1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/ADT/Hashing.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/Support/ConvertUTF.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 //===--------------------------------------------------------------------===// 37 // Miscellaneous Helper Methods 38 //===--------------------------------------------------------------------===// 39 40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 41 unsigned addressSpace = 42 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 43 44 llvm::PointerType *destType = Int8PtrTy; 45 if (addressSpace) 46 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 47 48 if (value->getType() == destType) return value; 49 return Builder.CreateBitCast(value, destType); 50 } 51 52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 53 /// block. 54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 55 const Twine &Name) { 56 if (!Builder.isNamePreserving()) 57 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 58 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 59 } 60 61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 62 llvm::Value *Init) { 63 auto *Store = new llvm::StoreInst(Init, Var); 64 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 65 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 66 } 67 68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 69 const Twine &Name) { 70 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 71 // FIXME: Should we prefer the preferred type alignment here? 72 CharUnits Align = getContext().getTypeAlignInChars(Ty); 73 Alloc->setAlignment(Align.getQuantity()); 74 return Alloc; 75 } 76 77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 78 const Twine &Name) { 79 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 80 // FIXME: Should we prefer the preferred type alignment here? 81 CharUnits Align = getContext().getTypeAlignInChars(Ty); 82 Alloc->setAlignment(Align.getQuantity()); 83 return Alloc; 84 } 85 86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 87 /// expression and compare the result against zero, returning an Int1Ty value. 88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 89 PGO.setCurrentStmt(E); 90 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 91 llvm::Value *MemPtr = EmitScalarExpr(E); 92 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 93 } 94 95 QualType BoolTy = getContext().BoolTy; 96 if (!E->getType()->isAnyComplexType()) 97 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 98 99 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 100 } 101 102 /// EmitIgnoredExpr - Emit code to compute the specified expression, 103 /// ignoring the result. 104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 105 if (E->isRValue()) 106 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 107 108 // Just emit it as an l-value and drop the result. 109 EmitLValue(E); 110 } 111 112 /// EmitAnyExpr - Emit code to compute the specified expression which 113 /// can have any type. The result is returned as an RValue struct. 114 /// If this is an aggregate expression, AggSlot indicates where the 115 /// result should be returned. 116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 117 AggValueSlot aggSlot, 118 bool ignoreResult) { 119 switch (getEvaluationKind(E->getType())) { 120 case TEK_Scalar: 121 return RValue::get(EmitScalarExpr(E, ignoreResult)); 122 case TEK_Complex: 123 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 124 case TEK_Aggregate: 125 if (!ignoreResult && aggSlot.isIgnored()) 126 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 127 EmitAggExpr(E, aggSlot); 128 return aggSlot.asRValue(); 129 } 130 llvm_unreachable("bad evaluation kind"); 131 } 132 133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 134 /// always be accessible even if no aggregate location is provided. 135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 136 AggValueSlot AggSlot = AggValueSlot::ignored(); 137 138 if (hasAggregateEvaluationKind(E->getType())) 139 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 140 return EmitAnyExpr(E, AggSlot); 141 } 142 143 /// EmitAnyExprToMem - Evaluate an expression into a given memory 144 /// location. 145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 146 llvm::Value *Location, 147 Qualifiers Quals, 148 bool IsInit) { 149 // FIXME: This function should take an LValue as an argument. 150 switch (getEvaluationKind(E->getType())) { 151 case TEK_Complex: 152 EmitComplexExprIntoLValue(E, 153 MakeNaturalAlignAddrLValue(Location, E->getType()), 154 /*isInit*/ false); 155 return; 156 157 case TEK_Aggregate: { 158 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 159 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 160 AggValueSlot::IsDestructed_t(IsInit), 161 AggValueSlot::DoesNotNeedGCBarriers, 162 AggValueSlot::IsAliased_t(!IsInit))); 163 return; 164 } 165 166 case TEK_Scalar: { 167 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 168 LValue LV = MakeAddrLValue(Location, E->getType()); 169 EmitStoreThroughLValue(RV, LV); 170 return; 171 } 172 } 173 llvm_unreachable("bad evaluation kind"); 174 } 175 176 static void 177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 178 const Expr *E, llvm::Value *ReferenceTemporary) { 179 // Objective-C++ ARC: 180 // If we are binding a reference to a temporary that has ownership, we 181 // need to perform retain/release operations on the temporary. 182 // 183 // FIXME: This should be looking at E, not M. 184 if (CGF.getLangOpts().ObjCAutoRefCount && 185 M->getType()->isObjCLifetimeType()) { 186 QualType ObjCARCReferenceLifetimeType = M->getType(); 187 switch (Qualifiers::ObjCLifetime Lifetime = 188 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 189 case Qualifiers::OCL_None: 190 case Qualifiers::OCL_ExplicitNone: 191 // Carry on to normal cleanup handling. 192 break; 193 194 case Qualifiers::OCL_Autoreleasing: 195 // Nothing to do; cleaned up by an autorelease pool. 196 return; 197 198 case Qualifiers::OCL_Strong: 199 case Qualifiers::OCL_Weak: 200 switch (StorageDuration Duration = M->getStorageDuration()) { 201 case SD_Static: 202 // Note: we intentionally do not register a cleanup to release 203 // the object on program termination. 204 return; 205 206 case SD_Thread: 207 // FIXME: We should probably register a cleanup in this case. 208 return; 209 210 case SD_Automatic: 211 case SD_FullExpression: 212 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 213 CodeGenFunction::Destroyer *Destroy; 214 CleanupKind CleanupKind; 215 if (Lifetime == Qualifiers::OCL_Strong) { 216 const ValueDecl *VD = M->getExtendingDecl(); 217 bool Precise = 218 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 219 CleanupKind = CGF.getARCCleanupKind(); 220 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 221 : &CodeGenFunction::destroyARCStrongImprecise; 222 } else { 223 // __weak objects always get EH cleanups; otherwise, exceptions 224 // could cause really nasty crashes instead of mere leaks. 225 CleanupKind = NormalAndEHCleanup; 226 Destroy = &CodeGenFunction::destroyARCWeak; 227 } 228 if (Duration == SD_FullExpression) 229 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 230 ObjCARCReferenceLifetimeType, *Destroy, 231 CleanupKind & EHCleanup); 232 else 233 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 234 ObjCARCReferenceLifetimeType, 235 *Destroy, CleanupKind & EHCleanup); 236 return; 237 238 case SD_Dynamic: 239 llvm_unreachable("temporary cannot have dynamic storage duration"); 240 } 241 llvm_unreachable("unknown storage duration"); 242 } 243 } 244 245 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 246 if (const RecordType *RT = 247 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 248 // Get the destructor for the reference temporary. 249 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 250 if (!ClassDecl->hasTrivialDestructor()) 251 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 252 } 253 254 if (!ReferenceTemporaryDtor) 255 return; 256 257 // Call the destructor for the temporary. 258 switch (M->getStorageDuration()) { 259 case SD_Static: 260 case SD_Thread: { 261 llvm::Constant *CleanupFn; 262 llvm::Constant *CleanupArg; 263 if (E->getType()->isArrayType()) { 264 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 265 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 266 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 267 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 268 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 269 } else { 270 CleanupFn = 271 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 272 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 273 } 274 CGF.CGM.getCXXABI().registerGlobalDtor( 275 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 276 break; 277 } 278 279 case SD_FullExpression: 280 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 281 CodeGenFunction::destroyCXXObject, 282 CGF.getLangOpts().Exceptions); 283 break; 284 285 case SD_Automatic: 286 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 287 ReferenceTemporary, E->getType(), 288 CodeGenFunction::destroyCXXObject, 289 CGF.getLangOpts().Exceptions); 290 break; 291 292 case SD_Dynamic: 293 llvm_unreachable("temporary cannot have dynamic storage duration"); 294 } 295 } 296 297 static llvm::Value * 298 createReferenceTemporary(CodeGenFunction &CGF, 299 const MaterializeTemporaryExpr *M, const Expr *Inner) { 300 switch (M->getStorageDuration()) { 301 case SD_FullExpression: 302 case SD_Automatic: 303 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 304 305 case SD_Thread: 306 case SD_Static: 307 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 308 309 case SD_Dynamic: 310 llvm_unreachable("temporary can't have dynamic storage duration"); 311 } 312 llvm_unreachable("unknown storage duration"); 313 } 314 315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 316 const MaterializeTemporaryExpr *M) { 317 const Expr *E = M->GetTemporaryExpr(); 318 319 if (getLangOpts().ObjCAutoRefCount && 320 M->getType()->isObjCLifetimeType() && 321 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 322 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 323 // FIXME: Fold this into the general case below. 324 llvm::Value *Object = createReferenceTemporary(*this, M, E); 325 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 326 327 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 328 // We should not have emitted the initializer for this temporary as a 329 // constant. 330 assert(!Var->hasInitializer()); 331 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 332 } 333 334 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 335 336 pushTemporaryCleanup(*this, M, E, Object); 337 return RefTempDst; 338 } 339 340 SmallVector<const Expr *, 2> CommaLHSs; 341 SmallVector<SubobjectAdjustment, 2> Adjustments; 342 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 343 344 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 345 EmitIgnoredExpr(CommaLHSs[I]); 346 347 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 348 if (opaque->getType()->isRecordType()) { 349 assert(Adjustments.empty()); 350 return EmitOpaqueValueLValue(opaque); 351 } 352 } 353 354 // Create and initialize the reference temporary. 355 llvm::Value *Object = createReferenceTemporary(*this, M, E); 356 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 357 // If the temporary is a global and has a constant initializer, we may 358 // have already initialized it. 359 if (!Var->hasInitializer()) { 360 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 361 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 362 } 363 } else { 364 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 365 } 366 pushTemporaryCleanup(*this, M, E, Object); 367 368 // Perform derived-to-base casts and/or field accesses, to get from the 369 // temporary object we created (and, potentially, for which we extended 370 // the lifetime) to the subobject we're binding the reference to. 371 for (unsigned I = Adjustments.size(); I != 0; --I) { 372 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 373 switch (Adjustment.Kind) { 374 case SubobjectAdjustment::DerivedToBaseAdjustment: 375 Object = 376 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 377 Adjustment.DerivedToBase.BasePath->path_begin(), 378 Adjustment.DerivedToBase.BasePath->path_end(), 379 /*NullCheckValue=*/ false); 380 break; 381 382 case SubobjectAdjustment::FieldAdjustment: { 383 LValue LV = MakeAddrLValue(Object, E->getType()); 384 LV = EmitLValueForField(LV, Adjustment.Field); 385 assert(LV.isSimple() && 386 "materialized temporary field is not a simple lvalue"); 387 Object = LV.getAddress(); 388 break; 389 } 390 391 case SubobjectAdjustment::MemberPointerAdjustment: { 392 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 393 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 394 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 395 break; 396 } 397 } 398 } 399 400 return MakeAddrLValue(Object, M->getType()); 401 } 402 403 RValue 404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 405 // Emit the expression as an lvalue. 406 LValue LV = EmitLValue(E); 407 assert(LV.isSimple()); 408 llvm::Value *Value = LV.getAddress(); 409 410 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 411 // C++11 [dcl.ref]p5 (as amended by core issue 453): 412 // If a glvalue to which a reference is directly bound designates neither 413 // an existing object or function of an appropriate type nor a region of 414 // storage of suitable size and alignment to contain an object of the 415 // reference's type, the behavior is undefined. 416 QualType Ty = E->getType(); 417 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 418 } 419 420 return RValue::get(Value); 421 } 422 423 424 /// getAccessedFieldNo - Given an encoded value and a result number, return the 425 /// input field number being accessed. 426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 427 const llvm::Constant *Elts) { 428 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 429 ->getZExtValue(); 430 } 431 432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 434 llvm::Value *High) { 435 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 436 llvm::Value *K47 = Builder.getInt64(47); 437 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 438 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 439 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 440 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 441 return Builder.CreateMul(B1, KMul); 442 } 443 444 bool CodeGenFunction::sanitizePerformTypeCheck() const { 445 return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize | 446 SanOpts->Vptr; 447 } 448 449 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 450 llvm::Value *Address, 451 QualType Ty, CharUnits Alignment) { 452 if (!sanitizePerformTypeCheck()) 453 return; 454 455 // Don't check pointers outside the default address space. The null check 456 // isn't correct, the object-size check isn't supported by LLVM, and we can't 457 // communicate the addresses to the runtime handler for the vptr check. 458 if (Address->getType()->getPointerAddressSpace()) 459 return; 460 461 llvm::Value *Cond = nullptr; 462 llvm::BasicBlock *Done = nullptr; 463 464 if (SanOpts->Null) { 465 // The glvalue must not be an empty glvalue. 