Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines structures to encapsulate information gleaned from the
     11 // target register and register class definitions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CodeGenRegisters.h"
     16 #include "CodeGenTarget.h"
     17 #include "llvm/ADT/IntEqClasses.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/ADT/Twine.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/TableGen/Error.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "regalloc-emitter"
     28 
     29 //===----------------------------------------------------------------------===//
     30 //                             CodeGenSubRegIndex
     31 //===----------------------------------------------------------------------===//
     32 
     33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
     34   : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
     35   Name = R->getName();
     36   if (R->getValue("Namespace"))
     37     Namespace = R->getValueAsString("Namespace");
     38   Size = R->getValueAsInt("Size");
     39   Offset = R->getValueAsInt("Offset");
     40 }
     41 
     42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
     43                                        unsigned Enum)
     44   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
     45     EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
     46 }
     47 
     48 std::string CodeGenSubRegIndex::getQualifiedName() const {
     49   std::string N = getNamespace();
     50   if (!N.empty())
     51     N += "::";
     52   N += getName();
     53   return N;
     54 }
     55 
     56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
     57   if (!TheDef)
     58     return;
     59 
     60   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
     61   if (!Comps.empty()) {
     62     if (Comps.size() != 2)
     63       PrintFatalError(TheDef->getLoc(),
     64                       "ComposedOf must have exactly two entries");
     65     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
     66     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
     67     CodeGenSubRegIndex *X = A->addComposite(B, this);
     68     if (X)
     69       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
     70   }
     71 
     72   std::vector<Record*> Parts =
     73     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
     74   if (!Parts.empty()) {
     75     if (Parts.size() < 2)
     76       PrintFatalError(TheDef->getLoc(),
     77                       "CoveredBySubRegs must have two or more entries");
     78     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
     79     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
     80       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
     81     RegBank.addConcatSubRegIndex(IdxParts, this);
     82   }
     83 }
     84 
     85 unsigned CodeGenSubRegIndex::computeLaneMask() {
     86   // Already computed?
     87   if (LaneMask)
     88     return LaneMask;
     89 
     90   // Recursion guard, shouldn't be required.
     91   LaneMask = ~0u;
     92 
     93   // The lane mask is simply the union of all sub-indices.
     94   unsigned M = 0;
     95   for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I)
     96     M |= I->second->computeLaneMask();
     97   assert(M && "Missing lane mask, sub-register cycle?");
     98   LaneMask = M;
     99   return LaneMask;
    100 }
    101 
    102 //===----------------------------------------------------------------------===//
    103 //                              CodeGenRegister
    104 //===----------------------------------------------------------------------===//
    105 
    106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
    107   : TheDef(R),
    108     EnumValue(Enum),
    109     CostPerUse(R->getValueAsInt("CostPerUse")),
    110     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
    111     NumNativeRegUnits(0),
    112     SubRegsComplete(false),
    113     SuperRegsComplete(false),
    114     TopoSig(~0u)
    115 {}
    116 
    117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
    118   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
    119   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
    120 
    121   if (SRIs.size() != SRs.size())
    122     PrintFatalError(TheDef->getLoc(),
    123                     "SubRegs and SubRegIndices must have the same size");
    124 
    125   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
    126     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
    127     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
    128   }
    129 
    130   // Also compute leading super-registers. Each register has a list of
    131   // covered-by-subregs super-registers where it appears as the first explicit
    132   // sub-register.
    133   //
    134   // This is used by computeSecondarySubRegs() to find candidates.
    135   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
    136     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
    137 
    138   // Add ad hoc alias links. This is a symmetric relationship between two
    139   // registers, so build a symmetric graph by adding links in both ends.
    140   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
    141   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
    142     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
    143     ExplicitAliases.push_back(Reg);
    144     Reg->ExplicitAliases.push_back(this);
    145   }
    146 }
    147 
    148 const std::string &CodeGenRegister::getName() const {
    149   return TheDef->getName();
    150 }
    151 
    152 namespace {
    153 // Iterate over all register units in a set of registers.
    154 class RegUnitIterator {
    155   CodeGenRegister::Set::const_iterator RegI, RegE;
    156   CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
    157 
    158 public:
    159   RegUnitIterator(const CodeGenRegister::Set &Regs):
    160     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
    161 
    162     if (RegI != RegE) {
    163       UnitI = (*RegI)->getRegUnits().begin();
    164       UnitE = (*RegI)->getRegUnits().end();
    165       advance();
    166     }
    167   }
    168 
    169   bool isValid() const { return UnitI != UnitE; }
    170 
    171   unsigned operator* () const { assert(isValid()); return *UnitI; }
    172 
    173   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
    174 
    175   /// Preincrement.  Move to the next unit.
    176   void operator++() {
    177     assert(isValid() && "Cannot advance beyond the last operand");
    178     ++UnitI;
    179     advance();
    180   }
    181 
    182 protected:
    183   void advance() {
    184     while (UnitI == UnitE) {
    185       if (++RegI == RegE)
    186         break;
    187       UnitI = (*RegI)->getRegUnits().begin();
    188       UnitE = (*RegI)->getRegUnits().end();
    189     }
    190   }
    191 };
    192 } // namespace
    193 
    194 // Merge two RegUnitLists maintaining the order and removing duplicates.
    195 // Overwrites MergedRU in the process.
    196 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
    197                           const CodeGenRegister::RegUnitList &RRU) {
    198   CodeGenRegister::RegUnitList LRU = MergedRU;
    199   MergedRU.clear();
    200   std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
    201                  std::back_inserter(MergedRU));
    202 }
    203 
    204 // Return true of this unit appears in RegUnits.
    205 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
    206   return std::count(RegUnits.begin(), RegUnits.end(), Unit);
    207 }
    208 
    209 // Inherit register units from subregisters.
    210 // Return true if the RegUnits changed.
    211 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
    212   unsigned OldNumUnits = RegUnits.size();
    213   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    214        I != E; ++I) {
    215     CodeGenRegister *SR = I->second;
    216     // Merge the subregister's units into this register's RegUnits.
    217     mergeRegUnits(RegUnits, SR->RegUnits);
    218   }
    219   return OldNumUnits != RegUnits.size();
    220 }
    221 
    222 const CodeGenRegister::SubRegMap &
    223 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
    224   // Only compute this map once.
    225   if (SubRegsComplete)
    226     return SubRegs;
    227   SubRegsComplete = true;
    228 
    229   // First insert the explicit subregs and make sure they are fully indexed.
    230   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    231     CodeGenRegister *SR = ExplicitSubRegs[i];
    232     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
    233     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
    234       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
    235                       " appears twice in Register " + getName());
    236     // Map explicit sub-registers first, so the names take precedence.
