Home | History | Annotate | Download | only in Scalar
      1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a trivial dead store elimination that only considers
     11 // basic-block local redundant stores.
     12 //
     13 // FIXME: This should eventually be extended to be a post-dominator tree
     14 // traversal.  Doing so would be pretty trivial.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/Transforms/Scalar.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/Analysis/CaptureTracking.h"
     24 #include "llvm/Analysis/MemoryBuiltins.h"
     25 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     26 #include "llvm/Analysis/ValueTracking.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/Pass.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Target/TargetLibraryInfo.h"
     37 #include "llvm/Transforms/Utils/Local.h"
     38 using namespace llvm;
     39 
     40 #define DEBUG_TYPE "dse"
     41 
     42 STATISTIC(NumFastStores, "Number of stores deleted");
     43 STATISTIC(NumFastOther , "Number of other instrs removed");
     44 
     45 namespace {
     46   struct DSE : public FunctionPass {
     47     AliasAnalysis *AA;
     48     MemoryDependenceAnalysis *MD;
     49     DominatorTree *DT;
     50     const TargetLibraryInfo *TLI;
     51 
     52     static char ID; // Pass identification, replacement for typeid
     53     DSE() : FunctionPass(ID), AA(nullptr), MD(nullptr), DT(nullptr) {
     54       initializeDSEPass(*PassRegistry::getPassRegistry());
     55     }
     56 
     57     bool runOnFunction(Function &F) override {
     58       if (skipOptnoneFunction(F))
     59         return false;
     60 
     61       AA = &getAnalysis<AliasAnalysis>();
     62       MD = &getAnalysis<MemoryDependenceAnalysis>();
     63       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
     64       TLI = AA->getTargetLibraryInfo();
     65 
     66       bool Changed = false;
     67       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
     68         // Only check non-dead blocks.  Dead blocks may have strange pointer
     69         // cycles that will confuse alias analysis.
     70         if (DT->isReachableFromEntry(I))
     71           Changed |= runOnBasicBlock(*I);
     72 
     73       AA = nullptr; MD = nullptr; DT = nullptr;
     74       return Changed;
     75     }
     76 
     77     bool runOnBasicBlock(BasicBlock &BB);
     78     bool HandleFree(CallInst *F);
     79     bool handleEndBlock(BasicBlock &BB);
     80     void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
     81                                SmallSetVector<Value*, 16> &DeadStackObjects);
     82 
     83     void getAnalysisUsage(AnalysisUsage &AU) const override {
     84       AU.setPreservesCFG();
     85       AU.addRequired<DominatorTreeWrapperPass>();
     86       AU.addRequired<AliasAnalysis>();
     87       AU.addRequired<MemoryDependenceAnalysis>();
     88       AU.addPreserved<AliasAnalysis>();
     89       AU.addPreserved<DominatorTreeWrapperPass>();
     90       AU.addPreserved<MemoryDependenceAnalysis>();
     91     }
     92   };
     93 }
     94 
     95 char DSE::ID = 0;
     96 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
     97 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     98 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
     99 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    100 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
    101 
    102 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
    103 
    104 //===----------------------------------------------------------------------===//
    105 // Helper functions
    106 //===----------------------------------------------------------------------===//
    107 
    108 /// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
    109 /// and zero out all the operands of this instruction.  If any of them become
    110 /// dead, delete them and the computation tree that feeds them.
    111 ///
    112 /// If ValueSet is non-null, remove any deleted instructions from it as well.
    113 ///
    114 static void DeleteDeadInstruction(Instruction *I,
    115                                MemoryDependenceAnalysis &MD,
    116                                const TargetLibraryInfo *TLI,
    117                                SmallSetVector<Value*, 16> *ValueSet = nullptr) {
    118   SmallVector<Instruction*, 32> NowDeadInsts;
    119 
    120   NowDeadInsts.push_back(I);
    121   --NumFastOther;
    122 
    123   // Before we touch this instruction, remove it from memdep!
