to be deterministic.
    543     SmallString<64> MangledName;
    544     llvm::raw_svector_ostream Out(MangledName);
    545     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
    546                                                      Out);
    547     llvm::hash_code TypeHash = hash_value(Out.str());
    548 
    549     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
    550     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
    551     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
    552     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
    553     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
    554     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
    555 
    556     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
    557     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
    558 
    559     // Look the hash up in our cache.
    560     const int CacheSize = 128;
    561     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
    562     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
    563                                                    "__ubsan_vptr_type_cache");
    564     llvm::Value *Slot = Builder.CreateAnd(Hash,
    565                                           llvm::ConstantInt::get(IntPtrTy,
    566                                                                  CacheSize-1));
    567     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
    568     llvm::Value *CacheVal =
    569       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
    570 
    571     // If the hash isn't in the cache, call a runtime handler to perform the
    572     // hard work of checking whether the vptr is for an object of the right
    573     // type. This will either fill in the cache and return, or produce a
    574     // diagnostic.
    575     llvm::Constant *StaticData[] = {
    576       EmitCheckSourceLocation(Loc),
    577       EmitCheckTypeDescriptor(Ty),
    578       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
    579       llvm::ConstantInt::get(Int8Ty, TCK)
    580     };
    581     llvm::Value *DynamicData[] = { Address, Hash };
    582     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
    583               "dynamic_type_cache_miss", StaticData, DynamicData,
    584               CRK_AlwaysRecoverable);
    585   }
    586 
    587   if (Done) {
    588     Builder.CreateBr(Done);
    589     EmitBlock(Done);
    590   }
    591 }
    592 
    593 /// Determine whether this expression refers to a flexible array member in a
    594 /// struct. We disable array bounds checks for such members.
    595 static bool isFlexibleArrayMemberExpr(const Expr *E) {
    596   // For compatibility with existing code, we treat arrays of length 0 or
    597   // 1 as flexible array members.
    598   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
    599   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
    600     if (CAT->getSize().ugt(1))
    601       return false;
    602   } else if (!isa<IncompleteArrayType>(AT))
    603     return false;
    604 
    605   E = E->IgnoreParens();
    606 
    607   // A flexible array member must be the last member in the class.
    608   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
    609     // FIXME: If the base type of the member expr is not FD->getParent(),
    610     // this should not be treated as a flexible array member access.
    611     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
    612       RecordDecl::field_iterator FI(
    613           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
    614       return ++FI == FD->getParent()->field_end();
    615     }
    616   }
    617 
    618   return false;
    619 }
    620 
    621 /// If Base is known to point to the start of an array, return the length of
    622 /// that array. Return 0 if the length cannot be determined.
    623 static llvm::Value *getArrayIndexingBound(
    624     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
    625   // For the vector indexing extension, the bound is the number of elements.
    626   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
    627     IndexedType = Base->getType();
    628     return CGF.Builder.getInt32(VT->getNumElements());
    629   }
    630 
    631   Base = Base->IgnoreParens();
    632 
    633   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
    634     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
    635         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
    636       IndexedType = CE->getSubExpr()->getType();
    637       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
    638       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
    639         return CGF.Builder.getInt(CAT->getSize());
    640       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
    641         return CGF.getVLASize(VAT).first;
    642     }
    643   }
    644 
    645   return nullptr;
    646 }
    647 
    648 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
    649                                       llvm::Value *Index, QualType IndexType,
    650                                       bool Accessed) {
    651   assert(SanOpts->ArrayBounds &&
    652          "should not be called unless adding bounds checks");
    653 
    654   QualType IndexedType;
    655   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
    656   if (!Bound)
    657     return;
    658 
    659   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
    660   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
    661   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
    662 
    663   llvm::Constant *StaticData[] = {
    664     EmitCheckSourceLocation(E->getExprLoc()),
    665     EmitCheckTypeDescriptor(IndexedType),
    666     EmitCheckTypeDescriptor(IndexType)
    667   };
    668   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
    669                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
    670   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
    671 }
    672 
    673 
    674 CodeGenFunction::ComplexPairTy CodeGenFunction::
    675 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
    676                          bool isInc, bool isPre) {
    677   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
    678 
    679   llvm::Value *NextVal;
    680   if (isa<llvm::IntegerType>(InVal.first->getType())) {
    681     uint64_t AmountVal = isInc ? 1 : -1;
    682     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
    683 
    684     // Add the inc/dec to the real part.
    685     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    686   } else {
    687     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
    688     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
    689     if (!isInc)
    690       FVal.changeSign();
    691     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
    692 
    693     // Add the inc/dec to the real part.
    694     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    695   }
    696 
    697   ComplexPairTy IncVal(NextVal, InVal.second);
    698 
    699   // Store the updated result through the lvalue.
    700   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
    701 
    702   // If this is a postinc, return the value read from memory, otherwise use the
    703   // updated value.
    704   return isPre ? IncVal : InVal;
    705 }
    706 
    707 
    708 //===----------------------------------------------------------------------===//
    709 //                         LValue Expression Emission
    710 //===----------------------------------------------------------------------===//
    711 
    712 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
    713   if (Ty->isVoidType())
    714     return RValue::get(nullptr);
    715 
    716   switch (getEvaluationKind(Ty)) {
    717   case TEK_Complex: {
    718     llvm::Type *EltTy =
    719       ConvertType(Ty->castAs<ComplexType>()->getElementType());
    720     llvm::Value *U = llvm::UndefValue::get(EltTy);
    721     return RValue::getComplex(std::make_pair(U, U));
    722   }
    723 
    724   // If this is a use of an undefined aggregate type, the aggregate must have an
    725   // identifiable address.  Just because the contents of the value are undefined
    726   // doesn't mean that the address can't be taken and compared.
    727   case TEK_Aggregate: {
    728     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
    729     return RValue::getAggregate(DestPtr);
    730   }
    731 
    732   case TEK_Scalar:
    733     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
    734   }
    735   llvm_unreachable("bad evaluation kind");
    736 }
    737 
    738 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
    739                                               const char *Name) {
    740   ErrorUnsupported(E, Name);
    741   return GetUndefRValue(E->getType());
    742 }
    743 
    744 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
    745                                               const char *Name) {
    746   ErrorUnsupported(E, Name);
    747   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
    748   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
    749 }
    750 
    751 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
    752   LValue LV;
    753   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
    754     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
    755   else
    756     LV = EmitLValue(E);
    757   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
    758     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
    759                   E->getType(), LV.getAlignment());
    760   return LV;
    761 }
    762 
    763 /// EmitLValue - Emit code to compute a designator that specifies the location
    764 /// of the expression.
    765 ///
    766 /// This can return one of two things: a simple address or a bitfield reference.
    767 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
    768 /// an LLVM pointer type.
    769 ///
    770 /// If this returns a bitfield reference, nothing about the pointee type of the
    771 /// LLVM value is known: For example, it may not be a pointer to an integer.
    772 ///
    773 /// If this returns a normal address, and if the lvalue's C type is fixed size,
    774 /// this method guarantees that the returned pointer type will point to an LLVM
    775 /// type of the same size of the lvalue's type.  If the lvalue has a variable
    776 /// length type, this is not possible.
    777 ///
    778 LValue CodeGenFunction::EmitLValue(const Expr *E) {
    779   switch (E->getStmtClass()) {
    780   default: return EmitUnsupportedLValue(E, "l-value expression");
    781 
    782   case Expr::ObjCPropertyRefExprClass:
    783     llvm_unreachable("cannot emit a property reference directly");
    784 
    785   case Expr::ObjCSelectorExprClass:
    786     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
    787   case Expr::ObjCIsaExprClass:
    788     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
    789   case Expr::BinaryOperatorClass:
    790     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
    791   case Expr::CompoundAssignOperatorClass:
    792     if (!E->getType()->isAnyComplexType())
    793       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    794     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    795   case Expr::CallExprClass:
    796   case Expr::CXXMemberCallExprClass:
    797   case Expr::CXXOperatorCallExprClass:
    798   case Expr::UserDefinedLiteralClass:
    799     return EmitCallExprLValue(cast<CallExpr>(E));
    800   case Expr::VAArgExprClass:
    801     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
    802   case Expr::DeclRefExprClass:
    803     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
    804   case Expr::ParenExprClass:
    805     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
    806   case Expr::GenericSelectionExprClass:
    807     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
    808   case Expr::PredefinedExprClass:
    809     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
    810   case Expr::StringLiteralClass:
    811     return EmitStringLiteralLValue(cast<StringLiteral>(E));
    812   case Expr::ObjCEncodeExprClass:
    813     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
    814   case Expr::PseudoObjectExprClass:
    815     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
    816   case Expr::InitListExprClass:
    817     return EmitInitListLValue(cast<InitListExpr>(E));
    818   case Expr::CXXTemporaryObjectExprClass:
    819   case Expr::CXXConstructExprClass:
    820     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
    821   case Expr::CXXBindTemporaryExprClass:
    822     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
    823   case Expr::CXXUuidofExprClass:
    824     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
    825   case Expr::LambdaExprClass:
    826     return EmitLambdaLValue(cast<LambdaExpr>(E));
    827 
    828   case Expr::ExprWithCleanupsClass: {
    829     const auto *cleanups = cast<ExprWithCleanups>(E);
    830     enterFullExpression(cleanups);
    831     RunCleanupsScope Scope(*this);
    832     return EmitLValue(cleanups->getSubExpr());
    833   }
    834 
    835   case Expr::CXXDefaultArgExprClass:
    836     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
    837   case Expr::CXXDefaultInitExprClass: {
    838     CXXDefaultInitExprScope Scope(*this);
    839     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
    840   }
    841   case Expr::CXXTypeidExprClass:
    842     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
    843 
    844   case Expr::ObjCMessageExprClass:
    845     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
    846   case Expr::ObjCIvarRefExprClass:
    847     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
    848   case Expr::StmtExprClass:
    849     return EmitStmtExprLValue(cast<StmtExpr>(E));
    850   case Expr::UnaryOperatorClass:
    851     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
    852   case Expr::ArraySubscriptExprClass:
    853     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
    854   case Expr::ExtVectorElementExprClass:
    855     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
    856   case Expr::MemberExprClass:
    857     return EmitMemberExpr(cast<MemberExpr>(E));
    858   case Expr::CompoundLiteralExprClass:
    859     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
    860   case Expr::ConditionalOperatorClass:
    861     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
    862   case Expr::BinaryConditionalOperatorClass:
    863     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
    864   case Expr::ChooseExprClass:
    865     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
    866   case Expr::OpaqueValueExprClass:
    867     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
    868   case Expr::SubstNonTypeTemplateParmExprClass:
    869     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
    870   case Expr::ImplicitCastExprClass:
    871   case Expr::CStyleCastExprClass:
    872   case Expr::CXXFunctionalCastExprClass:
    873   case Expr::CXXStaticCastExprClass:
    874   case Expr::CXXDynamicCastExprClass:
    875   case Expr::CXXReinterpretCastExprClass:
    876   case Expr::CXXConstCastExprClass:
    877   case Expr::ObjCBridgedCastExprClass:
    878     return EmitCastLValue(cast<CastExpr>(E));
    879 
    880   case Expr::MaterializeTemporaryExprClass:
    881     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
    882   }
    883 }
    884 
    885 /// Given an object of the given canonical type, can we safely copy a
    886 /// value out of it based on its initializer?
    887 static bool isConstantEmittableObjectType(QualType type) {
    888   assert(type.isCanonical());
    889   assert(!type->isReferenceType());
    890 
    891   // Must be const-qualified but non-volatile.
    892   Qualifiers qs = type.getLocalQualifiers();
    893   if (!qs.hasConst() || qs.hasVolatile()) return false;
    894 
    895   // Otherwise, all object types satisfy this except C++ classes with
    896   // mutable subobjects or non-trivial copy/destroy behavior.
    897   if (const auto *RT = dyn_cast<RecordType>(type))
    898     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
    899       if (RD->hasMutableFields() || !RD->isTrivial())
    900         return false;
    901 
    902   return true;
    903 }
    904 
    905 /// Can we constant-emit a load of a reference to a variable of the
    906 /// given type?  This is different from predicates like
    907 /// Decl::isUsableInConstantExpressions because we do want it to apply
    908 /// in situations that don't necessarily satisfy the language's rules
    909 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
    910 /// to do this with const float variables even if those variables
    911 /// aren't marked 'constexpr'.