466 Cond = Builder.CreateICmpNE( 467 Address, llvm::Constant::getNullValue(Address->getType())); 468 469 if (TCK == TCK_DowncastPointer) { 470 // When performing a pointer downcast, it's OK if the value is null. 471 // Skip the remaining checks in that case. 472 Done = createBasicBlock("null"); 473 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 474 Builder.CreateCondBr(Cond, Rest, Done); 475 EmitBlock(Rest); 476 Cond = nullptr; 477 } 478 } 479 480 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 481 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 482 483 // The glvalue must refer to a large enough storage region. 484 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 485 // to check this. 486 // FIXME: Get object address space 487 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 488 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 489 llvm::Value *Min = Builder.getFalse(); 490 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 491 llvm::Value *LargeEnough = 492 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 493 llvm::ConstantInt::get(IntPtrTy, Size)); 494 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 495 } 496 497 uint64_t AlignVal = 0; 498 499 if (SanOpts->Alignment) { 500 AlignVal = Alignment.getQuantity(); 501 if (!Ty->isIncompleteType() && !AlignVal) 502 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 503 504 // The glvalue must be suitably aligned. 505 if (AlignVal) { 506 llvm::Value *Align = 507 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 508 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 509 llvm::Value *Aligned = 510 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 511 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 512 } 513 } 514 515 if (Cond) { 516 llvm::Constant *StaticData[] = { 517 EmitCheckSourceLocation(Loc), 518 EmitCheckTypeDescriptor(Ty), 519 llvm::ConstantInt::get(SizeTy, AlignVal), 520 llvm::ConstantInt::get(Int8Ty, TCK) 521 }; 522 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 523 } 524 525 // If possible, check that the vptr indicates that there is a subobject of 526 // type Ty at offset zero within this object. 527 // 528 // C++11 [basic.life]p5,6: 529 // [For storage which does not refer to an object within its lifetime] 530 // The program has undefined behavior if: 531 // -- the [pointer or glvalue] is used to access a non-static data member 532 // or call a non-static member function 533 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 534 if (SanOpts->Vptr && 535 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 536 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 537 RD && RD->hasDefinition() && RD->isDynamicClass()) { 538 // Compute a hash of the mangled name of the type. 539 // 540 // FIXME: This is not guaranteed to be deterministic! Move to a 541 // fingerprinting mechanism once LLVM provides one. For the time 542 // being the implementation happens to be deterministic. 543 SmallString<64> MangledName; 544 llvm::raw_svector_ostream Out(MangledName); 545 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 546 Out); 547 llvm::hash_code TypeHash = hash_value(Out.str()); 548 549 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 550 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 551 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 552 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 553 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 554 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 555 556 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 557 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 558 559 // Look the hash up in our cache. 560 const int CacheSize = 128; 561 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 562 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 563 "__ubsan_vptr_type_cache"); 564 llvm::Value *Slot = Builder.CreateAnd(Hash, 565 llvm::ConstantInt::get(IntPtrTy, 566 CacheSize-1)); 567 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 568 llvm::Value *CacheVal = 569 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 570 571 // If the hash isn't in the cache, call a runtime handler to perform the 572 // hard work of checking whether the vptr is for an object of the right 573 // type. This will either fill in the cache and return, or produce a 574 // diagnostic. 575 llvm::Constant *StaticData[] = { 576 EmitCheckSourceLocation(Loc), 577 EmitCheckTypeDescriptor(Ty), 578 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 579 llvm::ConstantInt::get(Int8Ty, TCK) 580 }; 581 llvm::Value *DynamicData[] = { Address, Hash }; 582 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 583 "dynamic_type_cache_miss", StaticData, DynamicData, 584 CRK_AlwaysRecoverable); 585 } 586 587 if (Done) { 588 Builder.CreateBr(Done); 589 EmitBlock(Done); 590 } 591 } 592 593 /// Determine whether this expression refers to a flexible array member in a 594 /// struct. We disable array bounds checks for such members. 595 static bool isFlexibleArrayMemberExpr(const Expr *E) { 596 // For compatibility with existing code, we treat arrays of length 0 or 597 // 1 as flexible array members. 598 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 599 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 600 if (CAT->getSize().ugt(1)) 601 return false; 602 } else if (!isa<IncompleteArrayType>(AT)) 603 return false; 604 605 E = E->IgnoreParens(); 606 607 // A flexible array member must be the last member in the class. 608 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 609 // FIXME: If the base type of the member expr is not FD->getParent(), 610 // this should not be treated as a flexible array member access. 611 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 612 RecordDecl::field_iterator FI( 613 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 614 return ++FI == FD->getParent()->field_end(); 615 } 616 } 617 618 return false; 619 } 620 621 /// If Base is known to point to the start of an array, return the length of 622 /// that array. Return 0 if the length cannot be determined. 623 static llvm::Value *getArrayIndexingBound( 624 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 625 // For the vector indexing extension, the bound is the number of elements. 626 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 627 IndexedType = Base->getType(); 628 return CGF.Builder.getInt32(VT->getNumElements()); 629 } 630 631 Base = Base->IgnoreParens(); 632 633 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 634 if (CE->getCastKind() == CK_ArrayToPointerDecay && 635 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 636 IndexedType = CE->getSubExpr()->getType(); 637 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 638 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 639 return CGF.Builder.getInt(CAT->getSize()); 640 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 641 return CGF.getVLASize(VAT).first; 642 } 643 } 644 645 return nullptr; 646 } 647 648 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 649 llvm::Value *Index, QualType IndexType, 650 bool Accessed) { 651 assert(SanOpts->ArrayBounds && 652 "should not be called unless adding bounds checks"); 653 654 QualType IndexedType; 655 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 656 if (!Bound) 657 return; 658 659 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 660 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 661 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 662 663 llvm::Constant *StaticData[] = { 664 EmitCheckSourceLocation(E->getExprLoc()), 665 EmitCheckTypeDescriptor(IndexedType), 666 EmitCheckTypeDescriptor(IndexType) 667 }; 668 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 669 : Builder.CreateICmpULE(IndexVal, BoundVal); 670 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 671 } 672 673 674 CodeGenFunction::ComplexPairTy CodeGenFunction:: 675 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 676 bool isInc, bool isPre) { 677 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 678 679 llvm::Value *NextVal; 680 if (isa<llvm::IntegerType>(InVal.first->getType())) { 681 uint64_t AmountVal = isInc ? 1 : -1; 682 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 683 684 // Add the inc/dec to the real part. 685 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 686 } else { 687 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 688 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 689 if (!isInc) 690 FVal.changeSign(); 691 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 692 693 // Add the inc/dec to the real part. 694 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 695 } 696 697 ComplexPairTy IncVal(NextVal, InVal.second); 698 699 // Store the updated result through the lvalue. 700 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 701 702 // If this is a postinc, return the value read from memory, otherwise use the 703 // updated value. 704 return isPre ? IncVal : InVal; 705 } 706 707 708 //===----------------------------------------------------------------------===// 709 // LValue Expression Emission 710 //===----------------------------------------------------------------------===// 711 712 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 713 if (Ty->isVoidType()) 714 return RValue::get(nullptr); 715 716 switch (getEvaluationKind(Ty)) { 717 case TEK_Complex: { 718 llvm::Type *EltTy = 719 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 720 llvm::Value *U = llvm::UndefValue::get(EltTy); 721 return RValue::getComplex(std::make_pair(U, U)); 722 } 723 724 // If this is a use of an undefined aggregate type, the aggregate must have an 725 // identifiable address. Just because the contents of the value are undefined 726 // doesn't mean that the address can't be taken and compared. 727 case TEK_Aggregate: { 728 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 729 return RValue::getAggregate(DestPtr); 730 } 731 732 case TEK_Scalar: 733 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 734 } 735 llvm_unreachable("bad evaluation kind"); 736 } 737 738 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 739 const char *Name) { 740 ErrorUnsupported(E, Name); 741 return GetUndefRValue(E->getType()); 742 } 743 744 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 745 const char *Name) { 746 ErrorUnsupported(E, Name); 747 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 748 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 749 } 750 751 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 752 LValue LV; 753 if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E)) 754 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 755 else 756 LV = EmitLValue(E); 757 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 758 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 759 E->getType(), LV.getAlignment()); 760 return LV; 761 } 762 763 /// EmitLValue - Emit code to compute a designator that specifies the location 764 /// of the expression. 765 /// 766 /// This can return one of two things: a simple address or a bitfield reference. 767 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 768 /// an LLVM pointer type. 769 /// 770 /// If this returns a bitfield reference, nothing about the pointee type of the 771 /// LLVM value is known: For example, it may not be a pointer to an integer. 772 /// 773 /// If this returns a normal address, and if the lvalue's C type is fixed size, 774 /// this method guarantees that the returned pointer type will point to an LLVM 775 /// type of the same size of the lvalue's type. If the lvalue has a variable 776 /// length type, this is not possible. 777 /// 778 LValue CodeGenFunction::EmitLValue(const Expr *E) { 779 switch (E->getStmtClass()) { 780 default: return EmitUnsupportedLValue(E, "l-value expression"); 781 782 case Expr::ObjCPropertyRefExprClass: 783 llvm_unreachable("cannot emit a property reference directly"); 784 785 case Expr::ObjCSelectorExprClass: 786 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 787 case Expr::ObjCIsaExprClass: 788 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 789 case Expr::BinaryOperatorClass: 790 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 791 case Expr::CompoundAssignOperatorClass: 792 if (!E->getType()->isAnyComplexType()) 793 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 794 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 795 case Expr::CallExprClass: 796 case Expr::CXXMemberCallExprClass: 797 case Expr::CXXOperatorCallExprClass: 798 case Expr::UserDefinedLiteralClass: 799 return EmitCallExprLValue(cast<CallExpr>(E)); 800 case Expr::VAArgExprClass: 801 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 802 case Expr::DeclRefExprClass: 803 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 804 case Expr::ParenExprClass: 805 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 806 case Expr::GenericSelectionExprClass: 807 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 808 case Expr::PredefinedExprClass: 809 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 810 case Expr::StringLiteralClass: 811 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 812 case Expr::ObjCEncodeExprClass: 813 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 814 case Expr::PseudoObjectExprClass: 815 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 816 case Expr::InitListExprClass: 817 return EmitInitListLValue(cast<InitListExpr>(E)); 818 case Expr::CXXTemporaryObjectExprClass: 819 case Expr::CXXConstructExprClass: 820 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 821 case Expr::CXXBindTemporaryExprClass: 822 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 823 case Expr::CXXUuidofExprClass: 824 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 825 case Expr::LambdaExprClass: 826 return EmitLambdaLValue(cast<LambdaExpr>(E)); 827 828 case Expr::ExprWithCleanupsClass: { 829 const auto *cleanups = cast<ExprWithCleanups>(E); 830 enterFullExpression(cleanups); 831 RunCleanupsScope Scope(*this); 832 return EmitLValue(cleanups->getSubExpr()); 833 } 834 835 case Expr::CXXDefaultArgExprClass: 836 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 837 case Expr::CXXDefaultInitExprClass: { 838 CXXDefaultInitExprScope Scope(*this); 839 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 840 } 841 case Expr::CXXTypeidExprClass: 842 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 843 844 case Expr::ObjCMessageExprClass: 845 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 846 case Expr::ObjCIvarRefExprClass: 847 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 848 case Expr::StmtExprClass: 849 return EmitStmtExprLValue(cast<StmtExpr>(E)); 850 case Expr::UnaryOperatorClass: 851 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 852 case Expr::ArraySubscriptExprClass: 853 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 854 case Expr::ExtVectorElementExprClass: 855 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 856 case Expr::MemberExprClass: 857 return EmitMemberExpr(cast<MemberExpr>(E)); 858 case Expr::CompoundLiteralExprClass: 859 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 860 case Expr::ConditionalOperatorClass: 861 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 862 case Expr::BinaryConditionalOperatorClass: 863 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 864 case Expr::ChooseExprClass: 865 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 866 case Expr::OpaqueValueExprClass: 867 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 868 case Expr::SubstNonTypeTemplateParmExprClass: 869 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 870 case Expr::ImplicitCastExprClass: 871 case Expr::CStyleCastExprClass: 872 case Expr::CXXFunctionalCastExprClass: 873 case Expr::CXXStaticCastExprClass: 874 case Expr::CXXDynamicCastExprClass: 875 case Expr::CXXReinterpretCastExprClass: 876 case Expr::CXXConstCastExprClass: 877 case Expr::ObjCBridgedCastExprClass: 878 return EmitCastLValue(cast<CastExpr>(E)); 879 880 case Expr::MaterializeTemporaryExprClass: 881 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 882 } 883 } 884 885 /// Given an object of the given canonical type, can we safely copy a 886 /// value out of it based on its initializer? 