Home | History | Annotate | Download | only in Scalar
      1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file transforms calls of the current function (self recursion) followed
     11 // by a return instruction with a branch to the entry of the function, creating
     12 // a loop.  This pass also implements the following extensions to the basic
     13 // algorithm:
     14 //
     15 //  1. Trivial instructions between the call and return do not prevent the
     16 //     transformation from taking place, though currently the analysis cannot
     17 //     support moving any really useful instructions (only dead ones).
     18 //  2. This pass transforms functions that are prevented from being tail
     19 //     recursive by an associative and commutative expression to use an
     20 //     accumulator variable, thus compiling the typical naive factorial or
     21 //     'fib' implementation into efficient code.
     22 //  3. TRE is performed if the function returns void, if the return
     23 //     returns the result returned by the call, or if the function returns a
     24 //     run-time constant on all exits from the function.  It is possible, though
     25 //     unlikely, that the return returns something else (like constant 0), and
     26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
     27 //     the function return the exact same value.
     28 //  4. If it can prove that callees do not access their caller stack frame,
     29 //     they are marked as eligible for tail call elimination (by the code
     30 //     generator).
     31 //
     32 // There are several improvements that could be made:
     33 //
     34 //  1. If the function has any alloca instructions, these instructions will be
     35 //     moved out of the entry block of the function, causing them to be
     36 //     evaluated each time through the tail recursion.  Safely keeping allocas
     37 //     in the entry block requires analysis to proves that the tail-called
     38 //     function does not read or write the stack object.
     39 //  2. Tail recursion is only performed if the call immediately precedes the
     40 //     return instruction.  It's possible that there could be a jump between
     41 //     the call and the return.
     42 //  3. There can be intervening operations between the call and the return that
     43 //     prevent the TRE from occurring.  For example, there could be GEP's and
     44 //     stores to memory that will not be read or written by the call.  This
     45 //     requires some substantial analysis (such as with DSA) to prove safe to
     46 //     move ahead of the call, but doing so could allow many more TREs to be
     47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
     48 //  4. The algorithm we use to detect if callees access their caller stack
     49 //     frames is very primitive.
     50 //
     51 //===----------------------------------------------------------------------===//
     52 
     53 #include "llvm/Transforms/Scalar.h"
     54 #include "llvm/ADT/STLExtras.h"
     55 #include "llvm/ADT/SmallPtrSet.h"
     56 #include "llvm/ADT/Statistic.h"
     57 #include "llvm/Analysis/CaptureTracking.h"
     58 #include "llvm/Analysis/CFG.h"
     59 #include "llvm/Analysis/InlineCost.h"
     60 #include "llvm/Analysis/InstructionSimplify.h"
     61 #include "llvm/Analysis/Loads.h"
     62 #include "llvm/Analysis/TargetTransformInfo.h"
     63 #include "llvm/IR/CFG.h"
     64 #include "llvm/IR/CallSite.h"
     65 #include "llvm/IR/Constants.h"
     66 #include "llvm/IR/DerivedTypes.h"
     67 #include "llvm/IR/DiagnosticInfo.h"
     68 #include "llvm/IR/Function.h"
     69 #include "llvm/IR/Instructions.h"
     70 #include "llvm/IR/IntrinsicInst.h"
     71 #include "llvm/IR/Module.h"
     72 #include "llvm/IR/ValueHandle.h"
     73 #include "llvm/Pass.h"
     74 #include "llvm/Support/Debug.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     77 #include "llvm/Transforms/Utils/Local.h"
     78 using namespace llvm;
     79 
     80 #define DEBUG_TYPE "tailcallelim"
     81 
     82 STATISTIC(NumEliminated, "Number of tail calls removed");
     83 STATISTIC(NumRetDuped,   "Number of return duplicated");
     84 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
     85 
     86 namespace {
     87   struct TailCallElim : public FunctionPass {
     88     const TargetTransformInfo *TTI;
     89 
     90     static char ID; // Pass identification, replacement for typeid
     91     TailCallElim() : FunctionPass(ID) {
     92       initializeTailCallElimPass(*PassRegistry::getPassRegistry());