    912 enum ConstantEmissionKind {
    913   CEK_None,
    914   CEK_AsReferenceOnly,
    915   CEK_AsValueOrReference,
    916   CEK_AsValueOnly
    917 };
    918 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
    919   type = type.getCanonicalType();
    920   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
    921     if (isConstantEmittableObjectType(ref->getPointeeType()))
    922       return CEK_AsValueOrReference;
    923     return CEK_AsReferenceOnly;
    924   }
    925   if (isConstantEmittableObjectType(type))
    926     return CEK_AsValueOnly;
    927   return CEK_None;
    928 }
    929 
    930 /// Try to emit a reference to the given value without producing it as
    931 /// an l-value.  This is actually more than an optimization: we can't
    932 /// produce an l-value for variables that we never actually captured
    933 /// in a block or lambda, which means const int variables or constexpr
    934 /// literals or similar.
    935 CodeGenFunction::ConstantEmission
    936 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
    937   ValueDecl *value = refExpr->getDecl();
    938 
    939   // The value needs to be an enum constant or a constant variable.
    940   ConstantEmissionKind CEK;
    941   if (isa<ParmVarDecl>(value)) {
    942     CEK = CEK_None;
    943   } else if (auto *var = dyn_cast<VarDecl>(value)) {
    944     CEK = checkVarTypeForConstantEmission(var->getType());
    945   } else if (isa<EnumConstantDecl>(value)) {
    946     CEK = CEK_AsValueOnly;
    947   } else {
    948     CEK = CEK_None;
    949   }
    950   if (CEK == CEK_None) return ConstantEmission();
    951 
    952   Expr::EvalResult result;
    953   bool resultIsReference;
    954   QualType resultType;
    955 
    956   // It's best to evaluate all the way as an r-value if that's permitted.
    957   if (CEK != CEK_AsReferenceOnly &&
    958       refExpr->EvaluateAsRValue(result, getContext())) {
    959     resultIsReference = false;
    960     resultType = refExpr->getType();
    961 
    962   // Otherwise, try to evaluate as an l-value.
    963   } else if (CEK != CEK_AsValueOnly &&
    964              refExpr->EvaluateAsLValue(result, getContext())) {
    965     resultIsReference = true;
    966     resultType = value->getType();
    967 
    968   // Failure.
    969   } else {
    970     return ConstantEmission();
    971   }
    972 
    973   // In any case, if the initializer has side-effects, abandon ship.
    974   if (result.HasSideEffects)
    975     return ConstantEmission();
    976 
    977   // Emit as a constant.
    978   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
    979 
    980   // Make sure we emit a debug reference to the global variable.
    981   // This should probably fire even for
    982   if (isa<VarDecl>(value)) {
    983     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
    984       EmitDeclRefExprDbgValue(refExpr, C);
    985   } else {
    986     assert(isa<EnumConstantDecl>(value));
    987     EmitDeclRefExprDbgValue(refExpr, C);
    988   }
    989 
    990   // If we emitted a reference constant, we need to dereference that.
    991   if (resultIsReference)
    992     return ConstantEmission::forReference(C);
    993 
    994   return ConstantEmission::forValue(C);
    995 }
    996 
    997 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
    998                                                SourceLocation Loc) {
    999   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
   1000                           lvalue.getAlignment().getQuantity(),
   1001                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
   1002                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
   1003 }
   1004 
   1005 static bool hasBooleanRepresentation(QualType Ty) {
   1006   if (Ty->isBooleanType())
   1007     return true;
   1008 
   1009   if (const EnumType *ET = Ty->getAs<EnumType>())
   1010     return ET->getDecl()->getIntegerType()->isBooleanType();
   1011 
   1012   if (const AtomicType *AT = Ty->getAs<AtomicType>())
   1013     return hasBooleanRepresentation(AT->getValueType());
   1014 
   1015   return false;
   1016 }
   1017 
   1018 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
   1019                             llvm::APInt &Min, llvm::APInt &End,
   1020                             bool StrictEnums) {
   1021   const EnumType *ET = Ty->getAs<EnumType>();
   1022   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
   1023                                 ET && !ET->getDecl()->isFixed();
   1024   bool IsBool = hasBooleanRepresentation(Ty);
   1025   if (!IsBool && !IsRegularCPlusPlusEnum)
   1026     return false;
   1027 
   1028   if (IsBool) {
   1029     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
   1030     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
   1031   } else {
   1032     const EnumDecl *ED = ET->getDecl();
   1033     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
   1034     unsigned Bitwidth = LTy->getScalarSizeInBits();
   1035     unsigned NumNegativeBits = ED->getNumNegativeBits();
   1036     unsigned NumPositiveBits = ED->getNumPositiveBits();
   1037 
   1038     if (NumNegativeBits) {
   1039       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
   1040       assert(NumBits <= Bitwidth);
   1041       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
   1042       Min = -End;
   1043     } else {
   1044       assert(NumPositiveBits <= Bitwidth);
   1045       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
   1046       Min = llvm::APInt(Bitwidth, 0);
   1047     }
   1048   }
   1049   return true;
   1050 }
   1051 
   1052 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
   1053   llvm::APInt Min, End;
   1054   if (!getRangeForType(*this, Ty, Min, End,
   1055                        CGM.getCodeGenOpts().StrictEnums))
   1056     return nullptr;
   1057 
   1058   llvm::MDBuilder MDHelper(getLLVMContext());
   1059   return MDHelper.createRange(Min, End);
   1060 }
   1061 
   1062 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
   1063                                                unsigned Alignment, QualType Ty,
   1064                                                SourceLocation Loc,
   1065                                                llvm::MDNode *TBAAInfo,
   1066                                                QualType TBAABaseType,
   1067                                                uint64_t TBAAOffset) {
   1068   // For better performance, handle vector loads differently.
   1069   if (Ty->isVectorType()) {
   1070     llvm::Value *V;
   1071     const llvm::Type *EltTy =
   1072     cast<llvm::PointerType>(Addr->getType())->getElementType();
   1073 
   1074     const auto *VTy = cast<llvm::VectorType>(EltTy);
   1075 
   1076     // Handle vectors of size 3, like size 4 for better performance.
   1077     if (VTy->getNumElements() == 3) {
   1078 
   1079       // Bitcast to vec4 type.
   1080       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
   1081                                                          4);
   1082       llvm::PointerType *ptVec4Ty =
   1083       llvm::PointerType::get(vec4Ty,
   1084                              (cast<llvm::PointerType>(
   1085                                       Addr->getType()))->getAddressSpace());
   1086       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
   1087                                                 "castToVec4");
   1088       // Now load value.
   1089       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
   1090 
   1091       // Shuffle vector to get vec3.
   1092       llvm::Constant *Mask[] = {
   1093         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
   1094         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
   1095         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
   1096       };
   1097 
   1098       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1099       V = Builder.CreateShuffleVector(LoadVal,
   1100                                       llvm::UndefValue::get(vec4Ty),
   1101                                       MaskV, "extractVec");
   1102       return EmitFromMemory(V, Ty);
   1103     }
   1104   }
   1105 
   1106   // Atomic operations have to be done on integral types.
   1107   if (Ty->isAtomicType()) {
   1108     LValue lvalue = LValue::MakeAddr(Addr, Ty,
   1109                                      CharUnits::fromQuantity(Alignment),
   1110                                      getContext(), TBAAInfo);
   1111     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
   1112   }
   1113 
   1114   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
   1115   if (Volatile)
   1116     Load->setVolatile(true);
   1117   if (Alignment)
   1118     Load->setAlignment(Alignment);
   1119   if (TBAAInfo) {
   1120     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1121                                                       TBAAOffset);
   1122     if (TBAAPath)
   1123       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
   1124   }
   1125 
   1126   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
   1127       (SanOpts->Enum && Ty->getAs<EnumType>())) {
   1128     llvm::APInt Min, End;
   1129     if (getRangeForType(*this, Ty, Min, End, true)) {
   1130       --End;
   1131       llvm::Value *Check;
   1132       if (!Min)
   1133         Check = Builder.CreateICmpULE(
   1134           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1135       else {
   1136         llvm::Value *Upper = Builder.CreateICmpSLE(
   1137           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1138         llvm::Value *Lower = Builder.CreateICmpSGE(
   1139           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
   1140         Check = Builder.CreateAnd(Upper, Lower);
   1141       }
   1142       llvm::Constant *StaticArgs[] = {
   1143         EmitCheckSourceLocation(Loc),
   1144         EmitCheckTypeDescriptor(Ty)
   1145       };
   1146       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
   1147                 CRK_Recoverable);
   1148     }
   1149   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
   1150     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
   1151       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
   1152 
   1153   return EmitFromMemory(Load, Ty);
   1154 }
   1155 
   1156 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
   1157   // Bool has a different representation in memory than in registers.
   1158   if (hasBooleanRepresentation(Ty)) {
   1159     // This should really always be an i1, but sometimes it's already
   1160     // an i8, and it's awkward to track those cases down.
   1161     if (Value->getType()->isIntegerTy(1))
   1162       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
   1163     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1164            "wrong value rep of bool");
   1165   }
   1166 
   1167   return Value;
   1168 }
   1169 
   1170 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
   1171   // Bool has a different representation in memory than in registers.
   1172   if (hasBooleanRepresentation(Ty)) {
   1173     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1174            "wrong value rep of bool");
   1175     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
   1176   }
   1177 
   1178   return Value;
   1179 }
   1180 
   1181 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
   1182                                         bool Volatile, unsigned Alignment,
   1183                                         QualType Ty, llvm::MDNode *TBAAInfo,
   1184                                         bool isInit, QualType TBAABaseType,
   1185                                         uint64_t TBAAOffset) {
   1186 
   1187   // Handle vectors differently to get better performance.
   1188   if (Ty->isVectorType()) {
   1189     llvm::Type *SrcTy = Value->getType();
   1190     auto *VecTy = cast<llvm::VectorType>(SrcTy);
   1191     // Handle vec3 special.
   1192     if (VecTy->getNumElements() == 3) {
   1193       llvm::LLVMContext &VMContext = getLLVMContext();
   1194 
   1195       // Our source is a vec3, do a shuffle vector to make it a vec4.
   1196       SmallVector<llvm::Constant*, 4> Mask;
   1197       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
   1198                                             0));
   1199       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
   1200                                             1));
   1201       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
   1202                                             2));
   1203       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
   1204 
   1205       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1206       Value = Builder.CreateShuffleVector(Value,
   1207                                           llvm::UndefValue::get(VecTy),
   1208                                           MaskV, "extractVec");
   1209       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
   1210     }
   1211     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
   1212     if (DstPtr->getElementType() != SrcTy) {
   1213       llvm::Type *MemTy =
   1214       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
   1215       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
   1216     }
   1217   }
   1218 
   1219   Value = EmitToMemory(Value, Ty);
   1220 
   1221   if (Ty->isAtomicType()) {
   1222     EmitAtomicStore(RValue::get(Value),
   1223                     LValue::MakeAddr(Addr, Ty,
   1224                                      CharUnits::fromQuantity(Alignment),
   1225                                      getContext(), TBAAInfo),
   1226                     isInit);
   1227     return;
   1228   }
   1229 
   1230   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
   1231   if (Alignment)
   1232     Store->setAlignment(Alignment);
   1233   if (TBAAInfo) {
   1234     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1235                                                       TBAAOffset);
   1236     if (TBAAPath)
   1237       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
   1238   }
   1239 }
   1240 
   1241 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
   1242                                         bool isInit) {
   1243   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
   1244                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
   1245                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
   1246                     lvalue.getTBAAOffset());
   1247 }
   1248 
   1249 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
   1250 /// method emits the address of the lvalue, then loads the result as an rvalue,
   1251 /// returning the rvalue.
   1252 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
   1253   if (LV.isObjCWeak()) {
   1254     // load of a __weak object.
   1255     llvm::Value *AddrWeakObj = LV.getAddress();
   1256     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
   1257                                                              AddrWeakObj));
   1258   }
   1259   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
   1260     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
   1261     Object = EmitObjCConsumeObject(LV.getType(), Object);
   1262     return RValue::get(Object);
   1263   }
   1264 
   1265   if (LV.isSimple()) {
   1266     assert(!LV.getType()->isFunctionType());
   1267 
   1268     // Everything needs a load.
   1269     return RValue::get(EmitLoadOfScalar(LV, Loc));
   1270   }
   1271 
   1272   if (LV.isVectorElt()) {
   1273     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
   1274                                               LV.isVolatileQualified());
   1275     Load->setAlignment(LV.getAlignment().getQuantity());
   1276     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
   1277                                                     "vecext"));
   1278   }
   1279 
   1280   // If this is a reference to a subset of the elements of a vector, either
   1281   // shuffle the input or extract/insert them as appropriate.
   1282   if (LV.isExtVectorElt())
   1283     return EmitLoadOfExtVectorElementLValue(LV);
   1284 
   1285   // Global Register variables always invoke intrinsics
   1286   if (LV.isGlobalReg())
   1287     return EmitLoadOfGlobalRegLValue(LV);
   1288 
   1289   assert(LV.isBitField() && "Unknown LValue type!");
   1290   return EmitLoadOfBitfieldLValue(LV);
   1291 }
   1292 
   1293 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
   1294   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
   1295 
   1296   // Get the output type.
