1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the writing of the LLVM IR as a set of C++ calls to the 11 // LLVM IR interface. The input module is assumed to be verified. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CPPTargetMachine.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Config/config.h" 19 #include "llvm/IR/CallingConv.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCSubtargetInfo.h" 29 #include "llvm/Pass.h" 30 #include "llvm/PassManager.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/FormattedStream.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include <algorithm> 36 #include <cctype> 37 #include <cstdio> 38 #include <map> 39 #include <set> 40 using namespace llvm; 41 42 static cl::opt<std::string> 43 FuncName("cppfname", cl::desc("Specify the name of the generated function"), 44 cl::value_desc("function name")); 45 46 enum WhatToGenerate { 47 GenProgram, 48 GenModule, 49 GenContents, 50 GenFunction, 51 GenFunctions, 52 GenInline, 53 GenVariable, 54 GenType 55 }; 56 57 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional, 58 cl::desc("Choose what kind of output to generate"), 59 cl::init(GenProgram), 60 cl::values( 61 clEnumValN(GenProgram, "program", "Generate a complete program"), 62 clEnumValN(GenModule, "module", "Generate a module definition"), 63 clEnumValN(GenContents, "contents", "Generate contents of a module"), 64 clEnumValN(GenFunction, "function", "Generate a function definition"), 65 clEnumValN(GenFunctions,"functions", "Generate all function definitions"), 66 clEnumValN(GenInline, "inline", "Generate an inline function"), 67 clEnumValN(GenVariable, "variable", "Generate a variable definition"), 68 clEnumValN(GenType, "type", "Generate a type definition"), 69 clEnumValEnd 70 ) 71 ); 72 73 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional, 74 cl::desc("Specify the name of the thing to generate"), 75 cl::init("!bad!")); 76 77 extern "C" void LLVMInitializeCppBackendTarget() { 78 // Register the target. 79 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget); 80 } 81 82 namespace { 83 typedef std::vector<Type*> TypeList; 84 typedef std::map<Type*,std::string> TypeMap; 85 typedef std::map<const Value*,std::string> ValueMap; 86 typedef std::set<std::string> NameSet; 87 typedef std::set<Type*> TypeSet; 88 typedef std::set<const Value*> ValueSet; 89 typedef std::map<const Value*,std::string> ForwardRefMap; 90 91 /// CppWriter - This class is the main chunk of code that converts an LLVM 92 /// module to a C++ translation unit. 93 class CppWriter : public ModulePass { 94 formatted_raw_ostream &Out; 95 const Module *TheModule; 96 uint64_t uniqueNum; 97 TypeMap TypeNames; 98 ValueMap ValueNames; 99 NameSet UsedNames; 100 TypeSet DefinedTypes; 101 ValueSet DefinedValues; 102 ForwardRefMap ForwardRefs; 103 bool is_inline; 104 unsigned indent_level; 105 106 public: 107 static char ID; 108 explicit CppWriter(formatted_raw_ostream &o) : 109 ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){} 110 111 const char *getPassName() const override { return "C++ backend"; } 112 113 bool runOnModule(Module &M) override; 114 115 void printProgram(const std::string& fname, const std::string& modName ); 116 void printModule(const std::string& fname, const std::string& modName ); 117 void printContents(const std::string& fname, const std::string& modName ); 118 void printFunction(const std::string& fname, const std::string& funcName ); 119 void printFunctions(); 120 void printInline(const std::string& fname, const std::string& funcName ); 121 void printVariable(const std::string& fname, const std::string& varName ); 122 void printType(const std::string& fname, const std::string& typeName ); 123 124 void error(const std::string& msg); 125 126 127 formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0); 128 inline void in() { indent_level++; } 129 inline void out() { if (indent_level >0) indent_level--; } 130 131 private: 132 void printLinkageType(GlobalValue::LinkageTypes LT); 133 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes); 134 void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType); 135 void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM); 136 void printCallingConv(CallingConv::ID cc); 137 void printEscapedString(const std::string& str); 138 void printCFP(const ConstantFP* CFP); 139 140 std::string getCppName(Type* val); 141 inline void printCppName(Type* val); 142 143 std::string getCppName(const Value* val); 144 inline void printCppName(const Value* val); 145 146 void printAttributes(const AttributeSet &PAL, const std::string &name); 147 void printType(Type* Ty); 148 void printTypes(const Module* M); 149 150 void printConstant(const Constant *CPV); 151 void printConstants(const Module* M); 152 153 void printVariableUses(const GlobalVariable *GV); 154 void printVariableHead(const GlobalVariable *GV); 155 void printVariableBody(const GlobalVariable *GV); 156 157 void printFunctionUses(const Function *F); 158 void printFunctionHead(const Function *F); 159 void printFunctionBody(const Function *F); 160 void printInstruction(const Instruction *I, const std::string& bbname); 161 std::string getOpName(const Value*); 162 163 void printModuleBody(); 164 }; 165 } // end anonymous namespace. 166 167 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) { 168 Out << '\n'; 169 if (delta >= 0 || indent_level >= unsigned(-delta)) 170 indent_level += delta; 171 Out.indent(indent_level); 172 return Out; 173 } 174 175 static inline void sanitize(std::string &str) { 176 for (size_t i = 0; i < str.length(); ++i) 177 if (!isalnum(str[i]) && str[i] != '_') 178 str[i] = '_'; 179 } 180 181 static std::string getTypePrefix(Type *Ty) { 182 switch (Ty->getTypeID()) { 183 case Type::VoidTyID: return "void_"; 184 case Type::IntegerTyID: 185 return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_"; 186 case Type::FloatTyID: return "float_"; 187 case Type::DoubleTyID: return "double_"; 188 case Type::LabelTyID: return "label_"; 189 case Type::FunctionTyID: return "func_"; 190 case Type::StructTyID: return "struct_"; 191 case Type::ArrayTyID: return "array_"; 192 case Type::PointerTyID: return "ptr_"; 193 case Type::VectorTyID: return "packed_"; 194 default: return "other_"; 195 } 196 } 197 198 void CppWriter::error(const std::string& msg) { 199 report_fatal_error(msg); 200 } 201 202 static inline std::string ftostr(const APFloat& V) { 203 std::string Buf; 204 if (&V.getSemantics() == &APFloat::IEEEdouble) { 205 raw_string_ostream(Buf) << V.convertToDouble(); 206 return Buf; 207 } else if (&V.getSemantics() == &APFloat::IEEEsingle) { 208 raw_string_ostream(Buf) << (double)V.convertToFloat(); 209 return Buf; 210 } 211 return "<unknown format in ftostr>"; // error 212 } 213 214 // printCFP - Print a floating point constant .. very carefully :) 215 // This makes sure that conversion to/from floating yields the same binary 216 // result so that we don't lose precision. 217 void CppWriter::printCFP(const ConstantFP *CFP) { 218 bool ignored; 219 APFloat APF = APFloat(CFP->getValueAPF()); // copy 220 if (CFP->getType() == Type::getFloatTy(CFP->getContext())) 221 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); 222 Out << "ConstantFP::get(mod->getContext(), "; 223 Out << "APFloat("; 224 #if HAVE_PRINTF_A 225 char Buffer[100]; 226 sprintf(Buffer, "%A", APF.convertToDouble()); 227 if ((!strncmp(Buffer, "0x", 2) || 228 !strncmp(Buffer, "-0x", 3) || 229 !strncmp(Buffer, "+0x", 3)) && 230 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) { 231 if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 232 Out << "BitsToDouble(" << Buffer << ")"; 233 else 234 Out << "BitsToFloat((float)" << Buffer << ")"; 235 Out << ")"; 236 } else { 237 #endif 238 std::string StrVal = ftostr(CFP->getValueAPF()); 239 240 while (StrVal[0] == ' ') 241 StrVal.erase(StrVal.begin()); 242 243 // Check to make sure that the stringized number is not some string like 244 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex. 245 if (((StrVal[0] >= '0' && StrVal[0] <= '9') || 246 ((StrVal[0] == '-' || StrVal[0] == '+') && 247 (StrVal[1] >= '0' && StrVal[1] <= '9'))) && 248 (CFP->isExactlyValue(atof(StrVal.c_str())))) { 249 if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 250 Out << StrVal; 251 else 252 Out << StrVal << "f"; 253 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 254 Out << "BitsToDouble(0x" 255 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue()) 256 << "ULL) /* " << StrVal << " */"; 257 else 258 Out << "BitsToFloat(0x" 259 << utohexstr((uint32_t)CFP->getValueAPF(). 260 bitcastToAPInt().getZExtValue()) 261 << "U) /* " << StrVal << " */"; 262 Out << ")"; 263 #if HAVE_PRINTF_A 264 } 265 #endif 266 Out << ")"; 267 } 268 269 void CppWriter::printCallingConv(CallingConv::ID cc){ 270 // Print the calling convention. 