     93     }
     94 
     95     void getAnalysisUsage(AnalysisUsage &AU) const override;
     96 
     97     bool runOnFunction(Function &F) override;
     98 
     99   private:
    100     bool runTRE(Function &F);
    101     bool markTails(Function &F, bool &AllCallsAreTailCalls);
    102 
    103     CallInst *FindTRECandidate(Instruction *I,
    104                                bool CannotTailCallElimCallsMarkedTail);
    105     bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
    106                                     BasicBlock *&OldEntry,
    107                                     bool &TailCallsAreMarkedTail,
    108                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
    109                                     bool CannotTailCallElimCallsMarkedTail);
    110     bool FoldReturnAndProcessPred(BasicBlock *BB,
    111                                   ReturnInst *Ret, BasicBlock *&OldEntry,
    112                                   bool &TailCallsAreMarkedTail,
    113                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
    114                                   bool CannotTailCallElimCallsMarkedTail);
    115     bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
    116                                bool &TailCallsAreMarkedTail,
    117                                SmallVectorImpl<PHINode *> &ArgumentPHIs,
    118                                bool CannotTailCallElimCallsMarkedTail);
    119     bool CanMoveAboveCall(Instruction *I, CallInst *CI);
    120     Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
    121   };
    122 }
    123 
    124 char TailCallElim::ID = 0;
    125 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
    126                       "Tail Call Elimination", false, false)
    127 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
    128 INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
    129                     "Tail Call Elimination", false, false)
    130 
    131 // Public interface to the TailCallElimination pass
    132 FunctionPass *llvm::createTailCallEliminationPass() {
    133   return new TailCallElim();
    134 }
    135 
    136 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
    137   AU.addRequired<TargetTransformInfo>();
    138 }
    139 
    140 /// \brief Scan the specified function for alloca instructions.
    141 /// If it contains any dynamic allocas, returns false.
    142 static bool CanTRE(Function &F) {
    143   // Because of PR962, we don't TRE dynamic allocas.
    144   for (auto &BB : F) {
    145     for (auto &I : BB) {
    146       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
    147         if (!AI->isStaticAlloca())
    148           return false;
    149       }
    150     }
    151   }
    152 
    153   return true;
    154 }
    155 
    156 bool TailCallElim::runOnFunction(Function &F) {
    157   if (skipOptnoneFunction(F))
    158     return false;
    159 
    160   bool AllCallsAreTailCalls = false;
    161   bool Modified = markTails(F, AllCallsAreTailCalls);
    162   if (AllCallsAreTailCalls)
    163     Modified |= runTRE(F);
    164   return Modified;
    165 }
    166 
    167 namespace {
    168 struct AllocaDerivedValueTracker {
    169   // Start at a root value and walk its use-def chain to mark calls that use the
    170   // value or a derived value in AllocaUsers, and places where it may escape in
    171   // EscapePoints.
    172   void walk(Value *Root) {
    173     SmallVector<Use *, 32> Worklist;
    174     SmallPtrSet<Use *, 32> Visited;
    175 
    176     auto AddUsesToWorklist = [&](Value *V) {
    177       for (auto &U : V->uses()) {
    178         if (!Visited.insert(&U))
    179           continue;
    180         Worklist.push_back(&U);
    181       }
    182     };
    183 
    184     AddUsesToWorklist(Root);
    185 
    186     while (!Worklist.empty()) {
    187       Use *U = Worklist.pop_back_val();
    188       Instruction *I = cast<Instruction>(U->getUser());
    189 
    190       switch (I->getOpcode()) {
    191       case Instruction::Call:
    192       case Instruction::Invoke: {
    193         CallSite CS(I);
    194         bool IsNocapture = !CS.isCallee(U) &&
    195                            CS.doesNotCapture(CS.getArgumentNo(U));
    196         callUsesLocalStack(CS, IsNocapture);
    197         if (IsNocapture) {
    198           // If the alloca-derived argument is passed in as nocapture, then it
    199           // can't propagate to the call's return. That would be capturing.
