Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Analysis/MemoryBuiltins.h"
     18 #include "llvm/IR/ConstantRange.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/IR/GetElementPtrTypeIterator.h"
     21 #include "llvm/IR/IntrinsicInst.h"
     22 #include "llvm/IR/PatternMatch.h"
     23 #include "llvm/Target/TargetLibraryInfo.h"
     24 using namespace llvm;
     25 using namespace PatternMatch;
     26 
     27 #define DEBUG_TYPE "instcombine"
     28 
     29 static ConstantInt *getOne(Constant *C) {
     30   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     31 }
     32 
     33 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     34   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     35 }
     36 
     37 static bool HasAddOverflow(ConstantInt *Result,
     38                            ConstantInt *In1, ConstantInt *In2,
     39                            bool IsSigned) {
     40   if (!IsSigned)
     41     return Result->getValue().ult(In1->getValue());
     42 
     43   if (In2->isNegative())
     44     return Result->getValue().sgt(In1->getValue());
     45   return Result->getValue().slt(In1->getValue());
     46 }
     47 
     48 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
     49 /// overflowed for this type.
     50 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     51                             Constant *In2, bool IsSigned = false) {
     52   Result = ConstantExpr::getAdd(In1, In2);
     53 
     54   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     55     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     56       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     57       if (HasAddOverflow(ExtractElement(Result, Idx),
     58                          ExtractElement(In1, Idx),
     59                          ExtractElement(In2, Idx),
     60                          IsSigned))
     61         return true;
     62     }
     63     return false;
     64   }
     65 
     66   return HasAddOverflow(cast<ConstantInt>(Result),
     67                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     68                         IsSigned);
     69 }
     70 
     71 static bool HasSubOverflow(ConstantInt *Result,
     72                            ConstantInt *In1, ConstantInt *In2,
     73                            bool IsSigned) {
     74   if (!IsSigned)
     75     return Result->getValue().ugt(In1->getValue());
     76 
     77   if (In2->isNegative())
     78     return Result->getValue().slt(In1->getValue());
     79 
     80   return Result->getValue().sgt(In1->getValue());
     81 }
     82 
     83 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
     84 /// overflowed for this type.
     85 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     86                             Constant *In2, bool IsSigned = false) {
     87   Result = ConstantExpr::getSub(In1, In2);
     88 
     89   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     90     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     91       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     92       if (HasSubOverflow(ExtractElement(Result, Idx),
     93                          ExtractElement(In1, Idx),
     94                          ExtractElement(In2, Idx),
     95                          IsSigned))
     96         return true;
     97     }
     98     return false;
     99   }
    100 
    101   return HasSubOverflow(cast<ConstantInt>(Result),
    102                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    103                         IsSigned);
    104 }
    105 
    106 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
    107 /// comparison only checks the sign bit.  If it only checks the sign bit, set
    108 /// TrueIfSigned if the result of the comparison is true when the input value is
    109 /// signed.
    110 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
    111                            bool &TrueIfSigned) {
    112   switch (pred) {
    113   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    114     TrueIfSigned = true;
    115     return RHS->isZero();
    116   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    117     TrueIfSigned = true;
    118     return RHS->isAllOnesValue();
    119   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    120     TrueIfSigned = false;
    121     return RHS->isAllOnesValue();
    122   case ICmpInst::ICMP_UGT:
    123     // True if LHS u> RHS and RHS == high-bit-mask - 1
    124     TrueIfSigned = true;
    125     return RHS->isMaxValue(true);
    126   case ICmpInst::ICMP_UGE:
    127     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    128     TrueIfSigned = true;
    129     return RHS->getValue().isSignBit();
    130   default:
    131     return false;
    132   }
    133 }
    134 
    135 /// Returns true if the exploded icmp can be expressed as a signed comparison
    136 /// to zero and updates the predicate accordingly.
    137 /// The signedness of the comparison is preserved.
    138 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
    139   if (!ICmpInst::isSigned(pred))
    140     return false;
    141 
    142   if (RHS->isZero())
    143     return ICmpInst::isRelational(pred);
    144 
    145   if (RHS->isOne()) {
    146     if (pred == ICmpInst::ICMP_SLT) {
    147       pred = ICmpInst::ICMP_SLE;
    148       return true;
    149     }
    150   } else if (RHS->isAllOnesValue()) {
    151     if (pred == ICmpInst::ICMP_SGT) {
    152       pred = ICmpInst::ICMP_SGE;
    153       return true;
    154     }
    155   }
    156 
    157   return false;
    158 }
    159 
    160 // isHighOnes - Return true if the constant is of the form 1+0+.
    161 // This is the same as lowones(~X).
    162 static bool isHighOnes(const ConstantInt *CI) {
    163   return (~CI->getValue() + 1).isPowerOf2();
    164 }
    165 
    166 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
    167 /// set of known zero and one bits, compute the maximum and minimum values that
    168 /// could have the specified known zero and known one bits, returning them in
    169 /// min/max.
    170 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
    171                                                    const APInt& KnownOne,
    172                                                    APInt& Min, APInt& Max) {
    173   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    174          KnownZero.getBitWidth() == Min.getBitWidth() &&
    175          KnownZero.getBitWidth() == Max.getBitWidth() &&
    176          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    177   APInt UnknownBits = ~(KnownZero|KnownOne);
    178 
    179   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    180   // bit if it is unknown.
    181   Min = KnownOne;
    182   Max = KnownOne|UnknownBits;
    183 
    184   if (UnknownBits.isNegative()) { // Sign bit is unknown
    185     Min.setBit(Min.getBitWidth()-1);
    186     Max.clearBit(Max.getBitWidth()-1);
    187   }
    188 }
    189 
    190 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
    191 // a set of known zero and one bits, compute the maximum and minimum values that
    192 // could have the specified known zero and known one bits, returning them in
    193 // min/max.
    194 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    195                                                      const APInt &KnownOne,
    196                                                      APInt &Min, APInt &Max) {
    197   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    198          KnownZero.getBitWidth() == Min.getBitWidth() &&
    199          KnownZero.getBitWidth() == Max.getBitWidth() &&
    200          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    201   APInt UnknownBits = ~(KnownZero|KnownOne);
    202 
    203   // The minimum value is when the unknown bits are all zeros.
    204   Min = KnownOne;
    205   // The maximum value is when the unknown bits are all ones.
    206   Max = KnownOne|UnknownBits;
    207 }
    208 
    209 
    210 
    211 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
    212 ///   cmp pred (load (gep GV, ...)), cmpcst
    213 /// where GV is a global variable with a constant initializer.  Try to simplify
    214 /// this into some simple computation that does not need the load.  For example
    215 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    216 ///
    217 /// If AndCst is non-null, then the loaded value is masked with that constant
    218 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
    219 Instruction *InstCombiner::
    220 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    221                              CmpInst &ICI, ConstantInt *AndCst) {
    222   // We need TD information to know the pointer size unless this is inbounds.
    223   if (!GEP->isInBounds() && !DL)
    224     return nullptr;
    225 
    226   Constant *Init = GV->getInitializer();
    227   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
    228     return nullptr;
    229 
    230   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
    231   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
    232 
    233   // There are many forms of this optimization we can handle, for now, just do
    234   // the simple index into a single-dimensional array.
    235   //
    236   // Require: GEP GV, 0, i {{, constant indices}}
    237   if (GEP->getNumOperands() < 3 ||
    238       !isa<ConstantInt>(GEP->getOperand(1)) ||
    239       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    240       isa<Constant>(GEP->getOperand(2)))
    241     return nullptr;
    242 
    243   // Check that indices after the variable are constants and in-range for the
    244   // type they index.  Collect the indices.  This is typically for arrays of
    245   // structs.
    246   SmallVector<unsigned, 4> LaterIndices;
    247 
    248   Type *EltTy = Init->getType()->getArrayElementType();
    249   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    250     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    251     if (!Idx) return nullptr;  // Variable index.
    252 
    253     uint64_t IdxVal = Idx->getZExtValue();
    254     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
    255 
    256     if (StructType *STy = dyn_cast<StructType>(EltTy))
    257       EltTy = STy->getElementType(IdxVal);
    258     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    259       if (IdxVal >= ATy->getNumElements()) return nullptr;
    260       EltTy = ATy->getElementType();
    261     } else {
    262       return nullptr; // Unknown type.
    263     }
    264 
    265     LaterIndices.push_back(IdxVal);
    266   }
    267 
    268   enum { Overdefined = -3, Undefined = -2 };
    269 
    270   // Variables for our state machines.
    271 
    272   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    273   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    274   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    275   // undefined, otherwise set to the first true element.  SecondTrueElement is
    276   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    277   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    278 
    279   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    280   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    281   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    282 
    283   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    284   /// define a state machine that triggers for ranges of values that the index
    285   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    286   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    287   /// index in the range (inclusive).  We use -2 for undefined here because we
    288   /// use relative comparisons and don't want 0-1 to match -1.
    289   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    290 
    291   // MagicBitvector - This is a magic bitvector where we set a bit if the
    292   // comparison is true for element 'i'.  If there are 64 elements or less in
    293   // the array, this will fully represent all the comparison results.
    294   uint64_t MagicBitvector = 0;
    295 
    296 
    297   // Scan the array and see if one of our patterns matches.
    298   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    299   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
    300     Constant *Elt = Init->getAggregateElement(i);
    301     if (!Elt) return nullptr;
    302 
    303     // If this is indexing an array of structures, get the structure element.
    304     if (!LaterIndices.empty())
    305       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    306 
    307     // If the element is masked, handle it.
    308     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    309 
    310     // Find out if the comparison would be true or false for the i'th element.
    311     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    312                                                   CompareRHS, DL, TLI);
    313     // If the result is undef for this element, ignore it.
    314     if (isa<UndefValue>(C)) {
    315       // Extend range state machines to cover this element in case there is an
    316       // undef in the middle of the range.
    317       if (TrueRangeEnd == (int)i-1)
    318         TrueRangeEnd = i;
    319       if (FalseRangeEnd == (int)i-1)
    320         FalseRangeEnd = i;
    321       continue;
    322     }
    323 
    324     // If we can't compute the result for any of the elements, we have to give
    325     // up evaluating the entire conditional.
    326     if (!isa<ConstantInt>(C)) return nullptr;
    327 
    328     // Otherwise, we know if the comparison is true or false for this element,
    329     // update our state machines.
    330     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    331 
    332     // State machine for single/double/range index comparison.
    333     if (IsTrueForElt) {
    334       // Update the TrueElement state machine.
    335       if (FirstTrueElement == Undefined)
    336         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    337       else {
    338         // Update double-compare state machine.
    339         if (SecondTrueElement == Undefined)
    340           SecondTrueElement = i;
    341         else
    342           SecondTrueElement = Overdefined;
    343 
    344         // Update range state machine.
    345         if (TrueRangeEnd == (int)i-1)
    346           TrueRangeEnd = i;
    347         else
    348           TrueRangeEnd = Overdefined;
    349       }
    350     } else {
    351       // Update the FalseElement state machine.
    352       if (FirstFalseElement == Undefined)
    353         FirstFalseElement = FalseRangeEnd = i; // First false element.
    354       else {
    355         // Update double-compare state machine.
    356         if (SecondFalseElement == Undefined)
    357           SecondFalseElement = i;
    358         else
    359           SecondFalseElement = Overdefined;
    360 
    361         // Update range state machine.
    362         if (FalseRangeEnd == (int)i-1)
    363           FalseRangeEnd = i;
    364         else
    365           FalseRangeEnd = Overdefined;
    366       }
    367     }
    368 
    369 
    370     // If this element is in range, update our magic bitvector.
    371     if (i < 64 && IsTrueForElt)
    372       MagicBitvector |= 1ULL << i;
    373 
    374     // If all of our states become overdefined, bail out early.  Since the
    375     // predicate is expensive, only check it every 8 elements.  This is only
    376     // really useful for really huge arrays.
    377     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    378         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    379         FalseRangeEnd == Overdefined)
    380       return nullptr;
    381   }
    382 
    383   // Now that we've scanned the entire array, emit our new comparison(s).  We
    384   // order the state machines in complexity of the generated code.
    385   Value *Idx = GEP->getOperand(2);
    386 
    387   // If the index is larger than the pointer size of the target, truncate the
    388   // index down like the GEP would do implicitly.  We don't have to do this for
    389   // an inbounds GEP because the index can't be out of range.
    390   if (!GEP->isInBounds()) {
    391     Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
    392     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
    393     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
    394       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
    395   }
    396 
    397   // If the comparison is only true for one or two elements, emit direct
    398   // comparisons.
    399   if (SecondTrueElement != Overdefined) {
    400     // None true -> false.
    401     if (FirstTrueElement == Undefined)
    402       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    403 
    404     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    405 
    406     // True for one element -> 'i == 47'.
    407     if (SecondTrueElement == Undefined)
    408       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    409 
    410     // True for two elements -> 'i == 47 | i == 72'.
    411     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    412     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    413     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    414     return BinaryOperator::CreateOr(C1, C2);
    415   }
    416 
    417   // If the comparison is only false for one or two elements, emit direct
    418   // comparisons.
    419   if (SecondFalseElement != Overdefined) {
    420     // None false -> true.
    421     if (FirstFalseElement == Undefined)
    422       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    423 
    424     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    425 
    426     // False for one element -> 'i != 47'.
    427     if (SecondFalseElement == Undefined)
    428       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    429 
    430     // False for two elements -> 'i != 47 & i != 72'.
    431     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    432     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    433     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    434     return BinaryOperator::CreateAnd(C1, C2);
    435   }
    436 
    437   // If the comparison can be replaced with a range comparison for the elements
    438   // where it is true, emit the range check.
    439   if (TrueRangeEnd != Overdefined) {
    440     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    441 
    442     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    443     if (FirstTrueElement) {
    444       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    445       Idx = Builder->CreateAdd(Idx, Offs);
    446     }
    447 
    448     Value *End = ConstantInt::get(Idx->getType(),
    449                                   TrueRangeEnd-FirstTrueElement+1);
    450     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    451   }
    452 
    453   // False range check.
    454   if (FalseRangeEnd != Overdefined) {
    455     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    456     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    457     if (FirstFalseElement) {
    458       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    459       Idx = Builder->CreateAdd(Idx, Offs);
    460     }
    461 
    462     Value *End = ConstantInt::get(Idx->getType(),
    463                                   FalseRangeEnd-FirstFalseElement);
    464     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    465   }
    466 
    467 
    468   // If a magic bitvector captures the entire comparison state
    469   // of this load, replace it with computation that does:
    470   //   ((magic_cst >> i) & 1) != 0
    471   {
    472     Type *Ty = nullptr;
    473 
    474     // Look for an appropriate type:
    475     // - The type of Idx if the magic fits
    476     // - The smallest fitting legal type if we have a DataLayout
    477     // - Default to i32
    478     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
    479       Ty = Idx->getType();
    480     else if (DL)
    481       Ty = DL->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
    482     else if (ArrayElementCount <= 32)
    483       Ty = Type::getInt32Ty(Init->getContext());
    484 
    485     if (Ty) {
    486       Value *V = Builder->CreateIntCast(Idx, Ty, false);
    487       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    488       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    489       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    490     }
    491   }
    492 
    493   return nullptr;
    494 }
    495 
    496 
    497 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
    498 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
    499 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
    500 /// be complex, and scales are involved.  The above expression would also be
    501 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    502 /// This later form is less amenable to optimization though, and we are allowed
    503 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    504 ///
    505 /// If we can't emit an optimized form for this expression, this returns null.