    237     // The inherited sub-registers are mapped below.
    238     SubReg2Idx.insert(std::make_pair(SR, Idx));
    239   }
    240 
    241   // Keep track of inherited subregs and how they can be reached.
    242   SmallPtrSet<CodeGenRegister*, 8> Orphans;
    243 
    244   // Clone inherited subregs and place duplicate entries in Orphans.
    245   // Here the order is important - earlier subregs take precedence.
    246   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    247     CodeGenRegister *SR = ExplicitSubRegs[i];
    248     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    249 
    250     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    251          ++SI) {
    252       if (!SubRegs.insert(*SI).second)
    253         Orphans.insert(SI->second);
    254     }
    255   }
    256 
    257   // Expand any composed subreg indices.
    258   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
    259   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
    260   // expanded subreg indices recursively.
    261   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
    262   for (unsigned i = 0; i != Indices.size(); ++i) {
    263     CodeGenSubRegIndex *Idx = Indices[i];
    264     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
    265     CodeGenRegister *SR = SubRegs[Idx];
    266     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    267 
    268     // Look at the possible compositions of Idx.
    269     // They may not all be supported by SR.
    270     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
    271            E = Comps.end(); I != E; ++I) {
    272       SubRegMap::const_iterator SRI = Map.find(I->first);
    273       if (SRI == Map.end())
    274         continue; // Idx + I->first doesn't exist in SR.
    275       // Add I->second as a name for the subreg SRI->second, assuming it is
    276       // orphaned, and the name isn't already used for something else.
    277       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
    278         continue;
    279       // We found a new name for the orphaned sub-register.
    280       SubRegs.insert(std::make_pair(I->second, SRI->second));
    281       Indices.push_back(I->second);
    282     }
    283   }
    284 
    285   // Now Orphans contains the inherited subregisters without a direct index.
    286   // Create inferred indexes for all missing entries.
    287   // Work backwards in the Indices vector in order to compose subregs bottom-up.
    288   // Consider this subreg sequence:
    289   //
    290   //   qsub_1 -> dsub_0 -> ssub_0
    291   //
    292   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
    293   // can be reached in two different ways:
    294   //
    295   //   qsub_1 -> ssub_0
    296   //   dsub_2 -> ssub_0
    297   //
    298   // We pick the latter composition because another register may have [dsub_0,
    299   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
    300   // dsub_2 -> ssub_0 composition can be shared.
    301   while (!Indices.empty() && !Orphans.empty()) {
    302     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
    303     CodeGenRegister *SR = SubRegs[Idx];
    304     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    305     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    306          ++SI)
    307       if (Orphans.erase(SI->second))
    308         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
    309   }
    310 
    311   // Compute the inverse SubReg -> Idx map.
    312   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
    313        SI != SE; ++SI) {
    314     if (SI->second == this) {
    315       ArrayRef<SMLoc> Loc;
    316       if (TheDef)
    317         Loc = TheDef->getLoc();
    318       PrintFatalError(Loc, "Register " + getName() +
    319                       " has itself as a sub-register");
    320     }
    321 
    322     // Compute AllSuperRegsCovered.
    323     if (!CoveredBySubRegs)
    324       SI->first->AllSuperRegsCovered = false;
    325 
    326     // Ensure that every sub-register has a unique name.
    327     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
    328       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
    329     if (Ins->second == SI->first)
    330       continue;
    331     // Trouble: Two different names for SI->second.
    332     ArrayRef<SMLoc> Loc;
    333     if (TheDef)
    334       Loc = TheDef->getLoc();
    335     PrintFatalError(Loc, "Sub-register can't have two names: " +
    336                   SI->second->getName() + " available as " +
    337                   SI->first->getName() + " and " + Ins->second->getName());
    338   }
    339 
    340   // Derive possible names for sub-register concatenations from any explicit
    341   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
    342   // that getConcatSubRegIndex() won't invent any concatenated indices that the
    343   // user already specified.
    344   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    345     CodeGenRegister *SR = ExplicitSubRegs[i];
    346     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
    347       continue;
    348 
    349     // SR is composed of multiple sub-regs. Find their names in this register.
    350     SmallVector<CodeGenSubRegIndex*, 8> Parts;
    351     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
    352       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
    353 
    354     // Offer this as an existing spelling for the concatenation of Parts.
    355     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
    356   }
    357 
    358   // Initialize RegUnitList. Because getSubRegs is called recursively, this
    359   // processes the register hierarchy in postorder.
    360   //
    361   // Inherit all sub-register units. It is good enough to look at the explicit
    362   // sub-registers, the other registers won't contribute any more units.
    363   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    364     CodeGenRegister *SR = ExplicitSubRegs[i];
    365     // Explicit sub-registers are usually disjoint, so this is a good way of
    366     // computing the union. We may pick up a few duplicates that will be
    367     // eliminated below.
    368     unsigned N = RegUnits.size();
    369     RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
    370     std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
    371   }
    372   RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
    373 
    374   // Absent any ad hoc aliasing, we create one register unit per leaf register.
    375   // These units correspond to the maximal cliques in the register overlap
    376   // graph which is optimal.
    377   //
    378   // When there is ad hoc aliasing, we simply create one unit per edge in the
    379   // undirected ad hoc aliasing graph. Technically, we could do better by
    380   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
    381   // are extremely rare anyway (I've never seen one), so we don't bother with
    382   // the added complexity.
    383   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
    384     CodeGenRegister *AR = ExplicitAliases[i];
    385     // Only visit each edge once.
    386     if (AR->SubRegsComplete)
    387       continue;
    388     // Create a RegUnit representing this alias edge, and add it to both
    389     // registers.
    390     unsigned Unit = RegBank.newRegUnit(this, AR);
    391     RegUnits.push_back(Unit);
    392     AR->RegUnits.push_back(Unit);
    393   }
    394 
    395   // Finally, create units for leaf registers without ad hoc aliases. Note that
    396   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
    397   // necessary. This means the aliasing leaf registers can share a single unit.
    398   if (RegUnits.empty())
    399     RegUnits.push_back(RegBank.newRegUnit(this));
    400 
    401   // We have now computed the native register units. More may be adopted later
    402   // for balancing purposes.
    403   NumNativeRegUnits = RegUnits.size();
    404 
    405   return SubRegs;
    406 }
    407 
    408 // In a register that is covered by its sub-registers, try to find redundant
    409 // sub-registers. For example:
    410 //
    411 //   QQ0 = {Q0, Q1}
    412 //   Q0 = {D0, D1}
    413 //   Q1 = {D2, D3}
    414 //
    415 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
    416 // the register definition.
