1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/MemoryBuiltins.h" 18 #include "llvm/IR/ConstantRange.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GetElementPtrTypeIterator.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/PatternMatch.h" 23 #include "llvm/Target/TargetLibraryInfo.h" 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "instcombine" 28 29 static ConstantInt *getOne(Constant *C) { 30 return ConstantInt::get(cast<IntegerType>(C->getType()), 1); 31 } 32 33 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { 34 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 35 } 36 37 static bool HasAddOverflow(ConstantInt *Result, 38 ConstantInt *In1, ConstantInt *In2, 39 bool IsSigned) { 40 if (!IsSigned) 41 return Result->getValue().ult(In1->getValue()); 42 43 if (In2->isNegative()) 44 return Result->getValue().sgt(In1->getValue()); 45 return Result->getValue().slt(In1->getValue()); 46 } 47 48 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result 49 /// overflowed for this type. 50 static bool AddWithOverflow(Constant *&Result, Constant *In1, 51 Constant *In2, bool IsSigned = false) { 52 Result = ConstantExpr::getAdd(In1, In2); 53 54 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 55 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 56 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 57 if (HasAddOverflow(ExtractElement(Result, Idx), 58 ExtractElement(In1, Idx), 59 ExtractElement(In2, Idx), 60 IsSigned)) 61 return true; 62 } 63 return false; 64 } 65 66 return HasAddOverflow(cast<ConstantInt>(Result), 67 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 68 IsSigned); 69 } 70 71 static bool HasSubOverflow(ConstantInt *Result, 72 ConstantInt *In1, ConstantInt *In2, 73 bool IsSigned) { 74 if (!IsSigned) 75 return Result->getValue().ugt(In1->getValue()); 76 77 if (In2->isNegative()) 78 return Result->getValue().slt(In1->getValue()); 79 80 return Result->getValue().sgt(In1->getValue()); 81 } 82 83 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result 84 /// overflowed for this type. 85 static bool SubWithOverflow(Constant *&Result, Constant *In1, 86 Constant *In2, bool IsSigned = false) { 87 Result = ConstantExpr::getSub(In1, In2); 88 89 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 90 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 91 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 92 if (HasSubOverflow(ExtractElement(Result, Idx), 93 ExtractElement(In1, Idx), 94 ExtractElement(In2, Idx), 95 IsSigned)) 96 return true; 97 } 98 return false; 99 } 100 101 return HasSubOverflow(cast<ConstantInt>(Result), 102 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 103 IsSigned); 104 } 105 106 /// isSignBitCheck - Given an exploded icmp instruction, return true if the 107 /// comparison only checks the sign bit. If it only checks the sign bit, set 108 /// TrueIfSigned if the result of the comparison is true when the input value is 109 /// signed. 110 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, 111 bool &TrueIfSigned) { 112 switch (pred) { 113 case ICmpInst::ICMP_SLT: // True if LHS s< 0 114 TrueIfSigned = true; 115 return RHS->isZero(); 116 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 117 TrueIfSigned = true; 118 return RHS->isAllOnesValue(); 119 case ICmpInst::ICMP_SGT: // True if LHS s> -1 120 TrueIfSigned = false; 121 return RHS->isAllOnesValue(); 122 case ICmpInst::ICMP_UGT: 123 // True if LHS u> RHS and RHS == high-bit-mask - 1 124 TrueIfSigned = true; 125 return RHS->isMaxValue(true); 126 case ICmpInst::ICMP_UGE: 127 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 128 TrueIfSigned = true; 129 return RHS->getValue().isSignBit(); 130 default: 131 return false; 132 } 133 } 134 135 /// Returns true if the exploded icmp can be expressed as a signed comparison 136 /// to zero and updates the predicate accordingly. 137 /// The signedness of the comparison is preserved. 138 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) { 139 if (!ICmpInst::isSigned(pred)) 140 return false; 141 142 if (RHS->isZero()) 143 return ICmpInst::isRelational(pred); 144 145 if (RHS->isOne()) { 146 if (pred == ICmpInst::ICMP_SLT) { 147 pred = ICmpInst::ICMP_SLE; 148 return true; 149 } 150 } else if (RHS->isAllOnesValue()) { 151 if (pred == ICmpInst::ICMP_SGT) { 152 pred = ICmpInst::ICMP_SGE; 153 return true; 154 } 155 } 156 157 return false; 158 } 159 160 // isHighOnes - Return true if the constant is of the form 1+0+. 161 // This is the same as lowones(~X). 162 static bool isHighOnes(const ConstantInt *CI) { 163 return (~CI->getValue() + 1).isPowerOf2(); 164 } 165 166 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 167 /// set of known zero and one bits, compute the maximum and minimum values that 168 /// could have the specified known zero and known one bits, returning them in 169 /// min/max. 170 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, 171 const APInt& KnownOne, 172 APInt& Min, APInt& Max) { 173 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 174 KnownZero.getBitWidth() == Min.getBitWidth() && 175 KnownZero.getBitWidth() == Max.getBitWidth() && 176 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 177 APInt UnknownBits = ~(KnownZero|KnownOne); 178 179 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 180 // bit if it is unknown. 181 Min = KnownOne; 182 Max = KnownOne|UnknownBits; 183 184 if (UnknownBits.isNegative()) { // Sign bit is unknown 185 Min.setBit(Min.getBitWidth()-1); 186 Max.clearBit(Max.getBitWidth()-1); 187 } 188 } 189 190 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and 191 // a set of known zero and one bits, compute the maximum and minimum values that 192 // could have the specified known zero and known one bits, returning them in 193 // min/max. 194 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 195 const APInt &KnownOne, 196 APInt &Min, APInt &Max) { 197 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 198 KnownZero.getBitWidth() == Min.getBitWidth() && 199 KnownZero.getBitWidth() == Max.getBitWidth() && 200 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 201 APInt UnknownBits = ~(KnownZero|KnownOne); 202 203 // The minimum value is when the unknown bits are all zeros. 204 Min = KnownOne; 205 // The maximum value is when the unknown bits are all ones. 206 Max = KnownOne|UnknownBits; 207 } 208 209 210 211 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern: 212 /// cmp pred (load (gep GV, ...)), cmpcst 213 /// where GV is a global variable with a constant initializer. Try to simplify 214 /// this into some simple computation that does not need the load. For example 215 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 216 /// 217 /// If AndCst is non-null, then the loaded value is masked with that constant 218 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 219 Instruction *InstCombiner:: 220 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, 221 CmpInst &ICI, ConstantInt *AndCst) { 222 // We need TD information to know the pointer size unless this is inbounds. 223 if (!GEP->isInBounds() && !DL) 224 return nullptr; 225 226 Constant *Init = GV->getInitializer(); 227 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 228 return nullptr; 229 230 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 231 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays. 232 233 // There are many forms of this optimization we can handle, for now, just do 234 // the simple index into a single-dimensional array. 235 // 236 // Require: GEP GV, 0, i {{, constant indices}} 237 if (GEP->getNumOperands() < 3 || 238 !isa<ConstantInt>(GEP->getOperand(1)) || 239 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 240 isa<Constant>(GEP->getOperand(2))) 241 return nullptr; 242 243 // Check that indices after the variable are constants and in-range for the 244 // type they index. Collect the indices. This is typically for arrays of 245 // structs. 246 SmallVector<unsigned, 4> LaterIndices; 247 248 Type *EltTy = Init->getType()->getArrayElementType(); 249 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 250 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 251 if (!Idx) return nullptr; // Variable index. 252 253 uint64_t IdxVal = Idx->getZExtValue(); 254 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 255 256 if (StructType *STy = dyn_cast<StructType>(EltTy)) 257 EltTy = STy->getElementType(IdxVal); 258 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 259 if (IdxVal >= ATy->getNumElements()) return nullptr; 260 EltTy = ATy->getElementType(); 261 } else { 262 return nullptr; // Unknown type. 263 } 264 265 LaterIndices.push_back(IdxVal); 266 } 267 268 enum { Overdefined = -3, Undefined = -2 }; 269 270 // Variables for our state machines. 271 272 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 273 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 274 // and 87 is the second (and last) index. FirstTrueElement is -2 when 275 // undefined, otherwise set to the first true element. SecondTrueElement is 276 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 277 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 278 279 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 280 // form "i != 47 & i != 87". Same state transitions as for true elements. 281 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 282 283 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 284 /// define a state machine that triggers for ranges of values that the index 285 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 286 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 287 /// index in the range (inclusive). We use -2 for undefined here because we 288 /// use relative comparisons and don't want 0-1 to match -1. 289 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 290 291 // MagicBitvector - This is a magic bitvector where we set a bit if the 292 // comparison is true for element 'i'. If there are 64 elements or less in 293 // the array, this will fully represent all the comparison results. 294 uint64_t MagicBitvector = 0; 295 296 297 // Scan the array and see if one of our patterns matches. 298 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 299 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 300 Constant *Elt = Init->getAggregateElement(i); 301 if (!Elt) return nullptr; 302 303 // If this is indexing an array of structures, get the structure element. 304 if (!LaterIndices.empty()) 305 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 306 307 // If the element is masked, handle it. 308 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 309 310 // Find out if the comparison would be true or false for the i'th element. 311 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 312 CompareRHS, DL, TLI); 313 // If the result is undef for this element, ignore it. 314 if (isa<UndefValue>(C)) { 315 // Extend range state machines to cover this element in case there is an 316 // undef in the middle of the range. 317 if (TrueRangeEnd == (int)i-1) 318 TrueRangeEnd = i; 319 if (FalseRangeEnd == (int)i-1) 320 FalseRangeEnd = i; 321 continue; 322 } 323 324 // If we can't compute the result for any of the elements, we have to give 325 // up evaluating the entire conditional. 326 if (!isa<ConstantInt>(C)) return nullptr; 327 328 // Otherwise, we know if the comparison is true or false for this element, 329 // update our state machines. 330 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 331 332 // State machine for single/double/range index comparison. 333 if (IsTrueForElt) { 334 // Update the TrueElement state machine. 335 if (FirstTrueElement == Undefined) 336 FirstTrueElement = TrueRangeEnd = i; // First true element. 337 else { 338 // Update double-compare state machine. 339 if (SecondTrueElement == Undefined) 340 SecondTrueElement = i; 341 else 342 SecondTrueElement = Overdefined; 343 344 // Update range state machine. 345 if (TrueRangeEnd == (int)i-1) 346 TrueRangeEnd = i; 347 else 348 TrueRangeEnd = Overdefined; 349 } 350 } else { 351 // Update the FalseElement state machine. 352 if (FirstFalseElement == Undefined) 353 FirstFalseElement = FalseRangeEnd = i; // First false element. 354 else { 355 // Update double-compare state machine. 356 if (SecondFalseElement == Undefined) 357 SecondFalseElement = i; 358 else 359 SecondFalseElement = Overdefined; 360 361 // Update range state machine. 362 if (FalseRangeEnd == (int)i-1) 363 FalseRangeEnd = i; 364 else 365 FalseRangeEnd = Overdefined; 366 } 367 } 368 369 370 // If this element is in range, update our magic bitvector. 371 if (i < 64 && IsTrueForElt) 372 MagicBitvector |= 1ULL << i; 373 374 // If all of our states become overdefined, bail out early. Since the 375 // predicate is expensive, only check it every 8 elements. This is only 376 // really useful for really huge arrays. 377 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 378 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 379 FalseRangeEnd == Overdefined) 380 return nullptr; 381 } 382 383 // Now that we've scanned the entire array, emit our new comparison(s). We 384 // order the state machines in complexity of the generated code. 385 Value *Idx = GEP->getOperand(2); 386 387 // If the index is larger than the pointer size of the target, truncate the 388 // index down like the GEP would do implicitly. We don't have to do this for 389 // an inbounds GEP because the index can't be out of range. 390 if (!GEP->isInBounds()) { 391 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 392 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 393 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 394 Idx = Builder->CreateTrunc(Idx, IntPtrTy); 395 } 396 397 // If the comparison is only true for one or two elements, emit direct 398 // comparisons. 399 if (SecondTrueElement != Overdefined) { 400 // None true -> false. 401 if (FirstTrueElement == Undefined) 402 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 403 404 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 405 406 // True for one element -> 'i == 47'. 407 if (SecondTrueElement == Undefined) 408 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 409 410 // True for two elements -> 'i == 47 | i == 72'. 411 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 412 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 413 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 414 return BinaryOperator::CreateOr(C1, C2); 415 } 416 417 // If the comparison is only false for one or two elements, emit direct 418 // comparisons. 419 if (SecondFalseElement != Overdefined) { 420 // None false -> true. 421 if (FirstFalseElement == Undefined) 422 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 423 424 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 425 426 // False for one element -> 'i != 47'. 427 if (SecondFalseElement == Undefined) 428 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 429 430 // False for two elements -> 'i != 47 & i != 72'. 431 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 432 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 433 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 434 return BinaryOperator::CreateAnd(C1, C2); 435 } 436 437 // If the comparison can be replaced with a range comparison for the elements 438 // where it is true, emit the range check. 439 if (TrueRangeEnd != Overdefined) { 440 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 441 442 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 443 if (FirstTrueElement) { 444 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 445 Idx = Builder->CreateAdd(Idx, Offs); 446 } 447 448 Value *End = ConstantInt::get(Idx->getType(), 449 TrueRangeEnd-FirstTrueElement+1); 450 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 451 } 452 453 // False range check. 454 if (FalseRangeEnd != Overdefined) { 455 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 456 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 457 if (FirstFalseElement) { 458 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 459 Idx = Builder->CreateAdd(Idx, Offs); 460 } 461 462 Value *End = ConstantInt::get(Idx->getType(), 463 FalseRangeEnd-FirstFalseElement); 464 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 465 } 466 467 468 // If a magic bitvector captures the entire comparison state 469 // of this load, replace it with computation that does: 470 // ((magic_cst >> i) & 1) != 0 471 { 472 Type *Ty = nullptr; 473 474 // Look for an appropriate type: 475 // - The type of Idx if the magic fits 476 // - The smallest fitting legal type if we have a DataLayout 477 // - Default to i32 478 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 479 Ty = Idx->getType(); 480 else if (DL) 481 Ty = DL->getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 482 else if (ArrayElementCount <= 32) 483 Ty = Type::getInt32Ty(Init->getContext()); 484 485 if (Ty) { 486 Value *V = Builder->CreateIntCast(Idx, Ty, false); 487 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 488 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 489 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 490 } 491 } 492 493 return nullptr; 494 } 495 496 497 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare 498 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we 499 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can 500 /// be complex, and scales are involved. The above expression would also be 501 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). 