   1297   llvm::Type *ResLTy = ConvertType(LV.getType());
   1298 
   1299   llvm::Value *Ptr = LV.getBitFieldAddr();
   1300   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
   1301                                         "bf.load");
   1302   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
   1303 
   1304   if (Info.IsSigned) {
   1305     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
   1306     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
   1307     if (HighBits)
   1308       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
   1309     if (Info.Offset + HighBits)
   1310       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
   1311   } else {
   1312     if (Info.Offset)
   1313       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
   1314     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
   1315       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
   1316                                                               Info.Size),
   1317                               "bf.clear");
   1318   }
   1319   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
   1320 
   1321   return RValue::get(Val);
   1322 }
   1323 
   1324 // If this is a reference to a subset of the elements of a vector, create an
   1325 // appropriate shufflevector.
   1326 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
   1327   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
   1328                                             LV.isVolatileQualified());
   1329   Load->setAlignment(LV.getAlignment().getQuantity());
   1330   llvm::Value *Vec = Load;
   1331 
   1332   const llvm::Constant *Elts = LV.getExtVectorElts();
   1333 
   1334   // If the result of the expression is a non-vector type, we must be extracting
   1335   // a single element.  Just codegen as an extractelement.
   1336   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   1337   if (!ExprVT) {
   1338     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1339     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
   1340     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
   1341   }
   1342 
   1343   // Always use shuffle vector to try to retain the original program structure
   1344   unsigned NumResultElts = ExprVT->getNumElements();
   1345 
   1346   SmallVector<llvm::Constant*, 4> Mask;
   1347   for (unsigned i = 0; i != NumResultElts; ++i)
   1348     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
   1349 
   1350   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1351   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
   1352                                     MaskV);
   1353   return RValue::get(Vec);
   1354 }
   1355 
   1356 /// @brief Load of global gamed gegisters are always calls to intrinsics.
   1357 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
   1358   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
   1359          "Bad type for register variable");
   1360   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
   1361   assert(RegName && "Register LValue is not metadata");
   1362 
   1363   // We accept integer and pointer types only
   1364   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
   1365   llvm::Type *Ty = OrigTy;
   1366   if (OrigTy->isPointerTy())
   1367     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
   1368   llvm::Type *Types[] = { Ty };
   1369 
   1370   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
   1371   llvm::Value *Call = Builder.CreateCall(F, RegName);
   1372   if (OrigTy->isPointerTy())
   1373     Call = Builder.CreateIntToPtr(Call, OrigTy);
   1374   return RValue::get(Call);
   1375 }
   1376 
   1377 
   1378 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   1379 /// lvalue, where both are guaranteed to the have the same type, and that type
   1380 /// is 'Ty'.
   1381 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
   1382                                              bool isInit) {
   1383   if (!Dst.isSimple()) {
   1384     if (Dst.isVectorElt()) {
   1385       // Read/modify/write the vector, inserting the new element.
   1386       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
   1387                                                 Dst.isVolatileQualified());
   1388       Load->setAlignment(Dst.getAlignment().getQuantity());
   1389       llvm::Value *Vec = Load;
   1390       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
   1391                                         Dst.getVectorIdx(), "vecins");
   1392       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
   1393                                                    Dst.isVolatileQualified());
   1394       Store->setAlignment(Dst.getAlignment().getQuantity());
   1395       return;
   1396     }
   1397 
   1398     // If this is an update of extended vector elements, insert them as
   1399     // appropriate.
   1400     if (Dst.isExtVectorElt())
   1401       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
   1402 
   1403     if (Dst.isGlobalReg())
   1404       return EmitStoreThroughGlobalRegLValue(Src, Dst);
   1405 
   1406     assert(Dst.isBitField() && "Unknown LValue type");
   1407     return EmitStoreThroughBitfieldLValue(Src, Dst);
   1408   }
   1409 
   1410   // There's special magic for assigning into an ARC-qualified l-value.
   1411   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
   1412     switch (Lifetime) {
   1413     case Qualifiers::OCL_None:
   1414       llvm_unreachable("present but none");
   1415 
   1416     case Qualifiers::OCL_ExplicitNone:
   1417       // nothing special
   1418       break;
   1419 
   1420     case Qualifiers::OCL_Strong:
   1421       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
   1422       return;
   1423 
   1424     case Qualifiers::OCL_Weak:
   1425       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
   1426       return;
   1427 
   1428     case Qualifiers::OCL_Autoreleasing:
   1429       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
   1430                                                      Src.getScalarVal()));
   1431       // fall into the normal path
   1432       break;
   1433     }
   1434   }
   1435 
   1436   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
   1437     // load of a __weak object.
   1438     llvm::Value *LvalueDst = Dst.getAddress();
   1439     llvm::Value *src = Src.getScalarVal();
   1440      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
   1441     return;
   1442   }
   1443 
   1444   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
   1445     // load of a __strong object.
   1446     llvm::Value *LvalueDst = Dst.getAddress();
   1447     llvm::Value *src = Src.getScalarVal();
   1448     if (Dst.isObjCIvar()) {
   1449       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
   1450       llvm::Type *ResultType = ConvertType(getContext().LongTy);
   1451       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
   1452       llvm::Value *dst = RHS;
   1453       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
   1454       llvm::Value *LHS =
   1455         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
   1456       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
   1457       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
   1458                                               BytesBetween);
   1459     } else if (Dst.isGlobalObjCRef()) {
   1460       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
   1461                                                 Dst.isThreadLocalRef());
   1462     }
   1463     else
   1464       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
   1465     return;
   1466   }
   1467 
   1468   assert(Src.isScalar() && "Can't emit an agg store with this method");
   1469   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
   1470 }
   1471 
   1472 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   1473                                                      llvm::Value **Result) {
   1474   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
   1475   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
   1476   llvm::Value *Ptr = Dst.getBitFieldAddr();
   1477 
   1478   // Get the source value, truncated to the width of the bit-field.
   1479   llvm::Value *SrcVal = Src.getScalarVal();
   1480 
   1481   // Cast the source to the storage type and shift it into place.
   1482   SrcVal = Builder.CreateIntCast(SrcVal,
   1483                                  Ptr->getType()->getPointerElementType(),
   1484                                  /*IsSigned=*/false);
   1485   llvm::Value *MaskedVal = SrcVal;
   1486 
   1487   // See if there are other bits in the bitfield's storage we'll need to load
   1488   // and mask together with source before storing.
   1489   if (Info.StorageSize != Info.Size) {
   1490     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
   1491     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
   1492                                           "bf.load");
   1493     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
   1494 
   1495     // Mask the source value as needed.
   1496     if (!hasBooleanRepresentation(Dst.getType()))
   1497       SrcVal = Builder.CreateAnd(SrcVal,
   1498                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
   1499                                                             Info.Size),
   1500                                  "bf.value");
   1501     MaskedVal = SrcVal;
   1502     if (Info.Offset)
   1503       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
   1504 
   1505     // Mask out the original value.
   1506     Val = Builder.CreateAnd(Val,
   1507                             ~llvm::APInt::getBitsSet(Info.StorageSize,
   1508                                                      Info.Offset,
   1509                                                      Info.Offset + Info.Size),
   1510                             "bf.clear");
   1511 
   1512     // Or together the unchanged values and the source value.
   1513     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
   1514   } else {
   1515     assert(Info.Offset == 0);
   1516   }
   1517 
   1518   // Write the new value back out.
   1519   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
   1520                                                Dst.isVolatileQualified());
   1521   Store->setAlignment(Info.StorageAlignment);
   1522 
   1523   // Return the new value of the bit-field, if requested.
   1524   if (Result) {
   1525     llvm::Value *ResultVal = MaskedVal;
   1526 
   1527     // Sign extend the value if needed.
   1528     if (Info.IsSigned) {
   1529       assert(Info.Size <= Info.StorageSize);
   1530       unsigned HighBits = Info.StorageSize - Info.Size;
   1531       if (HighBits) {
   1532         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
   1533         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
   1534       }
   1535     }
   1536 
   1537     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
   1538                                       "bf.result.cast");
   1539     *Result = EmitFromMemory(ResultVal, Dst.getType());
   1540   }
   1541 }
   1542 
   1543 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
   1544                                                                LValue Dst) {
   1545   // This access turns into a read/modify/write of the vector.  Load the input
   1546   // value now.
   1547   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
   1548                                             Dst.isVolatileQualified());
   1549   Load->setAlignment(Dst.getAlignment().getQuantity());
   1550   llvm::Value *Vec = Load;
   1551   const llvm::Constant *Elts = Dst.getExtVectorElts();
   1552 
   1553   llvm::Value *SrcVal = Src.getScalarVal();
   1554 
   1555   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
   1556     unsigned NumSrcElts = VTy->getNumElements();
   1557     unsigned NumDstElts =
   1558        cast<llvm::VectorType>(Vec->getType())->getNumElements();
   1559     if (NumDstElts == NumSrcElts) {
   1560       // Use shuffle vector is the src and destination are the same number of
   1561       // elements and restore the vector mask since it is on the side it will be
   1562       // stored.
   1563       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
   1564       for (unsigned i = 0; i != NumSrcElts; ++i)
   1565         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
   1566 
   1567       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1568       Vec = Builder.CreateShuffleVector(SrcVal,
   1569                                         llvm::UndefValue::get(Vec->getType()),
   1570                                         MaskV);
   1571     } else if (NumDstElts > NumSrcElts) {
   1572       // Extended the source vector to the same length and then shuffle it
   1573       // into the destination.
   1574       // FIXME: since we're shuffling with undef, can we just use the indices
   1575       //        into that?  This could be simpler.
   1576       SmallVector<llvm::Constant*, 4> ExtMask;
   1577       for (unsigned i = 0; i != NumSrcElts; ++i)
   1578         ExtMask.push_back(Builder.getInt32(i));
   1579       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
   1580       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
   1581       llvm::Value *ExtSrcVal =
   1582         Builder.CreateShuffleVector(SrcVal,
   1583                                     llvm::UndefValue::get(SrcVal->getType()),
   1584                                     ExtMaskV);
   1585       // build identity
   1586       SmallVector<llvm::Constant*, 4> Mask;
   1587       for (unsigned i = 0; i != NumDstElts; ++i)
   1588         Mask.push_back(Builder.getInt32(i));
   1589 
   1590       // When the vector size is odd and .odd or .hi is used, the last element
   1591       // of the Elts constant array will be one past the size of the vector.
   1592       // Ignore the last element here, if it is greater than the mask size.
   1593       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
   1594         NumSrcElts--;
   1595 
   1596       // modify when what gets shuffled in
   1597       for (unsigned i = 0; i != NumSrcElts; ++i)
   1598         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
   1599       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1600       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
   1601     } else {
   1602       // We should never shorten the vector
   1603       llvm_unreachable("unexpected shorten vector length");
   1604     }
   1605   } else {
   1606     // If the Src is a scalar (not a vector) it must be updating one element.
   1607     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1608     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
   1609     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
   1610   }
   1611 
   1612   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
   1613                                                Dst.isVolatileQualified());
   1614   Store->setAlignment(Dst.getAlignment().getQuantity());
   1615 }
   1616 
   1617 /// @brief Store of global named registers are always calls to intrinsics.
   1618 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
   1619   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
   1620          "Bad type for register variable");
   1621   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
   1622   assert(RegName && "Register LValue is not metadata");
   1623 
   1624   // We accept integer and pointer types only
   1625   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
   1626   llvm::Type *Ty = OrigTy;
   1627   if (OrigTy->isPointerTy())
   1628     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
   1629   llvm::Type *Types[] = { Ty };
   1630 
   1631   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
   1632   llvm::Value *Value = Src.getScalarVal();
   1633   if (OrigTy->isPointerTy())
   1634     Value = Builder.CreatePtrToInt(Value, Ty);
   1635   Builder.CreateCall2(F, RegName, Value);
   1636 }
   1637 
   1638 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
   1639 // generating write-barries API. It is currently a global, ivar,
   1640 // or neither.
   1641 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
   1642                                  LValue &LV,
   1643                                  bool IsMemberAccess=false) {
   1644   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
   1645     return;
   1646 
   1647   if (isa<ObjCIvarRefExpr>(E)) {
   1648     QualType ExpTy = E->getType();
   1649     if (IsMemberAccess && ExpTy->isPointerType()) {
   1650       // If ivar is a structure pointer, assigning to field of
   1651       // this struct follows gcc's behavior and makes it a non-ivar
   1652       // writer-barrier conservatively.
