Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
      2 //                     The LLVM Compiler Infrastructure
      3 //
      4 // This file is distributed under the University of Illinois Open Source
      5 // License. See LICENSE.TXT for details.
      6 //
      7 //===----------------------------------------------------------------------===//
      8 
      9 #include "Hexagon.h"
     10 #include "HexagonMachineFunctionInfo.h"
     11 #include "HexagonSubtarget.h"
     12 #include "HexagonTargetMachine.h"
     13 #include "llvm/CodeGen/MachineDominators.h"
     14 #include "llvm/CodeGen/MachineFunctionPass.h"
     15 #include "llvm/CodeGen/MachineInstrBuilder.h"
     16 #include "llvm/CodeGen/MachineLoopInfo.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/CodeGen/Passes.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/MathExtras.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/Target/TargetMachine.h"
     24 #include "llvm/Target/TargetRegisterInfo.h"
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "hexagon_cfg"
     29 
     30 namespace llvm {
     31   void initializeHexagonCFGOptimizerPass(PassRegistry&);
     32 }
     33 
     34 
     35 namespace {
     36 
     37 class HexagonCFGOptimizer : public MachineFunctionPass {
     38 
     39 private:
     40   const HexagonTargetMachine& QTM;
     41   const HexagonSubtarget &QST;
     42 
     43   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
     44 
     45  public:
     46   static char ID;
     47   HexagonCFGOptimizer(const HexagonTargetMachine& TM)
     48     : MachineFunctionPass(ID), QTM(TM), QST(*TM.getSubtargetImpl()) {
     49     initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
     50   }
     51 
     52   const char *getPassName() const override {
     53     return "Hexagon CFG Optimizer";
     54   }
     55   bool runOnMachineFunction(MachineFunction &Fn) override;
     56 };
     57 
     58 
     59 char HexagonCFGOptimizer::ID = 0;
     60 
     61 static bool IsConditionalBranch(int Opc) {
     62   return (Opc == Hexagon::JMP_t) || (Opc == Hexagon::JMP_f)
     63     || (Opc == Hexagon::JMP_tnew_t) || (Opc == Hexagon::JMP_fnew_t);
     64 }
     65 
     66 
     67 static bool IsUnconditionalJump(int Opc) {
     68   return (Opc == Hexagon::JMP);
     69 }
     70 
     71 
     72 void
     73 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
     74                                                MachineBasicBlock* NewTarget) {
     75   const HexagonInstrInfo *QII = QTM.getInstrInfo();
     76   int NewOpcode = 0;
     77   switch(MI->getOpcode()) {
     78   case Hexagon::JMP_t:
     79     NewOpcode = Hexagon::JMP_f;
     80     break;
     81 
     82   case Hexagon::JMP_f:
     83     NewOpcode = Hexagon::JMP_t;
     84     break;
     85 
     86   case Hexagon::JMP_tnew_t:
     87     NewOpcode = Hexagon::JMP_fnew_t;
     88     break;
     89 
     90   case Hexagon::JMP_fnew_t:
     91     NewOpcode = Hexagon::JMP_tnew_t;
     92     break;
     93 
     94   default:
     95     llvm_unreachable("Cannot handle this case");
     96   }
     97 
     98   MI->setDesc(QII->get(NewOpcode));
     99   MI->getOperand(1).setMBB(NewTarget);
    100 }
    101 
    102 
    103 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
    104 
    105   // Loop over all of the basic blocks.
    106   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
    107        MBBb != MBBe; ++MBBb) {
    108     MachineBasicBlock* MBB = MBBb;
    109 
    110     // Traverse the basic block.
    111     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
    112     if (MII != MBB->end()) {
    113       MachineInstr *MI = MII;
    114       int Opc = MI->getOpcode();
    115       if (IsConditionalBranch(Opc)) {
    116 
    117         //
    118         // (Case 1) Transform the code if the following condition occurs:
    119         //   BB1: if (p0) jump BB3
    120         //   ...falls-through to BB2 ...
    121         //   BB2: jump BB4
    122         //   ...next block in layout is BB3...
    123         //   BB3: ...
    124         //
    125         //  Transform this to:
    126         //  BB1: if (!p0) jump BB4
    127         //  Remove BB2
    128         //  BB3: ...
    129         //
    130         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
    131         //   BB1: if (p0) jump BB3
    132         //   ...falls-through to BB2 ...
    133         //   BB2: jump BB4
    134         //   ...other basic blocks ...
    135         //   BB4:
    136         //   ...not a fall-thru
    137         //   BB3: ...