    124   do {
    125     Instruction *DeadInst = NowDeadInsts.pop_back_val();
    126     ++NumFastOther;
    127 
    128     // This instruction is dead, zap it, in stages.  Start by removing it from
    129     // MemDep, which needs to know the operands and needs it to be in the
    130     // function.
    131     MD.removeInstruction(DeadInst);
    132 
    133     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
    134       Value *Op = DeadInst->getOperand(op);
    135       DeadInst->setOperand(op, nullptr);
    136 
    137       // If this operand just became dead, add it to the NowDeadInsts list.
    138       if (!Op->use_empty()) continue;
    139 
    140       if (Instruction *OpI = dyn_cast<Instruction>(Op))
    141         if (isInstructionTriviallyDead(OpI, TLI))
    142           NowDeadInsts.push_back(OpI);
    143     }
    144 
    145     DeadInst->eraseFromParent();
    146 
    147     if (ValueSet) ValueSet->remove(DeadInst);
    148   } while (!NowDeadInsts.empty());
    149 }
    150 
    151 
    152 /// hasMemoryWrite - Does this instruction write some memory?  This only returns
    153 /// true for things that we can analyze with other helpers below.
    154 static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo *TLI) {
    155   if (isa<StoreInst>(I))
    156     return true;
    157   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    158     switch (II->getIntrinsicID()) {
    159     default:
    160       return false;
    161     case Intrinsic::memset:
    162     case Intrinsic::memmove:
    163     case Intrinsic::memcpy:
    164     case Intrinsic::init_trampoline:
    165     case Intrinsic::lifetime_end:
    166       return true;
    167     }
    168   }
    169   if (CallSite CS = I) {
    170     if (Function *F = CS.getCalledFunction()) {
    171       if (TLI && TLI->has(LibFunc::strcpy) &&
    172           F->getName() == TLI->getName(LibFunc::strcpy)) {
    173         return true;
    174       }
    175       if (TLI && TLI->has(LibFunc::strncpy) &&
    176           F->getName() == TLI->getName(LibFunc::strncpy)) {
    177         return true;
    178       }
    179       if (TLI && TLI->has(LibFunc::strcat) &&
    180           F->getName() == TLI->getName(LibFunc::strcat)) {
    181         return true;
    182       }
    183       if (TLI && TLI->has(LibFunc::strncat) &&
    184           F->getName() == TLI->getName(LibFunc::strncat)) {
    185         return true;
    186       }
    187     }
    188   }
    189   return false;
    190 }
    191 
    192 /// getLocForWrite - Return a Location stored to by the specified instruction.
    193 /// If isRemovable returns true, this function and getLocForRead completely
    194 /// describe the memory operations for this instruction.
    195 static AliasAnalysis::Location
    196 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
    197   const DataLayout *DL = AA.getDataLayout();
    198   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    199     return AA.getLocation(SI);
    200 
    201   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
    202     // memcpy/memmove/memset.
    203     AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
    204     // If we don't have target data around, an unknown size in Location means
    205     // that we should use the size of the pointee type.  This isn't valid for
    206     // memset/memcpy, which writes more than an i8.
    207     if (Loc.Size == AliasAnalysis::UnknownSize && DL == nullptr)
    208       return AliasAnalysis::Location();
    209     return Loc;
    210   }
    211 
    212   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
    213   if (!II) return AliasAnalysis::Location();
    214 
    215   switch (II->getIntrinsicID()) {
    216   default: return AliasAnalysis::Location(); // Unhandled intrinsic.
    217   case Intrinsic::init_trampoline:
    218     // If we don't have target data around, an unknown size in Location means
    219     // that we should use the size of the pointee type.  This isn't valid for
    220     // init.trampoline, which writes more than an i8.
    221     if (!DL) return AliasAnalysis::Location();
    222 
    223     // FIXME: We don't know the size of the trampoline, so we can't really
    224     // handle it here.