502 /// This later form is less amenable to optimization though, and we are allowed 503 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 504 /// 505 /// If we can't emit an optimized form for this expression, this returns null. 506 /// 507 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { 508 const DataLayout &DL = *IC.getDataLayout(); 509 gep_type_iterator GTI = gep_type_begin(GEP); 510 511 // Check to see if this gep only has a single variable index. If so, and if 512 // any constant indices are a multiple of its scale, then we can compute this 513 // in terms of the scale of the variable index. For example, if the GEP 514 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 515 // because the expression will cross zero at the same point. 516 unsigned i, e = GEP->getNumOperands(); 517 int64_t Offset = 0; 518 for (i = 1; i != e; ++i, ++GTI) { 519 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 520 // Compute the aggregate offset of constant indices. 521 if (CI->isZero()) continue; 522 523 // Handle a struct index, which adds its field offset to the pointer. 524 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 525 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 526 } else { 527 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 528 Offset += Size*CI->getSExtValue(); 529 } 530 } else { 531 // Found our variable index. 532 break; 533 } 534 } 535 536 // If there are no variable indices, we must have a constant offset, just 537 // evaluate it the general way. 538 if (i == e) return nullptr; 539 540 Value *VariableIdx = GEP->getOperand(i); 541 // Determine the scale factor of the variable element. For example, this is 542 // 4 if the variable index is into an array of i32. 543 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 544 545 // Verify that there are no other variable indices. If so, emit the hard way. 546 for (++i, ++GTI; i != e; ++i, ++GTI) { 547 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 548 if (!CI) return nullptr; 549 550 // Compute the aggregate offset of constant indices. 551 if (CI->isZero()) continue; 552 553 // Handle a struct index, which adds its field offset to the pointer. 554 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 555 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 556 } else { 557 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 558 Offset += Size*CI->getSExtValue(); 559 } 560 } 561 562 563 564 // Okay, we know we have a single variable index, which must be a 565 // pointer/array/vector index. If there is no offset, life is simple, return 566 // the index. 567 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 568 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 569 if (Offset == 0) { 570 // Cast to intptrty in case a truncation occurs. If an extension is needed, 571 // we don't need to bother extending: the extension won't affect where the 572 // computation crosses zero. 573 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 574 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 575 } 576 return VariableIdx; 577 } 578 579 // Otherwise, there is an index. The computation we will do will be modulo 580 // the pointer size, so get it. 581 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 582 583 Offset &= PtrSizeMask; 584 VariableScale &= PtrSizeMask; 585 586 // To do this transformation, any constant index must be a multiple of the 587 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 588 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 589 // multiple of the variable scale. 590 int64_t NewOffs = Offset / (int64_t)VariableScale; 591 if (Offset != NewOffs*(int64_t)VariableScale) 592 return nullptr; 593 594 // Okay, we can do this evaluation. Start by converting the index to intptr. 595 if (VariableIdx->getType() != IntPtrTy) 596 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 597 true /*Signed*/); 598 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 599 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 600 } 601 602 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something 603 /// else. At this point we know that the GEP is on the LHS of the comparison. 604 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 605 ICmpInst::Predicate Cond, 606 Instruction &I) { 607 // Don't transform signed compares of GEPs into index compares. Even if the 608 // GEP is inbounds, the final add of the base pointer can have signed overflow 609 // and would change the result of the icmp. 610 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 611 // the maximum signed value for the pointer type. 612 if (ICmpInst::isSigned(Cond)) 613 return nullptr; 614 615 // Look through bitcasts and addrspacecasts. We do not however want to remove 616 // 0 GEPs. 617 if (!isa<GetElementPtrInst>(RHS)) 618 RHS = RHS->stripPointerCasts(); 619 620 Value *PtrBase = GEPLHS->getOperand(0); 621 if (DL && PtrBase == RHS && GEPLHS->isInBounds()) { 622 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 623 // This transformation (ignoring the base and scales) is valid because we 624 // know pointers can't overflow since the gep is inbounds. See if we can 625 // output an optimized form. 626 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this); 627 628 // If not, synthesize the offset the hard way. 629 if (!Offset) 630 Offset = EmitGEPOffset(GEPLHS); 631 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 632 Constant::getNullValue(Offset->getType())); 633 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 634 // If the base pointers are different, but the indices are the same, just 635 // compare the base pointer. 636 if (PtrBase != GEPRHS->getOperand(0)) { 637 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 638 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 639 GEPRHS->getOperand(0)->getType(); 640 if (IndicesTheSame) 641 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 642 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 643 IndicesTheSame = false; 644 break; 645 } 646 647 // If all indices are the same, just compare the base pointers. 648 if (IndicesTheSame) 649 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 650 651 // If we're comparing GEPs with two base pointers that only differ in type 652 // and both GEPs have only constant indices or just one use, then fold 653 // the compare with the adjusted indices. 654 if (DL && GEPLHS->isInBounds() && GEPRHS->isInBounds() && 655 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 656 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 657 PtrBase->stripPointerCasts() == 658 GEPRHS->getOperand(0)->stripPointerCasts()) { 659 Value *LOffset = EmitGEPOffset(GEPLHS); 660 Value *ROffset = EmitGEPOffset(GEPRHS); 661 662 // If we looked through an addrspacecast between different sized address 663 // spaces, the LHS and RHS pointers are different sized 664 // integers. Truncate to the smaller one. 665 Type *LHSIndexTy = LOffset->getType(); 666 Type *RHSIndexTy = ROffset->getType(); 667 if (LHSIndexTy != RHSIndexTy) { 668 if (LHSIndexTy->getPrimitiveSizeInBits() < 669 RHSIndexTy->getPrimitiveSizeInBits()) { 670 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy); 671 } else 672 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy); 673 } 674 675 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond), 676 LOffset, ROffset); 677 return ReplaceInstUsesWith(I, Cmp); 678 } 679 680 // Otherwise, the base pointers are different and the indices are 681 // different, bail out. 682 return nullptr; 683 } 684 685 // If one of the GEPs has all zero indices, recurse. 686 if (GEPLHS->hasAllZeroIndices()) 687 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 688 ICmpInst::getSwappedPredicate(Cond), I); 689 690 // If the other GEP has all zero indices, recurse. 691 if (GEPRHS->hasAllZeroIndices()) 692 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 693 694 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 695 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 696 // If the GEPs only differ by one index, compare it. 697 unsigned NumDifferences = 0; // Keep track of # differences. 698 unsigned DiffOperand = 0; // The operand that differs. 699 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 700 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 701 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 702 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 703 // Irreconcilable differences. 704 NumDifferences = 2; 705 break; 706 } else { 707 if (NumDifferences++) break; 708 DiffOperand = i; 709 } 710 } 711 712 if (NumDifferences == 0) // SAME GEP? 713 return ReplaceInstUsesWith(I, // No comparison is needed here. 714 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond))); 715 716 else if (NumDifferences == 1 && GEPsInBounds) { 717 Value *LHSV = GEPLHS->getOperand(DiffOperand); 718 Value *RHSV = GEPRHS->getOperand(DiffOperand); 719 // Make sure we do a signed comparison here. 720 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 721 } 722 } 723 724 // Only lower this if the icmp is the only user of the GEP or if we expect 725 // the result to fold to a constant! 726 if (DL && 727 GEPsInBounds && 728 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 729 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 730 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 731 Value *L = EmitGEPOffset(GEPLHS); 732 Value *R = EmitGEPOffset(GEPRHS); 733 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 734 } 735 } 736 return nullptr; 737 } 738 739 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X". 740 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI, 741 Value *X, ConstantInt *CI, 742 ICmpInst::Predicate Pred) { 743 // If we have X+0, exit early (simplifying logic below) and let it get folded 744 // elsewhere. icmp X+0, X -> icmp X, X 745 if (CI->isZero()) { 746 bool isTrue = ICmpInst::isTrueWhenEqual(Pred); 747 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue)); 748 } 749 750 // (X+4) == X -> false. 751 if (Pred == ICmpInst::ICMP_EQ) 752 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 753 754 // (X+4) != X -> true. 755 if (Pred == ICmpInst::ICMP_NE) 756 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 757 758 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 759 // so the values can never be equal. Similarly for all other "or equals" 760 // operators. 761 762 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 763 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 764 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 765 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 766 Value *R = 767 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 768 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 769 } 770 771 // (X+1) >u X --> X <u (0-1) --> X != 255 772 // (X+2) >u X --> X <u (0-2) --> X <u 254 773 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 774 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 775 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 776 777 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 778 ConstantInt *SMax = ConstantInt::get(X->getContext(), 779 APInt::getSignedMaxValue(BitWidth)); 780 781 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 782 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 783 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 784 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 785 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 786 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 787 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 788 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 789 790 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 791 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 792 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 793 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 794 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 795 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 796 797 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 798 Constant *C = Builder->getInt(CI->getValue()-1); 799 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 800 } 801 802 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS 803 /// and CmpRHS are both known to be integer constants. 804 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, 805 ConstantInt *DivRHS) { 806 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); 807 const APInt &CmpRHSV = CmpRHS->getValue(); 808 809 // FIXME: If the operand types don't match the type of the divide 810 // then don't attempt this transform. The code below doesn't have the 811 // logic to deal with a signed divide and an unsigned compare (and 812 // vice versa). This is because (x /s C1) <s C2 produces different 813 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even 814 // (x /u C1) <u C2. Simply casting the operands and result won't 815 // work. :( The if statement below tests that condition and bails 816 // if it finds it. 817 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; 818 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) 819 return nullptr; 820 if (DivRHS->isZero()) 821 return nullptr; // The ProdOV computation fails on divide by zero. 822 if (DivIsSigned && DivRHS->isAllOnesValue()) 823 return nullptr; // The overflow computation also screws up here 824 if (DivRHS->isOne()) { 825 // This eliminates some funny cases with INT_MIN. 826 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X. 827 return &ICI; 828 } 829 830 // Compute Prod = CI * DivRHS. We are essentially solving an equation 831 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 832 // C2 (CI). By solving for X we can turn this into a range check 833 // instead of computing a divide. 834 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 835 836 // Determine if the product overflows by seeing if the product is 837 // not equal to the divide. Make sure we do the same kind of divide 838 // as in the LHS instruction that we're folding. 839 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : 840 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 841 842 // Get the ICmp opcode 843 ICmpInst::Predicate Pred = ICI.getPredicate(); 844 845 /// If the division is known to be exact, then there is no remainder from the 846 /// divide, so the covered range size is unit, otherwise it is the divisor. 847 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; 848 849 // Figure out the interval that is being checked. For example, a comparison 850 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 851 // Compute this interval based on the constants involved and the signedness of 852 // the compare/divide. This computes a half-open interval, keeping track of 853 // whether either value in the interval overflows. After analysis each 854 // overflow variable is set to 0 if it's corresponding bound variable is valid 855 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 856 int LoOverflow = 0, HiOverflow = 0; 857 Constant *LoBound = nullptr, *HiBound = nullptr; 858 859 if (!DivIsSigned) { // udiv 860 // e.g. X/5 op 3 --> [15, 20) 861 LoBound = Prod; 862 HiOverflow = LoOverflow = ProdOV; 863 if (!HiOverflow) { 864 // If this is not an exact divide, then many values in the range collapse 865 // to the same result value. 866 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false); 867 } 868 869 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. 870 if (CmpRHSV == 0) { // (X / pos) op 0 871 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 872 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 873 HiBound = RangeSize; 874 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos 875 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 876 HiOverflow = LoOverflow = ProdOV; 877 if (!HiOverflow) 878 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true); 879 } else { // (X / pos) op neg 880 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 881 HiBound = AddOne(Prod); 882 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 883 if (!LoOverflow) { 884 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 885 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 886 } 887 } 888 } else if (DivRHS->isNegative()) { // Divisor is < 0. 889 if (DivI->isExact()) 890 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 891 if (CmpRHSV == 0) { // (X / neg) op 0 892 // e.g. X/-5 op 0 --> [-4, 5) 893 LoBound = AddOne(RangeSize); 894 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 895 if (HiBound == DivRHS) { // -INTMIN = INTMIN 896 HiOverflow = 1; // [INTMIN+1, overflow) 897 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN 898 } 899 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos 900 // e.g. X/-5 op 3 --> [-19, -14) 901 HiBound = AddOne(Prod); 902 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 903 if (!LoOverflow) 904 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 905 } else { // (X / neg) op neg 906 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 907 LoOverflow = HiOverflow = ProdOV; 908 if (!HiOverflow) 909 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true); 910 } 911 912 // Dividing by a negative swaps the condition. LT <-> GT 913 Pred = ICmpInst::getSwappedPredicate(Pred); 914 } 915 916 Value *X = DivI->getOperand(0); 917 switch (Pred) { 918 default: llvm_unreachable("Unhandled icmp opcode!"); 919 case ICmpInst::ICMP_EQ: 920 if (LoOverflow && HiOverflow) 921 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 922 if (HiOverflow) 923 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 924 ICmpInst::ICMP_UGE, X, LoBound); 925 if (LoOverflow) 926 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 927 ICmpInst::ICMP_ULT, X, HiBound); 928 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 929 DivIsSigned, true)); 930 case ICmpInst::ICMP_NE: 931 if (LoOverflow && HiOverflow) 932 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 933 if (HiOverflow) 934 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 935 ICmpInst::ICMP_ULT, X, LoBound); 936 if (LoOverflow) 937 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 938 ICmpInst::ICMP_UGE, X, HiBound); 939 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 940 DivIsSigned, false)); 941 case ICmpInst::ICMP_ULT: 942 case ICmpInst::ICMP_SLT: 943 if (LoOverflow == +1) // Low bound is greater than input range. 