    200           continue;
    201         }
    202         break;
    203       }
    204       case Instruction::Load: {
    205         // The result of a load is not alloca-derived (unless an alloca has
    206         // otherwise escaped, but this is a local analysis).
    207         continue;
    208       }
    209       case Instruction::Store: {
    210         if (U->getOperandNo() == 0)
    211           EscapePoints.insert(I);
    212         continue;  // Stores have no users to analyze.
    213       }
    214       case Instruction::BitCast:
    215       case Instruction::GetElementPtr:
    216       case Instruction::PHI:
    217       case Instruction::Select:
    218       case Instruction::AddrSpaceCast:
    219         break;
    220       default:
    221         EscapePoints.insert(I);
    222         break;
    223       }
    224 
    225       AddUsesToWorklist(I);
    226     }
    227   }
    228 
    229   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
    230     // Add it to the list of alloca users. If it's already there, skip further
    231     // processing.
    232     if (!AllocaUsers.insert(CS.getInstruction()))
    233       return;
    234 
    235     // If it's nocapture then it can't capture the alloca.
    236     if (IsNocapture)
    237       return;
    238 
    239     // If it can write to memory, it can leak the alloca value.
    240     if (!CS.onlyReadsMemory())
    241       EscapePoints.insert(CS.getInstruction());
    242   }
    243 
    244   SmallPtrSet<Instruction *, 32> AllocaUsers;
    245   SmallPtrSet<Instruction *, 32> EscapePoints;
    246 };
    247 }
    248 
    249 bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
    250   if (F.callsFunctionThatReturnsTwice())
    251     return false;
    252   AllCallsAreTailCalls = true;
    253 
    254   // The local stack holds all alloca instructions and all byval arguments.
    255   AllocaDerivedValueTracker Tracker;
    256   for (Argument &Arg : F.args()) {
    257     if (Arg.hasByValAttr())
    258       Tracker.walk(&Arg);
    259   }
    260   for (auto &BB : F) {
    261     for (auto &I : BB)
    262       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
    263         Tracker.walk(AI);
    264   }
    265 
    266   bool Modified = false;
    267 
    268   // Track whether a block is reachable after an alloca has escaped. Blocks that
    269   // contain the escaping instruction will be marked as being visited without an
    270   // escaped alloca, since that is how the block began.
    271   enum VisitType {
    272     UNVISITED,
    273     UNESCAPED,
    274     ESCAPED
    275   };
    276   DenseMap<BasicBlock *, VisitType> Visited;
    277 
    278   // We propagate the fact that an alloca has escaped from block to successor.
    279   // Visit the blocks that are propagating the escapedness first. To do this, we
    280   // maintain two worklists.
    281   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
    282 
    283   // We may enter a block and visit it thinking that no alloca has escaped yet,
    284   // then see an escape point and go back around a loop edge and come back to
    285   // the same block twice. Because of this, we defer setting tail on calls when
    286   // we first encounter them in a block. Every entry in this list does not
    287   // statically use an alloca via use-def chain analysis, but may find an alloca
    288   // through other means if the block turns out to be reachable after an escape
    289   // point.
    290   SmallVector<CallInst *, 32> DeferredTails;
    291 
    292   BasicBlock *BB = &F.getEntryBlock();
    293   VisitType Escaped = UNESCAPED;
    294   do {
    295     for (auto &I : *BB) {
    296       if (Tracker.EscapePoints.count(&I))
    297         Escaped = ESCAPED;
    298 
    299       CallInst *CI = dyn_cast<CallInst>(&I);
    300       if (!CI || CI->isTailCall())
    301         continue;
    302 
    303       if (CI->doesNotAccessMemory()) {
    304         // A call to a readnone function whose arguments are all things computed
    305         // outside this function can be marked tail. Even if you stored the
    306         // alloca address into a global, a readnone function can't load the
    307         // global anyhow.