887 static bool isConstantEmittableObjectType(QualType type) { 888 assert(type.isCanonical()); 889 assert(!type->isReferenceType()); 890 891 // Must be const-qualified but non-volatile. 892 Qualifiers qs = type.getLocalQualifiers(); 893 if (!qs.hasConst() || qs.hasVolatile()) return false; 894 895 // Otherwise, all object types satisfy this except C++ classes with 896 // mutable subobjects or non-trivial copy/destroy behavior. 897 if (const auto *RT = dyn_cast<RecordType>(type)) 898 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 899 if (RD->hasMutableFields() || !RD->isTrivial()) 900 return false; 901 902 return true; 903 } 904 905 /// Can we constant-emit a load of a reference to a variable of the 906 /// given type? This is different from predicates like 907 /// Decl::isUsableInConstantExpressions because we do want it to apply 908 /// in situations that don't necessarily satisfy the language's rules 909 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 910 /// to do this with const float variables even if those variables 911 /// aren't marked 'constexpr'. 912 enum ConstantEmissionKind { 913 CEK_None, 914 CEK_AsReferenceOnly, 915 CEK_AsValueOrReference, 916 CEK_AsValueOnly 917 }; 918 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 919 type = type.getCanonicalType(); 920 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 921 if (isConstantEmittableObjectType(ref->getPointeeType())) 922 return CEK_AsValueOrReference; 923 return CEK_AsReferenceOnly; 924 } 925 if (isConstantEmittableObjectType(type)) 926 return CEK_AsValueOnly; 927 return CEK_None; 928 } 929 930 /// Try to emit a reference to the given value without producing it as 931 /// an l-value. This is actually more than an optimization: we can't 932 /// produce an l-value for variables that we never actually captured 933 /// in a block or lambda, which means const int variables or constexpr 934 /// literals or similar. 935 CodeGenFunction::ConstantEmission 936 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 937 ValueDecl *value = refExpr->getDecl(); 938 939 // The value needs to be an enum constant or a constant variable. 940 ConstantEmissionKind CEK; 941 if (isa<ParmVarDecl>(value)) { 942 CEK = CEK_None; 943 } else if (auto *var = dyn_cast<VarDecl>(value)) { 944 CEK = checkVarTypeForConstantEmission(var->getType()); 945 } else if (isa<EnumConstantDecl>(value)) { 946 CEK = CEK_AsValueOnly; 947 } else { 948 CEK = CEK_None; 949 } 950 if (CEK == CEK_None) return ConstantEmission(); 951 952 Expr::EvalResult result; 953 bool resultIsReference; 954 QualType resultType; 955 956 // It's best to evaluate all the way as an r-value if that's permitted. 957 if (CEK != CEK_AsReferenceOnly && 958 refExpr->EvaluateAsRValue(result, getContext())) { 959 resultIsReference = false; 960 resultType = refExpr->getType(); 961 962 // Otherwise, try to evaluate as an l-value. 963 } else if (CEK != CEK_AsValueOnly && 964 refExpr->EvaluateAsLValue(result, getContext())) { 965 resultIsReference = true; 966 resultType = value->getType(); 967 968 // Failure. 969 } else { 970 return ConstantEmission(); 971 } 972 973 // In any case, if the initializer has side-effects, abandon ship. 974 if (result.HasSideEffects) 975 return ConstantEmission(); 976 977 // Emit as a constant. 978 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 979 980 // Make sure we emit a debug reference to the global variable. 981 // This should probably fire even for 982 if (isa<VarDecl>(value)) { 983 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 984 EmitDeclRefExprDbgValue(refExpr, C); 985 } else { 986 assert(isa<EnumConstantDecl>(value)); 987 EmitDeclRefExprDbgValue(refExpr, C); 988 } 989 990 // If we emitted a reference constant, we need to dereference that. 991 if (resultIsReference) 992 return ConstantEmission::forReference(C); 993 994 return ConstantEmission::forValue(C); 995 } 996 997 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 998 SourceLocation Loc) { 999 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1000 lvalue.getAlignment().getQuantity(), 1001 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 1002 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1003 } 1004 1005 static bool hasBooleanRepresentation(QualType Ty) { 1006 if (Ty->isBooleanType()) 1007 return true; 1008 1009 if (const EnumType *ET = Ty->getAs<EnumType>()) 1010 return ET->getDecl()->getIntegerType()->isBooleanType(); 1011 1012 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1013 return hasBooleanRepresentation(AT->getValueType()); 1014 1015 return false; 1016 } 1017 1018 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1019 llvm::APInt &Min, llvm::APInt &End, 1020 bool StrictEnums) { 1021 const EnumType *ET = Ty->getAs<EnumType>(); 1022 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1023 ET && !ET->getDecl()->isFixed(); 1024 bool IsBool = hasBooleanRepresentation(Ty); 1025 if (!IsBool && !IsRegularCPlusPlusEnum) 1026 return false; 1027 1028 if (IsBool) { 1029 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1030 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1031 } else { 1032 const EnumDecl *ED = ET->getDecl(); 1033 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1034 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1035 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1036 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1037 1038 if (NumNegativeBits) { 1039 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1040 assert(NumBits <= Bitwidth); 1041 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1042 Min = -End; 1043 } else { 1044 assert(NumPositiveBits <= Bitwidth); 1045 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1046 Min = llvm::APInt(Bitwidth, 0); 1047 } 1048 } 1049 return true; 1050 } 1051 1052 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1053 llvm::APInt Min, End; 1054 if (!getRangeForType(*this, Ty, Min, End, 1055 CGM.getCodeGenOpts().StrictEnums)) 1056 return nullptr; 1057 1058 llvm::MDBuilder MDHelper(getLLVMContext()); 1059 return MDHelper.createRange(Min, End); 1060 } 1061 1062 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1063 unsigned Alignment, QualType Ty, 1064 SourceLocation Loc, 1065 llvm::MDNode *TBAAInfo, 1066 QualType TBAABaseType, 1067 uint64_t TBAAOffset) { 1068 // For better performance, handle vector loads differently. 1069 if (Ty->isVectorType()) { 1070 llvm::Value *V; 1071 const llvm::Type *EltTy = 1072 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1073 1074 const auto *VTy = cast<llvm::VectorType>(EltTy); 1075 1076 // Handle vectors of size 3, like size 4 for better performance. 1077 if (VTy->getNumElements() == 3) { 1078 1079 // Bitcast to vec4 type. 1080 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1081 4); 1082 llvm::PointerType *ptVec4Ty = 1083 llvm::PointerType::get(vec4Ty, 1084 (cast<llvm::PointerType>( 1085 Addr->getType()))->getAddressSpace()); 1086 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1087 "castToVec4"); 1088 // Now load value. 1089 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1090 1091 // Shuffle vector to get vec3. 1092 llvm::Constant *Mask[] = { 1093 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1094 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1095 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1096 }; 1097 1098 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1099 V = Builder.CreateShuffleVector(LoadVal, 1100 llvm::UndefValue::get(vec4Ty), 1101 MaskV, "extractVec"); 1102 return EmitFromMemory(V, Ty); 1103 } 1104 } 1105 1106 // Atomic operations have to be done on integral types. 1107 if (Ty->isAtomicType()) { 1108 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1109 CharUnits::fromQuantity(Alignment), 1110 getContext(), TBAAInfo); 1111 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1112 } 1113 1114 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1115 if (Volatile) 1116 Load->setVolatile(true); 1117 if (Alignment) 1118 Load->setAlignment(Alignment); 1119 if (TBAAInfo) { 1120 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1121 TBAAOffset); 1122 if (TBAAPath) 1123 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1124 } 1125 1126 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1127 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1128 llvm::APInt Min, End; 1129 if (getRangeForType(*this, Ty, Min, End, true)) { 1130 --End; 1131 llvm::Value *Check; 1132 if (!Min) 1133 Check = Builder.CreateICmpULE( 1134 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1135 else { 1136 llvm::Value *Upper = Builder.CreateICmpSLE( 1137 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1138 llvm::Value *Lower = Builder.CreateICmpSGE( 1139 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1140 Check = Builder.CreateAnd(Upper, Lower); 1141 } 1142 llvm::Constant *StaticArgs[] = { 1143 EmitCheckSourceLocation(Loc), 1144 EmitCheckTypeDescriptor(Ty) 1145 }; 1146 EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load), 1147 CRK_Recoverable); 1148 } 1149 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1150 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1151 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1152 1153 return EmitFromMemory(Load, Ty); 1154 } 1155 1156 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1157 // Bool has a different representation in memory than in registers. 1158 if (hasBooleanRepresentation(Ty)) { 1159 // This should really always be an i1, but sometimes it's already 1160 // an i8, and it's awkward to track those cases down. 1161 if (Value->getType()->isIntegerTy(1)) 1162 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1163 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1164 "wrong value rep of bool"); 1165 } 1166 1167 return Value; 1168 } 1169 1170 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1171 // Bool has a different representation in memory than in registers. 1172 if (hasBooleanRepresentation(Ty)) { 1173 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1174 "wrong value rep of bool"); 1175 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1176 } 1177 1178 return Value; 1179 } 1180 1181 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1182 bool Volatile, unsigned Alignment, 1183 QualType Ty, llvm::MDNode *TBAAInfo, 1184 bool isInit, QualType TBAABaseType, 1185 uint64_t TBAAOffset) { 1186 1187 // Handle vectors differently to get better performance. 1188 if (Ty->isVectorType()) { 1189 llvm::Type *SrcTy = Value->getType(); 1190 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1191 // Handle vec3 special. 1192 if (VecTy->getNumElements() == 3) { 1193 llvm::LLVMContext &VMContext = getLLVMContext(); 1194 1195 // Our source is a vec3, do a shuffle vector to make it a vec4. 1196 SmallVector<llvm::Constant*, 4> Mask; 1197 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1198 0)); 1199 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1200 1)); 1201 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1202 2)); 1203 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1204 1205 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1206 Value = Builder.CreateShuffleVector(Value, 1207 llvm::UndefValue::get(VecTy), 1208 MaskV, "extractVec"); 1209 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1210 } 1211 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1212 if (DstPtr->getElementType() != SrcTy) { 1213 llvm::Type *MemTy = 1214 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1215 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1216 } 1217 } 1218 1219 Value = EmitToMemory(Value, Ty); 1220 1221 if (Ty->isAtomicType()) { 1222 EmitAtomicStore(RValue::get(Value), 1223 LValue::MakeAddr(Addr, Ty, 1224 CharUnits::fromQuantity(Alignment), 1225 getContext(), TBAAInfo), 1226 isInit); 1227 return; 1228 } 1229 1230 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1231 if (Alignment) 1232 Store->setAlignment(Alignment); 1233 if (TBAAInfo) { 1234 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1235 TBAAOffset); 1236 if (TBAAPath) 1237 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1238 } 1239 } 1240 1241 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1242 bool isInit) { 1243 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1244 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1245 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1246 lvalue.getTBAAOffset()); 1247 } 1248 1249 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1250 /// method emits the address of the lvalue, then loads the result as an rvalue, 1251 /// returning the rvalue. 1252 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1253 if (LV.isObjCWeak()) { 1254 // load of a __weak object. 1255 llvm::Value *AddrWeakObj = LV.getAddress(); 1256 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1257 AddrWeakObj)); 1258 } 1259 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1260 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1261 Object = EmitObjCConsumeObject(LV.getType(), Object); 1262 return RValue::get(Object); 1263 } 1264 1265 if (LV.isSimple()) { 1266 assert(!LV.getType()->isFunctionType()); 1267 1268 // Everything needs a load. 1269 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1270 } 1271 1272 if (LV.isVectorElt()) { 1273 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1274 LV.isVolatileQualified()); 1275 Load->setAlignment(LV.getAlignment().getQuantity()); 1276 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1277 "vecext")); 1278 } 1279 1280 // If this is a reference to a subset of the elements of a vector, either 1281 // shuffle the input or extract/insert them as appropriate. 1282 if (LV.isExtVectorElt()) 1283 return EmitLoadOfExtVectorElementLValue(LV); 1284 1285 // Global Register variables always invoke intrinsics 1286 if (LV.isGlobalReg()) 1287 return EmitLoadOfGlobalRegLValue(LV); 1288 1289 assert(LV.isBitField() && "Unknown LValue type!"); 1290 return EmitLoadOfBitfieldLValue(LV); 1291 } 1292 1293 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1294 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1295 1296 // Get the output type. 1297 llvm::Type *ResLTy = ConvertType(LV.getType()); 1298 1299 llvm::Value *Ptr = LV.getBitFieldAddr(); 1300 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1301 "bf.load"); 1302 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1303 1304 if (Info.IsSigned) { 1305 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1306 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1307 if (HighBits) 1308 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1309 if (Info.Offset + HighBits) 1310 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1311 } else { 1312 if (Info.Offset) 1313 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1314 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1315 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1316 Info.Size), 1317 "bf.clear"); 1318 } 1319 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1320 1321 return RValue::get(Val); 1322 } 1323 1324 // If this is a reference to a subset of the elements of a vector, create an 1325 // appropriate shufflevector. 