944 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 945 if (LoOverflow == -1) // Low bound is less than input range. 946 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 947 return new ICmpInst(Pred, X, LoBound); 948 case ICmpInst::ICMP_UGT: 949 case ICmpInst::ICMP_SGT: 950 if (HiOverflow == +1) // High bound greater than input range. 951 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 952 if (HiOverflow == -1) // High bound less than input range. 953 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 954 if (Pred == ICmpInst::ICMP_UGT) 955 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 956 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 957 } 958 } 959 960 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)". 961 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, 962 ConstantInt *ShAmt) { 963 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); 964 965 // Check that the shift amount is in range. If not, don't perform 966 // undefined shifts. When the shift is visited it will be 967 // simplified. 968 uint32_t TypeBits = CmpRHSV.getBitWidth(); 969 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 970 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 971 return nullptr; 972 973 if (!ICI.isEquality()) { 974 // If we have an unsigned comparison and an ashr, we can't simplify this. 975 // Similarly for signed comparisons with lshr. 976 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr)) 977 return nullptr; 978 979 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 980 // by a power of 2. Since we already have logic to simplify these, 981 // transform to div and then simplify the resultant comparison. 982 if (Shr->getOpcode() == Instruction::AShr && 983 (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 984 return nullptr; 985 986 // Revisit the shift (to delete it). 987 Worklist.Add(Shr); 988 989 Constant *DivCst = 990 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 991 992 Value *Tmp = 993 Shr->getOpcode() == Instruction::AShr ? 994 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) : 995 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); 996 997 ICI.setOperand(0, Tmp); 998 999 // If the builder folded the binop, just return it. 1000 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 1001 if (!TheDiv) 1002 return &ICI; 1003 1004 // Otherwise, fold this div/compare. 1005 assert(TheDiv->getOpcode() == Instruction::SDiv || 1006 TheDiv->getOpcode() == Instruction::UDiv); 1007 1008 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst)); 1009 assert(Res && "This div/cst should have folded!"); 1010 return Res; 1011 } 1012 1013 1014 // If we are comparing against bits always shifted out, the 1015 // comparison cannot succeed. 1016 APInt Comp = CmpRHSV << ShAmtVal; 1017 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp); 1018 if (Shr->getOpcode() == Instruction::LShr) 1019 Comp = Comp.lshr(ShAmtVal); 1020 else 1021 Comp = Comp.ashr(ShAmtVal); 1022 1023 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero. 1024 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1025 Constant *Cst = Builder->getInt1(IsICMP_NE); 1026 return ReplaceInstUsesWith(ICI, Cst); 1027 } 1028 1029 // Otherwise, check to see if the bits shifted out are known to be zero. 1030 // If so, we can compare against the unshifted value: 1031 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 1032 if (Shr->hasOneUse() && Shr->isExact()) 1033 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); 1034 1035 if (Shr->hasOneUse()) { 1036 // Otherwise strength reduce the shift into an and. 1037 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 1038 Constant *Mask = Builder->getInt(Val); 1039 1040 Value *And = Builder->CreateAnd(Shr->getOperand(0), 1041 Mask, Shr->getName()+".mask"); 1042 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); 1043 } 1044 return nullptr; 1045 } 1046 1047 1048 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". 1049 /// 1050 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, 1051 Instruction *LHSI, 1052 ConstantInt *RHS) { 1053 const APInt &RHSV = RHS->getValue(); 1054 1055 switch (LHSI->getOpcode()) { 1056 case Instruction::Trunc: 1057 if (ICI.isEquality() && LHSI->hasOneUse()) { 1058 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1059 // of the high bits truncated out of x are known. 1060 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), 1061 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1062 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1063 computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne); 1064 1065 // If all the high bits are known, we can do this xform. 1066 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { 1067 // Pull in the high bits from known-ones set. 1068 APInt NewRHS = RHS->getValue().zext(SrcBits); 1069 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits); 1070 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1071 Builder->getInt(NewRHS)); 1072 } 1073 } 1074 break; 1075 1076 case Instruction::Xor: // (icmp pred (xor X, XorCst), CI) 1077 if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1078 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1079 // fold the xor. 1080 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || 1081 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { 1082 Value *CompareVal = LHSI->getOperand(0); 1083 1084 // If the sign bit of the XorCst is not set, there is no change to 1085 // the operation, just stop using the Xor. 1086 if (!XorCst->isNegative()) { 1087 ICI.setOperand(0, CompareVal); 1088 Worklist.Add(LHSI); 1089 return &ICI; 1090 } 1091 1092 // Was the old condition true if the operand is positive? 1093 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; 1094 1095 // If so, the new one isn't. 1096 isTrueIfPositive ^= true; 1097 1098 if (isTrueIfPositive) 1099 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, 1100 SubOne(RHS)); 1101 else 1102 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, 1103 AddOne(RHS)); 1104 } 1105 1106 if (LHSI->hasOneUse()) { 1107 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) 1108 if (!ICI.isEquality() && XorCst->getValue().isSignBit()) { 1109 const APInt &SignBit = XorCst->getValue(); 1110 ICmpInst::Predicate Pred = ICI.isSigned() 1111 ? ICI.getUnsignedPredicate() 1112 : ICI.getSignedPredicate(); 1113 return new ICmpInst(Pred, LHSI->getOperand(0), 1114 Builder->getInt(RHSV ^ SignBit)); 1115 } 1116 1117 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) 1118 if (!ICI.isEquality() && XorCst->isMaxValue(true)) { 1119 const APInt &NotSignBit = XorCst->getValue(); 1120 ICmpInst::Predicate Pred = ICI.isSigned() 1121 ? ICI.getUnsignedPredicate() 1122 : ICI.getSignedPredicate(); 1123 Pred = ICI.getSwappedPredicate(Pred); 1124 return new ICmpInst(Pred, LHSI->getOperand(0), 1125 Builder->getInt(RHSV ^ NotSignBit)); 1126 } 1127 } 1128 1129 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1130 // iff -C is a power of 2 1131 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && 1132 XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2()) 1133 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst); 1134 1135 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1136 // iff -C is a power of 2 1137 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && 1138 XorCst->getValue() == -RHSV && RHSV.isPowerOf2()) 1139 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst); 1140 } 1141 break; 1142 case Instruction::And: // (icmp pred (and X, AndCst), RHS) 1143 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && 1144 LHSI->getOperand(0)->hasOneUse()) { 1145 ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1)); 1146 1147 // If the LHS is an AND of a truncating cast, we can widen the 1148 // and/compare to be the input width without changing the value 1149 // produced, eliminating a cast. 1150 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { 1151 // We can do this transformation if either the AND constant does not 1152 // have its sign bit set or if it is an equality comparison. 1153 // Extending a relational comparison when we're checking the sign 1154 // bit would not work. 1155 if (ICI.isEquality() || 1156 (!AndCst->isNegative() && RHSV.isNonNegative())) { 1157 Value *NewAnd = 1158 Builder->CreateAnd(Cast->getOperand(0), 1159 ConstantExpr::getZExt(AndCst, Cast->getSrcTy())); 1160 NewAnd->takeName(LHSI); 1161 return new ICmpInst(ICI.getPredicate(), NewAnd, 1162 ConstantExpr::getZExt(RHS, Cast->getSrcTy())); 1163 } 1164 } 1165 1166 // If the LHS is an AND of a zext, and we have an equality compare, we can 1167 // shrink the and/compare to the smaller type, eliminating the cast. 1168 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) { 1169 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); 1170 // Make sure we don't compare the upper bits, SimplifyDemandedBits 1171 // should fold the icmp to true/false in that case. 1172 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { 1173 Value *NewAnd = 1174 Builder->CreateAnd(Cast->getOperand(0), 1175 ConstantExpr::getTrunc(AndCst, Ty)); 1176 NewAnd->takeName(LHSI); 1177 return new ICmpInst(ICI.getPredicate(), NewAnd, 1178 ConstantExpr::getTrunc(RHS, Ty)); 1179 } 1180 } 1181 1182 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare 1183 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This 1184 // happens a LOT in code produced by the C front-end, for bitfield 1185 // access. 1186 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); 1187 if (Shift && !Shift->isShift()) 1188 Shift = nullptr; 1189 1190 ConstantInt *ShAmt; 1191 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr; 1192 1193 // This seemingly simple opportunity to fold away a shift turns out to 1194 // be rather complicated. See PR17827 1195 // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details. 1196 if (ShAmt) { 1197 bool CanFold = false; 1198 unsigned ShiftOpcode = Shift->getOpcode(); 1199 if (ShiftOpcode == Instruction::AShr) { 1200 // There may be some constraints that make this possible, 1201 // but nothing simple has been discovered yet. 1202 CanFold = false; 1203 } else if (ShiftOpcode == Instruction::Shl) { 1204 // For a left shift, we can fold if the comparison is not signed. 1205 // We can also fold a signed comparison if the mask value and 1206 // comparison value are not negative. These constraints may not be 1207 // obvious, but we can prove that they are correct using an SMT 1208 // solver. 1209 if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative())) 1210 CanFold = true; 1211 } else if (ShiftOpcode == Instruction::LShr) { 1212 // For a logical right shift, we can fold if the comparison is not 1213 // signed. We can also fold a signed comparison if the shifted mask 1214 // value and the shifted comparison value are not negative. 1215 // These constraints may not be obvious, but we can prove that they 1216 // are correct using an SMT solver. 1217 if (!ICI.isSigned()) 1218 CanFold = true; 1219 else { 1220 ConstantInt *ShiftedAndCst = 1221 cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt)); 1222 ConstantInt *ShiftedRHSCst = 1223 cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt)); 1224 1225 if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative()) 1226 CanFold = true; 1227 } 1228 } 1229 1230 if (CanFold) { 1231 Constant *NewCst; 1232 if (ShiftOpcode == Instruction::Shl) 1233 NewCst = ConstantExpr::getLShr(RHS, ShAmt); 1234 else 1235 NewCst = ConstantExpr::getShl(RHS, ShAmt); 1236 1237 // Check to see if we are shifting out any of the bits being 1238 // compared. 1239 if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) { 1240 // If we shifted bits out, the fold is not going to work out. 1241 // As a special case, check to see if this means that the 1242 // result is always true or false now. 1243 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1244 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 1245 if (ICI.getPredicate() == ICmpInst::ICMP_NE) 1246 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 1247 } else { 1248 ICI.setOperand(1, NewCst); 1249 Constant *NewAndCst; 1250 if (ShiftOpcode == Instruction::Shl) 1251 NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt); 1252 else 1253 NewAndCst = ConstantExpr::getShl(AndCst, ShAmt); 1254 LHSI->setOperand(1, NewAndCst); 1255 LHSI->setOperand(0, Shift->getOperand(0)); 1256 Worklist.Add(Shift); // Shift is dead. 1257 return &ICI; 1258 } 1259 } 1260 } 1261 1262 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is 1263 // preferable because it allows the C<<Y expression to be hoisted out 1264 // of a loop if Y is invariant and X is not. 1265 if (Shift && Shift->hasOneUse() && RHSV == 0 && 1266 ICI.isEquality() && !Shift->isArithmeticShift() && 1267 !isa<Constant>(Shift->getOperand(0))) { 1268 // Compute C << Y. 1269 Value *NS; 1270 if (Shift->getOpcode() == Instruction::LShr) { 1271 NS = Builder->CreateShl(AndCst, Shift->getOperand(1)); 1272 } else { 1273 // Insert a logical shift. 1274 NS = Builder->CreateLShr(AndCst, Shift->getOperand(1)); 1275 } 1276 1277 // Compute X & (C << Y). 1278 Value *NewAnd = 1279 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); 1280 1281 ICI.setOperand(0, NewAnd); 1282 return &ICI; 1283 } 1284 1285 // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any 1286 // bit set in (X & AndCst) will produce a result greater than RHSV. 1287 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { 1288 unsigned NTZ = AndCst->getValue().countTrailingZeros(); 1289 if ((NTZ < AndCst->getBitWidth()) && 1290 APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV)) 1291 return new ICmpInst(ICmpInst::ICMP_NE, LHSI, 1292 Constant::getNullValue(RHS->getType())); 1293 } 1294 } 1295 1296 // Try to optimize things like "A[i]&42 == 0" to index computations. 1297 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { 1298 if (GetElementPtrInst *GEP = 1299 dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1300 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1301 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1302 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) { 1303 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1)); 1304 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C)) 1305 return Res; 1306 } 1307 } 1308 1309 // X & -C == -C -> X > u ~C 1310 // X & -C != -C -> X <= u ~C 1311 // iff C is a power of 2 1312 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2()) 1313 return new ICmpInst( 1314 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT 1315 : ICmpInst::ICMP_ULE, 1316 LHSI->getOperand(0), SubOne(RHS)); 1317 break; 1318 1319 case Instruction::Or: { 1320 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse()) 1321 break; 1322 Value *P, *Q; 1323 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1324 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1325 // -> and (icmp eq P, null), (icmp eq Q, null). 1326 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P, 1327 Constant::getNullValue(P->getType())); 1328 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q, 1329 Constant::getNullValue(Q->getType())); 1330 Instruction *Op; 1331 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1332 Op = BinaryOperator::CreateAnd(ICIP, ICIQ); 1333 else 1334 Op = BinaryOperator::CreateOr(ICIP, ICIQ); 1335 return Op; 1336 } 1337 break; 1338 } 1339 1340 case Instruction::Mul: { // (icmp pred (mul X, Val), CI) 1341 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1342 if (!Val) break; 1343 1344 // If this is a signed comparison to 0 and the mul is sign preserving, 1345 // use the mul LHS operand instead. 1346 ICmpInst::Predicate pred = ICI.getPredicate(); 1347 if (isSignTest(pred, RHS) && !Val->isZero() && 1348 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1349 return new ICmpInst(Val->isNegative() ? 