    417 //
    418 // The explicitly specified registers form a tree. This function discovers
    419 // sub-register relationships that would force a DAG.
    420 //
    421 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
    422   // Collect new sub-registers first, add them later.
    423   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
    424 
    425   // Look at the leading super-registers of each sub-register. Those are the
    426   // candidates for new sub-registers, assuming they are fully contained in
    427   // this register.
    428   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
    429     const CodeGenRegister *SubReg = I->second;
    430     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
    431     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
    432       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
    433       // Already got this sub-register?
    434       if (Cand == this || getSubRegIndex(Cand))
    435         continue;
    436       // Check if each component of Cand is already a sub-register.
    437       // We know that the first component is I->second, and is present with the
    438       // name I->first.
    439       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
    440       assert(!Cand->ExplicitSubRegs.empty() &&
    441              "Super-register has no sub-registers");
    442       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
    443         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
    444           Parts.push_back(Idx);
    445         else {
    446           // Sub-register doesn't exist.
    447           Parts.clear();
    448           break;
    449         }
    450       }
    451       // If some Cand sub-register is not part of this register, or if Cand only
    452       // has one sub-register, there is nothing to do.
    453       if (Parts.size() <= 1)
    454         continue;
    455 
    456       // Each part of Cand is a sub-register of this. Make the full Cand also
    457       // a sub-register with a concatenated sub-register index.
    458       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
    459       NewSubRegs.push_back(std::make_pair(Concat, Cand));
    460     }
    461   }
    462 
    463   // Now add all the new sub-registers.
    464   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    465     // Don't add Cand if another sub-register is already using the index.
    466     if (!SubRegs.insert(NewSubRegs[i]).second)
    467       continue;
    468 
    469     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    470     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    471     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
    472   }
    473 
    474   // Create sub-register index composition maps for the synthesized indices.
    475   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    476     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    477     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    478     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
    479            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
    480       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
    481       if (!SubIdx)
    482         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
    483                         SI->second->getName() + " in " + getName());
    484       NewIdx->addComposite(SI->first, SubIdx);
    485     }
    486   }
    487 }
    488 
    489 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
    490   // Only visit each register once.
    491   if (SuperRegsComplete)
    492     return;
    493   SuperRegsComplete = true;
    494 
    495   // Make sure all sub-registers have been visited first, so the super-reg
    496   // lists will be topologically ordered.
    497   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    498        I != E; ++I)
    499     I->second->computeSuperRegs(RegBank);
    500 
    501   // Now add this as a super-register on all sub-registers.
    502   // Also compute the TopoSigId in post-order.
    503   TopoSigId Id;
    504   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    505        I != E; ++I) {
    506     // Topological signature computed from SubIdx, TopoId(SubReg).
    507     // Loops and idempotent indices have TopoSig = ~0u.
    508     Id.push_back(I->first->EnumValue);
    509     Id.push_back(I->second->TopoSig);
    510 
    511     // Don't add duplicate entries.
    512     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
    513       continue;
    514     I->second->SuperRegs.push_back(this);
    515   }
    516   TopoSig = RegBank.getTopoSig(Id);
    517 }
    518 
    519 void
    520 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
    521                                     CodeGenRegBank &RegBank) const {
    522   assert(SubRegsComplete && "Must precompute sub-registers");
    523   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    524     CodeGenRegister *SR = ExplicitSubRegs[i];
    525     if (OSet.insert(SR))
    526       SR->addSubRegsPreOrder(OSet, RegBank);
    527   }
    528   // Add any secondary sub-registers that weren't part of the explicit tree.
    529   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    530        I != E; ++I)
    531     OSet.insert(I->second);
    532 }
    533 
    534 // Get the sum of this register's unit weights.
    535 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
    536   unsigned Weight = 0;
    537   for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
    538        I != E; ++I) {
    539     Weight += RegBank.getRegUnit(*I).Weight;
    540   }
    541   return Weight;
    542 }
    543 
    544 //===----------------------------------------------------------------------===//
    545 //                               RegisterTuples
    546 //===----------------------------------------------------------------------===//
    547 
    548 // A RegisterTuples def is used to generate pseudo-registers from lists of
    549 // sub-registers. We provide a SetTheory expander class that returns the new
    550 // registers.
    551 namespace {
    552 struct TupleExpander : SetTheory::Expander {
    553   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
    554     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
    555     unsigned Dim = Indices.size();
    556     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
    557     if (Dim != SubRegs->getSize())
    558       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
    559     if (Dim < 2)
    560       PrintFatalError(Def->getLoc(),
    561                       "Tuples must have at least 2 sub-registers");
    562 
    563     // Evaluate the sub-register lists to be zipped.
    564     unsigned Length = ~0u;
    565     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
    566     for (unsigned i = 0; i != Dim; ++i) {
    567       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
    568       Length = std::min(Length, unsigned(Lists[i].size()));
    569     }
    570 
    571     if (Length == 0)
    572       return;
    573 
    574     // Precompute some types.
    575     Record *RegisterCl = Def->getRecords().getClass("Register");
    576     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
    577     StringInit *BlankName = StringInit::get("");
    578 
    579     // Zip them up.
    580     for (unsigned n = 0; n != Length; ++n) {
    581       std::string Name;
    582       Record *Proto = Lists[0][n];
    583       std::vector<Init*> Tuple;
    584       unsigned CostPerUse = 0;
    585       for (unsigned i = 0; i != Dim; ++i) {
    586         Record *Reg = Lists[i][n];
    587         if (i) Name += '_';
    588         Name += Reg->getName();
    589         Tuple.push_back(DefInit::get(Reg));
    590         CostPerUse = std::max(CostPerUse,
    591                               unsigned(Reg->getValueAsInt("CostPerUse")));
    592       }
    593 
    594       // Create a new Record representing the synthesized register. This record
    595       // is only for consumption by CodeGenRegister, it is not added to the
    596       // RecordKeeper.
    597       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
    598       Elts.insert(NewReg);
    599 
    600       // Copy Proto super-classes.
    601       ArrayRef<Record *> Supers = Proto->getSuperClasses();
    602       ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
    603       for (unsigned i = 0, e = Supers.size(); i != e; ++i)
    604         NewReg->addSuperClass(Supers[i], Ranges[i]);
    605 
    606       // Copy Proto fields.
    607       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
    608         RecordVal RV = Proto->getValues()[i];
    609 
    610         // Skip existing fields, like NAME.
    611         if (NewReg->getValue(RV.getNameInit()))
    612           continue;
    613 
    614         StringRef Field = RV.getName();
    615 
    616         // Replace the sub-register list with Tuple.