    308         //
    309         // Note that this runs whether we know an alloca has escaped or not. If
    310         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
    311         bool SafeToTail = true;
    312         for (auto &Arg : CI->arg_operands()) {
    313           if (isa<Constant>(Arg.getUser()))
    314             continue;
    315           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
    316             if (!A->hasByValAttr())
    317               continue;
    318           SafeToTail = false;
    319           break;
    320         }
    321         if (SafeToTail) {
    322           emitOptimizationRemark(
    323               F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
    324               "marked this readnone call a tail call candidate");
    325           CI->setTailCall();
    326           Modified = true;
    327           continue;
    328         }
    329       }
    330 
    331       if (Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
    332         DeferredTails.push_back(CI);
    333       } else {
    334         AllCallsAreTailCalls = false;
    335       }
    336     }
    337 
    338     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
    339       auto &State = Visited[SuccBB];
    340       if (State < Escaped) {
    341         State = Escaped;
    342         if (State == ESCAPED)
    343           WorklistEscaped.push_back(SuccBB);
    344         else
    345           WorklistUnescaped.push_back(SuccBB);
    346       }
    347     }
    348 
    349     if (!WorklistEscaped.empty()) {
    350       BB = WorklistEscaped.pop_back_val();
    351       Escaped = ESCAPED;
    352     } else {
    353       BB = nullptr;
    354       while (!WorklistUnescaped.empty()) {
    355         auto *NextBB = WorklistUnescaped.pop_back_val();
    356         if (Visited[NextBB] == UNESCAPED) {
    357           BB = NextBB;
    358           Escaped = UNESCAPED;
    359           break;
    360         }
    361       }
    362     }
    363   } while (BB);
    364 
    365   for (CallInst *CI : DeferredTails) {
    366     if (Visited[CI->getParent()] != ESCAPED) {
    367       // If the escape point was part way through the block, calls after the
    368       // escape point wouldn't have been put into DeferredTails.
    369       emitOptimizationRemark(F.getContext(), "tailcallelim", F,
    370                              CI->getDebugLoc(),
    371                              "marked this call a tail call candidate");
    372       CI->setTailCall();
    373       Modified = true;
    374     } else {
    375       AllCallsAreTailCalls = false;
    376     }
    377   }
    378 
    379   return Modified;
    380 }
    381 
    382 bool TailCallElim::runTRE(Function &F) {
    383   // If this function is a varargs function, we won't be able to PHI the args
    384   // right, so don't even try to convert it...
    385   if (F.getFunctionType()->isVarArg()) return false;
    386 
    387   TTI = &getAnalysis<TargetTransformInfo>();
    388   BasicBlock *OldEntry = nullptr;
    389   bool TailCallsAreMarkedTail = false;
    390   SmallVector<PHINode*, 8> ArgumentPHIs;
    391   bool MadeChange = false;
    392 
    393   // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls
    394   // marked with the 'tail' attribute, because doing so would cause the stack
    395   // size to increase (real TRE would deallocate variable sized allocas, TRE
    396   // doesn't).
    397   bool CanTRETailMarkedCall = CanTRE(F);
    398 
    399   // Change any tail recursive calls to loops.
    400   //
    401   // FIXME: The code generator produces really bad code when an 'escaping
    402   // alloca' is changed from being a static alloca to being a dynamic alloca.
    403   // Until this is resolved, disable this transformation if that would ever
    404   // happen.  This bug is PR962.
    405   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    406     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
    407       bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
    408                                           ArgumentPHIs, !CanTRETailMarkedCall);
    409       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
    410         Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
    411                                           TailCallsAreMarkedTail, ArgumentPHIs,
    412                                           !CanTRETailMarkedCall);
    413       MadeChange |= Change;
    414     }
    415   }
    416 
    417   // If we eliminated any tail recursions, it's possible that we inserted some
    418   // silly PHI nodes which just merge an initial value (the incoming operand)
    419   // with themselves.  Check to see if we did and clean up our mess if so.  This
    420   // occurs when a function passes an argument straight through to its tail
    421   // call.
    422   for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
    423     PHINode *PN = ArgumentPHIs[i];
    424 
    425     // If the PHI Node is a dynamic constant, replace it with the value it is.