271 switch (cc) { 272 case CallingConv::C: Out << "CallingConv::C"; break; 273 case CallingConv::Fast: Out << "CallingConv::Fast"; break; 274 case CallingConv::Cold: Out << "CallingConv::Cold"; break; 275 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break; 276 default: Out << cc; break; 277 } 278 } 279 280 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) { 281 switch (LT) { 282 case GlobalValue::InternalLinkage: 283 Out << "GlobalValue::InternalLinkage"; break; 284 case GlobalValue::PrivateLinkage: 285 Out << "GlobalValue::PrivateLinkage"; break; 286 case GlobalValue::AvailableExternallyLinkage: 287 Out << "GlobalValue::AvailableExternallyLinkage "; break; 288 case GlobalValue::LinkOnceAnyLinkage: 289 Out << "GlobalValue::LinkOnceAnyLinkage "; break; 290 case GlobalValue::LinkOnceODRLinkage: 291 Out << "GlobalValue::LinkOnceODRLinkage "; break; 292 case GlobalValue::WeakAnyLinkage: 293 Out << "GlobalValue::WeakAnyLinkage"; break; 294 case GlobalValue::WeakODRLinkage: 295 Out << "GlobalValue::WeakODRLinkage"; break; 296 case GlobalValue::AppendingLinkage: 297 Out << "GlobalValue::AppendingLinkage"; break; 298 case GlobalValue::ExternalLinkage: 299 Out << "GlobalValue::ExternalLinkage"; break; 300 case GlobalValue::ExternalWeakLinkage: 301 Out << "GlobalValue::ExternalWeakLinkage"; break; 302 case GlobalValue::CommonLinkage: 303 Out << "GlobalValue::CommonLinkage"; break; 304 } 305 } 306 307 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) { 308 switch (VisType) { 309 case GlobalValue::DefaultVisibility: 310 Out << "GlobalValue::DefaultVisibility"; 311 break; 312 case GlobalValue::HiddenVisibility: 313 Out << "GlobalValue::HiddenVisibility"; 314 break; 315 case GlobalValue::ProtectedVisibility: 316 Out << "GlobalValue::ProtectedVisibility"; 317 break; 318 } 319 } 320 321 void CppWriter::printDLLStorageClassType( 322 GlobalValue::DLLStorageClassTypes DSCType) { 323 switch (DSCType) { 324 case GlobalValue::DefaultStorageClass: 325 Out << "GlobalValue::DefaultStorageClass"; 326 break; 327 case GlobalValue::DLLImportStorageClass: 328 Out << "GlobalValue::DLLImportStorageClass"; 329 break; 330 case GlobalValue::DLLExportStorageClass: 331 Out << "GlobalValue::DLLExportStorageClass"; 332 break; 333 } 334 } 335 336 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) { 337 switch (TLM) { 338 case GlobalVariable::NotThreadLocal: 339 Out << "GlobalVariable::NotThreadLocal"; 340 break; 341 case GlobalVariable::GeneralDynamicTLSModel: 342 Out << "GlobalVariable::GeneralDynamicTLSModel"; 343 break; 344 case GlobalVariable::LocalDynamicTLSModel: 345 Out << "GlobalVariable::LocalDynamicTLSModel"; 346 break; 347 case GlobalVariable::InitialExecTLSModel: 348 Out << "GlobalVariable::InitialExecTLSModel"; 349 break; 350 case GlobalVariable::LocalExecTLSModel: 351 Out << "GlobalVariable::LocalExecTLSModel"; 352 break; 353 } 354 } 355 356 // printEscapedString - Print each character of the specified string, escaping 357 // it if it is not printable or if it is an escape char. 358 void CppWriter::printEscapedString(const std::string &Str) { 359 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 360 unsigned char C = Str[i]; 361 if (isprint(C) && C != '"' && C != '\\') { 362 Out << C; 363 } else { 364 Out << "\\x" 365 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) 366 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); 367 } 368 } 369 } 370 371 std::string CppWriter::getCppName(Type* Ty) { 372 switch (Ty->getTypeID()) { 373 default: 374 break; 375 case Type::VoidTyID: 376 return "Type::getVoidTy(mod->getContext())"; 377 case Type::IntegerTyID: { 378 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 379 return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")"; 380 } 381 case Type::X86_FP80TyID: 382 return "Type::getX86_FP80Ty(mod->getContext())"; 383 case Type::FloatTyID: 384 return "Type::getFloatTy(mod->getContext())"; 385 case Type::DoubleTyID: 386 return "Type::getDoubleTy(mod->getContext())"; 387 case Type::LabelTyID: 388 return "Type::getLabelTy(mod->getContext())"; 389 case Type::X86_MMXTyID: 390 return "Type::getX86_MMXTy(mod->getContext())"; 391 } 392 393 // Now, see if we've seen the type before and return that 394 TypeMap::iterator I = TypeNames.find(Ty); 395 if (I != TypeNames.end()) 396 return I->second; 397 398 // Okay, let's build a new name for this type. Start with a prefix 399 const char* prefix = nullptr; 400 switch (Ty->getTypeID()) { 401 case Type::FunctionTyID: prefix = "FuncTy_"; break; 402 case Type::StructTyID: prefix = "StructTy_"; break; 403 case Type::ArrayTyID: prefix = "ArrayTy_"; break; 404 case Type::PointerTyID: prefix = "PointerTy_"; break; 405 case Type::VectorTyID: prefix = "VectorTy_"; break; 406 default: prefix = "OtherTy_"; break; // prevent breakage 407 } 408 409 // See if the type has a name in the symboltable and build accordingly 410 std::string name; 411 if (StructType *STy = dyn_cast<StructType>(Ty)) 412 if (STy->hasName()) 413 name = STy->getName(); 414 415 if (name.empty()) 416 name = utostr(uniqueNum++); 417 418 name = std::string(prefix) + name; 419 sanitize(name); 420 421 // Save the name 422 return TypeNames[Ty] = name; 423 } 424 425 void CppWriter::printCppName(Type* Ty) { 426 printEscapedString(getCppName(Ty)); 427 } 428 429 std::string CppWriter::getCppName(const Value* val) { 430 std::string name; 431 ValueMap::iterator I = ValueNames.find(val); 432 if (I != ValueNames.end() && I->first == val) 433 return I->second; 434 435 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) { 436 name = std::string("gvar_") + 437 getTypePrefix(GV->getType()->getElementType()); 438 } else if (isa<Function>(val)) { 439 name = std::string("func_"); 440 } else if (const Constant* C = dyn_cast<Constant>(val)) { 441 name = std::string("const_") + getTypePrefix(C->getType()); 442 } else if (const Argument* Arg = dyn_cast<Argument>(val)) { 443 if (is_inline) { 444 unsigned argNum = std::distance(Arg->getParent()->arg_begin(), 445 Function::const_arg_iterator(Arg)) + 1; 446 name = std::string("arg_") + utostr(argNum); 447 NameSet::iterator NI = UsedNames.find(name); 448 if (NI != UsedNames.end()) 449 name += std::string("_") + utostr(uniqueNum++); 450 UsedNames.insert(name); 451 return ValueNames[val] = name; 452 } else { 453 name = getTypePrefix(val->getType()); 454 } 455 } else { 456 name = getTypePrefix(val->getType()); 457 } 458 if (val->hasName()) 459 name += val->getName(); 460 else 461 name += utostr(uniqueNum++); 462 sanitize(name); 463 NameSet::iterator NI = UsedNames.find(name); 464 if (NI != UsedNames.end()) 465 name += std::string("_") + utostr(uniqueNum++); 466 UsedNames.insert(name); 467 return ValueNames[val] = name; 468 } 469 470 void CppWriter::printCppName(const Value* val) { 471 printEscapedString(getCppName(val)); 472 } 473 474 void CppWriter::printAttributes(const AttributeSet &PAL, 475 const std::string &name) { 476 Out << "AttributeSet " << name << "_PAL;"; 477 nl(Out); 478 if (!PAL.isEmpty()) { 479 Out << '{'; in(); nl(Out); 480 Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out); 481 Out << "AttributeSet PAS;"; in(); nl(Out); 482 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) { 483 unsigned index = PAL.getSlotIndex(i); 484 AttrBuilder attrs(PAL.getSlotAttributes(i), index); 485 Out << "{"; in(); nl(Out); 486 Out << "AttrBuilder B;"; nl(Out); 487 488 #define HANDLE_ATTR(X) \ 489 if (attrs.contains(Attribute::X)) { \ 490 Out << "B.addAttribute(Attribute::" #X ");"; nl(Out); \ 491 attrs.removeAttribute(Attribute::X); \ 492 } 493 494 HANDLE_ATTR(SExt); 495 HANDLE_ATTR(ZExt); 496 HANDLE_ATTR(NoReturn); 497 HANDLE_ATTR(InReg); 498 HANDLE_ATTR(StructRet); 499 HANDLE_ATTR(NoUnwind); 500 HANDLE_ATTR(NoAlias); 501 HANDLE_ATTR(ByVal); 502 HANDLE_ATTR(InAlloca); 503 HANDLE_ATTR(Nest); 504 HANDLE_ATTR(ReadNone); 505 HANDLE_ATTR(ReadOnly); 506 HANDLE_ATTR(NoInline); 507 HANDLE_ATTR(AlwaysInline); 508 HANDLE_ATTR(OptimizeNone); 509 HANDLE_ATTR(OptimizeForSize); 510 HANDLE_ATTR(StackProtect); 511 HANDLE_ATTR(StackProtectReq); 512 HANDLE_ATTR(StackProtectStrong); 513 HANDLE_ATTR(NoCapture); 514 HANDLE_ATTR(NoRedZone); 515 HANDLE_ATTR(NoImplicitFloat); 516 HANDLE_ATTR(Naked); 517 HANDLE_ATTR(InlineHint); 518 HANDLE_ATTR(ReturnsTwice); 519 HANDLE_ATTR(UWTable); 520 HANDLE_ATTR(NonLazyBind); 521 HANDLE_ATTR(MinSize); 522 #undef HANDLE_ATTR 523 524 if (attrs.contains(Attribute::StackAlignment)) { 525 Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')'; 526 nl(Out); 527 attrs.removeAttribute(Attribute::StackAlignment); 528 } 529 530 Out << "PAS = AttributeSet::get(mod->getContext(), "; 531 if (index == ~0U) 532 Out << "~0U,"; 533 else 534 Out << index << "U,"; 535 Out << " B);"; out(); nl(Out); 536 Out << "}"; out(); nl(Out); 537 nl(Out); 538 Out << "Attrs.push_back(PAS);"; nl(Out); 539 } 540 Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);"; 541 nl(Out); 542 out(); nl(Out); 543 Out << '}'; nl(Out); 544 } 545 } 546 547 void CppWriter::printType(Type* Ty) { 548 // We don't print definitions for primitive types 549 if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() || 550 Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy()) 551 return; 552 553 // If we already defined this type, we don't need to define it again. 554 if (DefinedTypes.find(Ty) != DefinedTypes.end()) 555 return; 556 557 // Everything below needs the name for the type so get it now. 558 std::string typeName(getCppName(Ty)); 559 560 // Print the type definition 561 switch (Ty->getTypeID()) { 562 case Type::FunctionTyID: { 563 FunctionType* FT = cast<FunctionType>(Ty); 564 Out << "std::vector<Type*>" << typeName << "_args;"; 565 nl(Out); 566 FunctionType::param_iterator PI = FT->param_begin(); 567 FunctionType::param_iterator PE = FT->param_end(); 568 for (; PI != PE; ++PI) { 569 Type* argTy = static_cast<Type*>(*PI); 570 printType(argTy); 571 std::string argName(getCppName(argTy)); 572 Out << typeName << "_args.push_back(" << argName; 573 Out << ");"; 574 nl(Out); 575 } 576 printType(FT->getReturnType()); 577 std::string retTypeName(getCppName(FT->getReturnType())); 578 Out << "FunctionType* " << typeName << " = FunctionType::get("; 579 in(); nl(Out) << "/*Result=*/" << retTypeName; 580 Out << ","; 581 nl(Out) << "/*Params=*/" << typeName << "_args,"; 582 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");"; 583 out(); 584 nl(Out); 585 break; 586 } 587 case Type::StructTyID: { 588 StructType* ST = cast<StructType>(Ty); 589 if (!ST->isLiteral()) { 590 Out << "StructType *" << typeName << " = mod->getTypeByName(\""; 591 printEscapedString(ST->getName()); 592 Out << "\");"; 593 nl(Out); 594 Out << "if (!" << typeName << ") {"; 595 nl(Out); 596 Out << typeName << " = "; 597 Out << "StructType::create(mod->getContext(), \""; 598 printEscapedString(ST->getName()); 599 Out << "\");"; 600 nl(Out); 601 Out << "}"; 602 nl(Out); 603 // Indicate that this type is now defined. 