    225     return AliasAnalysis::Location(II->getArgOperand(0));
    226   case Intrinsic::lifetime_end: {
    227     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
    228     return AliasAnalysis::Location(II->getArgOperand(1), Len);
    229   }
    230   }
    231 }
    232 
    233 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
    234 /// instruction if any.
    235 static AliasAnalysis::Location
    236 getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
    237   assert(hasMemoryWrite(Inst, AA.getTargetLibraryInfo()) &&
    238          "Unknown instruction case");
    239 
    240   // The only instructions that both read and write are the mem transfer
    241   // instructions (memcpy/memmove).
    242   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
    243     return AA.getLocationForSource(MTI);
    244   return AliasAnalysis::Location();
    245 }
    246 
    247 
    248 /// isRemovable - If the value of this instruction and the memory it writes to
    249 /// is unused, may we delete this instruction?
    250 static bool isRemovable(Instruction *I) {
    251   // Don't remove volatile/atomic stores.
    252   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    253     return SI->isUnordered();
    254 
    255   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    256     switch (II->getIntrinsicID()) {
    257     default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
    258     case Intrinsic::lifetime_end:
    259       // Never remove dead lifetime_end's, e.g. because it is followed by a
    260       // free.
    261       return false;
    262     case Intrinsic::init_trampoline:
    263       // Always safe to remove init_trampoline.
    264       return true;
    265 
    266     case Intrinsic::memset:
    267     case Intrinsic::memmove:
    268     case Intrinsic::memcpy:
    269       // Don't remove volatile memory intrinsics.
    270       return !cast<MemIntrinsic>(II)->isVolatile();
    271     }
    272   }
    273 
    274   if (CallSite CS = I)
    275     return CS.getInstruction()->use_empty();
    276 
    277   return false;
    278 }
    279 
    280 
    281 /// isShortenable - Returns true if this instruction can be safely shortened in
    282 /// length.
    283 static bool isShortenable(Instruction *I) {
    284   // Don't shorten stores for now
    285   if (isa<StoreInst>(I))
    286     return false;
    287 
    288   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    289     switch (II->getIntrinsicID()) {
    290       default: return false;
    291       case Intrinsic::memset:
    292       case Intrinsic::memcpy:
    293         // Do shorten memory intrinsics.
    294         return true;
    295     }
    296   }
    297 
    298   // Don't shorten libcalls calls for now.
    299 
    300   return false;
    301 }
    302 
    303 /// getStoredPointerOperand - Return the pointer that is being written to.
    304 static Value *getStoredPointerOperand(Instruction *I) {
    305   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    306     return SI->getPointerOperand();
    307   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    308     return MI->getDest();
    309 
    310   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    311     switch (II->getIntrinsicID()) {
    312     default: llvm_unreachable("Unexpected intrinsic!");
    313     case Intrinsic::init_trampoline:
    314       return II->getArgOperand(0);
    315     }
    316   }
    317 
    318   CallSite CS = I;
    319   // All the supported functions so far happen to have dest as their first
    320   // argument.
    321   return CS.getArgument(0);
    322 }
    323 
    324 static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
    325   uint64_t Size;
    326   if (getObjectSize(V, Size, AA.getDataLayout(), AA.getTargetLibraryInfo()))
    327     return Size;
    328   return AliasAnalysis::UnknownSize;
    329 }
    330 
    331 namespace {
    332   enum OverwriteResult
    333   {
    334     OverwriteComplete,
    335     OverwriteEnd,
    336     OverwriteUnknown
    337   };
    338 }
    339 
    340 /// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
    341 /// completely overwrites a store to the 'Earlier' location.
    342 /// 'OverwriteEnd' if the end of the 'Earlier' location is completely
    343 /// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
    344 static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
    345                                    const AliasAnalysis::Location &Earlier,
    346                                    AliasAnalysis &AA,
    347                                    int64_t &EarlierOff,
    348                                    int64_t &LaterOff) {
    349   const DataLayout *DL = AA.getDataLayout();
    350   const Value *P1 = Earlier.Ptr->stripPointerCasts();
    351   const Value *P2 = Later.Ptr->stripPointerCasts();
    352 
    353   // If the start pointers are the same, we just have to compare sizes to see if
    354   // the later store was larger than the earlier store.
