Home | History | Annotate | Download | only in Scalar
      1 //===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Loop unrolling may create many similar GEPs for array accesses.
     11 // e.g., a 2-level loop
     12 //
     13 // float a[32][32]; // global variable
     14 //
     15 // for (int i = 0; i < 2; ++i) {
     16 //   for (int j = 0; j < 2; ++j) {
     17 //     ...
     18 //     ... = a[x + i][y + j];
     19 //     ...
     20 //   }
     21 // }
     22 //
     23 // will probably be unrolled to:
     24 //
     25 // gep %a, 0, %x, %y; load
     26 // gep %a, 0, %x, %y + 1; load
     27 // gep %a, 0, %x + 1, %y; load
     28 // gep %a, 0, %x + 1, %y + 1; load
     29 //
     30 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
     31 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
     32 // significant slowdown in targets with limited addressing modes. For instance,
     33 // because the PTX target does not support the reg+reg addressing mode, the
     34 // NVPTX backend emits PTX code that literally computes the pointer address of
     35 // each GEP, wasting tons of registers. It emits the following PTX for the
     36 // first load and similar PTX for other loads.
     37 //
     38 // mov.u32         %r1, %x;
     39 // mov.u32         %r2, %y;
     40 // mul.wide.u32    %rl2, %r1, 128;
     41 // mov.u64         %rl3, a;
     42 // add.s64         %rl4, %rl3, %rl2;
     43 // mul.wide.u32    %rl5, %r2, 4;
     44 // add.s64         %rl6, %rl4, %rl5;
     45 // ld.global.f32   %f1, [%rl6];
     46 //
     47 // To reduce the register pressure, the optimization implemented in this file
     48 // merges the common part of a group of GEPs, so we can compute each pointer
     49 // address by adding a simple offset to the common part, saving many registers.
     50 //
     51 // It works by splitting each GEP into a variadic base and a constant offset.
     52 // The variadic base can be computed once and reused by multiple GEPs, and the
     53 // constant offsets can be nicely folded into the reg+immediate addressing mode
     54 // (supported by most targets) without using any extra register.
     55 //
     56 // For instance, we transform the four GEPs and four loads in the above example
     57 // into:
     58 //
     59 // base = gep a, 0, x, y
     60 // load base
     61 // laod base + 1  * sizeof(float)
     62 // load base + 32 * sizeof(float)
     63 // load base + 33 * sizeof(float)
     64 //
     65 // Given the transformed IR, a backend that supports the reg+immediate
     66 // addressing mode can easily fold the pointer arithmetics into the loads. For
     67 // example, the NVPTX backend can easily fold the pointer arithmetics into the
     68 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
     69 //
     70 // mov.u32         %r1, %tid.x;
     71 // mov.u32         %r2, %tid.y;
     72 // mul.wide.u32    %rl2, %r1, 128;
     73 // mov.u64         %rl3, a;
     74 // add.s64         %rl4, %rl3, %rl2;
     75 // mul.wide.u32    %rl5, %r2, 4;
     76 // add.s64         %rl6, %rl4, %rl5;
     77 // ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
     78 // ld.global.f32   %f2, [%rl6+4]; // much better
     79 // ld.global.f32   %f3, [%rl6+128]; // much better
     80 // ld.global.f32   %f4, [%rl6+132]; // much better
     81 //
     82 //===----------------------------------------------------------------------===//
     83 
     84 #include "llvm/Analysis/TargetTransformInfo.h"
     85 #include "llvm/Analysis/ValueTracking.h"
     86 #include "llvm/IR/Constants.h"
     87 #include "llvm/IR/DataLayout.h"
     88 #include "llvm/IR/Instructions.h"
     89 #include "llvm/IR/LLVMContext.h"
     90 #include "llvm/IR/Module.h"
     91 #include "llvm/IR/Operator.h"
     92 #include "llvm/Support/CommandLine.h"
     93 #include "llvm/Support/raw_ostream.h"
     94 #include "llvm/Transforms/Scalar.h"
     95 
     96 using namespace llvm;
     97 
     98 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
     99     "disable-separate-const-offset-from-gep", cl::init(false),
    100     cl::desc("Do not separate the constant offset from a GEP instruction"),
    101     cl::Hidden);
    102 
    103 namespace {
    104 
    105 /// \brief A helper class for separating a constant offset from a GEP index.