1326 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1327 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1328 LV.isVolatileQualified()); 1329 Load->setAlignment(LV.getAlignment().getQuantity()); 1330 llvm::Value *Vec = Load; 1331 1332 const llvm::Constant *Elts = LV.getExtVectorElts(); 1333 1334 // If the result of the expression is a non-vector type, we must be extracting 1335 // a single element. Just codegen as an extractelement. 1336 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1337 if (!ExprVT) { 1338 unsigned InIdx = getAccessedFieldNo(0, Elts); 1339 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1340 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1341 } 1342 1343 // Always use shuffle vector to try to retain the original program structure 1344 unsigned NumResultElts = ExprVT->getNumElements(); 1345 1346 SmallVector<llvm::Constant*, 4> Mask; 1347 for (unsigned i = 0; i != NumResultElts; ++i) 1348 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1349 1350 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1351 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1352 MaskV); 1353 return RValue::get(Vec); 1354 } 1355 1356 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1357 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1358 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1359 "Bad type for register variable"); 1360 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg()); 1361 assert(RegName && "Register LValue is not metadata"); 1362 1363 // We accept integer and pointer types only 1364 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1365 llvm::Type *Ty = OrigTy; 1366 if (OrigTy->isPointerTy()) 1367 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1368 llvm::Type *Types[] = { Ty }; 1369 1370 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1371 llvm::Value *Call = Builder.CreateCall(F, RegName); 1372 if (OrigTy->isPointerTy()) 1373 Call = Builder.CreateIntToPtr(Call, OrigTy); 1374 return RValue::get(Call); 1375 } 1376 1377 1378 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1379 /// lvalue, where both are guaranteed to the have the same type, and that type 1380 /// is 'Ty'. 1381 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1382 bool isInit) { 1383 if (!Dst.isSimple()) { 1384 if (Dst.isVectorElt()) { 1385 // Read/modify/write the vector, inserting the new element. 1386 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1387 Dst.isVolatileQualified()); 1388 Load->setAlignment(Dst.getAlignment().getQuantity()); 1389 llvm::Value *Vec = Load; 1390 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1391 Dst.getVectorIdx(), "vecins"); 1392 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1393 Dst.isVolatileQualified()); 1394 Store->setAlignment(Dst.getAlignment().getQuantity()); 1395 return; 1396 } 1397 1398 // If this is an update of extended vector elements, insert them as 1399 // appropriate. 1400 if (Dst.isExtVectorElt()) 1401 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1402 1403 if (Dst.isGlobalReg()) 1404 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1405 1406 assert(Dst.isBitField() && "Unknown LValue type"); 1407 return EmitStoreThroughBitfieldLValue(Src, Dst); 1408 } 1409 1410 // There's special magic for assigning into an ARC-qualified l-value. 1411 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1412 switch (Lifetime) { 1413 case Qualifiers::OCL_None: 1414 llvm_unreachable("present but none"); 1415 1416 case Qualifiers::OCL_ExplicitNone: 1417 // nothing special 1418 break; 1419 1420 case Qualifiers::OCL_Strong: 1421 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1422 return; 1423 1424 case Qualifiers::OCL_Weak: 1425 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1426 return; 1427 1428 case Qualifiers::OCL_Autoreleasing: 1429 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1430 Src.getScalarVal())); 1431 // fall into the normal path 1432 break; 1433 } 1434 } 1435 1436 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1437 // load of a __weak object. 1438 llvm::Value *LvalueDst = Dst.getAddress(); 1439 llvm::Value *src = Src.getScalarVal(); 1440 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1441 return; 1442 } 1443 1444 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1445 // load of a __strong object. 1446 llvm::Value *LvalueDst = Dst.getAddress(); 1447 llvm::Value *src = Src.getScalarVal(); 1448 if (Dst.isObjCIvar()) { 1449 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1450 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1451 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1452 llvm::Value *dst = RHS; 1453 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1454 llvm::Value *LHS = 1455 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1456 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1457 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1458 BytesBetween); 1459 } else if (Dst.isGlobalObjCRef()) { 1460 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1461 Dst.isThreadLocalRef()); 1462 } 1463 else 1464 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1465 return; 1466 } 1467 1468 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1469 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1470 } 1471 1472 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1473 llvm::Value **Result) { 1474 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1475 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1476 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1477 1478 // Get the source value, truncated to the width of the bit-field. 1479 llvm::Value *SrcVal = Src.getScalarVal(); 1480 1481 // Cast the source to the storage type and shift it into place. 1482 SrcVal = Builder.CreateIntCast(SrcVal, 1483 Ptr->getType()->getPointerElementType(), 1484 /*IsSigned=*/false); 1485 llvm::Value *MaskedVal = SrcVal; 1486 1487 // See if there are other bits in the bitfield's storage we'll need to load 1488 // and mask together with source before storing. 1489 if (Info.StorageSize != Info.Size) { 1490 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1491 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1492 "bf.load"); 1493 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1494 1495 // Mask the source value as needed. 1496 if (!hasBooleanRepresentation(Dst.getType())) 1497 SrcVal = Builder.CreateAnd(SrcVal, 1498 llvm::APInt::getLowBitsSet(Info.StorageSize, 1499 Info.Size), 1500 "bf.value"); 1501 MaskedVal = SrcVal; 1502 if (Info.Offset) 1503 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1504 1505 // Mask out the original value. 1506 Val = Builder.CreateAnd(Val, 1507 ~llvm::APInt::getBitsSet(Info.StorageSize, 1508 Info.Offset, 1509 Info.Offset + Info.Size), 1510 "bf.clear"); 1511 1512 // Or together the unchanged values and the source value. 1513 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1514 } else { 1515 assert(Info.Offset == 0); 1516 } 1517 1518 // Write the new value back out. 1519 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1520 Dst.isVolatileQualified()); 1521 Store->setAlignment(Info.StorageAlignment); 1522 1523 // Return the new value of the bit-field, if requested. 1524 if (Result) { 1525 llvm::Value *ResultVal = MaskedVal; 1526 1527 // Sign extend the value if needed. 1528 if (Info.IsSigned) { 1529 assert(Info.Size <= Info.StorageSize); 1530 unsigned HighBits = Info.StorageSize - Info.Size; 1531 if (HighBits) { 1532 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1533 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1534 } 1535 } 1536 1537 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1538 "bf.result.cast"); 1539 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1540 } 1541 } 1542 1543 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1544 LValue Dst) { 1545 // This access turns into a read/modify/write of the vector. Load the input 1546 // value now. 1547 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1548 Dst.isVolatileQualified()); 1549 Load->setAlignment(Dst.getAlignment().getQuantity()); 1550 llvm::Value *Vec = Load; 1551 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1552 1553 llvm::Value *SrcVal = Src.getScalarVal(); 1554 1555 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1556 unsigned NumSrcElts = VTy->getNumElements(); 1557 unsigned NumDstElts = 1558 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1559 if (NumDstElts == NumSrcElts) { 1560 // Use shuffle vector is the src and destination are the same number of 1561 // elements and restore the vector mask since it is on the side it will be 1562 // stored. 1563 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1564 for (unsigned i = 0; i != NumSrcElts; ++i) 1565 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1566 1567 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1568 Vec = Builder.CreateShuffleVector(SrcVal, 1569 llvm::UndefValue::get(Vec->getType()), 1570 MaskV); 1571 } else if (NumDstElts > NumSrcElts) { 1572 // Extended the source vector to the same length and then shuffle it 1573 // into the destination. 1574 // FIXME: since we're shuffling with undef, can we just use the indices 1575 // into that? This could be simpler. 1576 SmallVector<llvm::Constant*, 4> ExtMask; 1577 for (unsigned i = 0; i != NumSrcElts; ++i) 1578 ExtMask.push_back(Builder.getInt32(i)); 1579 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1580 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1581 llvm::Value *ExtSrcVal = 1582 Builder.CreateShuffleVector(SrcVal, 1583 llvm::UndefValue::get(SrcVal->getType()), 1584 ExtMaskV); 1585 // build identity 1586 SmallVector<llvm::Constant*, 4> Mask; 1587 for (unsigned i = 0; i != NumDstElts; ++i) 1588 Mask.push_back(Builder.getInt32(i)); 1589 1590 // When the vector size is odd and .odd or .hi is used, the last element 1591 // of the Elts constant array will be one past the size of the vector. 1592 // Ignore the last element here, if it is greater than the mask size. 1593 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1594 NumSrcElts--; 1595 1596 // modify when what gets shuffled in 1597 for (unsigned i = 0; i != NumSrcElts; ++i) 1598 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1599 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1600 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1601 } else { 1602 // We should never shorten the vector 1603 llvm_unreachable("unexpected shorten vector length"); 1604 } 1605 } else { 1606 // If the Src is a scalar (not a vector) it must be updating one element. 1607 unsigned InIdx = getAccessedFieldNo(0, Elts); 1608 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1609 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1610 } 1611 1612 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1613 Dst.isVolatileQualified()); 1614 Store->setAlignment(Dst.getAlignment().getQuantity()); 1615 } 1616 1617 /// @brief Store of global named registers are always calls to intrinsics. 1618 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1619 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1620 "Bad type for register variable"); 1621 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg()); 1622 assert(RegName && "Register LValue is not metadata"); 1623 1624 // We accept integer and pointer types only 1625 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1626 llvm::Type *Ty = OrigTy; 1627 if (OrigTy->isPointerTy()) 1628 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1629 llvm::Type *Types[] = { Ty }; 1630 1631 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1632 llvm::Value *Value = Src.getScalarVal(); 1633 if (OrigTy->isPointerTy()) 1634 Value = Builder.CreatePtrToInt(Value, Ty); 1635 Builder.CreateCall2(F, RegName, Value); 1636 } 1637 1638 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1639 // generating write-barries API. It is currently a global, ivar, 1640 // or neither. 1641 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1642 LValue &LV, 1643 bool IsMemberAccess=false) { 1644 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1645 return; 1646 1647 if (isa<ObjCIvarRefExpr>(E)) { 1648 QualType ExpTy = E->getType(); 1649 if (IsMemberAccess && ExpTy->isPointerType()) { 1650 // If ivar is a structure pointer, assigning to field of 1651 // this struct follows gcc's behavior and makes it a non-ivar 1652 // writer-barrier conservatively. 1653 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1654 if (ExpTy->isRecordType()) { 1655 LV.setObjCIvar(false); 1656 return; 1657 } 1658 } 1659 LV.setObjCIvar(true); 1660 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1661 LV.setBaseIvarExp(Exp->getBase()); 1662 LV.setObjCArray(E->getType()->isArrayType()); 1663 return; 1664 } 1665 1666 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1667 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1668 if (VD->hasGlobalStorage()) { 1669 LV.setGlobalObjCRef(true); 1670 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1671 } 1672 } 1673 LV.setObjCArray(E->getType()->isArrayType()); 1674 return; 1675 } 1676 1677 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1678 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1679 return; 1680 } 1681 1682 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1683 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1684 if (LV.isObjCIvar()) { 1685 // If cast is to a structure pointer, follow gcc's behavior and make it 1686 // a non-ivar write-barrier. 1687 QualType ExpTy = E->getType(); 1688 if (ExpTy->isPointerType()) 1689 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1690 if (ExpTy->isRecordType()) 1691 LV.setObjCIvar(false); 1692 } 1693 return; 1694 } 1695 1696 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1697 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1698 return; 1699 } 1700 1701 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1702 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1703 return; 1704 } 1705 1706 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1707 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1708 return; 1709 } 1710 1711 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1712 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1713 return; 1714 } 1715 1716 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1717 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1718 if (LV.isObjCIvar() && !LV.isObjCArray()) 1719 // Using array syntax to assigning to what an ivar points to is not 1720 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1721 LV.setObjCIvar(false); 1722 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1723 // Using array syntax to assigning to what global points to is not 1724 // same as assigning to the global itself. {id *G;} G[i] = 0; 1725 LV.setGlobalObjCRef(false); 1726 return; 1727 } 1728 1729 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1730 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1731 // We don't know if member is an 'ivar', but this flag is looked at 1732 // only in the context of LV.isObjCIvar(). 