Home | History | Annotate | Download | only in ParallelJIT
      1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Parallel JIT
     11 //
     12 // This test program creates two LLVM functions then calls them from three
     13 // separate threads.  It requires the pthreads library.
     14 // The three threads are created and then block waiting on a condition variable.
     15 // Once all threads are blocked on the conditional variable, the main thread
     16 // wakes them up. This complicated work is performed so that all three threads
     17 // call into the JIT at the same time (or the best possible approximation of the
     18 // same time). This test had assertion errors until I got the locking right.
     19 
     20 #include "llvm/ExecutionEngine/GenericValue.h"
     21 #include "llvm/ExecutionEngine/Interpreter.h"
     22 #include "llvm/ExecutionEngine/JIT.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/LLVMContext.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/Support/TargetSelect.h"
     29 #include <iostream>
     30 #include <pthread.h>
     31 using namespace llvm;
     32 
     33 static Function* createAdd1(Module *M) {
     34   // Create the add1 function entry and insert this entry into module M.  The
     35   // function will have a return type of "int" and take an argument of "int".
     36   // The '0' terminates the list of argument types.
     37   Function *Add1F =
     38     cast<Function>(M->getOrInsertFunction("add1",
     39                                           Type::getInt32Ty(M->getContext()),
     40                                           Type::getInt32Ty(M->getContext()),
     41                                           (Type *)0));
     42 
     43   // Add a basic block to the function. As before, it automatically inserts
     44   // because of the last argument.
     45   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
     46 
     47   // Get pointers to the constant `1'.
     48   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
     49 
     50   // Get pointers to the integer argument of the add1 function...
     51   assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
     52   Argument *ArgX = Add1F->arg_begin();  // Get the arg
     53   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
     54 
     55   // Create the add instruction, inserting it into the end of BB.
     56   Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
     57 
     58   // Create the return instruction and add it to the basic block
     59   ReturnInst::Create(M->getContext(), Add, BB);
     60 
     61   // Now, function add1 is ready.
     62   return Add1F;
     63 }
     64 
     65 static Function *CreateFibFunction(Module *M) {
     66   // Create the fib function and insert it into module M.  This function is said
     67   // to return an int and take an int parameter.
     68   Function *FibF =
     69     cast<Function>(M->getOrInsertFunction("fib",
     70                                           Type::getInt32Ty(M->getContext()),
     71                                           Type::getInt32Ty(M->getContext()),
     72                                           (Type *)0));
     73 
     74   // Add a basic block to the function.
     75   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
     76 
     77   // Get pointers to the constants.
     78   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
     79   Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
     80 
     81   // Get pointer to the integer argument of the add1 function...
     82   Argument *ArgX = FibF->arg_begin();   // Get the arg.
     83   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
     84 
     85   // Create the true_block.
     86   BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
     87   // Create an exit block.
     88   BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
     89 
     90   // Create the "if (arg < 2) goto exitbb"
     91   Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
     92   BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
     93 
     94   // Create: ret int 1
     95   ReturnInst::Create(M->getContext(), One, RetBB);
     96 
     97   // create fib(x-1)
     98   Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
     99   Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
    100 
    101   // create fib(x-2)
    102   Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
    103   Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
    104 
    105   // fib(x-1)+fib(x-2)
    106   Value *Sum =
    107     BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
    108 
    109   // Create the return instruction and add it to the basic block
    110   ReturnInst::Create(M->getContext(), Sum, RecurseBB);
    111 
    112   return FibF;
    113 }
    114 
    115 struct threadParams {
    116   ExecutionEngine* EE;
    117   Function* F;
    118   int value;
    119 };
    120 
    121 // We block the subthreads just before they begin to execute:
    122 // we want all of them to call into the JIT at the same time,
    123 // to verify that the locking is working correctly.