    355   if (P1 == P2) {
    356     // If we don't know the sizes of either access, then we can't do a
    357     // comparison.
    358     if (Later.Size == AliasAnalysis::UnknownSize ||
    359         Earlier.Size == AliasAnalysis::UnknownSize) {
    360       // If we have no DataLayout information around, then the size of the store
    361       // is inferrable from the pointee type.  If they are the same type, then
    362       // we know that the store is safe.
    363       if (DL == nullptr && Later.Ptr->getType() == Earlier.Ptr->getType())
    364         return OverwriteComplete;
    365 
    366       return OverwriteUnknown;
    367     }
    368 
    369     // Make sure that the Later size is >= the Earlier size.
    370     if (Later.Size >= Earlier.Size)
    371       return OverwriteComplete;
    372   }
    373 
    374   // Otherwise, we have to have size information, and the later store has to be
    375   // larger than the earlier one.
    376   if (Later.Size == AliasAnalysis::UnknownSize ||
    377       Earlier.Size == AliasAnalysis::UnknownSize || DL == nullptr)
    378     return OverwriteUnknown;
    379 
    380   // Check to see if the later store is to the entire object (either a global,
    381   // an alloca, or a byval/inalloca argument).  If so, then it clearly
    382   // overwrites any other store to the same object.
    383   const Value *UO1 = GetUnderlyingObject(P1, DL),
    384               *UO2 = GetUnderlyingObject(P2, DL);
    385 
    386   // If we can't resolve the same pointers to the same object, then we can't
    387   // analyze them at all.
    388   if (UO1 != UO2)
    389     return OverwriteUnknown;
    390 
    391   // If the "Later" store is to a recognizable object, get its size.
    392   uint64_t ObjectSize = getPointerSize(UO2, AA);
    393   if (ObjectSize != AliasAnalysis::UnknownSize)
    394     if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
    395       return OverwriteComplete;
    396 
    397   // Okay, we have stores to two completely different pointers.  Try to
    398   // decompose the pointer into a "base + constant_offset" form.  If the base
    399   // pointers are equal, then we can reason about the two stores.
    400   EarlierOff = 0;
    401   LaterOff = 0;
    402   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
    403   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
    404 
    405   // If the base pointers still differ, we have two completely different stores.
    406   if (BP1 != BP2)
    407     return OverwriteUnknown;
    408 
    409   // The later store completely overlaps the earlier store if:
    410   //
    411   // 1. Both start at the same offset and the later one's size is greater than
    412   //    or equal to the earlier one's, or
    413   //
    414   //      |--earlier--|
    415   //      |--   later   --|
    416   //
    417   // 2. The earlier store has an offset greater than the later offset, but which
    418   //    still lies completely within the later store.
    419   //
    420   //        |--earlier--|
    421   //    |-----  later  ------|
    422   //
    423   // We have to be careful here as *Off is signed while *.Size is unsigned.
    424   if (EarlierOff >= LaterOff &&
    425       Later.Size >= Earlier.Size &&
    426       uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
    427     return OverwriteComplete;
    428 
    429   // The other interesting case is if the later store overwrites the end of
    430   // the earlier store
    431   //
    432   //      |--earlier--|
    433   //                |--   later   --|
    434   //
    435   // In this case we may want to trim the size of earlier to avoid generating
    436   // writes to addresses which will definitely be overwritten later
    437   if (LaterOff > EarlierOff &&
    438       LaterOff < int64_t(EarlierOff + Earlier.Size) &&
    439       int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
    440     return OverwriteEnd;
    441 
    442   // Otherwise, they don't completely overlap.
