Home | History | Annotate | Download | only in CppBackend
      1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
     11 // LLVM IR interface. The input module is assumed to be verified.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CPPTargetMachine.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/ADT/StringExtras.h"
     18 #include "llvm/Config/config.h"
     19 #include "llvm/IR/CallingConv.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/InlineAsm.h"
     23 #include "llvm/IR/Instruction.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/MC/MCAsmInfo.h"
     27 #include "llvm/MC/MCInstrInfo.h"
     28 #include "llvm/MC/MCSubtargetInfo.h"
     29 #include "llvm/Pass.h"
     30 #include "llvm/PassManager.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/FormattedStream.h"
     34 #include "llvm/Support/TargetRegistry.h"
     35 #include <algorithm>
     36 #include <cctype>
     37 #include <cstdio>
     38 #include <map>
     39 #include <set>
     40 using namespace llvm;
     41 
     42 static cl::opt<std::string>
     43 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
     44          cl::value_desc("function name"));
     45 
     46 enum WhatToGenerate {
     47   GenProgram,
     48   GenModule,
     49   GenContents,
     50   GenFunction,
     51   GenFunctions,
     52   GenInline,
     53   GenVariable,
     54   GenType
     55 };
     56 
     57 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
     58   cl::desc("Choose what kind of output to generate"),
     59   cl::init(GenProgram),
     60   cl::values(
     61     clEnumValN(GenProgram,  "program",   "Generate a complete program"),
     62     clEnumValN(GenModule,   "module",    "Generate a module definition"),
     63     clEnumValN(GenContents, "contents",  "Generate contents of a module"),
     64     clEnumValN(GenFunction, "function",  "Generate a function definition"),
     65     clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
     66     clEnumValN(GenInline,   "inline",    "Generate an inline function"),
     67     clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
     68     clEnumValN(GenType,     "type",      "Generate a type definition"),
     69     clEnumValEnd
     70   )
     71 );
     72 
     73 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
     74   cl::desc("Specify the name of the thing to generate"),
     75   cl::init("!bad!"));
     76 
     77 extern "C" void LLVMInitializeCppBackendTarget() {
     78   // Register the target.
     79   RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
     80 }
     81 
     82 namespace {
     83   typedef std::vector<Type*> TypeList;
     84   typedef std::map<Type*,std::string> TypeMap;
     85   typedef std::map<const Value*,std::string> ValueMap;
     86   typedef std::set<std::string> NameSet;
     87   typedef std::set<Type*> TypeSet;
     88   typedef std::set<const Value*> ValueSet;
     89   typedef std::map<const Value*,std::string> ForwardRefMap;
     90 
     91   /// CppWriter - This class is the main chunk of code that converts an LLVM
     92   /// module to a C++ translation unit.
     93   class CppWriter : public ModulePass {
     94     formatted_raw_ostream &Out;
     95     const Module *TheModule;
     96     uint64_t uniqueNum;
     97     TypeMap TypeNames;
     98     ValueMap ValueNames;
     99     NameSet UsedNames;
    100     TypeSet DefinedTypes;
    101     ValueSet DefinedValues;
    102     ForwardRefMap ForwardRefs;
    103     bool is_inline;
    104     unsigned indent_level;
    105 
    106   public:
    107     static char ID;
    108     explicit CppWriter(formatted_raw_ostream &o) :
    109       ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
    110 
    111     const char *getPassName() const override { return "C++ backend"; }
    112 
    113     bool runOnModule(Module &M) override;
    114 
    115     void printProgram(const std::string& fname, const std::string& modName );
    116     void printModule(const std::string& fname, const std::string& modName );
    117     void printContents(const std::string& fname, const std::string& modName );
    118     void printFunction(const std::string& fname, const std::string& funcName );
    119     void printFunctions();
    120     void printInline(const std::string& fname, const std::string& funcName );
    121     void printVariable(const std::string& fname, const std::string& varName );
    122     void printType(const std::string& fname, const std::string& typeName );
    123 
    124     void error(const std::string& msg);
    125 
    126 
    127     formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
    128     inline void in() { indent_level++; }
    129     inline void out() { if (indent_level >0) indent_level--; }
    130 
    131   private:
    132     void printLinkageType(GlobalValue::LinkageTypes LT);
    133     void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
    134     void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType);
    135     void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
    136     void printCallingConv(CallingConv::ID cc);
    137     void printEscapedString(const std::string& str);
    138     void printCFP(const ConstantFP* CFP);
    139 
    140     std::string getCppName(Type* val);
    141     inline void printCppName(Type* val);
    142 
    143     std::string getCppName(const Value* val);
    144     inline void printCppName(const Value* val);
    145 
    146     void printAttributes(const AttributeSet &PAL, const std::string &name);
    147     void printType(Type* Ty);
    148     void printTypes(const Module* M);
    149 
    150     void printConstant(const Constant *CPV);
    151     void printConstants(const Module* M);
    152 
    153     void printVariableUses(const GlobalVariable *GV);
    154     void printVariableHead(const GlobalVariable *GV);
    155     void printVariableBody(const GlobalVariable *GV);
    156 
    157     void printFunctionUses(const Function *F);
    158     void printFunctionHead(const Function *F);
    159     void printFunctionBody(const Function *F);
    160     void printInstruction(const Instruction *I, const std::string& bbname);
    161     std::string getOpName(const Value*);
    162 
    163     void printModuleBody();
    164   };
    165 } // end anonymous namespace.
    166 
    167 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
    168   Out << '\n';
    169   if (delta >= 0 || indent_level >= unsigned(-delta))
    170     indent_level += delta;
    171   Out.indent(indent_level);
    172   return Out;
    173 }
    174 
    175 static inline void sanitize(std::string &str) {
    176   for (size_t i = 0; i < str.length(); ++i)
    177     if (!isalnum(str[i]) && str[i] != '_')
    178       str[i] = '_';
    179 }
    180 
    181 static std::string getTypePrefix(Type *Ty) {
    182   switch (Ty->getTypeID()) {
    183   case Type::VoidTyID:     return "void_";
    184   case Type::IntegerTyID:
    185     return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
    186   case Type::FloatTyID:    return "float_";
    187   case Type::DoubleTyID:   return "double_";
    188   case Type::LabelTyID:    return "label_";
    189   case Type::FunctionTyID: return "func_";
    190   case Type::StructTyID:   return "struct_";
    191   case Type::ArrayTyID:    return "array_";
    192   case Type::PointerTyID:  return "ptr_";
    193   case Type::VectorTyID:   return "packed_";
    194   default:                 return "other_";
    195   }
    196 }
    197 
    198 void CppWriter::error(const std::string& msg) {
    199   report_fatal_error(msg);
    200 }
    201 
    202 static inline std::string ftostr(const APFloat& V) {
    203   std::string Buf;
    204   if (&V.getSemantics() == &APFloat::IEEEdouble) {
    205     raw_string_ostream(Buf) << V.convertToDouble();
    206     return Buf;
    207   } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
    208     raw_string_ostream(Buf) << (double)V.convertToFloat();
    209     return Buf;
    210   }
    211   return "<unknown format in ftostr>"; // error
    212 }
    213 
    214 // printCFP - Print a floating point constant .. very carefully :)
    215 // This makes sure that conversion to/from floating yields the same binary
    216 // result so that we don't lose precision.
    217 void CppWriter::printCFP(const ConstantFP *CFP) {
    218   bool ignored;
    219   APFloat APF = APFloat(CFP->getValueAPF());  // copy
    220   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
    221     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
    222   Out << "ConstantFP::get(mod->getContext(), ";
    223   Out << "APFloat(";
    224 #if HAVE_PRINTF_A
    225   char Buffer[100];
    226   sprintf(Buffer, "%A", APF.convertToDouble());
    227   if ((!strncmp(Buffer, "0x", 2) ||
    228        !strncmp(Buffer, "-0x", 3) ||
    229        !strncmp(Buffer, "+0x", 3)) &&
    230       APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
    231     if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    232       Out << "BitsToDouble(" << Buffer << ")";
    233     else
    234       Out << "BitsToFloat((float)" << Buffer << ")";
    235     Out << ")";
    236   } else {
    237 #endif
    238     std::string StrVal = ftostr(CFP->getValueAPF());
    239 
    240     while (StrVal[0] == ' ')
    241       StrVal.erase(StrVal.begin());
    242 
    243     // Check to make sure that the stringized number is not some string like
    244     // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
    245     if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    246          ((StrVal[0] == '-' || StrVal[0] == '+') &&
    247           (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
    248         (CFP->isExactlyValue(atof(StrVal.c_str())))) {
    249       if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    250         Out <<  StrVal;
    251       else
    252         Out << StrVal << "f";
    253     } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    254       Out << "BitsToDouble(0x"
    255           << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
    256           << "ULL) /* " << StrVal << " */";
    257     else
    258       Out << "BitsToFloat(0x"
    259           << utohexstr((uint32_t)CFP->getValueAPF().
    260                                       bitcastToAPInt().getZExtValue())
    261           << "U) /* " << StrVal << " */";
    262     Out << ")";
    263 #if HAVE_PRINTF_A
    264   }
    265 #endif
    266   Out << ")";
    267 }
    268 
    269 void CppWriter::printCallingConv(CallingConv::ID cc){
    270   // Print the calling convention.