   1653       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1654       if (ExpTy->isRecordType()) {
   1655         LV.setObjCIvar(false);
   1656         return;
   1657       }
   1658     }
   1659     LV.setObjCIvar(true);
   1660     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
   1661     LV.setBaseIvarExp(Exp->getBase());
   1662     LV.setObjCArray(E->getType()->isArrayType());
   1663     return;
   1664   }
   1665 
   1666   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
   1667     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
   1668       if (VD->hasGlobalStorage()) {
   1669         LV.setGlobalObjCRef(true);
   1670         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
   1671       }
   1672     }
   1673     LV.setObjCArray(E->getType()->isArrayType());
   1674     return;
   1675   }
   1676 
   1677   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
   1678     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1679     return;
   1680   }
   1681 
   1682   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
   1683     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1684     if (LV.isObjCIvar()) {
   1685       // If cast is to a structure pointer, follow gcc's behavior and make it
   1686       // a non-ivar write-barrier.
   1687       QualType ExpTy = E->getType();
   1688       if (ExpTy->isPointerType())
   1689         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1690       if (ExpTy->isRecordType())
   1691         LV.setObjCIvar(false);
   1692     }
   1693     return;
   1694   }
   1695 
   1696   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
   1697     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
   1698     return;
   1699   }
   1700 
   1701   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
   1702     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1703     return;
   1704   }
   1705 
   1706   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
   1707     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1708     return;
   1709   }
   1710 
   1711   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
   1712     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1713     return;
   1714   }
   1715 
   1716   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
   1717     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
   1718     if (LV.isObjCIvar() && !LV.isObjCArray())
   1719       // Using array syntax to assigning to what an ivar points to is not
   1720       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
   1721       LV.setObjCIvar(false);
   1722     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
   1723       // Using array syntax to assigning to what global points to is not
   1724       // same as assigning to the global itself. {id *G;} G[i] = 0;
   1725       LV.setGlobalObjCRef(false);
   1726     return;
   1727   }
   1728 
   1729   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
   1730     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
   1731     // We don't know if member is an 'ivar', but this flag is looked at
   1732     // only in the context of LV.isObjCIvar().
   1733     LV.setObjCArray(E->getType()->isArrayType());
   1734     return;
   1735   }
   1736 }
   1737 
   1738 static llvm::Value *
   1739 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
   1740                                 llvm::Value *V, llvm::Type *IRType,
   1741                                 StringRef Name = StringRef()) {
   1742   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
   1743   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
   1744 }
   1745 
   1746 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
   1747                                       const Expr *E, const VarDecl *VD) {
   1748   QualType T = E->getType();
   1749 
   1750   // If it's thread_local, emit a call to its wrapper function instead.
   1751   if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
   1752     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
   1753 
   1754   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
   1755   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
   1756   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
   1757   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
   1758   LValue LV;
   1759   if (VD->getType()->isReferenceType()) {
   1760     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
   1761     LI->setAlignment(Alignment.getQuantity());
   1762     V = LI;
   1763     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
   1764   } else {
   1765     LV = CGF.MakeAddrLValue(V, T, Alignment);
   1766   }
   1767   setObjCGCLValueClass(CGF.getContext(), E, LV);
   1768   return LV;
   1769 }
   1770 
   1771 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
   1772                                      const Expr *E, const FunctionDecl *FD) {
   1773   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
   1774   if (!FD->hasPrototype()) {
   1775     if (const FunctionProtoType *Proto =
   1776             FD->getType()->getAs<FunctionProtoType>()) {
   1777       // Ugly case: for a K&R-style definition, the type of the definition
   1778       // isn't the same as the type of a use.  Correct for this with a
   1779       // bitcast.
   1780       QualType NoProtoType =
   1781           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
   1782       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
   1783       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
   1784     }
   1785   }
   1786   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
   1787   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
   1788 }
   1789 
   1790 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
   1791                                       llvm::Value *ThisValue) {
   1792   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
   1793   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
   1794   return CGF.EmitLValueForField(LV, FD);
   1795 }
   1796 
   1797 /// Named Registers are named metadata pointing to the register name
   1798 /// which will be read from/written to as an argument to the intrinsic
   1799 /// @llvm.read/write_register.
   1800 /// So far, only the name is being passed down, but other options such as
   1801 /// register type, allocation type or even optimization options could be
   1802 /// passed down via the metadata node.
   1803 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
   1804                                       CodeGenModule &CGM,
   1805                                       CharUnits Alignment) {
   1806   SmallString<64> Name("llvm.named.register.");
   1807   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
   1808   assert(Asm->getLabel().size() < 64-Name.size() &&
   1809       "Register name too big");
   1810   Name.append(Asm->getLabel());
   1811   llvm::NamedMDNode *M =
   1812     CGM.getModule().getOrInsertNamedMetadata(Name);
   1813   if (M->getNumOperands() == 0) {
   1814     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
   1815                                               Asm->getLabel());
   1816     llvm::Value *Ops[] = { Str };
   1817     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
   1818   }
   1819   return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
   1820 }
   1821 
   1822 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
   1823   const NamedDecl *ND = E->getDecl();
   1824   CharUnits Alignment = getContext().getDeclAlign(ND);
   1825   QualType T = E->getType();
   1826 
   1827   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
   1828     // Global Named registers access via intrinsics only
   1829     if (VD->getStorageClass() == SC_Register &&
   1830         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
   1831       return EmitGlobalNamedRegister(VD, CGM, Alignment);
   1832 
   1833     // A DeclRefExpr for a reference initialized by a constant expression can
   1834     // appear without being odr-used. Directly emit the constant initializer.
   1835     const Expr *Init = VD->getAnyInitializer(VD);
   1836     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
   1837         VD->isUsableInConstantExpressions(getContext()) &&
   1838         VD->checkInitIsICE()) {
   1839       llvm::Constant *Val =
   1840         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
   1841       assert(Val && "failed to emit reference constant expression");
   1842       // FIXME: Eventually we will want to emit vector element references.
   1843       return MakeAddrLValue(Val, T, Alignment);
   1844     }
   1845   }
   1846 
   1847   // FIXME: We should be able to assert this for FunctionDecls as well!
   1848   // FIXME: We should be able to assert this for all DeclRefExprs, not just
   1849   // those with a valid source location.
   1850   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
   1851           !E->getLocation().isValid()) &&
   1852          "Should not use decl without marking it used!");
   1853 
   1854   if (ND->hasAttr<WeakRefAttr>()) {
   1855     const auto *VD = cast<ValueDecl>(ND);
   1856     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
   1857     return MakeAddrLValue(Aliasee, T, Alignment);
   1858   }
   1859 
   1860   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
   1861     // Check if this is a global variable.
   1862     if (VD->hasLinkage() || VD->isStaticDataMember())
   1863       return EmitGlobalVarDeclLValue(*this, E, VD);
   1864 
   1865     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
   1866 
   1867     llvm::Value *V = LocalDeclMap.lookup(VD);
   1868     if (!V && VD->isStaticLocal())
   1869       V = CGM.getStaticLocalDeclAddress(VD);
   1870 
   1871     // Use special handling for lambdas.
   1872     if (!V) {
   1873       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
   1874         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
   1875       } else if (CapturedStmtInfo) {
   1876         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
   1877           return EmitCapturedFieldLValue(*this, FD,
   1878                                          CapturedStmtInfo->getContextValue());
   1879       }
   1880 
   1881       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
   1882       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
   1883                             T, Alignment);
   1884     }
   1885 
   1886     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
   1887 
   1888     if (isBlockVariable)
   1889       V = BuildBlockByrefAddress(V, VD);
   1890 
   1891     LValue LV;
   1892     if (VD->getType()->isReferenceType()) {
   1893       llvm::LoadInst *LI = Builder.CreateLoad(V);
   1894       LI->setAlignment(Alignment.getQuantity());
   1895       V = LI;
   1896       LV = MakeNaturalAlignAddrLValue(V, T);
   1897     } else {
   1898       LV = MakeAddrLValue(V, T, Alignment);
   1899     }
   1900 
   1901     bool isLocalStorage = VD->hasLocalStorage();
   1902 
   1903     bool NonGCable = isLocalStorage &&
   1904                      !VD->getType()->isReferenceType() &&
   1905                      !isBlockVariable;
   1906     if (NonGCable) {
   1907       LV.getQuals().removeObjCGCAttr();
   1908       LV.setNonGC(true);
   1909     }
   1910 
   1911     bool isImpreciseLifetime =
   1912       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
   1913     if (isImpreciseLifetime)
   1914       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
   1915     setObjCGCLValueClass(getContext(), E, LV);
   1916     return LV;
   1917   }
   1918 
   1919   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
   1920     return EmitFunctionDeclLValue(*this, E, FD);
   1921 
   1922   llvm_unreachable("Unhandled DeclRefExpr");
   1923 }
   1924 
   1925 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
   1926   // __extension__ doesn't affect lvalue-ness.
   1927   if (E->getOpcode() == UO_Extension)
   1928     return EmitLValue(E->getSubExpr());
   1929 
   1930   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
   1931   switch (E->getOpcode()) {
   1932   default: llvm_unreachable("Unknown unary operator lvalue!");
   1933   case UO_Deref: {
   1934     QualType T = E->getSubExpr()->getType()->getPointeeType();
   1935     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
   1936 
   1937     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
   1938     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
   1939 
   1940     // We should not generate __weak write barrier on indirect reference
   1941     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
   1942     // But, we continue to generate __strong write barrier on indirect write
   1943     // into a pointer to object.
   1944     if (getLangOpts().ObjC1 &&
   1945         getLangOpts().getGC() != LangOptions::NonGC &&
   1946         LV.isObjCWeak())
   1947       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   1948     return LV;
   1949   }
   1950   case UO_Real:
   1951   case UO_Imag: {
   1952     LValue LV = EmitLValue(E->getSubExpr());
   1953     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
   1954     llvm::Value *Addr = LV.getAddress();
   1955 
   1956     // __real is valid on scalars.  This is a faster way of testing that.
   1957     // __imag can only produce an rvalue on scalars.
   1958     if (E->getOpcode() == UO_Real &&
   1959         !cast<llvm::PointerType>(Addr->getType())
   1960            ->getElementType()->isStructTy()) {
   1961       assert(E->getSubExpr()->getType()->isArithmeticType());
   1962       return LV;
   1963     }
   1964 
   1965     assert(E->getSubExpr()->getType()->isAnyComplexType());
   1966 
   1967     unsigned Idx = E->getOpcode() == UO_Imag;
   1968     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
   1969                                                   Idx, "idx"),
   1970                           ExprTy);
   1971   }
   1972   case UO_PreInc:
   1973   case UO_PreDec: {
   1974     LValue LV = EmitLValue(E->getSubExpr());
   1975     bool isInc = E->getOpcode() == UO_PreInc;
   1976 
   1977     if (E->getType()->isAnyComplexType())
   1978       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
   1979     else
   1980       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
   1981     return LV;
   1982   }
   1983   }
   1984 }
   1985 
   1986 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
   1987   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
   1988                         E->getType());
   1989 }
   1990 
   1991 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
   1992   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
   1993                         E->getType());
   1994 }
   1995 
   1996 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
   1997                                     SmallString<32>& Target) {
   1998   Target.resize(CharByteWidth * (Source.size() + 1));
   1999   char *ResultPtr = &Target[0];
   2000   const UTF8 *ErrorPtr;
   2001   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
   2002   (void)success;
   2003   assert(success);
   2004   Target.resize(ResultPtr - &Target[0]);
   2005 }
   2006 
   2007 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
   2008   switch (E->getIdentType()) {
   2009   default:
   2010     return EmitUnsupportedLValue(E, "predefined expression");
   2011 
   2012   case PredefinedExpr::Func:
   2013   case PredefinedExpr::Function:
   2014   case PredefinedExpr::LFunction:
   2015   case PredefinedExpr::FuncDName:
   2016   case PredefinedExpr::FuncSig:
   2017   case PredefinedExpr::PrettyFunction: {
   2018     PredefinedExpr::IdentType IdentType = E->getIdentType();
   2019     std::string GVName;
   2020 
   2021     // FIXME: We should use the string literal mangling for the Microsoft C++
   2022     // ABI so that strings get merged.
   2023     switch (IdentType) {
   2024     default: llvm_unreachable("Invalid type");
   2025     case PredefinedExpr::Func:           GVName = "__func__."; break;
   2026     case PredefinedExpr::Function:       GVName = "__FUNCTION__."; break;
   2027     case PredefinedExpr::FuncDName:      GVName = "__FUNCDNAME__."; break;
   2028     case PredefinedExpr::FuncSig:        GVName = "__FUNCSIG__."; break;
   2029     case PredefinedExpr::LFunction:      GVName = "L__FUNCTION__."; break;
   2030     case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
   2031     }
   2032 
   2033     StringRef FnName = CurFn->getName();
   2034     if (FnName.startswith("\01"))
   2035       FnName = FnName.substr(1);
   2036     GVName += FnName;
   2037 
   2038     // If this is outside of a function use the top level decl.