    443   return OverwriteUnknown;
    444 }
    445 
    446 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
    447 /// memory region into an identical pointer) then it doesn't actually make its
    448 /// input dead in the traditional sense.  Consider this case:
    449 ///
    450 ///   memcpy(A <- B)
    451 ///   memcpy(A <- A)
    452 ///
    453 /// In this case, the second store to A does not make the first store to A dead.
    454 /// The usual situation isn't an explicit A<-A store like this (which can be
    455 /// trivially removed) but a case where two pointers may alias.
    456 ///
    457 /// This function detects when it is unsafe to remove a dependent instruction
    458 /// because the DSE inducing instruction may be a self-read.
    459 static bool isPossibleSelfRead(Instruction *Inst,
    460                                const AliasAnalysis::Location &InstStoreLoc,
    461                                Instruction *DepWrite, AliasAnalysis &AA) {
    462   // Self reads can only happen for instructions that read memory.  Get the
    463   // location read.
    464   AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
    465   if (!InstReadLoc.Ptr) return false;  // Not a reading instruction.
    466 
    467   // If the read and written loc obviously don't alias, it isn't a read.
    468   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
    469 
    470   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
    471   // DepWrite instruction if we can prove that it reads from the same location
    472   // as Inst.  This handles useful cases like:
    473   //   memcpy(A <- B)
    474   //   memcpy(A <- B)
    475   // Here we don't know if A/B may alias, but we do know that B/B are must
    476   // aliases, so removing the first memcpy is safe (assuming it writes <= #
    477   // bytes as the second one.
    478   AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
    479 
    480   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
    481     return false;
    482 
    483   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
    484   // then it can't be considered dead.
    485   return true;
    486 }
    487 
    488 
    489 //===----------------------------------------------------------------------===//
    490 // DSE Pass
    491 //===----------------------------------------------------------------------===//
    492 
    493 bool DSE::runOnBasicBlock(BasicBlock &BB) {
    494   bool MadeChange = false;
    495 
    496   // Do a top-down walk on the BB.
    497   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    498     Instruction *Inst = BBI++;
    499 
    500     // Handle 'free' calls specially.
    501     if (CallInst *F = isFreeCall(Inst, TLI)) {
    502       MadeChange |= HandleFree(F);
    503       continue;
    504     }
    505 
    506     // If we find something that writes memory, get its memory dependence.
    507     if (!hasMemoryWrite(Inst, TLI))
    508       continue;
    509 
    510     MemDepResult InstDep = MD->getDependency(Inst);
    511 
    512     // Ignore any store where we can't find a local dependence.
    513     // FIXME: cross-block DSE would be fun. :)
    514     if (!InstDep.isDef() && !InstDep.isClobber())
    515       continue;
    516 
    517     // If we're storing the same value back to a pointer that we just
    518     // loaded from, then the store can be removed.
    519     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    520       if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
    521         if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
    522             SI->getOperand(0) == DepLoad && isRemovable(SI)) {
    523           DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
    524                        << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
    525 
    526           // DeleteDeadInstruction can delete the current instruction.  Save BBI
    527           // in case we need it.
    528           WeakVH NextInst(BBI);
    529 
    530           DeleteDeadInstruction(SI, *MD, TLI);
    531 
    532           if (!NextInst)  // Next instruction deleted.
    533             BBI = BB.begin();
    534           else if (BBI != BB.begin())  // Revisit this instruction if possible.
    535             --BBI;
    536           ++NumFastStores;
    537           MadeChange = true;
    538           continue;
    539         }
    540       }
    541     }
    542 
    543     // Figure out what location is being stored to.
    544     AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
    545 
    546     // If we didn't get a useful location, fail.
    547     if (!Loc.Ptr)
    548       continue;
    549 
    550     while (InstDep.isDef() || InstDep.isClobber()) {
    551       // Get the memory clobbered by the instruction we depend on.  MemDep will
    552       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
    553       // end up depending on a may- or must-aliased load, then we can't optimize
    554       // away the store and we bail out.  However, if we depend on on something
    555       // that overwrites the memory location we *can* potentially optimize it.
    556       //
    557       // Find out what memory location the dependent instruction stores.