    271   switch (cc) {
    272   case CallingConv::C:     Out << "CallingConv::C"; break;
    273   case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
    274   case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
    275   case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
    276   default:                 Out << cc; break;
    277   }
    278 }
    279 
    280 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
    281   switch (LT) {
    282   case GlobalValue::InternalLinkage:
    283     Out << "GlobalValue::InternalLinkage"; break;
    284   case GlobalValue::PrivateLinkage:
    285     Out << "GlobalValue::PrivateLinkage"; break;
    286   case GlobalValue::AvailableExternallyLinkage:
    287     Out << "GlobalValue::AvailableExternallyLinkage "; break;
    288   case GlobalValue::LinkOnceAnyLinkage:
    289     Out << "GlobalValue::LinkOnceAnyLinkage "; break;
    290   case GlobalValue::LinkOnceODRLinkage:
    291     Out << "GlobalValue::LinkOnceODRLinkage "; break;
    292   case GlobalValue::WeakAnyLinkage:
    293     Out << "GlobalValue::WeakAnyLinkage"; break;
    294   case GlobalValue::WeakODRLinkage:
    295     Out << "GlobalValue::WeakODRLinkage"; break;
    296   case GlobalValue::AppendingLinkage:
    297     Out << "GlobalValue::AppendingLinkage"; break;
    298   case GlobalValue::ExternalLinkage:
    299     Out << "GlobalValue::ExternalLinkage"; break;
    300   case GlobalValue::ExternalWeakLinkage:
    301     Out << "GlobalValue::ExternalWeakLinkage"; break;
    302   case GlobalValue::CommonLinkage:
    303     Out << "GlobalValue::CommonLinkage"; break;
    304   }
    305 }
    306 
    307 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
    308   switch (VisType) {
    309   case GlobalValue::DefaultVisibility:
    310     Out << "GlobalValue::DefaultVisibility";
    311     break;
    312   case GlobalValue::HiddenVisibility:
    313     Out << "GlobalValue::HiddenVisibility";
    314     break;
    315   case GlobalValue::ProtectedVisibility:
    316     Out << "GlobalValue::ProtectedVisibility";
    317     break;
    318   }
    319 }
    320 
    321 void CppWriter::printDLLStorageClassType(
    322                                     GlobalValue::DLLStorageClassTypes DSCType) {
    323   switch (DSCType) {
    324   case GlobalValue::DefaultStorageClass:
    325     Out << "GlobalValue::DefaultStorageClass";
    326     break;
    327   case GlobalValue::DLLImportStorageClass:
    328     Out << "GlobalValue::DLLImportStorageClass";
    329     break;
    330   case GlobalValue::DLLExportStorageClass:
    331     Out << "GlobalValue::DLLExportStorageClass";
    332     break;
    333   }
    334 }
    335 
    336 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
    337   switch (TLM) {
    338     case GlobalVariable::NotThreadLocal:
    339       Out << "GlobalVariable::NotThreadLocal";
    340       break;
    341     case GlobalVariable::GeneralDynamicTLSModel:
    342       Out << "GlobalVariable::GeneralDynamicTLSModel";
    343       break;
    344     case GlobalVariable::LocalDynamicTLSModel:
    345       Out << "GlobalVariable::LocalDynamicTLSModel";
    346       break;
    347     case GlobalVariable::InitialExecTLSModel:
    348       Out << "GlobalVariable::InitialExecTLSModel";
    349       break;
    350     case GlobalVariable::LocalExecTLSModel:
    351       Out << "GlobalVariable::LocalExecTLSModel";
    352       break;
    353   }
    354 }
    355 
    356 // printEscapedString - Print each character of the specified string, escaping
    357 // it if it is not printable or if it is an escape char.
    358 void CppWriter::printEscapedString(const std::string &Str) {
    359   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    360     unsigned char C = Str[i];
    361     if (isprint(C) && C != '"' && C != '\\') {
    362       Out << C;
    363     } else {
    364       Out << "\\x"
    365           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
    366           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
    367     }
    368   }
    369 }
    370 
    371 std::string CppWriter::getCppName(Type* Ty) {
    372   switch (Ty->getTypeID()) {
    373   default:
    374     break;
    375   case Type::VoidTyID:
    376     return "Type::getVoidTy(mod->getContext())";
    377   case Type::IntegerTyID: {
    378     unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
    379     return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
    380   }
    381   case Type::X86_FP80TyID:
    382     return "Type::getX86_FP80Ty(mod->getContext())";
    383   case Type::FloatTyID:
    384     return "Type::getFloatTy(mod->getContext())";
    385   case Type::DoubleTyID:
    386     return "Type::getDoubleTy(mod->getContext())";
    387   case Type::LabelTyID:
    388     return "Type::getLabelTy(mod->getContext())";
    389   case Type::X86_MMXTyID:
    390     return "Type::getX86_MMXTy(mod->getContext())";
    391   }
    392 
    393   // Now, see if we've seen the type before and return that
    394   TypeMap::iterator I = TypeNames.find(Ty);
    395   if (I != TypeNames.end())
    396     return I->second;
    397 
    398   // Okay, let's build a new name for this type. Start with a prefix
    399   const char* prefix = nullptr;
    400   switch (Ty->getTypeID()) {
    401   case Type::FunctionTyID:    prefix = "FuncTy_"; break;
    402   case Type::StructTyID:      prefix = "StructTy_"; break;
    403   case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
    404   case Type::PointerTyID:     prefix = "PointerTy_"; break;
    405   case Type::VectorTyID:      prefix = "VectorTy_"; break;
    406   default:                    prefix = "OtherTy_"; break; // prevent breakage
    407   }
    408 
    409   // See if the type has a name in the symboltable and build accordingly
    410   std::string name;
    411   if (StructType *STy = dyn_cast<StructType>(Ty))
    412     if (STy->hasName())
    413       name = STy->getName();
    414 
    415   if (name.empty())
    416     name = utostr(uniqueNum++);
    417 
    418   name = std::string(prefix) + name;
    419   sanitize(name);
    420 
    421   // Save the name
    422   return TypeNames[Ty] = name;
    423 }
    424 
    425 void CppWriter::printCppName(Type* Ty) {
    426   printEscapedString(getCppName(Ty));
    427 }
    428 
    429 std::string CppWriter::getCppName(const Value* val) {
    430   std::string name;
    431   ValueMap::iterator I = ValueNames.find(val);
    432   if (I != ValueNames.end() && I->first == val)
    433     return  I->second;
    434 
    435   if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
    436     name = std::string("gvar_") +
    437       getTypePrefix(GV->getType()->getElementType());
    438   } else if (isa<Function>(val)) {
    439     name = std::string("func_");
    440   } else if (const Constant* C = dyn_cast<Constant>(val)) {
    441     name = std::string("const_") + getTypePrefix(C->getType());
    442   } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
    443     if (is_inline) {
    444       unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
    445                                       Function::const_arg_iterator(Arg)) + 1;
    446       name = std::string("arg_") + utostr(argNum);
    447       NameSet::iterator NI = UsedNames.find(name);
    448       if (NI != UsedNames.end())
    449         name += std::string("_") + utostr(uniqueNum++);
    450       UsedNames.insert(name);
    451       return ValueNames[val] = name;
    452     } else {
    453       name = getTypePrefix(val->getType());
    454     }
    455   } else {
    456     name = getTypePrefix(val->getType());
    457   }
    458   if (val->hasName())
    459     name += val->getName();
    460   else
    461     name += utostr(uniqueNum++);
    462   sanitize(name);
    463   NameSet::iterator NI = UsedNames.find(name);
    464   if (NI != UsedNames.end())
    465     name += std::string("_") + utostr(uniqueNum++);
    466   UsedNames.insert(name);
    467   return ValueNames[val] = name;
    468 }
    469 
    470 void CppWriter::printCppName(const Value* val) {
    471   printEscapedString(getCppName(val));
    472 }
    473 
    474 void CppWriter::printAttributes(const AttributeSet &PAL,
    475                                 const std::string &name) {
    476   Out << "AttributeSet " << name << "_PAL;";
    477   nl(Out);
    478   if (!PAL.isEmpty()) {
    479     Out << '{'; in(); nl(Out);
    480     Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
    481     Out << "AttributeSet PAS;"; in(); nl(Out);
    482     for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
    483       unsigned index = PAL.getSlotIndex(i);
    484       AttrBuilder attrs(PAL.getSlotAttributes(i), index);
    485       Out << "{"; in(); nl(Out);
    486       Out << "AttrBuilder B;"; nl(Out);
    487 
    488 #define HANDLE_ATTR(X)                                                  \
    489       if (attrs.contains(Attribute::X)) {                               \
    490         Out << "B.addAttribute(Attribute::" #X ");"; nl(Out);           \
    491         attrs.removeAttribute(Attribute::X);                            \
    492       }
    493 
    494       HANDLE_ATTR(SExt);
    495       HANDLE_ATTR(ZExt);
    496       HANDLE_ATTR(NoReturn);
    497       HANDLE_ATTR(InReg);
    498       HANDLE_ATTR(StructRet);
    499       HANDLE_ATTR(NoUnwind);
    500       HANDLE_ATTR(NoAlias);
    501       HANDLE_ATTR(ByVal);
    502       HANDLE_ATTR(InAlloca);
    503       HANDLE_ATTR(Nest);
    504       HANDLE_ATTR(ReadNone);
    505       HANDLE_ATTR(ReadOnly);
    506       HANDLE_ATTR(NoInline);
    507       HANDLE_ATTR(AlwaysInline);
    508       HANDLE_ATTR(OptimizeNone);
    509       HANDLE_ATTR(OptimizeForSize);
    510       HANDLE_ATTR(StackProtect);
    511       HANDLE_ATTR(StackProtectReq);
    512       HANDLE_ATTR(StackProtectStrong);
    513       HANDLE_ATTR(NoCapture);
    514       HANDLE_ATTR(NoRedZone);
    515       HANDLE_ATTR(NoImplicitFloat);
    516       HANDLE_ATTR(Naked);
    517       HANDLE_ATTR(InlineHint);
    518       HANDLE_ATTR(ReturnsTwice);
    519       HANDLE_ATTR(UWTable);
    520       HANDLE_ATTR(NonLazyBind);
    521       HANDLE_ATTR(MinSize);
    522 #undef HANDLE_ATTR
    523 
    524       if (attrs.contains(Attribute::StackAlignment)) {
    525         Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
    526         nl(Out);
    527         attrs.removeAttribute(Attribute::StackAlignment);
    528       }
    529 
    530       Out << "PAS = AttributeSet::get(mod->getContext(), ";
    531       if (index == ~0U)
    532         Out << "~0U,";
    533       else
    534         Out << index << "U,";
    535       Out << " B);"; out(); nl(Out);
    536       Out << "}"; out(); nl(Out);
    537       nl(Out);
    538       Out << "Attrs.push_back(PAS);"; nl(Out);
    539     }
    540     Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
    541     nl(Out);
    542     out(); nl(Out);
    543     Out << '}'; nl(Out);
    544   }
    545 }
    546 
    547 void CppWriter::printType(Type* Ty) {
    548   // We don't print definitions for primitive types
    549   if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
    550       Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy())
    551     return;
    552 
    553   // If we already defined this type, we don't need to define it again.
    554   if (DefinedTypes.find(Ty) != DefinedTypes.end())
    555     return;
    556 
    557   // Everything below needs the name for the type so get it now.