1350 ICmpInst::getSwappedPredicate(pred) : pred, 1351 LHSI->getOperand(0), 1352 Constant::getNullValue(RHS->getType())); 1353 1354 break; 1355 } 1356 1357 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) 1358 uint32_t TypeBits = RHSV.getBitWidth(); 1359 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1360 if (!ShAmt) { 1361 Value *X; 1362 // (1 << X) pred P2 -> X pred Log2(P2) 1363 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) { 1364 bool RHSVIsPowerOf2 = RHSV.isPowerOf2(); 1365 ICmpInst::Predicate Pred = ICI.getPredicate(); 1366 if (ICI.isUnsigned()) { 1367 if (!RHSVIsPowerOf2) { 1368 // (1 << X) < 30 -> X <= 4 1369 // (1 << X) <= 30 -> X <= 4 1370 // (1 << X) >= 30 -> X > 4 1371 // (1 << X) > 30 -> X > 4 1372 if (Pred == ICmpInst::ICMP_ULT) 1373 Pred = ICmpInst::ICMP_ULE; 1374 else if (Pred == ICmpInst::ICMP_UGE) 1375 Pred = ICmpInst::ICMP_UGT; 1376 } 1377 unsigned RHSLog2 = RHSV.logBase2(); 1378 1379 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31 1380 // (1 << X) > 2147483648 -> X > 31 -> false 1381 // (1 << X) <= 2147483648 -> X <= 31 -> true 1382 // (1 << X) < 2147483648 -> X < 31 -> X != 31 1383 if (RHSLog2 == TypeBits-1) { 1384 if (Pred == ICmpInst::ICMP_UGE) 1385 Pred = ICmpInst::ICMP_EQ; 1386 else if (Pred == ICmpInst::ICMP_UGT) 1387 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 1388 else if (Pred == ICmpInst::ICMP_ULE) 1389 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 1390 else if (Pred == ICmpInst::ICMP_ULT) 1391 Pred = ICmpInst::ICMP_NE; 1392 } 1393 1394 return new ICmpInst(Pred, X, 1395 ConstantInt::get(RHS->getType(), RHSLog2)); 1396 } else if (ICI.isSigned()) { 1397 if (RHSV.isAllOnesValue()) { 1398 // (1 << X) <= -1 -> X == 31 1399 if (Pred == ICmpInst::ICMP_SLE) 1400 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1401 ConstantInt::get(RHS->getType(), TypeBits-1)); 1402 1403 // (1 << X) > -1 -> X != 31 1404 if (Pred == ICmpInst::ICMP_SGT) 1405 return new ICmpInst(ICmpInst::ICMP_NE, X, 1406 ConstantInt::get(RHS->getType(), TypeBits-1)); 1407 } else if (!RHSV) { 1408 // (1 << X) < 0 -> X == 31 1409 // (1 << X) <= 0 -> X == 31 1410 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1411 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1412 ConstantInt::get(RHS->getType(), TypeBits-1)); 1413 1414 // (1 << X) >= 0 -> X != 31 1415 // (1 << X) > 0 -> X != 31 1416 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1417 return new ICmpInst(ICmpInst::ICMP_NE, X, 1418 ConstantInt::get(RHS->getType(), TypeBits-1)); 1419 } 1420 } else if (ICI.isEquality()) { 1421 if (RHSVIsPowerOf2) 1422 return new ICmpInst( 1423 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2())); 1424 1425 return ReplaceInstUsesWith( 1426 ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse() 1427 : Builder->getTrue()); 1428 } 1429 } 1430 break; 1431 } 1432 1433 // Check that the shift amount is in range. If not, don't perform 1434 // undefined shifts. When the shift is visited it will be 1435 // simplified. 1436 if (ShAmt->uge(TypeBits)) 1437 break; 1438 1439 if (ICI.isEquality()) { 1440 // If we are comparing against bits always shifted out, the 1441 // comparison cannot succeed. 1442 Constant *Comp = 1443 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), 1444 ShAmt); 1445 if (Comp != RHS) {// Comparing against a bit that we know is zero. 1446 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1447 Constant *Cst = Builder->getInt1(IsICMP_NE); 1448 return ReplaceInstUsesWith(ICI, Cst); 1449 } 1450 1451 // If the shift is NUW, then it is just shifting out zeros, no need for an 1452 // AND. 1453 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap()) 1454 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1455 ConstantExpr::getLShr(RHS, ShAmt)); 1456 1457 // If the shift is NSW and we compare to 0, then it is just shifting out 1458 // sign bits, no need for an AND either. 1459 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0) 1460 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1461 ConstantExpr::getLShr(RHS, ShAmt)); 1462 1463 if (LHSI->hasOneUse()) { 1464 // Otherwise strength reduce the shift into an and. 1465 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 1466 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits, 1467 TypeBits - ShAmtVal)); 1468 1469 Value *And = 1470 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); 1471 return new ICmpInst(ICI.getPredicate(), And, 1472 ConstantExpr::getLShr(RHS, ShAmt)); 1473 } 1474 } 1475 1476 // If this is a signed comparison to 0 and the shift is sign preserving, 1477 // use the shift LHS operand instead. 1478 ICmpInst::Predicate pred = ICI.getPredicate(); 1479 if (isSignTest(pred, RHS) && 1480 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1481 return new ICmpInst(pred, 1482 LHSI->getOperand(0), 1483 Constant::getNullValue(RHS->getType())); 1484 1485 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1486 bool TrueIfSigned = false; 1487 if (LHSI->hasOneUse() && 1488 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { 1489 // (X << 31) <s 0 --> (X&1) != 0 1490 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), 1491 APInt::getOneBitSet(TypeBits, 1492 TypeBits-ShAmt->getZExtValue()-1)); 1493 Value *And = 1494 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); 1495 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 1496 And, Constant::getNullValue(And->getType())); 1497 } 1498 1499 // Transform (icmp pred iM (shl iM %v, N), CI) 1500 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N)) 1501 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N. 1502 // This enables to get rid of the shift in favor of a trunc which can be 1503 // free on the target. It has the additional benefit of comparing to a 1504 // smaller constant, which will be target friendly. 1505 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1); 1506 if (LHSI->hasOneUse() && 1507 Amt != 0 && RHSV.countTrailingZeros() >= Amt) { 1508 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt); 1509 Constant *NCI = ConstantExpr::getTrunc( 1510 ConstantExpr::getAShr(RHS, 1511 ConstantInt::get(RHS->getType(), Amt)), 1512 NTy); 1513 return new ICmpInst(ICI.getPredicate(), 1514 Builder->CreateTrunc(LHSI->getOperand(0), NTy), 1515 NCI); 1516 } 1517 1518 break; 1519 } 1520 1521 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) 1522 case Instruction::AShr: { 1523 // Handle equality comparisons of shift-by-constant. 1524 BinaryOperator *BO = cast<BinaryOperator>(LHSI); 1525 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1526 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt)) 1527 return Res; 1528 } 1529 1530 // Handle exact shr's. 1531 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) { 1532 if (RHSV.isMinValue()) 1533 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS); 1534 } 1535 break; 1536 } 1537 1538 case Instruction::SDiv: 1539 case Instruction::UDiv: 1540 // Fold: icmp pred ([us]div X, C1), C2 -> range test 1541 // Fold this div into the comparison, producing a range check. 1542 // Determine, based on the divide type, what the range is being 1543 // checked. If there is an overflow on the low or high side, remember 1544 // it, otherwise compute the range [low, hi) bounding the new value. 1545 // See: InsertRangeTest above for the kinds of replacements possible. 1546 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) 1547 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), 1548 DivRHS)) 1549 return R; 1550 break; 1551 1552 case Instruction::Sub: { 1553 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0)); 1554 if (!LHSC) break; 1555 const APInt &LHSV = LHSC->getValue(); 1556 1557 // C1-X <u C2 -> (X|(C2-1)) == C1 1558 // iff C1 & (C2-1) == C2-1 1559 // C2 is a power of 2 1560 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 1561 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1)) 1562 return new ICmpInst(ICmpInst::ICMP_EQ, 1563 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1), 1564 LHSC); 1565 1566 // C1-X >u C2 -> (X|C2) != C1 1567 // iff C1 & C2 == C2 1568 // C2+1 is a power of 2 1569 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 1570 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV) 1571 return new ICmpInst(ICmpInst::ICMP_NE, 1572 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC); 1573 break; 1574 } 1575 1576 case Instruction::Add: 1577 // Fold: icmp pred (add X, C1), C2 1578 if (!ICI.isEquality()) { 1579 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1580 if (!LHSC) break; 1581 const APInt &LHSV = LHSC->getValue(); 1582 1583 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) 1584 .subtract(LHSV); 1585 1586 if (ICI.isSigned()) { 1587 if (CR.getLower().isSignBit()) { 1588 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), 1589 Builder->getInt(CR.getUpper())); 1590 } else if (CR.getUpper().isSignBit()) { 1591 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), 1592 Builder->getInt(CR.getLower())); 1593 } 1594 } else { 1595 if (CR.getLower().isMinValue()) { 1596 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), 1597 Builder->getInt(CR.getUpper())); 1598 } else if (CR.getUpper().isMinValue()) { 1599 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), 1600 Builder->getInt(CR.getLower())); 1601 } 1602 } 1603 1604 // X-C1 <u C2 -> (X & -C2) == C1 1605 // iff C1 & (C2-1) == 0 1606 // C2 is a power of 2 1607 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 1608 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0) 1609 return new ICmpInst(ICmpInst::ICMP_EQ, 1610 Builder->CreateAnd(LHSI->getOperand(0), -RHSV), 1611 ConstantExpr::getNeg(LHSC)); 1612 1613 // X-C1 >u C2 -> (X & ~C2) != C1 1614 // iff C1 & C2 == 0 1615 // C2+1 is a power of 2 1616 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 1617 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0) 1618 return new ICmpInst(ICmpInst::ICMP_NE, 1619 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV), 1620 ConstantExpr::getNeg(LHSC)); 1621 } 1622 break; 1623 } 1624 1625 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. 1626 if (ICI.isEquality()) { 1627 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1628 1629 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 1630 // the second operand is a constant, simplify a bit. 1631 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { 1632 switch (BO->getOpcode()) { 1633 case Instruction::SRem: 1634 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 1635 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ 1636 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); 1637 if (V.sgt(1) && V.isPowerOf2()) { 1638 Value *NewRem = 1639 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), 1640 BO->getName()); 1641 return new ICmpInst(ICI.getPredicate(), NewRem, 1642 Constant::getNullValue(BO->getType())); 1643 } 1644 } 1645 break; 1646 case Instruction::Add: 1647 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 1648 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1649 if (BO->hasOneUse()) 1650 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1651 ConstantExpr::getSub(RHS, BOp1C)); 1652 } else if (RHSV == 0) { 1653 // Replace ((add A, B) != 0) with (A != -B) if A or B is 1654 // efficiently invertible, or if the add has just this one use. 1655 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 1656 1657 if (Value *NegVal = dyn_castNegVal(BOp1)) 1658 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); 1659 if (Value *NegVal = dyn_castNegVal(BOp0)) 1660 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); 1661 if (BO->hasOneUse()) { 1662 Value *Neg = Builder->CreateNeg(BOp1); 1663 Neg->takeName(BO); 1664 return new ICmpInst(ICI.getPredicate(), BOp0, Neg); 1665 } 1666 } 1667 break; 1668 case Instruction::Xor: 1669 // For the xor case, we can xor two constants together, eliminating 1670 // the explicit xor. 1671 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { 1672 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1673 ConstantExpr::getXor(RHS, BOC)); 1674 } else if (RHSV == 0) { 1675 // Replace ((xor A, B) != 0) with (A != B) 1676 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1677 BO->getOperand(1)); 1678 } 1679 break; 1680 case Instruction::Sub: 1681 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants. 1682 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) { 1683 if (BO->hasOneUse()) 1684 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1), 1685 ConstantExpr::getSub(BOp0C, RHS)); 1686 } else if (RHSV == 0) { 1687 // Replace ((sub A, B) != 0) with (A != B) 1688 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1689 BO->getOperand(1)); 1690 } 1691 break; 1692 case Instruction::Or: 1693 // If bits are being or'd in that are not present in the constant we 1694 // are comparing against, then the comparison could never succeed! 1695 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1696 Constant *NotCI = ConstantExpr::getNot(RHS); 1697 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) 1698 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 1699 } 1700 break; 1701 1702 case Instruction::And: 1703 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1704 // If bits are being compared against that are and'd out, then the 1705 // comparison can never succeed! 1706 if ((RHSV & ~BOC->getValue()) != 0) 1707 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 1708 1709 // If we have ((X & C) == C), turn it into ((X & C) != 0). 1710 if (RHS == BOC && RHSV.isPowerOf2()) 1711 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : 1712 ICmpInst::ICMP_NE, LHSI, 1713 Constant::getNullValue(RHS->getType())); 1714 1715 // Don't perform the following transforms if the AND has multiple uses 1716 if (!BO->hasOneUse()) 1717 break; 1718 1719 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 1720 if (BOC->getValue().isSignBit()) { 1721 Value *X = BO->getOperand(0); 1722 Constant *Zero = Constant::getNullValue(X->getType()); 1723 ICmpInst::Predicate pred = isICMP_NE ? 1724 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1725 return new ICmpInst(pred, X, Zero); 1726 } 1727 1728 // ((X & ~7) == 0) --> X < 8 1729 if (RHSV == 0 && isHighOnes(BOC)) { 1730 Value *X = BO->getOperand(0); 1731 Constant *NegX = ConstantExpr::getNeg(BOC); 1732 ICmpInst::Predicate pred = isICMP_NE ? 1733 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1734 return new ICmpInst(pred, X, NegX); 1735 } 1736 } 1737 break; 1738 case Instruction::Mul: 1739 if (RHSV == 0 && BO->hasNoSignedWrap()) { 1740 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1741 // The trivial case (mul X, 0) is handled by InstSimplify 1742 // General case : (mul X, C) != 0 iff X != 0 1743 // (mul X, C) == 0 iff X == 0 1744 if (!BOC->isZero()) 1745 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1746 Constant::getNullValue(RHS->getType())); 1747 } 1748 } 1749 break; 1750 default: break; 1751 } 1752 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { 1753 // Handle icmp {eq|ne} <intrinsic>, intcst. 1754 switch (II->getIntrinsicID()) { 1755 case Intrinsic::bswap: 1756 Worklist.Add(II); 1757 ICI.setOperand(0, II->getArgOperand(0)); 1758 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap())); 1759 return &ICI; 1760 case Intrinsic::ctlz: 1761 case Intrinsic::cttz: 1762 // ctz(A) == bitwidth(a) -> A == 0 and likewise for != 1763 if (RHSV == RHS->getType()->getBitWidth()) { 1764 Worklist.Add(II); 1765 ICI.setOperand(0, II->getArgOperand(0)); 1766 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0)); 1767 return &ICI; 1768 } 1769 break; 1770 case Intrinsic::ctpop: 1771 // popcount(A) == 0 -> A == 0 and likewise for != 1772 if (RHS->isZero()) { 1773 Worklist.Add(II); 1774 ICI.setOperand(0, II->getArgOperand(0)); 1775 ICI.setOperand(1, RHS); 1776 return &ICI; 1777 } 1778 break; 1779 default: 1780 break; 1781 } 1782 } 1783 } 1784 return nullptr; 1785 } 1786 1787 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). 1788 /// We only handle extending casts so far. 1789 /// 1790 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { 1791 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); 1792 Value *LHSCIOp = LHSCI->getOperand(0); 1793 Type *SrcTy = LHSCIOp->getType(); 1794 Type *DestTy = LHSCI->getType(); 1795 Value *RHSCIOp; 1796 1797 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 1798 // integer type is the same size as the pointer type. 1799 if (DL && LHSCI->getOpcode() == Instruction::PtrToInt && 1800 DL->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { 1801 Value *RHSOp = nullptr; 1802 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) { 1803 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 1804 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) { 1805 RHSOp = RHSC->getOperand(0); 1806 // If the pointer types don't match, insert a bitcast. 1807 if (LHSCIOp->getType() != RHSOp->getType()) 1808 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 1809 } 1810 1811 if (RHSOp) 1812 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); 1813 } 1814 1815 // The code below only handles extension cast instructions, so far. 1816 // Enforce this. 1817 if (LHSCI->getOpcode() != Instruction::ZExt && 1818 LHSCI->getOpcode() != Instruction::SExt) 1819 return nullptr; 1820 1821 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 1822 bool isSignedCmp = ICI.isSigned(); 1823 1824 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { 1825 // Not an extension from the same type? 1826 RHSCIOp = CI->getOperand(0); 1827 if (RHSCIOp->getType() != LHSCIOp->getType()) 1828 return nullptr; 1829 1830 // If the signedness of the two casts doesn't agree (i.e. one is a sext 1831 // and the other is a zext), then we can't handle this. 1832 if (CI->getOpcode() != LHSCI->getOpcode()) 1833 return nullptr; 1834 1835 // Deal with equality cases early. 1836 if (ICI.isEquality()) 1837 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 1838 1839 // A signed comparison of sign extended values simplifies into a 1840 // signed comparison. 1841 if (isSignedCmp && isSignedExt) 1842 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 1843 1844 // The other three cases all fold into an unsigned comparison. 