604 DefinedTypes.insert(Ty); 605 } 606 607 Out << "std::vector<Type*>" << typeName << "_fields;"; 608 nl(Out); 609 StructType::element_iterator EI = ST->element_begin(); 610 StructType::element_iterator EE = ST->element_end(); 611 for (; EI != EE; ++EI) { 612 Type* fieldTy = static_cast<Type*>(*EI); 613 printType(fieldTy); 614 std::string fieldName(getCppName(fieldTy)); 615 Out << typeName << "_fields.push_back(" << fieldName; 616 Out << ");"; 617 nl(Out); 618 } 619 620 if (ST->isLiteral()) { 621 Out << "StructType *" << typeName << " = "; 622 Out << "StructType::get(" << "mod->getContext(), "; 623 } else { 624 Out << "if (" << typeName << "->isOpaque()) {"; 625 nl(Out); 626 Out << typeName << "->setBody("; 627 } 628 629 Out << typeName << "_fields, /*isPacked=*/" 630 << (ST->isPacked() ? "true" : "false") << ");"; 631 nl(Out); 632 if (!ST->isLiteral()) { 633 Out << "}"; 634 nl(Out); 635 } 636 break; 637 } 638 case Type::ArrayTyID: { 639 ArrayType* AT = cast<ArrayType>(Ty); 640 Type* ET = AT->getElementType(); 641 printType(ET); 642 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 643 std::string elemName(getCppName(ET)); 644 Out << "ArrayType* " << typeName << " = ArrayType::get(" 645 << elemName 646 << ", " << utostr(AT->getNumElements()) << ");"; 647 nl(Out); 648 } 649 break; 650 } 651 case Type::PointerTyID: { 652 PointerType* PT = cast<PointerType>(Ty); 653 Type* ET = PT->getElementType(); 654 printType(ET); 655 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 656 std::string elemName(getCppName(ET)); 657 Out << "PointerType* " << typeName << " = PointerType::get(" 658 << elemName 659 << ", " << utostr(PT->getAddressSpace()) << ");"; 660 nl(Out); 661 } 662 break; 663 } 664 case Type::VectorTyID: { 665 VectorType* PT = cast<VectorType>(Ty); 666 Type* ET = PT->getElementType(); 667 printType(ET); 668 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 669 std::string elemName(getCppName(ET)); 670 Out << "VectorType* " << typeName << " = VectorType::get(" 671 << elemName 672 << ", " << utostr(PT->getNumElements()) << ");"; 673 nl(Out); 674 } 675 break; 676 } 677 default: 678 error("Invalid TypeID"); 679 } 680 681 // Indicate that this type is now defined. 682 DefinedTypes.insert(Ty); 683 684 // Finally, separate the type definition from other with a newline. 685 nl(Out); 686 } 687 688 void CppWriter::printTypes(const Module* M) { 689 // Add all of the global variables to the value table. 690 for (Module::const_global_iterator I = TheModule->global_begin(), 691 E = TheModule->global_end(); I != E; ++I) { 692 if (I->hasInitializer()) 693 printType(I->getInitializer()->getType()); 694 printType(I->getType()); 695 } 696 697 // Add all the functions to the table 698 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); 699 FI != FE; ++FI) { 700 printType(FI->getReturnType()); 701 printType(FI->getFunctionType()); 702 // Add all the function arguments 703 for (Function::const_arg_iterator AI = FI->arg_begin(), 704 AE = FI->arg_end(); AI != AE; ++AI) { 705 printType(AI->getType()); 706 } 707 708 // Add all of the basic blocks and instructions 709 for (Function::const_iterator BB = FI->begin(), 710 E = FI->end(); BB != E; ++BB) { 711 printType(BB->getType()); 712 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 713 ++I) { 714 printType(I->getType()); 715 for (unsigned i = 0; i < I->getNumOperands(); ++i) 716 printType(I->getOperand(i)->getType()); 717 } 718 } 719 } 720 } 721 722 723 // printConstant - Print out a constant pool entry... 724 void CppWriter::printConstant(const Constant *CV) { 725 // First, if the constant is actually a GlobalValue (variable or function) 726 // or its already in the constant list then we've printed it already and we 727 // can just return. 728 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end()) 729 return; 730 731 std::string constName(getCppName(CV)); 732 std::string typeName(getCppName(CV->getType())); 733 734 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 735 std::string constValue = CI->getValue().toString(10, true); 736 Out << "ConstantInt* " << constName 737 << " = ConstantInt::get(mod->getContext(), APInt(" 738 << cast<IntegerType>(CI->getType())->getBitWidth() 739 << ", StringRef(\"" << constValue << "\"), 10));"; 740 } else if (isa<ConstantAggregateZero>(CV)) { 741 Out << "ConstantAggregateZero* " << constName 742 << " = ConstantAggregateZero::get(" << typeName << ");"; 743 } else if (isa<ConstantPointerNull>(CV)) { 744 Out << "ConstantPointerNull* " << constName 745 << " = ConstantPointerNull::get(" << typeName << ");"; 746 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 747 Out << "ConstantFP* " << constName << " = "; 748 printCFP(CFP); 749 Out << ";"; 750 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 751 Out << "std::vector<Constant*> " << constName << "_elems;"; 752 nl(Out); 753 unsigned N = CA->getNumOperands(); 754 for (unsigned i = 0; i < N; ++i) { 755 printConstant(CA->getOperand(i)); // recurse to print operands 756 Out << constName << "_elems.push_back(" 757 << getCppName(CA->getOperand(i)) << ");"; 758 nl(Out); 759 } 760 Out << "Constant* " << constName << " = ConstantArray::get(" 761 << typeName << ", " << constName << "_elems);"; 762 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 763 Out << "std::vector<Constant*> " << constName << "_fields;"; 764 nl(Out); 765 unsigned N = CS->getNumOperands(); 766 for (unsigned i = 0; i < N; i++) { 767 printConstant(CS->getOperand(i)); 768 Out << constName << "_fields.push_back(" 769 << getCppName(CS->getOperand(i)) << ");"; 770 nl(Out); 771 } 772 Out << "Constant* " << constName << " = ConstantStruct::get(" 773 << typeName << ", " << constName << "_fields);"; 774 } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) { 775 Out << "std::vector<Constant*> " << constName << "_elems;"; 776 nl(Out); 777 unsigned N = CVec->getNumOperands(); 778 for (unsigned i = 0; i < N; ++i) { 779 printConstant(CVec->getOperand(i)); 780 Out << constName << "_elems.push_back(" 781 << getCppName(CVec->getOperand(i)) << ");"; 782 nl(Out); 783 } 784 Out << "Constant* " << constName << " = ConstantVector::get(" 785 << typeName << ", " << constName << "_elems);"; 786 } else if (isa<UndefValue>(CV)) { 787 Out << "UndefValue* " << constName << " = UndefValue::get(" 788 << typeName << ");"; 789 } else if (const ConstantDataSequential *CDS = 790 dyn_cast<ConstantDataSequential>(CV)) { 791 if (CDS->isString()) { 792 Out << "Constant *" << constName << 793 " = ConstantDataArray::getString(mod->getContext(), \""; 794 StringRef Str = CDS->getAsString(); 795 bool nullTerminate = false; 796 if (Str.back() == 0) { 797 Str = Str.drop_back(); 798 nullTerminate = true; 799 } 800 printEscapedString(Str); 801 // Determine if we want null termination or not. 802 if (nullTerminate) 803 Out << "\", true);"; 804 else 805 Out << "\", false);";// No null terminator 806 } else { 807 // TODO: Could generate more efficient code generating CDS calls instead. 808 Out << "std::vector<Constant*> " << constName << "_elems;"; 809 nl(Out); 810 for (unsigned i = 0; i != CDS->getNumElements(); ++i) { 811 Constant *Elt = CDS->getElementAsConstant(i); 812 printConstant(Elt); 813 Out << constName << "_elems.push_back(" << getCppName(Elt) << ");"; 814 nl(Out); 815 } 816 Out << "Constant* " << constName; 817 818 if (isa<ArrayType>(CDS->getType())) 819 Out << " = ConstantArray::get("; 820 else 821 Out << " = ConstantVector::get("; 822 Out << typeName << ", " << constName << "_elems);"; 823 } 824 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 825 if (CE->getOpcode() == Instruction::GetElementPtr) { 826 Out << "std::vector<Constant*> " << constName << "_indices;"; 827 nl(Out); 828 printConstant(CE->getOperand(0)); 829 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) { 830 printConstant(CE->getOperand(i)); 831 Out << constName << "_indices.push_back(" 832 << getCppName(CE->getOperand(i)) << ");"; 833 nl(Out); 834 } 835 Out << "Constant* " << constName 836 << " = ConstantExpr::getGetElementPtr(" 837 << getCppName(CE->getOperand(0)) << ", " 838 << constName << "_indices);"; 839 } else if (CE->isCast()) { 840 printConstant(CE->getOperand(0)); 841 Out << "Constant* " << constName << " = ConstantExpr::getCast("; 842 switch (CE->getOpcode()) { 843 default: llvm_unreachable("Invalid cast opcode"); 844 case Instruction::Trunc: Out << "Instruction::Trunc"; break; 845 case Instruction::ZExt: Out << "Instruction::ZExt"; break; 846 case Instruction::SExt: Out << "Instruction::SExt"; break; 847 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break; 848 case Instruction::FPExt: Out << "Instruction::FPExt"; break; 849 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break; 