1733 LV.setObjCArray(E->getType()->isArrayType()); 1734 return; 1735 } 1736 } 1737 1738 static llvm::Value * 1739 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1740 llvm::Value *V, llvm::Type *IRType, 1741 StringRef Name = StringRef()) { 1742 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1743 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1744 } 1745 1746 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1747 const Expr *E, const VarDecl *VD) { 1748 QualType T = E->getType(); 1749 1750 // If it's thread_local, emit a call to its wrapper function instead. 1751 if (VD->getTLSKind() == VarDecl::TLS_Dynamic) 1752 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1753 1754 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1755 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1756 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1757 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1758 LValue LV; 1759 if (VD->getType()->isReferenceType()) { 1760 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1761 LI->setAlignment(Alignment.getQuantity()); 1762 V = LI; 1763 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1764 } else { 1765 LV = CGF.MakeAddrLValue(V, T, Alignment); 1766 } 1767 setObjCGCLValueClass(CGF.getContext(), E, LV); 1768 return LV; 1769 } 1770 1771 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1772 const Expr *E, const FunctionDecl *FD) { 1773 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1774 if (!FD->hasPrototype()) { 1775 if (const FunctionProtoType *Proto = 1776 FD->getType()->getAs<FunctionProtoType>()) { 1777 // Ugly case: for a K&R-style definition, the type of the definition 1778 // isn't the same as the type of a use. Correct for this with a 1779 // bitcast. 1780 QualType NoProtoType = 1781 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1782 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1783 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1784 } 1785 } 1786 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1787 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1788 } 1789 1790 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1791 llvm::Value *ThisValue) { 1792 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1793 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1794 return CGF.EmitLValueForField(LV, FD); 1795 } 1796 1797 /// Named Registers are named metadata pointing to the register name 1798 /// which will be read from/written to as an argument to the intrinsic 1799 /// @llvm.read/write_register. 1800 /// So far, only the name is being passed down, but other options such as 1801 /// register type, allocation type or even optimization options could be 1802 /// passed down via the metadata node. 1803 static LValue EmitGlobalNamedRegister(const VarDecl *VD, 1804 CodeGenModule &CGM, 1805 CharUnits Alignment) { 1806 SmallString<64> Name("llvm.named.register."); 1807 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 1808 assert(Asm->getLabel().size() < 64-Name.size() && 1809 "Register name too big"); 1810 Name.append(Asm->getLabel()); 1811 llvm::NamedMDNode *M = 1812 CGM.getModule().getOrInsertNamedMetadata(Name); 1813 if (M->getNumOperands() == 0) { 1814 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 1815 Asm->getLabel()); 1816 llvm::Value *Ops[] = { Str }; 1817 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1818 } 1819 return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment); 1820 } 1821 1822 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1823 const NamedDecl *ND = E->getDecl(); 1824 CharUnits Alignment = getContext().getDeclAlign(ND); 1825 QualType T = E->getType(); 1826 1827 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1828 // Global Named registers access via intrinsics only 1829 if (VD->getStorageClass() == SC_Register && 1830 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 1831 return EmitGlobalNamedRegister(VD, CGM, Alignment); 1832 1833 // A DeclRefExpr for a reference initialized by a constant expression can 1834 // appear without being odr-used. Directly emit the constant initializer. 1835 const Expr *Init = VD->getAnyInitializer(VD); 1836 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1837 VD->isUsableInConstantExpressions(getContext()) && 1838 VD->checkInitIsICE()) { 1839 llvm::Constant *Val = 1840 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1841 assert(Val && "failed to emit reference constant expression"); 1842 // FIXME: Eventually we will want to emit vector element references. 1843 return MakeAddrLValue(Val, T, Alignment); 1844 } 1845 } 1846 1847 // FIXME: We should be able to assert this for FunctionDecls as well! 1848 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1849 // those with a valid source location. 1850 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1851 !E->getLocation().isValid()) && 1852 "Should not use decl without marking it used!"); 1853 1854 if (ND->hasAttr<WeakRefAttr>()) { 1855 const auto *VD = cast<ValueDecl>(ND); 1856 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1857 return MakeAddrLValue(Aliasee, T, Alignment); 1858 } 1859 1860 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1861 // Check if this is a global variable. 1862 if (VD->hasLinkage() || VD->isStaticDataMember()) 1863 return EmitGlobalVarDeclLValue(*this, E, VD); 1864 1865 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1866 1867 llvm::Value *V = LocalDeclMap.lookup(VD); 1868 if (!V && VD->isStaticLocal()) 1869 V = CGM.getStaticLocalDeclAddress(VD); 1870 1871 // Use special handling for lambdas. 1872 if (!V) { 1873 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1874 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1875 } else if (CapturedStmtInfo) { 1876 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1877 return EmitCapturedFieldLValue(*this, FD, 1878 CapturedStmtInfo->getContextValue()); 1879 } 1880 1881 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1882 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1883 T, Alignment); 1884 } 1885 1886 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1887 1888 if (isBlockVariable) 1889 V = BuildBlockByrefAddress(V, VD); 1890 1891 LValue LV; 1892 if (VD->getType()->isReferenceType()) { 1893 llvm::LoadInst *LI = Builder.CreateLoad(V); 1894 LI->setAlignment(Alignment.getQuantity()); 1895 V = LI; 1896 LV = MakeNaturalAlignAddrLValue(V, T); 1897 } else { 1898 LV = MakeAddrLValue(V, T, Alignment); 1899 } 1900 1901 bool isLocalStorage = VD->hasLocalStorage(); 1902 1903 bool NonGCable = isLocalStorage && 1904 !VD->getType()->isReferenceType() && 1905 !isBlockVariable; 1906 if (NonGCable) { 1907 LV.getQuals().removeObjCGCAttr(); 1908 LV.setNonGC(true); 1909 } 1910 1911 bool isImpreciseLifetime = 1912 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1913 if (isImpreciseLifetime) 1914 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1915 setObjCGCLValueClass(getContext(), E, LV); 1916 return LV; 1917 } 1918 1919 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1920 return EmitFunctionDeclLValue(*this, E, FD); 1921 1922 llvm_unreachable("Unhandled DeclRefExpr"); 1923 } 1924 1925 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1926 // __extension__ doesn't affect lvalue-ness. 1927 if (E->getOpcode() == UO_Extension) 1928 return EmitLValue(E->getSubExpr()); 1929 1930 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1931 switch (E->getOpcode()) { 1932 default: llvm_unreachable("Unknown unary operator lvalue!"); 1933 case UO_Deref: { 1934 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1935 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1936 1937 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1938 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1939 1940 // We should not generate __weak write barrier on indirect reference 1941 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1942 // But, we continue to generate __strong write barrier on indirect write 1943 // into a pointer to object. 1944 if (getLangOpts().ObjC1 && 1945 getLangOpts().getGC() != LangOptions::NonGC && 1946 LV.isObjCWeak()) 1947 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1948 return LV; 1949 } 1950 case UO_Real: 1951 case UO_Imag: { 1952 LValue LV = EmitLValue(E->getSubExpr()); 1953 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1954 llvm::Value *Addr = LV.getAddress(); 1955 1956 // __real is valid on scalars. This is a faster way of testing that. 1957 // __imag can only produce an rvalue on scalars. 1958 if (E->getOpcode() == UO_Real && 1959 !cast<llvm::PointerType>(Addr->getType()) 1960 ->getElementType()->isStructTy()) { 1961 assert(E->getSubExpr()->getType()->isArithmeticType()); 1962 return LV; 1963 } 1964 1965 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1966 1967 unsigned Idx = E->getOpcode() == UO_Imag; 1968 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1969 Idx, "idx"), 1970 ExprTy); 1971 } 1972 case UO_PreInc: 1973 case UO_PreDec: { 1974 LValue LV = EmitLValue(E->getSubExpr()); 1975 bool isInc = E->getOpcode() == UO_PreInc; 1976 1977 if (E->getType()->isAnyComplexType()) 1978 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1979 else 1980 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1981 return LV; 1982 } 1983 } 1984 } 1985 1986 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1987 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1988 E->getType()); 1989 } 1990 1991 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1992 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1993 E->getType()); 1994 } 1995 1996 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1997 SmallString<32>& Target) { 1998 Target.resize(CharByteWidth * (Source.size() + 1)); 1999 char *ResultPtr = &Target[0]; 2000 const UTF8 *ErrorPtr; 2001 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 2002 (void)success; 2003 assert(success); 2004 Target.resize(ResultPtr - &Target[0]); 2005 } 2006 2007 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2008 switch (E->getIdentType()) { 2009 default: 2010 return EmitUnsupportedLValue(E, "predefined expression"); 2011 2012 case PredefinedExpr::Func: 2013 case PredefinedExpr::Function: 2014 case PredefinedExpr::LFunction: 2015 case PredefinedExpr::FuncDName: 2016 case PredefinedExpr::FuncSig: 2017 case PredefinedExpr::PrettyFunction: { 2018 PredefinedExpr::IdentType IdentType = E->getIdentType(); 2019 std::string GVName; 2020 2021 // FIXME: We should use the string literal mangling for the Microsoft C++ 2022 // ABI so that strings get merged. 2023 switch (IdentType) { 2024 default: llvm_unreachable("Invalid type"); 2025 case PredefinedExpr::Func: GVName = "__func__."; break; 2026 case PredefinedExpr::Function: GVName = "__FUNCTION__."; break; 2027 case PredefinedExpr::FuncDName: GVName = "__FUNCDNAME__."; break; 2028 case PredefinedExpr::FuncSig: GVName = "__FUNCSIG__."; break; 2029 case PredefinedExpr::LFunction: GVName = "L__FUNCTION__."; break; 2030 case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break; 2031 } 2032 2033 StringRef FnName = CurFn->getName(); 2034 if (FnName.startswith("\01")) 2035 FnName = FnName.substr(1); 2036 GVName += FnName; 2037 2038 // If this is outside of a function use the top level decl. 2039 const Decl *CurDecl = CurCodeDecl; 2040 if (!CurDecl || isa<VarDecl>(CurDecl)) 2041 CurDecl = getContext().getTranslationUnitDecl(); 2042 2043 const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 2044 std::string FunctionName; 2045 if (isa<BlockDecl>(CurDecl)) { 2046 // Blocks use the mangled function name. 2047 // FIXME: ComputeName should handle blocks. 2048 FunctionName = FnName.str(); 2049 } else if (isa<CapturedDecl>(CurDecl)) { 2050 // For a captured statement, the function name is its enclosing 2051 // function name not the one compiler generated. 2052 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 2053 } else { 2054 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 2055 assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 == 2056 FunctionName.size() && 2057 "Computed __func__ length differs from type!"); 2058 } 2059 2060 llvm::Constant *C; 2061 if (ElemType->isWideCharType()) { 2062 SmallString<32> RawChars; 2063 ConvertUTF8ToWideString( 2064 getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName, 2065 RawChars); 2066 StringLiteral *SL = StringLiteral::Create( 2067 getContext(), RawChars, StringLiteral::Wide, 2068 /*Pascal = */ false, E->getType(), E->getLocation()); 2069 C = CGM.GetAddrOfConstantStringFromLiteral(SL); 2070 } else { 2071 C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1); 2072 } 2073 return MakeAddrLValue(C, E->getType()); 2074 } 2075 } 2076 } 2077 2078 /// Emit a type description suitable for use by a runtime sanitizer library. The 2079 /// format of a type descriptor is 2080 /// 2081 /// \code 2082 /// { i16 TypeKind, i16 TypeInfo } 2083 /// \endcode 2084 /// 2085 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2086 /// integer, 1 for a floating point value, and -1 for anything else. 2087 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2088 // Only emit each type's descriptor once. 2089 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2090 return C; 2091 2092 uint16_t TypeKind = -1; 2093 uint16_t TypeInfo = 0; 2094 2095 if (T->isIntegerType()) { 2096 TypeKind = 0; 2097 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2098 (T->isSignedIntegerType() ? 1 : 0); 2099 } else if (T->isFloatingType()) { 2100 TypeKind = 1; 2101 TypeInfo = getContext().getTypeSize(T); 2102 } 2103 2104 // Format the type name as if for a diagnostic, including quotes and 2105 // optionally an 'aka'. 2106 SmallString<32> Buffer; 2107 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2108 (intptr_t)T.getAsOpaquePtr(), 2109 StringRef(), StringRef(), None, Buffer, 2110 ArrayRef<intptr_t>()); 2111 2112 llvm::Constant *Components[] = { 2113 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2114 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2115 }; 2116 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2117 2118 auto *GV = new llvm::GlobalVariable( 2119 CGM.getModule(), Descriptor->getType(), 2120 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2121 GV->setUnnamedAddr(true); 2122 2123 // Remember the descriptor for this type. 2124 CGM.setTypeDescriptorInMap(T, GV); 2125 2126 return GV; 2127 } 2128 2129 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2130 llvm::Type *TargetTy = IntPtrTy; 2131 2132 // Floating-point types which fit into intptr_t are bitcast to integers 2133 // and then passed directly (after zero-extension, if necessary). 2134 if (V->getType()->isFloatingPointTy()) { 2135 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2136 if (Bits <= TargetTy->getIntegerBitWidth()) 2137 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2138 Bits)); 2139 } 2140 2141 // Integers which fit in intptr_t are zero-extended and passed directly. 2142 if (V->getType()->isIntegerTy() && 2143 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2144 return Builder.CreateZExt(V, TargetTy); 2145 2146 // Pointers are passed directly, everything else is passed by address. 