   2039     const Decl *CurDecl = CurCodeDecl;
   2040     if (!CurDecl || isa<VarDecl>(CurDecl))
   2041       CurDecl = getContext().getTranslationUnitDecl();
   2042 
   2043     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
   2044     std::string FunctionName;
   2045     if (isa<BlockDecl>(CurDecl)) {
   2046       // Blocks use the mangled function name.
   2047       // FIXME: ComputeName should handle blocks.
   2048       FunctionName = FnName.str();
   2049     } else if (isa<CapturedDecl>(CurDecl)) {
   2050       // For a captured statement, the function name is its enclosing
   2051       // function name not the one compiler generated.
   2052       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
   2053     } else {
   2054       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
   2055       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
   2056                  FunctionName.size() &&
   2057              "Computed __func__ length differs from type!");
   2058     }
   2059 
   2060     llvm::Constant *C;
   2061     if (ElemType->isWideCharType()) {
   2062       SmallString<32> RawChars;
   2063       ConvertUTF8ToWideString(
   2064           getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName,
   2065           RawChars);
   2066       StringLiteral *SL = StringLiteral::Create(
   2067           getContext(), RawChars, StringLiteral::Wide,
   2068           /*Pascal = */ false, E->getType(), E->getLocation());
   2069       C = CGM.GetAddrOfConstantStringFromLiteral(SL);
   2070     } else {
   2071       C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
   2072     }
   2073     return MakeAddrLValue(C, E->getType());
   2074   }
   2075   }
   2076 }
   2077 
   2078 /// Emit a type description suitable for use by a runtime sanitizer library. The
   2079 /// format of a type descriptor is
   2080 ///
   2081 /// \code
   2082 ///   { i16 TypeKind, i16 TypeInfo }
   2083 /// \endcode
   2084 ///
   2085 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
   2086 /// integer, 1 for a floating point value, and -1 for anything else.
   2087 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
   2088   // Only emit each type's descriptor once.
   2089   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
   2090     return C;
   2091 
   2092   uint16_t TypeKind = -1;
   2093   uint16_t TypeInfo = 0;
   2094 
   2095   if (T->isIntegerType()) {
   2096     TypeKind = 0;
   2097     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
   2098                (T->isSignedIntegerType() ? 1 : 0);
   2099   } else if (T->isFloatingType()) {
   2100     TypeKind = 1;
   2101     TypeInfo = getContext().getTypeSize(T);
   2102   }
   2103 
   2104   // Format the type name as if for a diagnostic, including quotes and
   2105   // optionally an 'aka'.
   2106   SmallString<32> Buffer;
   2107   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
   2108                                     (intptr_t)T.getAsOpaquePtr(),
   2109                                     StringRef(), StringRef(), None, Buffer,
   2110                                     ArrayRef<intptr_t>());
   2111 
   2112   llvm::Constant *Components[] = {
   2113     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
   2114     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
   2115   };
   2116   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
   2117 
   2118   auto *GV = new llvm::GlobalVariable(
   2119       CGM.getModule(), Descriptor->getType(),
   2120       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
   2121   GV->setUnnamedAddr(true);
   2122 
   2123   // Remember the descriptor for this type.
   2124   CGM.setTypeDescriptorInMap(T, GV);
   2125 
   2126   return GV;
   2127 }
   2128 
   2129 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
   2130   llvm::Type *TargetTy = IntPtrTy;
   2131 
   2132   // Floating-point types which fit into intptr_t are bitcast to integers
   2133   // and then passed directly (after zero-extension, if necessary).
   2134   if (V->getType()->isFloatingPointTy()) {
   2135     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
   2136     if (Bits <= TargetTy->getIntegerBitWidth())
   2137       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
   2138                                                          Bits));
   2139   }
   2140 
   2141   // Integers which fit in intptr_t are zero-extended and passed directly.
   2142   if (V->getType()->isIntegerTy() &&
   2143       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
   2144     return Builder.CreateZExt(V, TargetTy);
   2145 
   2146   // Pointers are passed directly, everything else is passed by address.
   2147   if (!V->getType()->isPointerTy()) {
   2148     llvm::Value *Ptr = CreateTempAlloca(V->getType());
   2149     Builder.CreateStore(V, Ptr);
   2150     V = Ptr;
   2151   }
   2152   return Builder.CreatePtrToInt(V, TargetTy);
   2153 }
   2154 
   2155 /// \brief Emit a representation of a SourceLocation for passing to a handler
   2156 /// in a sanitizer runtime library. The format for this data is:
   2157 /// \code
   2158 ///   struct SourceLocation {
   2159 ///     const char *Filename;
   2160 ///     int32_t Line, Column;
   2161 ///   };
   2162 /// \endcode
   2163 /// For an invalid SourceLocation, the Filename pointer is null.
   2164 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
   2165   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
   2166 
   2167   llvm::Constant *Data[] = {
   2168     PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
   2169                    : llvm::Constant::getNullValue(Int8PtrTy),
   2170     Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
   2171     Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
   2172   };
   2173 
   2174   return llvm::ConstantStruct::getAnon(Data);
   2175 }
   2176 
   2177 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
   2178                                 ArrayRef<llvm::Constant *> StaticArgs,
   2179                                 ArrayRef<llvm::Value *> DynamicArgs,
   2180                                 CheckRecoverableKind RecoverKind) {
   2181   assert(SanOpts != &SanitizerOptions::Disabled);
   2182 
   2183   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
   2184     assert (RecoverKind != CRK_AlwaysRecoverable &&
   2185             "Runtime call required for AlwaysRecoverable kind!");
   2186     return EmitTrapCheck(Checked);
   2187   }
   2188 
   2189   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2190 
   2191   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
   2192 
   2193   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
   2194 
   2195   // Give hint that we very much don't expect to execute the handler
   2196   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
   2197   llvm::MDBuilder MDHelper(getLLVMContext());
   2198   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
   2199   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
   2200 
   2201   EmitBlock(Handler);
   2202 
   2203   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
   2204   auto *InfoPtr =
   2205       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
   2206                                llvm::GlobalVariable::PrivateLinkage, Info);
   2207   InfoPtr->setUnnamedAddr(true);
   2208 
   2209   SmallVector<llvm::Value *, 4> Args;
   2210   SmallVector<llvm::Type *, 4> ArgTypes;
   2211   Args.reserve(DynamicArgs.size() + 1);
   2212   ArgTypes.reserve(DynamicArgs.size() + 1);
   2213 
   2214   // Handler functions take an i8* pointing to the (handler-specific) static
   2215   // information block, followed by a sequence of intptr_t arguments
   2216   // representing operand values.
   2217   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
   2218   ArgTypes.push_back(Int8PtrTy);
   2219   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
   2220     Args.push_back(EmitCheckValue(DynamicArgs[i]));
   2221     ArgTypes.push_back(IntPtrTy);
   2222   }
   2223 
   2224   bool Recover = RecoverKind == CRK_AlwaysRecoverable ||
   2225                  (RecoverKind == CRK_Recoverable &&
   2226                   CGM.getCodeGenOpts().SanitizeRecover);
   2227 
   2228   llvm::FunctionType *FnType =
   2229     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
   2230   llvm::AttrBuilder B;
   2231   if (!Recover) {
   2232     B.addAttribute(llvm::Attribute::NoReturn)
   2233      .addAttribute(llvm::Attribute::NoUnwind);
   2234   }
   2235   B.addAttribute(llvm::Attribute::UWTable);
   2236 
   2237   // Checks that have two variants use a suffix to differentiate them
   2238   bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable &&
   2239                           !CGM.getCodeGenOpts().SanitizeRecover;
   2240   std::string FunctionName = ("__ubsan_handle_" + CheckName +
   2241                               (NeedsAbortSuffix? "_abort" : "")).str();
   2242   llvm::Value *Fn = CGM.CreateRuntimeFunction(
   2243       FnType, FunctionName,
   2244       llvm::AttributeSet::get(getLLVMContext(),
   2245                               llvm::AttributeSet::FunctionIndex, B));
   2246   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
   2247   if (Recover) {
   2248     Builder.CreateBr(Cont);
   2249   } else {
   2250     HandlerCall->setDoesNotReturn();
   2251     Builder.CreateUnreachable();
   2252   }
   2253 
   2254   EmitBlock(Cont);
   2255 }
   2256 
   2257 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
   2258   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2259 
   2260   // If we're optimizing, collapse all calls to trap down to just one per
   2261   // function to save on code size.
   2262   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
   2263     TrapBB = createBasicBlock("trap");
   2264     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2265     EmitBlock(TrapBB);
   2266     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
   2267     llvm::CallInst *TrapCall = Builder.CreateCall(F);
   2268     TrapCall->setDoesNotReturn();
   2269     TrapCall->setDoesNotThrow();
   2270     Builder.CreateUnreachable();
   2271   } else {
   2272     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2273   }
   2274 
   2275   EmitBlock(Cont);
   2276 }
   2277 
   2278 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
   2279 /// array to pointer, return the array subexpression.
   2280 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
   2281   // If this isn't just an array->pointer decay, bail out.
   2282   const auto *CE = dyn_cast<CastExpr>(E);
   2283   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
   2284     return nullptr;
   2285 
   2286   // If this is a decay from variable width array, bail out.
   2287   const Expr *SubExpr = CE->getSubExpr();
   2288   if (SubExpr->getType()->isVariableArrayType())
   2289     return nullptr;
   2290 
   2291   return SubExpr;
   2292 }
   2293 
   2294 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2295                                                bool Accessed) {
   2296   // The index must always be an integer, which is not an aggregate.  Emit it.
   2297   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
   2298   QualType IdxTy  = E->getIdx()->getType();
   2299   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
   2300 
   2301   if (SanOpts->ArrayBounds)
   2302     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
   2303 
   2304   // If the base is a vector type, then we are forming a vector element lvalue
   2305   // with this subscript.
   2306   if (E->getBase()->getType()->isVectorType()) {
   2307     // Emit the vector as an lvalue to get its address.
   2308     LValue LHS = EmitLValue(E->getBase());
   2309     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
   2310     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
   2311                                  E->getBase()->getType(), LHS.getAlignment());
   2312   }
   2313 
   2314   // Extend or truncate the index type to 32 or 64-bits.
   2315   if (Idx->getType() != IntPtrTy)
   2316     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
   2317 
   2318   // We know that the pointer points to a type of the correct size, unless the
   2319   // size is a VLA or Objective-C interface.
   2320   llvm::Value *Address = nullptr;
   2321   CharUnits ArrayAlignment;
   2322   if (const VariableArrayType *vla =
   2323         getContext().getAsVariableArrayType(E->getType())) {
   2324     // The base must be a pointer, which is not an aggregate.  Emit
   2325     // it.  It needs to be emitted first in case it's what captures
   2326     // the VLA bounds.
   2327     Address = EmitScalarExpr(E->getBase());
   2328 
   2329     // The element count here is the total number of non-VLA elements.
   2330     llvm::Value *numElements = getVLASize(vla).first;
   2331 
   2332     // Effectively, the multiply by the VLA size is part of the GEP.
   2333     // GEP indexes are signed, and scaling an index isn't permitted to
   2334     // signed-overflow, so we use the same semantics for our explicit
   2335     // multiply.  We suppress this if overflow is not undefined behavior.
   2336     if (getLangOpts().isSignedOverflowDefined()) {
   2337       Idx = Builder.CreateMul(Idx, numElements);
   2338       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   2339     } else {
   2340       Idx = Builder.CreateNSWMul(Idx, numElements);
   2341       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
   2342     }
   2343   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
   2344     // Indexing over an interface, as in "NSString *P; P[4];"
   2345     llvm::Value *InterfaceSize =
   2346       llvm::ConstantInt::get(Idx->getType(),
   2347           getContext().getTypeSizeInChars(OIT).getQuantity());
   2348 
   2349     Idx = Builder.CreateMul(Idx, InterfaceSize);
   2350 
   2351     // The base must be a pointer, which is not an aggregate.  Emit it.
   2352     llvm::Value *Base = EmitScalarExpr(E->getBase());
   2353     Address = EmitCastToVoidPtr(Base);
   2354     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   2355     Address = Builder.CreateBitCast(Address, Base->getType());
   2356   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
   2357     // If this is A[i] where A is an array, the frontend will have decayed the
   2358     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
   2359     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
   2360     // "gep x, i" here.  Emit one "gep A, 0, i".
   2361     assert(Array->getType()->isArrayType() &&
   2362            "Array to pointer decay must have array source type!");
   2363     LValue ArrayLV;
   2364     // For simple multidimensional array indexing, set the 'accessed' flag for
   2365     // better bounds-checking of the base expression.