    106 ///
    107 /// In real programs, a GEP index may be more complicated than a simple addition
    108 /// of something and a constant integer which can be trivially splitted. For
    109 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
    110 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
    111 ///
    112 /// Therefore, this class looks into the expression that computes a given GEP
    113 /// index, and tries to find a constant integer that can be hoisted to the
    114 /// outermost level of the expression as an addition. Not every constant in an
    115 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
    116 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
    117 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
    118 class ConstantOffsetExtractor {
    119  public:
    120   /// Extracts a constant offset from the given GEP index. It outputs the
    121   /// numeric value of the extracted constant offset (0 if failed), and a
    122   /// new index representing the remainder (equal to the original index minus
    123   /// the constant offset).
    124   /// \p Idx    The given GEP index
    125   /// \p NewIdx The new index to replace (output)
    126   /// \p DL     The datalayout of the module
    127   /// \p GEP    The given GEP
    128   static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL,
    129                          GetElementPtrInst *GEP);
    130   /// Looks for a constant offset without extracting it. The meaning of the
    131   /// arguments and the return value are the same as Extract.
    132   static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
    133 
    134  private:
    135   ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
    136       : DL(Layout), IP(InsertionPt) {}
    137   /// Searches the expression that computes V for a non-zero constant C s.t.
    138   /// V can be reassociated into the form V' + C. If the searching is
    139   /// successful, returns C and update UserChain as a def-use chain from C to V;
    140   /// otherwise, UserChain is empty.
    141   ///
    142   /// \p V            The given expression
    143   /// \p SignExtended Whether V will be sign-extended in the computation of the
    144   ///                 GEP index
    145   /// \p ZeroExtended Whether V will be zero-extended in the computation of the
    146   ///                 GEP index
    147   /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
    148   ///                 an index of an inbounds GEP is guaranteed to be
    149   ///                 non-negative. Levaraging this, we can better split
    150   ///                 inbounds GEPs.
    151   APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
    152   /// A helper function to look into both operands of a binary operator.
    153   APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
    154                             bool ZeroExtended);
    155   /// After finding the constant offset C from the GEP index I, we build a new
    156   /// index I' s.t. I' + C = I. This function builds and returns the new
    157   /// index I' according to UserChain produced by function "find".
    158   ///
    159   /// The building conceptually takes two steps:
    160   /// 1) iteratively distribute s/zext towards the leaves of the expression tree
    161   /// that computes I
    162   /// 2) reassociate the expression tree to the form I' + C.
    163   ///
    164   /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
    165   /// sext to a, b and 5 so that we have
    166   ///   sext(a) + (sext(b) + 5).
    167   /// Then, we reassociate it to
    168   ///   (sext(a) + sext(b)) + 5.
    169   /// Given this form, we know I' is sext(a) + sext(b).
    170   Value *rebuildWithoutConstOffset();
    171   /// After the first step of rebuilding the GEP index without the constant
    172   /// offset, distribute s/zext to the operands of all operators in UserChain.
    173   /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
    174   /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
    175   ///
    176   /// The function also updates UserChain to point to new subexpressions after
    177   /// distributing s/zext. e.g., the old UserChain of the above example is
    178   /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
    179   /// and the new UserChain is
    180   /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
    181   ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
    182   ///
    183   /// \p ChainIndex The index to UserChain. ChainIndex is initially
    184   ///               UserChain.size() - 1, and is decremented during
    185   ///               the recursion.
    186   Value *distributeExtsAndCloneChain(unsigned ChainIndex);
    187   /// Reassociates the GEP index to the form I' + C and returns I'.
    188   Value *removeConstOffset(unsigned ChainIndex);
    189   /// A helper function to apply ExtInsts, a list of s/zext, to value V.