    558   std::string typeName(getCppName(Ty));
    559 
    560   // Print the type definition
    561   switch (Ty->getTypeID()) {
    562   case Type::FunctionTyID:  {
    563     FunctionType* FT = cast<FunctionType>(Ty);
    564     Out << "std::vector<Type*>" << typeName << "_args;";
    565     nl(Out);
    566     FunctionType::param_iterator PI = FT->param_begin();
    567     FunctionType::param_iterator PE = FT->param_end();
    568     for (; PI != PE; ++PI) {
    569       Type* argTy = static_cast<Type*>(*PI);
    570       printType(argTy);
    571       std::string argName(getCppName(argTy));
    572       Out << typeName << "_args.push_back(" << argName;
    573       Out << ");";
    574       nl(Out);
    575     }
    576     printType(FT->getReturnType());
    577     std::string retTypeName(getCppName(FT->getReturnType()));
    578     Out << "FunctionType* " << typeName << " = FunctionType::get(";
    579     in(); nl(Out) << "/*Result=*/" << retTypeName;
    580     Out << ",";
    581     nl(Out) << "/*Params=*/" << typeName << "_args,";
    582     nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
    583     out();
    584     nl(Out);
    585     break;
    586   }
    587   case Type::StructTyID: {
    588     StructType* ST = cast<StructType>(Ty);
    589     if (!ST->isLiteral()) {
    590       Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
    591       printEscapedString(ST->getName());
    592       Out << "\");";
    593       nl(Out);
    594       Out << "if (!" << typeName << ") {";
    595       nl(Out);
    596       Out << typeName << " = ";
    597       Out << "StructType::create(mod->getContext(), \"";
    598       printEscapedString(ST->getName());
    599       Out << "\");";
    600       nl(Out);
    601       Out << "}";
    602       nl(Out);
    603       // Indicate that this type is now defined.
    604       DefinedTypes.insert(Ty);
    605     }
    606 
    607     Out << "std::vector<Type*>" << typeName << "_fields;";
    608     nl(Out);
    609     StructType::element_iterator EI = ST->element_begin();
    610     StructType::element_iterator EE = ST->element_end();
    611     for (; EI != EE; ++EI) {
    612       Type* fieldTy = static_cast<Type*>(*EI);
    613       printType(fieldTy);
    614       std::string fieldName(getCppName(fieldTy));
    615       Out << typeName << "_fields.push_back(" << fieldName;
    616       Out << ");";
    617       nl(Out);
    618     }
    619 
    620     if (ST->isLiteral()) {
    621       Out << "StructType *" << typeName << " = ";
    622       Out << "StructType::get(" << "mod->getContext(), ";
    623     } else {
    624       Out << "if (" << typeName << "->isOpaque()) {";
    625       nl(Out);
    626       Out << typeName << "->setBody(";
    627     }
    628 
    629     Out << typeName << "_fields, /*isPacked=*/"
    630         << (ST->isPacked() ? "true" : "false") << ");";
    631     nl(Out);
    632     if (!ST->isLiteral()) {
    633       Out << "}";
    634       nl(Out);
    635     }
    636     break;
    637   }
    638   case Type::ArrayTyID: {
    639     ArrayType* AT = cast<ArrayType>(Ty);
    640     Type* ET = AT->getElementType();
    641     printType(ET);
    642     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    643       std::string elemName(getCppName(ET));
    644       Out << "ArrayType* " << typeName << " = ArrayType::get("
    645           << elemName
    646           << ", " << utostr(AT->getNumElements()) << ");";
    647       nl(Out);
    648     }
    649     break;
    650   }
    651   case Type::PointerTyID: {
    652     PointerType* PT = cast<PointerType>(Ty);
    653     Type* ET = PT->getElementType();
    654     printType(ET);
    655     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    656       std::string elemName(getCppName(ET));
    657       Out << "PointerType* " << typeName << " = PointerType::get("
    658           << elemName
    659           << ", " << utostr(PT->getAddressSpace()) << ");";
    660       nl(Out);
    661     }
    662     break;
    663   }
    664   case Type::VectorTyID: {
    665     VectorType* PT = cast<VectorType>(Ty);
    666     Type* ET = PT->getElementType();
    667     printType(ET);
    668     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    669       std::string elemName(getCppName(ET));
    670       Out << "VectorType* " << typeName << " = VectorType::get("
    671           << elemName
    672           << ", " << utostr(PT->getNumElements()) << ");";
    673       nl(Out);
    674     }
    675     break;
    676   }
    677   default:
    678     error("Invalid TypeID");
    679   }
    680 
    681   // Indicate that this type is now defined.
    682   DefinedTypes.insert(Ty);
    683 
    684   // Finally, separate the type definition from other with a newline.
    685   nl(Out);
    686 }
    687 
    688 void CppWriter::printTypes(const Module* M) {
    689   // Add all of the global variables to the value table.
    690   for (Module::const_global_iterator I = TheModule->global_begin(),
    691          E = TheModule->global_end(); I != E; ++I) {
    692     if (I->hasInitializer())
    693       printType(I->getInitializer()->getType());
    694     printType(I->getType());
    695   }
    696 
    697   // Add all the functions to the table
    698   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    699        FI != FE; ++FI) {
    700     printType(FI->getReturnType());
    701     printType(FI->getFunctionType());
    702     // Add all the function arguments
    703     for (Function::const_arg_iterator AI = FI->arg_begin(),
    704            AE = FI->arg_end(); AI != AE; ++AI) {
    705       printType(AI->getType());
    706     }
    707 
    708     // Add all of the basic blocks and instructions
    709     for (Function::const_iterator BB = FI->begin(),
    710            E = FI->end(); BB != E; ++BB) {
    711       printType(BB->getType());
    712       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    713            ++I) {
    714         printType(I->getType());
    715         for (unsigned i = 0; i < I->getNumOperands(); ++i)
    716           printType(I->getOperand(i)->getType());
    717       }
    718     }
    719   }
    720 }
    721 
    722 
    723 // printConstant - Print out a constant pool entry...
    724 void CppWriter::printConstant(const Constant *CV) {
    725   // First, if the constant is actually a GlobalValue (variable or function)
    726   // or its already in the constant list then we've printed it already and we
    727   // can just return.
    728   if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
    729     return;
    730 
    731   std::string constName(getCppName(CV));
    732   std::string typeName(getCppName(CV->getType()));
    733 
    734   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    735     std::string constValue = CI->getValue().toString(10, true);
    736     Out << "ConstantInt* " << constName
    737         << " = ConstantInt::get(mod->getContext(), APInt("
    738         << cast<IntegerType>(CI->getType())->getBitWidth()
    739         << ", StringRef(\"" <<  constValue << "\"), 10));";
    740   } else if (isa<ConstantAggregateZero>(CV)) {
    741     Out << "ConstantAggregateZero* " << constName
    742         << " = ConstantAggregateZero::get(" << typeName << ");";
    743   } else if (isa<ConstantPointerNull>(CV)) {
    744     Out << "ConstantPointerNull* " << constName
    745         << " = ConstantPointerNull::get(" << typeName << ");";
    746   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    747     Out << "ConstantFP* " << constName << " = ";
    748     printCFP(CFP);
    749     Out << ";";
    750   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    751     Out << "std::vector<Constant*> " << constName << "_elems;";
    752     nl(Out);
    753     unsigned N = CA->getNumOperands();
    754     for (unsigned i = 0; i < N; ++i) {
    755       printConstant(CA->getOperand(i)); // recurse to print operands
    756       Out << constName << "_elems.push_back("
    757           << getCppName(CA->getOperand(i)) << ");";
    758       nl(Out);
    759     }
    760     Out << "Constant* " << constName << " = ConstantArray::get("
    761         << typeName << ", " << constName << "_elems);";
    762   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    763     Out << "std::vector<Constant*> " << constName << "_fields;";
    764     nl(Out);
    765     unsigned N = CS->getNumOperands();
    766     for (unsigned i = 0; i < N; i++) {
    767       printConstant(CS->getOperand(i));
    768       Out << constName << "_fields.push_back("
    769           << getCppName(CS->getOperand(i)) << ");";
    770       nl(Out);
    771     }
    772     Out << "Constant* " << constName << " = ConstantStruct::get("
    773         << typeName << ", " << constName << "_fields);";
    774   } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
    775     Out << "std::vector<Constant*> " << constName << "_elems;";
    776     nl(Out);
    777     unsigned N = CVec->getNumOperands();
    778     for (unsigned i = 0; i < N; ++i) {
    779       printConstant(CVec->getOperand(i));
    780       Out << constName << "_elems.push_back("
    781           << getCppName(CVec->getOperand(i)) << ");";
    782       nl(Out);
    783     }
    784     Out << "Constant* " << constName << " = ConstantVector::get("
    785         << typeName << ", " << constName << "_elems);";
    786   } else if (isa<UndefValue>(CV)) {
    787     Out << "UndefValue* " << constName << " = UndefValue::get("
    788         << typeName << ");";
    789   } else if (const ConstantDataSequential *CDS =
    790                dyn_cast<ConstantDataSequential>(CV)) {
    791     if (CDS->isString()) {
    792       Out << "Constant *" << constName <<
    793       " = ConstantDataArray::getString(mod->getContext(), \"";
    794       StringRef Str = CDS->getAsString();
    795       bool nullTerminate = false;
    796       if (Str.back() == 0) {
    797         Str = Str.drop_back();
    798         nullTerminate = true;
    799       }
    800       printEscapedString(Str);
    801       // Determine if we want null termination or not.
    802       if (nullTerminate)
    803         Out << "\", true);";
    804       else
    805         Out << "\", false);";// No null terminator
    806     } else {
    807       // TODO: Could generate more efficient code generating CDS calls instead.