    558       Instruction *DepWrite = InstDep.getInst();
    559       AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
    560       // If we didn't get a useful location, or if it isn't a size, bail out.
    561       if (!DepLoc.Ptr)
    562         break;
    563 
    564       // If we find a write that is a) removable (i.e., non-volatile), b) is
    565       // completely obliterated by the store to 'Loc', and c) which we know that
    566       // 'Inst' doesn't load from, then we can remove it.
    567       if (isRemovable(DepWrite) &&
    568           !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
    569         int64_t InstWriteOffset, DepWriteOffset;
    570         OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
    571                                          DepWriteOffset, InstWriteOffset);
    572         if (OR == OverwriteComplete) {
    573           DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
    574                 << *DepWrite << "\n  KILLER: " << *Inst << '\n');
    575 
    576           // Delete the store and now-dead instructions that feed it.
    577           DeleteDeadInstruction(DepWrite, *MD, TLI);
    578           ++NumFastStores;
    579           MadeChange = true;
    580 
    581           // DeleteDeadInstruction can delete the current instruction in loop
    582           // cases, reset BBI.
    583           BBI = Inst;
    584           if (BBI != BB.begin())
    585             --BBI;
    586           break;
    587         } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
    588           // TODO: base this on the target vector size so that if the earlier
    589           // store was too small to get vector writes anyway then its likely
    590           // a good idea to shorten it
    591           // Power of 2 vector writes are probably always a bad idea to optimize
    592           // as any store/memset/memcpy is likely using vector instructions so
    593           // shortening it to not vector size is likely to be slower
    594           MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
    595           unsigned DepWriteAlign = DepIntrinsic->getAlignment();
    596           if (llvm::isPowerOf2_64(InstWriteOffset) ||
    597               ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
    598 
    599             DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
    600                   << *DepWrite << "\n  KILLER (offset "
    601                   << InstWriteOffset << ", "
    602                   << DepLoc.Size << ")"
    603                   << *Inst << '\n');
    604 
    605             Value* DepWriteLength = DepIntrinsic->getLength();
    606             Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
    607                                                     InstWriteOffset -
    608                                                     DepWriteOffset);
    609             DepIntrinsic->setLength(TrimmedLength);
    610             MadeChange = true;
    611           }
    612         }
    613       }
    614 
    615       // If this is a may-aliased store that is clobbering the store value, we
    616       // can keep searching past it for another must-aliased pointer that stores
    617       // to the same location.  For example, in:
    618       //   store -> P
    619       //   store -> Q
    620       //   store -> P
    621       // we can remove the first store to P even though we don't know if P and Q
    622       // alias.
    623       if (DepWrite == &BB.front()) break;
    624 
    625       // Can't look past this instruction if it might read 'Loc'.
    626       if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
    627         break;
    628 
    629       InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
    630     }
    631   }
    632 
    633   // If this block ends in a return, unwind, or unreachable, all allocas are
    634   // dead at its end, which means stores to them are also dead.
    635   if (BB.getTerminator()->getNumSuccessors() == 0)
    636     MadeChange |= handleEndBlock(BB);
    637 
    638   return MadeChange;
    639 }
    640 
    641 /// Find all blocks that will unconditionally lead to the block BB and append
    642 /// them to F.
    643 static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
    644                                    BasicBlock *BB, DominatorTree *DT) {
    645   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    646     BasicBlock *Pred = *I;
    647     if (Pred == BB) continue;
    648     TerminatorInst *PredTI = Pred->getTerminator();
    649     if (PredTI->getNumSuccessors() != 1)
    650       continue;
    651 
    652     if (DT->isReachableFromEntry(Pred))
    653       Blocks.push_back(Pred);
    654   }
    655 }
    656 
    657 /// HandleFree - Handle frees of entire structures whose dependency is a store
    658 /// to a field of that structure.