    190   /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
    191   /// returns "sext i32 (zext i16 V to i32) to i64".
    192   Value *applyExts(Value *V);
    193 
    194   /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
    195   bool NoCommonBits(Value *LHS, Value *RHS) const;
    196   /// Computes which bits are known to be one or zero.
    197   /// \p KnownOne Mask of all bits that are known to be one.
    198   /// \p KnownZero Mask of all bits that are known to be zero.
    199   void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
    200   /// A helper function that returns whether we can trace into the operands
    201   /// of binary operator BO for a constant offset.
    202   ///
    203   /// \p SignExtended Whether BO is surrounded by sext
    204   /// \p ZeroExtended Whether BO is surrounded by zext
    205   /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
    206   ///                array index.
    207   bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
    208                     bool NonNegative);
    209 
    210   /// The path from the constant offset to the old GEP index. e.g., if the GEP
    211   /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
    212   /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
    213   /// UserChain[2] will be the entire expression "a * b + (c + 5)".
    214   ///
    215   /// This path helps to rebuild the new GEP index.
    216   SmallVector<User *, 8> UserChain;
    217   /// A data structure used in rebuildWithoutConstOffset. Contains all
    218   /// sext/zext instructions along UserChain.
    219   SmallVector<CastInst *, 16> ExtInsts;
    220   /// The data layout of the module. Used in ComputeKnownBits.
    221   const DataLayout *DL;
    222   Instruction *IP;  /// Insertion position of cloned instructions.
    223 };
    224 
    225 /// \brief A pass that tries to split every GEP in the function into a variadic
    226 /// base and a constant offset. It is a FunctionPass because searching for the
    227 /// constant offset may inspect other basic blocks.
    228 class SeparateConstOffsetFromGEP : public FunctionPass {
    229  public:
    230   static char ID;
    231   SeparateConstOffsetFromGEP() : FunctionPass(ID) {
    232     initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
    233   }
    234 
    235   void getAnalysisUsage(AnalysisUsage &AU) const override {
    236     AU.addRequired<DataLayoutPass>();
    237     AU.addRequired<TargetTransformInfo>();
    238   }
    239 
    240   bool doInitialization(Module &M) override {
    241     DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
    242     if (DLP == nullptr)
    243       report_fatal_error("data layout missing");
    244     DL = &DLP->getDataLayout();
    245     return false;
    246   }
    247 
    248   bool runOnFunction(Function &F) override;
    249 
    250  private:
    251   /// Tries to split the given GEP into a variadic base and a constant offset,
    252   /// and returns true if the splitting succeeds.
    253   bool splitGEP(GetElementPtrInst *GEP);
    254   /// Finds the constant offset within each index, and accumulates them. This
    255   /// function only inspects the GEP without changing it. The output
    256   /// NeedsExtraction indicates whether we can extract a non-zero constant
    257   /// offset from any index.
    258   int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
    259   /// Canonicalize array indices to pointer-size integers. This helps to
    260   /// simplify the logic of splitting a GEP. For example, if a + b is a
    261   /// pointer-size integer, we have
    262   ///   gep base, a + b = gep (gep base, a), b
    263   /// However, this equality may not hold if the size of a + b is smaller than
    264   /// the pointer size, because LLVM conceptually sign-extends GEP indices to
    265   /// pointer size before computing the address
    266   /// (http://llvm.org/docs/LangRef.html#id181).
    267   ///
    268   /// This canonicalization is very likely already done in clang and
    269   /// instcombine. Therefore, the program will probably remain the same.
    270   ///
    271   /// Returns true if the module changes.
    272   ///
    273   /// Verified in @i32_add in split-gep.ll
    274   bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
    275   /// For each array index that is in the form of zext(a), convert it to sext(a)
    276   /// if we can prove zext(a) <= max signed value of typeof(a). We prefer
    277   /// sext(a) to zext(a), because in the special case where x + y >= 0 and
    278   /// (x >= 0 or y >= 0), function CanTraceInto can split sext(x + y),
    279   /// while no such case exists for zext(x + y).