2147 if (!V->getType()->isPointerTy()) { 2148 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2149 Builder.CreateStore(V, Ptr); 2150 V = Ptr; 2151 } 2152 return Builder.CreatePtrToInt(V, TargetTy); 2153 } 2154 2155 /// \brief Emit a representation of a SourceLocation for passing to a handler 2156 /// in a sanitizer runtime library. The format for this data is: 2157 /// \code 2158 /// struct SourceLocation { 2159 /// const char *Filename; 2160 /// int32_t Line, Column; 2161 /// }; 2162 /// \endcode 2163 /// For an invalid SourceLocation, the Filename pointer is null. 2164 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2165 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2166 2167 llvm::Constant *Data[] = { 2168 PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src") 2169 : llvm::Constant::getNullValue(Int8PtrTy), 2170 Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0), 2171 Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0) 2172 }; 2173 2174 return llvm::ConstantStruct::getAnon(Data); 2175 } 2176 2177 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2178 ArrayRef<llvm::Constant *> StaticArgs, 2179 ArrayRef<llvm::Value *> DynamicArgs, 2180 CheckRecoverableKind RecoverKind) { 2181 assert(SanOpts != &SanitizerOptions::Disabled); 2182 2183 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2184 assert (RecoverKind != CRK_AlwaysRecoverable && 2185 "Runtime call required for AlwaysRecoverable kind!"); 2186 return EmitTrapCheck(Checked); 2187 } 2188 2189 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2190 2191 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2192 2193 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2194 2195 // Give hint that we very much don't expect to execute the handler 2196 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2197 llvm::MDBuilder MDHelper(getLLVMContext()); 2198 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2199 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2200 2201 EmitBlock(Handler); 2202 2203 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2204 auto *InfoPtr = 2205 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2206 llvm::GlobalVariable::PrivateLinkage, Info); 2207 InfoPtr->setUnnamedAddr(true); 2208 2209 SmallVector<llvm::Value *, 4> Args; 2210 SmallVector<llvm::Type *, 4> ArgTypes; 2211 Args.reserve(DynamicArgs.size() + 1); 2212 ArgTypes.reserve(DynamicArgs.size() + 1); 2213 2214 // Handler functions take an i8* pointing to the (handler-specific) static 2215 // information block, followed by a sequence of intptr_t arguments 2216 // representing operand values. 2217 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2218 ArgTypes.push_back(Int8PtrTy); 2219 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2220 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2221 ArgTypes.push_back(IntPtrTy); 2222 } 2223 2224 bool Recover = RecoverKind == CRK_AlwaysRecoverable || 2225 (RecoverKind == CRK_Recoverable && 2226 CGM.getCodeGenOpts().SanitizeRecover); 2227 2228 llvm::FunctionType *FnType = 2229 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2230 llvm::AttrBuilder B; 2231 if (!Recover) { 2232 B.addAttribute(llvm::Attribute::NoReturn) 2233 .addAttribute(llvm::Attribute::NoUnwind); 2234 } 2235 B.addAttribute(llvm::Attribute::UWTable); 2236 2237 // Checks that have two variants use a suffix to differentiate them 2238 bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable && 2239 !CGM.getCodeGenOpts().SanitizeRecover; 2240 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2241 (NeedsAbortSuffix? "_abort" : "")).str(); 2242 llvm::Value *Fn = CGM.CreateRuntimeFunction( 2243 FnType, FunctionName, 2244 llvm::AttributeSet::get(getLLVMContext(), 2245 llvm::AttributeSet::FunctionIndex, B)); 2246 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2247 if (Recover) { 2248 Builder.CreateBr(Cont); 2249 } else { 2250 HandlerCall->setDoesNotReturn(); 2251 Builder.CreateUnreachable(); 2252 } 2253 2254 EmitBlock(Cont); 2255 } 2256 2257 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2258 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2259 2260 // If we're optimizing, collapse all calls to trap down to just one per 2261 // function to save on code size. 2262 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2263 TrapBB = createBasicBlock("trap"); 2264 Builder.CreateCondBr(Checked, Cont, TrapBB); 2265 EmitBlock(TrapBB); 2266 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2267 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2268 TrapCall->setDoesNotReturn(); 2269 TrapCall->setDoesNotThrow(); 2270 Builder.CreateUnreachable(); 2271 } else { 2272 Builder.CreateCondBr(Checked, Cont, TrapBB); 2273 } 2274 2275 EmitBlock(Cont); 2276 } 2277 2278 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2279 /// array to pointer, return the array subexpression. 2280 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2281 // If this isn't just an array->pointer decay, bail out. 2282 const auto *CE = dyn_cast<CastExpr>(E); 2283 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2284 return nullptr; 2285 2286 // If this is a decay from variable width array, bail out. 2287 const Expr *SubExpr = CE->getSubExpr(); 2288 if (SubExpr->getType()->isVariableArrayType()) 2289 return nullptr; 2290 2291 return SubExpr; 2292 } 2293 2294 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2295 bool Accessed) { 2296 // The index must always be an integer, which is not an aggregate. Emit it. 2297 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2298 QualType IdxTy = E->getIdx()->getType(); 2299 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2300 2301 if (SanOpts->ArrayBounds) 2302 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2303 2304 // If the base is a vector type, then we are forming a vector element lvalue 2305 // with this subscript. 2306 if (E->getBase()->getType()->isVectorType()) { 2307 // Emit the vector as an lvalue to get its address. 2308 LValue LHS = EmitLValue(E->getBase()); 2309 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2310 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2311 E->getBase()->getType(), LHS.getAlignment()); 2312 } 2313 2314 // Extend or truncate the index type to 32 or 64-bits. 2315 if (Idx->getType() != IntPtrTy) 2316 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2317 2318 // We know that the pointer points to a type of the correct size, unless the 2319 // size is a VLA or Objective-C interface. 2320 llvm::Value *Address = nullptr; 2321 CharUnits ArrayAlignment; 2322 if (const VariableArrayType *vla = 2323 getContext().getAsVariableArrayType(E->getType())) { 2324 // The base must be a pointer, which is not an aggregate. Emit 2325 // it. It needs to be emitted first in case it's what captures 2326 // the VLA bounds. 2327 Address = EmitScalarExpr(E->getBase()); 2328 2329 // The element count here is the total number of non-VLA elements. 2330 llvm::Value *numElements = getVLASize(vla).first; 2331 2332 // Effectively, the multiply by the VLA size is part of the GEP. 2333 // GEP indexes are signed, and scaling an index isn't permitted to 2334 // signed-overflow, so we use the same semantics for our explicit 2335 // multiply. We suppress this if overflow is not undefined behavior. 2336 if (getLangOpts().isSignedOverflowDefined()) { 2337 Idx = Builder.CreateMul(Idx, numElements); 2338 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2339 } else { 2340 Idx = Builder.CreateNSWMul(Idx, numElements); 2341 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2342 } 2343 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2344 // Indexing over an interface, as in "NSString *P; P[4];" 2345 llvm::Value *InterfaceSize = 2346 llvm::ConstantInt::get(Idx->getType(), 2347 getContext().getTypeSizeInChars(OIT).getQuantity()); 2348 2349 Idx = Builder.CreateMul(Idx, InterfaceSize); 2350 2351 // The base must be a pointer, which is not an aggregate. Emit it. 2352 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2353 Address = EmitCastToVoidPtr(Base); 2354 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2355 Address = Builder.CreateBitCast(Address, Base->getType()); 2356 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2357 // If this is A[i] where A is an array, the frontend will have decayed the 2358 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2359 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2360 // "gep x, i" here. Emit one "gep A, 0, i". 2361 assert(Array->getType()->isArrayType() && 2362 "Array to pointer decay must have array source type!"); 2363 LValue ArrayLV; 2364 // For simple multidimensional array indexing, set the 'accessed' flag for 2365 // better bounds-checking of the base expression. 2366 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2367 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2368 else 2369 ArrayLV = EmitLValue(Array); 2370 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2371 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2372 llvm::Value *Args[] = { Zero, Idx }; 2373 2374 // Propagate the alignment from the array itself to the result. 2375 ArrayAlignment = ArrayLV.getAlignment(); 2376 2377 if (getLangOpts().isSignedOverflowDefined()) 2378 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2379 else 2380 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2381 } else { 2382 // The base must be a pointer, which is not an aggregate. Emit it. 2383 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2384 if (getLangOpts().isSignedOverflowDefined()) 2385 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2386 else 2387 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2388 } 2389 2390 QualType T = E->getBase()->getType()->getPointeeType(); 2391 assert(!T.isNull() && 2392 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2393 2394 2395 // Limit the alignment to that of the result type. 2396 LValue LV; 2397 if (!ArrayAlignment.isZero()) { 2398 CharUnits Align = getContext().getTypeAlignInChars(T); 2399 ArrayAlignment = std::min(Align, ArrayAlignment); 2400 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2401 } else { 2402 LV = MakeNaturalAlignAddrLValue(Address, T); 2403 } 2404 2405 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2406 2407 if (getLangOpts().ObjC1 && 2408 getLangOpts().getGC() != LangOptions::NonGC) { 2409 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2410 setObjCGCLValueClass(getContext(), E, LV); 2411 } 2412 return LV; 2413 } 2414 2415 static 2416 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2417 SmallVectorImpl<unsigned> &Elts) { 2418 SmallVector<llvm::Constant*, 4> CElts; 2419 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2420 CElts.push_back(Builder.getInt32(Elts[i])); 2421 2422 return llvm::ConstantVector::get(CElts); 2423 } 2424 2425 LValue CodeGenFunction:: 2426 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2427 // Emit the base vector as an l-value. 2428 LValue Base; 2429 2430 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2431 if (E->isArrow()) { 2432 // If it is a pointer to a vector, emit the address and form an lvalue with 2433 // it. 2434 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2435 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2436 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2437 Base.getQuals().removeObjCGCAttr(); 2438 } else if (E->getBase()->isGLValue()) { 2439 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2440 // emit the base as an lvalue. 2441 assert(E->getBase()->getType()->isVectorType()); 2442 Base = EmitLValue(E->getBase()); 2443 } else { 2444 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2445 assert(E->getBase()->getType()->isVectorType() && 2446 "Result must be a vector"); 2447 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2448 2449 // Store the vector to memory (because LValue wants an address). 2450 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2451 Builder.CreateStore(Vec, VecMem); 2452 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2453 } 2454 2455 QualType type = 2456 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2457 2458 // Encode the element access list into a vector of unsigned indices. 2459 SmallVector<unsigned, 4> Indices; 2460 E->getEncodedElementAccess(Indices); 2461 2462 if (Base.isSimple()) { 2463 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2464 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2465 Base.getAlignment()); 2466 } 2467 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2468 2469 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2470 SmallVector<llvm::Constant *, 4> CElts; 2471 2472 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2473 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2474 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2475 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2476 Base.getAlignment()); 2477 } 2478 2479 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2480 Expr *BaseExpr = E->getBase(); 2481 2482 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2483 LValue BaseLV; 2484 if (E->isArrow()) { 2485 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2486 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2487 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2488 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2489 } else 2490 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2491 2492 NamedDecl *ND = E->getMemberDecl(); 2493 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2494 LValue LV = EmitLValueForField(BaseLV, Field); 2495 setObjCGCLValueClass(getContext(), E, LV); 2496 return LV; 2497 } 2498 2499 if (auto *VD = dyn_cast<VarDecl>(ND)) 2500 return EmitGlobalVarDeclLValue(*this, E, VD); 2501 2502 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2503 return EmitFunctionDeclLValue(*this, E, FD); 2504 2505 llvm_unreachable("Unhandled member declaration!"); 2506 } 2507 2508 /// Given that we are currently emitting a lambda, emit an l-value for 2509 /// one of its members. 2510 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2511 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2512 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2513 QualType LambdaTagType = 2514 getContext().getTagDeclType(Field->getParent()); 2515 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2516 return EmitLValueForField(LambdaLV, Field); 2517 } 2518 2519 LValue CodeGenFunction::EmitLValueForField(LValue base, 2520 const FieldDecl *field) { 2521 if (field->isBitField()) { 2522 const CGRecordLayout &RL = 2523 CGM.getTypes().getCGRecordLayout(field->getParent()); 2524 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2525 llvm::Value *Addr = base.getAddress(); 2526 unsigned Idx = RL.getLLVMFieldNo(field); 2527 if (Idx != 0) 2528 // For structs, we GEP to the field that the record layout suggests. 2529 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2530 // Get the access type. 2531 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2532 getLLVMContext(), Info.StorageSize, 2533 CGM.getContext().getTargetAddressSpace(base.getType())); 2534 if (Addr->getType() != PtrTy) 2535 Addr = Builder.CreateBitCast(Addr, PtrTy); 2536 2537 QualType fieldType = 2538 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2539 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2540 } 2541 2542 const RecordDecl *rec = field->getParent(); 2543 QualType type = field->getType(); 2544 CharUnits alignment = getContext().getDeclAlign(field); 2545 2546 // FIXME: It should be impossible to have an LValue without alignment for a 2547 // complete type. 2548 if (!base.getAlignment().isZero()) 2549 alignment = std::min(alignment, base.getAlignment()); 2550 2551 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2552 2553 llvm::Value *addr = base.getAddress(); 2554 unsigned cvr = base.getVRQualifiers(); 2555 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2556 if (rec->isUnion()) { 2557 // For unions, there is no pointer adjustment. 2558 assert(!type->isReferenceType() && "union has reference member"); 2559 // TODO: handle path-aware TBAA for union. 