    808       Out << "std::vector<Constant*> " << constName << "_elems;";
    809       nl(Out);
    810       for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
    811         Constant *Elt = CDS->getElementAsConstant(i);
    812         printConstant(Elt);
    813         Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
    814         nl(Out);
    815       }
    816       Out << "Constant* " << constName;
    817 
    818       if (isa<ArrayType>(CDS->getType()))
    819         Out << " = ConstantArray::get(";
    820       else
    821         Out << " = ConstantVector::get(";
    822       Out << typeName << ", " << constName << "_elems);";
    823     }
    824   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    825     if (CE->getOpcode() == Instruction::GetElementPtr) {
    826       Out << "std::vector<Constant*> " << constName << "_indices;";
    827       nl(Out);
    828       printConstant(CE->getOperand(0));
    829       for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
    830         printConstant(CE->getOperand(i));
    831         Out << constName << "_indices.push_back("
    832             << getCppName(CE->getOperand(i)) << ");";
    833         nl(Out);
    834       }
    835       Out << "Constant* " << constName
    836           << " = ConstantExpr::getGetElementPtr("
    837           << getCppName(CE->getOperand(0)) << ", "
    838           << constName << "_indices);";
    839     } else if (CE->isCast()) {
    840       printConstant(CE->getOperand(0));
    841       Out << "Constant* " << constName << " = ConstantExpr::getCast(";
    842       switch (CE->getOpcode()) {
    843       default: llvm_unreachable("Invalid cast opcode");
    844       case Instruction::Trunc: Out << "Instruction::Trunc"; break;
    845       case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
    846       case Instruction::SExt:  Out << "Instruction::SExt"; break;
    847       case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
    848       case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
    849       case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
    850       case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
    851       case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
    852       case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
    853       case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
    854       case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
    855       case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
    856       }
    857       Out << ", " << getCppName(CE->getOperand(0)) << ", "
    858           << getCppName(CE->getType()) << ");";
    859     } else {
    860       unsigned N = CE->getNumOperands();
    861       for (unsigned i = 0; i < N; ++i ) {
    862         printConstant(CE->getOperand(i));
    863       }
    864       Out << "Constant* " << constName << " = ConstantExpr::";
    865       switch (CE->getOpcode()) {
    866       case Instruction::Add:    Out << "getAdd(";  break;
    867       case Instruction::FAdd:   Out << "getFAdd(";  break;
    868       case Instruction::Sub:    Out << "getSub("; break;
    869       case Instruction::FSub:   Out << "getFSub("; break;
    870       case Instruction::Mul:    Out << "getMul("; break;
    871       case Instruction::FMul:   Out << "getFMul("; break;
    872       case Instruction::UDiv:   Out << "getUDiv("; break;
    873       case Instruction::SDiv:   Out << "getSDiv("; break;
    874       case Instruction::FDiv:   Out << "getFDiv("; break;
    875       case Instruction::URem:   Out << "getURem("; break;
    876       case Instruction::SRem:   Out << "getSRem("; break;
    877       case Instruction::FRem:   Out << "getFRem("; break;
    878       case Instruction::And:    Out << "getAnd("; break;
    879       case Instruction::Or:     Out << "getOr("; break;
    880       case Instruction::Xor:    Out << "getXor("; break;
    881       case Instruction::ICmp:
    882         Out << "getICmp(ICmpInst::ICMP_";
    883         switch (CE->getPredicate()) {
    884         case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
    885         case ICmpInst::ICMP_NE:  Out << "NE"; break;
    886         case ICmpInst::ICMP_SLT: Out << "SLT"; break;
    887         case ICmpInst::ICMP_ULT: Out << "ULT"; break;
    888         case ICmpInst::ICMP_SGT: Out << "SGT"; break;
    889         case ICmpInst::ICMP_UGT: Out << "UGT"; break;
    890         case ICmpInst::ICMP_SLE: Out << "SLE"; break;
    891         case ICmpInst::ICMP_ULE: Out << "ULE"; break;
    892         case ICmpInst::ICMP_SGE: Out << "SGE"; break;
    893         case ICmpInst::ICMP_UGE: Out << "UGE"; break;
    894         default: error("Invalid ICmp Predicate");
    895         }
    896         break;
    897       case Instruction::FCmp:
    898         Out << "getFCmp(FCmpInst::FCMP_";
    899         switch (CE->getPredicate()) {
    900         case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
    901         case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
    902         case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
    903         case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
    904         case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
    905         case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
    906         case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
    907         case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
    908         case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
    909         case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
    910         case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
    911         case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
    912         case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
    913         case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
    914         case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
    915         case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
    916         default: error("Invalid FCmp Predicate");
    917         }
    918         break;
    919       case Instruction::Shl:     Out << "getShl("; break;
    920       case Instruction::LShr:    Out << "getLShr("; break;
    921       case Instruction::AShr:    Out << "getAShr("; break;
    922       case Instruction::Select:  Out << "getSelect("; break;
    923       case Instruction::ExtractElement: Out << "getExtractElement("; break;
    924       case Instruction::InsertElement:  Out << "getInsertElement("; break;
    925       case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
    926       default:
    927         error("Invalid constant expression");
    928         break;
    929       }
    930       Out << getCppName(CE->getOperand(0));
    931       for (unsigned i = 1; i < CE->getNumOperands(); ++i)
    932         Out << ", " << getCppName(CE->getOperand(i));
    933       Out << ");";
    934     }
    935   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    936     Out << "Constant* " << constName << " = ";
    937     Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
    938   } else {
    939     error("Bad Constant");
    940     Out << "Constant* " << constName << " = 0; ";
    941   }
    942   nl(Out);
    943 }
    944 
    945 void CppWriter::printConstants(const Module* M) {
    946   // Traverse all the global variables looking for constant initializers
    947   for (Module::const_global_iterator I = TheModule->global_begin(),
    948          E = TheModule->global_end(); I != E; ++I)
    949     if (I->hasInitializer())
    950       printConstant(I->getInitializer());
    951 
    952   // Traverse the LLVM functions looking for constants
    953   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    954        FI != FE; ++FI) {
    955     // Add all of the basic blocks and instructions
    956     for (Function::const_iterator BB = FI->begin(),
    957            E = FI->end(); BB != E; ++BB) {
    958       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    959            ++I) {
    960         for (unsigned i = 0; i < I->getNumOperands(); ++i) {
    961           if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
    962             printConstant(C);
    963           }
    964         }
    965       }
    966     }
    967   }
    968 }
    969 
    970 void CppWriter::printVariableUses(const GlobalVariable *GV) {
    971   nl(Out) << "// Type Definitions";
    972   nl(Out);
    973   printType(GV->getType());
    974   if (GV->hasInitializer()) {
    975     const Constant *Init = GV->getInitializer();
    976     printType(Init->getType());
    977     if (const Function *F = dyn_cast<Function>(Init)) {
    978       nl(Out)<< "/ Function Declarations"; nl(Out);
    979       printFunctionHead(F);
    980     } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
    981       nl(Out) << "// Global Variable Declarations"; nl(Out);
    982       printVariableHead(gv);
    983 
    984       nl(Out) << "// Global Variable Definitions"; nl(Out);
    985       printVariableBody(gv);
    986     } else  {
    987       nl(Out) << "// Constant Definitions"; nl(Out);
    988       printConstant(Init);
    989     }
    990   }
    991 }
    992 
    993 void CppWriter::printVariableHead(const GlobalVariable *GV) {
    994   nl(Out) << "GlobalVariable* " << getCppName(GV);
    995   if (is_inline) {
    996     Out << " = mod->getGlobalVariable(mod->getContext(), ";
    997     printEscapedString(GV->getName());
    998     Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
    999     nl(Out) << "if (!" << getCppName(GV) << ") {";
   1000     in(); nl(Out) << getCppName(GV);
   1001   }
   1002   Out << " = new GlobalVariable(/*Module=*/*mod, ";
   1003   nl(Out) << "/*Type=*/";
   1004   printCppName(GV->getType()->getElementType());
   1005   Out << ",";
   1006   nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
   1007   Out << ",";
   1008   nl(Out) << "/*Linkage=*/";
   1009   printLinkageType(GV->getLinkage());
   1010   Out << ",";
   1011   nl(Out) << "/*Initializer=*/0, ";
   1012   if (GV->hasInitializer()) {
   1013     Out << "// has initializer, specified below";
   1014   }
   1015   nl(Out) << "/*Name=*/\"";
   1016   printEscapedString(GV->getName());
   1017   Out << "\");";
   1018   nl(Out);
   1019 
   1020   if (GV->hasSection()) {
   1021     printCppName(GV);
   1022     Out << "->setSection(\"";
   1023     printEscapedString(GV->getSection());
   1024     Out << "\");";
   1025     nl(Out);
   1026   }
   1027   if (GV->getAlignment()) {
   1028     printCppName(GV);
   1029     Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
   1030     nl(Out);
   1031   }
   1032   if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
   1033     printCppName(GV);
   1034     Out << "->setVisibility(";
   1035     printVisibilityType(GV->getVisibility());
   1036     Out << ");";
   1037     nl(Out);
   1038   }
   1039   if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
   1040     printCppName(GV);
   1041     Out << "->setDLLStorageClass(";
   1042     printDLLStorageClassType(GV->getDLLStorageClass());
   1043     Out << ");";
   1044     nl(Out);
   1045   }
   1046   if (GV->isThreadLocal()) {
   1047     printCppName(GV);
   1048     Out << "->setThreadLocalMode(";
   1049     printThreadLocalMode(GV->getThreadLocalMode());
   1050     Out << ");";
   1051     nl(Out);
   1052   }
   1053   if (is_inline) {
   1054     out(); Out << "}"; nl(Out);
   1055   }
   1056 }
   1057 
   1058 void CppWriter::printVariableBody(const GlobalVariable *GV) {
   1059   if (GV->hasInitializer()) {
   1060     printCppName(GV);
   1061     Out << "->setInitializer(";
   1062     Out << getCppName(GV->getInitializer()) << ");";
   1063     nl(Out);
   1064   }
   1065 }
   1066 
   1067 std::string CppWriter::getOpName(const Value* V) {
   1068   if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
   1069     return getCppName(V);
   1070 
   1071   // See if its alread in the map of forward references, if so just return the
   1072   // name we already set up for it
   1073   ForwardRefMap::const_iterator I = ForwardRefs.find(V);
   1074   if (I != ForwardRefs.end())
   1075     return I->second;
   1076 
   1077   // This is a new forward reference. Generate a unique name for it
   1078   std::string result(std::string("fwdref_") + utostr(uniqueNum++));
   1079 
   1080   // Yes, this is a hack. An Argument is the smallest instantiable value that
   1081   // we can make as a placeholder for the real value. We'll replace these
   1082   // Argument instances later.