    280   ///
    281   /// Note that
    282   ///   zext(x + y) = zext(x) + zext(y)
    283   /// is wrong, e.g.,
    284   ///   zext i32(UINT_MAX + 1) to i64 !=
    285   ///   (zext i32 UINT_MAX to i64) + (zext i32 1 to i64)
    286   ///
    287   /// Returns true if the module changes.
    288   ///
    289   /// Verified in @inbounds_zext_add in split-gep.ll and @sum_of_array3 in
    290   /// split-gep-and-gvn.ll
    291   bool convertInBoundsZExtToSExt(GetElementPtrInst *GEP);
    292 
    293   const DataLayout *DL;
    294 };
    295 }  // anonymous namespace
    296 
    297 char SeparateConstOffsetFromGEP::ID = 0;
    298 INITIALIZE_PASS_BEGIN(
    299     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
    300     "Split GEPs to a variadic base and a constant offset for better CSE", false,
    301     false)
    302 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
    303 INITIALIZE_PASS_DEPENDENCY(DataLayoutPass)
    304 INITIALIZE_PASS_END(
    305     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
    306     "Split GEPs to a variadic base and a constant offset for better CSE", false,
    307     false)
    308 
    309 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
    310   return new SeparateConstOffsetFromGEP();
    311 }
    312 
    313 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
    314                                             bool ZeroExtended,
    315                                             BinaryOperator *BO,
    316                                             bool NonNegative) {
    317   // We only consider ADD, SUB and OR, because a non-zero constant found in
    318   // expressions composed of these operations can be easily hoisted as a
    319   // constant offset by reassociation.
    320   if (BO->getOpcode() != Instruction::Add &&
    321       BO->getOpcode() != Instruction::Sub &&
    322       BO->getOpcode() != Instruction::Or) {
    323     return false;
    324   }
    325 
    326   Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
    327   // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
    328   // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
    329   if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
    330     return false;
    331 
    332   // In addition, tracing into BO requires that its surrounding s/zext (if
    333   // any) is distributable to both operands.
    334   //
    335   // Suppose BO = A op B.
    336   //  SignExtended | ZeroExtended | Distributable?
    337   // --------------+--------------+----------------------------------
    338   //       0       |      0       | true because no s/zext exists
    339   //       0       |      1       | zext(BO) == zext(A) op zext(B)
    340   //       1       |      0       | sext(BO) == sext(A) op sext(B)
    341   //       1       |      1       | zext(sext(BO)) ==
    342   //               |              |     zext(sext(A)) op zext(sext(B))
    343   if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
    344     // If a + b >= 0 and (a >= 0 or b >= 0), then
    345     //   sext(a + b) = sext(a) + sext(b)
    346     // even if the addition is not marked nsw.
    347     //
    348     // Leveraging this invarient, we can trace into an sext'ed inbound GEP
    349     // index if the constant offset is non-negative.
    350     //
    351     // Verified in @sext_add in split-gep.ll.
    352     if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
    353       if (!ConstLHS->isNegative())
    354         return true;
    355     }
    356     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
    357       if (!ConstRHS->isNegative())
    358         return true;
    359     }
    360   }
    361 
    362   // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
    363   // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
    364   if (BO->getOpcode() == Instruction::Add ||
    365       BO->getOpcode() == Instruction::Sub) {
    366     if (SignExtended && !BO->hasNoSignedWrap())
    367       return false;
    368     if (ZeroExtended && !BO->hasNoUnsignedWrap())
    369       return false;
    370   }
    371 
    372   return true;
    373 }
    374 
    375 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
    376                                                    bool SignExtended,
    377                                                    bool ZeroExtended) {
    378   // BO being non-negative does not shed light on whether its operands are
    379   // non-negative. Clear the NonNegative flag here.
    380   APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
    381                               /* NonNegative */ false);
    382   // If we found a constant offset in the left operand, stop and return that.