    659 bool DSE::HandleFree(CallInst *F) {
    660   bool MadeChange = false;
    661 
    662   AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
    663   SmallVector<BasicBlock *, 16> Blocks;
    664   Blocks.push_back(F->getParent());
    665 
    666   while (!Blocks.empty()) {
    667     BasicBlock *BB = Blocks.pop_back_val();
    668     Instruction *InstPt = BB->getTerminator();
    669     if (BB == F->getParent()) InstPt = F;
    670 
    671     MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
    672     while (Dep.isDef() || Dep.isClobber()) {
    673       Instruction *Dependency = Dep.getInst();
    674       if (!hasMemoryWrite(Dependency, TLI) || !isRemovable(Dependency))
    675         break;
    676 
    677       Value *DepPointer =
    678         GetUnderlyingObject(getStoredPointerOperand(Dependency));
    679 
    680       // Check for aliasing.
    681       if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
    682         break;
    683 
    684       Instruction *Next = std::next(BasicBlock::iterator(Dependency));
    685 
    686       // DCE instructions only used to calculate that store
    687       DeleteDeadInstruction(Dependency, *MD, TLI);
    688       ++NumFastStores;
    689       MadeChange = true;
    690 
    691       // Inst's old Dependency is now deleted. Compute the next dependency,
    692       // which may also be dead, as in
    693       //    s[0] = 0;
    694       //    s[1] = 0; // This has just been deleted.
    695       //    free(s);
    696       Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
    697     }
    698 
    699     if (Dep.isNonLocal())
    700       FindUnconditionalPreds(Blocks, BB, DT);
    701   }
    702 
    703   return MadeChange;
    704 }
    705 
    706 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
    707 /// function end block.  Ex:
    708 /// %A = alloca i32
    709 /// ...
    710 /// store i32 1, i32* %A
    711 /// ret void
    712 bool DSE::handleEndBlock(BasicBlock &BB) {
    713   bool MadeChange = false;
    714 
    715   // Keep track of all of the stack objects that are dead at the end of the
    716   // function.
    717   SmallSetVector<Value*, 16> DeadStackObjects;
    718 
    719   // Find all of the alloca'd pointers in the entry block.
    720   BasicBlock *Entry = BB.getParent()->begin();
    721   for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) {
    722     if (isa<AllocaInst>(I))
    723       DeadStackObjects.insert(I);
    724 
    725     // Okay, so these are dead heap objects, but if the pointer never escapes
    726     // then it's leaked by this function anyways.
    727     else if (isAllocLikeFn(I, TLI) && !PointerMayBeCaptured(I, true, true))
    728       DeadStackObjects.insert(I);
    729   }
    730 
    731   // Treat byval or inalloca arguments the same, stores to them are dead at the
    732   // end of the function.
    733   for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
    734        AE = BB.getParent()->arg_end(); AI != AE; ++AI)
    735     if (AI->hasByValOrInAllocaAttr())
    736       DeadStackObjects.insert(AI);
    737 
    738   // Scan the basic block backwards
    739   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    740     --BBI;
    741 
    742     // If we find a store, check to see if it points into a dead stack value.
    743     if (hasMemoryWrite(BBI, TLI) && isRemovable(BBI)) {
    744       // See through pointer-to-pointer bitcasts
    745       SmallVector<Value *, 4> Pointers;
    746       GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers);
    747 
    748       // Stores to stack values are valid candidates for removal.
    749       bool AllDead = true;
    750       for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
    751            E = Pointers.end(); I != E; ++I)
    752         if (!DeadStackObjects.count(*I)) {
    753           AllDead = false;
    754           break;
    755         }
    756 
    757       if (AllDead) {
    758         Instruction *Dead = BBI++;
    759 
    760         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
    761                      << *Dead << "\n  Objects: ";
    762               for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
    763                    E = Pointers.end(); I != E; ++I) {
    764                 dbgs() << **I;
    765                 if (std::next(I) != E)
    766                   dbgs() << ", ";
    767               }
    768               dbgs() << '\n');
    769 
    770         // DCE instructions only used to calculate that store.