   1083   Out << "Argument* " << result << " = new Argument("
   1084       << getCppName(V->getType()) << ");";
   1085   nl(Out);
   1086   ForwardRefs[V] = result;
   1087   return result;
   1088 }
   1089 
   1090 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
   1091   switch (Ordering) {
   1092     case NotAtomic: return "NotAtomic";
   1093     case Unordered: return "Unordered";
   1094     case Monotonic: return "Monotonic";
   1095     case Acquire: return "Acquire";
   1096     case Release: return "Release";
   1097     case AcquireRelease: return "AcquireRelease";
   1098     case SequentiallyConsistent: return "SequentiallyConsistent";
   1099   }
   1100   llvm_unreachable("Unknown ordering");
   1101 }
   1102 
   1103 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
   1104   switch (SynchScope) {
   1105     case SingleThread: return "SingleThread";
   1106     case CrossThread: return "CrossThread";
   1107   }
   1108   llvm_unreachable("Unknown synch scope");
   1109 }
   1110 
   1111 // printInstruction - This member is called for each Instruction in a function.
   1112 void CppWriter::printInstruction(const Instruction *I,
   1113                                  const std::string& bbname) {
   1114   std::string iName(getCppName(I));
   1115 
   1116   // Before we emit this instruction, we need to take care of generating any
   1117   // forward references. So, we get the names of all the operands in advance
   1118   const unsigned Ops(I->getNumOperands());
   1119   std::string* opNames = new std::string[Ops];
   1120   for (unsigned i = 0; i < Ops; i++)
   1121     opNames[i] = getOpName(I->getOperand(i));
   1122 
   1123   switch (I->getOpcode()) {
   1124   default:
   1125     error("Invalid instruction");
   1126     break;
   1127 
   1128   case Instruction::Ret: {
   1129     const ReturnInst* ret =  cast<ReturnInst>(I);
   1130     Out << "ReturnInst::Create(mod->getContext(), "
   1131         << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
   1132     break;
   1133   }
   1134   case Instruction::Br: {
   1135     const BranchInst* br = cast<BranchInst>(I);
   1136     Out << "BranchInst::Create(" ;
   1137     if (br->getNumOperands() == 3) {
   1138       Out << opNames[2] << ", "
   1139           << opNames[1] << ", "
   1140           << opNames[0] << ", ";
   1141 
   1142     } else if (br->getNumOperands() == 1) {
   1143       Out << opNames[0] << ", ";
   1144     } else {
   1145       error("Branch with 2 operands?");
   1146     }
   1147     Out << bbname << ");";
   1148     break;
   1149   }
   1150   case Instruction::Switch: {
   1151     const SwitchInst *SI = cast<SwitchInst>(I);
   1152     Out << "SwitchInst* " << iName << " = SwitchInst::Create("
   1153         << getOpName(SI->getCondition()) << ", "
   1154         << getOpName(SI->getDefaultDest()) << ", "
   1155         << SI->getNumCases() << ", " << bbname << ");";
   1156     nl(Out);
   1157     for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
   1158          i != e; ++i) {
   1159       const ConstantInt* CaseVal = i.getCaseValue();
   1160       const BasicBlock *BB = i.getCaseSuccessor();
   1161       Out << iName << "->addCase("
   1162           << getOpName(CaseVal) << ", "
   1163           << getOpName(BB) << ");";
   1164       nl(Out);
   1165     }
   1166     break;
   1167   }
   1168   case Instruction::IndirectBr: {
   1169     const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
   1170     Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
   1171         << opNames[0] << ", " << IBI->getNumDestinations() << ");";
   1172     nl(Out);
   1173     for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
   1174       Out << iName << "->addDestination(" << opNames[i] << ");";
   1175       nl(Out);
   1176     }
   1177     break;
   1178   }
   1179   case Instruction::Resume: {
   1180     Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
   1181     break;
   1182   }
   1183   case Instruction::Invoke: {
   1184     const InvokeInst* inv = cast<InvokeInst>(I);
   1185     Out << "std::vector<Value*> " << iName << "_params;";
   1186     nl(Out);
   1187     for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
   1188       Out << iName << "_params.push_back("
   1189           << getOpName(inv->getArgOperand(i)) << ");";
   1190       nl(Out);
   1191     }
   1192     // FIXME: This shouldn't use magic numbers -3, -2, and -1.
   1193     Out << "InvokeInst *" << iName << " = InvokeInst::Create("
   1194         << getOpName(inv->getCalledValue()) << ", "
   1195         << getOpName(inv->getNormalDest()) << ", "
   1196         << getOpName(inv->getUnwindDest()) << ", "
   1197         << iName << "_params, \"";
   1198     printEscapedString(inv->getName());
   1199     Out << "\", " << bbname << ");";
   1200     nl(Out) << iName << "->setCallingConv(";
   1201     printCallingConv(inv->getCallingConv());
   1202     Out << ");";
   1203     printAttributes(inv->getAttributes(), iName);
   1204     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1205     nl(Out);
   1206     break;
   1207   }
   1208   case Instruction::Unreachable: {
   1209     Out << "new UnreachableInst("
   1210         << "mod->getContext(), "
   1211         << bbname << ");";
   1212     break;
   1213   }
   1214   case Instruction::Add:
   1215   case Instruction::FAdd:
   1216   case Instruction::Sub:
   1217   case Instruction::FSub:
   1218   case Instruction::Mul:
   1219   case Instruction::FMul:
   1220   case Instruction::UDiv:
   1221   case Instruction::SDiv:
   1222   case Instruction::FDiv:
   1223   case Instruction::URem:
   1224   case Instruction::SRem:
   1225   case Instruction::FRem:
   1226   case Instruction::And:
   1227   case Instruction::Or:
   1228   case Instruction::Xor:
   1229   case Instruction::Shl:
   1230   case Instruction::LShr:
   1231   case Instruction::AShr:{
   1232     Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
   1233     switch (I->getOpcode()) {
   1234     case Instruction::Add: Out << "Instruction::Add"; break;
   1235     case Instruction::FAdd: Out << "Instruction::FAdd"; break;
   1236     case Instruction::Sub: Out << "Instruction::Sub"; break;
   1237     case Instruction::FSub: Out << "Instruction::FSub"; break;
   1238     case Instruction::Mul: Out << "Instruction::Mul"; break;
   1239     case Instruction::FMul: Out << "Instruction::FMul"; break;
   1240     case Instruction::UDiv:Out << "Instruction::UDiv"; break;
   1241     case Instruction::SDiv:Out << "Instruction::SDiv"; break;
   1242     case Instruction::FDiv:Out << "Instruction::FDiv"; break;
   1243     case Instruction::URem:Out << "Instruction::URem"; break;
   1244     case Instruction::SRem:Out << "Instruction::SRem"; break;
   1245     case Instruction::FRem:Out << "Instruction::FRem"; break;
   1246     case Instruction::And: Out << "Instruction::And"; break;
   1247     case Instruction::Or:  Out << "Instruction::Or";  break;
   1248     case Instruction::Xor: Out << "Instruction::Xor"; break;
   1249     case Instruction::Shl: Out << "Instruction::Shl"; break;
   1250     case Instruction::LShr:Out << "Instruction::LShr"; break;
   1251     case Instruction::AShr:Out << "Instruction::AShr"; break;
   1252     default: Out << "Instruction::BadOpCode"; break;
   1253     }
   1254     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1255     printEscapedString(I->getName());
   1256     Out << "\", " << bbname << ");";
   1257     break;
   1258   }
   1259   case Instruction::FCmp: {
   1260     Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
   1261     switch (cast<FCmpInst>(I)->getPredicate()) {
   1262     case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
   1263     case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
   1264     case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
   1265     case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
   1266     case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
   1267     case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
   1268     case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
   1269     case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
   1270     case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
   1271     case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
   1272     case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
   1273     case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
   1274     case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
   1275     case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
   1276     case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
   1277     case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
   1278     default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
   1279     }
   1280     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1281     printEscapedString(I->getName());
   1282     Out << "\");";
   1283     break;
   1284   }
   1285   case Instruction::ICmp: {
   1286     Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
   1287     switch (cast<ICmpInst>(I)->getPredicate()) {
   1288     case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
   1289     case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
   1290     case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
   1291     case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
   1292     case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
   1293     case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
   1294     case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
   1295     case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
   1296     case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
   1297     case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
   1298     default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
   1299     }
   1300     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1301     printEscapedString(I->getName());
   1302     Out << "\");";
   1303     break;
   1304   }
   1305   case Instruction::Alloca: {
   1306     const AllocaInst* allocaI = cast<AllocaInst>(I);
   1307     Out << "AllocaInst* " << iName << " = new AllocaInst("
   1308         << getCppName(allocaI->getAllocatedType()) << ", ";
   1309     if (allocaI->isArrayAllocation())
   1310       Out << opNames[0] << ", ";
   1311     Out << "\"";
   1312     printEscapedString(allocaI->getName());
   1313     Out << "\", " << bbname << ");";
   1314     if (allocaI->getAlignment())
   1315       nl(Out) << iName << "->setAlignment("
   1316           << allocaI->getAlignment() << ");";
   1317     break;
   1318   }
   1319   case Instruction::Load: {
   1320     const LoadInst* load = cast<LoadInst>(I);
   1321     Out << "LoadInst* " << iName << " = new LoadInst("
   1322         << opNames[0] << ", \"";
   1323     printEscapedString(load->getName());
   1324     Out << "\", " << (load->isVolatile() ? "true" : "false" )
   1325         << ", " << bbname << ");";
   1326     if (load->getAlignment())
   1327       nl(Out) << iName << "->setAlignment("
   1328               << load->getAlignment() << ");";
   1329     if (load->isAtomic()) {
   1330       StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
   1331       StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
   1332       nl(Out) << iName << "->setAtomic("
   1333               << Ordering << ", " << CrossThread << ");";
   1334     }
   1335     break;
   1336   }
   1337   case Instruction::Store: {
   1338     const StoreInst* store = cast<StoreInst>(I);
   1339     Out << "StoreInst* " << iName << " = new StoreInst("
   1340         << opNames[0] << ", "
   1341         << opNames[1] << ", "