    426     if (Value *PNV = SimplifyInstruction(PN)) {
    427       PN->replaceAllUsesWith(PNV);
    428       PN->eraseFromParent();
    429     }
    430   }
    431 
    432   return MadeChange;
    433 }
    434 
    435 
    436 /// CanMoveAboveCall - Return true if it is safe to move the specified
    437 /// instruction from after the call to before the call, assuming that all
    438 /// instructions between the call and this instruction are movable.
    439 ///
    440 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
    441   // FIXME: We can move load/store/call/free instructions above the call if the
    442   // call does not mod/ref the memory location being processed.
    443   if (I->mayHaveSideEffects())  // This also handles volatile loads.
    444     return false;
    445 
    446   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    447     // Loads may always be moved above calls without side effects.
    448     if (CI->mayHaveSideEffects()) {
    449       // Non-volatile loads may be moved above a call with side effects if it
    450       // does not write to memory and the load provably won't trap.
    451       // FIXME: Writes to memory only matter if they may alias the pointer
    452       // being loaded from.
    453       if (CI->mayWriteToMemory() ||
    454           !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
    455                                        L->getAlignment()))
    456         return false;
    457     }
    458   }
    459 
    460   // Otherwise, if this is a side-effect free instruction, check to make sure
    461   // that it does not use the return value of the call.  If it doesn't use the
    462   // return value of the call, it must only use things that are defined before
    463   // the call, or movable instructions between the call and the instruction
    464   // itself.
    465   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    466     if (I->getOperand(i) == CI)
    467       return false;
    468   return true;
    469 }
    470 
    471 // isDynamicConstant - Return true if the specified value is the same when the
    472 // return would exit as it was when the initial iteration of the recursive
    473 // function was executed.
    474 //
    475 // We currently handle static constants and arguments that are not modified as
    476 // part of the recursion.
    477 //
    478 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
    479   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
    480 
    481   // Check to see if this is an immutable argument, if so, the value
    482   // will be available to initialize the accumulator.
    483   if (Argument *Arg = dyn_cast<Argument>(V)) {
    484     // Figure out which argument number this is...
    485     unsigned ArgNo = 0;
    486     Function *F = CI->getParent()->getParent();
    487     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
    488       ++ArgNo;
    489 
    490     // If we are passing this argument into call as the corresponding
    491     // argument operand, then the argument is dynamically constant.
    492     // Otherwise, we cannot transform this function safely.
    493     if (CI->getArgOperand(ArgNo) == Arg)
    494       return true;
    495   }
    496 
    497   // Switch cases are always constant integers. If the value is being switched
    498   // on and the return is only reachable from one of its cases, it's
    499   // effectively constant.
    500   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
    501     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
    502       if (SI->getCondition() == V)
    503         return SI->getDefaultDest() != RI->getParent();
    504 
    505   // Not a constant or immutable argument, we can't safely transform.
    506   return false;
    507 }
    508 
    509 // getCommonReturnValue - Check to see if the function containing the specified
    510 // tail call consistently returns the same runtime-constant value at all exit
    511 // points except for IgnoreRI.  If so, return the returned value.
    512 //
    513 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
    514   Function *F = CI->getParent()->getParent();
    515   Value *ReturnedValue = nullptr;
    516 
    517   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
    518     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
    519     if (RI == nullptr || RI == IgnoreRI) continue;
    520 
    521     // We can only perform this transformation if the value returned is
    522     // evaluatable at the start of the initial invocation of the function,
    523     // instead of at the end of the evaluation.
    524     //
    525     Value *RetOp = RI->getOperand(0);
    526     if (!isDynamicConstant(RetOp, CI, RI))
    527       return nullptr;
    528 
    529     if (ReturnedValue && RetOp != ReturnedValue)
    530       return nullptr;     // Cannot transform if differing values are returned.
    531     ReturnedValue = RetOp;
    532   }
    533   return ReturnedValue;
    534 }
    535 
    536 /// CanTransformAccumulatorRecursion - If the specified instruction can be
    537 /// transformed using accumulator recursion elimination, return the constant
    538 /// which is the start of the accumulator value.  Otherwise return null.
    539 ///
    540 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
    541                                                       CallInst *CI) {
    542   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
    543   assert(I->getNumOperands() == 2 &&
    544          "Associative/commutative operations should have 2 args!");
    545 
    546   // Exactly one operand should be the result of the call instruction.