    506 ///
    507 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
    508   const DataLayout &DL = *IC.getDataLayout();
    509   gep_type_iterator GTI = gep_type_begin(GEP);
    510 
    511   // Check to see if this gep only has a single variable index.  If so, and if
    512   // any constant indices are a multiple of its scale, then we can compute this
    513   // in terms of the scale of the variable index.  For example, if the GEP
    514   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    515   // because the expression will cross zero at the same point.
    516   unsigned i, e = GEP->getNumOperands();
    517   int64_t Offset = 0;
    518   for (i = 1; i != e; ++i, ++GTI) {
    519     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    520       // Compute the aggregate offset of constant indices.
    521       if (CI->isZero()) continue;
    522 
    523       // Handle a struct index, which adds its field offset to the pointer.
    524       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    525         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    526       } else {
    527         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
    528         Offset += Size*CI->getSExtValue();
    529       }
    530     } else {
    531       // Found our variable index.
    532       break;
    533     }
    534   }
    535 
    536   // If there are no variable indices, we must have a constant offset, just
    537   // evaluate it the general way.
    538   if (i == e) return nullptr;
    539 
    540   Value *VariableIdx = GEP->getOperand(i);
    541   // Determine the scale factor of the variable element.  For example, this is
    542   // 4 if the variable index is into an array of i32.
    543   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
    544 
    545   // Verify that there are no other variable indices.  If so, emit the hard way.
    546   for (++i, ++GTI; i != e; ++i, ++GTI) {
    547     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    548     if (!CI) return nullptr;
    549 
    550     // Compute the aggregate offset of constant indices.
    551     if (CI->isZero()) continue;
    552 
    553     // Handle a struct index, which adds its field offset to the pointer.
    554     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    555       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    556     } else {
    557       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
    558       Offset += Size*CI->getSExtValue();
    559     }
    560   }
    561 
    562 
    563 
    564   // Okay, we know we have a single variable index, which must be a
    565   // pointer/array/vector index.  If there is no offset, life is simple, return
    566   // the index.
    567   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
    568   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
    569   if (Offset == 0) {
    570     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    571     // we don't need to bother extending: the extension won't affect where the
    572     // computation crosses zero.
    573     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    574       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    575     }
    576     return VariableIdx;
    577   }
    578 
    579   // Otherwise, there is an index.  The computation we will do will be modulo
    580   // the pointer size, so get it.
    581   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    582 
    583   Offset &= PtrSizeMask;
    584   VariableScale &= PtrSizeMask;
    585 
    586   // To do this transformation, any constant index must be a multiple of the
    587   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    588   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    589   // multiple of the variable scale.
    590   int64_t NewOffs = Offset / (int64_t)VariableScale;
    591   if (Offset != NewOffs*(int64_t)VariableScale)
    592     return nullptr;
    593 
    594   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    595   if (VariableIdx->getType() != IntPtrTy)
    596     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    597                                             true /*Signed*/);
    598   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    599   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    600 }
    601 
    602 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
    603 /// else.  At this point we know that the GEP is on the LHS of the comparison.
    604 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    605                                        ICmpInst::Predicate Cond,
    606                                        Instruction &I) {
    607   // Don't transform signed compares of GEPs into index compares. Even if the
    608   // GEP is inbounds, the final add of the base pointer can have signed overflow
    609   // and would change the result of the icmp.
    610   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
    611   // the maximum signed value for the pointer type.
    612   if (ICmpInst::isSigned(Cond))
    613     return nullptr;
    614 
    615   // Look through bitcasts and addrspacecasts. We do not however want to remove
    616   // 0 GEPs.
    617   if (!isa<GetElementPtrInst>(RHS))
    618     RHS = RHS->stripPointerCasts();
    619 
    620   Value *PtrBase = GEPLHS->getOperand(0);
    621   if (DL && PtrBase == RHS && GEPLHS->isInBounds()) {
    622     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    623     // This transformation (ignoring the base and scales) is valid because we
    624     // know pointers can't overflow since the gep is inbounds.  See if we can
    625     // output an optimized form.
    626     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
    627 
    628     // If not, synthesize the offset the hard way.
    629     if (!Offset)
    630       Offset = EmitGEPOffset(GEPLHS);
    631     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    632                         Constant::getNullValue(Offset->getType()));
    633   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    634     // If the base pointers are different, but the indices are the same, just
    635     // compare the base pointer.
    636     if (PtrBase != GEPRHS->getOperand(0)) {
    637       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    638       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    639                         GEPRHS->getOperand(0)->getType();
    640       if (IndicesTheSame)
    641         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    642           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    643             IndicesTheSame = false;
    644             break;
    645           }
    646 
    647       // If all indices are the same, just compare the base pointers.
    648       if (IndicesTheSame)
    649         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    650 
    651       // If we're comparing GEPs with two base pointers that only differ in type
    652       // and both GEPs have only constant indices or just one use, then fold
    653       // the compare with the adjusted indices.
    654       if (DL && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
    655           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
    656           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
    657           PtrBase->stripPointerCasts() ==
    658             GEPRHS->getOperand(0)->stripPointerCasts()) {
    659         Value *LOffset = EmitGEPOffset(GEPLHS);
    660         Value *ROffset = EmitGEPOffset(GEPRHS);
    661 
    662         // If we looked through an addrspacecast between different sized address
    663         // spaces, the LHS and RHS pointers are different sized
    664         // integers. Truncate to the smaller one.
    665         Type *LHSIndexTy = LOffset->getType();
    666         Type *RHSIndexTy = ROffset->getType();
    667         if (LHSIndexTy != RHSIndexTy) {
    668           if (LHSIndexTy->getPrimitiveSizeInBits() <
    669               RHSIndexTy->getPrimitiveSizeInBits()) {
    670             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
    671           } else
    672             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
    673         }
    674 
    675         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
    676                                          LOffset, ROffset);
    677         return ReplaceInstUsesWith(I, Cmp);
    678       }
    679 
    680       // Otherwise, the base pointers are different and the indices are
    681       // different, bail out.
    682       return nullptr;
    683     }
    684 
    685     // If one of the GEPs has all zero indices, recurse.
    686     if (GEPLHS->hasAllZeroIndices())
    687       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
    688                          ICmpInst::getSwappedPredicate(Cond), I);
    689 
    690     // If the other GEP has all zero indices, recurse.
    691     if (GEPRHS->hasAllZeroIndices())
    692       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
    693 
    694     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    695     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
    696       // If the GEPs only differ by one index, compare it.
    697       unsigned NumDifferences = 0;  // Keep track of # differences.
    698       unsigned DiffOperand = 0;     // The operand that differs.
    699       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    700         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    701           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
    702                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
    703             // Irreconcilable differences.
    704             NumDifferences = 2;
    705             break;
    706           } else {
    707             if (NumDifferences++) break;
    708             DiffOperand = i;
    709           }
    710         }
    711 
    712       if (NumDifferences == 0)   // SAME GEP?
    713         return ReplaceInstUsesWith(I, // No comparison is needed here.
    714                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
    715 
    716       else if (NumDifferences == 1 && GEPsInBounds) {
    717         Value *LHSV = GEPLHS->getOperand(DiffOperand);
    718         Value *RHSV = GEPRHS->getOperand(DiffOperand);
    719         // Make sure we do a signed comparison here.
    720         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
    721       }
    722     }
    723 
    724     // Only lower this if the icmp is the only user of the GEP or if we expect
    725     // the result to fold to a constant!
    726     if (DL &&
    727         GEPsInBounds &&
    728         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
    729         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
    730       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
    731       Value *L = EmitGEPOffset(GEPLHS);
    732       Value *R = EmitGEPOffset(GEPRHS);
    733       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    734     }
    735   }
    736   return nullptr;
    737 }
    738 
    739 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
    740 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
    741                                             Value *X, ConstantInt *CI,
    742                                             ICmpInst::Predicate Pred) {
    743   // If we have X+0, exit early (simplifying logic below) and let it get folded
    744   // elsewhere.   icmp X+0, X  -> icmp X, X
    745   if (CI->isZero()) {
    746     bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
    747     return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
    748   }
    749 
    750   // (X+4) == X -> false.
    751   if (Pred == ICmpInst::ICMP_EQ)
    752     return ReplaceInstUsesWith(ICI, Builder->getFalse());
    753 
    754   // (X+4) != X -> true.
    755   if (Pred == ICmpInst::ICMP_NE)
    756     return ReplaceInstUsesWith(ICI, Builder->getTrue());
    757 
    758   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
    759   // so the values can never be equal.  Similarly for all other "or equals"
    760   // operators.
    761 
    762   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
    763   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
    764   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
    765   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    766     Value *R =
    767       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
    768     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
    769   }
    770 
    771   // (X+1) >u X        --> X <u (0-1)        --> X != 255
    772   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
    773   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
    774   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    775     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
    776 
    777   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
    778   ConstantInt *SMax = ConstantInt::get(X->getContext(),
    779                                        APInt::getSignedMaxValue(BitWidth));
    780 
    781   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
    782   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
    783   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
    784   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
    785   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
    786   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
    787   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    788     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
    789 
    790   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
    791   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
    792   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
    793   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
    794   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
    795   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
    796 
    797   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
    798   Constant *C = Builder->getInt(CI->getValue()-1);
    799   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
    800 }
    801 
    802 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
    803 /// and CmpRHS are both known to be integer constants.
    804 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    805                                           ConstantInt *DivRHS) {
    806   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
    807   const APInt &CmpRHSV = CmpRHS->getValue();
    808 
    809   // FIXME: If the operand types don't match the type of the divide
    810   // then don't attempt this transform. The code below doesn't have the
    811   // logic to deal with a signed divide and an unsigned compare (and
    812   // vice versa). This is because (x /s C1) <s C2  produces different
    813   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
    814   // (x /u C1) <u C2.  Simply casting the operands and result won't
    815   // work. :(  The if statement below tests that condition and bails
    816   // if it finds it.
    817   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
    818   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
    819     return nullptr;
    820   if (DivRHS->isZero())
    821     return nullptr; // The ProdOV computation fails on divide by zero.
    822   if (DivIsSigned && DivRHS->isAllOnesValue())
    823     return nullptr; // The overflow computation also screws up here
    824   if (DivRHS->isOne()) {
    825     // This eliminates some funny cases with INT_MIN.
    826     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
    827     return &ICI;
    828   }
    829 
    830   // Compute Prod = CI * DivRHS. We are essentially solving an equation
    831   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
    832   // C2 (CI). By solving for X we can turn this into a range check
    833   // instead of computing a divide.
    834   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
    835 
    836   // Determine if the product overflows by seeing if the product is
    837   // not equal to the divide. Make sure we do the same kind of divide
    838   // as in the LHS instruction that we're folding.
    839   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
    840                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
    841 
    842   // Get the ICmp opcode
    843   ICmpInst::Predicate Pred = ICI.getPredicate();
    844 
    845   /// If the division is known to be exact, then there is no remainder from the
    846   /// divide, so the covered range size is unit, otherwise it is the divisor.
    847   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
    848 
    849   // Figure out the interval that is being checked.  For example, a comparison
    850   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
    851   // Compute this interval based on the constants involved and the signedness of
    852   // the compare/divide.  This computes a half-open interval, keeping track of
    853   // whether either value in the interval overflows.  After analysis each
    854   // overflow variable is set to 0 if it's corresponding bound variable is valid
    855   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
    856   int LoOverflow = 0, HiOverflow = 0;
    857   Constant *LoBound = nullptr, *HiBound = nullptr;
    858 
    859   if (!DivIsSigned) {  // udiv
    860     // e.g. X/5 op 3  --> [15, 20)
    861     LoBound = Prod;
    862     HiOverflow = LoOverflow = ProdOV;
    863     if (!HiOverflow) {
    864       // If this is not an exact divide, then many values in the range collapse
    865       // to the same result value.
    866       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
    867     }
    868 
    869   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
    870     if (CmpRHSV == 0) {       // (X / pos) op 0
    871       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
    872       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
    873       HiBound = RangeSize;
    874     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
    875       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
    876       HiOverflow = LoOverflow = ProdOV;
    877       if (!HiOverflow)
    878         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
    879     } else {                       // (X / pos) op neg
    880       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
    881       HiBound = AddOne(Prod);
    882       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
    883       if (!LoOverflow) {
    884         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    885         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
    886       }
    887     }
    888   } else if (DivRHS->isNegative()) { // Divisor is < 0.
    889     if (DivI->isExact())
    890       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    891     if (CmpRHSV == 0) {       // (X / neg) op 0
    892       // e.g. X/-5 op 0  --> [-4, 5)
    893       LoBound = AddOne(RangeSize);
    894       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    895       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
    896         HiOverflow = 1;            // [INTMIN+1, overflow)
    897         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
    898       }
    899     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
    900       // e.g. X/-5 op 3  --> [-19, -14)
    901       HiBound = AddOne(Prod);
    902       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
    903       if (!LoOverflow)
    904         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    905     } else {                       // (X / neg) op neg
    906       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
    907       LoOverflow = HiOverflow = ProdOV;
    908       if (!HiOverflow)
    909         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
    910     }
    911 
    912     // Dividing by a negative swaps the condition.  LT <-> GT
    913     Pred = ICmpInst::getSwappedPredicate(Pred);
    914   }
    915 
    916   Value *X = DivI->getOperand(0);
    917   switch (Pred) {
    918   default: llvm_unreachable("Unhandled icmp opcode!");
    919   case ICmpInst::ICMP_EQ:
    920     if (LoOverflow && HiOverflow)
    921       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    922     if (HiOverflow)
    923       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    924                           ICmpInst::ICMP_UGE, X, LoBound);
    925     if (LoOverflow)
    926       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    927                           ICmpInst::ICMP_ULT, X, HiBound);
    928     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    929                                                     DivIsSigned, true));
    930   case ICmpInst::ICMP_NE:
    931     if (LoOverflow && HiOverflow)
    932       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    933     if (HiOverflow)
    934       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    935                           ICmpInst::ICMP_ULT, X, LoBound);
    936     if (LoOverflow)
    937       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    938                           ICmpInst::ICMP_UGE, X, HiBound);
    939     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    940                                                     DivIsSigned, false));
    941   case ICmpInst::ICMP_ULT:
    942   case ICmpInst::ICMP_SLT:
    943     if (LoOverflow == +1)   // Low bound is greater than input range.
    944       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    945     if (LoOverflow == -1)   // Low bound is less than input range.
    946       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    947     return new ICmpInst(Pred, X, LoBound);
    948   case ICmpInst::ICMP_UGT:
    949   case ICmpInst::ICMP_SGT:
    950     if (HiOverflow == +1)       // High bound greater than input range.
    951       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    952     if (HiOverflow == -1)       // High bound less than input range.
    953       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    954     if (Pred == ICmpInst::ICMP_UGT)
    955       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
    956     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
    957   }
    958 }
    959 
    960 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
    961 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
    962                                           ConstantInt *ShAmt) {
    963   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
    964 
    965   // Check that the shift amount is in range.  If not, don't perform
    966   // undefined shifts.  When the shift is visited it will be
    967   // simplified.
    968   uint32_t TypeBits = CmpRHSV.getBitWidth();
    969   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
    970   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
    971     return nullptr;
    972 
    973   if (!ICI.isEquality()) {
    974     // If we have an unsigned comparison and an ashr, we can't simplify this.