    617         if (Field == "SubRegs")
    618           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
    619 
    620         // Provide a blank AsmName. MC hacks are required anyway.
    621         if (Field == "AsmName")
    622           RV.setValue(BlankName);
    623 
    624         // CostPerUse is aggregated from all Tuple members.
    625         if (Field == "CostPerUse")
    626           RV.setValue(IntInit::get(CostPerUse));
    627 
    628         // Composite registers are always covered by sub-registers.
    629         if (Field == "CoveredBySubRegs")
    630           RV.setValue(BitInit::get(true));
    631 
    632         // Copy fields from the RegisterTuples def.
    633         if (Field == "SubRegIndices" ||
    634             Field == "CompositeIndices") {
    635           NewReg->addValue(*Def->getValue(Field));
    636           continue;
    637         }
    638 
    639         // Some fields get their default uninitialized value.
    640         if (Field == "DwarfNumbers" ||
    641             Field == "DwarfAlias" ||
    642             Field == "Aliases") {
    643           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
    644             NewReg->addValue(*DefRV);
    645           continue;
    646         }
    647 
    648         // Everything else is copied from Proto.
    649         NewReg->addValue(RV);
    650       }
    651     }
    652   }
    653 };
    654 }
    655 
    656 //===----------------------------------------------------------------------===//
    657 //                            CodeGenRegisterClass
    658 //===----------------------------------------------------------------------===//
    659 
    660 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
    661   : TheDef(R),
    662     Name(R->getName()),
    663     TopoSigs(RegBank.getNumTopoSigs()),
    664     EnumValue(-1) {
    665   // Rename anonymous register classes.
    666   if (R->getName().size() > 9 && R->getName()[9] == '.') {
    667     static unsigned AnonCounter = 0;
    668     R->setName("AnonRegClass_" + utostr(AnonCounter));
    669     // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr.
    670     ++AnonCounter;
    671   }
    672 
    673   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
    674   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    675     Record *Type = TypeList[i];
    676     if (!Type->isSubClassOf("ValueType"))
    677       PrintFatalError("RegTypes list member '" + Type->getName() +
    678         "' does not derive from the ValueType class!");
    679     VTs.push_back(getValueType(Type));
    680   }
    681   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
    682 
    683   // Allocation order 0 is the full set. AltOrders provides others.
    684   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
    685   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
    686   Orders.resize(1 + AltOrders->size());
    687 
    688   // Default allocation order always contains all registers.
    689   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
    690     Orders[0].push_back((*Elements)[i]);
    691     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
    692     Members.insert(Reg);
    693     TopoSigs.set(Reg->getTopoSig());
    694   }
    695 
    696   // Alternative allocation orders may be subsets.
    697   SetTheory::RecSet Order;
    698   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
    699     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
    700     Orders[1 + i].append(Order.begin(), Order.end());
    701     // Verify that all altorder members are regclass members.
    702     while (!Order.empty()) {
    703       CodeGenRegister *Reg = RegBank.getReg(Order.back());
    704       Order.pop_back();
    705       if (!contains(Reg))
    706         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
    707                       " is not a class member");
    708     }
    709   }
    710 
    711   // Allow targets to override the size in bits of the RegisterClass.
    712   unsigned Size = R->getValueAsInt("Size");
    713 
    714   Namespace = R->getValueAsString("Namespace");
    715   SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
    716   SpillAlignment = R->getValueAsInt("Alignment");
    717   CopyCost = R->getValueAsInt("CopyCost");
    718   Allocatable = R->getValueAsBit("isAllocatable");
    719   AltOrderSelect = R->getValueAsString("AltOrderSelect");
    720 }
    721 
    722 // Create an inferred register class that was missing from the .td files.
    723 // Most properties will be inherited from the closest super-class after the
    724 // class structure has been computed.
    725 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
    726                                            StringRef Name, Key Props)
    727   : Members(*Props.Members),
    728     TheDef(nullptr),
    729     Name(Name),
    730     TopoSigs(RegBank.getNumTopoSigs()),
    731     EnumValue(-1),
    732     SpillSize(Props.SpillSize),
    733     SpillAlignment(Props.SpillAlignment),
    734     CopyCost(0),
    735     Allocatable(true) {
    736   for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
    737        I != E; ++I)
    738     TopoSigs.set((*I)->getTopoSig());
    739 }
    740 
    741 // Compute inherited propertied for a synthesized register class.
    742 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
    743   assert(!getDef() && "Only synthesized classes can inherit properties");
    744   assert(!SuperClasses.empty() && "Synthesized class without super class");
    745 
    746   // The last super-class is the smallest one.
    747   CodeGenRegisterClass &Super = *SuperClasses.back();
    748 
    749   // Most properties are copied directly.
    750   // Exceptions are members, size, and alignment
    751   Namespace = Super.Namespace;
    752   VTs = Super.VTs;
    753   CopyCost = Super.CopyCost;
    754   Allocatable = Super.Allocatable;
    755   AltOrderSelect = Super.AltOrderSelect;
    756 
    757   // Copy all allocation orders, filter out foreign registers from the larger
    758   // super-class.
    759   Orders.resize(Super.Orders.size());
    760   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
    761     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
    762       if (contains(RegBank.getReg(Super.Orders[i][j])))
    763         Orders[i].push_back(Super.Orders[i][j]);
    764 }
    765 
    766 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
    767   return Members.count(Reg);
    768 }
    769 
    770 namespace llvm {
    771   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
    772     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
    773     for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
    774          E = K.Members->end(); I != E; ++I)
    775       OS << ", " << (*I)->getName();
    776     return OS << " }";
    777   }
    778 }
    779 
    780 // This is a simple lexicographical order that can be used to search for sets.
    781 // It is not the same as the topological order provided by TopoOrderRC.
    782 bool CodeGenRegisterClass::Key::
    783 operator<(const CodeGenRegisterClass::Key &B) const {
    784   assert(Members && B.Members);
    785   return std::tie(*Members, SpillSize, SpillAlignment) <
    786          std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
    787 }
    788 
    789 // Returns true if RC is a strict subclass.
    790 // RC is a sub-class of this class if it is a valid replacement for any
    791 // instruction operand where a register of this classis required. It must
    792 // satisfy these conditions:
    793 //
    794 // 1. All RC registers are also in this.
    795 // 2. The RC spill size must not be smaller than our spill size.
    796 // 3. RC spill alignment must be compatible with ours.
    797 //
    798 static bool testSubClass(const CodeGenRegisterClass *A,
    799                          const CodeGenRegisterClass *B) {
    800   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
    801     A->SpillSize <= B->SpillSize &&
    802     std::includes(A->getMembers().begin(), A->getMembers().end(),
    803                   B->getMembers().begin(), B->getMembers().end(),
    804                   CodeGenRegister::Less());
    805 }
    806 
    807 /// Sorting predicate for register classes.  This provides a topological
    808 /// ordering that arranges all register classes before their sub-classes.