    547   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
    548       (I->getOperand(0) != CI && I->getOperand(1) != CI))
    549     return nullptr;
    550 
    551   // The only user of this instruction we allow is a single return instruction.
    552   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
    553     return nullptr;
    554 
    555   // Ok, now we have to check all of the other return instructions in this
    556   // function.  If they return non-constants or differing values, then we cannot
    557   // transform the function safely.
    558   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
    559 }
    560 
    561 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
    562   while (isa<DbgInfoIntrinsic>(I))
    563     ++I;
    564   return &*I;
    565 }
    566 
    567 CallInst*
    568 TailCallElim::FindTRECandidate(Instruction *TI,
    569                                bool CannotTailCallElimCallsMarkedTail) {
    570   BasicBlock *BB = TI->getParent();
    571   Function *F = BB->getParent();
    572 
    573   if (&BB->front() == TI) // Make sure there is something before the terminator.
    574     return nullptr;
    575 
    576   // Scan backwards from the return, checking to see if there is a tail call in
    577   // this block.  If so, set CI to it.
    578   CallInst *CI = nullptr;
    579   BasicBlock::iterator BBI = TI;
    580   while (true) {
    581     CI = dyn_cast<CallInst>(BBI);
    582     if (CI && CI->getCalledFunction() == F)
    583       break;
    584 
    585     if (BBI == BB->begin())
    586       return nullptr;          // Didn't find a potential tail call.
    587     --BBI;
    588   }
    589 
    590   // If this call is marked as a tail call, and if there are dynamic allocas in
    591   // the function, we cannot perform this optimization.
    592   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
    593     return nullptr;
    594 
    595   // As a special case, detect code like this:
    596   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
    597   // and disable this xform in this case, because the code generator will
    598   // lower the call to fabs into inline code.
    599   if (BB == &F->getEntryBlock() &&
    600       FirstNonDbg(BB->front()) == CI &&
    601       FirstNonDbg(std::next(BB->begin())) == TI &&
    602       CI->getCalledFunction() &&
    603       !TTI->isLoweredToCall(CI->getCalledFunction())) {
    604     // A single-block function with just a call and a return. Check that
    605     // the arguments match.
    606     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
    607                            E = CallSite(CI).arg_end();
    608     Function::arg_iterator FI = F->arg_begin(),
    609                            FE = F->arg_end();
    610     for (; I != E && FI != FE; ++I, ++FI)
    611       if (*I != &*FI) break;
    612     if (I == E && FI == FE)
    613       return nullptr;
    614   }
    615 
    616   return CI;
    617 }
    618 
    619 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
    620                                        BasicBlock *&OldEntry,
    621                                        bool &TailCallsAreMarkedTail,
    622                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
    623                                        bool CannotTailCallElimCallsMarkedTail) {
    624   // If we are introducing accumulator recursion to eliminate operations after
    625   // the call instruction that are both associative and commutative, the initial
    626   // value for the accumulator is placed in this variable.  If this value is set
    627   // then we actually perform accumulator recursion elimination instead of
    628   // simple tail recursion elimination.  If the operation is an LLVM instruction
    629   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
    630   // we are handling the case when the return instruction returns a constant C
    631   // which is different to the constant returned by other return instructions
    632   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
    633   // special case of accumulator recursion, the operation being "return C".
    634   Value *AccumulatorRecursionEliminationInitVal = nullptr;
    635   Instruction *AccumulatorRecursionInstr = nullptr;
    636 
    637   // Ok, we found a potential tail call.  We can currently only transform the
    638   // tail call if all of the instructions between the call and the return are
    639   // movable to above the call itself, leaving the call next to the return.
    640   // Check that this is the case now.
    641   BasicBlock::iterator BBI = CI;
    642   for (++BBI; &*BBI != Ret; ++BBI) {
    643     if (CanMoveAboveCall(BBI, CI)) continue;
    644 
    645     // If we can't move the instruction above the call, it might be because it
    646     // is an associative and commutative operation that could be transformed
    647     // using accumulator recursion elimination.  Check to see if this is the
    648     // case, and if so, remember the initial accumulator value for later.