    975     // Similarly for signed comparisons with lshr.
    976     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
    977       return nullptr;
    978 
    979     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
    980     // by a power of 2.  Since we already have logic to simplify these,
    981     // transform to div and then simplify the resultant comparison.
    982     if (Shr->getOpcode() == Instruction::AShr &&
    983         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
    984       return nullptr;
    985 
    986     // Revisit the shift (to delete it).
    987     Worklist.Add(Shr);
    988 
    989     Constant *DivCst =
    990       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
    991 
    992     Value *Tmp =
    993       Shr->getOpcode() == Instruction::AShr ?
    994       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
    995       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
    996 
    997     ICI.setOperand(0, Tmp);
    998 
    999     // If the builder folded the binop, just return it.
   1000     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
   1001     if (!TheDiv)
   1002       return &ICI;
   1003 
   1004     // Otherwise, fold this div/compare.
   1005     assert(TheDiv->getOpcode() == Instruction::SDiv ||
   1006            TheDiv->getOpcode() == Instruction::UDiv);
   1007 
   1008     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
   1009     assert(Res && "This div/cst should have folded!");
   1010     return Res;
   1011   }
   1012 
   1013 
   1014   // If we are comparing against bits always shifted out, the
   1015   // comparison cannot succeed.
   1016   APInt Comp = CmpRHSV << ShAmtVal;
   1017   ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
   1018   if (Shr->getOpcode() == Instruction::LShr)
   1019     Comp = Comp.lshr(ShAmtVal);
   1020   else
   1021     Comp = Comp.ashr(ShAmtVal);
   1022 
   1023   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
   1024     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1025     Constant *Cst = Builder->getInt1(IsICMP_NE);
   1026     return ReplaceInstUsesWith(ICI, Cst);
   1027   }
   1028 
   1029   // Otherwise, check to see if the bits shifted out are known to be zero.
   1030   // If so, we can compare against the unshifted value:
   1031   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
   1032   if (Shr->hasOneUse() && Shr->isExact())
   1033     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
   1034 
   1035   if (Shr->hasOneUse()) {
   1036     // Otherwise strength reduce the shift into an and.
   1037     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
   1038     Constant *Mask = Builder->getInt(Val);
   1039 
   1040     Value *And = Builder->CreateAnd(Shr->getOperand(0),
   1041                                     Mask, Shr->getName()+".mask");
   1042     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
   1043   }
   1044   return nullptr;
   1045 }
   1046 
   1047 
   1048 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
   1049 ///
   1050 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
   1051                                                           Instruction *LHSI,
   1052                                                           ConstantInt *RHS) {
   1053   const APInt &RHSV = RHS->getValue();
   1054 
   1055   switch (LHSI->getOpcode()) {
   1056   case Instruction::Trunc:
   1057     if (ICI.isEquality() && LHSI->hasOneUse()) {
   1058       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1059       // of the high bits truncated out of x are known.
   1060       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1061              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1062       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1063       computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne);
   1064 
   1065       // If all the high bits are known, we can do this xform.
   1066       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1067         // Pull in the high bits from known-ones set.
   1068         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1069         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
   1070         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1071                             Builder->getInt(NewRHS));
   1072       }
   1073     }
   1074     break;
   1075 
   1076   case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
   1077     if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1078       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1079       // fold the xor.
   1080       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1081           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1082         Value *CompareVal = LHSI->getOperand(0);
   1083 
   1084         // If the sign bit of the XorCst is not set, there is no change to
   1085         // the operation, just stop using the Xor.
   1086         if (!XorCst->isNegative()) {
   1087           ICI.setOperand(0, CompareVal);
   1088           Worklist.Add(LHSI);
   1089           return &ICI;
   1090         }
   1091 
   1092         // Was the old condition true if the operand is positive?
   1093         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1094 
   1095         // If so, the new one isn't.
   1096         isTrueIfPositive ^= true;
   1097 
   1098         if (isTrueIfPositive)
   1099           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1100                               SubOne(RHS));
   1101         else
   1102           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1103                               AddOne(RHS));
   1104       }
   1105 
   1106       if (LHSI->hasOneUse()) {
   1107         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1108         if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
   1109           const APInt &SignBit = XorCst->getValue();
   1110           ICmpInst::Predicate Pred = ICI.isSigned()
   1111                                          ? ICI.getUnsignedPredicate()
   1112                                          : ICI.getSignedPredicate();
   1113           return new ICmpInst(Pred, LHSI->getOperand(0),
   1114                               Builder->getInt(RHSV ^ SignBit));
   1115         }
   1116 
   1117         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1118         if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
   1119           const APInt &NotSignBit = XorCst->getValue();
   1120           ICmpInst::Predicate Pred = ICI.isSigned()
   1121                                          ? ICI.getUnsignedPredicate()
   1122                                          : ICI.getSignedPredicate();
   1123           Pred = ICI.getSwappedPredicate(Pred);
   1124           return new ICmpInst(Pred, LHSI->getOperand(0),
   1125                               Builder->getInt(RHSV ^ NotSignBit));
   1126         }
   1127       }
   1128 
   1129       // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
   1130       //   iff -C is a power of 2
   1131       if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
   1132           XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
   1133         return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
   1134 
   1135       // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
   1136       //   iff -C is a power of 2
   1137       if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
   1138           XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
   1139         return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
   1140     }
   1141     break;
   1142   case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
   1143     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1144         LHSI->getOperand(0)->hasOneUse()) {
   1145       ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
   1146 
   1147       // If the LHS is an AND of a truncating cast, we can widen the
   1148       // and/compare to be the input width without changing the value
   1149       // produced, eliminating a cast.
   1150       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1151         // We can do this transformation if either the AND constant does not
   1152         // have its sign bit set or if it is an equality comparison.
   1153         // Extending a relational comparison when we're checking the sign
   1154         // bit would not work.
   1155         if (ICI.isEquality() ||
   1156             (!AndCst->isNegative() && RHSV.isNonNegative())) {
   1157           Value *NewAnd =
   1158             Builder->CreateAnd(Cast->getOperand(0),
   1159                                ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
   1160           NewAnd->takeName(LHSI);
   1161           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1162                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1163         }
   1164       }
   1165 
   1166       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1167       // shrink the and/compare to the smaller type, eliminating the cast.
   1168       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1169         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1170         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1171         // should fold the icmp to true/false in that case.
   1172         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1173           Value *NewAnd =
   1174             Builder->CreateAnd(Cast->getOperand(0),
   1175                                ConstantExpr::getTrunc(AndCst, Ty));
   1176           NewAnd->takeName(LHSI);
   1177           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1178                               ConstantExpr::getTrunc(RHS, Ty));
   1179         }
   1180       }
   1181 
   1182       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1183       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1184       // happens a LOT in code produced by the C front-end, for bitfield
   1185       // access.
   1186       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1187       if (Shift && !Shift->isShift())
   1188         Shift = nullptr;
   1189 
   1190       ConstantInt *ShAmt;
   1191       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
   1192 
   1193       // This seemingly simple opportunity to fold away a shift turns out to
   1194       // be rather complicated. See PR17827
   1195       // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
   1196       if (ShAmt) {
   1197         bool CanFold = false;
   1198         unsigned ShiftOpcode = Shift->getOpcode();
   1199         if (ShiftOpcode == Instruction::AShr) {
   1200           // There may be some constraints that make this possible,
   1201           // but nothing simple has been discovered yet.
   1202           CanFold = false;
   1203         } else if (ShiftOpcode == Instruction::Shl) {
   1204           // For a left shift, we can fold if the comparison is not signed.
   1205           // We can also fold a signed comparison if the mask value and
   1206           // comparison value are not negative. These constraints may not be
   1207           // obvious, but we can prove that they are correct using an SMT
   1208           // solver.
   1209           if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
   1210             CanFold = true;
   1211         } else if (ShiftOpcode == Instruction::LShr) {
   1212           // For a logical right shift, we can fold if the comparison is not
   1213           // signed. We can also fold a signed comparison if the shifted mask
   1214           // value and the shifted comparison value are not negative.
   1215           // These constraints may not be obvious, but we can prove that they
   1216           // are correct using an SMT solver.
   1217           if (!ICI.isSigned())
   1218             CanFold = true;
   1219           else {
   1220             ConstantInt *ShiftedAndCst =
   1221               cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
   1222             ConstantInt *ShiftedRHSCst =
   1223               cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
   1224 
   1225             if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
   1226               CanFold = true;
   1227           }
   1228         }
   1229 
   1230         if (CanFold) {
   1231           Constant *NewCst;
   1232           if (ShiftOpcode == Instruction::Shl)
   1233             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1234           else
   1235             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1236 
   1237           // Check to see if we are shifting out any of the bits being
   1238           // compared.
   1239           if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
   1240             // If we shifted bits out, the fold is not going to work out.
   1241             // As a special case, check to see if this means that the
   1242             // result is always true or false now.
   1243             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1244               return ReplaceInstUsesWith(ICI, Builder->getFalse());
   1245             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1246               return ReplaceInstUsesWith(ICI, Builder->getTrue());
   1247           } else {
   1248             ICI.setOperand(1, NewCst);
   1249             Constant *NewAndCst;
   1250             if (ShiftOpcode == Instruction::Shl)
   1251               NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
   1252             else
   1253               NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
   1254             LHSI->setOperand(1, NewAndCst);
   1255             LHSI->setOperand(0, Shift->getOperand(0));
   1256             Worklist.Add(Shift); // Shift is dead.
   1257             return &ICI;
   1258           }
   1259         }
   1260       }
   1261 
   1262       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1263       // preferable because it allows the C<<Y expression to be hoisted out
   1264       // of a loop if Y is invariant and X is not.
   1265       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1266           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1267           !isa<Constant>(Shift->getOperand(0))) {
   1268         // Compute C << Y.
   1269         Value *NS;
   1270         if (Shift->getOpcode() == Instruction::LShr) {
   1271           NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
   1272         } else {
   1273           // Insert a logical shift.
   1274           NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
   1275         }
   1276 
   1277         // Compute X & (C << Y).
   1278         Value *NewAnd =
   1279           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1280 
   1281         ICI.setOperand(0, NewAnd);
   1282         return &ICI;
   1283       }
   1284 
   1285       // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
   1286       // bit set in (X & AndCst) will produce a result greater than RHSV.
   1287       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
   1288         unsigned NTZ = AndCst->getValue().countTrailingZeros();
   1289         if ((NTZ < AndCst->getBitWidth()) &&
   1290             APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
   1291           return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
   1292                               Constant::getNullValue(RHS->getType()));
   1293       }
   1294     }
   1295 
   1296     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1297     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1298       if (GetElementPtrInst *GEP =
   1299           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1300         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1301           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1302               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1303             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1304             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1305               return Res;
   1306           }
   1307     }
   1308 
   1309     // X & -C == -C -> X >  u ~C
   1310     // X & -C != -C -> X <= u ~C
   1311     //   iff C is a power of 2
   1312     if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
   1313       return new ICmpInst(
   1314           ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
   1315                                                   : ICmpInst::ICMP_ULE,
   1316           LHSI->getOperand(0), SubOne(RHS));
   1317     break;
   1318 
   1319   case Instruction::Or: {
   1320     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1321       break;
   1322     Value *P, *Q;
   1323     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1324       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1325       // -> and (icmp eq P, null), (icmp eq Q, null).
   1326       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1327                                         Constant::getNullValue(P->getType()));
   1328       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1329                                         Constant::getNullValue(Q->getType()));
   1330       Instruction *Op;
   1331       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1332         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1333       else
   1334         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1335       return Op;
   1336     }
   1337     break;
   1338   }
   1339 
   1340   case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
   1341     ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1342     if (!Val) break;
   1343 
   1344     // If this is a signed comparison to 0 and the mul is sign preserving,
   1345     // use the mul LHS operand instead.
   1346     ICmpInst::Predicate pred = ICI.getPredicate();
   1347     if (isSignTest(pred, RHS) && !Val->isZero() &&
   1348         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   1349       return new ICmpInst(Val->isNegative() ?
   1350                           ICmpInst::getSwappedPredicate(pred) : pred,
   1351                           LHSI->getOperand(0),
   1352                           Constant::getNullValue(RHS->getType()));
   1353 
   1354     break;
   1355   }
   1356 
   1357   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1358     uint32_t TypeBits = RHSV.getBitWidth();
   1359     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1360     if (!ShAmt) {
   1361       Value *X;
   1362       // (1 << X) pred P2 -> X pred Log2(P2)
   1363       if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
   1364         bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
   1365         ICmpInst::Predicate Pred = ICI.getPredicate();
   1366         if (ICI.isUnsigned()) {
   1367           if (!RHSVIsPowerOf2) {
   1368             // (1 << X) <  30 -> X <= 4
   1369             // (1 << X) <= 30 -> X <= 4
   1370             // (1 << X) >= 30 -> X >  4
   1371             // (1 << X) >  30 -> X >  4
   1372             if (Pred == ICmpInst::ICMP_ULT)
   1373               Pred = ICmpInst::ICMP_ULE;
   1374             else if (Pred == ICmpInst::ICMP_UGE)
   1375               Pred = ICmpInst::ICMP_UGT;
   1376           }
   1377           unsigned RHSLog2 = RHSV.logBase2();
   1378 
   1379           // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
   1380           // (1 << X) >  2147483648 -> X >  31 -> false
   1381           // (1 << X) <= 2147483648 -> X <= 31 -> true
   1382           // (1 << X) <  2147483648 -> X <  31 -> X != 31
   1383           if (RHSLog2 == TypeBits-1) {
   1384             if (Pred == ICmpInst::ICMP_UGE)
   1385               Pred = ICmpInst::ICMP_EQ;
   1386             else if (Pred == ICmpInst::ICMP_UGT)
   1387               return ReplaceInstUsesWith(ICI, Builder->getFalse());
   1388             else if (Pred == ICmpInst::ICMP_ULE)
   1389               return ReplaceInstUsesWith(ICI, Builder->getTrue());
   1390             else if (Pred == ICmpInst::ICMP_ULT)
   1391               Pred = ICmpInst::ICMP_NE;
   1392           }
   1393 
   1394           return new ICmpInst(Pred, X,
   1395                               ConstantInt::get(RHS->getType(), RHSLog2));
   1396         } else if (ICI.isSigned()) {
   1397           if (RHSV.isAllOnesValue()) {
   1398             // (1 << X) <= -1 -> X == 31
   1399             if (Pred == ICmpInst::ICMP_SLE)
   1400               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1401                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1402 
   1403             // (1 << X) >  -1 -> X != 31
   1404             if (Pred == ICmpInst::ICMP_SGT)
   1405               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1406                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1407           } else if (!RHSV) {
   1408             // (1 << X) <  0 -> X == 31
   1409             // (1 << X) <= 0 -> X == 31
   1410             if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
   1411               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1412                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1413 
   1414             // (1 << X) >= 0 -> X != 31
   1415             // (1 << X) >  0 -> X != 31
   1416             if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
   1417               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1418                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1419           }
   1420         } else if (ICI.isEquality()) {
   1421           if (RHSVIsPowerOf2)
   1422             return new ICmpInst(
   1423                 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
   1424 
   1425           return ReplaceInstUsesWith(
   1426               ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
   1427                                              : Builder->getTrue());
   1428         }
   1429       }
   1430       break;
   1431     }
   1432 
   1433     // Check that the shift amount is in range.  If not, don't perform
   1434     // undefined shifts.  When the shift is visited it will be
   1435     // simplified.