    809 ///
    810 /// Register classes with the same registers, spill size, and alignment form a
    811 /// clique.  They will be ordered alphabetically.
    812 ///
    813 static int TopoOrderRC(CodeGenRegisterClass *const *PA,
    814                        CodeGenRegisterClass *const *PB) {
    815   const CodeGenRegisterClass *A = *PA;
    816   const CodeGenRegisterClass *B = *PB;
    817   if (A == B)
    818     return 0;
    819 
    820   // Order by ascending spill size.
    821   if (A->SpillSize < B->SpillSize)
    822     return -1;
    823   if (A->SpillSize > B->SpillSize)
    824     return 1;
    825 
    826   // Order by ascending spill alignment.
    827   if (A->SpillAlignment < B->SpillAlignment)
    828     return -1;
    829   if (A->SpillAlignment > B->SpillAlignment)
    830     return 1;
    831 
    832   // Order by descending set size.  Note that the classes' allocation order may
    833   // not have been computed yet.  The Members set is always vaild.
    834   if (A->getMembers().size() > B->getMembers().size())
    835     return -1;
    836   if (A->getMembers().size() < B->getMembers().size())
    837     return 1;
    838 
    839   // Finally order by name as a tie breaker.
    840   return StringRef(A->getName()).compare(B->getName());
    841 }
    842 
    843 std::string CodeGenRegisterClass::getQualifiedName() const {
    844   if (Namespace.empty())
    845     return getName();
    846   else
    847     return Namespace + "::" + getName();
    848 }
    849 
    850 // Compute sub-classes of all register classes.
    851 // Assume the classes are ordered topologically.
    852 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
    853   ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
    854 
    855   // Visit backwards so sub-classes are seen first.
    856   for (unsigned rci = RegClasses.size(); rci; --rci) {
    857     CodeGenRegisterClass &RC = *RegClasses[rci - 1];
    858     RC.SubClasses.resize(RegClasses.size());
    859     RC.SubClasses.set(RC.EnumValue);
    860 
    861     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
    862     for (unsigned s = rci; s != RegClasses.size(); ++s) {
    863       if (RC.SubClasses.test(s))
    864         continue;
    865       CodeGenRegisterClass *SubRC = RegClasses[s];
    866       if (!testSubClass(&RC, SubRC))
    867         continue;
    868       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
    869       // check them again.
    870       RC.SubClasses |= SubRC->SubClasses;
    871     }
    872 
    873     // Sweep up missed clique members.  They will be immediately preceding RC.
    874     for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
    875       RC.SubClasses.set(s - 1);
    876   }
    877 
    878   // Compute the SuperClasses lists from the SubClasses vectors.
    879   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
    880     const BitVector &SC = RegClasses[rci]->getSubClasses();
    881     for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
    882       if (unsigned(s) == rci)
    883         continue;
    884       RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
    885     }
    886   }
    887 
    888   // With the class hierarchy in place, let synthesized register classes inherit
    889   // properties from their closest super-class. The iteration order here can
    890   // propagate properties down multiple levels.
    891   for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
    892     if (!RegClasses[rci]->getDef())
    893       RegClasses[rci]->inheritProperties(RegBank);
    894 }
    895 
    896 void
    897 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
    898                                          BitVector &Out) const {
    899   DenseMap<CodeGenSubRegIndex*,
    900            SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
    901     FindI = SuperRegClasses.find(SubIdx);
    902   if (FindI == SuperRegClasses.end())
    903     return;
    904   for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
    905        FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
    906     Out.set((*I)->EnumValue);
    907 }
    908 
    909 // Populate a unique sorted list of units from a register set.
    910 void CodeGenRegisterClass::buildRegUnitSet(
    911   std::vector<unsigned> &RegUnits) const {
    912   std::vector<unsigned> TmpUnits;
    913   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
    914     TmpUnits.push_back(*UnitI);
    915   std::sort(TmpUnits.begin(), TmpUnits.end());
    916   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
    917                    std::back_inserter(RegUnits));
    918 }
    919 
    920 //===----------------------------------------------------------------------===//
    921 //                               CodeGenRegBank
    922 //===----------------------------------------------------------------------===//
    923 
    924 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
    925   // Configure register Sets to understand register classes and tuples.
    926   Sets.addFieldExpander("RegisterClass", "MemberList");
    927   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
    928   Sets.addExpander("RegisterTuples", new TupleExpander());
    929 
    930   // Read in the user-defined (named) sub-register indices.
    931   // More indices will be synthesized later.
    932   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
    933   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
    934   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
    935     getSubRegIdx(SRIs[i]);
    936   // Build composite maps from ComposedOf fields.
    937   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
    938     SubRegIndices[i]->updateComponents(*this);
    939 
    940   // Read in the register definitions.
    941   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
    942   std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
    943   Registers.reserve(Regs.size());
    944   // Assign the enumeration values.
    945   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
    946     getReg(Regs[i]);
    947 
    948   // Expand tuples and number the new registers.
    949   std::vector<Record*> Tups =
    950     Records.getAllDerivedDefinitions("RegisterTuples");
    951 
    952   std::vector<Record*> TupRegsCopy;
    953   for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
    954     const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
    955     TupRegsCopy.reserve(TupRegs->size());
    956     TupRegsCopy.assign(TupRegs->begin(), TupRegs->end());
    957     std::sort(TupRegsCopy.begin(), TupRegsCopy.end(), LessRecordRegister());
    958     for (unsigned j = 0, je = TupRegsCopy.size(); j != je; ++j)
    959       getReg((TupRegsCopy)[j]);
    960     TupRegsCopy.clear();
    961   }
    962 
    963   // Now all the registers are known. Build the object graph of explicit
    964   // register-register references.
    965   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    966     Registers[i]->buildObjectGraph(*this);
    967 
    968   // Compute register name map.
    969   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    970     RegistersByName.GetOrCreateValue(
    971                        Registers[i]->TheDef->getValueAsString("AsmName"),
    972                        Registers[i]);
    973 
    974   // Precompute all sub-register maps.
    975   // This will create Composite entries for all inferred sub-register indices.
    976   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    977     Registers[i]->computeSubRegs(*this);
    978 
    979   // Infer even more sub-registers by combining leading super-registers.
    980   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    981     if (Registers[i]->CoveredBySubRegs)
    982       Registers[i]->computeSecondarySubRegs(*this);
    983 
    984   // After the sub-register graph is complete, compute the topologically
    985   // ordered SuperRegs list.