    383   // This shortcut might cause us to miss opportunities of combining the
    384   // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
    385   // However, such cases are probably already handled by -instcombine,
    386   // given this pass runs after the standard optimizations.
    387   if (ConstantOffset != 0) return ConstantOffset;
    388   ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
    389                         /* NonNegative */ false);
    390   // If U is a sub operator, negate the constant offset found in the right
    391   // operand.
    392   if (BO->getOpcode() == Instruction::Sub)
    393     ConstantOffset = -ConstantOffset;
    394   return ConstantOffset;
    395 }
    396 
    397 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
    398                                     bool ZeroExtended, bool NonNegative) {
    399   // TODO(jingyue): We could trace into integer/pointer casts, such as
    400   // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
    401   // integers because it gives good enough results for our benchmarks.
    402   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
    403 
    404   // We cannot do much with Values that are not a User, such as an Argument.
    405   User *U = dyn_cast<User>(V);
    406   if (U == nullptr) return APInt(BitWidth, 0);
    407 
    408   APInt ConstantOffset(BitWidth, 0);
    409   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    410     // Hooray, we found it!
    411     ConstantOffset = CI->getValue();
    412   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
    413     // Trace into subexpressions for more hoisting opportunities.
    414     if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
    415       ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
    416     }
    417   } else if (isa<SExtInst>(V)) {
    418     ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
    419                           ZeroExtended, NonNegative).sext(BitWidth);
    420   } else if (isa<ZExtInst>(V)) {
    421     // As an optimization, we can clear the SignExtended flag because
    422     // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
    423     //
    424     // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
    425     ConstantOffset =
    426         find(U->getOperand(0), /* SignExtended */ false,
    427              /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
    428   }
    429 
    430   // If we found a non-zero constant offset, add it to the path for
    431   // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
    432   // help this optimization.
    433   if (ConstantOffset != 0)
    434     UserChain.push_back(U);
    435   return ConstantOffset;
    436 }
    437 
    438 Value *ConstantOffsetExtractor::applyExts(Value *V) {
    439   Value *Current = V;
    440   // ExtInsts is built in the use-def order. Therefore, we apply them to V
    441   // in the reversed order.
    442   for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
    443     if (Constant *C = dyn_cast<Constant>(Current)) {
    444       // If Current is a constant, apply s/zext using ConstantExpr::getCast.
    445       // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
    446       Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
    447     } else {
    448       Instruction *Ext = (*I)->clone();
    449       Ext->setOperand(0, Current);
    450       Ext->insertBefore(IP);
    451       Current = Ext;
    452     }
    453   }
    454   return Current;
    455 }
    456 
    457 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
    458   distributeExtsAndCloneChain(UserChain.size() - 1);
    459   // Remove all nullptrs (used to be s/zext) from UserChain.
    460   unsigned NewSize = 0;
    461   for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
    462     if (*I != nullptr) {
    463       UserChain[NewSize] = *I;
    464       NewSize++;
    465     }
    466   }
    467   UserChain.resize(NewSize);
    468   return removeConstOffset(UserChain.size() - 1);
    469 }
    470 
    471 Value *
    472 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
    473   User *U = UserChain[ChainIndex];
    474   if (ChainIndex == 0) {
    475     assert(isa<ConstantInt>(U));
    476     // If U is a ConstantInt, applyExts will return a ConstantInt as well.
    477     return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
    478   }
    479 
    480   if (CastInst *Cast = dyn_cast<CastInst>(U)) {
    481     assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
    482            "We only traced into two types of CastInst: sext and zext");
    483     ExtInsts.push_back(Cast);
    484     UserChain[ChainIndex] = nullptr;
    485     return distributeExtsAndCloneChain(ChainIndex - 1);
    486   }
    487 
    488   // Function find only trace into BinaryOperator and CastInst.