    124 class WaitForThreads
    125 {
    126 public:
    127   WaitForThreads()
    128   {
    129     n = 0;
    130     waitFor = 0;
    131 
    132     int result = pthread_cond_init( &condition, NULL );
    133     assert( result == 0 );
    134 
    135     result = pthread_mutex_init( &mutex, NULL );
    136     assert( result == 0 );
    137   }
    138 
    139   ~WaitForThreads()
    140   {
    141     int result = pthread_cond_destroy( &condition );
    142     (void)result;
    143     assert( result == 0 );
    144 
    145     result = pthread_mutex_destroy( &mutex );
    146     assert( result == 0 );
    147   }
    148 
    149   // All threads will stop here until another thread calls releaseThreads
    150   void block()
    151   {
    152     int result = pthread_mutex_lock( &mutex );
    153     (void)result;
    154     assert( result == 0 );
    155     n ++;
    156     //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
    157 
    158     assert( waitFor == 0 || n <= waitFor );
    159     if ( waitFor > 0 && n == waitFor )
    160     {
    161       // There are enough threads blocked that we can release all of them
    162       std::cout << "Unblocking threads from block()" << std::endl;
    163       unblockThreads();
    164     }
    165     else
    166     {
    167       // We just need to wait until someone unblocks us
    168       result = pthread_cond_wait( &condition, &mutex );
    169       assert( result == 0 );
    170     }
    171 
    172     // unlock the mutex before returning
    173     result = pthread_mutex_unlock( &mutex );
    174     assert( result == 0 );
    175   }
    176 
    177   // If there are num or more threads blocked, it will signal them all
    178   // Otherwise, this thread blocks until there are enough OTHER threads
    179   // blocked
    180   void releaseThreads( size_t num )
    181   {
    182     int result = pthread_mutex_lock( &mutex );
    183     (void)result;
    184     assert( result == 0 );
    185 
    186     if ( n >= num ) {
    187       std::cout << "Unblocking threads from releaseThreads()" << std::endl;
    188       unblockThreads();
    189     }
    190     else
    191     {
    192       waitFor = num;
    193       pthread_cond_wait( &condition, &mutex );
    194     }
    195 
    196     // unlock the mutex before returning
    197     result = pthread_mutex_unlock( &mutex );
    198     assert( result == 0 );
    199   }
    200 
    201 private:
    202   void unblockThreads()
    203   {
    204     // Reset the counters to zero: this way, if any new threads
    205     // enter while threads are exiting, they will block instead
    206     // of triggering a new release of threads
    207     n = 0;
    208 
    209     // Reset waitFor to zero: this way, if waitFor threads enter
    210     // while threads are exiting, they will block instead of
    211     // triggering a new release of threads
    212     waitFor = 0;
    213 
    214     int result = pthread_cond_broadcast( &condition );
    215     (void)result;
    216     assert(result == 0);
    217   }
    218 
    219   size_t n;
    220   size_t waitFor;
    221   pthread_cond_t condition;
    222   pthread_mutex_t mutex;
    223 };
    224 
    225 static WaitForThreads synchronize;
    226 
    227 void* callFunc( void* param )
    228 {
    229   struct threadParams* p = (struct threadParams*) param;
    230 
    231   // Call the `foo' function with no arguments:
    232   std::vector<GenericValue> Args(1);
    233   Args[0].IntVal = APInt(32, p->value);
    234 
    235   synchronize.block(); // wait until other threads are at this point
    236   GenericValue gv = p->EE->runFunction(p->F, Args);
    237 
    238   return (void*)(intptr_t)gv.IntVal.getZExtValue();
    239 }
    240 
    241 int main() {
    242   InitializeNativeTarget();
    243   LLVMContext Context;
    244 
    245   // Create some module to put our function into it.
    246   Module *M = new Module("test", Context);
    247 
    248   Function* add1F = createAdd1( M );
    249   Function* fibF = CreateFibFunction( M );
    250 
    251   // Now we create the JIT.
    252   ExecutionEngine* EE = EngineBuilder(M).create();
    253 
    254   //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
    255   //~ std::cout << "\n\nRunning foo: " << std::flush;
    256 
    257   // Create one thread for add1 and two threads for fib
    258   struct threadParams add1 = { EE, add1F, 1000 };
    259   struct threadParams fib1 = { EE, fibF, 39 };
    260   struct threadParams fib2 = { EE, fibF, 42 };
    261 
    262   pthread_t add1Thread;
    263   int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );
    264   if ( result != 0 ) {
    265           std::cerr << "Could not create thread" << std::endl;
    266           return 1;
    267   }
    268 
    269   pthread_t fibThread1;
    270   result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );
    271   if ( result != 0 ) {
    272           std::cerr << "Could not create thread" << std::endl;
    273           return 1;
    274   }
    275 
    276   pthread_t fibThread2;
    277   result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );
    278   if ( result != 0 ) {
    279           std::cerr << "Could not create thread" << std::endl;
    280           return 1;
    281   }
    282 
    283   synchronize.releaseThreads(3); // wait until other threads are at this point
    284 
    285   void* returnValue;
    286   result = pthread_join( add1Thread, &returnValue );
    287   if ( result != 0 ) {
    288           std::cerr << "Could not join thread" << std::endl;
    289           return 1;
    290   }
    291   std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
    292 
    293   result = pthread_join( fibThread1, &returnValue );
    294   if ( result != 0 ) {
    295           std::cerr << "Could not join thread" << std::endl;
    296           return 1;
    297   }
    298   std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
    299 
    300   result = pthread_join( fibThread2, &returnValue );
    301   if ( result != 0 ) {
    302           std::cerr << "Could not join thread" << std::endl;
    303           return 1;
    304   }
    305   std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
    306 
    307   return 0;
    308 }
    309