850 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break; 851 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break; 852 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break; 853 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break; 854 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break; 855 case Instruction::BitCast: Out << "Instruction::BitCast"; break; 856 } 857 Out << ", " << getCppName(CE->getOperand(0)) << ", " 858 << getCppName(CE->getType()) << ");"; 859 } else { 860 unsigned N = CE->getNumOperands(); 861 for (unsigned i = 0; i < N; ++i ) { 862 printConstant(CE->getOperand(i)); 863 } 864 Out << "Constant* " << constName << " = ConstantExpr::"; 865 switch (CE->getOpcode()) { 866 case Instruction::Add: Out << "getAdd("; break; 867 case Instruction::FAdd: Out << "getFAdd("; break; 868 case Instruction::Sub: Out << "getSub("; break; 869 case Instruction::FSub: Out << "getFSub("; break; 870 case Instruction::Mul: Out << "getMul("; break; 871 case Instruction::FMul: Out << "getFMul("; break; 872 case Instruction::UDiv: Out << "getUDiv("; break; 873 case Instruction::SDiv: Out << "getSDiv("; break; 874 case Instruction::FDiv: Out << "getFDiv("; break; 875 case Instruction::URem: Out << "getURem("; break; 876 case Instruction::SRem: Out << "getSRem("; break; 877 case Instruction::FRem: Out << "getFRem("; break; 878 case Instruction::And: Out << "getAnd("; break; 879 case Instruction::Or: Out << "getOr("; break; 880 case Instruction::Xor: Out << "getXor("; break; 881 case Instruction::ICmp: 882 Out << "getICmp(ICmpInst::ICMP_"; 883 switch (CE->getPredicate()) { 884 case ICmpInst::ICMP_EQ: Out << "EQ"; break; 885 case ICmpInst::ICMP_NE: Out << "NE"; break; 886 case ICmpInst::ICMP_SLT: Out << "SLT"; break; 887 case ICmpInst::ICMP_ULT: Out << "ULT"; break; 888 case ICmpInst::ICMP_SGT: Out << "SGT"; break; 889 case ICmpInst::ICMP_UGT: Out << "UGT"; break; 890 case ICmpInst::ICMP_SLE: Out << "SLE"; break; 891 case ICmpInst::ICMP_ULE: Out << "ULE"; break; 892 case ICmpInst::ICMP_SGE: Out << "SGE"; break; 893 case ICmpInst::ICMP_UGE: Out << "UGE"; break; 894 default: error("Invalid ICmp Predicate"); 895 } 896 break; 897 case Instruction::FCmp: 898 Out << "getFCmp(FCmpInst::FCMP_"; 899 switch (CE->getPredicate()) { 900 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break; 901 case FCmpInst::FCMP_ORD: Out << "ORD"; break; 902 case FCmpInst::FCMP_UNO: Out << "UNO"; break; 903 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break; 904 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break; 905 case FCmpInst::FCMP_ONE: Out << "ONE"; break; 906 case FCmpInst::FCMP_UNE: Out << "UNE"; break; 907 case FCmpInst::FCMP_OLT: Out << "OLT"; break; 908 case FCmpInst::FCMP_ULT: Out << "ULT"; break; 909 case FCmpInst::FCMP_OGT: Out << "OGT"; break; 910 case FCmpInst::FCMP_UGT: Out << "UGT"; break; 911 case FCmpInst::FCMP_OLE: Out << "OLE"; break; 912 case FCmpInst::FCMP_ULE: Out << "ULE"; break; 913 case FCmpInst::FCMP_OGE: Out << "OGE"; break; 914 case FCmpInst::FCMP_UGE: Out << "UGE"; break; 915 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break; 916 default: error("Invalid FCmp Predicate"); 917 } 918 break; 919 case Instruction::Shl: Out << "getShl("; break; 920 case Instruction::LShr: Out << "getLShr("; break; 921 case Instruction::AShr: Out << "getAShr("; break; 922 case Instruction::Select: Out << "getSelect("; break; 923 case Instruction::ExtractElement: Out << "getExtractElement("; break; 924 case Instruction::InsertElement: Out << "getInsertElement("; break; 925 case Instruction::ShuffleVector: Out << "getShuffleVector("; break; 926 default: 927 error("Invalid constant expression"); 928 break; 929 } 930 Out << getCppName(CE->getOperand(0)); 931 for (unsigned i = 1; i < CE->getNumOperands(); ++i) 932 Out << ", " << getCppName(CE->getOperand(i)); 933 Out << ");"; 934 } 935 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 936 Out << "Constant* " << constName << " = "; 937 Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");"; 938 } else { 939 error("Bad Constant"); 940 Out << "Constant* " << constName << " = 0; "; 941 } 942 nl(Out); 943 } 944 945 void CppWriter::printConstants(const Module* M) { 946 // Traverse all the global variables looking for constant initializers 947 for (Module::const_global_iterator I = TheModule->global_begin(), 948 E = TheModule->global_end(); I != E; ++I) 949 if (I->hasInitializer()) 950 printConstant(I->getInitializer()); 951 952 // Traverse the LLVM functions looking for constants 953 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); 954 FI != FE; ++FI) { 955 // Add all of the basic blocks and instructions 956 for (Function::const_iterator BB = FI->begin(), 957 E = FI->end(); BB != E; ++BB) { 958 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 959 ++I) { 960 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 961 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) { 962 printConstant(C); 963 } 964 } 965 } 966 } 967 } 968 } 969 970 void CppWriter::printVariableUses(const GlobalVariable *GV) { 971 nl(Out) << "// Type Definitions"; 972 nl(Out); 973 printType(GV->getType()); 974 if (GV->hasInitializer()) { 975 const Constant *Init = GV->getInitializer(); 976 printType(Init->getType()); 977 if (const Function *F = dyn_cast<Function>(Init)) { 978 nl(Out)<< "/ Function Declarations"; nl(Out); 979 printFunctionHead(F); 980 } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) { 981 nl(Out) << "// Global Variable Declarations"; nl(Out); 982 printVariableHead(gv); 983 984 nl(Out) << "// Global Variable Definitions"; nl(Out); 985 printVariableBody(gv); 986 } else { 987 nl(Out) << "// Constant Definitions"; nl(Out); 988 printConstant(Init); 989 } 990 } 991 } 992 993 void CppWriter::printVariableHead(const GlobalVariable *GV) { 994 nl(Out) << "GlobalVariable* " << getCppName(GV); 995 if (is_inline) { 996 Out << " = mod->getGlobalVariable(mod->getContext(), "; 997 printEscapedString(GV->getName()); 998 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)"; 999 nl(Out) << "if (!" << getCppName(GV) << ") {"; 1000 in(); nl(Out) << getCppName(GV); 1001 } 1002 Out << " = new GlobalVariable(/*Module=*/*mod, "; 1003 nl(Out) << "/*Type=*/"; 1004 printCppName(GV->getType()->getElementType()); 1005 Out << ","; 1006 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false"); 1007 Out << ","; 1008 nl(Out) << "/*Linkage=*/"; 1009 printLinkageType(GV->getLinkage()); 1010 Out << ","; 1011 nl(Out) << "/*Initializer=*/0, "; 1012 if (GV->hasInitializer()) { 1013 Out << "// has initializer, specified below"; 1014 } 1015 nl(Out) << "/*Name=*/\""; 1016 printEscapedString(GV->getName()); 1017 Out << "\");"; 1018 nl(Out); 1019 1020 if (GV->hasSection()) { 1021 printCppName(GV); 1022 Out << "->setSection(\""; 1023 printEscapedString(GV->getSection()); 1024 Out << "\");"; 1025 nl(Out); 1026 } 1027 if (GV->getAlignment()) { 1028 printCppName(GV); 1029 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");"; 1030 nl(Out); 1031 } 1032 if (GV->getVisibility() != GlobalValue::DefaultVisibility) { 1033 printCppName(GV); 1034 Out << "->setVisibility("; 1035 printVisibilityType(GV->getVisibility()); 1036 Out << ");"; 1037 nl(Out); 1038 } 1039 if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 1040 printCppName(GV); 1041 Out << "->setDLLStorageClass("; 1042 printDLLStorageClassType(GV->getDLLStorageClass()); 1043 Out << ");"; 1044 nl(Out); 1045 } 1046 if (GV->isThreadLocal()) { 1047 printCppName(GV); 1048 Out << "->setThreadLocalMode("; 1049 printThreadLocalMode(GV->getThreadLocalMode()); 1050 Out << ");"; 1051 nl(Out); 1052 } 1053 if (is_inline) { 1054 out(); Out << "}"; nl(Out); 1055 } 1056 } 1057 1058 void CppWriter::printVariableBody(const GlobalVariable *GV) { 1059 if (GV->hasInitializer()) { 1060 printCppName(GV); 1061 Out << "->setInitializer("; 1062 Out << getCppName(GV->getInitializer()) << ");"; 1063 nl(Out); 1064 } 1065 } 1066 1067 std::string CppWriter::getOpName(const Value* V) { 1068 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end()) 1069 return getCppName(V); 1070 1071 // See if its alread in the map of forward references, if so just return the 1072 // name we already set up for it 1073 ForwardRefMap::const_iterator I = ForwardRefs.find(V); 1074 if (I != ForwardRefs.end()) 1075 return I->second; 1076 1077 // This is a new forward reference. Generate a unique name for it 1078 std::string result(std::string("fwdref_") + utostr(uniqueNum++)); 1079 1080 // Yes, this is a hack. An Argument is the smallest instantiable value that 1081 // we can make as a placeholder for the real value. We'll replace these 1082 // Argument instances later. 1083 Out << "Argument* " << result << " = new Argument(" 1084 << getCppName(V->getType()) << ");"; 1085 nl(Out); 1086 ForwardRefs[V] = result; 1087 return result; 1088 } 1089 1090 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) { 1091 switch (Ordering) { 1092 case NotAtomic: return "NotAtomic"; 1093 case Unordered: return "Unordered"; 1094 case Monotonic: return "Monotonic"; 1095 case Acquire: return "Acquire"; 1096 case Release: return "Release"; 1097 case AcquireRelease: return "AcquireRelease"; 1098 case SequentiallyConsistent: return "SequentiallyConsistent"; 1099 } 1100 llvm_unreachable("Unknown ordering"); 1101 } 1102 1103 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) { 1104 switch (SynchScope) { 1105 case SingleThread: return "SingleThread"; 1106 case CrossThread: return "CrossThread"; 1107 } 1108 llvm_unreachable("Unknown synch scope"); 1109 } 1110 1111 // printInstruction - This member is called for each Instruction in a function. 