    771         DeleteDeadInstruction(Dead, *MD, TLI, &DeadStackObjects);
    772         ++NumFastStores;
    773         MadeChange = true;
    774         continue;
    775       }
    776     }
    777 
    778     // Remove any dead non-memory-mutating instructions.
    779     if (isInstructionTriviallyDead(BBI, TLI)) {
    780       Instruction *Inst = BBI++;
    781       DeleteDeadInstruction(Inst, *MD, TLI, &DeadStackObjects);
    782       ++NumFastOther;
    783       MadeChange = true;
    784       continue;
    785     }
    786 
    787     if (isa<AllocaInst>(BBI)) {
    788       // Remove allocas from the list of dead stack objects; there can't be
    789       // any references before the definition.
    790       DeadStackObjects.remove(BBI);
    791       continue;
    792     }
    793 
    794     if (CallSite CS = cast<Value>(BBI)) {
    795       // Remove allocation function calls from the list of dead stack objects;
    796       // there can't be any references before the definition.
    797       if (isAllocLikeFn(BBI, TLI))
    798         DeadStackObjects.remove(BBI);
    799 
    800       // If this call does not access memory, it can't be loading any of our
    801       // pointers.
    802       if (AA->doesNotAccessMemory(CS))
    803         continue;
    804 
    805       // If the call might load from any of our allocas, then any store above
    806       // the call is live.
    807       DeadStackObjects.remove_if([&](Value *I) {
    808         // See if the call site touches the value.
    809         AliasAnalysis::ModRefResult A =
    810             AA->getModRefInfo(CS, I, getPointerSize(I, *AA));
    811 
    812         return A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref;
    813       });
    814 
    815       // If all of the allocas were clobbered by the call then we're not going
    816       // to find anything else to process.
    817       if (DeadStackObjects.empty())
    818         break;
    819 
    820       continue;
    821     }
    822 
    823     AliasAnalysis::Location LoadedLoc;
    824 
    825     // If we encounter a use of the pointer, it is no longer considered dead
    826     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
    827       if (!L->isUnordered()) // Be conservative with atomic/volatile load
    828         break;
    829       LoadedLoc = AA->getLocation(L);
    830     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
    831       LoadedLoc = AA->getLocation(V);
    832     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
    833       LoadedLoc = AA->getLocationForSource(MTI);
    834     } else if (!BBI->mayReadFromMemory()) {
    835       // Instruction doesn't read memory.  Note that stores that weren't removed
    836       // above will hit this case.
    837       continue;
    838     } else {
    839       // Unknown inst; assume it clobbers everything.
    840       break;
    841     }
    842 
    843     // Remove any allocas from the DeadPointer set that are loaded, as this
    844     // makes any stores above the access live.
    845     RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
    846 
    847     // If all of the allocas were clobbered by the access then we're not going
    848     // to find anything else to process.
    849     if (DeadStackObjects.empty())
    850       break;
    851   }
    852 
    853   return MadeChange;
    854 }
    855 
    856 /// RemoveAccessedObjects - Check to see if the specified location may alias any
    857 /// of the stack objects in the DeadStackObjects set.  If so, they become live
    858 /// because the location is being loaded.
    859 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
    860                                 SmallSetVector<Value*, 16> &DeadStackObjects) {
    861   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
    862 
    863   // A constant can't be in the dead pointer set.
    864   if (isa<Constant>(UnderlyingPointer))
    865     return;
    866 
    867   // If the kill pointer can be easily reduced to an alloca, don't bother doing
    868   // extraneous AA queries.
    869   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
    870     DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
    871     return;
    872   }
    873 
    874   // Remove objects that could alias LoadedLoc.
    875   DeadStackObjects.remove_if([&](Value *I) {
    876     // See if the loaded location could alias the stack location.
    877     AliasAnalysis::Location StackLoc(I, getPointerSize(I, *AA));
    878     return !AA->isNoAlias(StackLoc, LoadedLoc);
    879   });
    880 }
    881