   2366     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
   2367       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
   2368     else
   2369       ArrayLV = EmitLValue(Array);
   2370     llvm::Value *ArrayPtr = ArrayLV.getAddress();
   2371     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
   2372     llvm::Value *Args[] = { Zero, Idx };
   2373 
   2374     // Propagate the alignment from the array itself to the result.
   2375     ArrayAlignment = ArrayLV.getAlignment();
   2376 
   2377     if (getLangOpts().isSignedOverflowDefined())
   2378       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
   2379     else
   2380       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
   2381   } else {
   2382     // The base must be a pointer, which is not an aggregate.  Emit it.
   2383     llvm::Value *Base = EmitScalarExpr(E->getBase());
   2384     if (getLangOpts().isSignedOverflowDefined())
   2385       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
   2386     else
   2387       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
   2388   }
   2389 
   2390   QualType T = E->getBase()->getType()->getPointeeType();
   2391   assert(!T.isNull() &&
   2392          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
   2393 
   2394 
   2395   // Limit the alignment to that of the result type.
   2396   LValue LV;
   2397   if (!ArrayAlignment.isZero()) {
   2398     CharUnits Align = getContext().getTypeAlignInChars(T);
   2399     ArrayAlignment = std::min(Align, ArrayAlignment);
   2400     LV = MakeAddrLValue(Address, T, ArrayAlignment);
   2401   } else {
   2402     LV = MakeNaturalAlignAddrLValue(Address, T);
   2403   }
   2404 
   2405   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
   2406 
   2407   if (getLangOpts().ObjC1 &&
   2408       getLangOpts().getGC() != LangOptions::NonGC) {
   2409     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   2410     setObjCGCLValueClass(getContext(), E, LV);
   2411   }
   2412   return LV;
   2413 }
   2414 
   2415 static
   2416 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
   2417                                        SmallVectorImpl<unsigned> &Elts) {
   2418   SmallVector<llvm::Constant*, 4> CElts;
   2419   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
   2420     CElts.push_back(Builder.getInt32(Elts[i]));
   2421 
   2422   return llvm::ConstantVector::get(CElts);
   2423 }
   2424 
   2425 LValue CodeGenFunction::
   2426 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
   2427   // Emit the base vector as an l-value.
   2428   LValue Base;
   2429 
   2430   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
   2431   if (E->isArrow()) {
   2432     // If it is a pointer to a vector, emit the address and form an lvalue with
   2433     // it.
   2434     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
   2435     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
   2436     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
   2437     Base.getQuals().removeObjCGCAttr();
   2438   } else if (E->getBase()->isGLValue()) {
   2439     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
   2440     // emit the base as an lvalue.
   2441     assert(E->getBase()->getType()->isVectorType());
   2442     Base = EmitLValue(E->getBase());
   2443   } else {
   2444     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
   2445     assert(E->getBase()->getType()->isVectorType() &&
   2446            "Result must be a vector");
   2447     llvm::Value *Vec = EmitScalarExpr(E->getBase());
   2448 
   2449     // Store the vector to memory (because LValue wants an address).
   2450     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
   2451     Builder.CreateStore(Vec, VecMem);
   2452     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
   2453   }
   2454 
   2455   QualType type =
   2456     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
   2457 
   2458   // Encode the element access list into a vector of unsigned indices.
   2459   SmallVector<unsigned, 4> Indices;
   2460   E->getEncodedElementAccess(Indices);
   2461 
   2462   if (Base.isSimple()) {
   2463     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
   2464     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
   2465                                     Base.getAlignment());
   2466   }
   2467   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
   2468 
   2469   llvm::Constant *BaseElts = Base.getExtVectorElts();
   2470   SmallVector<llvm::Constant *, 4> CElts;
   2471 
   2472   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
   2473     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
   2474   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
   2475   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
   2476                                   Base.getAlignment());
   2477 }
   2478 
   2479 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
   2480   Expr *BaseExpr = E->getBase();
   2481 
   2482   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
   2483   LValue BaseLV;
   2484   if (E->isArrow()) {
   2485     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
   2486     QualType PtrTy = BaseExpr->getType()->getPointeeType();
   2487     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
   2488     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
   2489   } else
   2490     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
   2491 
   2492   NamedDecl *ND = E->getMemberDecl();
   2493   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
   2494     LValue LV = EmitLValueForField(BaseLV, Field);
   2495     setObjCGCLValueClass(getContext(), E, LV);
   2496     return LV;
   2497   }
   2498 
   2499   if (auto *VD = dyn_cast<VarDecl>(ND))
   2500     return EmitGlobalVarDeclLValue(*this, E, VD);
   2501 
   2502   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
   2503     return EmitFunctionDeclLValue(*this, E, FD);
   2504 
   2505   llvm_unreachable("Unhandled member declaration!");
   2506 }
   2507 
   2508 /// Given that we are currently emitting a lambda, emit an l-value for
   2509 /// one of its members.
   2510 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
   2511   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
   2512   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
   2513   QualType LambdaTagType =
   2514     getContext().getTagDeclType(Field->getParent());
   2515   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
   2516   return EmitLValueForField(LambdaLV, Field);
   2517 }
   2518 
   2519 LValue CodeGenFunction::EmitLValueForField(LValue base,
   2520                                            const FieldDecl *field) {
   2521   if (field->isBitField()) {
   2522     const CGRecordLayout &RL =
   2523       CGM.getTypes().getCGRecordLayout(field->getParent());
   2524     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
   2525     llvm::Value *Addr = base.getAddress();
   2526     unsigned Idx = RL.getLLVMFieldNo(field);
   2527     if (Idx != 0)
   2528       // For structs, we GEP to the field that the record layout suggests.
   2529       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
   2530     // Get the access type.
   2531     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
   2532       getLLVMContext(), Info.StorageSize,
   2533       CGM.getContext().getTargetAddressSpace(base.getType()));
   2534     if (Addr->getType() != PtrTy)
   2535       Addr = Builder.CreateBitCast(Addr, PtrTy);
   2536 
   2537     QualType fieldType =
   2538       field->getType().withCVRQualifiers(base.getVRQualifiers());
   2539     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
   2540   }
   2541 
   2542   const RecordDecl *rec = field->getParent();
   2543   QualType type = field->getType();
   2544   CharUnits alignment = getContext().getDeclAlign(field);
   2545 
   2546   // FIXME: It should be impossible to have an LValue without alignment for a
   2547   // complete type.
   2548   if (!base.getAlignment().isZero())
   2549     alignment = std::min(alignment, base.getAlignment());
   2550 
   2551   bool mayAlias = rec->hasAttr<MayAliasAttr>();
   2552 
   2553   llvm::Value *addr = base.getAddress();
   2554   unsigned cvr = base.getVRQualifiers();
   2555   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
   2556   if (rec->isUnion()) {
   2557     // For unions, there is no pointer adjustment.
   2558     assert(!type->isReferenceType() && "union has reference member");
   2559     // TODO: handle path-aware TBAA for union.
   2560     TBAAPath = false;
   2561   } else {
   2562     // For structs, we GEP to the field that the record layout suggests.
   2563     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
   2564     addr = Builder.CreateStructGEP(addr, idx, field->getName());
   2565 
   2566     // If this is a reference field, load the reference right now.
   2567     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
   2568       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
   2569       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
   2570       load->setAlignment(alignment.getQuantity());
   2571 
   2572       // Loading the reference will disable path-aware TBAA.
   2573       TBAAPath = false;
   2574       if (CGM.shouldUseTBAA()) {
   2575         llvm::MDNode *tbaa;
   2576         if (mayAlias)
   2577           tbaa = CGM.getTBAAInfo(getContext().CharTy);
   2578         else
   2579           tbaa = CGM.getTBAAInfo(type);
   2580         if (tbaa)
   2581           CGM.DecorateInstruction(load, tbaa);
   2582       }
   2583 
   2584       addr = load;
   2585       mayAlias = false;
   2586       type = refType->getPointeeType();
   2587       if (type->isIncompleteType())
   2588         alignment = CharUnits();
   2589       else
   2590         alignment = getContext().getTypeAlignInChars(type);
   2591       cvr = 0; // qualifiers don't recursively apply to referencee
   2592     }
   2593   }
   2594 
   2595   // Make sure that the address is pointing to the right type.  This is critical
   2596   // for both unions and structs.  A union needs a bitcast, a struct element
   2597   // will need a bitcast if the LLVM type laid out doesn't match the desired
   2598   // type.
   2599   addr = EmitBitCastOfLValueToProperType(*this, addr,
   2600                                          CGM.getTypes().ConvertTypeForMem(type),
   2601                                          field->getName());
   2602 
   2603   if (field->hasAttr<AnnotateAttr>())
   2604     addr = EmitFieldAnnotations(field, addr);
   2605 
   2606   LValue LV = MakeAddrLValue(addr, type, alignment);
   2607   LV.getQuals().addCVRQualifiers(cvr);
   2608   if (TBAAPath) {
   2609     const ASTRecordLayout &Layout =
   2610         getContext().getASTRecordLayout(field->getParent());
   2611     // Set the base type to be the base type of the base LValue and
   2612     // update offset to be relative to the base type.
   2613     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
   2614     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
   2615                      Layout.getFieldOffset(field->getFieldIndex()) /
   2616                                            getContext().getCharWidth());
   2617   }
   2618 
   2619   // __weak attribute on a field is ignored.
   2620   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
   2621     LV.getQuals().removeObjCGCAttr();
   2622 
   2623   // Fields of may_alias structs act like 'char' for TBAA purposes.
   2624   // FIXME: this should get propagated down through anonymous structs
   2625   // and unions.
   2626   if (mayAlias && LV.getTBAAInfo())
   2627     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
   2628 
   2629   return LV;
   2630 }
   2631 
   2632 LValue
   2633 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
   2634                                                   const FieldDecl *Field) {
   2635   QualType FieldType = Field->getType();
   2636 
   2637   if (!FieldType->isReferenceType())
   2638     return EmitLValueForField(Base, Field);
   2639 
   2640   const CGRecordLayout &RL =
   2641     CGM.getTypes().getCGRecordLayout(Field->getParent());
   2642   unsigned idx = RL.getLLVMFieldNo(Field);
   2643   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
   2644   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
   2645 
   2646   // Make sure that the address is pointing to the right type.  This is critical
   2647   // for both unions and structs.  A union needs a bitcast, a struct element
   2648   // will need a bitcast if the LLVM type laid out doesn't match the desired
   2649   // type.
   2650   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
   2651   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
   2652 
   2653   CharUnits Alignment = getContext().getDeclAlign(Field);
   2654 
   2655   // FIXME: It should be impossible to have an LValue without alignment for a
   2656   // complete type.
   2657   if (!Base.getAlignment().isZero())
   2658     Alignment = std::min(Alignment, Base.getAlignment());
   2659 
   2660   return MakeAddrLValue(V, FieldType, Alignment);
   2661 }
   2662 
   2663 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
   2664   if (E->isFileScope()) {
   2665     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
   2666     return MakeAddrLValue(GlobalPtr, E->getType());
   2667   }
   2668   if (E->getType()->isVariablyModifiedType())
   2669     // make sure to emit the VLA size.
   2670     EmitVariablyModifiedType(E->getType());
   2671 
   2672   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
   2673   const Expr *InitExpr = E->getInitializer();
   2674   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
   2675 
   2676   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
   2677                    /*Init*/ true);
   2678 
   2679   return Result;
   2680 }
   2681 
   2682 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
   2683   if (!E->isGLValue())
   2684     // Initializing an aggregate temporary in C++11: T{...}.
   2685     return EmitAggExprToLValue(E);
   2686 
   2687   // An lvalue initializer list must be initializing a reference.
   2688   assert(E->getNumInits() == 1 && "reference init with multiple values");
   2689   return EmitLValue(E->getInit(0));
   2690 }
   2691 
   2692 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
   2693 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
   2694 /// LValue is returned and the current block has been terminated.
   2695 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
   2696                                                     const Expr *Operand) {
   2697   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
   2698     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
   2699     return None;
   2700   }
   2701 
   2702   return CGF.EmitLValue(Operand);
   2703 }
   2704 
   2705 LValue CodeGenFunction::
   2706 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
   2707   if (!expr->isGLValue()) {
   2708     // ?: here should be an aggregate.
   2709     assert(hasAggregateEvaluationKind(expr->getType()) &&
   2710            "Unexpected conditional operator!");
   2711     return EmitAggExprToLValue(expr);
   2712   }
   2713 
   2714   OpaqueValueMapping binding(*this, expr);
   2715   RegionCounter Cnt = getPGORegionCounter(expr);
   2716 
   2717   const Expr *condExpr = expr->getCond();
   2718   bool CondExprBool;
   2719   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   2720     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
   2721     if (!CondExprBool) std::swap(live, dead);
   2722 
   2723     if (!ContainsLabel(dead)) {
   2724       // If the true case is live, we need to track its region.