1112 void CppWriter::printInstruction(const Instruction *I, 1113 const std::string& bbname) { 1114 std::string iName(getCppName(I)); 1115 1116 // Before we emit this instruction, we need to take care of generating any 1117 // forward references. So, we get the names of all the operands in advance 1118 const unsigned Ops(I->getNumOperands()); 1119 std::string* opNames = new std::string[Ops]; 1120 for (unsigned i = 0; i < Ops; i++) 1121 opNames[i] = getOpName(I->getOperand(i)); 1122 1123 switch (I->getOpcode()) { 1124 default: 1125 error("Invalid instruction"); 1126 break; 1127 1128 case Instruction::Ret: { 1129 const ReturnInst* ret = cast<ReturnInst>(I); 1130 Out << "ReturnInst::Create(mod->getContext(), " 1131 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");"; 1132 break; 1133 } 1134 case Instruction::Br: { 1135 const BranchInst* br = cast<BranchInst>(I); 1136 Out << "BranchInst::Create(" ; 1137 if (br->getNumOperands() == 3) { 1138 Out << opNames[2] << ", " 1139 << opNames[1] << ", " 1140 << opNames[0] << ", "; 1141 1142 } else if (br->getNumOperands() == 1) { 1143 Out << opNames[0] << ", "; 1144 } else { 1145 error("Branch with 2 operands?"); 1146 } 1147 Out << bbname << ");"; 1148 break; 1149 } 1150 case Instruction::Switch: { 1151 const SwitchInst *SI = cast<SwitchInst>(I); 1152 Out << "SwitchInst* " << iName << " = SwitchInst::Create(" 1153 << getOpName(SI->getCondition()) << ", " 1154 << getOpName(SI->getDefaultDest()) << ", " 1155 << SI->getNumCases() << ", " << bbname << ");"; 1156 nl(Out); 1157 for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end(); 1158 i != e; ++i) { 1159 const ConstantInt* CaseVal = i.getCaseValue(); 1160 const BasicBlock *BB = i.getCaseSuccessor(); 1161 Out << iName << "->addCase(" 1162 << getOpName(CaseVal) << ", " 1163 << getOpName(BB) << ");"; 1164 nl(Out); 1165 } 1166 break; 1167 } 1168 case Instruction::IndirectBr: { 1169 const IndirectBrInst *IBI = cast<IndirectBrInst>(I); 1170 Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create(" 1171 << opNames[0] << ", " << IBI->getNumDestinations() << ");"; 1172 nl(Out); 1173 for (unsigned i = 1; i != IBI->getNumOperands(); ++i) { 1174 Out << iName << "->addDestination(" << opNames[i] << ");"; 1175 nl(Out); 1176 } 1177 break; 1178 } 1179 case Instruction::Resume: { 1180 Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");"; 1181 break; 1182 } 1183 case Instruction::Invoke: { 1184 const InvokeInst* inv = cast<InvokeInst>(I); 1185 Out << "std::vector<Value*> " << iName << "_params;"; 1186 nl(Out); 1187 for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) { 1188 Out << iName << "_params.push_back(" 1189 << getOpName(inv->getArgOperand(i)) << ");"; 1190 nl(Out); 1191 } 1192 // FIXME: This shouldn't use magic numbers -3, -2, and -1. 1193 Out << "InvokeInst *" << iName << " = InvokeInst::Create(" 1194 << getOpName(inv->getCalledValue()) << ", " 1195 << getOpName(inv->getNormalDest()) << ", " 1196 << getOpName(inv->getUnwindDest()) << ", " 1197 << iName << "_params, \""; 1198 printEscapedString(inv->getName()); 1199 Out << "\", " << bbname << ");"; 1200 nl(Out) << iName << "->setCallingConv("; 1201 printCallingConv(inv->getCallingConv()); 1202 Out << ");"; 1203 printAttributes(inv->getAttributes(), iName); 1204 Out << iName << "->setAttributes(" << iName << "_PAL);"; 1205 nl(Out); 1206 break; 1207 } 1208 case Instruction::Unreachable: { 1209 Out << "new UnreachableInst(" 1210 << "mod->getContext(), " 1211 << bbname << ");"; 1212 break; 1213 } 1214 case Instruction::Add: 1215 case Instruction::FAdd: 1216 case Instruction::Sub: 1217 case Instruction::FSub: 1218 case Instruction::Mul: 1219 case Instruction::FMul: 1220 case Instruction::UDiv: 1221 case Instruction::SDiv: 1222 case Instruction::FDiv: 1223 case Instruction::URem: 1224 case Instruction::SRem: 1225 case Instruction::FRem: 1226 case Instruction::And: 1227 case Instruction::Or: 1228 case Instruction::Xor: 1229 case Instruction::Shl: 1230 case Instruction::LShr: 1231 case Instruction::AShr:{ 1232 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create("; 1233 switch (I->getOpcode()) { 1234 case Instruction::Add: Out << "Instruction::Add"; break; 1235 case Instruction::FAdd: Out << "Instruction::FAdd"; break; 1236 case Instruction::Sub: Out << "Instruction::Sub"; break; 1237 case Instruction::FSub: Out << "Instruction::FSub"; break; 1238 case Instruction::Mul: Out << "Instruction::Mul"; break; 1239 case Instruction::FMul: Out << "Instruction::FMul"; break; 1240 case Instruction::UDiv:Out << "Instruction::UDiv"; break; 1241 case Instruction::SDiv:Out << "Instruction::SDiv"; break; 1242 case Instruction::FDiv:Out << "Instruction::FDiv"; break; 1243 case Instruction::URem:Out << "Instruction::URem"; break; 1244 case Instruction::SRem:Out << "Instruction::SRem"; break; 1245 case Instruction::FRem:Out << "Instruction::FRem"; break; 1246 case Instruction::And: Out << "Instruction::And"; break; 1247 case Instruction::Or: Out << "Instruction::Or"; break; 1248 case Instruction::Xor: Out << "Instruction::Xor"; break; 1249 case Instruction::Shl: Out << "Instruction::Shl"; break; 1250 case Instruction::LShr:Out << "Instruction::LShr"; break; 1251 case Instruction::AShr:Out << "Instruction::AShr"; break; 1252 default: Out << "Instruction::BadOpCode"; break; 1253 } 1254 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1255 printEscapedString(I->getName()); 1256 Out << "\", " << bbname << ");"; 1257 break; 1258 } 1259 case Instruction::FCmp: { 1260 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", "; 1261 switch (cast<FCmpInst>(I)->getPredicate()) { 1262 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break; 1263 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break; 1264 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break; 1265 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break; 1266 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break; 1267 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break; 1268 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break; 1269 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break; 1270 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break; 1271 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break; 1272 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break; 1273 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break; 1274 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break; 1275 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break; 1276 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break; 1277 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break; 1278 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break; 1279 } 1280 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1281 printEscapedString(I->getName()); 1282 Out << "\");"; 1283 break; 1284 } 1285 case Instruction::ICmp: { 1286 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", "; 1287 switch (cast<ICmpInst>(I)->getPredicate()) { 1288 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break; 1289 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break; 1290 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break; 1291 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break; 1292 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break; 1293 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break; 1294 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break; 1295 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break; 1296 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break; 1297 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break; 1298 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break; 1299 } 1300 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1301 printEscapedString(I->getName()); 1302 Out << "\");"; 1303 break; 1304 } 1305 case Instruction::Alloca: { 1306 const AllocaInst* allocaI = cast<AllocaInst>(I); 1307 Out << "AllocaInst* " << iName << " = new AllocaInst(" 1308 << getCppName(allocaI->getAllocatedType()) << ", "; 1309 if (allocaI->isArrayAllocation()) 1310 Out << opNames[0] << ", "; 1311 Out << "\""; 1312 printEscapedString(allocaI->getName()); 1313 Out << "\", " << bbname << ");"; 1314 if (allocaI->getAlignment()) 1315 nl(Out) << iName << "->setAlignment(" 1316 << allocaI->getAlignment() << ");"; 1317 break; 1318 } 1319 case Instruction::Load: { 1320 const LoadInst* load = cast<LoadInst>(I); 1321 Out << "LoadInst* " << iName << " = new LoadInst(" 1322 << opNames[0] << ", \""; 1323 printEscapedString(load->getName()); 1324 Out << "\", " << (load->isVolatile() ? "true" : "false" ) 1325 << ", " << bbname << ");"; 1326 if (load->getAlignment()) 1327 nl(Out) << iName << "->setAlignment(" 1328 << load->getAlignment() << ");"; 1329 if (load->isAtomic()) { 1330 StringRef Ordering = ConvertAtomicOrdering(load->getOrdering()); 1331 StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope()); 1332 nl(Out) << iName << "->setAtomic(" 1333 << Ordering << ", " << CrossThread << ");"; 1334 } 1335 break; 1336 } 1337 case Instruction::Store: { 1338 const StoreInst* store = cast<StoreInst>(I); 1339 Out << "StoreInst* " << iName << " = new StoreInst(" 1340 << opNames[0] << ", " 1341 << opNames[1] << ", " 1342 << (store->isVolatile() ? "true" : "false") 1343 << ", " << bbname << ");"; 1344 