    649     if ((AccumulatorRecursionEliminationInitVal =
    650                            CanTransformAccumulatorRecursion(BBI, CI))) {
    651       // Yes, this is accumulator recursion.  Remember which instruction
    652       // accumulates.
    653       AccumulatorRecursionInstr = BBI;
    654     } else {
    655       return false;   // Otherwise, we cannot eliminate the tail recursion!
    656     }
    657   }
    658 
    659   // We can only transform call/return pairs that either ignore the return value
    660   // of the call and return void, ignore the value of the call and return a
    661   // constant, return the value returned by the tail call, or that are being
    662   // accumulator recursion variable eliminated.
    663   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
    664       !isa<UndefValue>(Ret->getReturnValue()) &&
    665       AccumulatorRecursionEliminationInitVal == nullptr &&
    666       !getCommonReturnValue(nullptr, CI)) {
    667     // One case remains that we are able to handle: the current return
    668     // instruction returns a constant, and all other return instructions
    669     // return a different constant.
    670     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
    671       return false; // Current return instruction does not return a constant.
    672     // Check that all other return instructions return a common constant.  If
    673     // so, record it in AccumulatorRecursionEliminationInitVal.
    674     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
    675     if (!AccumulatorRecursionEliminationInitVal)
    676       return false;
    677   }
    678 
    679   BasicBlock *BB = Ret->getParent();
    680   Function *F = BB->getParent();
    681 
    682   emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
    683                          "transforming tail recursion to loop");
    684 
    685   // OK! We can transform this tail call.  If this is the first one found,
    686   // create the new entry block, allowing us to branch back to the old entry.
    687   if (!OldEntry) {
    688     OldEntry = &F->getEntryBlock();
    689     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
    690     NewEntry->takeName(OldEntry);
    691     OldEntry->setName("tailrecurse");
    692     BranchInst::Create(OldEntry, NewEntry);
    693 
    694     // If this tail call is marked 'tail' and if there are any allocas in the
    695     // entry block, move them up to the new entry block.
    696     TailCallsAreMarkedTail = CI->isTailCall();
    697     if (TailCallsAreMarkedTail)
    698       // Move all fixed sized allocas from OldEntry to NewEntry.
    699       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
    700              NEBI = NewEntry->begin(); OEBI != E; )
    701         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
    702           if (isa<ConstantInt>(AI->getArraySize()))
    703             AI->moveBefore(NEBI);
    704 
    705     // Now that we have created a new block, which jumps to the entry
    706     // block, insert a PHI node for each argument of the function.
    707     // For now, we initialize each PHI to only have the real arguments
    708     // which are passed in.
    709     Instruction *InsertPos = OldEntry->begin();
    710     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    711          I != E; ++I) {
    712       PHINode *PN = PHINode::Create(I->getType(), 2,
    713                                     I->getName() + ".tr", InsertPos);
    714       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
    715       PN->addIncoming(I, NewEntry);
    716       ArgumentPHIs.push_back(PN);
    717     }
    718   }
    719 
    720   // If this function has self recursive calls in the tail position where some
    721   // are marked tail and some are not, only transform one flavor or another.  We
    722   // have to choose whether we move allocas in the entry block to the new entry
    723   // block or not, so we can't make a good choice for both.  NOTE: We could do
    724   // slightly better here in the case that the function has no entry block
    725   // allocas.
    726   if (TailCallsAreMarkedTail && !CI->isTailCall())
    727     return false;
    728 
    729   // Ok, now that we know we have a pseudo-entry block WITH all of the
    730   // required PHI nodes, add entries into the PHI node for the actual
    731   // parameters passed into the tail-recursive call.
    732   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
    733     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
    734 
    735   // If we are introducing an accumulator variable to eliminate the recursion,
    736   // do so now.  Note that we _know_ that no subsequent tail recursion
    737   // eliminations will happen on this function because of the way the
    738   // accumulator recursion predicate is set up.