    986   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    987     Registers[i]->computeSuperRegs(*this);
    988 
    989   // Native register units are associated with a leaf register. They've all been
    990   // discovered now.
    991   NumNativeRegUnits = RegUnits.size();
    992 
    993   // Read in register class definitions.
    994   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
    995   if (RCs.empty())
    996     PrintFatalError("No 'RegisterClass' subclasses defined!");
    997 
    998   // Allocate user-defined register classes.
    999   RegClasses.reserve(RCs.size());
   1000   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
   1001     addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
   1002 
   1003   // Infer missing classes to create a full algebra.
   1004   computeInferredRegisterClasses();
   1005 
   1006   // Order register classes topologically and assign enum values.
   1007   array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
   1008   for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
   1009     RegClasses[i]->EnumValue = i;
   1010   CodeGenRegisterClass::computeSubClasses(*this);
   1011 }
   1012 
   1013 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
   1014 CodeGenSubRegIndex*
   1015 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
   1016   CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
   1017                                                    SubRegIndices.size() + 1);
   1018   SubRegIndices.push_back(Idx);
   1019   return Idx;
   1020 }
   1021 
   1022 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
   1023   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
   1024   if (Idx)
   1025     return Idx;
   1026   Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
   1027   SubRegIndices.push_back(Idx);
   1028   return Idx;
   1029 }
   1030 
   1031 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
   1032   CodeGenRegister *&Reg = Def2Reg[Def];
   1033   if (Reg)
   1034     return Reg;
   1035   Reg = new CodeGenRegister(Def, Registers.size() + 1);
   1036   Registers.push_back(Reg);
   1037   return Reg;
   1038 }
   1039 
   1040 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
   1041   RegClasses.push_back(RC);
   1042 
   1043   if (Record *Def = RC->getDef())
   1044     Def2RC.insert(std::make_pair(Def, RC));
   1045 
   1046   // Duplicate classes are rejected by insert().
   1047   // That's OK, we only care about the properties handled by CGRC::Key.
   1048   CodeGenRegisterClass::Key K(*RC);
   1049   Key2RC.insert(std::make_pair(K, RC));
   1050 }
   1051 
   1052 // Create a synthetic sub-class if it is missing.
   1053 CodeGenRegisterClass*
   1054 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
   1055                                     const CodeGenRegister::Set *Members,
   1056                                     StringRef Name) {
   1057   // Synthetic sub-class has the same size and alignment as RC.
   1058   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
   1059   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
   1060   if (FoundI != Key2RC.end())
   1061     return FoundI->second;
   1062 
   1063   // Sub-class doesn't exist, create a new one.
   1064   CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
   1065   addToMaps(NewRC);
   1066   return NewRC;
   1067 }
   1068 
   1069 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
   1070   if (CodeGenRegisterClass *RC = Def2RC[Def])
   1071     return RC;
   1072 
   1073   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
   1074 }
   1075 
   1076 CodeGenSubRegIndex*
   1077 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
   1078                                         CodeGenSubRegIndex *B) {
   1079   // Look for an existing entry.
   1080   CodeGenSubRegIndex *Comp = A->compose(B);
   1081   if (Comp)
   1082     return Comp;
   1083 
   1084   // None exists, synthesize one.
   1085   std::string Name = A->getName() + "_then_" + B->getName();
   1086   Comp = createSubRegIndex(Name, A->getNamespace());
   1087   A->addComposite(B, Comp);
   1088   return Comp;
   1089 }
   1090 
   1091 CodeGenSubRegIndex *CodeGenRegBank::
   1092 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
   1093   assert(Parts.size() > 1 && "Need two parts to concatenate");
   1094 
   1095   // Look for an existing entry.
   1096   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
   1097   if (Idx)
   1098     return Idx;
   1099 
   1100   // None exists, synthesize one.
   1101   std::string Name = Parts.front()->getName();
   1102   // Determine whether all parts are contiguous.
   1103   bool isContinuous = true;
   1104   unsigned Size = Parts.front()->Size;
   1105   unsigned LastOffset = Parts.front()->Offset;
   1106   unsigned LastSize = Parts.front()->Size;
   1107   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
   1108     Name += '_';
   1109     Name += Parts[i]->getName();
   1110     Size += Parts[i]->Size;
   1111     if (Parts[i]->Offset != (LastOffset + LastSize))
   1112       isContinuous = false;
   1113     LastOffset = Parts[i]->Offset;
   1114     LastSize = Parts[i]->Size;
   1115   }
   1116   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
   1117   Idx->Size = Size;
   1118   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
   1119   return Idx;
   1120 }
   1121 
   1122 void CodeGenRegBank::computeComposites() {
   1123   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
   1124   // and many registers will share TopoSigs on regular architectures.
   1125   BitVector TopoSigs(getNumTopoSigs());
   1126 
   1127   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1128     CodeGenRegister *Reg1 = Registers[i];
   1129 
   1130     // Skip identical subreg structures already processed.
   1131     if (TopoSigs.test(Reg1->getTopoSig()))
   1132       continue;
   1133     TopoSigs.set(Reg1->getTopoSig());
   1134 
   1135     const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
   1136     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
   1137          e1 = SRM1.end(); i1 != e1; ++i1) {
   1138       CodeGenSubRegIndex *Idx1 = i1->first;
   1139       CodeGenRegister *Reg2 = i1->second;
   1140       // Ignore identity compositions.
   1141       if (Reg1 == Reg2)
   1142         continue;
   1143       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
   1144       // Try composing Idx1 with another SubRegIndex.
   1145       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
   1146            e2 = SRM2.end(); i2 != e2; ++i2) {
   1147         CodeGenSubRegIndex *Idx2 = i2->first;
   1148         CodeGenRegister *Reg3 = i2->second;
   1149         // Ignore identity compositions.
   1150         if (Reg2 == Reg3)
   1151           continue;
   1152         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
   1153         CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
   1154         assert(Idx3 && "Sub-register doesn't have an index");
   1155 
   1156         // Conflicting composition? Emit a warning but allow it.
   1157         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
   1158           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
   1159                        " and " + Idx2->getQualifiedName() +
   1160                        " compose ambiguously as " + Prev->getQualifiedName() +
   1161                        " or " + Idx3->getQualifiedName());
   1162       }
   1163     }
   1164   }
   1165 }
   1166 
   1167 // Compute lane masks. This is similar to register units, but at the
   1168 // sub-register index level. Each bit in the lane mask is like a register unit
   1169 // class, and two lane masks will have a bit in common if two sub-register
   1170 // indices overlap in some register.