    489   BinaryOperator *BO = cast<BinaryOperator>(U);
    490   // OpNo = which operand of BO is UserChain[ChainIndex - 1]
    491   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
    492   Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
    493   Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
    494 
    495   BinaryOperator *NewBO = nullptr;
    496   if (OpNo == 0) {
    497     NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
    498                                    BO->getName(), IP);
    499   } else {
    500     NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
    501                                    BO->getName(), IP);
    502   }
    503   return UserChain[ChainIndex] = NewBO;
    504 }
    505 
    506 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
    507   if (ChainIndex == 0) {
    508     assert(isa<ConstantInt>(UserChain[ChainIndex]));
    509     return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
    510   }
    511 
    512   BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
    513   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
    514   assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
    515   Value *NextInChain = removeConstOffset(ChainIndex - 1);
    516   Value *TheOther = BO->getOperand(1 - OpNo);
    517 
    518   // If NextInChain is 0 and not the LHS of a sub, we can simplify the
    519   // sub-expression to be just TheOther.
    520   if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
    521     if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
    522       return TheOther;
    523   }
    524 
    525   if (BO->getOpcode() == Instruction::Or) {
    526     // Rebuild "or" as "add", because "or" may be invalid for the new
    527     // epxression.
    528     //
    529     // For instance, given
    530     //   a | (b + 5) where a and b + 5 have no common bits,
    531     // we can extract 5 as the constant offset.
    532     //
    533     // However, reusing the "or" in the new index would give us
    534     //   (a | b) + 5
    535     // which does not equal a | (b + 5).
    536     //
    537     // Replacing the "or" with "add" is fine, because
    538     //   a | (b + 5) = a + (b + 5) = (a + b) + 5
    539     return BinaryOperator::CreateAdd(BO->getOperand(0), BO->getOperand(1),
    540                                      BO->getName(), IP);
    541   }
    542 
    543   // We can reuse BO in this case, because the new expression shares the same
    544   // instruction type and BO is used at most once.
    545   assert(BO->getNumUses() <= 1 &&
    546          "distributeExtsAndCloneChain clones each BinaryOperator in "
    547          "UserChain, so no one should be used more than "
    548          "once");
    549   BO->setOperand(OpNo, NextInChain);
    550   BO->setHasNoSignedWrap(false);
    551   BO->setHasNoUnsignedWrap(false);
    552   // Make sure it appears after all instructions we've inserted so far.
    553   BO->moveBefore(IP);
    554   return BO;
    555 }
    556 
    557 int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx,
    558                                          const DataLayout *DL,
    559                                          GetElementPtrInst *GEP) {
    560   ConstantOffsetExtractor Extractor(DL, GEP);
    561   // Find a non-zero constant offset first.
    562   APInt ConstantOffset =
    563       Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
    564                      GEP->isInBounds());
    565   if (ConstantOffset != 0) {
    566     // Separates the constant offset from the GEP index.
    567     NewIdx = Extractor.rebuildWithoutConstOffset();
    568   }
    569   return ConstantOffset.getSExtValue();
    570 }
    571 
    572 int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
    573       GetElementPtrInst *GEP) {
    574   // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
    575   return ConstantOffsetExtractor(DL, GEP)
    576       .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
    577             GEP->isInBounds())
    578       .getSExtValue();
    579 }
    580 
    581 void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
    582                                                APInt &KnownZero) const {
    583   IntegerType *IT = cast<IntegerType>(V->getType());
    584   KnownOne = APInt(IT->getBitWidth(), 0);
    585   KnownZero = APInt(IT->getBitWidth(), 0);
    586   llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
    587 }
    588 
    589 bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
    590   assert(LHS->getType() == RHS->getType() &&
    591          "LHS and RHS should have the same type");
    592   APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
    593   ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
    594   ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
    595   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
    596 }
    597 
    598 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
    599     GetElementPtrInst *GEP) {
    600   bool Changed = false;
    601   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
    602   gep_type_iterator GTI = gep_type_begin(*GEP);
    603   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
    604        I != E; ++I, ++GTI) {
    605     // Skip struct member indices which must be i32.