1845 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 1846 } 1847 1848 // If we aren't dealing with a constant on the RHS, exit early 1849 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); 1850 if (!CI) 1851 return nullptr; 1852 1853 // Compute the constant that would happen if we truncated to SrcTy then 1854 // reextended to DestTy. 1855 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); 1856 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), 1857 Res1, DestTy); 1858 1859 // If the re-extended constant didn't change... 1860 if (Res2 == CI) { 1861 // Deal with equality cases early. 1862 if (ICI.isEquality()) 1863 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 1864 1865 // A signed comparison of sign extended values simplifies into a 1866 // signed comparison. 1867 if (isSignedExt && isSignedCmp) 1868 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 1869 1870 // The other three cases all fold into an unsigned comparison. 1871 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1); 1872 } 1873 1874 // The re-extended constant changed so the constant cannot be represented 1875 // in the shorter type. Consequently, we cannot emit a simple comparison. 1876 // All the cases that fold to true or false will have already been handled 1877 // by SimplifyICmpInst, so only deal with the tricky case. 1878 1879 if (isSignedCmp || !isSignedExt) 1880 return nullptr; 1881 1882 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 1883 // should have been folded away previously and not enter in here. 1884 1885 // We're performing an unsigned comp with a sign extended value. 1886 // This is true if the input is >= 0. [aka >s -1] 1887 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 1888 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName()); 1889 1890 // Finally, return the value computed. 1891 if (ICI.getPredicate() == ICmpInst::ICMP_ULT) 1892 return ReplaceInstUsesWith(ICI, Result); 1893 1894 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 1895 return BinaryOperator::CreateNot(Result); 1896 } 1897 1898 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form: 1899 /// I = icmp ugt (add (add A, B), CI2), CI1 1900 /// If this is of the form: 1901 /// sum = a + b 1902 /// if (sum+128 >u 255) 1903 /// Then replace it with llvm.sadd.with.overflow.i8. 1904 /// 1905 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1906 ConstantInt *CI2, ConstantInt *CI1, 1907 InstCombiner &IC) { 1908 // The transformation we're trying to do here is to transform this into an 1909 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1910 // with a narrower add, and discard the add-with-constant that is part of the 1911 // range check (if we can't eliminate it, this isn't profitable). 1912 1913 // In order to eliminate the add-with-constant, the compare can be its only 1914 // use. 1915 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1916 if (!AddWithCst->hasOneUse()) return nullptr; 1917 1918 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1919 if (!CI2->getValue().isPowerOf2()) return nullptr; 1920 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1921 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr; 1922 1923 // The width of the new add formed is 1 more than the bias. 1924 ++NewWidth; 1925 1926 // Check to see that CI1 is an all-ones value with NewWidth bits. 1927 if (CI1->getBitWidth() == NewWidth || 1928 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1929 return nullptr; 1930 1931 // This is only really a signed overflow check if the inputs have been 1932 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1933 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1934 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1935 if (IC.ComputeNumSignBits(A) < NeededSignBits || 1936 IC.ComputeNumSignBits(B) < NeededSignBits) 1937 return nullptr; 1938 1939 // In order to replace the original add with a narrower 1940 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1941 // and truncates that discard the high bits of the add. Verify that this is 1942 // the case. 1943 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1944 for (User *U : OrigAdd->users()) { 1945 if (U == AddWithCst) continue; 1946 1947 // Only accept truncates for now. We would really like a nice recursive 1948 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1949 // chain to see which bits of a value are actually demanded. If the 1950 // original add had another add which was then immediately truncated, we 1951 // could still do the transformation. 1952 TruncInst *TI = dyn_cast<TruncInst>(U); 1953 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1954 return nullptr; 1955 } 1956 1957 // If the pattern matches, truncate the inputs to the narrower type and 1958 // use the sadd_with_overflow intrinsic to efficiently compute both the 1959 // result and the overflow bit. 1960 Module *M = I.getParent()->getParent()->getParent(); 1961 1962 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1963 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, 1964 NewType); 1965 1966 InstCombiner::BuilderTy *Builder = IC.Builder; 1967 1968 // Put the new code above the original add, in case there are any uses of the 1969 // add between the add and the compare. 1970 Builder->SetInsertPoint(OrigAdd); 1971 1972 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc"); 1973 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc"); 1974 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd"); 1975 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 1976 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 1977 1978 // The inner add was the result of the narrow add, zero extended to the 1979 // wider type. Replace it with the result computed by the intrinsic. 1980 IC.ReplaceInstUsesWith(*OrigAdd, ZExt); 1981 1982 // The original icmp gets replaced with the overflow value. 1983 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1984 } 1985 1986 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV, 1987 InstCombiner &IC) { 1988 // Don't bother doing this transformation for pointers, don't do it for 1989 // vectors. 1990 if (!isa<IntegerType>(OrigAddV->getType())) return nullptr; 1991 1992 // If the add is a constant expr, then we don't bother transforming it. 1993 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV); 1994 if (!OrigAdd) return nullptr; 1995 1996 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1); 1997 1998 // Put the new code above the original add, in case there are any uses of the 1999 // add between the add and the compare. 2000 InstCombiner::BuilderTy *Builder = IC.Builder; 2001 Builder->SetInsertPoint(OrigAdd); 2002 2003 Module *M = I.getParent()->getParent()->getParent(); 2004 Type *Ty = LHS->getType(); 2005 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 2006 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd"); 2007 Value *Add = Builder->CreateExtractValue(Call, 0); 2008 2009 IC.ReplaceInstUsesWith(*OrigAdd, Add); 2010 2011 // The original icmp gets replaced with the overflow value. 2012 return ExtractValueInst::Create(Call, 1, "uadd.overflow"); 2013 } 2014 2015 /// \brief Recognize and process idiom involving test for multiplication 2016 /// overflow. 2017 /// 2018 /// The caller has matched a pattern of the form: 2019 /// I = cmp u (mul(zext A, zext B), V 2020 /// The function checks if this is a test for overflow and if so replaces 2021 /// multiplication with call to 'mul.with.overflow' intrinsic. 2022 /// 2023 /// \param I Compare instruction. 2024 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 2025 /// the compare instruction. Must be of integer type. 2026 /// \param OtherVal The other argument of compare instruction. 2027 /// \returns Instruction which must replace the compare instruction, NULL if no 2028 /// replacement required. 2029 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal, 2030 Value *OtherVal, InstCombiner &IC) { 2031 // Don't bother doing this transformation for pointers, don't do it for 2032 // vectors. 2033 if (!isa<IntegerType>(MulVal->getType())) 2034 return nullptr; 2035 2036 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 2037 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 2038 Instruction *MulInstr = cast<Instruction>(MulVal); 2039 assert(MulInstr->getOpcode() == Instruction::Mul); 2040 2041 Instruction *LHS = cast<Instruction>(MulInstr->getOperand(0)), 2042 *RHS = cast<Instruction>(MulInstr->getOperand(1)); 2043 assert(LHS->getOpcode() == Instruction::ZExt); 2044 assert(RHS->getOpcode() == Instruction::ZExt); 2045 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 2046 2047 // Calculate type and width of the result produced by mul.with.overflow. 2048 Type *TyA = A->getType(), *TyB = B->getType(); 2049 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 2050 WidthB = TyB->getPrimitiveSizeInBits(); 2051 unsigned MulWidth; 2052 Type *MulType; 2053 if (WidthB > WidthA) { 2054 MulWidth = WidthB; 2055 MulType = TyB; 2056 } else { 2057 MulWidth = WidthA; 2058 MulType = TyA; 2059 } 2060 2061 // In order to replace the original mul with a narrower mul.with.overflow, 2062 // all uses must ignore upper bits of the product. The number of used low 2063 // bits must be not greater than the width of mul.with.overflow. 2064 if (MulVal->hasNUsesOrMore(2)) 2065 for (User *U : MulVal->users()) { 2066 if (U == &I) 2067 continue; 2068 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2069 // Check if truncation ignores bits above MulWidth. 2070 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 2071 if (TruncWidth > MulWidth) 2072 return nullptr; 2073 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2074 // Check if AND ignores bits above MulWidth. 2075 if (BO->getOpcode() != Instruction::And) 2076 return nullptr; 2077 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2078 const APInt &CVal = CI->getValue(); 2079 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 2080 return nullptr; 2081 } 2082 } else { 2083 // Other uses prohibit this transformation. 2084 return nullptr; 2085 } 2086 } 2087 2088 // Recognize patterns 2089 switch (I.getPredicate()) { 2090 case ICmpInst::ICMP_EQ: 2091 case ICmpInst::ICMP_NE: 2092 // Recognize pattern: 2093 // mulval = mul(zext A, zext B) 2094 // cmp eq/neq mulval, zext trunc mulval 2095 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 2096 if (Zext->hasOneUse()) { 2097 Value *ZextArg = Zext->getOperand(0); 2098 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 2099 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 2100 break; //Recognized 2101 } 2102 2103 // Recognize pattern: 2104 // mulval = mul(zext A, zext B) 2105 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 2106 ConstantInt *CI; 2107 Value *ValToMask; 2108 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 2109 if (ValToMask != MulVal) 2110 return nullptr; 2111 const APInt &CVal = CI->getValue() + 1; 2112 if (CVal.isPowerOf2()) { 2113 unsigned MaskWidth = CVal.logBase2(); 2114 if (MaskWidth == MulWidth) 2115 break; // Recognized 2116 } 2117 } 2118 return nullptr; 2119 2120 case ICmpInst::ICMP_UGT: 2121 // Recognize pattern: 2122 // mulval = mul(zext A, zext B) 2123 // cmp ugt mulval, max 2124 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2125 APInt MaxVal = APInt::getMaxValue(MulWidth); 2126 MaxVal = MaxVal.zext(CI->getBitWidth()); 2127 if (MaxVal.eq(CI->getValue())) 2128 break; // Recognized 2129 } 2130 return nullptr; 2131 2132 case ICmpInst::ICMP_UGE: 2133 // Recognize pattern: 2134 // mulval = mul(zext A, zext B) 2135 // cmp uge mulval, max+1 2136 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2137 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2138 if (MaxVal.eq(CI->getValue())) 2139 break; // Recognized 2140 } 2141 return nullptr; 2142 2143 case ICmpInst::ICMP_ULE: 2144 // Recognize pattern: 2145 // mulval = mul(zext A, zext B) 2146 // cmp ule mulval, max 2147 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2148 APInt MaxVal = APInt::getMaxValue(MulWidth); 2149 MaxVal = MaxVal.zext(CI->getBitWidth()); 2150 if (MaxVal.eq(CI->getValue())) 2151 break; // Recognized 2152 } 2153 return nullptr; 2154 2155 case ICmpInst::ICMP_ULT: 2156 // Recognize pattern: 2157 // mulval = mul(zext A, zext B) 2158 // cmp ule mulval, max + 1 2159 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2160 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2161 if (MaxVal.eq(CI->getValue())) 2162 break; // Recognized 2163 } 2164 return nullptr; 2165 2166 default: 2167 return nullptr; 2168 } 2169 2170 InstCombiner::BuilderTy *Builder = IC.Builder; 2171 Builder->SetInsertPoint(MulInstr); 2172 Module *M = I.getParent()->getParent()->getParent(); 2173 2174 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 2175 Value *MulA = A, *MulB = B; 2176 if (WidthA < MulWidth) 2177 MulA = Builder->CreateZExt(A, MulType); 2178 if (WidthB < MulWidth) 2179 MulB = Builder->CreateZExt(B, MulType); 2180 Value *F = 2181 Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType); 2182 CallInst *Call = Builder->CreateCall2(F, MulA, MulB, "umul"); 2183 IC.Worklist.Add(MulInstr); 2184 2185 // If there are uses of mul result other than the comparison, we know that 2186 // they are truncation or binary AND. Change them to use result of 2187 // mul.with.overflow and adjust properly mask/size. 2188 if (MulVal->hasNUsesOrMore(2)) { 2189 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value"); 2190 for (User *U : MulVal->users()) { 2191 if (U == &I || U == OtherVal) 2192 continue; 2193 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2194 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 2195 IC.ReplaceInstUsesWith(*TI, Mul); 2196 else 2197 TI->setOperand(0, Mul); 2198 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2199 assert(BO->getOpcode() == Instruction::And); 2200 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 2201 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 2202 APInt ShortMask = CI->getValue().trunc(MulWidth); 2203 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask); 2204 Instruction *Zext = 2205 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType())); 2206 IC.Worklist.Add(Zext); 2207 IC.ReplaceInstUsesWith(*BO, Zext); 2208 } else { 2209 llvm_unreachable("Unexpected Binary operation"); 2210 } 2211 IC.Worklist.Add(cast<Instruction>(U)); 2212 } 2213 } 2214 if (isa<Instruction>(OtherVal)) 2215 IC.Worklist.Add(cast<Instruction>(OtherVal)); 2216 2217 // The original icmp gets replaced with the overflow value, maybe inverted 2218 // depending on predicate. 2219 bool Inverse = false; 2220 switch (I.getPredicate()) { 2221 case ICmpInst::ICMP_NE: 2222 break; 2223 case ICmpInst::ICMP_EQ: 2224 Inverse = true; 2225 break; 2226 case ICmpInst::ICMP_UGT: 2227 case ICmpInst::ICMP_UGE: 2228 if (I.getOperand(0) == MulVal) 2229 break; 2230 Inverse = true; 2231 break; 2232 case ICmpInst::ICMP_ULT: 2233 case ICmpInst::ICMP_ULE: 2234 if (I.getOperand(1) == MulVal) 2235 break; 2236 Inverse = true; 2237 break; 2238 default: 2239 llvm_unreachable("Unexpected predicate"); 2240 } 2241 if (Inverse) { 2242 Value *Res = Builder->CreateExtractValue(Call, 1); 2243 return BinaryOperator::CreateNot(Res); 2244 } 2245 2246 return ExtractValueInst::Create(Call, 1); 2247 } 2248 2249 // DemandedBitsLHSMask - When performing a comparison against a constant, 2250 // it is possible that not all the bits in the LHS are demanded. This helper 2251 // method computes the mask that IS demanded. 2252 static APInt DemandedBitsLHSMask(ICmpInst &I, 2253 unsigned BitWidth, bool isSignCheck) { 2254 if (isSignCheck) 2255 return APInt::getSignBit(BitWidth); 2256 2257 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 2258 if (!CI) return APInt::getAllOnesValue(BitWidth); 2259 const APInt &RHS = CI->getValue(); 2260 2261 switch (I.getPredicate()) { 2262 // For a UGT comparison, we don't care about any bits that 2263 // correspond to the trailing ones of the comparand. The value of these 2264 // bits doesn't impact the outcome of the comparison, because any value 2265 // greater than the RHS must differ in a bit higher than these due to carry. 2266 case ICmpInst::ICMP_UGT: { 2267 unsigned trailingOnes = RHS.countTrailingOnes(); 2268 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 2269 return ~lowBitsSet; 2270 } 2271 2272 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 2273 // Any value less than the RHS must differ in a higher bit because of carries. 2274 case ICmpInst::ICMP_ULT: { 2275 unsigned trailingZeros = RHS.countTrailingZeros(); 2276 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 2277 return ~lowBitsSet; 2278 } 2279 2280 default: 2281 return APInt::getAllOnesValue(BitWidth); 2282 } 2283 2284 } 2285 2286 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst 2287 /// should be swapped. 2288 /// The decision is based on how many times these two operands are reused 2289 /// as subtract operands and their positions in those instructions. 2290 /// The rational is that several architectures use the same instruction for 2291 /// both subtract and cmp, thus it is better if the order of those operands 2292 /// match. 2293 /// \return true if Op0 and Op1 should be swapped. 2294 static bool swapMayExposeCSEOpportunities(const Value * Op0, 2295 const Value * Op1) { 2296 // Filter out pointer value as those cannot appears directly in subtract. 2297 // FIXME: we may want to go through inttoptrs or bitcasts. 2298 if (Op0->getType()->isPointerTy()) 2299 return false; 2300 // Count every uses of both Op0 and Op1 in a subtract. 2301 // Each time Op0 is the first operand, count -1: swapping is bad, the 2302 // subtract has already the same layout as the compare. 