   1436     if (ShAmt->uge(TypeBits))
   1437       break;
   1438 
   1439     if (ICI.isEquality()) {
   1440       // If we are comparing against bits always shifted out, the
   1441       // comparison cannot succeed.
   1442       Constant *Comp =
   1443         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1444                                                                  ShAmt);
   1445       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   1446         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1447         Constant *Cst = Builder->getInt1(IsICMP_NE);
   1448         return ReplaceInstUsesWith(ICI, Cst);
   1449       }
   1450 
   1451       // If the shift is NUW, then it is just shifting out zeros, no need for an
   1452       // AND.
   1453       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   1454         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1455                             ConstantExpr::getLShr(RHS, ShAmt));
   1456 
   1457       // If the shift is NSW and we compare to 0, then it is just shifting out
   1458       // sign bits, no need for an AND either.
   1459       if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
   1460         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1461                             ConstantExpr::getLShr(RHS, ShAmt));
   1462 
   1463       if (LHSI->hasOneUse()) {
   1464         // Otherwise strength reduce the shift into an and.
   1465         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1466         Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
   1467                                                           TypeBits - ShAmtVal));
   1468 
   1469         Value *And =
   1470           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   1471         return new ICmpInst(ICI.getPredicate(), And,
   1472                             ConstantExpr::getLShr(RHS, ShAmt));
   1473       }
   1474     }
   1475 
   1476     // If this is a signed comparison to 0 and the shift is sign preserving,
   1477     // use the shift LHS operand instead.
   1478     ICmpInst::Predicate pred = ICI.getPredicate();
   1479     if (isSignTest(pred, RHS) &&
   1480         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   1481       return new ICmpInst(pred,
   1482                           LHSI->getOperand(0),
   1483                           Constant::getNullValue(RHS->getType()));
   1484 
   1485     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   1486     bool TrueIfSigned = false;
   1487     if (LHSI->hasOneUse() &&
   1488         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   1489       // (X << 31) <s 0  --> (X&1) != 0
   1490       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   1491                                         APInt::getOneBitSet(TypeBits,
   1492                                             TypeBits-ShAmt->getZExtValue()-1));
   1493       Value *And =
   1494         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   1495       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   1496                           And, Constant::getNullValue(And->getType()));
   1497     }
   1498 
   1499     // Transform (icmp pred iM (shl iM %v, N), CI)
   1500     // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
   1501     // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
   1502     // This enables to get rid of the shift in favor of a trunc which can be
   1503     // free on the target. It has the additional benefit of comparing to a
   1504     // smaller constant, which will be target friendly.
   1505     unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
   1506     if (LHSI->hasOneUse() &&
   1507         Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
   1508       Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
   1509       Constant *NCI = ConstantExpr::getTrunc(
   1510                         ConstantExpr::getAShr(RHS,
   1511                           ConstantInt::get(RHS->getType(), Amt)),
   1512                         NTy);
   1513       return new ICmpInst(ICI.getPredicate(),
   1514                           Builder->CreateTrunc(LHSI->getOperand(0), NTy),
   1515                           NCI);
   1516     }
   1517 
   1518     break;
   1519   }
   1520 
   1521   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   1522   case Instruction::AShr: {
   1523     // Handle equality comparisons of shift-by-constant.
   1524     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   1525     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1526       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   1527         return Res;
   1528     }
   1529 
   1530     // Handle exact shr's.
   1531     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   1532       if (RHSV.isMinValue())
   1533         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   1534     }
   1535     break;
   1536   }
   1537 
   1538   case Instruction::SDiv:
   1539   case Instruction::UDiv:
   1540     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   1541     // Fold this div into the comparison, producing a range check.
   1542     // Determine, based on the divide type, what the range is being
   1543     // checked.  If there is an overflow on the low or high side, remember
   1544     // it, otherwise compute the range [low, hi) bounding the new value.
   1545     // See: InsertRangeTest above for the kinds of replacements possible.
   1546     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   1547       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   1548                                           DivRHS))
   1549         return R;
   1550     break;
   1551 
   1552   case Instruction::Sub: {
   1553     ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
   1554     if (!LHSC) break;
   1555     const APInt &LHSV = LHSC->getValue();
   1556 
   1557     // C1-X <u C2 -> (X|(C2-1)) == C1
   1558     //   iff C1 & (C2-1) == C2-1
   1559     //       C2 is a power of 2
   1560     if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   1561         RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
   1562       return new ICmpInst(ICmpInst::ICMP_EQ,
   1563                           Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
   1564                           LHSC);
   1565 
   1566     // C1-X >u C2 -> (X|C2) != C1
   1567     //   iff C1 & C2 == C2
   1568     //       C2+1 is a power of 2
   1569     if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   1570         (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
   1571       return new ICmpInst(ICmpInst::ICMP_NE,
   1572                           Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
   1573     break;
   1574   }
   1575 
   1576   case Instruction::Add:
   1577     // Fold: icmp pred (add X, C1), C2
   1578     if (!ICI.isEquality()) {
   1579       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1580       if (!LHSC) break;
   1581       const APInt &LHSV = LHSC->getValue();
   1582 
   1583       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   1584                             .subtract(LHSV);
   1585 
   1586       if (ICI.isSigned()) {
   1587         if (CR.getLower().isSignBit()) {
   1588           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   1589                               Builder->getInt(CR.getUpper()));
   1590         } else if (CR.getUpper().isSignBit()) {
   1591           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   1592                               Builder->getInt(CR.getLower()));
   1593         }
   1594       } else {
   1595         if (CR.getLower().isMinValue()) {
   1596           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   1597                               Builder->getInt(CR.getUpper()));
   1598         } else if (CR.getUpper().isMinValue()) {
   1599           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   1600                               Builder->getInt(CR.getLower()));
   1601         }
   1602       }
   1603 
   1604       // X-C1 <u C2 -> (X & -C2) == C1
   1605       //   iff C1 & (C2-1) == 0
   1606       //       C2 is a power of 2
   1607       if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   1608           RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
   1609         return new ICmpInst(ICmpInst::ICMP_EQ,
   1610                             Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
   1611                             ConstantExpr::getNeg(LHSC));
   1612 
   1613       // X-C1 >u C2 -> (X & ~C2) != C1
   1614       //   iff C1 & C2 == 0
   1615       //       C2+1 is a power of 2
   1616       if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   1617           (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
   1618         return new ICmpInst(ICmpInst::ICMP_NE,
   1619                             Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
   1620                             ConstantExpr::getNeg(LHSC));
   1621     }
   1622     break;
   1623   }
   1624 
   1625   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   1626   if (ICI.isEquality()) {
   1627     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1628 
   1629     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   1630     // the second operand is a constant, simplify a bit.
   1631     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   1632       switch (BO->getOpcode()) {
   1633       case Instruction::SRem:
   1634         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   1635         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   1636           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   1637           if (V.sgt(1) && V.isPowerOf2()) {
   1638             Value *NewRem =
   1639               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   1640                                   BO->getName());
   1641             return new ICmpInst(ICI.getPredicate(), NewRem,
   1642                                 Constant::getNullValue(BO->getType()));
   1643           }
   1644         }
   1645         break;
   1646       case Instruction::Add:
   1647         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   1648         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1649           if (BO->hasOneUse())
   1650             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1651                                 ConstantExpr::getSub(RHS, BOp1C));
   1652         } else if (RHSV == 0) {
   1653           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   1654           // efficiently invertible, or if the add has just this one use.
   1655           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   1656 
   1657           if (Value *NegVal = dyn_castNegVal(BOp1))
   1658             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   1659           if (Value *NegVal = dyn_castNegVal(BOp0))
   1660             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   1661           if (BO->hasOneUse()) {
   1662             Value *Neg = Builder->CreateNeg(BOp1);
   1663             Neg->takeName(BO);
   1664             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   1665           }
   1666         }
   1667         break;
   1668       case Instruction::Xor:
   1669         // For the xor case, we can xor two constants together, eliminating
   1670         // the explicit xor.
   1671         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   1672           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1673                               ConstantExpr::getXor(RHS, BOC));
   1674         } else if (RHSV == 0) {
   1675           // Replace ((xor A, B) != 0) with (A != B)
   1676           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1677                               BO->getOperand(1));
   1678         }
   1679         break;
   1680       case Instruction::Sub:
   1681         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   1682         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   1683           if (BO->hasOneUse())
   1684             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   1685                                 ConstantExpr::getSub(BOp0C, RHS));
   1686         } else if (RHSV == 0) {
   1687           // Replace ((sub A, B) != 0) with (A != B)
   1688           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1689                               BO->getOperand(1));
   1690         }
   1691         break;
   1692       case Instruction::Or:
   1693         // If bits are being or'd in that are not present in the constant we
   1694         // are comparing against, then the comparison could never succeed!
   1695         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1696           Constant *NotCI = ConstantExpr::getNot(RHS);
   1697           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   1698             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   1699         }
   1700         break;
   1701 
   1702       case Instruction::And:
   1703         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1704           // If bits are being compared against that are and'd out, then the
   1705           // comparison can never succeed!
   1706           if ((RHSV & ~BOC->getValue()) != 0)
   1707             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   1708 
   1709           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   1710           if (RHS == BOC && RHSV.isPowerOf2())
   1711             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   1712                                 ICmpInst::ICMP_NE, LHSI,
   1713                                 Constant::getNullValue(RHS->getType()));
   1714 
   1715           // Don't perform the following transforms if the AND has multiple uses
   1716           if (!BO->hasOneUse())
   1717             break;
   1718 
   1719           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   1720           if (BOC->getValue().isSignBit()) {
   1721             Value *X = BO->getOperand(0);
   1722             Constant *Zero = Constant::getNullValue(X->getType());
   1723             ICmpInst::Predicate pred = isICMP_NE ?
   1724               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   1725             return new ICmpInst(pred, X, Zero);
   1726           }
   1727 
   1728           // ((X & ~7) == 0) --> X < 8
   1729           if (RHSV == 0 && isHighOnes(BOC)) {
   1730             Value *X = BO->getOperand(0);
   1731             Constant *NegX = ConstantExpr::getNeg(BOC);
   1732             ICmpInst::Predicate pred = isICMP_NE ?
   1733               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   1734             return new ICmpInst(pred, X, NegX);
   1735           }
   1736         }
   1737         break;
   1738       case Instruction::Mul:
   1739         if (RHSV == 0 && BO->hasNoSignedWrap()) {
   1740           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1741             // The trivial case (mul X, 0) is handled by InstSimplify
   1742             // General case : (mul X, C) != 0 iff X != 0
   1743             //                (mul X, C) == 0 iff X == 0
   1744             if (!BOC->isZero())
   1745               return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1746                                   Constant::getNullValue(RHS->getType()));
   1747           }
   1748         }
   1749         break;
   1750       default: break;
   1751       }
   1752     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   1753       // Handle icmp {eq|ne} <intrinsic>, intcst.
   1754       switch (II->getIntrinsicID()) {
   1755       case Intrinsic::bswap:
   1756         Worklist.Add(II);
   1757         ICI.setOperand(0, II->getArgOperand(0));
   1758         ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
   1759         return &ICI;
   1760       case Intrinsic::ctlz:
   1761       case Intrinsic::cttz:
   1762         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   1763         if (RHSV == RHS->getType()->getBitWidth()) {
   1764           Worklist.Add(II);
   1765           ICI.setOperand(0, II->getArgOperand(0));
   1766           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   1767           return &ICI;
   1768         }
   1769         break;
   1770       case Intrinsic::ctpop:
   1771         // popcount(A) == 0  ->  A == 0 and likewise for !=
   1772         if (RHS->isZero()) {
   1773           Worklist.Add(II);
   1774           ICI.setOperand(0, II->getArgOperand(0));
   1775           ICI.setOperand(1, RHS);
   1776           return &ICI;
   1777         }
   1778         break;
   1779       default:
   1780         break;
   1781       }
   1782     }
   1783   }
   1784   return nullptr;
   1785 }
   1786 
   1787 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
   1788 /// We only handle extending casts so far.
   1789 ///
   1790 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
   1791   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
   1792   Value *LHSCIOp        = LHSCI->getOperand(0);
   1793   Type *SrcTy     = LHSCIOp->getType();
   1794   Type *DestTy    = LHSCI->getType();
   1795   Value *RHSCIOp;
   1796 
   1797   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   1798   // integer type is the same size as the pointer type.
   1799   if (DL && LHSCI->getOpcode() == Instruction::PtrToInt &&
   1800       DL->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
   1801     Value *RHSOp = nullptr;
   1802     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
   1803       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   1804     } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
   1805       RHSOp = RHSC->getOperand(0);
   1806       // If the pointer types don't match, insert a bitcast.
   1807       if (LHSCIOp->getType() != RHSOp->getType())
   1808         RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   1809     }
   1810 
   1811     if (RHSOp)
   1812       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
   1813   }
   1814 
   1815   // The code below only handles extension cast instructions, so far.
   1816   // Enforce this.
   1817   if (LHSCI->getOpcode() != Instruction::ZExt &&
   1818       LHSCI->getOpcode() != Instruction::SExt)
   1819     return nullptr;
   1820 
   1821   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   1822   bool isSignedCmp = ICI.isSigned();
   1823 
   1824   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
   1825     // Not an extension from the same type?
   1826     RHSCIOp = CI->getOperand(0);
   1827     if (RHSCIOp->getType() != LHSCIOp->getType())
   1828       return nullptr;
   1829 
   1830     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   1831     // and the other is a zext), then we can't handle this.
   1832     if (CI->getOpcode() != LHSCI->getOpcode())
   1833       return nullptr;
   1834 
   1835     // Deal with equality cases early.
   1836     if (ICI.isEquality())
   1837       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1838 
   1839     // A signed comparison of sign extended values simplifies into a
   1840     // signed comparison.
   1841     if (isSignedCmp && isSignedExt)
   1842       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1843 
   1844     // The other three cases all fold into an unsigned comparison.
   1845     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   1846   }
   1847 
   1848   // If we aren't dealing with a constant on the RHS, exit early
   1849   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
   1850   if (!CI)
   1851     return nullptr;
   1852 
   1853   // Compute the constant that would happen if we truncated to SrcTy then
   1854   // reextended to DestTy.
   1855   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
   1856   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
   1857                                                 Res1, DestTy);
   1858 
   1859   // If the re-extended constant didn't change...
   1860   if (Res2 == CI) {
   1861     // Deal with equality cases early.
   1862     if (ICI.isEquality())
   1863       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1864 
   1865     // A signed comparison of sign extended values simplifies into a
   1866     // signed comparison.
   1867     if (isSignedExt && isSignedCmp)
   1868       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1869 
   1870     // The other three cases all fold into an unsigned comparison.
   1871     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
   1872   }
   1873 
   1874   // The re-extended constant changed so the constant cannot be represented
   1875   // in the shorter type. Consequently, we cannot emit a simple comparison.
   1876   // All the cases that fold to true or false will have already been handled
   1877   // by SimplifyICmpInst, so only deal with the tricky case.
   1878 
   1879   if (isSignedCmp || !isSignedExt)
   1880     return nullptr;
   1881 
   1882   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   1883   // should have been folded away previously and not enter in here.
   1884 
   1885   // We're performing an unsigned comp with a sign extended value.
   1886   // This is true if the input is >= 0. [aka >s -1]
   1887   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   1888   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
   1889 
   1890   // Finally, return the value computed.