if (store->getAlignment()) 1345 nl(Out) << iName << "->setAlignment(" 1346 << store->getAlignment() << ");"; 1347 if (store->isAtomic()) { 1348 StringRef Ordering = ConvertAtomicOrdering(store->getOrdering()); 1349 StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope()); 1350 nl(Out) << iName << "->setAtomic(" 1351 << Ordering << ", " << CrossThread << ");"; 1352 } 1353 break; 1354 } 1355 case Instruction::GetElementPtr: { 1356 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I); 1357 if (gep->getNumOperands() <= 2) { 1358 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create(" 1359 << opNames[0]; 1360 if (gep->getNumOperands() == 2) 1361 Out << ", " << opNames[1]; 1362 } else { 1363 Out << "std::vector<Value*> " << iName << "_indices;"; 1364 nl(Out); 1365 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) { 1366 Out << iName << "_indices.push_back(" 1367 << opNames[i] << ");"; 1368 nl(Out); 1369 } 1370 Out << "Instruction* " << iName << " = GetElementPtrInst::Create(" 1371 << opNames[0] << ", " << iName << "_indices"; 1372 } 1373 Out << ", \""; 1374 printEscapedString(gep->getName()); 1375 Out << "\", " << bbname << ");"; 1376 break; 1377 } 1378 case Instruction::PHI: { 1379 const PHINode* phi = cast<PHINode>(I); 1380 1381 Out << "PHINode* " << iName << " = PHINode::Create(" 1382 << getCppName(phi->getType()) << ", " 1383 << phi->getNumIncomingValues() << ", \""; 1384 printEscapedString(phi->getName()); 1385 Out << "\", " << bbname << ");"; 1386 nl(Out); 1387 for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) { 1388 Out << iName << "->addIncoming(" 1389 << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", " 1390 << getOpName(phi->getIncomingBlock(i)) << ");"; 1391 nl(Out); 1392 } 1393 break; 1394 } 1395 case Instruction::Trunc: 1396 case Instruction::ZExt: 1397 case Instruction::SExt: 1398 case Instruction::FPTrunc: 1399 case Instruction::FPExt: 1400 case Instruction::FPToUI: 1401 case Instruction::FPToSI: 1402 case Instruction::UIToFP: 1403 case Instruction::SIToFP: 1404 case Instruction::PtrToInt: 1405 case Instruction::IntToPtr: 1406 case Instruction::BitCast: { 1407 const CastInst* cst = cast<CastInst>(I); 1408 Out << "CastInst* " << iName << " = new "; 1409 switch (I->getOpcode()) { 1410 case Instruction::Trunc: Out << "TruncInst"; break; 1411 case Instruction::ZExt: Out << "ZExtInst"; break; 1412 case Instruction::SExt: Out << "SExtInst"; break; 1413 case Instruction::FPTrunc: Out << "FPTruncInst"; break; 1414 case Instruction::FPExt: Out << "FPExtInst"; break; 1415 case Instruction::FPToUI: Out << "FPToUIInst"; break; 1416 case Instruction::FPToSI: Out << "FPToSIInst"; break; 1417 case Instruction::UIToFP: Out << "UIToFPInst"; break; 1418 case Instruction::SIToFP: Out << "SIToFPInst"; break; 1419 case Instruction::PtrToInt: Out << "PtrToIntInst"; break; 1420 case Instruction::IntToPtr: Out << "IntToPtrInst"; break; 1421 case Instruction::BitCast: Out << "BitCastInst"; break; 1422 default: llvm_unreachable("Unreachable"); 1423 } 1424 Out << "(" << opNames[0] << ", " 1425 << getCppName(cst->getType()) << ", \""; 1426 printEscapedString(cst->getName()); 1427 Out << "\", " << bbname << ");"; 1428 break; 1429 } 1430 case Instruction::Call: { 1431 const CallInst* call = cast<CallInst>(I); 1432 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) { 1433 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get(" 1434 << getCppName(ila->getFunctionType()) << ", \"" 1435 << ila->getAsmString() << "\", \"" 1436 << ila->getConstraintString() << "\"," 1437 << (ila->hasSideEffects() ? "true" : "false") << ");"; 1438 nl(Out); 1439 } 1440 if (call->getNumArgOperands() > 1) { 1441 Out << "std::vector<Value*> " << iName << "_params;"; 1442 nl(Out); 1443 for (unsigned i = 0; i < call->getNumArgOperands(); ++i) { 1444 Out << iName << "_params.push_back(" << opNames[i] << ");"; 1445 nl(Out); 1446 } 1447 Out << "CallInst* " << iName << " = CallInst::Create(" 1448 << opNames[call->getNumArgOperands()] << ", " 1449 << iName << "_params, \""; 1450 } else if (call->getNumArgOperands() == 1) { 1451 Out << "CallInst* " << iName << " = CallInst::Create(" 1452 << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \""; 1453 } else { 1454 Out << "CallInst* " << iName << " = CallInst::Create(" 1455 << opNames[call->getNumArgOperands()] << ", \""; 1456 } 1457 printEscapedString(call->getName()); 1458 Out << "\", " << bbname << ");"; 1459 nl(Out) << iName << "->setCallingConv("; 1460 printCallingConv(call->getCallingConv()); 1461 Out << ");"; 1462 nl(Out) << iName << "->setTailCall(" 1463 << (call->isTailCall() ? "true" : "false"); 1464 Out << ");"; 1465 nl(Out); 1466 printAttributes(call->getAttributes(), iName); 1467 Out << iName << "->setAttributes(" << iName << "_PAL);"; 1468 nl(Out); 1469 break; 1470 } 1471 case Instruction::Select: { 1472 const SelectInst* sel = cast<SelectInst>(I); 1473 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create("; 1474 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1475 printEscapedString(sel->getName()); 1476 Out << "\", " << bbname << ");"; 1477 break; 1478 } 1479 case Instruction::UserOp1: 1480 /// FALL THROUGH 1481 case Instruction::UserOp2: { 1482 /// FIXME: What should be done here? 1483 break; 1484 } 1485 case Instruction::VAArg: { 1486 const VAArgInst* va = cast<VAArgInst>(I); 1487 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst(" 1488 << opNames[0] << ", " << getCppName(va->getType()) << ", \""; 1489 printEscapedString(va->getName()); 1490 Out << "\", " << bbname << ");"; 1491 break; 1492 } 1493 case Instruction::ExtractElement: { 1494 const ExtractElementInst* eei = cast<ExtractElementInst>(I); 1495 Out << "ExtractElementInst* " << getCppName(eei) 1496 << " = new ExtractElementInst(" << opNames[0] 1497 << ", " << opNames[1] << ", \""; 1498 printEscapedString(eei->getName()); 1499 Out << "\", " << bbname << ");"; 1500 break; 1501 } 1502 case Instruction::InsertElement: { 1503 const InsertElementInst* iei = cast<InsertElementInst>(I); 1504 Out << "InsertElementInst* " << getCppName(iei) 1505 << " = InsertElementInst::Create(" << opNames[0] 1506 << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1507 printEscapedString(iei->getName()); 1508 Out << "\", " << bbname << ");"; 1509 break; 1510 } 1511 case Instruction::ShuffleVector: { 1512 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I); 1513 Out << "ShuffleVectorInst* " << getCppName(svi) 1514 << " = new ShuffleVectorInst(" << opNames[0] 1515 << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1516 printEscapedString(svi->getName()); 1517 Out << "\", " << bbname << ");"; 1518 break; 1519 } 1520 case Instruction::ExtractValue: { 1521 const ExtractValueInst *evi = cast<ExtractValueInst>(I); 1522 Out << "std::vector<unsigned> " << iName << "_indices;"; 1523 nl(Out); 1524 for (unsigned i = 0; i < evi->getNumIndices(); ++i) { 1525 Out << iName << "_indices.push_back(" 1526 << evi->idx_begin()[i] << ");"; 1527 nl(Out); 1528 } 1529 Out << "ExtractValueInst* " << getCppName(evi) 1530 << " = ExtractValueInst::Create(" << opNames[0] 1531 << ", " 1532 << iName << "_indices, \""; 1533 printEscapedString(evi->getName()); 1534 Out << "\", " << bbname << ");"; 1535 break; 1536 } 1537 case Instruction::InsertValue: { 1538 const InsertValueInst *ivi = cast<InsertValueInst>(I); 1539 Out << "std::vector<unsigned> " << iName << "_indices;"; 1540 nl(Out); 1541 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) { 1542 Out << iName << "_indices.push_back(" 1543 << ivi->idx_begin()[i] << ");"; 1544 nl(Out); 1545 } 1546 Out << "InsertValueInst* " << getCppName(ivi) 1547 << " = InsertValueInst::Create(" << opNames[0] 1548 << ", " << opNames[1] << ", " 1549 << iName << "_indices, \""; 1550 printEscapedString(ivi->getName()); 1551 Out << "\", " << bbname << ");"; 1552 break; 1553 } 1554 case Instruction::Fence: { 1555 const FenceInst *fi = cast<FenceInst>(I); 1556 StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering()); 1557 StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope()); 1558 Out << "FenceInst* " << iName 1559 << " = new FenceInst(mod->getContext(), " 1560 << Ordering << ", " << CrossThread << ", " << bbname 1561 << ");"; 1562 break; 1563 } 1564 case Instruction::AtomicCmpXchg: { 1565 const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I); 1566 StringRef SuccessOrdering = 1567 ConvertAtomicOrdering(cxi->getSuccessOrdering()); 1568 StringRef FailureOrdering = 1569 ConvertAtomicOrdering(cxi->getFailureOrdering()); 1570 StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope()); 1571 Out << "AtomicCmpXchgInst* " << iName 1572 << " = new AtomicCmpXchgInst(" 1573 << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", " 1574 << SuccessOrdering << ", " << FailureOrdering << ", " 1575 << CrossThread << ", " << bbname 1576 << ");"; 1577 nl(Out) << iName << "->setName(\""; 1578 printEscapedString(cxi->getName()); 1579 Out << "\");"; 1580 nl(Out) << iName << "->setVolatile(" 1581 << (cxi->isVolatile() ? "true" : "false") << ");"; 1582 nl(Out) << iName << "->setWeak(" 1583 << (cxi->isWeak() ? "true" : "false") << ");"; 1584 break; 1585 } 1586 case Instruction::AtomicRMW: { 1587 const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I); 1588 StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering()); 1589 StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope()); 1590 StringRef Operation; 1591 switch (rmwi->getOperation()) { 1592 case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break; 