    739   //
    740   if (AccumulatorRecursionEliminationInitVal) {
    741     Instruction *AccRecInstr = AccumulatorRecursionInstr;
    742     // Start by inserting a new PHI node for the accumulator.
    743     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
    744     PHINode *AccPN =
    745       PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
    746                       std::distance(PB, PE) + 1,
    747                       "accumulator.tr", OldEntry->begin());
    748 
    749     // Loop over all of the predecessors of the tail recursion block.  For the
    750     // real entry into the function we seed the PHI with the initial value,
    751     // computed earlier.  For any other existing branches to this block (due to
    752     // other tail recursions eliminated) the accumulator is not modified.
    753     // Because we haven't added the branch in the current block to OldEntry yet,
    754     // it will not show up as a predecessor.
    755     for (pred_iterator PI = PB; PI != PE; ++PI) {
    756       BasicBlock *P = *PI;
    757       if (P == &F->getEntryBlock())
    758         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
    759       else
    760         AccPN->addIncoming(AccPN, P);
    761     }
    762 
    763     if (AccRecInstr) {
    764       // Add an incoming argument for the current block, which is computed by
    765       // our associative and commutative accumulator instruction.
    766       AccPN->addIncoming(AccRecInstr, BB);
    767 
    768       // Next, rewrite the accumulator recursion instruction so that it does not
    769       // use the result of the call anymore, instead, use the PHI node we just
    770       // inserted.
    771       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
    772     } else {
    773       // Add an incoming argument for the current block, which is just the
    774       // constant returned by the current return instruction.
    775       AccPN->addIncoming(Ret->getReturnValue(), BB);
    776     }
    777 
    778     // Finally, rewrite any return instructions in the program to return the PHI
    779     // node instead of the "initval" that they do currently.  This loop will
    780     // actually rewrite the return value we are destroying, but that's ok.
    781     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
    782       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
    783         RI->setOperand(0, AccPN);
    784     ++NumAccumAdded;
    785   }
    786 
    787   // Now that all of the PHI nodes are in place, remove the call and
    788   // ret instructions, replacing them with an unconditional branch.
    789   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
    790   NewBI->setDebugLoc(CI->getDebugLoc());
    791 
    792   BB->getInstList().erase(Ret);  // Remove return.
    793   BB->getInstList().erase(CI);   // Remove call.
    794   ++NumEliminated;
    795   return true;
    796 }
    797 
    798 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
    799                                        ReturnInst *Ret, BasicBlock *&OldEntry,
    800                                        bool &TailCallsAreMarkedTail,
    801                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
    802                                        bool CannotTailCallElimCallsMarkedTail) {
    803   bool Change = false;
    804 
    805   // If the return block contains nothing but the return and PHI's,
    806   // there might be an opportunity to duplicate the return in its
    807   // predecessors and perform TRC there. Look for predecessors that end
    808   // in unconditional branch and recursive call(s).
    809   SmallVector<BranchInst*, 8> UncondBranchPreds;
    810   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    811     BasicBlock *Pred = *PI;
    812     TerminatorInst *PTI = Pred->getTerminator();
    813     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
    814       if (BI->isUnconditional())
    815         UncondBranchPreds.push_back(BI);
    816   }
    817 
    818   while (!UncondBranchPreds.empty()) {
    819     BranchInst *BI = UncondBranchPreds.pop_back_val();
    820     BasicBlock *Pred = BI->getParent();
    821     if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
    822       DEBUG(dbgs() << "FOLDING: " << *BB
    823             << "INTO UNCOND BRANCH PRED: " << *Pred);
    824       EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
    825                                  OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
    826                                  CannotTailCallElimCallsMarkedTail);
    827       ++NumRetDuped;
    828       Change = true;
    829     }
    830   }
    831 
    832   return Change;
    833 }
    834 
    835 bool
    836 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
    837                                     bool &TailCallsAreMarkedTail,
    838                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
    839                                     bool CannotTailCallElimCallsMarkedTail) {
    840   CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
    841   if (!CI)
    842     return false;
    843 
    844   return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
    845                                     ArgumentPHIs,
    846                                     CannotTailCallElimCallsMarkedTail);
    847 }
    848