   1891   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
   1892     return ReplaceInstUsesWith(ICI, Result);
   1893 
   1894   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   1895   return BinaryOperator::CreateNot(Result);
   1896 }
   1897 
   1898 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
   1899 ///   I = icmp ugt (add (add A, B), CI2), CI1
   1900 /// If this is of the form:
   1901 ///   sum = a + b
   1902 ///   if (sum+128 >u 255)
   1903 /// Then replace it with llvm.sadd.with.overflow.i8.
   1904 ///
   1905 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   1906                                           ConstantInt *CI2, ConstantInt *CI1,
   1907                                           InstCombiner &IC) {
   1908   // The transformation we're trying to do here is to transform this into an
   1909   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   1910   // with a narrower add, and discard the add-with-constant that is part of the
   1911   // range check (if we can't eliminate it, this isn't profitable).
   1912 
   1913   // In order to eliminate the add-with-constant, the compare can be its only
   1914   // use.
   1915   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   1916   if (!AddWithCst->hasOneUse()) return nullptr;
   1917 
   1918   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   1919   if (!CI2->getValue().isPowerOf2()) return nullptr;
   1920   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   1921   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
   1922 
   1923   // The width of the new add formed is 1 more than the bias.
   1924   ++NewWidth;
   1925 
   1926   // Check to see that CI1 is an all-ones value with NewWidth bits.
   1927   if (CI1->getBitWidth() == NewWidth ||
   1928       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   1929     return nullptr;
   1930 
   1931   // This is only really a signed overflow check if the inputs have been
   1932   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
   1933   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
   1934   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
   1935   if (IC.ComputeNumSignBits(A) < NeededSignBits ||
   1936       IC.ComputeNumSignBits(B) < NeededSignBits)
   1937     return nullptr;
   1938 
   1939   // In order to replace the original add with a narrower
   1940   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   1941   // and truncates that discard the high bits of the add.  Verify that this is
   1942   // the case.
   1943   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   1944   for (User *U : OrigAdd->users()) {
   1945     if (U == AddWithCst) continue;
   1946 
   1947     // Only accept truncates for now.  We would really like a nice recursive
   1948     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   1949     // chain to see which bits of a value are actually demanded.  If the
   1950     // original add had another add which was then immediately truncated, we
   1951     // could still do the transformation.
   1952     TruncInst *TI = dyn_cast<TruncInst>(U);
   1953     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
   1954       return nullptr;
   1955   }
   1956 
   1957   // If the pattern matches, truncate the inputs to the narrower type and
   1958   // use the sadd_with_overflow intrinsic to efficiently compute both the
   1959   // result and the overflow bit.
   1960   Module *M = I.getParent()->getParent()->getParent();
   1961 
   1962   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   1963   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
   1964                                        NewType);
   1965 
   1966   InstCombiner::BuilderTy *Builder = IC.Builder;
   1967 
   1968   // Put the new code above the original add, in case there are any uses of the
   1969   // add between the add and the compare.
   1970   Builder->SetInsertPoint(OrigAdd);
   1971 
   1972   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   1973   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   1974   CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
   1975   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   1976   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   1977 
   1978   // The inner add was the result of the narrow add, zero extended to the
   1979   // wider type.  Replace it with the result computed by the intrinsic.
   1980   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
   1981 
   1982   // The original icmp gets replaced with the overflow value.
   1983   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   1984 }
   1985 
   1986 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
   1987                                      InstCombiner &IC) {
   1988   // Don't bother doing this transformation for pointers, don't do it for
   1989   // vectors.
   1990   if (!isa<IntegerType>(OrigAddV->getType())) return nullptr;
   1991 
   1992   // If the add is a constant expr, then we don't bother transforming it.
   1993   Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
   1994   if (!OrigAdd) return nullptr;
   1995 
   1996   Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
   1997 
   1998   // Put the new code above the original add, in case there are any uses of the
   1999   // add between the add and the compare.
   2000   InstCombiner::BuilderTy *Builder = IC.Builder;
   2001   Builder->SetInsertPoint(OrigAdd);
   2002 
   2003   Module *M = I.getParent()->getParent()->getParent();
   2004   Type *Ty = LHS->getType();
   2005   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
   2006   CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
   2007   Value *Add = Builder->CreateExtractValue(Call, 0);
   2008 
   2009   IC.ReplaceInstUsesWith(*OrigAdd, Add);
   2010 
   2011   // The original icmp gets replaced with the overflow value.
   2012   return ExtractValueInst::Create(Call, 1, "uadd.overflow");
   2013 }
   2014 
   2015 /// \brief Recognize and process idiom involving test for multiplication
   2016 /// overflow.
   2017 ///
   2018 /// The caller has matched a pattern of the form:
   2019 ///   I = cmp u (mul(zext A, zext B), V
   2020 /// The function checks if this is a test for overflow and if so replaces
   2021 /// multiplication with call to 'mul.with.overflow' intrinsic.
   2022 ///
   2023 /// \param I Compare instruction.
   2024 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
   2025 ///               the compare instruction.  Must be of integer type.
   2026 /// \param OtherVal The other argument of compare instruction.
   2027 /// \returns Instruction which must replace the compare instruction, NULL if no
   2028 ///          replacement required.
   2029 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
   2030                                          Value *OtherVal, InstCombiner &IC) {
   2031   // Don't bother doing this transformation for pointers, don't do it for
   2032   // vectors.
   2033   if (!isa<IntegerType>(MulVal->getType()))
   2034     return nullptr;
   2035 
   2036   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
   2037   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
   2038   Instruction *MulInstr = cast<Instruction>(MulVal);
   2039   assert(MulInstr->getOpcode() == Instruction::Mul);
   2040 
   2041   Instruction *LHS = cast<Instruction>(MulInstr->getOperand(0)),
   2042               *RHS = cast<Instruction>(MulInstr->getOperand(1));
   2043   assert(LHS->getOpcode() == Instruction::ZExt);
   2044   assert(RHS->getOpcode() == Instruction::ZExt);
   2045   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
   2046 
   2047   // Calculate type and width of the result produced by mul.with.overflow.
   2048   Type *TyA = A->getType(), *TyB = B->getType();
   2049   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
   2050            WidthB = TyB->getPrimitiveSizeInBits();
   2051   unsigned MulWidth;
   2052   Type *MulType;
   2053   if (WidthB > WidthA) {
   2054     MulWidth = WidthB;
   2055     MulType = TyB;
   2056   } else {
   2057     MulWidth = WidthA;
   2058     MulType = TyA;
   2059   }
   2060 
   2061   // In order to replace the original mul with a narrower mul.with.overflow,
   2062   // all uses must ignore upper bits of the product.  The number of used low
   2063   // bits must be not greater than the width of mul.with.overflow.
   2064   if (MulVal->hasNUsesOrMore(2))
   2065     for (User *U : MulVal->users()) {
   2066       if (U == &I)
   2067         continue;
   2068       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
   2069         // Check if truncation ignores bits above MulWidth.
   2070         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
   2071         if (TruncWidth > MulWidth)
   2072           return nullptr;
   2073       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
   2074         // Check if AND ignores bits above MulWidth.
   2075         if (BO->getOpcode() != Instruction::And)
   2076           return nullptr;
   2077         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   2078           const APInt &CVal = CI->getValue();
   2079           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
   2080             return nullptr;
   2081         }
   2082       } else {
   2083         // Other uses prohibit this transformation.
   2084         return nullptr;
   2085       }
   2086     }
   2087 
   2088   // Recognize patterns
   2089   switch (I.getPredicate()) {
   2090   case ICmpInst::ICMP_EQ:
   2091   case ICmpInst::ICMP_NE:
   2092     // Recognize pattern:
   2093     //   mulval = mul(zext A, zext B)
   2094     //   cmp eq/neq mulval, zext trunc mulval
   2095     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
   2096       if (Zext->hasOneUse()) {
   2097         Value *ZextArg = Zext->getOperand(0);
   2098         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
   2099           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
   2100             break; //Recognized
   2101       }
   2102 
   2103     // Recognize pattern:
   2104     //   mulval = mul(zext A, zext B)
   2105     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
   2106     ConstantInt *CI;
   2107     Value *ValToMask;
   2108     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
   2109       if (ValToMask != MulVal)
   2110         return nullptr;
   2111       const APInt &CVal = CI->getValue() + 1;
   2112       if (CVal.isPowerOf2()) {
   2113         unsigned MaskWidth = CVal.logBase2();
   2114         if (MaskWidth == MulWidth)
   2115           break; // Recognized
   2116       }
   2117     }
   2118     return nullptr;
   2119 
   2120   case ICmpInst::ICMP_UGT:
   2121     // Recognize pattern:
   2122     //   mulval = mul(zext A, zext B)
   2123     //   cmp ugt mulval, max
   2124     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2125       APInt MaxVal = APInt::getMaxValue(MulWidth);
   2126       MaxVal = MaxVal.zext(CI->getBitWidth());
   2127       if (MaxVal.eq(CI->getValue()))
   2128         break; // Recognized
   2129     }
   2130     return nullptr;
   2131 
   2132   case ICmpInst::ICMP_UGE:
   2133     // Recognize pattern:
   2134     //   mulval = mul(zext A, zext B)
   2135     //   cmp uge mulval, max+1
   2136     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2137       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
   2138       if (MaxVal.eq(CI->getValue()))
   2139         break; // Recognized
   2140     }
   2141     return nullptr;
   2142 
   2143   case ICmpInst::ICMP_ULE:
   2144     // Recognize pattern:
   2145     //   mulval = mul(zext A, zext B)
   2146     //   cmp ule mulval, max
   2147     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2148       APInt MaxVal = APInt::getMaxValue(MulWidth);
   2149       MaxVal = MaxVal.zext(CI->getBitWidth());
   2150       if (MaxVal.eq(CI->getValue()))
   2151         break; // Recognized
   2152     }
   2153     return nullptr;
   2154 
   2155   case ICmpInst::ICMP_ULT:
   2156     // Recognize pattern:
   2157     //   mulval = mul(zext A, zext B)
   2158     //   cmp ule mulval, max + 1
   2159     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2160       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
   2161       if (MaxVal.eq(CI->getValue()))
   2162         break; // Recognized
   2163     }
   2164     return nullptr;
   2165 
   2166   default:
   2167     return nullptr;
   2168   }
   2169 
   2170   InstCombiner::BuilderTy *Builder = IC.Builder;
   2171   Builder->SetInsertPoint(MulInstr);
   2172   Module *M = I.getParent()->getParent()->getParent();
   2173 
   2174   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
   2175   Value *MulA = A, *MulB = B;
   2176   if (WidthA < MulWidth)
   2177     MulA = Builder->CreateZExt(A, MulType);
   2178   if (WidthB < MulWidth)
   2179     MulB = Builder->CreateZExt(B, MulType);
   2180   Value *F =
   2181       Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType);
   2182   CallInst *Call = Builder->CreateCall2(F, MulA, MulB, "umul");
   2183   IC.Worklist.Add(MulInstr);
   2184 
   2185   // If there are uses of mul result other than the comparison, we know that
   2186   // they are truncation or binary AND. Change them to use result of
   2187   // mul.with.overflow and adjust properly mask/size.
   2188   if (MulVal->hasNUsesOrMore(2)) {
   2189     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
   2190     for (User *U : MulVal->users()) {
   2191       if (U == &I || U == OtherVal)
   2192         continue;
   2193       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
   2194         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
   2195           IC.ReplaceInstUsesWith(*TI, Mul);
   2196         else
   2197           TI->setOperand(0, Mul);
   2198       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
   2199         assert(BO->getOpcode() == Instruction::And);
   2200         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
   2201         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
   2202         APInt ShortMask = CI->getValue().trunc(MulWidth);
   2203         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
   2204         Instruction *Zext =
   2205             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
   2206         IC.Worklist.Add(Zext);
   2207         IC.ReplaceInstUsesWith(*BO, Zext);
   2208       } else {
   2209         llvm_unreachable("Unexpected Binary operation");
   2210       }
   2211       IC.Worklist.Add(cast<Instruction>(U));
   2212     }
   2213   }
   2214   if (isa<Instruction>(OtherVal))
   2215     IC.Worklist.Add(cast<Instruction>(OtherVal));
   2216 
   2217   // The original icmp gets replaced with the overflow value, maybe inverted
   2218   // depending on predicate.
   2219   bool Inverse = false;
   2220   switch (I.getPredicate()) {
   2221   case ICmpInst::ICMP_NE:
   2222     break;
   2223   case ICmpInst::ICMP_EQ:
   2224     Inverse = true;
   2225     break;
   2226   case ICmpInst::ICMP_UGT:
   2227   case ICmpInst::ICMP_UGE:
   2228     if (I.getOperand(0) == MulVal)
   2229       break;
   2230     Inverse = true;
   2231     break;
   2232   case ICmpInst::ICMP_ULT:
   2233   case ICmpInst::ICMP_ULE:
   2234     if (I.getOperand(1) == MulVal)
   2235       break;
   2236     Inverse = true;
   2237     break;
   2238   default:
   2239     llvm_unreachable("Unexpected predicate");
   2240   }
   2241   if (Inverse) {
   2242     Value *Res = Builder->CreateExtractValue(Call, 1);
   2243     return BinaryOperator::CreateNot(Res);
   2244   }
   2245 
   2246   return ExtractValueInst::Create(Call, 1);
   2247 }
   2248 
   2249 // DemandedBitsLHSMask - When performing a comparison against a constant,
   2250 // it is possible that not all the bits in the LHS are demanded.  This helper
   2251 // method computes the mask that IS demanded.
   2252 static APInt DemandedBitsLHSMask(ICmpInst &I,
   2253                                  unsigned BitWidth, bool isSignCheck) {
   2254   if (isSignCheck)
   2255     return APInt::getSignBit(BitWidth);
   2256 
   2257   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   2258   if (!CI) return APInt::getAllOnesValue(BitWidth);
   2259   const APInt &RHS = CI->getValue();
   2260 
   2261   switch (I.getPredicate()) {
   2262   // For a UGT comparison, we don't care about any bits that
   2263   // correspond to the trailing ones of the comparand.  The value of these
   2264   // bits doesn't impact the outcome of the comparison, because any value
   2265   // greater than the RHS must differ in a bit higher than these due to carry.
   2266   case ICmpInst::ICMP_UGT: {
   2267     unsigned trailingOnes = RHS.countTrailingOnes();
   2268     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   2269     return ~lowBitsSet;
   2270   }
   2271 
   2272   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   2273   // Any value less than the RHS must differ in a higher bit because of carries.
   2274   case ICmpInst::ICMP_ULT: {
   2275     unsigned trailingZeros = RHS.countTrailingZeros();
   2276     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   2277     return ~lowBitsSet;
   2278   }
   2279 
   2280   default:
   2281     return APInt::getAllOnesValue(BitWidth);
   2282   }
   2283 
   2284 }
   2285 
   2286 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
   2287 /// should be swapped.
   2288 /// The decision is based on how many times these two operands are reused
   2289 /// as subtract operands and their positions in those instructions.
   2290 /// The rational is that several architectures use the same instruction for
   2291 /// both subtract and cmp, thus it is better if the order of those operands
   2292 /// match.
   2293 /// \return true if Op0 and Op1 should be swapped.
   2294 static bool swapMayExposeCSEOpportunities(const Value * Op0,
   2295                                           const Value * Op1) {
   2296   // Filter out pointer value as those cannot appears directly in subtract.
   2297   // FIXME: we may want to go through inttoptrs or bitcasts.