1593 case AtomicRMWInst::Add: Operation = "AtomicRMWInst::Add"; break; 1594 case AtomicRMWInst::Sub: Operation = "AtomicRMWInst::Sub"; break; 1595 case AtomicRMWInst::And: Operation = "AtomicRMWInst::And"; break; 1596 case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break; 1597 case AtomicRMWInst::Or: Operation = "AtomicRMWInst::Or"; break; 1598 case AtomicRMWInst::Xor: Operation = "AtomicRMWInst::Xor"; break; 1599 case AtomicRMWInst::Max: Operation = "AtomicRMWInst::Max"; break; 1600 case AtomicRMWInst::Min: Operation = "AtomicRMWInst::Min"; break; 1601 case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break; 1602 case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break; 1603 case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation"); 1604 } 1605 Out << "AtomicRMWInst* " << iName 1606 << " = new AtomicRMWInst(" 1607 << Operation << ", " 1608 << opNames[0] << ", " << opNames[1] << ", " 1609 << Ordering << ", " << CrossThread << ", " << bbname 1610 << ");"; 1611 nl(Out) << iName << "->setName(\""; 1612 printEscapedString(rmwi->getName()); 1613 Out << "\");"; 1614 nl(Out) << iName << "->setVolatile(" 1615 << (rmwi->isVolatile() ? "true" : "false") << ");"; 1616 break; 1617 } 1618 case Instruction::LandingPad: { 1619 const LandingPadInst *lpi = cast<LandingPadInst>(I); 1620 Out << "LandingPadInst* " << iName << " = LandingPadInst::Create("; 1621 printCppName(lpi->getType()); 1622 Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \""; 1623 printEscapedString(lpi->getName()); 1624 Out << "\", " << bbname << ");"; 1625 nl(Out) << iName << "->setCleanup(" 1626 << (lpi->isCleanup() ? "true" : "false") 1627 << ");"; 1628 for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i) 1629 nl(Out) << iName << "->addClause(" << opNames[i+1] << ");"; 1630 break; 1631 } 1632 } 1633 DefinedValues.insert(I); 1634 nl(Out); 1635 delete [] opNames; 1636 } 1637 1638 // Print out the types, constants and declarations needed by one function 1639 void CppWriter::printFunctionUses(const Function* F) { 1640 nl(Out) << "// Type Definitions"; nl(Out); 1641 if (!is_inline) { 1642 // Print the function's return type 1643 printType(F->getReturnType()); 1644 1645 // Print the function's function type 1646 printType(F->getFunctionType()); 1647 1648 // Print the types of each of the function's arguments 1649 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1650 AI != AE; ++AI) { 1651 printType(AI->getType()); 1652 } 1653 } 1654 1655 // Print type definitions for every type referenced by an instruction and 1656 // make a note of any global values or constants that are referenced 1657 SmallPtrSet<GlobalValue*,64> gvs; 1658 SmallPtrSet<Constant*,64> consts; 1659 for (Function::const_iterator BB = F->begin(), BE = F->end(); 1660 BB != BE; ++BB){ 1661 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1662 I != E; ++I) { 1663 // Print the type of the instruction itself 1664 printType(I->getType()); 1665 1666 // Print the type of each of the instruction's operands 1667 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 1668 Value* operand = I->getOperand(i); 1669 printType(operand->getType()); 1670 1671 // If the operand references a GVal or Constant, make a note of it 1672 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { 1673 gvs.insert(GV); 1674 if (GenerationType != GenFunction) 1675 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1676 if (GVar->hasInitializer()) 1677 consts.insert(GVar->getInitializer()); 1678 } else if (Constant* C = dyn_cast<Constant>(operand)) { 1679 consts.insert(C); 1680 for (unsigned j = 0; j < C->getNumOperands(); ++j) { 1681 // If the operand references a GVal or Constant, make a note of it 1682 Value* operand = C->getOperand(j); 1683 printType(operand->getType()); 1684 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { 1685 gvs.insert(GV); 1686 if (GenerationType != GenFunction) 1687 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1688 if (GVar->hasInitializer()) 1689 consts.insert(GVar->getInitializer()); 1690 } 1691 } 1692 } 1693 } 1694 } 1695 } 1696 1697 // Print the function declarations for any functions encountered 1698 nl(Out) << "// Function Declarations"; nl(Out); 1699 for (auto *GV : gvs) { 1700 if (Function *Fun = dyn_cast<Function>(GV)) { 1701 if (!is_inline || Fun != F) 1702 printFunctionHead(Fun); 1703 } 1704 } 1705 1706 // Print the global variable declarations for any variables encountered 1707 nl(Out) << "// Global Variable Declarations"; nl(Out); 1708 for (auto *GV : gvs) { 1709 if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV)) 1710 printVariableHead(F); 1711 } 1712 1713 // Print the constants found 1714 nl(Out) << "// Constant Definitions"; nl(Out); 1715 for (const auto *C : consts) { 1716 printConstant(C); 1717 } 1718 1719 // Process the global variables definitions now that all the constants have 1720 // been emitted. These definitions just couple the gvars with their constant 1721 // initializers. 1722 if (GenerationType != GenFunction) { 1723 nl(Out) << "// Global Variable Definitions"; nl(Out); 1724 for (const auto &GV : gvs) { 1725 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) 1726 printVariableBody(Var); 1727 } 1728 } 1729 } 1730 1731 void CppWriter::printFunctionHead(const Function* F) { 1732 nl(Out) << "Function* " << getCppName(F); 1733 Out << " = mod->getFunction(\""; 1734 printEscapedString(F->getName()); 1735 Out << "\");"; 1736 nl(Out) << "if (!" << getCppName(F) << ") {"; 1737 nl(Out) << getCppName(F); 1738 1739 Out<< " = Function::Create("; 1740 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ","; 1741 nl(Out) << "/*Linkage=*/"; 1742 printLinkageType(F->getLinkage()); 1743 Out << ","; 1744 nl(Out) << "/*Name=*/\""; 1745 printEscapedString(F->getName()); 1746 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : ""); 1747 nl(Out,-1); 1748 printCppName(F); 1749 Out << "->setCallingConv("; 1750 printCallingConv(F->getCallingConv()); 1751 Out << ");"; 1752 nl(Out); 1753 if (F->hasSection()) { 1754 printCppName(F); 1755 Out << "->setSection(\"" << F->getSection() << "\");"; 1756 nl(Out); 1757 } 1758 if (F->getAlignment()) { 1759 printCppName(F); 1760 Out << "->setAlignment(" << F->getAlignment() << ");"; 1761 nl(Out); 1762 } 1763 if (F->getVisibility() != GlobalValue::DefaultVisibility) { 1764 printCppName(F); 1765 Out << "->setVisibility("; 1766 printVisibilityType(F->getVisibility()); 1767 Out << ");"; 1768 nl(Out); 1769 } 1770 if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 1771 printCppName(F); 1772 Out << "->setDLLStorageClass("; 1773 printDLLStorageClassType(F->getDLLStorageClass()); 1774 Out << ");"; 1775 nl(Out); 1776 } 1777 if (F->hasGC()) { 1778 printCppName(F); 1779 Out << "->setGC(\"" << F->getGC() << "\");"; 1780 nl(Out); 1781 } 1782 Out << "}"; 1783 nl(Out); 1784 printAttributes(F->getAttributes(), getCppName(F)); 1785 printCppName(F); 1786 Out << "->setAttributes(" << getCppName(F) << "_PAL);"; 1787 nl(Out); 1788 } 1789 1790 void CppWriter::printFunctionBody(const Function *F) { 1791 if (F->isDeclaration()) 1792 return; // external functions have no bodies. 1793 1794 // Clear the DefinedValues and ForwardRefs maps because we can't have 1795 // cross-function forward refs 1796 ForwardRefs.clear(); 1797 DefinedValues.clear(); 1798 1799 // Create all the argument values 1800 if (!is_inline) { 1801 if (!F->arg_empty()) { 1802 Out << "Function::arg_iterator args = " << getCppName(F) 1803 << "->arg_begin();"; 1804 nl(Out); 1805 } 1806 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1807 AI != AE; ++AI) { 1808 Out << "Value* " << getCppName(AI) << " = args++;"; 1809 nl(Out); 1810 if (AI->hasName()) { 1811 Out << getCppName(AI) << "->setName(\""; 1812 printEscapedString(AI->getName()); 1813 Out << "\");"; 1814 nl(Out); 1815 } 1816 } 1817 } 1818 1819 // Create all the basic blocks 1820 nl(Out); 1821 for (Function::const_iterator BI = F->begin(), BE = F->end(); 1822 BI != BE; ++BI) { 1823 std::string bbname(getCppName(BI)); 1824 Out << "BasicBlock* " << bbname << 1825 " = BasicBlock::Create(mod->getContext(), \""; 1826 if (BI->hasName()) 1827 printEscapedString(BI->getName()); 1828 Out << "\"," << getCppName(BI->getParent()) << ",0);"; 1829 nl(Out); 1830 } 1831 1832 // Output all of its basic blocks... for the function 1833 for (Function::const_iterator BI = F->begin(), BE = F->end(); 1834 BI != BE; ++BI) { 1835 std::string bbname(getCppName(BI)); 1836 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")"; 1837 nl(Out); 1838 1839 // Output all of the instructions in the basic block... 1840 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); 1841 I != E; ++I) { 1842 printInstruction(I,bbname); 1843 } 1844 } 1845 1846 // Loop over the ForwardRefs and resolve them now that all instructions 1847 // are generated. 