    606     if (isa<SequentialType>(*GTI)) {
    607       if ((*I)->getType() != IntPtrTy) {
    608         *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
    609         Changed = true;
    610       }
    611     }
    612   }
    613   return Changed;
    614 }
    615 
    616 bool
    617 SeparateConstOffsetFromGEP::convertInBoundsZExtToSExt(GetElementPtrInst *GEP) {
    618   if (!GEP->isInBounds())
    619     return false;
    620 
    621   // TODO: consider alloca
    622   GlobalVariable *UnderlyingObject =
    623       dyn_cast<GlobalVariable>(GEP->getPointerOperand());
    624   if (UnderlyingObject == nullptr)
    625     return false;
    626 
    627   uint64_t ObjectSize =
    628       DL->getTypeAllocSize(UnderlyingObject->getType()->getElementType());
    629   gep_type_iterator GTI = gep_type_begin(*GEP);
    630   bool Changed = false;
    631   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
    632        ++I, ++GTI) {
    633     if (isa<SequentialType>(*GTI)) {
    634       if (ZExtInst *Extended = dyn_cast<ZExtInst>(*I)) {
    635         unsigned SrcBitWidth =
    636             cast<IntegerType>(Extended->getSrcTy())->getBitWidth();
    637         // For GEP operand zext(a), if a <= max signed value of typeof(a), then
    638         // the sign bit of a is zero and sext(a) = zext(a). Because the GEP is
    639         // in bounds, we know a <= ObjectSize, so the condition can be reduced
    640         // to ObjectSize <= max signed value of typeof(a).
    641         if (ObjectSize <=
    642             APInt::getSignedMaxValue(SrcBitWidth).getZExtValue()) {
    643           *I = new SExtInst(Extended->getOperand(0), Extended->getType(),
    644                             Extended->getName(), GEP);
    645           Changed = true;
    646         }
    647       }
    648     }
    649   }
    650   return Changed;
    651 }
    652 
    653 int64_t
    654 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
    655                                                  bool &NeedsExtraction) {
    656   NeedsExtraction = false;
    657   int64_t AccumulativeByteOffset = 0;
    658   gep_type_iterator GTI = gep_type_begin(*GEP);
    659   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
    660     if (isa<SequentialType>(*GTI)) {
    661       // Tries to extract a constant offset from this GEP index.
    662       int64_t ConstantOffset =
    663           ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP);
    664       if (ConstantOffset != 0) {
    665         NeedsExtraction = true;
    666         // A GEP may have multiple indices.  We accumulate the extracted
    667         // constant offset to a byte offset, and later offset the remainder of
    668         // the original GEP with this byte offset.
    669         AccumulativeByteOffset +=
    670             ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
    671       }
    672     }
    673   }
    674   return AccumulativeByteOffset;
    675 }
    676 
    677 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
    678   // Skip vector GEPs.
    679   if (GEP->getType()->isVectorTy())
    680     return false;
    681 
    682   // The backend can already nicely handle the case where all indices are
    683   // constant.
    684   if (GEP->hasAllConstantIndices())
    685     return false;
    686 
    687   bool Changed = false;
    688   Changed |= canonicalizeArrayIndicesToPointerSize(GEP);
    689   Changed |= convertInBoundsZExtToSExt(GEP);
    690 
    691   bool NeedsExtraction;
    692   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
    693 
    694   if (!NeedsExtraction)
    695     return Changed;
    696   // Before really splitting the GEP, check whether the backend supports the
    697   // addressing mode we are about to produce. If no, this splitting probably
    698   // won't be beneficial.
    699   TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
    700   if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
    701                                  /*BaseGV=*/nullptr, AccumulativeByteOffset,
    702                                  /*HasBaseReg=*/true, /*Scale=*/0)) {
    703     return Changed;
    704   }
    705 
    706   // Remove the constant offset in each GEP index. The resultant GEP computes
    707   // the variadic base.
    708   gep_type_iterator GTI = gep_type_begin(*GEP);
    709   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
    710     if (isa<SequentialType>(*GTI)) {
    711       Value *NewIdx = nullptr;
    712       // Tries to extract a constant offset from this GEP index.