   2298   if (Op0->getType()->isPointerTy())
   2299     return false;
   2300   // Count every uses of both Op0 and Op1 in a subtract.
   2301   // Each time Op0 is the first operand, count -1: swapping is bad, the
   2302   // subtract has already the same layout as the compare.
   2303   // Each time Op0 is the second operand, count +1: swapping is good, the
   2304   // subtract has a different layout as the compare.
   2305   // At the end, if the benefit is greater than 0, Op0 should come second to
   2306   // expose more CSE opportunities.
   2307   int GlobalSwapBenefits = 0;
   2308   for (const User *U : Op0->users()) {
   2309     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
   2310     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
   2311       continue;
   2312     // If Op0 is the first argument, this is not beneficial to swap the
   2313     // arguments.
   2314     int LocalSwapBenefits = -1;
   2315     unsigned Op1Idx = 1;
   2316     if (BinOp->getOperand(Op1Idx) == Op0) {
   2317       Op1Idx = 0;
   2318       LocalSwapBenefits = 1;
   2319     }
   2320     if (BinOp->getOperand(Op1Idx) != Op1)
   2321       continue;
   2322     GlobalSwapBenefits += LocalSwapBenefits;
   2323   }
   2324   return GlobalSwapBenefits > 0;
   2325 }
   2326 
   2327 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   2328   bool Changed = false;
   2329   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2330   unsigned Op0Cplxity = getComplexity(Op0);
   2331   unsigned Op1Cplxity = getComplexity(Op1);
   2332 
   2333   /// Orders the operands of the compare so that they are listed from most
   2334   /// complex to least complex.  This puts constants before unary operators,
   2335   /// before binary operators.
   2336   if (Op0Cplxity < Op1Cplxity ||
   2337         (Op0Cplxity == Op1Cplxity &&
   2338          swapMayExposeCSEOpportunities(Op0, Op1))) {
   2339     I.swapOperands();
   2340     std::swap(Op0, Op1);
   2341     Changed = true;
   2342   }
   2343 
   2344   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL))
   2345     return ReplaceInstUsesWith(I, V);
   2346 
   2347   // comparing -val or val with non-zero is the same as just comparing val
   2348   // ie, abs(val) != 0 -> val != 0
   2349   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
   2350   {
   2351     Value *Cond, *SelectTrue, *SelectFalse;
   2352     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
   2353                             m_Value(SelectFalse)))) {
   2354       if (Value *V = dyn_castNegVal(SelectTrue)) {
   2355         if (V == SelectFalse)
   2356           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   2357       }
   2358       else if (Value *V = dyn_castNegVal(SelectFalse)) {
   2359         if (V == SelectTrue)
   2360           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   2361       }
   2362     }
   2363   }
   2364 
   2365   Type *Ty = Op0->getType();
   2366 
   2367   // icmp's with boolean values can always be turned into bitwise operations
   2368   if (Ty->isIntegerTy(1)) {
   2369     switch (I.getPredicate()) {
   2370     default: llvm_unreachable("Invalid icmp instruction!");
   2371     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
   2372       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
   2373       return BinaryOperator::CreateNot(Xor);
   2374     }
   2375     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
   2376       return BinaryOperator::CreateXor(Op0, Op1);
   2377 
   2378     case ICmpInst::ICMP_UGT:
   2379       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   2380       // FALL THROUGH
   2381     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
   2382       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   2383       return BinaryOperator::CreateAnd(Not, Op1);
   2384     }
   2385     case ICmpInst::ICMP_SGT:
   2386       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   2387       // FALL THROUGH
   2388     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   2389       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   2390       return BinaryOperator::CreateAnd(Not, Op0);
   2391     }
   2392     case ICmpInst::ICMP_UGE:
   2393       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   2394       // FALL THROUGH
   2395     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
   2396       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   2397       return BinaryOperator::CreateOr(Not, Op1);
   2398     }
   2399     case ICmpInst::ICMP_SGE:
   2400       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   2401       // FALL THROUGH
   2402     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
   2403       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   2404       return BinaryOperator::CreateOr(Not, Op0);
   2405     }
   2406     }
   2407   }
   2408 
   2409   unsigned BitWidth = 0;
   2410   if (Ty->isIntOrIntVectorTy())
   2411     BitWidth = Ty->getScalarSizeInBits();
   2412   else if (DL)  // Pointers require DL info to get their size.
   2413     BitWidth = DL->getTypeSizeInBits(Ty->getScalarType());
   2414 
   2415   bool isSignBit = false;
   2416 
   2417   // See if we are doing a comparison with a constant.
   2418   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2419     Value *A = nullptr, *B = nullptr;
   2420 
   2421     // Match the following pattern, which is a common idiom when writing
   2422     // overflow-safe integer arithmetic function.  The source performs an
   2423     // addition in wider type, and explicitly checks for overflow using
   2424     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   2425     // sadd_with_overflow intrinsic.
   2426     //
   2427     // TODO: This could probably be generalized to handle other overflow-safe
   2428     // operations if we worked out the formulas to compute the appropriate
   2429     // magic constants.
   2430     //
   2431     // sum = a + b
   2432     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   2433     {
   2434     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   2435     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2436         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   2437       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   2438         return Res;
   2439     }
   2440 
   2441     // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   2442     if (I.isEquality() && CI->isZero() &&
   2443         match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
   2444       // (icmp cond A B) if cond is equality
   2445       return new ICmpInst(I.getPredicate(), A, B);
   2446     }
   2447 
   2448     // If we have an icmp le or icmp ge instruction, turn it into the
   2449     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
   2450     // them being folded in the code below.  The SimplifyICmpInst code has
   2451     // already handled the edge cases for us, so we just assert on them.
   2452     switch (I.getPredicate()) {
   2453     default: break;
   2454     case ICmpInst::ICMP_ULE:
   2455       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
   2456       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
   2457                           Builder->getInt(CI->getValue()+1));
   2458     case ICmpInst::ICMP_SLE:
   2459       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
   2460       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2461                           Builder->getInt(CI->getValue()+1));
   2462     case ICmpInst::ICMP_UGE:
   2463       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
   2464       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
   2465                           Builder->getInt(CI->getValue()-1));
   2466     case ICmpInst::ICMP_SGE:
   2467       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
   2468       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2469                           Builder->getInt(CI->getValue()-1));
   2470     }
   2471 
   2472     // If this comparison is a normal comparison, it demands all
   2473     // bits, if it is a sign bit comparison, it only demands the sign bit.
   2474     bool UnusedBit;
   2475     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   2476   }
   2477 
   2478   // See if we can fold the comparison based on range information we can get
   2479   // by checking whether bits are known to be zero or one in the input.
   2480   if (BitWidth != 0) {
   2481     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   2482     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   2483 
   2484     if (SimplifyDemandedBits(I.getOperandUse(0),
   2485                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   2486                              Op0KnownZero, Op0KnownOne, 0))
   2487       return &I;
   2488     if (SimplifyDemandedBits(I.getOperandUse(1),
   2489                              APInt::getAllOnesValue(BitWidth),
   2490                              Op1KnownZero, Op1KnownOne, 0))
   2491       return &I;
   2492 
   2493     // Given the known and unknown bits, compute a range that the LHS could be
   2494     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   2495     // EQ and NE we use unsigned values.
   2496     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   2497     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   2498     if (I.isSigned()) {
   2499       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2500                                              Op0Min, Op0Max);
   2501       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2502                                              Op1Min, Op1Max);
   2503     } else {
   2504       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2505                                                Op0Min, Op0Max);
   2506       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2507                                                Op1Min, Op1Max);
   2508     }
   2509 
   2510     // If Min and Max are known to be the same, then SimplifyDemandedBits
   2511     // figured out that the LHS is a constant.  Just constant fold this now so
   2512     // that code below can assume that Min != Max.
   2513     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   2514       return new ICmpInst(I.getPredicate(),
   2515                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   2516     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   2517       return new ICmpInst(I.getPredicate(), Op0,
   2518                           ConstantInt::get(Op1->getType(), Op1Min));
   2519 
   2520     // Based on the range information we know about the LHS, see if we can
   2521     // simplify this comparison.  For example, (x&4) < 8 is always true.
   2522     switch (I.getPredicate()) {
   2523     default: llvm_unreachable("Unknown icmp opcode!");
   2524     case ICmpInst::ICMP_EQ: {
   2525       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2526         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2527 
   2528       // If all bits are known zero except for one, then we know at most one
   2529       // bit is set.   If the comparison is against zero, then this is a check
   2530       // to see if *that* bit is set.
   2531       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2532       if (~Op1KnownZero == 0) {
   2533         // If the LHS is an AND with the same constant, look through it.
   2534         Value *LHS = nullptr;
   2535         ConstantInt *LHSC = nullptr;
   2536         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2537             LHSC->getValue() != Op0KnownZeroInverted)
   2538           LHS = Op0;
   2539 
   2540         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2541         // then turn "((1 << x)&8) == 0" into "x != 3".
   2542         // or turn "((1 << x)&7) == 0" into "x > 2".
   2543         Value *X = nullptr;
   2544         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2545           APInt ValToCheck = Op0KnownZeroInverted;
   2546           if (ValToCheck.isPowerOf2()) {
   2547             unsigned CmpVal = ValToCheck.countTrailingZeros();
   2548             return new ICmpInst(ICmpInst::ICMP_NE, X,
   2549                                 ConstantInt::get(X->getType(), CmpVal));
   2550           } else if ((++ValToCheck).isPowerOf2()) {
   2551             unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
   2552             return new ICmpInst(ICmpInst::ICMP_UGT, X,
   2553                                 ConstantInt::get(X->getType(), CmpVal));
   2554           }
   2555         }
   2556 
   2557         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2558         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   2559         const APInt *CI;
   2560         if (Op0KnownZeroInverted == 1 &&
   2561             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2562           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2563                               ConstantInt::get(X->getType(),
   2564                                                CI->countTrailingZeros()));
   2565       }
   2566 
   2567       break;
   2568     }
   2569     case ICmpInst::ICMP_NE: {
   2570       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2571         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2572 
   2573       // If all bits are known zero except for one, then we know at most one
   2574       // bit is set.   If the comparison is against zero, then this is a check
   2575       // to see if *that* bit is set.
   2576       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2577       if (~Op1KnownZero == 0) {
   2578         // If the LHS is an AND with the same constant, look through it.
   2579         Value *LHS = nullptr;
   2580         ConstantInt *LHSC = nullptr;
   2581         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2582             LHSC->getValue() != Op0KnownZeroInverted)
   2583           LHS = Op0;
   2584 
   2585         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2586         // then turn "((1 << x)&8) != 0" into "x == 3".
   2587         // or turn "((1 << x)&7) != 0" into "x < 3".
   2588         Value *X = nullptr;
   2589         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2590           APInt ValToCheck = Op0KnownZeroInverted;
   2591           if (ValToCheck.isPowerOf2()) {
   2592             unsigned CmpVal = ValToCheck.countTrailingZeros();
   2593             return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2594                                 ConstantInt::get(X->getType(), CmpVal));
   2595           } else if ((++ValToCheck).isPowerOf2()) {
   2596             unsigned CmpVal = ValToCheck.countTrailingZeros();
   2597             return new ICmpInst(ICmpInst::ICMP_ULT, X,
   2598                                 ConstantInt::get(X->getType(), CmpVal));
   2599           }
   2600         }
   2601 
   2602         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2603         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   2604         const APInt *CI;
   2605         if (Op0KnownZeroInverted == 1 &&
   2606             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2607           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2608                               ConstantInt::get(X->getType(),
   2609                                                CI->countTrailingZeros()));
   2610       }
   2611 
   2612       break;
   2613     }
   2614     case ICmpInst::ICMP_ULT:
   2615       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   2616         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2617       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   2618         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2619       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   2620         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2621       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2622         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   2623           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2624                               Builder->getInt(CI->getValue()-1));
   2625 
   2626         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   2627         if (CI->isMinValue(true))
   2628           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2629                            Constant::getAllOnesValue(Op0->getType()));
   2630       }
   2631       break;
   2632     case ICmpInst::ICMP_UGT:
   2633       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   2634         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2635       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   2636         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2637 
   2638       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   2639         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2640       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2641         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   2642           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2643                               Builder->getInt(CI->getValue()+1));
   2644 
   2645         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   2646         if (CI->isMaxValue(true))
   2647           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2648                               Constant::getNullValue(Op0->getType()));
   2649       }
   2650       break;
   2651     case ICmpInst::ICMP_SLT:
   2652       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   2653         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2654       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   2655         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2656       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   2657         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2658       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2659         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   2660           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2661                               Builder->getInt(CI->getValue()-1));
   2662       }
   2663       break;
   2664     case ICmpInst::ICMP_SGT:
   2665       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   2666         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2667       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   2668         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2669 
   2670       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   2671         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2672       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2673         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   2674           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2675                               Builder->getInt(CI->getValue()+1));
   2676       }
   2677       break;
   2678     case ICmpInst::ICMP_SGE:
   2679       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   2680       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   2681         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2682       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   2683         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2684       break;
   2685     case ICmpInst::ICMP_SLE:
   2686       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   2687       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   2688         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2689       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   2690         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2691       break;
   2692     case ICmpInst::ICMP_UGE:
   2693       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   2694       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   2695         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2696       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   2697         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2698       break;
   2699     case ICmpInst::ICMP_ULE:
   2700       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   2701       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   2702         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2703       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   2704         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2705       break;
   2706     }
   2707 
   2708     // Turn a signed comparison into an unsigned one if both operands
   2709     // are known to have the same sign.
   2710     if (I.isSigned() &&
   2711         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   2712          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   2713       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   2714   }
   2715 
   2716   // Test if the ICmpInst instruction is used exclusively by a select as
   2717   // part of a minimum or maximum operation. If so, refrain from doing
   2718   // any other folding. This helps out other analyses which understand
   2719   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   2720   // and CodeGen. And in this case, at least one of the comparison
   2721   // operands has at least one user besides the compare (the select),
   2722   // which would often largely negate the benefit of folding anyway.
   2723   if (I.hasOneUse())
   2724     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
   2725       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   2726           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   2727         return nullptr;
   2728 
   2729   // See if we are doing a comparison between a constant and an instruction that
   2730   // can be folded into the comparison.
   2731   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2732     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   2733     // instruction, see if that instruction also has constants so that the
   2734     // instruction can be folded into the icmp
   2735     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2736       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   2737         return Res;
   2738   }
   2739 
   2740   // Handle icmp with constant (but not simple integer constant) RHS
   2741   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2742     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2743       switch (LHSI->getOpcode()) {
   2744       case Instruction::GetElementPtr:
   2745           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   2746         if (RHSC->isNullValue() &&
   2747             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   2748           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2749                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2750         break;
   2751       case Instruction::PHI:
   2752         // Only fold icmp into the PHI if the phi and icmp are in the same
   2753         // block.  If in the same block, we're encouraging jump threading.  If
   2754         // not, we are just pessimizing the code by making an i1 phi.
   2755         if (LHSI->getParent() == I.getParent())
   2756           if (Instruction *NV = FoldOpIntoPhi(I))
   2757             return NV;
   2758         break;
   2759       case Instruction::Select: {
   2760         // If either operand of the select is a constant, we can fold the
   2761         // comparison into the select arms, which will cause one to be
   2762         // constant folded and the select turned into a bitwise or.