   2725       if (CondExprBool)
   2726         Cnt.beginRegion(Builder);
   2727       return EmitLValue(live);
   2728     }
   2729   }
   2730 
   2731   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
   2732   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
   2733   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
   2734 
   2735   ConditionalEvaluation eval(*this);
   2736   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
   2737 
   2738   // Any temporaries created here are conditional.
   2739   EmitBlock(lhsBlock);
   2740   Cnt.beginRegion(Builder);
   2741   eval.begin(*this);
   2742   Optional<LValue> lhs =
   2743       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
   2744   eval.end(*this);
   2745 
   2746   if (lhs && !lhs->isSimple())
   2747     return EmitUnsupportedLValue(expr, "conditional operator");
   2748 
   2749   lhsBlock = Builder.GetInsertBlock();
   2750   if (lhs)
   2751     Builder.CreateBr(contBlock);
   2752 
   2753   // Any temporaries created here are conditional.
   2754   EmitBlock(rhsBlock);
   2755   eval.begin(*this);
   2756   Optional<LValue> rhs =
   2757       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
   2758   eval.end(*this);
   2759   if (rhs && !rhs->isSimple())
   2760     return EmitUnsupportedLValue(expr, "conditional operator");
   2761   rhsBlock = Builder.GetInsertBlock();
   2762 
   2763   EmitBlock(contBlock);
   2764 
   2765   if (lhs && rhs) {
   2766     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
   2767                                            2, "cond-lvalue");
   2768     phi->addIncoming(lhs->getAddress(), lhsBlock);
   2769     phi->addIncoming(rhs->getAddress(), rhsBlock);
   2770     return MakeAddrLValue(phi, expr->getType());
   2771   } else {
   2772     assert((lhs || rhs) &&
   2773            "both operands of glvalue conditional are throw-expressions?");
   2774     return lhs ? *lhs : *rhs;
   2775   }
   2776 }
   2777 
   2778 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
   2779 /// type. If the cast is to a reference, we can have the usual lvalue result,
   2780 /// otherwise if a cast is needed by the code generator in an lvalue context,
   2781 /// then it must mean that we need the address of an aggregate in order to
   2782 /// access one of its members.  This can happen for all the reasons that casts
   2783 /// are permitted with aggregate result, including noop aggregate casts, and
   2784 /// cast from scalar to union.
   2785 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
   2786   switch (E->getCastKind()) {
   2787   case CK_ToVoid:
   2788   case CK_BitCast:
   2789   case CK_ArrayToPointerDecay:
   2790   case CK_FunctionToPointerDecay:
   2791   case CK_NullToMemberPointer:
   2792   case CK_NullToPointer:
   2793   case CK_IntegralToPointer:
   2794   case CK_PointerToIntegral:
   2795   case CK_PointerToBoolean:
   2796   case CK_VectorSplat:
   2797   case CK_IntegralCast:
   2798   case CK_IntegralToBoolean:
   2799   case CK_IntegralToFloating:
   2800   case CK_FloatingToIntegral:
   2801   case CK_FloatingToBoolean:
   2802   case CK_FloatingCast:
   2803   case CK_FloatingRealToComplex:
   2804   case CK_FloatingComplexToReal:
   2805   case CK_FloatingComplexToBoolean:
   2806   case CK_FloatingComplexCast:
   2807   case CK_FloatingComplexToIntegralComplex:
   2808   case CK_IntegralRealToComplex:
   2809   case CK_IntegralComplexToReal:
   2810   case CK_IntegralComplexToBoolean:
   2811   case CK_IntegralComplexCast:
   2812   case CK_IntegralComplexToFloatingComplex:
   2813   case CK_DerivedToBaseMemberPointer:
   2814   case CK_BaseToDerivedMemberPointer:
   2815   case CK_MemberPointerToBoolean:
   2816   case CK_ReinterpretMemberPointer:
   2817   case CK_AnyPointerToBlockPointerCast:
   2818   case CK_ARCProduceObject:
   2819   case CK_ARCConsumeObject:
   2820   case CK_ARCReclaimReturnedObject:
   2821   case CK_ARCExtendBlockObject:
   2822   case CK_CopyAndAutoreleaseBlockObject:
   2823   case CK_AddressSpaceConversion:
   2824     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
   2825 
   2826   case CK_Dependent:
   2827     llvm_unreachable("dependent cast kind in IR gen!");
   2828 
   2829   case CK_BuiltinFnToFnPtr:
   2830     llvm_unreachable("builtin functions are handled elsewhere");
   2831 
   2832   // These are never l-values; just use the aggregate emission code.
   2833   case CK_NonAtomicToAtomic:
   2834   case CK_AtomicToNonAtomic:
   2835     return EmitAggExprToLValue(E);
   2836 
   2837   case CK_Dynamic: {
   2838     LValue LV = EmitLValue(E->getSubExpr());
   2839     llvm::Value *V = LV.getAddress();
   2840     const auto *DCE = cast<CXXDynamicCastExpr>(E);
   2841     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
   2842   }
   2843 
   2844   case CK_ConstructorConversion:
   2845   case CK_UserDefinedConversion:
   2846   case CK_CPointerToObjCPointerCast:
   2847   case CK_BlockPointerToObjCPointerCast:
   2848   case CK_NoOp:
   2849   case CK_LValueToRValue:
   2850     return EmitLValue(E->getSubExpr());
   2851 
   2852   case CK_UncheckedDerivedToBase:
   2853   case CK_DerivedToBase: {
   2854     const RecordType *DerivedClassTy =
   2855       E->getSubExpr()->getType()->getAs<RecordType>();
   2856     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   2857 
   2858     LValue LV = EmitLValue(E->getSubExpr());
   2859     llvm::Value *This = LV.getAddress();
   2860 
   2861     // Perform the derived-to-base conversion
   2862     llvm::Value *Base =
   2863       GetAddressOfBaseClass(This, DerivedClassDecl,
   2864                             E->path_begin(), E->path_end(),
   2865                             /*NullCheckValue=*/false);
   2866 
   2867     return MakeAddrLValue(Base, E->getType());
   2868   }
   2869   case CK_ToUnion:
   2870     return EmitAggExprToLValue(E);
   2871   case CK_BaseToDerived: {
   2872     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
   2873     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   2874 
   2875     LValue LV = EmitLValue(E->getSubExpr());
   2876 
   2877     // Perform the base-to-derived conversion
   2878     llvm::Value *Derived =
   2879       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
   2880                                E->path_begin(), E->path_end(),
   2881                                /*NullCheckValue=*/false);
   2882 
   2883     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
   2884     // performed and the object is not of the derived type.
   2885     if (sanitizePerformTypeCheck())
   2886       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
   2887                     Derived, E->getType());
   2888 
   2889     return MakeAddrLValue(Derived, E->getType());
   2890   }
   2891   case CK_LValueBitCast: {
   2892     // This must be a reinterpret_cast (or c-style equivalent).
   2893     const auto *CE = cast<ExplicitCastExpr>(E);
   2894 
   2895     LValue LV = EmitLValue(E->getSubExpr());
   2896     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   2897                                            ConvertType(CE->getTypeAsWritten()));
   2898     return MakeAddrLValue(V, E->getType());
   2899   }
   2900   case CK_ObjCObjectLValueCast: {
   2901     LValue LV = EmitLValue(E->getSubExpr());
   2902     QualType ToType = getContext().getLValueReferenceType(E->getType());
   2903     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   2904                                            ConvertType(ToType));
   2905     return MakeAddrLValue(V, E->getType());
   2906   }
   2907   case CK_ZeroToOCLEvent:
   2908     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
   2909   }
   2910 
   2911   llvm_unreachable("Unhandled lvalue cast kind?");
   2912 }
   2913 
   2914 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
   2915   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
   2916   return getOpaqueLValueMapping(e);
   2917 }
   2918 
   2919 RValue CodeGenFunction::EmitRValueForField(LValue LV,
   2920                                            const FieldDecl *FD,
   2921                                            SourceLocation Loc) {
   2922   QualType FT = FD->getType();
   2923   LValue FieldLV = EmitLValueForField(LV, FD);
   2924   switch (getEvaluationKind(FT)) {
   2925   case TEK_Complex:
   2926     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
   2927   case TEK_Aggregate:
   2928     return FieldLV.asAggregateRValue();
   2929   case TEK_Scalar:
   2930     return EmitLoadOfLValue(FieldLV, Loc);
   2931   }
   2932   llvm_unreachable("bad evaluation kind");
   2933 }
   2934 
   2935 //===--------------------------------------------------------------------===//
   2936 //                             Expression Emission
   2937 //===--------------------------------------------------------------------===//
   2938 
   2939 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
   2940                                      ReturnValueSlot ReturnValue) {
   2941   if (CGDebugInfo *DI = getDebugInfo()) {
   2942     SourceLocation Loc = E->getLocStart();
   2943     // Force column info to be generated so we can differentiate
   2944     // multiple call sites on the same line in the debug info.
   2945     // FIXME: This is insufficient. Two calls coming from the same macro
   2946     // expansion will still get the same line/column and break debug info. It's
   2947     // possible that LLVM can be fixed to not rely on this uniqueness, at which
   2948     // point this workaround can be removed.
   2949     const FunctionDecl* Callee = E->getDirectCallee();
   2950     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
   2951     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
   2952   }
   2953 
   2954   // Builtins never have block type.
   2955   if (E->getCallee()->getType()->isBlockPointerType())
   2956     return EmitBlockCallExpr(E, ReturnValue);
   2957 
   2958   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
   2959     return EmitCXXMemberCallExpr(CE, ReturnValue);
   2960 
   2961   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
   2962     return EmitCUDAKernelCallExpr(CE, ReturnValue);
   2963 
   2964   const Decl *TargetDecl = E->getCalleeDecl();
   2965   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
   2966     if (unsigned builtinID = FD->getBuiltinID())
   2967       return EmitBuiltinExpr(FD, builtinID, E);
   2968   }
   2969 
   2970   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
   2971     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
   2972       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
   2973 
   2974   if (const auto *PseudoDtor =
   2975           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
   2976     QualType DestroyedType = PseudoDtor->getDestroyedType();
   2977     if (getLangOpts().ObjCAutoRefCount &&
   2978         DestroyedType->isObjCLifetimeType() &&
   2979         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
   2980          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
   2981       // Automatic Reference Counting:
   2982       //   If the pseudo-expression names a retainable object with weak or
   2983       //   strong lifetime, the object shall be released.
   2984       Expr *BaseExpr = PseudoDtor->getBase();
   2985       llvm::Value *BaseValue = nullptr;
   2986       Qualifiers BaseQuals;
   2987 
   2988       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
   2989       if (PseudoDtor->isArrow()) {
   2990         BaseValue = EmitScalarExpr(BaseExpr);
   2991         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
   2992         BaseQuals = PTy->getPointeeType().getQualifiers();
   2993       } else {
   2994         LValue BaseLV = EmitLValue(BaseExpr);
   2995         BaseValue = BaseLV.getAddress();
   2996         QualType BaseTy = BaseExpr->getType();
   2997         BaseQuals = BaseTy.getQualifiers();
   2998       }
   2999 
   3000       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
   3001       case Qualifiers::OCL_None:
   3002       case Qualifiers::OCL_ExplicitNone:
   3003       case Qualifiers::OCL_Autoreleasing:
   3004         break;
   3005 
   3006       case Qualifiers::OCL_Strong:
   3007         EmitARCRelease(Builder.CreateLoad(BaseValue,
   3008                           PseudoDtor->getDestroyedType().isVolatileQualified()),
   3009                        ARCPreciseLifetime);
   3010         break;
   3011 
   3012       case Qualifiers::OCL_Weak:
   3013         EmitARCDestroyWeak(BaseValue);
   3014         break;
   3015       }
   3016     } else {
   3017       // C++ [expr.pseudo]p1:
   3018       //   The result shall only be used as the operand for the function call
   3019       //   operator (), and the result of such a call has type void. The only
   3020       //   effect is the evaluation of the postfix-expression before the dot or
   3021       //   arrow.
   3022       EmitScalarExpr(E->getCallee());
   3023     }
   3024 
   3025     return RValue::get(nullptr);
   3026   }
   3027 
   3028   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
   3029   return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
   3030                   ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
   3031 }
   3032 
   3033 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
   3034   // Comma expressions just emit their LHS then their RHS as an l-value.
   3035   if (E->getOpcode() == BO_Comma) {
   3036     EmitIgnoredExpr(E->getLHS());
   3037     EnsureInsertPoint();
   3038     return EmitLValue(E->getRHS());
   3039   }
   3040 
   3041   if (E->getOpcode() == BO_PtrMemD ||
   3042       E->getOpcode() == BO_PtrMemI)
   3043     return EmitPointerToDataMemberBinaryExpr(E);
   3044 
   3045   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
   3046 
   3047   // Note that in all of these cases, __block variables need the RHS
   3048   // evaluated first just in case the variable gets moved by the RHS.