    713       int64_t ConstantOffset =
    714           ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP);
    715       if (ConstantOffset != 0) {
    716         assert(NewIdx != nullptr &&
    717                "ConstantOffset != 0 implies NewIdx is set");
    718         GEP->setOperand(I, NewIdx);
    719       }
    720     }
    721   }
    722   // Clear the inbounds attribute because the new index may be off-bound.
    723   // e.g.,
    724   //
    725   // b = add i64 a, 5
    726   // addr = gep inbounds float* p, i64 b
    727   //
    728   // is transformed to:
    729   //
    730   // addr2 = gep float* p, i64 a
    731   // addr = gep float* addr2, i64 5
    732   //
    733   // If a is -4, although the old index b is in bounds, the new index a is
    734   // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
    735   // inbounds keyword is not present, the offsets are added to the base
    736   // address with silently-wrapping two's complement arithmetic".
    737   // Therefore, the final code will be a semantically equivalent.
    738   //
    739   // TODO(jingyue): do some range analysis to keep as many inbounds as
    740   // possible. GEPs with inbounds are more friendly to alias analysis.
    741   GEP->setIsInBounds(false);
    742 
    743   // Offsets the base with the accumulative byte offset.
    744   //
    745   //   %gep                        ; the base
    746   //   ... %gep ...
    747   //
    748   // => add the offset
    749   //
    750   //   %gep2                       ; clone of %gep
    751   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
    752   //   %gep                        ; will be removed
    753   //   ... %gep ...
    754   //
    755   // => replace all uses of %gep with %new.gep and remove %gep
    756   //
    757   //   %gep2                       ; clone of %gep
    758   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
    759   //   ... %new.gep ...
    760   //
    761   // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
    762   // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
    763   // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
    764   // type of %gep.
    765   //
    766   //   %gep2                       ; clone of %gep
    767   //   %0       = bitcast %gep2 to i8*
    768   //   %uglygep = gep %0, <offset>
    769   //   %new.gep = bitcast %uglygep to <type of %gep>
    770   //   ... %new.gep ...
    771   Instruction *NewGEP = GEP->clone();
    772   NewGEP->insertBefore(GEP);
    773 
    774   uint64_t ElementTypeSizeOfGEP =
    775       DL->getTypeAllocSize(GEP->getType()->getElementType());
    776   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
    777   if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
    778     // Very likely. As long as %gep is natually aligned, the byte offset we
    779     // extracted should be a multiple of sizeof(*%gep).
    780     // Per ANSI C standard, signed / unsigned = unsigned. Therefore, we
    781     // cast ElementTypeSizeOfGEP to signed.
    782     int64_t Index =
    783         AccumulativeByteOffset / static_cast<int64_t>(ElementTypeSizeOfGEP);
    784     NewGEP = GetElementPtrInst::Create(
    785         NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP);
    786   } else {
    787     // Unlikely but possible. For example,
    788     // #pragma pack(1)
    789     // struct S {
    790     //   int a[3];
    791     //   int64 b[8];
    792     // };
    793     // #pragma pack()
    794     //
    795     // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
    796     // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
    797     // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
    798     // sizeof(int64).
    799     //
    800     // Emit an uglygep in this case.
    801     Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
    802                                        GEP->getPointerAddressSpace());
    803     NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
    804     NewGEP = GetElementPtrInst::Create(
    805         NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true),
    806         "uglygep", GEP);
    807     if (GEP->getType() != I8PtrTy)
    808       NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
    809   }
    810 
    811   GEP->replaceAllUsesWith(NewGEP);
    812   GEP->eraseFromParent();
    813 
    814   return true;
    815 }
    816 
    817 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
    818   if (DisableSeparateConstOffsetFromGEP)
    819     return false;
    820 
    821   bool Changed = false;
    822   for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
    823     for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
    824       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
    825         Changed |= splitGEP(GEP);
    826       }
    827       // No need to split GEP ConstantExprs because all its indices are constant
    828       // already.
    829     }
    830   }
    831   return Changed;
    832 }
    833