1848 if (!ForwardRefs.empty()) { 1849 nl(Out) << "// Resolve Forward References"; 1850 nl(Out); 1851 } 1852 1853 while (!ForwardRefs.empty()) { 1854 ForwardRefMap::iterator I = ForwardRefs.begin(); 1855 Out << I->second << "->replaceAllUsesWith(" 1856 << getCppName(I->first) << "); delete " << I->second << ";"; 1857 nl(Out); 1858 ForwardRefs.erase(I); 1859 } 1860 } 1861 1862 void CppWriter::printInline(const std::string& fname, 1863 const std::string& func) { 1864 const Function* F = TheModule->getFunction(func); 1865 if (!F) { 1866 error(std::string("Function '") + func + "' not found in input module"); 1867 return; 1868 } 1869 if (F->isDeclaration()) { 1870 error(std::string("Function '") + func + "' is external!"); 1871 return; 1872 } 1873 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *" 1874 << getCppName(F); 1875 unsigned arg_count = 1; 1876 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1877 AI != AE; ++AI) { 1878 Out << ", Value* arg_" << arg_count++; 1879 } 1880 Out << ") {"; 1881 nl(Out); 1882 is_inline = true; 1883 printFunctionUses(F); 1884 printFunctionBody(F); 1885 is_inline = false; 1886 Out << "return " << getCppName(F->begin()) << ";"; 1887 nl(Out) << "}"; 1888 nl(Out); 1889 } 1890 1891 void CppWriter::printModuleBody() { 1892 // Print out all the type definitions 1893 nl(Out) << "// Type Definitions"; nl(Out); 1894 printTypes(TheModule); 1895 1896 // Functions can call each other and global variables can reference them so 1897 // define all the functions first before emitting their function bodies. 1898 nl(Out) << "// Function Declarations"; nl(Out); 1899 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); 1900 I != E; ++I) 1901 printFunctionHead(I); 1902 1903 // Process the global variables declarations. We can't initialze them until 1904 // after the constants are printed so just print a header for each global 1905 nl(Out) << "// Global Variable Declarations\n"; nl(Out); 1906 for (Module::const_global_iterator I = TheModule->global_begin(), 1907 E = TheModule->global_end(); I != E; ++I) { 1908 printVariableHead(I); 1909 } 1910 1911 // Print out all the constants definitions. Constants don't recurse except 1912 // through GlobalValues. All GlobalValues have been declared at this point 1913 // so we can proceed to generate the constants. 1914 nl(Out) << "// Constant Definitions"; nl(Out); 1915 printConstants(TheModule); 1916 1917 // Process the global variables definitions now that all the constants have 1918 // been emitted. These definitions just couple the gvars with their constant 1919 // initializers. 1920 nl(Out) << "// Global Variable Definitions"; nl(Out); 1921 for (Module::const_global_iterator I = TheModule->global_begin(), 1922 E = TheModule->global_end(); I != E; ++I) { 1923 printVariableBody(I); 1924 } 1925 1926 // Finally, we can safely put out all of the function bodies. 1927 nl(Out) << "// Function Definitions"; nl(Out); 1928 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); 1929 I != E; ++I) { 1930 if (!I->isDeclaration()) { 1931 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I) 1932 << ")"; 1933 nl(Out) << "{"; 1934 nl(Out,1); 1935 printFunctionBody(I); 1936 nl(Out,-1) << "}"; 1937 nl(Out); 1938 } 1939 } 1940 } 1941 1942 void CppWriter::printProgram(const std::string& fname, 1943 const std::string& mName) { 1944 Out << "#include <llvm/Pass.h>\n"; 1945 Out << "#include <llvm/PassManager.h>\n"; 1946 1947 Out << "#include <llvm/ADT/SmallVector.h>\n"; 1948 Out << "#include <llvm/Analysis/Verifier.h>\n"; 1949 Out << "#include <llvm/IR/BasicBlock.h>\n"; 1950 Out << "#include <llvm/IR/CallingConv.h>\n"; 1951 Out << "#include <llvm/IR/Constants.h>\n"; 1952 Out << "#include <llvm/IR/DerivedTypes.h>\n"; 1953 Out << "#include <llvm/IR/Function.h>\n"; 1954 Out << "#include <llvm/IR/GlobalVariable.h>\n"; 1955 Out << "#include <llvm/IR/IRPrintingPasses.h>\n"; 1956 Out << "#include <llvm/IR/InlineAsm.h>\n"; 1957 Out << "#include <llvm/IR/Instructions.h>\n"; 1958 Out << "#include <llvm/IR/LLVMContext.h>\n"; 1959 Out << "#include <llvm/IR/Module.h>\n"; 1960 Out << "#include <llvm/Support/FormattedStream.h>\n"; 1961 Out << "#include <llvm/Support/MathExtras.h>\n"; 1962 Out << "#include <algorithm>\n"; 1963 Out << "using namespace llvm;\n\n"; 1964 Out << "Module* " << fname << "();\n\n"; 1965 Out << "int main(int argc, char**argv) {\n"; 1966 Out << " Module* Mod = " << fname << "();\n"; 1967 Out << " verifyModule(*Mod, PrintMessageAction);\n"; 1968 Out << " PassManager PM;\n"; 1969 Out << " PM.add(createPrintModulePass(&outs()));\n"; 1970 Out << " PM.run(*Mod);\n"; 1971 Out << " return 0;\n"; 1972 Out << "}\n\n"; 1973 printModule(fname,mName); 1974 } 1975 1976 void CppWriter::printModule(const std::string& fname, 1977 const std::string& mName) { 1978 nl(Out) << "Module* " << fname << "() {"; 1979 nl(Out,1) << "// Module Construction"; 1980 nl(Out) << "Module* mod = new Module(\""; 1981 printEscapedString(mName); 1982 Out << "\", getGlobalContext());"; 1983 if (!TheModule->getTargetTriple().empty()) { 1984 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");"; 1985 } 1986 if (!TheModule->getTargetTriple().empty()) { 1987 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple() 1988 << "\");"; 1989 } 1990 1991 if (!TheModule->getModuleInlineAsm().empty()) { 1992 nl(Out) << "mod->setModuleInlineAsm(\""; 1993 printEscapedString(TheModule->getModuleInlineAsm()); 1994 Out << "\");"; 1995 } 1996 nl(Out); 1997 1998 printModuleBody(); 1999 nl(Out) << "return mod;"; 2000 nl(Out,-1) << "}"; 2001 nl(Out); 2002 } 2003 2004 void CppWriter::printContents(const std::string& fname, 2005 const std::string& mName) { 2006 Out << "\nModule* " << fname << "(Module *mod) {\n"; 2007 Out << "\nmod->setModuleIdentifier(\""; 2008 printEscapedString(mName); 2009 Out << "\");\n"; 2010 printModuleBody(); 2011 Out << "\nreturn mod;\n"; 2012 Out << "\n}\n"; 2013 } 2014 2015 void CppWriter::printFunction(const std::string& fname, 2016 const std::string& funcName) { 2017 const Function* F = TheModule->getFunction(funcName); 2018 if (!F) { 2019 error(std::string("Function '") + funcName + "' not found in input module"); 2020 return; 2021 } 2022 Out << "\nFunction* " << fname << "(Module *mod) {\n"; 2023 printFunctionUses(F); 2024 printFunctionHead(F); 2025 printFunctionBody(F); 2026 Out << "return " << getCppName(F) << ";\n"; 2027 Out << "}\n"; 2028 } 2029 2030 void CppWriter::printFunctions() { 2031 const Module::FunctionListType &funcs = TheModule->getFunctionList(); 2032 Module::const_iterator I = funcs.begin(); 2033 Module::const_iterator IE = funcs.end(); 2034 2035 for (; I != IE; ++I) { 2036 const Function &func = *I; 2037 if (!func.isDeclaration()) { 2038 std::string name("define_"); 2039 name += func.getName(); 2040 printFunction(name, func.getName()); 2041 } 2042 } 2043 } 2044 2045 void CppWriter::printVariable(const std::string& fname, 2046 const std::string& varName) { 2047 const GlobalVariable* GV = TheModule->getNamedGlobal(varName); 2048 2049 if (!GV) { 2050 error(std::string("Variable '") + varName + "' not found in input module"); 2051 return; 2052 } 2053 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n"; 2054 printVariableUses(GV); 2055 printVariableHead(GV); 2056 printVariableBody(GV); 2057 Out << "return " << getCppName(GV) << ";\n"; 2058 Out << "}\n"; 2059 } 2060 2061 void CppWriter::printType(const std::string &fname, 2062 const std::string &typeName) { 2063 Type* Ty = TheModule->getTypeByName(typeName); 2064 if (!Ty) { 2065 error(std::string("Type '") + typeName + "' not found in input module"); 2066 return; 2067 } 2068 Out << "\nType* " << fname << "(Module *mod) {\n"; 2069 printType(Ty); 2070 Out << "return " << getCppName(Ty) << ";\n"; 2071 Out << "}\n"; 2072 } 2073 2074 bool CppWriter::runOnModule(Module &M) { 2075 TheModule = &M; 2076 2077 // Emit a header 2078 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n"; 2079 2080 // Get the name of the function we're supposed to generate 2081 std::string fname = FuncName.getValue(); 2082 2083 // Get the name of the thing we are to generate 2084 std::string tgtname = NameToGenerate.getValue(); 2085 if (GenerationType == GenModule || 2086 GenerationType == GenContents || 2087 GenerationType == GenProgram || 2088 GenerationType == GenFunctions) { 2089 if (tgtname == "!bad!") { 2090 if (M.getModuleIdentifier() == "-") 2091 tgtname = "<stdin>"; 2092 else 2093 tgtname = M.getModuleIdentifier(); 2094 } 2095 } else if (tgtname == "!bad!") 2096 error("You must use the -for option with -gen-{function,variable,type}"); 2097 2098 switch (WhatToGenerate(GenerationType)) { 2099 case GenProgram: 2100 if (fname.empty()) 2101 fname = "makeLLVMModule"; 2102 printProgram(fname,tgtname); 2103 break; 2104 case GenModule: 2105 if (fname.empty()) 2106 fname = "makeLLVMModule"; 2107 printModule(fname,tgtname); 2108 break; 2109 case GenContents: 2110 if (fname.empty()) 2111 fname = "makeLLVMModuleContents"; 2112 printContents(fname,tgtname); 2113 break; 2114 case GenFunction: 2115 if (fname.empty()) 2116 fname = "makeLLVMFunction"; 2117 printFunction(fname,tgtname); 2118 break; 2119 case GenFunctions: 2120 printFunctions(); 2121 break; 2122 case GenInline: 2123 if (fname.empty()) 2124 fname = "makeLLVMInline"; 2125 printInline(fname,tgtname); 2126 break; 2127 case GenVariable: 2128 if (fname.empty()) 2129 fname = "makeLLVMVariable"; 2130 printVariable(fname,tgtname); 2131 break; 2132 case GenType: 2133 if (fname.empty()) 2134 fname = "makeLLVMType"; 2135 printType(fname,tgtname); 2136 break; 2137 } 2138 2139 return false; 2140 } 2141 2142 char CppWriter::ID = 0; 2143 2144 //===----------------------------------------------------------------------===// 2145 // External Interface declaration 2146 //===----------------------------------------------------------------------===// 2147 2148 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM, 2149 formatted_raw_ostream &o, 2150 CodeGenFileType FileType, 2151 bool DisableVerify, 2152 AnalysisID StartAfter, 2153 AnalysisID StopAfter) { 2154 if (FileType != TargetMachine::CGFT_AssemblyFile) return true; 2155 PM.add(new CppWriter(o)); 2156 return false; 2157 } 2158