   2763         Value *Op1 = nullptr, *Op2 = nullptr;
   2764         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
   2765           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2766         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
   2767           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2768 
   2769         // We only want to perform this transformation if it will not lead to
   2770         // additional code. This is true if either both sides of the select
   2771         // fold to a constant (in which case the icmp is replaced with a select
   2772         // which will usually simplify) or this is the only user of the
   2773         // select (in which case we are trading a select+icmp for a simpler
   2774         // select+icmp).
   2775         if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
   2776           if (!Op1)
   2777             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   2778                                       RHSC, I.getName());
   2779           if (!Op2)
   2780             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   2781                                       RHSC, I.getName());
   2782           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2783         }
   2784         break;
   2785       }
   2786       case Instruction::IntToPtr:
   2787         // icmp pred inttoptr(X), null -> icmp pred X, 0
   2788         if (RHSC->isNullValue() && DL &&
   2789             DL->getIntPtrType(RHSC->getType()) ==
   2790                LHSI->getOperand(0)->getType())
   2791           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2792                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2793         break;
   2794 
   2795       case Instruction::Load:
   2796         // Try to optimize things like "A[i] > 4" to index computations.
   2797         if (GetElementPtrInst *GEP =
   2798               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2799           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2800             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2801                 !cast<LoadInst>(LHSI)->isVolatile())
   2802               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2803                 return Res;
   2804         }
   2805         break;
   2806       }
   2807   }
   2808 
   2809   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   2810   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   2811     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   2812       return NI;
   2813   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   2814     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   2815                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   2816       return NI;
   2817 
   2818   // Test to see if the operands of the icmp are casted versions of other
   2819   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   2820   // now.
   2821   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   2822     if (Op0->getType()->isPointerTy() &&
   2823         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   2824       // We keep moving the cast from the left operand over to the right
   2825       // operand, where it can often be eliminated completely.
   2826       Op0 = CI->getOperand(0);
   2827 
   2828       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   2829       // so eliminate it as well.
   2830       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   2831         Op1 = CI2->getOperand(0);
   2832 
   2833       // If Op1 is a constant, we can fold the cast into the constant.
   2834       if (Op0->getType() != Op1->getType()) {
   2835         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   2836           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   2837         } else {
   2838           // Otherwise, cast the RHS right before the icmp
   2839           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   2840         }
   2841       }
   2842       return new ICmpInst(I.getPredicate(), Op0, Op1);
   2843     }
   2844   }
   2845 
   2846   if (isa<CastInst>(Op0)) {
   2847     // Handle the special case of: icmp (cast bool to X), <cst>
   2848     // This comes up when you have code like
   2849     //   int X = A < B;
   2850     //   if (X) ...
   2851     // For generality, we handle any zero-extension of any operand comparison
   2852     // with a constant or another cast from the same type.
   2853     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   2854       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   2855         return R;
   2856   }
   2857 
   2858   // Special logic for binary operators.
   2859   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   2860   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   2861   if (BO0 || BO1) {
   2862     CmpInst::Predicate Pred = I.getPredicate();
   2863     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   2864     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   2865       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   2866         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   2867         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   2868     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   2869       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   2870         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   2871         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   2872 
   2873     // Analyze the case when either Op0 or Op1 is an add instruction.
   2874     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   2875     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   2876     if (BO0 && BO0->getOpcode() == Instruction::Add)
   2877       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2878     if (BO1 && BO1->getOpcode() == Instruction::Add)
   2879       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2880 
   2881     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2882     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   2883       return new ICmpInst(Pred, A == Op1 ? B : A,
   2884                           Constant::getNullValue(Op1->getType()));
   2885 
   2886     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2887     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   2888       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   2889                           C == Op0 ? D : C);
   2890 
   2891     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   2892     if (A && C && (A == C || A == D || B == C || B == D) &&
   2893         NoOp0WrapProblem && NoOp1WrapProblem &&
   2894         // Try not to increase register pressure.
   2895         BO0->hasOneUse() && BO1->hasOneUse()) {
   2896       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2897       Value *Y, *Z;
   2898       if (A == C) {
   2899         // C + B == C + D  ->  B == D
   2900         Y = B;
   2901         Z = D;
   2902       } else if (A == D) {
   2903         // D + B == C + D  ->  B == C
   2904         Y = B;
   2905         Z = C;
   2906       } else if (B == C) {
   2907         // A + C == C + D  ->  A == D
   2908         Y = A;
   2909         Z = D;
   2910       } else {
   2911         assert(B == D);
   2912         // A + D == C + D  ->  A == C
   2913         Y = A;
   2914         Z = C;
   2915       }
   2916       return new ICmpInst(Pred, Y, Z);
   2917     }
   2918 
   2919     // icmp slt (X + -1), Y -> icmp sle X, Y
   2920     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
   2921         match(B, m_AllOnes()))
   2922       return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
   2923 
   2924     // icmp sge (X + -1), Y -> icmp sgt X, Y
   2925     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
   2926         match(B, m_AllOnes()))
   2927       return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
   2928 
   2929     // icmp sle (X + 1), Y -> icmp slt X, Y
   2930     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
   2931         match(B, m_One()))
   2932       return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
   2933 
   2934     // icmp sgt (X + 1), Y -> icmp sge X, Y
   2935     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
   2936         match(B, m_One()))
   2937       return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
   2938 
   2939     // if C1 has greater magnitude than C2:
   2940     //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
   2941     //  s.t. C3 = C1 - C2
   2942     //
   2943     // if C2 has greater magnitude than C1:
   2944     //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
   2945     //  s.t. C3 = C2 - C1
   2946     if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
   2947         (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
   2948       if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
   2949         if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
   2950           const APInt &AP1 = C1->getValue();
   2951           const APInt &AP2 = C2->getValue();
   2952           if (AP1.isNegative() == AP2.isNegative()) {
   2953             APInt AP1Abs = C1->getValue().abs();
   2954             APInt AP2Abs = C2->getValue().abs();
   2955             if (AP1Abs.uge(AP2Abs)) {
   2956               ConstantInt *C3 = Builder->getInt(AP1 - AP2);
   2957               Value *NewAdd = Builder->CreateNSWAdd(A, C3);
   2958               return new ICmpInst(Pred, NewAdd, C);
   2959             } else {
   2960               ConstantInt *C3 = Builder->getInt(AP2 - AP1);
   2961               Value *NewAdd = Builder->CreateNSWAdd(C, C3);
   2962               return new ICmpInst(Pred, A, NewAdd);
   2963             }
   2964           }
   2965         }
   2966 
   2967 
   2968     // Analyze the case when either Op0 or Op1 is a sub instruction.
   2969     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   2970     A = nullptr; B = nullptr; C = nullptr; D = nullptr;
   2971     if (BO0 && BO0->getOpcode() == Instruction::Sub)
   2972       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2973     if (BO1 && BO1->getOpcode() == Instruction::Sub)
   2974       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2975 
   2976     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   2977     if (A == Op1 && NoOp0WrapProblem)
   2978       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   2979 
   2980     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   2981     if (C == Op0 && NoOp1WrapProblem)
   2982       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   2983 
   2984     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   2985     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   2986         // Try not to increase register pressure.
   2987         BO0->hasOneUse() && BO1->hasOneUse())
   2988       return new ICmpInst(Pred, A, C);
   2989 
   2990     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   2991     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   2992         // Try not to increase register pressure.
   2993         BO0->hasOneUse() && BO1->hasOneUse())
   2994       return new ICmpInst(Pred, D, B);
   2995 
   2996     // icmp (0-X) < cst --> x > -cst
   2997     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
   2998       Value *X;
   2999       if (match(BO0, m_Neg(m_Value(X))))
   3000         if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   3001           if (!RHSC->isMinValue(/*isSigned=*/true))
   3002             return new ICmpInst(I.getSwappedPredicate(), X,
   3003                                 ConstantExpr::getNeg(RHSC));
   3004     }
   3005 
   3006     BinaryOperator *SRem = nullptr;
   3007     // icmp (srem X, Y), Y
   3008     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   3009         Op1 == BO0->getOperand(1))
   3010       SRem = BO0;
   3011     // icmp Y, (srem X, Y)
   3012     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   3013              Op0 == BO1->getOperand(1))
   3014       SRem = BO1;
   3015     if (SRem) {
   3016       // We don't check hasOneUse to avoid increasing register pressure because
   3017       // the value we use is the same value this instruction was already using.
   3018       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   3019         default: break;
   3020         case ICmpInst::ICMP_EQ:
   3021           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3022         case ICmpInst::ICMP_NE:
   3023           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3024         case ICmpInst::ICMP_SGT:
   3025         case ICmpInst::ICMP_SGE:
   3026           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   3027                               Constant::getAllOnesValue(SRem->getType()));
   3028         case ICmpInst::ICMP_SLT:
   3029         case ICmpInst::ICMP_SLE:
   3030           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   3031                               Constant::getNullValue(SRem->getType()));
   3032       }
   3033     }
   3034 
   3035     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   3036         BO0->hasOneUse() && BO1->hasOneUse() &&
   3037         BO0->getOperand(1) == BO1->getOperand(1)) {
   3038       switch (BO0->getOpcode()) {
   3039       default: break;
   3040       case Instruction::Add:
   3041       case Instruction::Sub:
   3042       case Instruction::Xor:
   3043         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   3044           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   3045                               BO1->getOperand(0));
   3046         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   3047         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   3048           if (CI->getValue().isSignBit()) {
   3049             ICmpInst::Predicate Pred = I.isSigned()
   3050                                            ? I.getUnsignedPredicate()
   3051                                            : I.getSignedPredicate();
   3052             return new ICmpInst(Pred, BO0->getOperand(0),
   3053                                 BO1->getOperand(0));
   3054           }
   3055 
   3056           if (CI->isMaxValue(true)) {
   3057             ICmpInst::Predicate Pred = I.isSigned()
   3058                                            ? I.getUnsignedPredicate()
   3059                                            : I.getSignedPredicate();
   3060             Pred = I.getSwappedPredicate(Pred);
   3061             return new ICmpInst(Pred, BO0->getOperand(0),
   3062                                 BO1->getOperand(0));
   3063           }
   3064         }
   3065         break;
   3066       case Instruction::Mul:
   3067         if (!I.isEquality())
   3068           break;
   3069 
   3070         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   3071           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   3072           // Mask = -1 >> count-trailing-zeros(Cst).
   3073           if (!CI->isZero() && !CI->isOne()) {
   3074             const APInt &AP = CI->getValue();
   3075             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   3076                                     APInt::getLowBitsSet(AP.getBitWidth(),
   3077                                                          AP.getBitWidth() -
   3078                                                     AP.countTrailingZeros()));
   3079             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   3080             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   3081             return new ICmpInst(I.getPredicate(), And1, And2);
   3082           }
   3083         }
   3084         break;
   3085       case Instruction::UDiv:
   3086       case Instruction::LShr:
   3087         if (I.isSigned())
   3088           break;
   3089         // fall-through
   3090       case Instruction::SDiv:
   3091       case Instruction::AShr:
   3092         if (!BO0->isExact() || !BO1->isExact())
   3093           break;
   3094         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   3095                             BO1->getOperand(0));
   3096       case Instruction::Shl: {
   3097         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   3098         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   3099         if (!NUW && !NSW)
   3100           break;
   3101         if (!NSW && I.isSigned())
   3102           break;
   3103         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   3104                             BO1->getOperand(0));
   3105       }
   3106       }
   3107     }
   3108   }
   3109 
   3110   { Value *A, *B;
   3111     // Transform (A & ~B) == 0 --> (A & B) != 0
   3112     // and       (A & ~B) != 0 --> (A & B) == 0
   3113     // if A is a power of 2.
   3114     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   3115         match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
   3116       return new ICmpInst(I.getInversePredicate(),
   3117                           Builder->CreateAnd(A, B),
   3118                           Op1);
   3119 
   3120     // ~x < ~y --> y < x
   3121     // ~x < cst --> ~cst < x
   3122     if (match(Op0, m_Not(m_Value(A)))) {
   3123       if (match(Op1, m_Not(m_Value(B))))
   3124         return new ICmpInst(I.getPredicate(), B, A);
   3125       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   3126         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   3127     }
   3128 
   3129     // (a+b) <u a  --> llvm.uadd.with.overflow.
   3130     // (a+b) <u b  --> llvm.uadd.with.overflow.
   3131     if (I.getPredicate() == ICmpInst::ICMP_ULT &&
   3132         match(Op0, m_Add(m_Value(A), m_Value(B))) &&
   3133         (Op1 == A || Op1 == B))
   3134       if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
   3135         return R;
   3136 
   3137     // a >u (a+b)  --> llvm.uadd.with.overflow.
   3138     // b >u (a+b)  --> llvm.uadd.with.overflow.
   3139     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   3140         match(Op1, m_Add(m_Value(A), m_Value(B))) &&
   3141         (Op0 == A || Op0 == B))
   3142       if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
   3143         return R;
   3144 
   3145     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
   3146     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
   3147       if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
   3148         return R;
   3149     }
   3150     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
   3151       if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
   3152         return R;
   3153     }
   3154   }
   3155 
   3156   if (I.isEquality()) {
   3157     Value *A, *B, *C, *D;
   3158 
   3159     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   3160       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   3161         Value *OtherVal = A == Op1 ? B : A;
   3162         return new ICmpInst(I.getPredicate(), OtherVal,
   3163                             Constant::getNullValue(A->getType()));
   3164       }
   3165 
   3166       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   3167         // A^c1 == C^c2 --> A == C^(c1^c2)
   3168         ConstantInt *C1, *C2;
   3169         if (match(B, m_ConstantInt(C1)) &&
   3170             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   3171           Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
   3172           Value *Xor = Builder->CreateXor(C, NC);
   3173           return new ICmpInst(I.getPredicate(), A, Xor);
   3174         }
   3175 
   3176         // A^B == A^D -> B == D
   3177         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   3178         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   3179         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   3180         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   3181       }
   3182     }
   3183 
   3184     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   3185         (A == Op0 || B == Op0)) {
   3186       // A == (A^B)  ->  B == 0
   3187       Value *OtherVal = A == Op0 ? B : A;
   3188       return new ICmpInst(I.getPredicate(), OtherVal,
   3189                           Constant::getNullValue(A->getType()));
   3190     }
   3191 
   3192     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   3193     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   3194         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   3195       Value *X = nullptr, *Y = nullptr, *Z = nullptr;
   3196 
   3197       if (A == C) {
   3198         X = B; Y = D; Z = A;
   3199       } else if (A == D) {
   3200         X = B; Y = C; Z = A;
   3201       } else if (B == C) {
   3202         X = A; Y = D; Z = B;
   3203       } else if (B == D) {
   3204         X = A; Y = C; Z = B;
   3205       }
   3206 
   3207       if (X) {   // Build (X^Y) & Z
   3208         Op1 = Builder->CreateXor(X, Y);
   3209         Op1 = Builder->CreateAnd(Op1, Z);
   3210         I.setOperand(0, Op1);
   3211         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   3212         return &I;
   3213       }
   3214     }
   3215 
   3216     // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
   3217     // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
   3218     ConstantInt *Cst1;
   3219     if ((Op0->hasOneUse() &&
   3220          match(Op0, m_ZExt(m_Value(A))) &&
   3221          match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
   3222         (Op1->hasOneUse() &&
   3223          match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
   3224          match(Op1, m_ZExt(m_Value(A))))) {
   3225       APInt Pow2 = Cst1->getValue() + 1;
   3226       if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
   3227           Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
   3228         return new ICmpInst(I.getPredicate(), A,
   3229                             Builder->CreateTrunc(B, A->getType()));
   3230     }
   3231 
   3232     // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
   3233     // For lshr and ashr pairs.