2303 // Each time Op0 is the second operand, count +1: swapping is good, the 2304 // subtract has a different layout as the compare. 2305 // At the end, if the benefit is greater than 0, Op0 should come second to 2306 // expose more CSE opportunities. 2307 int GlobalSwapBenefits = 0; 2308 for (const User *U : Op0->users()) { 2309 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); 2310 if (!BinOp || BinOp->getOpcode() != Instruction::Sub) 2311 continue; 2312 // If Op0 is the first argument, this is not beneficial to swap the 2313 // arguments. 2314 int LocalSwapBenefits = -1; 2315 unsigned Op1Idx = 1; 2316 if (BinOp->getOperand(Op1Idx) == Op0) { 2317 Op1Idx = 0; 2318 LocalSwapBenefits = 1; 2319 } 2320 if (BinOp->getOperand(Op1Idx) != Op1) 2321 continue; 2322 GlobalSwapBenefits += LocalSwapBenefits; 2323 } 2324 return GlobalSwapBenefits > 0; 2325 } 2326 2327 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 2328 bool Changed = false; 2329 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2330 unsigned Op0Cplxity = getComplexity(Op0); 2331 unsigned Op1Cplxity = getComplexity(Op1); 2332 2333 /// Orders the operands of the compare so that they are listed from most 2334 /// complex to least complex. This puts constants before unary operators, 2335 /// before binary operators. 2336 if (Op0Cplxity < Op1Cplxity || 2337 (Op0Cplxity == Op1Cplxity && 2338 swapMayExposeCSEOpportunities(Op0, Op1))) { 2339 I.swapOperands(); 2340 std::swap(Op0, Op1); 2341 Changed = true; 2342 } 2343 2344 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL)) 2345 return ReplaceInstUsesWith(I, V); 2346 2347 // comparing -val or val with non-zero is the same as just comparing val 2348 // ie, abs(val) != 0 -> val != 0 2349 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) 2350 { 2351 Value *Cond, *SelectTrue, *SelectFalse; 2352 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 2353 m_Value(SelectFalse)))) { 2354 if (Value *V = dyn_castNegVal(SelectTrue)) { 2355 if (V == SelectFalse) 2356 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 2357 } 2358 else if (Value *V = dyn_castNegVal(SelectFalse)) { 2359 if (V == SelectTrue) 2360 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 2361 } 2362 } 2363 } 2364 2365 Type *Ty = Op0->getType(); 2366 2367 // icmp's with boolean values can always be turned into bitwise operations 2368 if (Ty->isIntegerTy(1)) { 2369 switch (I.getPredicate()) { 2370 default: llvm_unreachable("Invalid icmp instruction!"); 2371 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 2372 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp"); 2373 return BinaryOperator::CreateNot(Xor); 2374 } 2375 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B 2376 return BinaryOperator::CreateXor(Op0, Op1); 2377 2378 case ICmpInst::ICMP_UGT: 2379 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 2380 // FALL THROUGH 2381 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 2382 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 2383 return BinaryOperator::CreateAnd(Not, Op1); 2384 } 2385 case ICmpInst::ICMP_SGT: 2386 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 2387 // FALL THROUGH 2388 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 2389 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 2390 return BinaryOperator::CreateAnd(Not, Op0); 2391 } 2392 case ICmpInst::ICMP_UGE: 2393 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 2394 // FALL THROUGH 2395 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 2396 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 2397 return BinaryOperator::CreateOr(Not, Op1); 2398 } 2399 case ICmpInst::ICMP_SGE: 2400 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 2401 // FALL THROUGH 2402 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 2403 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 2404 return BinaryOperator::CreateOr(Not, Op0); 2405 } 2406 } 2407 } 2408 2409 unsigned BitWidth = 0; 2410 if (Ty->isIntOrIntVectorTy()) 2411 BitWidth = Ty->getScalarSizeInBits(); 2412 else if (DL) // Pointers require DL info to get their size. 2413 BitWidth = DL->getTypeSizeInBits(Ty->getScalarType()); 2414 2415 bool isSignBit = false; 2416 2417 // See if we are doing a comparison with a constant. 2418 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2419 Value *A = nullptr, *B = nullptr; 2420 2421 // Match the following pattern, which is a common idiom when writing 2422 // overflow-safe integer arithmetic function. The source performs an 2423 // addition in wider type, and explicitly checks for overflow using 2424 // comparisons against INT_MIN and INT_MAX. Simplify this by using the 2425 // sadd_with_overflow intrinsic. 2426 // 2427 // TODO: This could probably be generalized to handle other overflow-safe 2428 // operations if we worked out the formulas to compute the appropriate 2429 // magic constants. 2430 // 2431 // sum = a + b 2432 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 2433 { 2434 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 2435 if (I.getPredicate() == ICmpInst::ICMP_UGT && 2436 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 2437 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this)) 2438 return Res; 2439 } 2440 2441 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) 2442 if (I.isEquality() && CI->isZero() && 2443 match(Op0, m_Sub(m_Value(A), m_Value(B)))) { 2444 // (icmp cond A B) if cond is equality 2445 return new ICmpInst(I.getPredicate(), A, B); 2446 } 2447 2448 // If we have an icmp le or icmp ge instruction, turn it into the 2449 // appropriate icmp lt or icmp gt instruction. This allows us to rely on 2450 // them being folded in the code below. The SimplifyICmpInst code has 2451 // already handled the edge cases for us, so we just assert on them. 2452 switch (I.getPredicate()) { 2453 default: break; 2454 case ICmpInst::ICMP_ULE: 2455 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE 2456 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, 2457 Builder->getInt(CI->getValue()+1)); 2458 case ICmpInst::ICMP_SLE: 2459 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE 2460 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 2461 Builder->getInt(CI->getValue()+1)); 2462 case ICmpInst::ICMP_UGE: 2463 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE 2464 return new ICmpInst(ICmpInst::ICMP_UGT, Op0, 2465 Builder->getInt(CI->getValue()-1)); 2466 case ICmpInst::ICMP_SGE: 2467 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE 2468 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 2469 Builder->getInt(CI->getValue()-1)); 2470 } 2471 2472 // If this comparison is a normal comparison, it demands all 2473 // bits, if it is a sign bit comparison, it only demands the sign bit. 2474 bool UnusedBit; 2475 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); 2476 } 2477 2478 // See if we can fold the comparison based on range information we can get 2479 // by checking whether bits are known to be zero or one in the input. 2480 if (BitWidth != 0) { 2481 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 2482 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 2483 2484 if (SimplifyDemandedBits(I.getOperandUse(0), 2485 DemandedBitsLHSMask(I, BitWidth, isSignBit), 2486 Op0KnownZero, Op0KnownOne, 0)) 2487 return &I; 2488 if (SimplifyDemandedBits(I.getOperandUse(1), 2489 APInt::getAllOnesValue(BitWidth), 2490 Op1KnownZero, Op1KnownOne, 0)) 2491 return &I; 2492 2493 // Given the known and unknown bits, compute a range that the LHS could be 2494 // in. Compute the Min, Max and RHS values based on the known bits. For the 2495 // EQ and NE we use unsigned values. 2496 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 2497 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 2498 if (I.isSigned()) { 2499 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 2500 Op0Min, Op0Max); 2501 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 2502 Op1Min, Op1Max); 2503 } else { 2504 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 2505 Op0Min, Op0Max); 2506 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 2507 Op1Min, Op1Max); 2508 } 2509 2510 // If Min and Max are known to be the same, then SimplifyDemandedBits 2511 // figured out that the LHS is a constant. Just constant fold this now so 2512 // that code below can assume that Min != Max. 2513 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 2514 return new ICmpInst(I.getPredicate(), 2515 ConstantInt::get(Op0->getType(), Op0Min), Op1); 2516 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 2517 return new ICmpInst(I.getPredicate(), Op0, 2518 ConstantInt::get(Op1->getType(), Op1Min)); 2519 2520 // Based on the range information we know about the LHS, see if we can 2521 // simplify this comparison. For example, (x&4) < 8 is always true. 2522 switch (I.getPredicate()) { 2523 default: llvm_unreachable("Unknown icmp opcode!"); 2524 case ICmpInst::ICMP_EQ: { 2525 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 2526 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2527 2528 // If all bits are known zero except for one, then we know at most one 2529 // bit is set. If the comparison is against zero, then this is a check 2530 // to see if *that* bit is set. 2531 APInt Op0KnownZeroInverted = ~Op0KnownZero; 2532 if (~Op1KnownZero == 0) { 2533 // If the LHS is an AND with the same constant, look through it. 2534 Value *LHS = nullptr; 2535 ConstantInt *LHSC = nullptr; 2536 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 2537 LHSC->getValue() != Op0KnownZeroInverted) 2538 LHS = Op0; 2539 2540 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 2541 // then turn "((1 << x)&8) == 0" into "x != 3". 2542 // or turn "((1 << x)&7) == 0" into "x > 2". 2543 Value *X = nullptr; 2544 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 2545 APInt ValToCheck = Op0KnownZeroInverted; 2546 if (ValToCheck.isPowerOf2()) { 2547 unsigned CmpVal = ValToCheck.countTrailingZeros(); 2548 return new ICmpInst(ICmpInst::ICMP_NE, X, 2549 ConstantInt::get(X->getType(), CmpVal)); 2550 } else if ((++ValToCheck).isPowerOf2()) { 2551 unsigned CmpVal = ValToCheck.countTrailingZeros() - 1; 2552 return new ICmpInst(ICmpInst::ICMP_UGT, X, 2553 ConstantInt::get(X->getType(), CmpVal)); 2554 } 2555 } 2556 2557 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 2558 // then turn "((8 >>u x)&1) == 0" into "x != 3". 2559 const APInt *CI; 2560 if (Op0KnownZeroInverted == 1 && 2561 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 2562 return new ICmpInst(ICmpInst::ICMP_NE, X, 2563 ConstantInt::get(X->getType(), 2564 CI->countTrailingZeros())); 2565 } 2566 2567 break; 2568 } 2569 case ICmpInst::ICMP_NE: { 2570 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 2571 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2572 2573 // If all bits are known zero except for one, then we know at most one 2574 // bit is set. If the comparison is against zero, then this is a check 2575 // to see if *that* bit is set. 2576 APInt Op0KnownZeroInverted = ~Op0KnownZero; 2577 if (~Op1KnownZero == 0) { 2578 // If the LHS is an AND with the same constant, look through it. 2579 Value *LHS = nullptr; 2580 ConstantInt *LHSC = nullptr; 2581 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 2582 LHSC->getValue() != Op0KnownZeroInverted) 2583 LHS = Op0; 2584 2585 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 2586 // then turn "((1 << x)&8) != 0" into "x == 3". 2587 // or turn "((1 << x)&7) != 0" into "x < 3". 2588 Value *X = nullptr; 2589 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 2590 APInt ValToCheck = Op0KnownZeroInverted; 2591 if (ValToCheck.isPowerOf2()) { 2592 unsigned CmpVal = ValToCheck.countTrailingZeros(); 2593 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2594 ConstantInt::get(X->getType(), CmpVal)); 2595 } else if ((++ValToCheck).isPowerOf2()) { 2596 unsigned CmpVal = ValToCheck.countTrailingZeros(); 2597 return new ICmpInst(ICmpInst::ICMP_ULT, X, 2598 ConstantInt::get(X->getType(), CmpVal)); 2599 } 2600 } 2601 2602 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 2603 // then turn "((8 >>u x)&1) != 0" into "x == 3". 2604 const APInt *CI; 2605 if (Op0KnownZeroInverted == 1 && 2606 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 2607 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2608 ConstantInt::get(X->getType(), 2609 CI->countTrailingZeros())); 2610 } 2611 2612 break; 2613 } 2614 case ICmpInst::ICMP_ULT: 2615 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 2616 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2617 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 2618 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2619 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 2620 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2621 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2622 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C 2623 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2624 Builder->getInt(CI->getValue()-1)); 2625 2626 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear 2627 if (CI->isMinValue(true)) 2628 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 2629 Constant::getAllOnesValue(Op0->getType())); 2630 } 2631 break; 2632 case ICmpInst::ICMP_UGT: 2633 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 2634 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2635 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 2636 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2637 2638 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 2639 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2640 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2641 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C 2642 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2643 Builder->getInt(CI->getValue()+1)); 2644 2645 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set 2646 if (CI->isMaxValue(true)) 2647 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 2648 Constant::getNullValue(Op0->getType())); 2649 } 2650 break; 2651 case ICmpInst::ICMP_SLT: 2652 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 2653 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2654 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 2655 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2656 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 2657 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2658 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2659 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C 2660 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2661 Builder->getInt(CI->getValue()-1)); 2662 } 2663 break; 2664 case ICmpInst::ICMP_SGT: 2665 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 2666 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2667 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 2668 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2669 2670 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 2671 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2672 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2673 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C 2674 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2675 Builder->getInt(CI->getValue()+1)); 2676 } 2677 break; 2678 case ICmpInst::ICMP_SGE: 2679 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 2680 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 2681 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2682 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 2683 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2684 break; 2685 case ICmpInst::ICMP_SLE: 2686 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 2687 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 2688 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2689 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 2690 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2691 break; 2692 case ICmpInst::ICMP_UGE: 2693 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 2694 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 2695 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2696 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 2697 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2698 break; 2699 case ICmpInst::ICMP_ULE: 2700 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 2701 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 2702 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2703 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 2704 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2705 break; 2706 } 2707 2708 // Turn a signed comparison into an unsigned one if both operands 2709 // are known to have the same sign. 2710 if (I.isSigned() && 2711 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 2712 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 2713 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 2714 } 2715 2716 // Test if the ICmpInst instruction is used exclusively by a select as 2717 // part of a minimum or maximum operation. If so, refrain from doing 2718 // any other folding. This helps out other analyses which understand 2719 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 2720 // and CodeGen. And in this case, at least one of the comparison 2721 // operands has at least one user besides the compare (the select), 2722 // which would often largely negate the benefit of folding anyway. 