   1171 //
   1172 // Conservatively share a lane mask bit if two sub-register indices overlap in
   1173 // some registers, but not in others. That shouldn't happen a lot.
   1174 void CodeGenRegBank::computeSubRegIndexLaneMasks() {
   1175   // First assign individual bits to all the leaf indices.
   1176   unsigned Bit = 0;
   1177   // Determine mask of lanes that cover their registers.
   1178   CoveringLanes = ~0u;
   1179   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
   1180     CodeGenSubRegIndex *Idx = SubRegIndices[i];
   1181     if (Idx->getComposites().empty()) {
   1182       Idx->LaneMask = 1u << Bit;
   1183       // Share bit 31 in the unlikely case there are more than 32 leafs.
   1184       //
   1185       // Sharing bits is harmless; it allows graceful degradation in targets
   1186       // with more than 32 vector lanes. They simply get a limited resolution
   1187       // view of lanes beyond the 32nd.
   1188       //
   1189       // See also the comment for getSubRegIndexLaneMask().
   1190       if (Bit < 31)
   1191         ++Bit;
   1192       else
   1193         // Once bit 31 is shared among multiple leafs, the 'lane' it represents
   1194         // is no longer covering its registers.
   1195         CoveringLanes &= ~(1u << Bit);
   1196     } else {
   1197       Idx->LaneMask = 0;
   1198     }
   1199   }
   1200 
   1201   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
   1202   // by the sub-register graph? This doesn't occur in any known targets.
   1203 
   1204   // Inherit lanes from composites.
   1205   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
   1206     unsigned Mask = SubRegIndices[i]->computeLaneMask();
   1207     // If some super-registers without CoveredBySubRegs use this index, we can
   1208     // no longer assume that the lanes are covering their registers.
   1209     if (!SubRegIndices[i]->AllSuperRegsCovered)
   1210       CoveringLanes &= ~Mask;
   1211   }
   1212 }
   1213 
   1214 namespace {
   1215 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
   1216 // the transitive closure of the union of overlapping register
   1217 // classes. Together, the UberRegSets form a partition of the registers. If we
   1218 // consider overlapping register classes to be connected, then each UberRegSet
   1219 // is a set of connected components.
   1220 //
   1221 // An UberRegSet will likely be a horizontal slice of register names of
   1222 // the same width. Nontrivial subregisters should then be in a separate
   1223 // UberRegSet. But this property isn't required for valid computation of
   1224 // register unit weights.
   1225 //
   1226 // A Weight field caches the max per-register unit weight in each UberRegSet.
   1227 //
   1228 // A set of SingularDeterminants flags single units of some register in this set
   1229 // for which the unit weight equals the set weight. These units should not have
   1230 // their weight increased.
   1231 struct UberRegSet {
   1232   CodeGenRegister::Set Regs;
   1233   unsigned Weight;
   1234   CodeGenRegister::RegUnitList SingularDeterminants;
   1235 
   1236   UberRegSet(): Weight(0) {}
   1237 };
   1238 } // namespace
   1239 
   1240 // Partition registers into UberRegSets, where each set is the transitive
   1241 // closure of the union of overlapping register classes.
   1242 //
   1243 // UberRegSets[0] is a special non-allocatable set.
   1244 static void computeUberSets(std::vector<UberRegSet> &UberSets,
   1245                             std::vector<UberRegSet*> &RegSets,
   1246                             CodeGenRegBank &RegBank) {
   1247 
   1248   const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
   1249 
   1250   // The Register EnumValue is one greater than its index into Registers.
   1251   assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
   1252          "register enum value mismatch");
   1253 
   1254   // For simplicitly make the SetID the same as EnumValue.
   1255   IntEqClasses UberSetIDs(Registers.size()+1);
   1256   std::set<unsigned> AllocatableRegs;
   1257   for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
   1258 
   1259     CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
   1260     if (!RegClass->Allocatable)
   1261       continue;
   1262 
   1263     const CodeGenRegister::Set &Regs = RegClass->getMembers();
   1264     if (Regs.empty())
   1265       continue;
   1266 
   1267     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
   1268     assert(USetID && "register number 0 is invalid");
   1269 
   1270     AllocatableRegs.insert((*Regs.begin())->EnumValue);
   1271     for (CodeGenRegister::Set::const_iterator I = std::next(Regs.begin()),
   1272            E = Regs.end(); I != E; ++I) {
   1273       AllocatableRegs.insert((*I)->EnumValue);
   1274       UberSetIDs.join(USetID, (*I)->EnumValue);
   1275     }
   1276   }
   1277   // Combine non-allocatable regs.
   1278   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1279     unsigned RegNum = Registers[i]->EnumValue;
   1280     if (AllocatableRegs.count(RegNum))
   1281       continue;
   1282 
   1283     UberSetIDs.join(0, RegNum);
   1284   }
   1285   UberSetIDs.compress();
   1286 
   1287   // Make the first UberSet a special unallocatable set.
   1288   unsigned ZeroID = UberSetIDs[0];
   1289 
   1290   // Insert Registers into the UberSets formed by union-find.
   1291   // Do not resize after this.
   1292   UberSets.resize(UberSetIDs.getNumClasses());
   1293   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1294     const CodeGenRegister *Reg = Registers[i];
   1295     unsigned USetID = UberSetIDs[Reg->EnumValue];
   1296     if (!USetID)
   1297       USetID = ZeroID;
   1298     else if (USetID == ZeroID)
   1299       USetID = 0;
   1300 
   1301     UberRegSet *USet = &UberSets[USetID];
   1302     USet->Regs.insert(Reg);
   1303     RegSets[i] = USet;
   1304   }
   1305 }
   1306 
   1307 // Recompute each UberSet weight after changing unit weights.
   1308 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
   1309                                CodeGenRegBank &RegBank) {
   1310   // Skip the first unallocatable set.
   1311   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
   1312          E = UberSets.end(); I != E; ++I) {
   1313 
   1314     // Initialize all unit weights in this set, and remember the max units/reg.
   1315     const CodeGenRegister *Reg = nullptr;
   1316     unsigned MaxWeight = 0, Weight = 0;
   1317     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
   1318       if (Reg != UnitI.getReg()) {
   1319         if (Weight > MaxWeight)
   1320           MaxWeight = Weight;
   1321         Reg = UnitI.getReg();
   1322         Weight = 0;
   1323       }
   1324       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
   1325       if (!UWeight) {
   1326         UWeight = 1;
   1327         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
   1328       }
   1329       Weight += UWeight;
   1330     }
   1331     if (Weight > MaxWeight)
   1332       MaxWeight = Weight;
   1333     if (I->Weight != MaxWeight) {
   1334       DEBUG(
   1335         dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
   1336         for (CodeGenRegister::Set::iterator
   1337                UnitI = I->Regs.begin(), UnitE = I->Regs.end();
   1338              UnitI != UnitE; ++UnitI) {
   1339           dbgs() << " " << (*UnitI)->getName();
   1340         }
   1341         dbgs() << "\n");
   1342       // Update the set weight.