   1342         << (store->isVolatile() ? "true" : "false")
   1343         << ", " << bbname << ");";
   1344     if (store->getAlignment())
   1345       nl(Out) << iName << "->setAlignment("
   1346               << store->getAlignment() << ");";
   1347     if (store->isAtomic()) {
   1348       StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
   1349       StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
   1350       nl(Out) << iName << "->setAtomic("
   1351               << Ordering << ", " << CrossThread << ");";
   1352     }
   1353     break;
   1354   }
   1355   case Instruction::GetElementPtr: {
   1356     const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
   1357     if (gep->getNumOperands() <= 2) {
   1358       Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
   1359           << opNames[0];
   1360       if (gep->getNumOperands() == 2)
   1361         Out << ", " << opNames[1];
   1362     } else {
   1363       Out << "std::vector<Value*> " << iName << "_indices;";
   1364       nl(Out);
   1365       for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
   1366         Out << iName << "_indices.push_back("
   1367             << opNames[i] << ");";
   1368         nl(Out);
   1369       }
   1370       Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
   1371           << opNames[0] << ", " << iName << "_indices";
   1372     }
   1373     Out << ", \"";
   1374     printEscapedString(gep->getName());
   1375     Out << "\", " << bbname << ");";
   1376     break;
   1377   }
   1378   case Instruction::PHI: {
   1379     const PHINode* phi = cast<PHINode>(I);
   1380 
   1381     Out << "PHINode* " << iName << " = PHINode::Create("
   1382         << getCppName(phi->getType()) << ", "
   1383         << phi->getNumIncomingValues() << ", \"";
   1384     printEscapedString(phi->getName());
   1385     Out << "\", " << bbname << ");";
   1386     nl(Out);
   1387     for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
   1388       Out << iName << "->addIncoming("
   1389           << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
   1390           << getOpName(phi->getIncomingBlock(i)) << ");";
   1391       nl(Out);
   1392     }
   1393     break;
   1394   }
   1395   case Instruction::Trunc:
   1396   case Instruction::ZExt:
   1397   case Instruction::SExt:
   1398   case Instruction::FPTrunc:
   1399   case Instruction::FPExt:
   1400   case Instruction::FPToUI:
   1401   case Instruction::FPToSI:
   1402   case Instruction::UIToFP:
   1403   case Instruction::SIToFP:
   1404   case Instruction::PtrToInt:
   1405   case Instruction::IntToPtr:
   1406   case Instruction::BitCast: {
   1407     const CastInst* cst = cast<CastInst>(I);
   1408     Out << "CastInst* " << iName << " = new ";
   1409     switch (I->getOpcode()) {
   1410     case Instruction::Trunc:    Out << "TruncInst"; break;
   1411     case Instruction::ZExt:     Out << "ZExtInst"; break;
   1412     case Instruction::SExt:     Out << "SExtInst"; break;
   1413     case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
   1414     case Instruction::FPExt:    Out << "FPExtInst"; break;
   1415     case Instruction::FPToUI:   Out << "FPToUIInst"; break;
   1416     case Instruction::FPToSI:   Out << "FPToSIInst"; break;
   1417     case Instruction::UIToFP:   Out << "UIToFPInst"; break;
   1418     case Instruction::SIToFP:   Out << "SIToFPInst"; break;
   1419     case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
   1420     case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
   1421     case Instruction::BitCast:  Out << "BitCastInst"; break;
   1422     default: llvm_unreachable("Unreachable");
   1423     }
   1424     Out << "(" << opNames[0] << ", "
   1425         << getCppName(cst->getType()) << ", \"";
   1426     printEscapedString(cst->getName());
   1427     Out << "\", " << bbname << ");";
   1428     break;
   1429   }
   1430   case Instruction::Call: {
   1431     const CallInst* call = cast<CallInst>(I);
   1432     if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
   1433       Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
   1434           << getCppName(ila->getFunctionType()) << ", \""
   1435           << ila->getAsmString() << "\", \""
   1436           << ila->getConstraintString() << "\","
   1437           << (ila->hasSideEffects() ? "true" : "false") << ");";
   1438       nl(Out);
   1439     }
   1440     if (call->getNumArgOperands() > 1) {
   1441       Out << "std::vector<Value*> " << iName << "_params;";
   1442       nl(Out);
   1443       for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
   1444         Out << iName << "_params.push_back(" << opNames[i] << ");";
   1445         nl(Out);
   1446       }
   1447       Out << "CallInst* " << iName << " = CallInst::Create("
   1448           << opNames[call->getNumArgOperands()] << ", "
   1449           << iName << "_params, \"";
   1450     } else if (call->getNumArgOperands() == 1) {
   1451       Out << "CallInst* " << iName << " = CallInst::Create("
   1452           << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
   1453     } else {
   1454       Out << "CallInst* " << iName << " = CallInst::Create("
   1455           << opNames[call->getNumArgOperands()] << ", \"";
   1456     }
   1457     printEscapedString(call->getName());
   1458     Out << "\", " << bbname << ");";
   1459     nl(Out) << iName << "->setCallingConv(";
   1460     printCallingConv(call->getCallingConv());
   1461     Out << ");";
   1462     nl(Out) << iName << "->setTailCall("
   1463         << (call->isTailCall() ? "true" : "false");
   1464     Out << ");";
   1465     nl(Out);
   1466     printAttributes(call->getAttributes(), iName);
   1467     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1468     nl(Out);
   1469     break;
   1470   }
   1471   case Instruction::Select: {
   1472     const SelectInst* sel = cast<SelectInst>(I);
   1473     Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
   1474     Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1475     printEscapedString(sel->getName());
   1476     Out << "\", " << bbname << ");";
   1477     break;
   1478   }
   1479   case Instruction::UserOp1:
   1480     /// FALL THROUGH
   1481   case Instruction::UserOp2: {
   1482     /// FIXME: What should be done here?
   1483     break;
   1484   }
   1485   case Instruction::VAArg: {
   1486     const VAArgInst* va = cast<VAArgInst>(I);
   1487     Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
   1488         << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
   1489     printEscapedString(va->getName());
   1490     Out << "\", " << bbname << ");";
   1491     break;
   1492   }
   1493   case Instruction::ExtractElement: {
   1494     const ExtractElementInst* eei = cast<ExtractElementInst>(I);
   1495     Out << "ExtractElementInst* " << getCppName(eei)
   1496         << " = new ExtractElementInst(" << opNames[0]
   1497         << ", " << opNames[1] << ", \"";
   1498     printEscapedString(eei->getName());
   1499     Out << "\", " << bbname << ");";
   1500     break;
   1501   }
   1502   case Instruction::InsertElement: {
   1503     const InsertElementInst* iei = cast<InsertElementInst>(I);
   1504     Out << "InsertElementInst* " << getCppName(iei)
   1505         << " = InsertElementInst::Create(" << opNames[0]
   1506         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1507     printEscapedString(iei->getName());
   1508     Out << "\", " << bbname << ");";
   1509     break;
   1510   }
   1511   case Instruction::ShuffleVector: {
   1512     const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
   1513     Out << "ShuffleVectorInst* " << getCppName(svi)
   1514         << " = new ShuffleVectorInst(" << opNames[0]
   1515         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1516     printEscapedString(svi->getName());
   1517     Out << "\", " << bbname << ");";
   1518     break;
   1519   }
   1520   case Instruction::ExtractValue: {
   1521     const ExtractValueInst *evi = cast<ExtractValueInst>(I);
   1522     Out << "std::vector<unsigned> " << iName << "_indices;";
   1523     nl(Out);
   1524     for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
   1525       Out << iName << "_indices.push_back("
   1526           << evi->idx_begin()[i] << ");";
   1527       nl(Out);
   1528     }
   1529     Out << "ExtractValueInst* " << getCppName(evi)
   1530         << " = ExtractValueInst::Create(" << opNames[0]
   1531         << ", "
   1532         << iName << "_indices, \"";
   1533     printEscapedString(evi->getName());
   1534     Out << "\", " << bbname << ");";
   1535     break;
   1536   }
   1537   case Instruction::InsertValue: {
   1538     const InsertValueInst *ivi = cast<InsertValueInst>(I);
   1539     Out << "std::vector<unsigned> " << iName << "_indices;";
   1540     nl(Out);
   1541     for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
   1542       Out << iName << "_indices.push_back("
   1543           << ivi->idx_begin()[i] << ");";
   1544       nl(Out);
   1545     }
   1546     Out << "InsertValueInst* " << getCppName(ivi)
   1547         << " = InsertValueInst::Create(" << opNames[0]
   1548         << ", " << opNames[1] << ", "
   1549         << iName << "_indices, \"";
   1550     printEscapedString(ivi->getName());
   1551     Out << "\", " << bbname << ");";
   1552     break;
   1553   }
   1554   case Instruction::Fence: {
   1555     const FenceInst *fi = cast<FenceInst>(I);
   1556     StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
   1557     StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
   1558     Out << "FenceInst* " << iName
   1559         << " = new FenceInst(mod->getContext(), "
   1560         << Ordering << ", " << CrossThread << ", " << bbname
   1561         << ");";
   1562     break;
   1563   }
   1564   case Instruction::AtomicCmpXchg: {
   1565     const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
   1566     StringRef SuccessOrdering =
   1567         ConvertAtomicOrdering(cxi->getSuccessOrdering());
   1568     StringRef FailureOrdering =
   1569         ConvertAtomicOrdering(cxi->getFailureOrdering());
   1570     StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
   1571     Out << "AtomicCmpXchgInst* " << iName
   1572         << " = new AtomicCmpXchgInst("
   1573         << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
   1574         << SuccessOrdering << ", " << FailureOrdering << ", "
   1575         << CrossThread << ", " << bbname
   1576         << ");";
   1577     nl(Out) << iName << "->setName(\"";
   1578     printEscapedString(cxi->getName());
   1579     Out << "\");";
   1580     nl(Out) << iName << "->setVolatile("
   1581             << (cxi->isVolatile() ? "true" : "false") << ");";
   1582     nl(Out) << iName << "->setWeak("
   1583             << (cxi->isWeak() ? "true" : "false") << ");";
   1584     break;
   1585   }
   1586   case Instruction::AtomicRMW: {
   1587     const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
   1588     StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
   1589     StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
   1590     StringRef Operation;
   1591     switch (rmwi->getOperation()) {
   1592       case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
   1593       case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
   1594       case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
   1595       case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
   1596       case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
   1597       case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
   1598       case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