    138         //     jump BB4
    139         //
    140         // Transform this to:
    141         //   BB1: if (!p0) jump BB4
    142         //   Remove BB2
    143         //   BB3: ...
    144         //   BB4: ...
    145         //
    146         unsigned NumSuccs = MBB->succ_size();
    147         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
    148         MachineBasicBlock* FirstSucc = *SI;
    149         MachineBasicBlock* SecondSucc = *(++SI);
    150         MachineBasicBlock* LayoutSucc = nullptr;
    151         MachineBasicBlock* JumpAroundTarget = nullptr;
    152 
    153         if (MBB->isLayoutSuccessor(FirstSucc)) {
    154           LayoutSucc = FirstSucc;
    155           JumpAroundTarget = SecondSucc;
    156         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
    157           LayoutSucc = SecondSucc;
    158           JumpAroundTarget = FirstSucc;
    159         } else {
    160           // Odd case...cannot handle.
    161         }
    162 
    163         // The target of the unconditional branch must be JumpAroundTarget.
    164         // TODO: If not, we should not invert the unconditional branch.
    165         MachineBasicBlock* CondBranchTarget = nullptr;
    166         if ((MI->getOpcode() == Hexagon::JMP_t) ||
    167             (MI->getOpcode() == Hexagon::JMP_f)) {
    168           CondBranchTarget = MI->getOperand(1).getMBB();
    169         }
    170 
    171         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
    172           continue;
    173         }
    174 
    175         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
    176 
    177           // Ensure that BB2 has one instruction -- an unconditional jump.
    178           if ((LayoutSucc->size() == 1) &&
    179               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
    180             MachineBasicBlock* UncondTarget =
    181               LayoutSucc->front().getOperand(0).getMBB();
    182             // Check if the layout successor of BB2 is BB3.
    183             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
    184             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
    185               JumpAroundTarget->size() >= 1 &&
    186               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
    187               JumpAroundTarget->pred_size() == 1 &&
    188               JumpAroundTarget->succ_size() == 1;
    189 
    190             if (case1 || case2) {
    191               InvertAndChangeJumpTarget(MI, UncondTarget);
    192               MBB->removeSuccessor(JumpAroundTarget);
    193               MBB->addSuccessor(UncondTarget);
    194 
    195               // Remove the unconditional branch in LayoutSucc.
    196               LayoutSucc->erase(LayoutSucc->begin());
    197               LayoutSucc->removeSuccessor(UncondTarget);
    198               LayoutSucc->addSuccessor(JumpAroundTarget);
    199 
    200               // This code performs the conversion for case 2, which moves
    201               // the block to the fall-thru case (BB3 in the code above).
    202               if (case2 && !case1) {
    203                 JumpAroundTarget->moveAfter(LayoutSucc);
    204                 // only move a block if it doesn't have a fall-thru. otherwise
    205                 // the CFG will be incorrect.
    206                 if (!UncondTarget->canFallThrough()) {
    207                   UncondTarget->moveAfter(JumpAroundTarget);
    208                 }
    209               }
    210 
    211               //
    212               // Correct live-in information. Is used by post-RA scheduler
    213               // The live-in to LayoutSucc is now all values live-in to
    214               // JumpAroundTarget.
    215               //
    216               std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
    217                                                LayoutSucc->livein_end());
    218               std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
    219                                               JumpAroundTarget->livein_end());
    220               for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
    221                 LayoutSucc->removeLiveIn(OrigLiveIn[i]);
    222               }
    223               for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
    224                 LayoutSucc->addLiveIn(NewLiveIn[i]);
    225               }
    226             }
    227           }
    228         }
    229       }
    230     }
    231   }
    232   return true;
    233 }
    234 }
    235 
    236 
    237 //===----------------------------------------------------------------------===//
    238 //                         Public Constructor Functions
    239 //===----------------------------------------------------------------------===//
    240 
    241 static void initializePassOnce(PassRegistry &Registry) {
    242   PassInfo *PI = new PassInfo("Hexagon CFG Optimizer", "hexagon-cfg",
    243                               &HexagonCFGOptimizer::ID, nullptr, false, false);
    244   Registry.registerPass(*PI, true);
    245 }
    246 
    247 void llvm::initializeHexagonCFGOptimizerPass(PassRegistry &Registry) {
    248   CALL_ONCE_INITIALIZATION(initializePassOnce)
    249 }
    250 
    251 FunctionPass *llvm::createHexagonCFGOptimizer(const HexagonTargetMachine &TM) {
    252   return new HexagonCFGOptimizer(TM);
    253 }
    254