2560 TBAAPath = false; 2561 } else { 2562 // For structs, we GEP to the field that the record layout suggests. 2563 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2564 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2565 2566 // If this is a reference field, load the reference right now. 2567 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2568 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2569 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2570 load->setAlignment(alignment.getQuantity()); 2571 2572 // Loading the reference will disable path-aware TBAA. 2573 TBAAPath = false; 2574 if (CGM.shouldUseTBAA()) { 2575 llvm::MDNode *tbaa; 2576 if (mayAlias) 2577 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2578 else 2579 tbaa = CGM.getTBAAInfo(type); 2580 if (tbaa) 2581 CGM.DecorateInstruction(load, tbaa); 2582 } 2583 2584 addr = load; 2585 mayAlias = false; 2586 type = refType->getPointeeType(); 2587 if (type->isIncompleteType()) 2588 alignment = CharUnits(); 2589 else 2590 alignment = getContext().getTypeAlignInChars(type); 2591 cvr = 0; // qualifiers don't recursively apply to referencee 2592 } 2593 } 2594 2595 // Make sure that the address is pointing to the right type. This is critical 2596 // for both unions and structs. A union needs a bitcast, a struct element 2597 // will need a bitcast if the LLVM type laid out doesn't match the desired 2598 // type. 2599 addr = EmitBitCastOfLValueToProperType(*this, addr, 2600 CGM.getTypes().ConvertTypeForMem(type), 2601 field->getName()); 2602 2603 if (field->hasAttr<AnnotateAttr>()) 2604 addr = EmitFieldAnnotations(field, addr); 2605 2606 LValue LV = MakeAddrLValue(addr, type, alignment); 2607 LV.getQuals().addCVRQualifiers(cvr); 2608 if (TBAAPath) { 2609 const ASTRecordLayout &Layout = 2610 getContext().getASTRecordLayout(field->getParent()); 2611 // Set the base type to be the base type of the base LValue and 2612 // update offset to be relative to the base type. 2613 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2614 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2615 Layout.getFieldOffset(field->getFieldIndex()) / 2616 getContext().getCharWidth()); 2617 } 2618 2619 // __weak attribute on a field is ignored. 2620 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2621 LV.getQuals().removeObjCGCAttr(); 2622 2623 // Fields of may_alias structs act like 'char' for TBAA purposes. 2624 // FIXME: this should get propagated down through anonymous structs 2625 // and unions. 2626 if (mayAlias && LV.getTBAAInfo()) 2627 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2628 2629 return LV; 2630 } 2631 2632 LValue 2633 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2634 const FieldDecl *Field) { 2635 QualType FieldType = Field->getType(); 2636 2637 if (!FieldType->isReferenceType()) 2638 return EmitLValueForField(Base, Field); 2639 2640 const CGRecordLayout &RL = 2641 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2642 unsigned idx = RL.getLLVMFieldNo(Field); 2643 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2644 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2645 2646 // Make sure that the address is pointing to the right type. This is critical 2647 // for both unions and structs. A union needs a bitcast, a struct element 2648 // will need a bitcast if the LLVM type laid out doesn't match the desired 2649 // type. 2650 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2651 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2652 2653 CharUnits Alignment = getContext().getDeclAlign(Field); 2654 2655 // FIXME: It should be impossible to have an LValue without alignment for a 2656 // complete type. 2657 if (!Base.getAlignment().isZero()) 2658 Alignment = std::min(Alignment, Base.getAlignment()); 2659 2660 return MakeAddrLValue(V, FieldType, Alignment); 2661 } 2662 2663 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2664 if (E->isFileScope()) { 2665 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2666 return MakeAddrLValue(GlobalPtr, E->getType()); 2667 } 2668 if (E->getType()->isVariablyModifiedType()) 2669 // make sure to emit the VLA size. 2670 EmitVariablyModifiedType(E->getType()); 2671 2672 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2673 const Expr *InitExpr = E->getInitializer(); 2674 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2675 2676 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2677 /*Init*/ true); 2678 2679 return Result; 2680 } 2681 2682 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2683 if (!E->isGLValue()) 2684 // Initializing an aggregate temporary in C++11: T{...}. 2685 return EmitAggExprToLValue(E); 2686 2687 // An lvalue initializer list must be initializing a reference. 2688 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2689 return EmitLValue(E->getInit(0)); 2690 } 2691 2692 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 2693 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 2694 /// LValue is returned and the current block has been terminated. 2695 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 2696 const Expr *Operand) { 2697 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 2698 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 2699 return None; 2700 } 2701 2702 return CGF.EmitLValue(Operand); 2703 } 2704 2705 LValue CodeGenFunction:: 2706 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2707 if (!expr->isGLValue()) { 2708 // ?: here should be an aggregate. 2709 assert(hasAggregateEvaluationKind(expr->getType()) && 2710 "Unexpected conditional operator!"); 2711 return EmitAggExprToLValue(expr); 2712 } 2713 2714 OpaqueValueMapping binding(*this, expr); 2715 RegionCounter Cnt = getPGORegionCounter(expr); 2716 2717 const Expr *condExpr = expr->getCond(); 2718 bool CondExprBool; 2719 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2720 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2721 if (!CondExprBool) std::swap(live, dead); 2722 2723 if (!ContainsLabel(dead)) { 2724 // If the true case is live, we need to track its region. 2725 if (CondExprBool) 2726 Cnt.beginRegion(Builder); 2727 return EmitLValue(live); 2728 } 2729 } 2730 2731 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2732 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2733 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2734 2735 ConditionalEvaluation eval(*this); 2736 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount()); 2737 2738 // Any temporaries created here are conditional. 2739 EmitBlock(lhsBlock); 2740 Cnt.beginRegion(Builder); 2741 eval.begin(*this); 2742 Optional<LValue> lhs = 2743 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 2744 eval.end(*this); 2745 2746 if (lhs && !lhs->isSimple()) 2747 return EmitUnsupportedLValue(expr, "conditional operator"); 2748 2749 lhsBlock = Builder.GetInsertBlock(); 2750 if (lhs) 2751 Builder.CreateBr(contBlock); 2752 2753 // Any temporaries created here are conditional. 2754 EmitBlock(rhsBlock); 2755 eval.begin(*this); 2756 Optional<LValue> rhs = 2757 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 2758 eval.end(*this); 2759 if (rhs && !rhs->isSimple()) 2760 return EmitUnsupportedLValue(expr, "conditional operator"); 2761 rhsBlock = Builder.GetInsertBlock(); 2762 2763 EmitBlock(contBlock); 2764 2765 if (lhs && rhs) { 2766 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(), 2767 2, "cond-lvalue"); 2768 phi->addIncoming(lhs->getAddress(), lhsBlock); 2769 phi->addIncoming(rhs->getAddress(), rhsBlock); 2770 return MakeAddrLValue(phi, expr->getType()); 2771 } else { 2772 assert((lhs || rhs) && 2773 "both operands of glvalue conditional are throw-expressions?"); 2774 return lhs ? *lhs : *rhs; 2775 } 2776 } 2777 2778 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2779 /// type. If the cast is to a reference, we can have the usual lvalue result, 2780 /// otherwise if a cast is needed by the code generator in an lvalue context, 2781 /// then it must mean that we need the address of an aggregate in order to 2782 /// access one of its members. This can happen for all the reasons that casts 2783 /// are permitted with aggregate result, including noop aggregate casts, and 2784 /// cast from scalar to union. 2785 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2786 switch (E->getCastKind()) { 2787 case CK_ToVoid: 2788 case CK_BitCast: 2789 case CK_ArrayToPointerDecay: 2790 case CK_FunctionToPointerDecay: 2791 case CK_NullToMemberPointer: 2792 case CK_NullToPointer: 2793 case CK_IntegralToPointer: 2794 case CK_PointerToIntegral: 2795 case CK_PointerToBoolean: 2796 case CK_VectorSplat: 2797 case CK_IntegralCast: 2798 case CK_IntegralToBoolean: 2799 case CK_IntegralToFloating: 2800 case CK_FloatingToIntegral: 2801 case CK_FloatingToBoolean: 2802 case CK_FloatingCast: 2803 case CK_FloatingRealToComplex: 2804 case CK_FloatingComplexToReal: 2805 case CK_FloatingComplexToBoolean: 2806 case CK_FloatingComplexCast: 2807 case CK_FloatingComplexToIntegralComplex: 2808 case CK_IntegralRealToComplex: 2809 case CK_IntegralComplexToReal: 2810 case CK_IntegralComplexToBoolean: 2811 case CK_IntegralComplexCast: 2812 case CK_IntegralComplexToFloatingComplex: 2813 case CK_DerivedToBaseMemberPointer: 2814 case CK_BaseToDerivedMemberPointer: 2815 case CK_MemberPointerToBoolean: 2816 case CK_ReinterpretMemberPointer: 2817 case CK_AnyPointerToBlockPointerCast: 2818 case CK_ARCProduceObject: 2819 case CK_ARCConsumeObject: 2820 case CK_ARCReclaimReturnedObject: 2821 case CK_ARCExtendBlockObject: 2822 case CK_CopyAndAutoreleaseBlockObject: 2823 case CK_AddressSpaceConversion: 2824 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2825 2826 case CK_Dependent: 2827 llvm_unreachable("dependent cast kind in IR gen!"); 2828 2829 case CK_BuiltinFnToFnPtr: 2830 llvm_unreachable("builtin functions are handled elsewhere"); 2831 2832 // These are never l-values; just use the aggregate emission code. 2833 case CK_NonAtomicToAtomic: 2834 case CK_AtomicToNonAtomic: 2835 return EmitAggExprToLValue(E); 2836 2837 case CK_Dynamic: { 2838 LValue LV = EmitLValue(E->getSubExpr()); 2839 llvm::Value *V = LV.getAddress(); 2840 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2841 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2842 } 2843 2844 case CK_ConstructorConversion: 2845 case CK_UserDefinedConversion: 2846 case CK_CPointerToObjCPointerCast: 2847 case CK_BlockPointerToObjCPointerCast: 2848 case CK_NoOp: 2849 case CK_LValueToRValue: 2850 return EmitLValue(E->getSubExpr()); 2851 2852 case CK_UncheckedDerivedToBase: 2853 case CK_DerivedToBase: { 2854 const RecordType *DerivedClassTy = 2855 E->getSubExpr()->getType()->getAs<RecordType>(); 2856 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2857 2858 LValue LV = EmitLValue(E->getSubExpr()); 2859 llvm::Value *This = LV.getAddress(); 2860 2861 // Perform the derived-to-base conversion 2862 llvm::Value *Base = 2863 GetAddressOfBaseClass(This, DerivedClassDecl, 2864 E->path_begin(), E->path_end(), 2865 /*NullCheckValue=*/false); 2866 2867 return MakeAddrLValue(Base, E->getType()); 2868 } 2869 case CK_ToUnion: 2870 return EmitAggExprToLValue(E); 2871 case CK_BaseToDerived: { 2872 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2873 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2874 2875 LValue LV = EmitLValue(E->getSubExpr()); 2876 2877 // Perform the base-to-derived conversion 2878 llvm::Value *Derived = 2879 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2880 E->path_begin(), E->path_end(), 2881 /*NullCheckValue=*/false); 2882 2883 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2884 // performed and the object is not of the derived type. 2885 if (sanitizePerformTypeCheck()) 2886 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2887 Derived, E->getType()); 2888 2889 return MakeAddrLValue(Derived, E->getType()); 2890 } 2891 case CK_LValueBitCast: { 2892 // This must be a reinterpret_cast (or c-style equivalent). 2893 const auto *CE = cast<ExplicitCastExpr>(E); 2894 2895 LValue LV = EmitLValue(E->getSubExpr()); 2896 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2897 ConvertType(CE->getTypeAsWritten())); 2898 return MakeAddrLValue(V, E->getType()); 2899 } 2900 case CK_ObjCObjectLValueCast: { 2901 LValue LV = EmitLValue(E->getSubExpr()); 2902 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2903 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2904 ConvertType(ToType)); 2905 return MakeAddrLValue(V, E->getType()); 2906 } 2907 case CK_ZeroToOCLEvent: 2908 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2909 } 2910 2911 llvm_unreachable("Unhandled lvalue cast kind?"); 2912 } 2913 2914 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2915 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2916 return getOpaqueLValueMapping(e); 2917 } 2918 2919 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2920 const FieldDecl *FD, 2921 SourceLocation Loc) { 2922 QualType FT = FD->getType(); 2923 LValue FieldLV = EmitLValueForField(LV, FD); 2924 switch (getEvaluationKind(FT)) { 2925 case TEK_Complex: 2926 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 2927 case TEK_Aggregate: 2928 return FieldLV.asAggregateRValue(); 2929 case TEK_Scalar: 2930 return EmitLoadOfLValue(FieldLV, Loc); 2931 } 2932 llvm_unreachable("bad evaluation kind"); 2933 } 2934 2935 //===--------------------------------------------------------------------===// 2936 // Expression Emission 2937 //===--------------------------------------------------------------------===// 2938 2939 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2940 ReturnValueSlot ReturnValue) { 2941 if (CGDebugInfo *DI = getDebugInfo()) { 2942 SourceLocation Loc = E->getLocStart(); 2943 // Force column info to be generated so we can differentiate 2944 // multiple call sites on the same line in the debug info. 2945 // FIXME: This is insufficient. Two calls coming from the same macro 2946 // expansion will still get the same line/column and break debug info. It's 2947 // possible that LLVM can be fixed to not rely on this uniqueness, at which 2948 // point this workaround can be removed. 2949 const FunctionDecl* Callee = E->getDirectCallee(); 2950 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2951 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2952 } 2953 2954 // Builtins never have block type. 2955 if (E->getCallee()->getType()->isBlockPointerType()) 2956 return EmitBlockCallExpr(E, ReturnValue); 2957 2958 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 2959 return EmitCXXMemberCallExpr(CE, ReturnValue); 2960 2961 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2962 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2963 2964 const Decl *TargetDecl = E->getCalleeDecl(); 2965 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2966 if (unsigned builtinID = FD->getBuiltinID()) 2967 return EmitBuiltinExpr(FD, builtinID, E); 2968 } 2969 2970 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2971 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2972 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2973 2974 if (const auto *PseudoDtor = 2975 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2976 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2977 if (getLangOpts().ObjCAutoRefCount && 2978 DestroyedType->isObjCLifetimeType() && 2979 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2980 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2981 // Automatic Reference Counting: 2982 // If the pseudo-expression names a retainable object with weak or 2983 // strong lifetime, the object shall be released. 