   3049 
   3050   switch (getEvaluationKind(E->getType())) {
   3051   case TEK_Scalar: {
   3052     switch (E->getLHS()->getType().getObjCLifetime()) {
   3053     case Qualifiers::OCL_Strong:
   3054       return EmitARCStoreStrong(E, /*ignored*/ false).first;
   3055 
   3056     case Qualifiers::OCL_Autoreleasing:
   3057       return EmitARCStoreAutoreleasing(E).first;
   3058 
   3059     // No reason to do any of these differently.
   3060     case Qualifiers::OCL_None:
   3061     case Qualifiers::OCL_ExplicitNone:
   3062     case Qualifiers::OCL_Weak:
   3063       break;
   3064     }
   3065 
   3066     RValue RV = EmitAnyExpr(E->getRHS());
   3067     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
   3068     EmitStoreThroughLValue(RV, LV);
   3069     return LV;
   3070   }
   3071 
   3072   case TEK_Complex:
   3073     return EmitComplexAssignmentLValue(E);
   3074 
   3075   case TEK_Aggregate:
   3076     return EmitAggExprToLValue(E);
   3077   }
   3078   llvm_unreachable("bad evaluation kind");
   3079 }
   3080 
   3081 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
   3082   RValue RV = EmitCallExpr(E);
   3083 
   3084   if (!RV.isScalar())
   3085     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3086 
   3087   assert(E->getCallReturnType()->isReferenceType() &&
   3088          "Can't have a scalar return unless the return type is a "
   3089          "reference type!");
   3090 
   3091   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   3092 }
   3093 
   3094 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
   3095   // FIXME: This shouldn't require another copy.
   3096   return EmitAggExprToLValue(E);
   3097 }
   3098 
   3099 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
   3100   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
   3101          && "binding l-value to type which needs a temporary");
   3102   AggValueSlot Slot = CreateAggTemp(E->getType());
   3103   EmitCXXConstructExpr(E, Slot);
   3104   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3105 }
   3106 
   3107 LValue
   3108 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
   3109   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
   3110 }
   3111 
   3112 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
   3113   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
   3114                                ConvertType(E->getType())->getPointerTo());
   3115 }
   3116 
   3117 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
   3118   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
   3119 }
   3120 
   3121 LValue
   3122 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
   3123   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3124   Slot.setExternallyDestructed();
   3125   EmitAggExpr(E->getSubExpr(), Slot);
   3126   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
   3127   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3128 }
   3129 
   3130 LValue
   3131 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
   3132   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3133   EmitLambdaExpr(E, Slot);
   3134   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3135 }
   3136 
   3137 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
   3138   RValue RV = EmitObjCMessageExpr(E);
   3139 
   3140   if (!RV.isScalar())
   3141     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3142 
   3143   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
   3144          "Can't have a scalar return unless the return type is a "
   3145          "reference type!");
   3146 
   3147   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   3148 }
   3149 
   3150 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
   3151   llvm::Value *V =
   3152     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
   3153   return MakeAddrLValue(V, E->getType());
   3154 }
   3155 
   3156 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   3157                                              const ObjCIvarDecl *Ivar) {
   3158   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
   3159 }
   3160 
   3161 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
   3162                                           llvm::Value *BaseValue,
   3163                                           const ObjCIvarDecl *Ivar,
   3164                                           unsigned CVRQualifiers) {
   3165   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
   3166                                                    Ivar, CVRQualifiers);
   3167 }
   3168 
   3169 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
   3170   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
   3171   llvm::Value *BaseValue = nullptr;
   3172   const Expr *BaseExpr = E->getBase();
   3173   Qualifiers BaseQuals;
   3174   QualType ObjectTy;
   3175   if (E->isArrow()) {
   3176     BaseValue = EmitScalarExpr(BaseExpr);
   3177     ObjectTy = BaseExpr->getType()->getPointeeType();
   3178     BaseQuals = ObjectTy.getQualifiers();
   3179   } else {
   3180     LValue BaseLV = EmitLValue(BaseExpr);
   3181     // FIXME: this isn't right for bitfields.
   3182     BaseValue = BaseLV.getAddress();
   3183     ObjectTy = BaseExpr->getType();
   3184     BaseQuals = ObjectTy.getQualifiers();
   3185   }
   3186 
   3187   LValue LV =
   3188     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
   3189                       BaseQuals.getCVRQualifiers());
   3190   setObjCGCLValueClass(getContext(), E, LV);
   3191   return LV;
   3192 }
   3193 
   3194 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
   3195   // Can only get l-value for message expression returning aggregate type
   3196   RValue RV = EmitAnyExprToTemp(E);
   3197   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3198 }
   3199 
   3200 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
   3201                                  SourceLocation CallLoc,
   3202                                  ReturnValueSlot ReturnValue,
   3203                                  CallExpr::const_arg_iterator ArgBeg,
   3204                                  CallExpr::const_arg_iterator ArgEnd,
   3205                                  const Decl *TargetDecl) {
   3206   // Get the actual function type. The callee type will always be a pointer to
   3207   // function type or a block pointer type.
   3208   assert(CalleeType->isFunctionPointerType() &&
   3209          "Call must have function pointer type!");
   3210 
   3211   CalleeType = getContext().getCanonicalType(CalleeType);
   3212 
   3213   const auto *FnType =
   3214       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
   3215 
   3216   // Force column info to differentiate multiple inlined call sites on
   3217   // the same line, analoguous to EmitCallExpr.
   3218   // FIXME: This is insufficient. Two calls coming from the same macro expansion
   3219   // will still get the same line/column and break debug info. It's possible
   3220   // that LLVM can be fixed to not rely on this uniqueness, at which point this
   3221   // workaround can be removed.
   3222   bool ForceColumnInfo = false;
   3223   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
   3224     ForceColumnInfo = FD->isInlineSpecified();
   3225 
   3226   if (getLangOpts().CPlusPlus && SanOpts->Function &&
   3227       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
   3228     if (llvm::Constant *PrefixSig =
   3229             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
   3230       llvm::Constant *FTRTTIConst =
   3231           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
   3232       llvm::Type *PrefixStructTyElems[] = {
   3233         PrefixSig->getType(),
   3234         FTRTTIConst->getType()
   3235       };
   3236       llvm::StructType *PrefixStructTy = llvm::StructType::get(
   3237           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
   3238 
   3239       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
   3240           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
   3241       llvm::Value *CalleeSigPtr =
   3242           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
   3243       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
   3244       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
   3245 
   3246       llvm::BasicBlock *Cont = createBasicBlock("cont");
   3247       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
   3248       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
   3249 
   3250       EmitBlock(TypeCheck);
   3251       llvm::Value *CalleeRTTIPtr =
   3252           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
   3253       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
   3254       llvm::Value *CalleeRTTIMatch =
   3255           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
   3256       llvm::Constant *StaticData[] = {
   3257         EmitCheckSourceLocation(CallLoc),
   3258         EmitCheckTypeDescriptor(CalleeType)
   3259       };
   3260       EmitCheck(CalleeRTTIMatch,
   3261                 "function_type_mismatch",
   3262                 StaticData,
   3263                 Callee,
   3264                 CRK_Recoverable);
   3265 
   3266       Builder.CreateBr(Cont);
   3267       EmitBlock(Cont);
   3268     }
   3269   }
   3270 
   3271   CallArgList Args;
   3272   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
   3273                ForceColumnInfo);
   3274 
   3275   const CGFunctionInfo &FnInfo =
   3276     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
   3277 
   3278   // C99 6.5.2.2p6:
   3279   //   If the expression that denotes the called function has a type
   3280   //   that does not include a prototype, [the default argument
   3281   //   promotions are performed]. If the number of arguments does not
   3282   //   equal the number of parameters, the behavior is undefined. If
   3283   //   the function is defined with a type that includes a prototype,
   3284   //   and either the prototype ends with an ellipsis (, ...) or the
   3285   //   types of the arguments after promotion are not compatible with
   3286   //   the types of the parameters, the behavior is undefined. If the
   3287   //   function is defined with a type that does not include a
   3288   //   prototype, and the types of the arguments after promotion are
   3289   //   not compatible with those of the parameters after promotion,
   3290   //   the behavior is undefined [except in some trivial cases].
   3291   // That is, in the general case, we should assume that a call
   3292   // through an unprototyped function type works like a *non-variadic*
   3293   // call.  The way we make this work is to cast to the exact type
   3294   // of the promoted arguments.
   3295   if (isa<FunctionNoProtoType>(FnType)) {
   3296     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
   3297     CalleeTy = CalleeTy->getPointerTo();
   3298     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
   3299   }
   3300 
   3301   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
   3302 }
   3303 
   3304 LValue CodeGenFunction::
   3305 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
   3306   llvm::Value *BaseV;
   3307   if (E->getOpcode() == BO_PtrMemI)
   3308     BaseV = EmitScalarExpr(E->getLHS());
   3309   else
   3310     BaseV = EmitLValue(E->getLHS()).getAddress();
   3311 
   3312   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
   3313 
   3314   const MemberPointerType *MPT
   3315     = E->getRHS()->getType()->getAs<MemberPointerType>();
   3316 
   3317   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
   3318       *this, E, BaseV, OffsetV, MPT);
   3319 
   3320   return MakeAddrLValue(AddV, MPT->getPointeeType());
   3321 }
   3322 
   3323 /// Given the address of a temporary variable, produce an r-value of
   3324 /// its type.
   3325 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
   3326                                             QualType type,
   3327                                             SourceLocation loc) {
   3328   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
   3329   switch (getEvaluationKind(type)) {
   3330   case TEK_Complex:
   3331     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
   3332   case TEK_Aggregate:
   3333     return lvalue.asAggregateRValue();
   3334   case TEK_Scalar:
   3335     return RValue::get(EmitLoadOfScalar(lvalue, loc));
   3336   }
   3337   llvm_unreachable("bad evaluation kind");
   3338 }
   3339 
   3340 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
   3341   assert(Val->getType()->isFPOrFPVectorTy());
   3342   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
   3343     return;
   3344 
   3345   llvm::MDBuilder MDHelper(getLLVMContext());
   3346   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
   3347 
   3348   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
   3349 }
   3350 
   3351 namespace {
   3352   struct LValueOrRValue {
   3353     LValue LV;
   3354     RValue RV;
   3355   };
   3356 }
   3357 
   3358 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
   3359                                            const PseudoObjectExpr *E,
   3360                                            bool forLValue,
   3361                                            AggValueSlot slot) {
   3362   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   3363 
   3364   // Find the result expression, if any.
   3365   const Expr *resultExpr = E->getResultExpr();
   3366   LValueOrRValue result;
   3367 
   3368   for (PseudoObjectExpr::const_semantics_iterator
   3369          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   3370     const Expr *semantic = *i;
   3371 
   3372     // If this semantic expression is an opaque value, bind it
   3373     // to the result of its source expression.
   3374     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   3375 
   3376       // If this is the result expression, we may need to evaluate
   3377       // directly into the slot.
   3378       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   3379       OVMA opaqueData;
   3380       if (ov == resultExpr && ov->isRValue() && !forLValue &&
   3381           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
   3382         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
   3383 
   3384         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
   3385         opaqueData = OVMA::bind(CGF, ov, LV);
   3386         result.RV = slot.asRValue();
   3387 
   3388       // Otherwise, emit as normal.
   3389       } else {
   3390         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   3391 
   3392         // If this is the result, also evaluate the result now.
   3393         if (ov == resultExpr) {
   3394           if (forLValue)
   3395             result.LV = CGF.EmitLValue(ov);
   3396           else
   3397             result.RV = CGF.EmitAnyExpr(ov, slot);
   3398         }
   3399       }
   3400 
   3401       opaques.push_back(opaqueData);
   3402 
   3403     // Otherwise, if the expression is the result, evaluate it
   3404     // and remember the result.
   3405     } else if (semantic == resultExpr) {
   3406       if (forLValue)
   3407         result.LV = CGF.EmitLValue(semantic);
   3408       else
   3409         result.RV = CGF.EmitAnyExpr(semantic, slot);
   3410 
   3411     // Otherwise, evaluate the expression in an ignored context.
   3412     } else {
   3413       CGF.EmitIgnoredExpr(semantic);
   3414     }
   3415   }
   3416 
   3417   // Unbind all the opaques now.
   3418   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   3419     opaques[i].unbind(CGF);
   3420 
   3421   return result;
   3422 }
   3423 
   3424 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
   3425                                                AggValueSlot slot) {
   3426   return emitPseudoObjectExpr(*this, E, false, slot).RV;
   3427 }
   3428 
   3429 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
   3430   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
   3431 }
   3432