2723 if (I.hasOneUse()) 2724 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 2725 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 2726 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 2727 return nullptr; 2728 2729 // See if we are doing a comparison between a constant and an instruction that 2730 // can be folded into the comparison. 2731 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2732 // Since the RHS is a ConstantInt (CI), if the left hand side is an 2733 // instruction, see if that instruction also has constants so that the 2734 // instruction can be folded into the icmp 2735 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 2736 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) 2737 return Res; 2738 } 2739 2740 // Handle icmp with constant (but not simple integer constant) RHS 2741 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 2742 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 2743 switch (LHSI->getOpcode()) { 2744 case Instruction::GetElementPtr: 2745 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2746 if (RHSC->isNullValue() && 2747 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2748 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 2749 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2750 break; 2751 case Instruction::PHI: 2752 // Only fold icmp into the PHI if the phi and icmp are in the same 2753 // block. If in the same block, we're encouraging jump threading. If 2754 // not, we are just pessimizing the code by making an i1 phi. 2755 if (LHSI->getParent() == I.getParent()) 2756 if (Instruction *NV = FoldOpIntoPhi(I)) 2757 return NV; 2758 break; 2759 case Instruction::Select: { 2760 // If either operand of the select is a constant, we can fold the 2761 // comparison into the select arms, which will cause one to be 2762 // constant folded and the select turned into a bitwise or. 2763 Value *Op1 = nullptr, *Op2 = nullptr; 2764 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) 2765 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2766 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) 2767 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2768 2769 // We only want to perform this transformation if it will not lead to 2770 // additional code. This is true if either both sides of the select 2771 // fold to a constant (in which case the icmp is replaced with a select 2772 // which will usually simplify) or this is the only user of the 2773 // select (in which case we are trading a select+icmp for a simpler 2774 // select+icmp). 2775 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) { 2776 if (!Op1) 2777 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), 2778 RHSC, I.getName()); 2779 if (!Op2) 2780 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), 2781 RHSC, I.getName()); 2782 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 2783 } 2784 break; 2785 } 2786 case Instruction::IntToPtr: 2787 // icmp pred inttoptr(X), null -> icmp pred X, 0 2788 if (RHSC->isNullValue() && DL && 2789 DL->getIntPtrType(RHSC->getType()) == 2790 LHSI->getOperand(0)->getType()) 2791 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 2792 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2793 break; 2794 2795 case Instruction::Load: 2796 // Try to optimize things like "A[i] > 4" to index computations. 2797 if (GetElementPtrInst *GEP = 2798 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 2799 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 2800 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 2801 !cast<LoadInst>(LHSI)->isVolatile()) 2802 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 2803 return Res; 2804 } 2805 break; 2806 } 2807 } 2808 2809 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 2810 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 2811 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) 2812 return NI; 2813 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 2814 if (Instruction *NI = FoldGEPICmp(GEP, Op0, 2815 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 2816 return NI; 2817 2818 // Test to see if the operands of the icmp are casted versions of other 2819 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 2820 // now. 2821 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 2822 if (Op0->getType()->isPointerTy() && 2823 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2824 // We keep moving the cast from the left operand over to the right 2825 // operand, where it can often be eliminated completely. 2826 Op0 = CI->getOperand(0); 2827 2828 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2829 // so eliminate it as well. 2830 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 2831 Op1 = CI2->getOperand(0); 2832 2833 // If Op1 is a constant, we can fold the cast into the constant. 2834 if (Op0->getType() != Op1->getType()) { 2835 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 2836 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 2837 } else { 2838 // Otherwise, cast the RHS right before the icmp 2839 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 2840 } 2841 } 2842 return new ICmpInst(I.getPredicate(), Op0, Op1); 2843 } 2844 } 2845 2846 if (isa<CastInst>(Op0)) { 2847 // Handle the special case of: icmp (cast bool to X), <cst> 2848 // This comes up when you have code like 2849 // int X = A < B; 2850 // if (X) ... 2851 // For generality, we handle any zero-extension of any operand comparison 2852 // with a constant or another cast from the same type. 2853 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 2854 if (Instruction *R = visitICmpInstWithCastAndCast(I)) 2855 return R; 2856 } 2857 2858 // Special logic for binary operators. 2859 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 2860 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 2861 if (BO0 || BO1) { 2862 CmpInst::Predicate Pred = I.getPredicate(); 2863 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 2864 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 2865 NoOp0WrapProblem = ICmpInst::isEquality(Pred) || 2866 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 2867 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 2868 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 2869 NoOp1WrapProblem = ICmpInst::isEquality(Pred) || 2870 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 2871 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 2872 2873 // Analyze the case when either Op0 or Op1 is an add instruction. 2874 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 2875 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2876 if (BO0 && BO0->getOpcode() == Instruction::Add) 2877 A = BO0->getOperand(0), B = BO0->getOperand(1); 2878 if (BO1 && BO1->getOpcode() == Instruction::Add) 2879 C = BO1->getOperand(0), D = BO1->getOperand(1); 2880 2881 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2882 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 2883 return new ICmpInst(Pred, A == Op1 ? B : A, 2884 Constant::getNullValue(Op1->getType())); 2885 2886 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2887 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 2888 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 2889 C == Op0 ? D : C); 2890 2891 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 2892 if (A && C && (A == C || A == D || B == C || B == D) && 2893 NoOp0WrapProblem && NoOp1WrapProblem && 2894 // Try not to increase register pressure. 2895 BO0->hasOneUse() && BO1->hasOneUse()) { 2896 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2897 Value *Y, *Z; 2898 if (A == C) { 2899 // C + B == C + D -> B == D 2900 Y = B; 2901 Z = D; 2902 } else if (A == D) { 2903 // D + B == C + D -> B == C 2904 Y = B; 2905 Z = C; 2906 } else if (B == C) { 2907 // A + C == C + D -> A == D 2908 Y = A; 2909 Z = D; 2910 } else { 2911 assert(B == D); 2912 // A + D == C + D -> A == C 2913 Y = A; 2914 Z = C; 2915 } 2916 return new ICmpInst(Pred, Y, Z); 2917 } 2918 2919 // icmp slt (X + -1), Y -> icmp sle X, Y 2920 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 2921 match(B, m_AllOnes())) 2922 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 2923 2924 // icmp sge (X + -1), Y -> icmp sgt X, Y 2925 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 2926 match(B, m_AllOnes())) 2927 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 2928 2929 // icmp sle (X + 1), Y -> icmp slt X, Y 2930 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && 2931 match(B, m_One())) 2932 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 2933 2934 // icmp sgt (X + 1), Y -> icmp sge X, Y 2935 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && 2936 match(B, m_One())) 2937 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 2938 2939 // if C1 has greater magnitude than C2: 2940 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 2941 // s.t. C3 = C1 - C2 2942 // 2943 // if C2 has greater magnitude than C1: 2944 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 2945 // s.t. C3 = C2 - C1 2946 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 2947 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 2948 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 2949 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 2950 const APInt &AP1 = C1->getValue(); 2951 const APInt &AP2 = C2->getValue(); 2952 if (AP1.isNegative() == AP2.isNegative()) { 2953 APInt AP1Abs = C1->getValue().abs(); 2954 APInt AP2Abs = C2->getValue().abs(); 2955 if (AP1Abs.uge(AP2Abs)) { 2956 ConstantInt *C3 = Builder->getInt(AP1 - AP2); 2957 Value *NewAdd = Builder->CreateNSWAdd(A, C3); 2958 return new ICmpInst(Pred, NewAdd, C); 2959 } else { 2960 ConstantInt *C3 = Builder->getInt(AP2 - AP1); 2961 Value *NewAdd = Builder->CreateNSWAdd(C, C3); 2962 return new ICmpInst(Pred, A, NewAdd); 2963 } 2964 } 2965 } 2966 2967 2968 // Analyze the case when either Op0 or Op1 is a sub instruction. 2969 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 2970 A = nullptr; B = nullptr; C = nullptr; D = nullptr; 2971 if (BO0 && BO0->getOpcode() == Instruction::Sub) 2972 A = BO0->getOperand(0), B = BO0->getOperand(1); 2973 if (BO1 && BO1->getOpcode() == Instruction::Sub) 2974 C = BO1->getOperand(0), D = BO1->getOperand(1); 2975 2976 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 2977 if (A == Op1 && NoOp0WrapProblem) 2978 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 2979 2980 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 2981 if (C == Op0 && NoOp1WrapProblem) 2982 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 2983 2984 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 2985 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 2986 // Try not to increase register pressure. 2987 BO0->hasOneUse() && BO1->hasOneUse()) 2988 return new ICmpInst(Pred, A, C); 2989 2990 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 2991 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 2992 // Try not to increase register pressure. 2993 BO0->hasOneUse() && BO1->hasOneUse()) 2994 return new ICmpInst(Pred, D, B); 2995 2996 // icmp (0-X) < cst --> x > -cst 2997 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 2998 Value *X; 2999 if (match(BO0, m_Neg(m_Value(X)))) 3000 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3001 if (!RHSC->isMinValue(/*isSigned=*/true)) 3002 return new ICmpInst(I.getSwappedPredicate(), X, 3003 ConstantExpr::getNeg(RHSC)); 3004 } 3005 3006 BinaryOperator *SRem = nullptr; 3007 // icmp (srem X, Y), Y 3008 if (BO0 && BO0->getOpcode() == Instruction::SRem && 3009 Op1 == BO0->getOperand(1)) 3010 SRem = BO0; 3011 // icmp Y, (srem X, Y) 3012 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3013 Op0 == BO1->getOperand(1)) 3014 SRem = BO1; 3015 if (SRem) { 3016 // We don't check hasOneUse to avoid increasing register pressure because 3017 // the value we use is the same value this instruction was already using. 3018 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3019 default: break; 3020 case ICmpInst::ICMP_EQ: 3021 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3022 case ICmpInst::ICMP_NE: 3023 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3024 case ICmpInst::ICMP_SGT: 3025 case ICmpInst::ICMP_SGE: 3026 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3027 Constant::getAllOnesValue(SRem->getType())); 3028 case ICmpInst::ICMP_SLT: 3029 case ICmpInst::ICMP_SLE: 3030 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3031 Constant::getNullValue(SRem->getType())); 3032 } 3033 } 3034 3035 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 3036 BO0->hasOneUse() && BO1->hasOneUse() && 3037 BO0->getOperand(1) == BO1->getOperand(1)) { 3038 switch (BO0->getOpcode()) { 3039 default: break; 3040 case Instruction::Add: 3041 case Instruction::Sub: 3042 case Instruction::Xor: 3043 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3044 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3045 BO1->getOperand(0)); 3046 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 3047 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3048 if (CI->getValue().isSignBit()) { 3049 ICmpInst::Predicate Pred = I.isSigned() 3050 ? I.getUnsignedPredicate() 3051 : I.getSignedPredicate(); 3052 return new ICmpInst(Pred, BO0->getOperand(0), 3053 BO1->getOperand(0)); 3054 } 3055 3056 if (CI->isMaxValue(true)) { 3057 ICmpInst::Predicate Pred = I.isSigned() 3058 ? I.getUnsignedPredicate() 3059 : I.getSignedPredicate(); 3060 Pred = I.getSwappedPredicate(Pred); 3061 return new ICmpInst(Pred, BO0->getOperand(0), 3062 BO1->getOperand(0)); 3063 } 3064 } 3065 break; 3066 case Instruction::Mul: 3067 if (!I.isEquality()) 3068 break; 3069 3070 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 3071 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 3072 // Mask = -1 >> count-trailing-zeros(Cst). 3073 if (!CI->isZero() && !CI->isOne()) { 3074 const APInt &AP = CI->getValue(); 3075 ConstantInt *Mask = ConstantInt::get(I.getContext(), 3076 APInt::getLowBitsSet(AP.getBitWidth(), 3077 AP.getBitWidth() - 3078 AP.countTrailingZeros())); 3079 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 3080 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 3081 return new ICmpInst(I.getPredicate(), And1, And2); 3082 } 3083 } 3084 break; 3085 case Instruction::UDiv: 3086 case Instruction::LShr: 3087 if (I.isSigned()) 3088 break; 3089 // fall-through 3090 case Instruction::SDiv: 3091 case Instruction::AShr: 3092 if (!BO0->isExact() || !BO1->isExact()) 3093 break; 3094 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3095 BO1->getOperand(0)); 3096 case Instruction::Shl: { 3097 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3098 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3099 if (!NUW && !NSW) 3100 break; 3101 if (!NSW && I.isSigned()) 3102 break; 3103 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 3104 BO1->getOperand(0)); 3105 } 3106 } 3107 } 3108 } 3109 3110 { Value *A, *B; 3111 // Transform (A & ~B) == 0 --> (A & B) != 0 3112 // and (A & ~B) != 0 --> (A & B) == 0 3113 // if A is a power of 2. 3114 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 3115 match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality()) 3116 return new ICmpInst(I.getInversePredicate(), 3117 Builder->CreateAnd(A, B), 3118 Op1); 3119 3120 // ~x < ~y --> y < x 3121 // ~x < cst --> ~cst < x 3122 if (match(Op0, m_Not(m_Value(A)))) { 3123 if (match(Op1, m_Not(m_Value(B)))) 3124 return new ICmpInst(I.getPredicate(), B, A); 3125 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3126 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 3127 } 3128 3129 // (a+b) <u a --> llvm.uadd.with.overflow. 3130 // (a+b) <u b --> llvm.uadd.with.overflow. 3131 if (I.getPredicate() == ICmpInst::ICMP_ULT && 3132 match(Op0, m_Add(m_Value(A), m_Value(B))) && 3133 (Op1 == A || Op1 == B)) 3134 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this)) 3135 return R; 3136 3137 // a >u (a+b) --> llvm.uadd.with.overflow. 3138 // b >u (a+b) --> llvm.uadd.with.overflow. 3139 if (I.getPredicate() == ICmpInst::ICMP_UGT && 3140 match(Op1, m_Add(m_Value(A), m_Value(B))) && 3141 (Op0 == A || Op0 == B)) 3142 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this)) 3143 return R; 3144 3145 // (zext a) * (zext b) --> llvm.umul.with.overflow. 