   1599       case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
   1600       case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
   1601       case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
   1602       case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
   1603       case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
   1604     }
   1605     Out << "AtomicRMWInst* " << iName
   1606         << " = new AtomicRMWInst("
   1607         << Operation << ", "
   1608         << opNames[0] << ", " << opNames[1] << ", "
   1609         << Ordering << ", " << CrossThread << ", " << bbname
   1610         << ");";
   1611     nl(Out) << iName << "->setName(\"";
   1612     printEscapedString(rmwi->getName());
   1613     Out << "\");";
   1614     nl(Out) << iName << "->setVolatile("
   1615             << (rmwi->isVolatile() ? "true" : "false") << ");";
   1616     break;
   1617   }
   1618   case Instruction::LandingPad: {
   1619     const LandingPadInst *lpi = cast<LandingPadInst>(I);
   1620     Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
   1621     printCppName(lpi->getType());
   1622     Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
   1623     printEscapedString(lpi->getName());
   1624     Out << "\", " << bbname << ");";
   1625     nl(Out) << iName << "->setCleanup("
   1626             << (lpi->isCleanup() ? "true" : "false")
   1627             << ");";
   1628     for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
   1629       nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
   1630     break;
   1631   }
   1632   }
   1633   DefinedValues.insert(I);
   1634   nl(Out);
   1635   delete [] opNames;
   1636 }
   1637 
   1638 // Print out the types, constants and declarations needed by one function
   1639 void CppWriter::printFunctionUses(const Function* F) {
   1640   nl(Out) << "// Type Definitions"; nl(Out);
   1641   if (!is_inline) {
   1642     // Print the function's return type
   1643     printType(F->getReturnType());
   1644 
   1645     // Print the function's function type
   1646     printType(F->getFunctionType());
   1647 
   1648     // Print the types of each of the function's arguments
   1649     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1650          AI != AE; ++AI) {
   1651       printType(AI->getType());
   1652     }
   1653   }
   1654 
   1655   // Print type definitions for every type referenced by an instruction and
   1656   // make a note of any global values or constants that are referenced
   1657   SmallPtrSet<GlobalValue*,64> gvs;
   1658   SmallPtrSet<Constant*,64> consts;
   1659   for (Function::const_iterator BB = F->begin(), BE = F->end();
   1660        BB != BE; ++BB){
   1661     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1662          I != E; ++I) {
   1663       // Print the type of the instruction itself
   1664       printType(I->getType());
   1665 
   1666       // Print the type of each of the instruction's operands
   1667       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   1668         Value* operand = I->getOperand(i);
   1669         printType(operand->getType());
   1670 
   1671         // If the operand references a GVal or Constant, make a note of it
   1672         if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1673           gvs.insert(GV);
   1674           if (GenerationType != GenFunction)
   1675             if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1676               if (GVar->hasInitializer())
   1677                 consts.insert(GVar->getInitializer());
   1678         } else if (Constant* C = dyn_cast<Constant>(operand)) {
   1679           consts.insert(C);
   1680           for (unsigned j = 0; j < C->getNumOperands(); ++j) {
   1681             // If the operand references a GVal or Constant, make a note of it
   1682             Value* operand = C->getOperand(j);
   1683             printType(operand->getType());
   1684             if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1685               gvs.insert(GV);
   1686               if (GenerationType != GenFunction)
   1687                 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1688                   if (GVar->hasInitializer())
   1689                     consts.insert(GVar->getInitializer());
   1690             }
   1691           }
   1692         }
   1693       }
   1694     }
   1695   }
   1696 
   1697   // Print the function declarations for any functions encountered
   1698   nl(Out) << "// Function Declarations"; nl(Out);
   1699   for (auto *GV : gvs) {
   1700     if (Function *Fun = dyn_cast<Function>(GV)) {
   1701       if (!is_inline || Fun != F)
   1702         printFunctionHead(Fun);
   1703     }
   1704   }
   1705 
   1706   // Print the global variable declarations for any variables encountered
   1707   nl(Out) << "// Global Variable Declarations"; nl(Out);
   1708   for (auto *GV : gvs) {
   1709     if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV))
   1710       printVariableHead(F);
   1711   }
   1712 
   1713   // Print the constants found
   1714   nl(Out) << "// Constant Definitions"; nl(Out);
   1715   for (const auto *C : consts) {
   1716     printConstant(C);
   1717   }
   1718 
   1719   // Process the global variables definitions now that all the constants have
   1720   // been emitted. These definitions just couple the gvars with their constant
   1721   // initializers.
   1722   if (GenerationType != GenFunction) {
   1723     nl(Out) << "// Global Variable Definitions"; nl(Out);
   1724     for (const auto &GV : gvs) {
   1725       if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV))
   1726         printVariableBody(Var);
   1727     }
   1728   }
   1729 }
   1730 
   1731 void CppWriter::printFunctionHead(const Function* F) {
   1732   nl(Out) << "Function* " << getCppName(F);
   1733   Out << " = mod->getFunction(\"";
   1734   printEscapedString(F->getName());
   1735   Out << "\");";
   1736   nl(Out) << "if (!" << getCppName(F) << ") {";
   1737   nl(Out) << getCppName(F);
   1738 
   1739   Out<< " = Function::Create(";
   1740   nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
   1741   nl(Out) << "/*Linkage=*/";
   1742   printLinkageType(F->getLinkage());
   1743   Out << ",";
   1744   nl(Out) << "/*Name=*/\"";
   1745   printEscapedString(F->getName());
   1746   Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
   1747   nl(Out,-1);
   1748   printCppName(F);
   1749   Out << "->setCallingConv(";
   1750   printCallingConv(F->getCallingConv());
   1751   Out << ");";
   1752   nl(Out);
   1753   if (F->hasSection()) {
   1754     printCppName(F);
   1755     Out << "->setSection(\"" << F->getSection() << "\");";
   1756     nl(Out);
   1757   }
   1758   if (F->getAlignment()) {
   1759     printCppName(F);
   1760     Out << "->setAlignment(" << F->getAlignment() << ");";
   1761     nl(Out);
   1762   }
   1763   if (F->getVisibility() != GlobalValue::DefaultVisibility) {
   1764     printCppName(F);
   1765     Out << "->setVisibility(";
   1766     printVisibilityType(F->getVisibility());
   1767     Out << ");";
   1768     nl(Out);
   1769   }
   1770   if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
   1771     printCppName(F);
   1772     Out << "->setDLLStorageClass(";
   1773     printDLLStorageClassType(F->getDLLStorageClass());
   1774     Out << ");";
   1775     nl(Out);
   1776   }
   1777   if (F->hasGC()) {
   1778     printCppName(F);
   1779     Out << "->setGC(\"" << F->getGC() << "\");";
   1780     nl(Out);
   1781   }
   1782   Out << "}";
   1783   nl(Out);
   1784   printAttributes(F->getAttributes(), getCppName(F));
   1785   printCppName(F);
   1786   Out << "->setAttributes(" << getCppName(F) << "_PAL);";
   1787   nl(Out);
   1788 }
   1789 
   1790 void CppWriter::printFunctionBody(const Function *F) {
   1791   if (F->isDeclaration())
   1792     return; // external functions have no bodies.
   1793 
   1794   // Clear the DefinedValues and ForwardRefs maps because we can't have
   1795   // cross-function forward refs
   1796   ForwardRefs.clear();
   1797   DefinedValues.clear();
   1798 
   1799   // Create all the argument values
   1800   if (!is_inline) {
   1801     if (!F->arg_empty()) {
   1802       Out << "Function::arg_iterator args = " << getCppName(F)
   1803           << "->arg_begin();";
   1804       nl(Out);
   1805     }
   1806     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1807          AI != AE; ++AI) {
   1808       Out << "Value* " << getCppName(AI) << " = args++;";
   1809       nl(Out);
   1810       if (AI->hasName()) {
   1811         Out << getCppName(AI) << "->setName(\"";
   1812         printEscapedString(AI->getName());
   1813         Out << "\");";
   1814         nl(Out);
   1815       }
   1816     }
   1817   }
   1818 
   1819   // Create all the basic blocks
   1820   nl(Out);
   1821   for (Function::const_iterator BI = F->begin(), BE = F->end();
   1822        BI != BE; ++BI) {
   1823     std::string bbname(getCppName(BI));
   1824     Out << "BasicBlock* " << bbname <<
   1825            " = BasicBlock::Create(mod->getContext(), \"";
   1826     if (BI->hasName())
   1827       printEscapedString(BI->getName());
   1828     Out << "\"," << getCppName(BI->getParent()) << ",0);";
   1829     nl(Out);
   1830   }
   1831 
   1832   // Output all of its basic blocks... for the function
   1833   for (Function::const_iterator BI = F->begin(), BE = F->end();
   1834        BI != BE; ++BI) {
   1835     std::string bbname(getCppName(BI));
   1836     nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
   1837     nl(Out);
   1838 
   1839     // Output all of the instructions in the basic block...
   1840     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
   1841          I != E; ++I) {
   1842       printInstruction(I,bbname);
   1843     }
   1844   }
   1845 
   1846   // Loop over the ForwardRefs and resolve them now that all instructions
   1847   // are generated.
   1848   if (!ForwardRefs.empty()) {
   1849     nl(Out) << "// Resolve Forward References";
   1850     nl(Out);
   1851   }
   1852 
   1853   while (!ForwardRefs.empty()) {
   1854     ForwardRefMap::iterator I = ForwardRefs.begin();
   1855     Out << I->second << "->replaceAllUsesWith("
   1856         << getCppName(I->first) << "); delete " << I->second << ";";
   1857     nl(Out);
   1858     ForwardRefs.erase(I);
   1859   }
   1860 }
   1861 
   1862 void CppWriter::printInline(const std::string& fname,
   1863                             const std::string& func) {
   1864   const Function* F = TheModule->getFunction(func);
   1865   if (!F) {
   1866     error(std::string("Function '") + func + "' not found in input module");
   1867     return;
   1868   }
   1869   if (F->isDeclaration()) {
   1870     error(std::string("Function '") + func + "' is external!");
   1871     return;
   1872   }
   1873   nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
   1874           << getCppName(F);
   1875   unsigned arg_count = 1;
   1876   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1877        AI != AE; ++AI) {
   1878     Out << ", Value* arg_" << arg_count++;
   1879   }
   1880   Out << ") {";
   1881   nl(Out);
   1882   is_inline = true;
   1883   printFunctionUses(F);
   1884   printFunctionBody(F);
   1885   is_inline = false;
   1886   Out << "return " << getCppName(F->begin()) << ";";
   1887   nl(Out) << "}";
   1888   nl(Out);
   1889 }
   1890 
   1891 void CppWriter::printModuleBody() {
   1892   // Print out all the type definitions
   1893   nl(Out) << "// Type Definitions"; nl(Out);
   1894   printTypes(TheModule);
   1895 
   1896   // Functions can call each other and global variables can reference them so
   1897   // define all the functions first before emitting their function bodies.