   3234     if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
   3235          match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
   3236         (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
   3237          match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
   3238       unsigned TypeBits = Cst1->getBitWidth();
   3239       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
   3240       if (ShAmt < TypeBits && ShAmt != 0) {
   3241         ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
   3242                                        ? ICmpInst::ICMP_UGE
   3243                                        : ICmpInst::ICMP_ULT;
   3244         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
   3245         APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
   3246         return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
   3247       }
   3248     }
   3249 
   3250     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   3251     // "icmp (and X, mask), cst"
   3252     uint64_t ShAmt = 0;
   3253     if (Op0->hasOneUse() &&
   3254         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   3255                                            m_ConstantInt(ShAmt))))) &&
   3256         match(Op1, m_ConstantInt(Cst1)) &&
   3257         // Only do this when A has multiple uses.  This is most important to do
   3258         // when it exposes other optimizations.
   3259         !A->hasOneUse()) {
   3260       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   3261 
   3262       if (ShAmt < ASize) {
   3263         APInt MaskV =
   3264           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   3265         MaskV <<= ShAmt;
   3266 
   3267         APInt CmpV = Cst1->getValue().zext(ASize);
   3268         CmpV <<= ShAmt;
   3269 
   3270         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   3271         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   3272       }
   3273     }
   3274   }
   3275 
   3276   {
   3277     Value *X; ConstantInt *Cst;
   3278     // icmp X+Cst, X
   3279     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   3280       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
   3281 
   3282     // icmp X, X+Cst
   3283     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   3284       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
   3285   }
   3286   return Changed ? &I : nullptr;
   3287 }
   3288 
   3289 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
   3290 ///
   3291 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   3292                                                 Instruction *LHSI,
   3293                                                 Constant *RHSC) {
   3294   if (!isa<ConstantFP>(RHSC)) return nullptr;
   3295   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   3296 
   3297   // Get the width of the mantissa.  We don't want to hack on conversions that
   3298   // might lose information from the integer, e.g. "i64 -> float"
   3299   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   3300   if (MantissaWidth == -1) return nullptr;  // Unknown.
   3301 
   3302   // Check to see that the input is converted from an integer type that is small
   3303   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   3304   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   3305   unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
   3306 
   3307   // If this is a uitofp instruction, we need an extra bit to hold the sign.
   3308   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   3309   if (LHSUnsigned)
   3310     ++InputSize;
   3311 
   3312   // If the conversion would lose info, don't hack on this.
   3313   if ((int)InputSize > MantissaWidth)
   3314     return nullptr;
   3315 
   3316   // Otherwise, we can potentially simplify the comparison.  We know that it
   3317   // will always come through as an integer value and we know the constant is
   3318   // not a NAN (it would have been previously simplified).
   3319   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   3320 
   3321   ICmpInst::Predicate Pred;
   3322   switch (I.getPredicate()) {
   3323   default: llvm_unreachable("Unexpected predicate!");
   3324   case FCmpInst::FCMP_UEQ:
   3325   case FCmpInst::FCMP_OEQ:
   3326     Pred = ICmpInst::ICMP_EQ;
   3327     break;
   3328   case FCmpInst::FCMP_UGT:
   3329   case FCmpInst::FCMP_OGT:
   3330     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   3331     break;
   3332   case FCmpInst::FCMP_UGE:
   3333   case FCmpInst::FCMP_OGE:
   3334     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   3335     break;
   3336   case FCmpInst::FCMP_ULT:
   3337   case FCmpInst::FCMP_OLT:
   3338     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   3339     break;
   3340   case FCmpInst::FCMP_ULE:
   3341   case FCmpInst::FCMP_OLE:
   3342     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   3343     break;
   3344   case FCmpInst::FCMP_UNE:
   3345   case FCmpInst::FCMP_ONE:
   3346     Pred = ICmpInst::ICMP_NE;
   3347     break;
   3348   case FCmpInst::FCMP_ORD:
   3349     return ReplaceInstUsesWith(I, Builder->getTrue());
   3350   case FCmpInst::FCMP_UNO:
   3351     return ReplaceInstUsesWith(I, Builder->getFalse());
   3352   }
   3353 
   3354   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   3355 
   3356   // Now we know that the APFloat is a normal number, zero or inf.
   3357 
   3358   // See if the FP constant is too large for the integer.  For example,
   3359   // comparing an i8 to 300.0.
   3360   unsigned IntWidth = IntTy->getScalarSizeInBits();
   3361 
   3362   if (!LHSUnsigned) {
   3363     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   3364     // and large values.
   3365     APFloat SMax(RHS.getSemantics());
   3366     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   3367                           APFloat::rmNearestTiesToEven);
   3368     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   3369       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   3370           Pred == ICmpInst::ICMP_SLE)
   3371         return ReplaceInstUsesWith(I, Builder->getTrue());
   3372       return ReplaceInstUsesWith(I, Builder->getFalse());
   3373     }
   3374   } else {
   3375     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   3376     // +INF and large values.
   3377     APFloat UMax(RHS.getSemantics());
   3378     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   3379                           APFloat::rmNearestTiesToEven);
   3380     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   3381       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   3382           Pred == ICmpInst::ICMP_ULE)
   3383         return ReplaceInstUsesWith(I, Builder->getTrue());
   3384       return ReplaceInstUsesWith(I, Builder->getFalse());
   3385     }
   3386   }
   3387 
   3388   if (!LHSUnsigned) {
   3389     // See if the RHS value is < SignedMin.
   3390     APFloat SMin(RHS.getSemantics());
   3391     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   3392                           APFloat::rmNearestTiesToEven);
   3393     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   3394       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   3395           Pred == ICmpInst::ICMP_SGE)
   3396         return ReplaceInstUsesWith(I, Builder->getTrue());
   3397       return ReplaceInstUsesWith(I, Builder->getFalse());
   3398     }
   3399   } else {
   3400     // See if the RHS value is < UnsignedMin.
   3401     APFloat SMin(RHS.getSemantics());
   3402     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
   3403                           APFloat::rmNearestTiesToEven);
   3404     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
   3405       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
   3406           Pred == ICmpInst::ICMP_UGE)
   3407         return ReplaceInstUsesWith(I, Builder->getTrue());
   3408       return ReplaceInstUsesWith(I, Builder->getFalse());
   3409     }
   3410   }
   3411 
   3412   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   3413   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   3414   // casting the FP value to the integer value and back, checking for equality.
   3415   // Don't do this for zero, because -0.0 is not fractional.
   3416   Constant *RHSInt = LHSUnsigned
   3417     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   3418     : ConstantExpr::getFPToSI(RHSC, IntTy);
   3419   if (!RHS.isZero()) {
   3420     bool Equal = LHSUnsigned
   3421       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   3422       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   3423     if (!Equal) {
   3424       // If we had a comparison against a fractional value, we have to adjust
   3425       // the compare predicate and sometimes the value.  RHSC is rounded towards
   3426       // zero at this point.
   3427       switch (Pred) {
   3428       default: llvm_unreachable("Unexpected integer comparison!");
   3429       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   3430         return ReplaceInstUsesWith(I, Builder->getTrue());
   3431       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   3432         return ReplaceInstUsesWith(I, Builder->getFalse());
   3433       case ICmpInst::ICMP_ULE:
   3434         // (float)int <= 4.4   --> int <= 4
   3435         // (float)int <= -4.4  --> false
   3436         if (RHS.isNegative())
   3437           return ReplaceInstUsesWith(I, Builder->getFalse());
   3438         break;
   3439       case ICmpInst::ICMP_SLE:
   3440         // (float)int <= 4.4   --> int <= 4
   3441         // (float)int <= -4.4  --> int < -4
   3442         if (RHS.isNegative())
   3443           Pred = ICmpInst::ICMP_SLT;
   3444         break;
   3445       case ICmpInst::ICMP_ULT:
   3446         // (float)int < -4.4   --> false
   3447         // (float)int < 4.4    --> int <= 4
   3448         if (RHS.isNegative())
   3449           return ReplaceInstUsesWith(I, Builder->getFalse());
   3450         Pred = ICmpInst::ICMP_ULE;
   3451         break;
   3452       case ICmpInst::ICMP_SLT:
   3453         // (float)int < -4.4   --> int < -4
   3454         // (float)int < 4.4    --> int <= 4
   3455         if (!RHS.isNegative())
   3456           Pred = ICmpInst::ICMP_SLE;
   3457         break;
   3458       case ICmpInst::ICMP_UGT:
   3459         // (float)int > 4.4    --> int > 4
   3460         // (float)int > -4.4   --> true
   3461         if (RHS.isNegative())
   3462           return ReplaceInstUsesWith(I, Builder->getTrue());
   3463         break;
   3464       case ICmpInst::ICMP_SGT:
   3465         // (float)int > 4.4    --> int > 4
   3466         // (float)int > -4.4   --> int >= -4
   3467         if (RHS.isNegative())
   3468           Pred = ICmpInst::ICMP_SGE;
   3469         break;
   3470       case ICmpInst::ICMP_UGE:
   3471         // (float)int >= -4.4   --> true
   3472         // (float)int >= 4.4    --> int > 4
   3473         if (RHS.isNegative())
   3474           return ReplaceInstUsesWith(I, Builder->getTrue());
   3475         Pred = ICmpInst::ICMP_UGT;
   3476         break;
   3477       case ICmpInst::ICMP_SGE:
   3478         // (float)int >= -4.4   --> int >= -4
   3479         // (float)int >= 4.4    --> int > 4
   3480         if (!RHS.isNegative())
   3481           Pred = ICmpInst::ICMP_SGT;
   3482         break;
   3483       }
   3484     }
   3485   }
   3486 
   3487   // Lower this FP comparison into an appropriate integer version of the
   3488   // comparison.
   3489   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   3490 }
   3491 
   3492 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   3493   bool Changed = false;
   3494 
   3495   /// Orders the operands of the compare so that they are listed from most
   3496   /// complex to least complex.  This puts constants before unary operators,
   3497   /// before binary operators.
   3498   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   3499     I.swapOperands();
   3500     Changed = true;
   3501   }
   3502 
   3503   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   3504 
   3505   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL))
   3506     return ReplaceInstUsesWith(I, V);
   3507 
   3508   // Simplify 'fcmp pred X, X'
   3509   if (Op0 == Op1) {
   3510     switch (I.getPredicate()) {
   3511     default: llvm_unreachable("Unknown predicate!");
   3512     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   3513     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   3514     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   3515     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   3516       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   3517       I.setPredicate(FCmpInst::FCMP_UNO);
   3518       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   3519       return &I;
   3520 
   3521     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   3522     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   3523     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   3524     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   3525       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   3526       I.setPredicate(FCmpInst::FCMP_ORD);
   3527       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   3528       return &I;
   3529     }
   3530   }
   3531 
   3532   // Handle fcmp with constant RHS
   3533   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   3534     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   3535       switch (LHSI->getOpcode()) {
   3536       case Instruction::FPExt: {
   3537         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   3538         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   3539         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   3540         if (!RHSF)
   3541           break;
   3542 
   3543         const fltSemantics *Sem;
   3544         // FIXME: This shouldn't be here.
   3545         if (LHSExt->getSrcTy()->isHalfTy())
   3546           Sem = &APFloat::IEEEhalf;
   3547         else if (LHSExt->getSrcTy()->isFloatTy())
   3548           Sem = &APFloat::IEEEsingle;
   3549         else if (LHSExt->getSrcTy()->isDoubleTy())
   3550           Sem = &APFloat::IEEEdouble;
   3551         else if (LHSExt->getSrcTy()->isFP128Ty())
   3552           Sem = &APFloat::IEEEquad;
   3553         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   3554           Sem = &APFloat::x87DoubleExtended;
   3555         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
   3556           Sem = &APFloat::PPCDoubleDouble;
   3557         else
   3558           break;
   3559 
   3560         bool Lossy;
   3561         APFloat F = RHSF->getValueAPF();
   3562         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   3563 
   3564         // Avoid lossy conversions and denormals. Zero is a special case
   3565         // that's OK to convert.
   3566         APFloat Fabs = F;
   3567         Fabs.clearSign();
   3568         if (!Lossy &&
   3569             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
   3570                  APFloat::cmpLessThan) || Fabs.isZero()))
   3571 
   3572           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   3573                               ConstantFP::get(RHSC->getContext(), F));
   3574         break;
   3575       }
   3576       case Instruction::PHI:
   3577         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   3578         // block.  If in the same block, we're encouraging jump threading.  If
   3579         // not, we are just pessimizing the code by making an i1 phi.
   3580         if (LHSI->getParent() == I.getParent())
   3581           if (Instruction *NV = FoldOpIntoPhi(I))
   3582             return NV;
   3583         break;
   3584       case Instruction::SIToFP:
   3585       case Instruction::UIToFP:
   3586         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   3587           return NV;
   3588         break;
   3589       case Instruction::FSub: {
   3590         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   3591         Value *Op;
   3592         if (match(LHSI, m_FNeg(m_Value(Op))))
   3593           return new FCmpInst(I.getSwappedPredicate(), Op,
   3594                               ConstantExpr::getFNeg(RHSC));
   3595         break;
   3596       }
   3597       case Instruction::Load:
   3598         if (GetElementPtrInst *GEP =
   3599             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   3600           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   3601             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   3602                 !cast<LoadInst>(LHSI)->isVolatile())
   3603               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   3604                 return Res;
   3605         }
   3606         break;
   3607       case Instruction::Call: {
   3608         CallInst *CI = cast<CallInst>(LHSI);
   3609         LibFunc::Func Func;
   3610         // Various optimization for fabs compared with zero.
   3611         if (RHSC->isNullValue() && CI->getCalledFunction() &&
   3612             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
   3613             TLI->has(Func)) {
   3614           if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
   3615               Func == LibFunc::fabsl) {
   3616             switch (I.getPredicate()) {
   3617             default: break;
   3618             // fabs(x) < 0 --> false
   3619             case FCmpInst::FCMP_OLT:
   3620               return ReplaceInstUsesWith(I, Builder->getFalse());
   3621             // fabs(x) > 0 --> x != 0
   3622             case FCmpInst::FCMP_OGT:
   3623               return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
   3624                                   RHSC);
   3625             // fabs(x) <= 0 --> x == 0
   3626             case FCmpInst::FCMP_OLE:
   3627               return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
   3628                                   RHSC);
   3629             // fabs(x) >= 0 --> !isnan(x)
   3630             case FCmpInst::FCMP_OGE:
   3631               return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
   3632                                   RHSC);
   3633             // fabs(x) == 0 --> x == 0
   3634             // fabs(x) != 0 --> x != 0
   3635             case FCmpInst::FCMP_OEQ:
   3636             case FCmpInst::FCMP_UEQ:
   3637             case FCmpInst::FCMP_ONE:
   3638             case FCmpInst::FCMP_UNE:
   3639               return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
   3640                                   RHSC);
   3641             }
   3642           }
   3643         }
   3644       }
   3645       }
   3646   }
   3647 
   3648   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   3649   Value *X, *Y;
   3650   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   3651     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   3652 
   3653   // fcmp (fpext x), (fpext y) -> fcmp x, y
   3654   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   3655     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   3656       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   3657         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   3658                             RHSExt->getOperand(0));
   3659 
   3660   return Changed ? &I : nullptr;
   3661 }
   3662