2984 Expr *BaseExpr = PseudoDtor->getBase(); 2985 llvm::Value *BaseValue = nullptr; 2986 Qualifiers BaseQuals; 2987 2988 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2989 if (PseudoDtor->isArrow()) { 2990 BaseValue = EmitScalarExpr(BaseExpr); 2991 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2992 BaseQuals = PTy->getPointeeType().getQualifiers(); 2993 } else { 2994 LValue BaseLV = EmitLValue(BaseExpr); 2995 BaseValue = BaseLV.getAddress(); 2996 QualType BaseTy = BaseExpr->getType(); 2997 BaseQuals = BaseTy.getQualifiers(); 2998 } 2999 3000 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 3001 case Qualifiers::OCL_None: 3002 case Qualifiers::OCL_ExplicitNone: 3003 case Qualifiers::OCL_Autoreleasing: 3004 break; 3005 3006 case Qualifiers::OCL_Strong: 3007 EmitARCRelease(Builder.CreateLoad(BaseValue, 3008 PseudoDtor->getDestroyedType().isVolatileQualified()), 3009 ARCPreciseLifetime); 3010 break; 3011 3012 case Qualifiers::OCL_Weak: 3013 EmitARCDestroyWeak(BaseValue); 3014 break; 3015 } 3016 } else { 3017 // C++ [expr.pseudo]p1: 3018 // The result shall only be used as the operand for the function call 3019 // operator (), and the result of such a call has type void. The only 3020 // effect is the evaluation of the postfix-expression before the dot or 3021 // arrow. 3022 EmitScalarExpr(E->getCallee()); 3023 } 3024 3025 return RValue::get(nullptr); 3026 } 3027 3028 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3029 return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(), 3030 ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl); 3031 } 3032 3033 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3034 // Comma expressions just emit their LHS then their RHS as an l-value. 3035 if (E->getOpcode() == BO_Comma) { 3036 EmitIgnoredExpr(E->getLHS()); 3037 EnsureInsertPoint(); 3038 return EmitLValue(E->getRHS()); 3039 } 3040 3041 if (E->getOpcode() == BO_PtrMemD || 3042 E->getOpcode() == BO_PtrMemI) 3043 return EmitPointerToDataMemberBinaryExpr(E); 3044 3045 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3046 3047 // Note that in all of these cases, __block variables need the RHS 3048 // evaluated first just in case the variable gets moved by the RHS. 3049 3050 switch (getEvaluationKind(E->getType())) { 3051 case TEK_Scalar: { 3052 switch (E->getLHS()->getType().getObjCLifetime()) { 3053 case Qualifiers::OCL_Strong: 3054 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3055 3056 case Qualifiers::OCL_Autoreleasing: 3057 return EmitARCStoreAutoreleasing(E).first; 3058 3059 // No reason to do any of these differently. 3060 case Qualifiers::OCL_None: 3061 case Qualifiers::OCL_ExplicitNone: 3062 case Qualifiers::OCL_Weak: 3063 break; 3064 } 3065 3066 RValue RV = EmitAnyExpr(E->getRHS()); 3067 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3068 EmitStoreThroughLValue(RV, LV); 3069 return LV; 3070 } 3071 3072 case TEK_Complex: 3073 return EmitComplexAssignmentLValue(E); 3074 3075 case TEK_Aggregate: 3076 return EmitAggExprToLValue(E); 3077 } 3078 llvm_unreachable("bad evaluation kind"); 3079 } 3080 3081 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3082 RValue RV = EmitCallExpr(E); 3083 3084 if (!RV.isScalar()) 3085 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3086 3087 assert(E->getCallReturnType()->isReferenceType() && 3088 "Can't have a scalar return unless the return type is a " 3089 "reference type!"); 3090 3091 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3092 } 3093 3094 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3095 // FIXME: This shouldn't require another copy. 3096 return EmitAggExprToLValue(E); 3097 } 3098 3099 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3100 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3101 && "binding l-value to type which needs a temporary"); 3102 AggValueSlot Slot = CreateAggTemp(E->getType()); 3103 EmitCXXConstructExpr(E, Slot); 3104 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3105 } 3106 3107 LValue 3108 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3109 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3110 } 3111 3112 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3113 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3114 ConvertType(E->getType())->getPointerTo()); 3115 } 3116 3117 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3118 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3119 } 3120 3121 LValue 3122 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3123 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3124 Slot.setExternallyDestructed(); 3125 EmitAggExpr(E->getSubExpr(), Slot); 3126 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3127 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3128 } 3129 3130 LValue 3131 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3132 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3133 EmitLambdaExpr(E, Slot); 3134 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3135 } 3136 3137 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3138 RValue RV = EmitObjCMessageExpr(E); 3139 3140 if (!RV.isScalar()) 3141 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3142 3143 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3144 "Can't have a scalar return unless the return type is a " 3145 "reference type!"); 3146 3147 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3148 } 3149 3150 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3151 llvm::Value *V = 3152 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3153 return MakeAddrLValue(V, E->getType()); 3154 } 3155 3156 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3157 const ObjCIvarDecl *Ivar) { 3158 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3159 } 3160 3161 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3162 llvm::Value *BaseValue, 3163 const ObjCIvarDecl *Ivar, 3164 unsigned CVRQualifiers) { 3165 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3166 Ivar, CVRQualifiers); 3167 } 3168 3169 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3170 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3171 llvm::Value *BaseValue = nullptr; 3172 const Expr *BaseExpr = E->getBase(); 3173 Qualifiers BaseQuals; 3174 QualType ObjectTy; 3175 if (E->isArrow()) { 3176 BaseValue = EmitScalarExpr(BaseExpr); 3177 ObjectTy = BaseExpr->getType()->getPointeeType(); 3178 BaseQuals = ObjectTy.getQualifiers(); 3179 } else { 3180 LValue BaseLV = EmitLValue(BaseExpr); 3181 // FIXME: this isn't right for bitfields. 3182 BaseValue = BaseLV.getAddress(); 3183 ObjectTy = BaseExpr->getType(); 3184 BaseQuals = ObjectTy.getQualifiers(); 3185 } 3186 3187 LValue LV = 3188 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3189 BaseQuals.getCVRQualifiers()); 3190 setObjCGCLValueClass(getContext(), E, LV); 3191 return LV; 3192 } 3193 3194 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3195 // Can only get l-value for message expression returning aggregate type 3196 RValue RV = EmitAnyExprToTemp(E); 3197 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3198 } 3199 3200 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3201 SourceLocation CallLoc, 3202 ReturnValueSlot ReturnValue, 3203 CallExpr::const_arg_iterator ArgBeg, 3204 CallExpr::const_arg_iterator ArgEnd, 3205 const Decl *TargetDecl) { 3206 // Get the actual function type. The callee type will always be a pointer to 3207 // function type or a block pointer type. 3208 assert(CalleeType->isFunctionPointerType() && 3209 "Call must have function pointer type!"); 3210 3211 CalleeType = getContext().getCanonicalType(CalleeType); 3212 3213 const auto *FnType = 3214 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3215 3216 // Force column info to differentiate multiple inlined call sites on 3217 // the same line, analoguous to EmitCallExpr. 3218 // FIXME: This is insufficient. Two calls coming from the same macro expansion 3219 // will still get the same line/column and break debug info. It's possible 3220 // that LLVM can be fixed to not rely on this uniqueness, at which point this 3221 // workaround can be removed. 3222 bool ForceColumnInfo = false; 3223 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl)) 3224 ForceColumnInfo = FD->isInlineSpecified(); 3225 3226 if (getLangOpts().CPlusPlus && SanOpts->Function && 3227 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3228 if (llvm::Constant *PrefixSig = 3229 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3230 llvm::Constant *FTRTTIConst = 3231 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3232 llvm::Type *PrefixStructTyElems[] = { 3233 PrefixSig->getType(), 3234 FTRTTIConst->getType() 3235 }; 3236 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3237 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3238 3239 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3240 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3241 llvm::Value *CalleeSigPtr = 3242 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); 3243 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3244 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3245 3246 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3247 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3248 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3249 3250 EmitBlock(TypeCheck); 3251 llvm::Value *CalleeRTTIPtr = 3252 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); 3253 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3254 llvm::Value *CalleeRTTIMatch = 3255 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3256 llvm::Constant *StaticData[] = { 3257 EmitCheckSourceLocation(CallLoc), 3258 EmitCheckTypeDescriptor(CalleeType) 3259 }; 3260 EmitCheck(CalleeRTTIMatch, 3261 "function_type_mismatch", 3262 StaticData, 3263 Callee, 3264 CRK_Recoverable); 3265 3266 Builder.CreateBr(Cont); 3267 EmitBlock(Cont); 3268 } 3269 } 3270 3271 CallArgList Args; 3272 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd, 3273 ForceColumnInfo); 3274 3275 const CGFunctionInfo &FnInfo = 3276 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3277 3278 // C99 6.5.2.2p6: 3279 // If the expression that denotes the called function has a type 3280 // that does not include a prototype, [the default argument 3281 // promotions are performed]. If the number of arguments does not 3282 // equal the number of parameters, the behavior is undefined. If 3283 // the function is defined with a type that includes a prototype, 3284 // and either the prototype ends with an ellipsis (, ...) or the 3285 // types of the arguments after promotion are not compatible with 3286 // the types of the parameters, the behavior is undefined. If the 3287 // function is defined with a type that does not include a 3288 // prototype, and the types of the arguments after promotion are 3289 // not compatible with those of the parameters after promotion, 3290 // the behavior is undefined [except in some trivial cases]. 3291 // That is, in the general case, we should assume that a call 3292 // through an unprototyped function type works like a *non-variadic* 3293 // call. The way we make this work is to cast to the exact type 3294 // of the promoted arguments. 3295 if (isa<FunctionNoProtoType>(FnType)) { 3296 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3297 CalleeTy = CalleeTy->getPointerTo(); 3298 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3299 } 3300 3301 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3302 } 3303 3304 LValue CodeGenFunction:: 3305 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3306 llvm::Value *BaseV; 3307 if (E->getOpcode() == BO_PtrMemI) 3308 BaseV = EmitScalarExpr(E->getLHS()); 3309 else 3310 BaseV = EmitLValue(E->getLHS()).getAddress(); 3311 3312 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3313 3314 const MemberPointerType *MPT 3315 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3316 3317 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3318 *this, E, BaseV, OffsetV, MPT); 3319 3320 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3321 } 3322 3323 /// Given the address of a temporary variable, produce an r-value of 3324 /// its type. 3325 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3326 QualType type, 3327 SourceLocation loc) { 3328 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3329 switch (getEvaluationKind(type)) { 3330 case TEK_Complex: 3331 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3332 case TEK_Aggregate: 3333 return lvalue.asAggregateRValue(); 3334 case TEK_Scalar: 3335 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3336 } 3337 llvm_unreachable("bad evaluation kind"); 3338 } 3339 3340 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3341 assert(Val->getType()->isFPOrFPVectorTy()); 3342 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3343 return; 3344 3345 llvm::MDBuilder MDHelper(getLLVMContext()); 3346 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3347 3348 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3349 } 3350 3351 namespace { 3352 struct LValueOrRValue { 3353 LValue LV; 3354 RValue RV; 3355 }; 3356 } 3357 3358 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3359 const PseudoObjectExpr *E, 3360 bool forLValue, 3361 AggValueSlot slot) { 3362 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3363 3364 // Find the result expression, if any. 3365 const Expr *resultExpr = E->getResultExpr(); 3366 LValueOrRValue result; 3367 3368 for (PseudoObjectExpr::const_semantics_iterator 3369 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3370 const Expr *semantic = *i; 3371 3372 // If this semantic expression is an opaque value, bind it 3373 // to the result of its source expression. 3374 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3375 3376 // If this is the result expression, we may need to evaluate 3377 // directly into the slot. 3378 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3379 OVMA opaqueData; 3380 if (ov == resultExpr && ov->isRValue() && !forLValue && 3381 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3382 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3383 3384 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3385 opaqueData = OVMA::bind(CGF, ov, LV); 3386 result.RV = slot.asRValue(); 3387 3388 // Otherwise, emit as normal. 3389 } else { 3390 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3391 3392 // If this is the result, also evaluate the result now. 3393 if (ov == resultExpr) { 3394 if (forLValue) 3395 result.LV = CGF.EmitLValue(ov); 3396 else 3397 result.RV = CGF.EmitAnyExpr(ov, slot); 3398 } 3399 } 3400 3401 opaques.push_back(opaqueData); 3402 3403 // Otherwise, if the expression is the result, evaluate it 3404 // and remember the result. 3405 } else if (semantic == resultExpr) { 3406 if (forLValue) 3407 result.LV = CGF.EmitLValue(semantic); 3408 else 3409 result.RV = CGF.EmitAnyExpr(semantic, slot); 3410 3411 // Otherwise, evaluate the expression in an ignored context. 3412 } else { 3413 CGF.EmitIgnoredExpr(semantic); 3414 } 3415 } 3416 3417 // Unbind all the opaques now. 3418 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3419 opaques[i].unbind(CGF); 3420 3421 return result; 3422 } 3423 3424 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3425 AggValueSlot slot) { 3426 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3427 } 3428 3429 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3430 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3431 } 3432