3146 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 3147 if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this)) 3148 return R; 3149 } 3150 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 3151 if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this)) 3152 return R; 3153 } 3154 } 3155 3156 if (I.isEquality()) { 3157 Value *A, *B, *C, *D; 3158 3159 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3160 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3161 Value *OtherVal = A == Op1 ? B : A; 3162 return new ICmpInst(I.getPredicate(), OtherVal, 3163 Constant::getNullValue(A->getType())); 3164 } 3165 3166 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3167 // A^c1 == C^c2 --> A == C^(c1^c2) 3168 ConstantInt *C1, *C2; 3169 if (match(B, m_ConstantInt(C1)) && 3170 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { 3171 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue()); 3172 Value *Xor = Builder->CreateXor(C, NC); 3173 return new ICmpInst(I.getPredicate(), A, Xor); 3174 } 3175 3176 // A^B == A^D -> B == D 3177 if (A == C) return new ICmpInst(I.getPredicate(), B, D); 3178 if (A == D) return new ICmpInst(I.getPredicate(), B, C); 3179 if (B == C) return new ICmpInst(I.getPredicate(), A, D); 3180 if (B == D) return new ICmpInst(I.getPredicate(), A, C); 3181 } 3182 } 3183 3184 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 3185 (A == Op0 || B == Op0)) { 3186 // A == (A^B) -> B == 0 3187 Value *OtherVal = A == Op0 ? B : A; 3188 return new ICmpInst(I.getPredicate(), OtherVal, 3189 Constant::getNullValue(A->getType())); 3190 } 3191 3192 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3193 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3194 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3195 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3196 3197 if (A == C) { 3198 X = B; Y = D; Z = A; 3199 } else if (A == D) { 3200 X = B; Y = C; Z = A; 3201 } else if (B == C) { 3202 X = A; Y = D; Z = B; 3203 } else if (B == D) { 3204 X = A; Y = C; Z = B; 3205 } 3206 3207 if (X) { // Build (X^Y) & Z 3208 Op1 = Builder->CreateXor(X, Y); 3209 Op1 = Builder->CreateAnd(Op1, Z); 3210 I.setOperand(0, Op1); 3211 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3212 return &I; 3213 } 3214 } 3215 3216 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3217 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3218 ConstantInt *Cst1; 3219 if ((Op0->hasOneUse() && 3220 match(Op0, m_ZExt(m_Value(A))) && 3221 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3222 (Op1->hasOneUse() && 3223 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3224 match(Op1, m_ZExt(m_Value(A))))) { 3225 APInt Pow2 = Cst1->getValue() + 1; 3226 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3227 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3228 return new ICmpInst(I.getPredicate(), A, 3229 Builder->CreateTrunc(B, A->getType())); 3230 } 3231 3232 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3233 // For lshr and ashr pairs. 3234 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3235 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3236 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3237 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3238 unsigned TypeBits = Cst1->getBitWidth(); 3239 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3240 if (ShAmt < TypeBits && ShAmt != 0) { 3241 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE 3242 ? ICmpInst::ICMP_UGE 3243 : ICmpInst::ICMP_ULT; 3244 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 3245 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3246 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal)); 3247 } 3248 } 3249 3250 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3251 // "icmp (and X, mask), cst" 3252 uint64_t ShAmt = 0; 3253 if (Op0->hasOneUse() && 3254 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), 3255 m_ConstantInt(ShAmt))))) && 3256 match(Op1, m_ConstantInt(Cst1)) && 3257 // Only do this when A has multiple uses. This is most important to do 3258 // when it exposes other optimizations. 3259 !A->hasOneUse()) { 3260 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3261 3262 if (ShAmt < ASize) { 3263 APInt MaskV = 3264 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3265 MaskV <<= ShAmt; 3266 3267 APInt CmpV = Cst1->getValue().zext(ASize); 3268 CmpV <<= ShAmt; 3269 3270 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 3271 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 3272 } 3273 } 3274 } 3275 3276 { 3277 Value *X; ConstantInt *Cst; 3278 // icmp X+Cst, X 3279 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 3280 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate()); 3281 3282 // icmp X, X+Cst 3283 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 3284 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate()); 3285 } 3286 return Changed ? &I : nullptr; 3287 } 3288 3289 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. 3290 /// 3291 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, 3292 Instruction *LHSI, 3293 Constant *RHSC) { 3294 if (!isa<ConstantFP>(RHSC)) return nullptr; 3295 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 3296 3297 // Get the width of the mantissa. We don't want to hack on conversions that 3298 // might lose information from the integer, e.g. "i64 -> float" 3299 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 3300 if (MantissaWidth == -1) return nullptr; // Unknown. 3301 3302 // Check to see that the input is converted from an integer type that is small 3303 // enough that preserves all bits. TODO: check here for "known" sign bits. 3304 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 3305 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits(); 3306 3307 // If this is a uitofp instruction, we need an extra bit to hold the sign. 3308 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 3309 if (LHSUnsigned) 3310 ++InputSize; 3311 3312 // If the conversion would lose info, don't hack on this. 3313 if ((int)InputSize > MantissaWidth) 3314 return nullptr; 3315 3316 // Otherwise, we can potentially simplify the comparison. We know that it 3317 // will always come through as an integer value and we know the constant is 3318 // not a NAN (it would have been previously simplified). 3319 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 3320 3321 ICmpInst::Predicate Pred; 3322 switch (I.getPredicate()) { 3323 default: llvm_unreachable("Unexpected predicate!"); 3324 case FCmpInst::FCMP_UEQ: 3325 case FCmpInst::FCMP_OEQ: 3326 Pred = ICmpInst::ICMP_EQ; 3327 break; 3328 case FCmpInst::FCMP_UGT: 3329 case FCmpInst::FCMP_OGT: 3330 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 3331 break; 3332 case FCmpInst::FCMP_UGE: 3333 case FCmpInst::FCMP_OGE: 3334 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 3335 break; 3336 case FCmpInst::FCMP_ULT: 3337 case FCmpInst::FCMP_OLT: 3338 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 3339 break; 3340 case FCmpInst::FCMP_ULE: 3341 case FCmpInst::FCMP_OLE: 3342 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 3343 break; 3344 case FCmpInst::FCMP_UNE: 3345 case FCmpInst::FCMP_ONE: 3346 Pred = ICmpInst::ICMP_NE; 3347 break; 3348 case FCmpInst::FCMP_ORD: 3349 return ReplaceInstUsesWith(I, Builder->getTrue()); 3350 case FCmpInst::FCMP_UNO: 3351 return ReplaceInstUsesWith(I, Builder->getFalse()); 3352 } 3353 3354 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 3355 3356 // Now we know that the APFloat is a normal number, zero or inf. 3357 3358 // See if the FP constant is too large for the integer. For example, 3359 // comparing an i8 to 300.0. 3360 unsigned IntWidth = IntTy->getScalarSizeInBits(); 3361 3362 if (!LHSUnsigned) { 3363 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 3364 // and large values. 3365 APFloat SMax(RHS.getSemantics()); 3366 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 3367 APFloat::rmNearestTiesToEven); 3368 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 3369 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 3370 Pred == ICmpInst::ICMP_SLE) 3371 return ReplaceInstUsesWith(I, Builder->getTrue()); 3372 return ReplaceInstUsesWith(I, Builder->getFalse()); 3373 } 3374 } else { 3375 // If the RHS value is > UnsignedMax, fold the comparison. This handles 3376 // +INF and large values. 3377 APFloat UMax(RHS.getSemantics()); 3378 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 3379 APFloat::rmNearestTiesToEven); 3380 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 3381 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 3382 Pred == ICmpInst::ICMP_ULE) 3383 return ReplaceInstUsesWith(I, Builder->getTrue()); 3384 return ReplaceInstUsesWith(I, Builder->getFalse()); 3385 } 3386 } 3387 3388 if (!LHSUnsigned) { 3389 // See if the RHS value is < SignedMin. 3390 APFloat SMin(RHS.getSemantics()); 3391 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 3392 APFloat::rmNearestTiesToEven); 3393 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 3394 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 3395 Pred == ICmpInst::ICMP_SGE) 3396 return ReplaceInstUsesWith(I, Builder->getTrue()); 3397 return ReplaceInstUsesWith(I, Builder->getFalse()); 3398 } 3399 } else { 3400 // See if the RHS value is < UnsignedMin. 3401 APFloat SMin(RHS.getSemantics()); 3402 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 3403 APFloat::rmNearestTiesToEven); 3404 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 3405 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 3406 Pred == ICmpInst::ICMP_UGE) 3407 return ReplaceInstUsesWith(I, Builder->getTrue()); 3408 return ReplaceInstUsesWith(I, Builder->getFalse()); 3409 } 3410 } 3411 3412 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 3413 // [0, UMAX], but it may still be fractional. See if it is fractional by 3414 // casting the FP value to the integer value and back, checking for equality. 3415 // Don't do this for zero, because -0.0 is not fractional. 3416 Constant *RHSInt = LHSUnsigned 3417 ? ConstantExpr::getFPToUI(RHSC, IntTy) 3418 : ConstantExpr::getFPToSI(RHSC, IntTy); 3419 if (!RHS.isZero()) { 3420 bool Equal = LHSUnsigned 3421 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 3422 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 3423 if (!Equal) { 3424 // If we had a comparison against a fractional value, we have to adjust 3425 // the compare predicate and sometimes the value. RHSC is rounded towards 3426 // zero at this point. 3427 switch (Pred) { 3428 default: llvm_unreachable("Unexpected integer comparison!"); 3429 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 3430 return ReplaceInstUsesWith(I, Builder->getTrue()); 3431 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 3432 return ReplaceInstUsesWith(I, Builder->getFalse()); 3433 case ICmpInst::ICMP_ULE: 3434 // (float)int <= 4.4 --> int <= 4 3435 // (float)int <= -4.4 --> false 3436 if (RHS.isNegative()) 3437 return ReplaceInstUsesWith(I, Builder->getFalse()); 3438 break; 3439 case ICmpInst::ICMP_SLE: 3440 // (float)int <= 4.4 --> int <= 4 3441 // (float)int <= -4.4 --> int < -4 3442 if (RHS.isNegative()) 3443 Pred = ICmpInst::ICMP_SLT; 3444 break; 3445 case ICmpInst::ICMP_ULT: 3446 // (float)int < -4.4 --> false 3447 // (float)int < 4.4 --> int <= 4 3448 if (RHS.isNegative()) 3449 return ReplaceInstUsesWith(I, Builder->getFalse()); 3450 Pred = ICmpInst::ICMP_ULE; 3451 break; 3452 case ICmpInst::ICMP_SLT: 3453 // (float)int < -4.4 --> int < -4 3454 // (float)int < 4.4 --> int <= 4 3455 if (!RHS.isNegative()) 3456 Pred = ICmpInst::ICMP_SLE; 3457 break; 3458 case ICmpInst::ICMP_UGT: 3459 // (float)int > 4.4 --> int > 4 3460 // (float)int > -4.4 --> true 3461 if (RHS.isNegative()) 3462 return ReplaceInstUsesWith(I, Builder->getTrue()); 3463 break; 3464 case ICmpInst::ICMP_SGT: 3465 // (float)int > 4.4 --> int > 4 3466 // (float)int > -4.4 --> int >= -4 3467 if (RHS.isNegative()) 3468 Pred = ICmpInst::ICMP_SGE; 3469 break; 3470 case ICmpInst::ICMP_UGE: 3471 // (float)int >= -4.4 --> true 3472 // (float)int >= 4.4 --> int > 4 3473 if (RHS.isNegative()) 3474 return ReplaceInstUsesWith(I, Builder->getTrue()); 3475 Pred = ICmpInst::ICMP_UGT; 3476 break; 3477 case ICmpInst::ICMP_SGE: 3478 // (float)int >= -4.4 --> int >= -4 3479 // (float)int >= 4.4 --> int > 4 3480 if (!RHS.isNegative()) 3481 Pred = ICmpInst::ICMP_SGT; 3482 break; 3483 } 3484 } 3485 } 3486 3487 // Lower this FP comparison into an appropriate integer version of the 3488 // comparison. 3489 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 3490 } 3491 3492 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 3493 bool Changed = false; 3494 3495 /// Orders the operands of the compare so that they are listed from most 3496 /// complex to least complex. This puts constants before unary operators, 3497 /// before binary operators. 3498 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 3499 I.swapOperands(); 3500 Changed = true; 3501 } 3502 3503 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3504 3505 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL)) 3506 return ReplaceInstUsesWith(I, V); 3507 3508 // Simplify 'fcmp pred X, X' 3509 if (Op0 == Op1) { 3510 switch (I.getPredicate()) { 3511 default: llvm_unreachable("Unknown predicate!"); 3512 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 3513 case FCmpInst::FCMP_ULT: // True if unordered or less than 3514 case FCmpInst::FCMP_UGT: // True if unordered or greater than 3515 case FCmpInst::FCMP_UNE: // True if unordered or not equal 3516 // Canonicalize these to be 'fcmp uno %X, 0.0'. 3517 I.setPredicate(FCmpInst::FCMP_UNO); 3518 I.setOperand(1, Constant::getNullValue(Op0->getType())); 3519 return &I; 3520 3521 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 3522 case FCmpInst::FCMP_OEQ: // True if ordered and equal 3523 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 3524 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 3525 // Canonicalize these to be 'fcmp ord %X, 0.0'. 3526 I.setPredicate(FCmpInst::FCMP_ORD); 3527 I.setOperand(1, Constant::getNullValue(Op0->getType())); 3528 return &I; 3529 } 3530 } 3531 3532 // Handle fcmp with constant RHS 3533 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 3534 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3535 switch (LHSI->getOpcode()) { 3536 case Instruction::FPExt: { 3537 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 3538 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 3539 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 3540 if (!RHSF) 3541 break; 3542 3543 const fltSemantics *Sem; 3544 // FIXME: This shouldn't be here. 3545 if (LHSExt->getSrcTy()->isHalfTy()) 3546 Sem = &APFloat::IEEEhalf; 3547 else if (LHSExt->getSrcTy()->isFloatTy()) 3548 Sem = &APFloat::IEEEsingle; 3549 else if (LHSExt->getSrcTy()->isDoubleTy()) 3550 Sem = &APFloat::IEEEdouble; 3551 else if (LHSExt->getSrcTy()->isFP128Ty()) 3552 Sem = &APFloat::IEEEquad; 3553 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 3554 Sem = &APFloat::x87DoubleExtended; 3555 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 3556 Sem = &APFloat::PPCDoubleDouble; 3557 else 3558 break; 3559 3560 bool Lossy; 3561 APFloat F = RHSF->getValueAPF(); 3562 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 3563 3564 // Avoid lossy conversions and denormals. Zero is a special case 3565 // that's OK to convert. 3566 APFloat Fabs = F; 3567 Fabs.clearSign(); 3568 if (!Lossy && 3569 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 3570 APFloat::cmpLessThan) || Fabs.isZero())) 3571 3572 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 3573 ConstantFP::get(RHSC->getContext(), F)); 3574 break; 3575 } 3576 case Instruction::PHI: 3577 // Only fold fcmp into the PHI if the phi and fcmp are in the same 3578 // block. If in the same block, we're encouraging jump threading. If 3579 // not, we are just pessimizing the code by making an i1 phi. 3580 if (LHSI->getParent() == I.getParent()) 3581 if (Instruction *NV = FoldOpIntoPhi(I)) 3582 return NV; 3583 break; 3584 case Instruction::SIToFP: 3585 case Instruction::UIToFP: 3586 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) 3587 return NV; 3588 break; 3589 case Instruction::FSub: { 3590 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 3591 Value *Op; 3592 if (match(LHSI, m_FNeg(m_Value(Op)))) 3593 return new FCmpInst(I.getSwappedPredicate(), Op, 3594 ConstantExpr::getFNeg(RHSC)); 3595 break; 3596 } 3597 case Instruction::Load: 3598 if (GetElementPtrInst *GEP = 3599 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3600 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3601 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3602 !cast<LoadInst>(LHSI)->isVolatile()) 3603 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3604 return Res; 3605 } 3606 break; 3607 case Instruction::Call: { 3608 CallInst *CI = cast<CallInst>(LHSI); 3609 LibFunc::Func Func; 3610 // Various optimization for fabs compared with zero. 3611 if (RHSC->isNullValue() && CI->getCalledFunction() && 3612 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 3613 TLI->has(Func)) { 3614 if (Func == LibFunc::fabs || Func == LibFunc::fabsf || 3615 Func == LibFunc::fabsl) { 3616 switch (I.getPredicate()) { 3617 default: break; 3618 // fabs(x) < 0 --> false 3619 case FCmpInst::FCMP_OLT: 3620 return ReplaceInstUsesWith(I, Builder->getFalse()); 3621 // fabs(x) > 0 --> x != 0 3622 case FCmpInst::FCMP_OGT: 3623 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), 3624 RHSC); 3625 // fabs(x) <= 0 --> x == 0 3626 case FCmpInst::FCMP_OLE: 3627 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), 3628 RHSC); 3629 // fabs(x) >= 0 --> !isnan(x) 3630 case FCmpInst::FCMP_OGE: 3631 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), 3632 RHSC); 3633 // fabs(x) == 0 --> x == 0 3634 // fabs(x) != 0 --> x != 0 3635 case FCmpInst::FCMP_OEQ: 3636 case FCmpInst::FCMP_UEQ: 3637 case FCmpInst::FCMP_ONE: 3638 case FCmpInst::FCMP_UNE: 3639 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), 3640 RHSC); 3641 } 3642 } 3643 } 3644 } 3645 } 3646 } 3647 3648 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 3649 Value *X, *Y; 3650 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 3651 return new FCmpInst(I.getSwappedPredicate(), X, Y); 3652 3653 // fcmp (fpext x), (fpext y) -> fcmp x, y 3654 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 3655 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 3656 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 3657 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 3658 RHSExt->getOperand(0)); 3659 3660 return Changed ? &I : nullptr; 3661 } 3662