   1898   nl(Out) << "// Function Declarations"; nl(Out);
   1899   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
   1900        I != E; ++I)
   1901     printFunctionHead(I);
   1902 
   1903   // Process the global variables declarations. We can't initialze them until
   1904   // after the constants are printed so just print a header for each global
   1905   nl(Out) << "// Global Variable Declarations\n"; nl(Out);
   1906   for (Module::const_global_iterator I = TheModule->global_begin(),
   1907          E = TheModule->global_end(); I != E; ++I) {
   1908     printVariableHead(I);
   1909   }
   1910 
   1911   // Print out all the constants definitions. Constants don't recurse except
   1912   // through GlobalValues. All GlobalValues have been declared at this point
   1913   // so we can proceed to generate the constants.
   1914   nl(Out) << "// Constant Definitions"; nl(Out);
   1915   printConstants(TheModule);
   1916 
   1917   // Process the global variables definitions now that all the constants have
   1918   // been emitted. These definitions just couple the gvars with their constant
   1919   // initializers.
   1920   nl(Out) << "// Global Variable Definitions"; nl(Out);
   1921   for (Module::const_global_iterator I = TheModule->global_begin(),
   1922          E = TheModule->global_end(); I != E; ++I) {
   1923     printVariableBody(I);
   1924   }
   1925 
   1926   // Finally, we can safely put out all of the function bodies.
   1927   nl(Out) << "// Function Definitions"; nl(Out);
   1928   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
   1929        I != E; ++I) {
   1930     if (!I->isDeclaration()) {
   1931       nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
   1932               << ")";
   1933       nl(Out) << "{";
   1934       nl(Out,1);
   1935       printFunctionBody(I);
   1936       nl(Out,-1) << "}";
   1937       nl(Out);
   1938     }
   1939   }
   1940 }
   1941 
   1942 void CppWriter::printProgram(const std::string& fname,
   1943                              const std::string& mName) {
   1944   Out << "#include <llvm/Pass.h>\n";
   1945   Out << "#include <llvm/PassManager.h>\n";
   1946 
   1947   Out << "#include <llvm/ADT/SmallVector.h>\n";
   1948   Out << "#include <llvm/Analysis/Verifier.h>\n";
   1949   Out << "#include <llvm/IR/BasicBlock.h>\n";
   1950   Out << "#include <llvm/IR/CallingConv.h>\n";
   1951   Out << "#include <llvm/IR/Constants.h>\n";
   1952   Out << "#include <llvm/IR/DerivedTypes.h>\n";
   1953   Out << "#include <llvm/IR/Function.h>\n";
   1954   Out << "#include <llvm/IR/GlobalVariable.h>\n";
   1955   Out << "#include <llvm/IR/IRPrintingPasses.h>\n";
   1956   Out << "#include <llvm/IR/InlineAsm.h>\n";
   1957   Out << "#include <llvm/IR/Instructions.h>\n";
   1958   Out << "#include <llvm/IR/LLVMContext.h>\n";
   1959   Out << "#include <llvm/IR/Module.h>\n";
   1960   Out << "#include <llvm/Support/FormattedStream.h>\n";
   1961   Out << "#include <llvm/Support/MathExtras.h>\n";
   1962   Out << "#include <algorithm>\n";
   1963   Out << "using namespace llvm;\n\n";
   1964   Out << "Module* " << fname << "();\n\n";
   1965   Out << "int main(int argc, char**argv) {\n";
   1966   Out << "  Module* Mod = " << fname << "();\n";
   1967   Out << "  verifyModule(*Mod, PrintMessageAction);\n";
   1968   Out << "  PassManager PM;\n";
   1969   Out << "  PM.add(createPrintModulePass(&outs()));\n";
   1970   Out << "  PM.run(*Mod);\n";
   1971   Out << "  return 0;\n";
   1972   Out << "}\n\n";
   1973   printModule(fname,mName);
   1974 }
   1975 
   1976 void CppWriter::printModule(const std::string& fname,
   1977                             const std::string& mName) {
   1978   nl(Out) << "Module* " << fname << "() {";
   1979   nl(Out,1) << "// Module Construction";
   1980   nl(Out) << "Module* mod = new Module(\"";
   1981   printEscapedString(mName);
   1982   Out << "\", getGlobalContext());";
   1983   if (!TheModule->getTargetTriple().empty()) {
   1984     nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
   1985   }
   1986   if (!TheModule->getTargetTriple().empty()) {
   1987     nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
   1988             << "\");";
   1989   }
   1990 
   1991   if (!TheModule->getModuleInlineAsm().empty()) {
   1992     nl(Out) << "mod->setModuleInlineAsm(\"";
   1993     printEscapedString(TheModule->getModuleInlineAsm());
   1994     Out << "\");";
   1995   }
   1996   nl(Out);
   1997 
   1998   printModuleBody();
   1999   nl(Out) << "return mod;";
   2000   nl(Out,-1) << "}";
   2001   nl(Out);
   2002 }
   2003 
   2004 void CppWriter::printContents(const std::string& fname,
   2005                               const std::string& mName) {
   2006   Out << "\nModule* " << fname << "(Module *mod) {\n";
   2007   Out << "\nmod->setModuleIdentifier(\"";
   2008   printEscapedString(mName);
   2009   Out << "\");\n";
   2010   printModuleBody();
   2011   Out << "\nreturn mod;\n";
   2012   Out << "\n}\n";
   2013 }
   2014 
   2015 void CppWriter::printFunction(const std::string& fname,
   2016                               const std::string& funcName) {
   2017   const Function* F = TheModule->getFunction(funcName);
   2018   if (!F) {
   2019     error(std::string("Function '") + funcName + "' not found in input module");
   2020     return;
   2021   }
   2022   Out << "\nFunction* " << fname << "(Module *mod) {\n";
   2023   printFunctionUses(F);
   2024   printFunctionHead(F);
   2025   printFunctionBody(F);
   2026   Out << "return " << getCppName(F) << ";\n";
   2027   Out << "}\n";
   2028 }
   2029 
   2030 void CppWriter::printFunctions() {
   2031   const Module::FunctionListType &funcs = TheModule->getFunctionList();
   2032   Module::const_iterator I  = funcs.begin();
   2033   Module::const_iterator IE = funcs.end();
   2034 
   2035   for (; I != IE; ++I) {
   2036     const Function &func = *I;
   2037     if (!func.isDeclaration()) {
   2038       std::string name("define_");
   2039       name += func.getName();
   2040       printFunction(name, func.getName());
   2041     }
   2042   }
   2043 }
   2044 
   2045 void CppWriter::printVariable(const std::string& fname,
   2046                               const std::string& varName) {
   2047   const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
   2048 
   2049   if (!GV) {
   2050     error(std::string("Variable '") + varName + "' not found in input module");
   2051     return;
   2052   }
   2053   Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
   2054   printVariableUses(GV);
   2055   printVariableHead(GV);
   2056   printVariableBody(GV);
   2057   Out << "return " << getCppName(GV) << ";\n";
   2058   Out << "}\n";
   2059 }
   2060 
   2061 void CppWriter::printType(const std::string &fname,
   2062                           const std::string &typeName) {
   2063   Type* Ty = TheModule->getTypeByName(typeName);
   2064   if (!Ty) {
   2065     error(std::string("Type '") + typeName + "' not found in input module");
   2066     return;
   2067   }
   2068   Out << "\nType* " << fname << "(Module *mod) {\n";
   2069   printType(Ty);
   2070   Out << "return " << getCppName(Ty) << ";\n";
   2071   Out << "}\n";
   2072 }
   2073 
   2074 bool CppWriter::runOnModule(Module &M) {
   2075   TheModule = &M;
   2076 
   2077   // Emit a header
   2078   Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
   2079 
   2080   // Get the name of the function we're supposed to generate
   2081   std::string fname = FuncName.getValue();
   2082 
   2083   // Get the name of the thing we are to generate
   2084   std::string tgtname = NameToGenerate.getValue();
   2085   if (GenerationType == GenModule ||
   2086       GenerationType == GenContents ||
   2087       GenerationType == GenProgram ||
   2088       GenerationType == GenFunctions) {
   2089     if (tgtname == "!bad!") {
   2090       if (M.getModuleIdentifier() == "-")
   2091         tgtname = "<stdin>";
   2092       else
   2093         tgtname = M.getModuleIdentifier();
   2094     }
   2095   } else if (tgtname == "!bad!")
   2096     error("You must use the -for option with -gen-{function,variable,type}");
   2097 
   2098   switch (WhatToGenerate(GenerationType)) {
   2099    case GenProgram:
   2100     if (fname.empty())
   2101       fname = "makeLLVMModule";
   2102     printProgram(fname,tgtname);
   2103     break;
   2104    case GenModule:
   2105     if (fname.empty())
   2106       fname = "makeLLVMModule";
   2107     printModule(fname,tgtname);
   2108     break;
   2109    case GenContents:
   2110     if (fname.empty())
   2111       fname = "makeLLVMModuleContents";
   2112     printContents(fname,tgtname);
   2113     break;
   2114    case GenFunction:
   2115     if (fname.empty())
   2116       fname = "makeLLVMFunction";
   2117     printFunction(fname,tgtname);
   2118     break;
   2119    case GenFunctions:
   2120     printFunctions();
   2121     break;
   2122    case GenInline:
   2123     if (fname.empty())
   2124       fname = "makeLLVMInline";
   2125     printInline(fname,tgtname);
   2126     break;
   2127    case GenVariable:
   2128     if (fname.empty())
   2129       fname = "makeLLVMVariable";
   2130     printVariable(fname,tgtname);
   2131     break;
   2132    case GenType:
   2133     if (fname.empty())
   2134       fname = "makeLLVMType";
   2135     printType(fname,tgtname);
   2136     break;
   2137   }
   2138 
   2139   return false;
   2140 }
   2141 
   2142 char CppWriter::ID = 0;
   2143 
   2144 //===----------------------------------------------------------------------===//
   2145 //                       External Interface declaration
   2146 //===----------------------------------------------------------------------===//
   2147 
   2148 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
   2149                                            formatted_raw_ostream &o,
   2150                                            CodeGenFileType FileType,
   2151                                            bool DisableVerify,
   2152                                            AnalysisID StartAfter,
   2153                                            AnalysisID StopAfter) {
   2154   if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
   2155   PM.add(new CppWriter(o));
   2156   return false;
   2157 }
   2158