   1343       I->Weight = MaxWeight;
   1344     }
   1345 
   1346     // Find singular determinants.
   1347     for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
   1348            RegE = I->Regs.end(); RegI != RegE; ++RegI) {
   1349       if ((*RegI)->getRegUnits().size() == 1
   1350           && (*RegI)->getWeight(RegBank) == I->Weight)
   1351         mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
   1352     }
   1353   }
   1354 }
   1355 
   1356 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
   1357 // a register and its subregisters so that they have the same weight as their
   1358 // UberSet. Self-recursion processes the subregister tree in postorder so
   1359 // subregisters are normalized first.
   1360 //
   1361 // Side effects:
   1362 // - creates new adopted register units
   1363 // - causes superregisters to inherit adopted units
   1364 // - increases the weight of "singular" units
   1365 // - induces recomputation of UberWeights.
   1366 static bool normalizeWeight(CodeGenRegister *Reg,
   1367                             std::vector<UberRegSet> &UberSets,
   1368                             std::vector<UberRegSet*> &RegSets,
   1369                             std::set<unsigned> &NormalRegs,
   1370                             CodeGenRegister::RegUnitList &NormalUnits,
   1371                             CodeGenRegBank &RegBank) {
   1372   bool Changed = false;
   1373   if (!NormalRegs.insert(Reg->EnumValue).second)
   1374     return Changed;
   1375 
   1376   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
   1377   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
   1378          SRE = SRM.end(); SRI != SRE; ++SRI) {
   1379     if (SRI->second == Reg)
   1380       continue; // self-cycles happen
   1381 
   1382     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
   1383                                NormalRegs, NormalUnits, RegBank);
   1384   }
   1385   // Postorder register normalization.
   1386 
   1387   // Inherit register units newly adopted by subregisters.
   1388   if (Reg->inheritRegUnits(RegBank))
   1389     computeUberWeights(UberSets, RegBank);
   1390 
   1391   // Check if this register is too skinny for its UberRegSet.
   1392   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
   1393 
   1394   unsigned RegWeight = Reg->getWeight(RegBank);
   1395   if (UberSet->Weight > RegWeight) {
   1396     // A register unit's weight can be adjusted only if it is the singular unit
   1397     // for this register, has not been used to normalize a subregister's set,
   1398     // and has not already been used to singularly determine this UberRegSet.
   1399     unsigned AdjustUnit = Reg->getRegUnits().front();
   1400     if (Reg->getRegUnits().size() != 1
   1401         || hasRegUnit(NormalUnits, AdjustUnit)
   1402         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
   1403       // We don't have an adjustable unit, so adopt a new one.
   1404       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
   1405       Reg->adoptRegUnit(AdjustUnit);
   1406       // Adopting a unit does not immediately require recomputing set weights.
   1407     }
   1408     else {
   1409       // Adjust the existing single unit.
   1410       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
   1411       // The unit may be shared among sets and registers within this set.
   1412       computeUberWeights(UberSets, RegBank);
   1413     }
   1414     Changed = true;
   1415   }
   1416 
   1417   // Mark these units normalized so superregisters can't change their weights.
   1418   mergeRegUnits(NormalUnits, Reg->getRegUnits());
   1419 
   1420   return Changed;
   1421 }
   1422 
   1423 // Compute a weight for each register unit created during getSubRegs.
   1424 //
   1425 // The goal is that two registers in the same class will have the same weight,
   1426 // where each register's weight is defined as sum of its units' weights.
   1427 void CodeGenRegBank::computeRegUnitWeights() {
   1428   std::vector<UberRegSet> UberSets;
   1429   std::vector<UberRegSet*> RegSets(Registers.size());
   1430   computeUberSets(UberSets, RegSets, *this);
   1431   // UberSets and RegSets are now immutable.
   1432 
   1433   computeUberWeights(UberSets, *this);
   1434 
   1435   // Iterate over each Register, normalizing the unit weights until reaching
   1436   // a fix point.
   1437   unsigned NumIters = 0;
   1438   for (bool Changed = true; Changed; ++NumIters) {
   1439     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
   1440     Changed = false;
   1441     for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1442       CodeGenRegister::RegUnitList NormalUnits;
   1443       std::set<unsigned> NormalRegs;
   1444       Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
   1445                                  NormalRegs, NormalUnits, *this);
   1446     }
   1447   }
   1448 }
   1449 
   1450 // Find a set in UniqueSets with the same elements as Set.
   1451 // Return an iterator into UniqueSets.
   1452 static std::vector<RegUnitSet>::const_iterator
   1453 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
   1454                const RegUnitSet &Set) {
   1455   std::vector<RegUnitSet>::const_iterator
   1456     I = UniqueSets.begin(), E = UniqueSets.end();
   1457   for(;I != E; ++I) {
   1458     if (I->Units == Set.Units)
   1459       break;
   1460   }
   1461   return I;
   1462 }
   1463 
   1464 // Return true if the RUSubSet is a subset of RUSuperSet.
   1465 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
   1466                             const std::vector<unsigned> &RUSuperSet) {
   1467   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
   1468                        RUSubSet.begin(), RUSubSet.end());
   1469 }
   1470 
   1471 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
   1472 /// but with one or two registers removed. We occasionally have registers like
   1473 /// APSR and PC thrown in with the general registers. We also see many
   1474 /// special-purpose register subsets, such as tail-call and Thumb
   1475 /// encodings. Generating all possible overlapping sets is combinatorial and
   1476 /// overkill for modeling pressure. Ideally we could fix this statically in
   1477 /// tablegen by (1) having the target define register classes that only include
   1478 /// the allocatable registers and marking other classes as non-allocatable and
   1479 /// (2) having a way to mark special purpose classes as "don't-care" classes for
   1480 /// the purpose of pressure.  However, we make an attempt to handle targets that
   1481 /// are not nicely defined by merging nearly identical register unit sets
   1482 /// statically. This generates smaller tables. Then, dynamically, we adjust the
   1483 /// set limit by filtering the reserved registers.
   1484 ///
   1485 /// Merge sets only if the units have the same weight. For example, on ARM,
   1486 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
   1487 /// should not expand the S set to include D regs.
   1488 void CodeGenRegBank::pruneUnitSets() {
   1489   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
   1490 
   1491   // Form an equivalence class of UnitSets with no significant difference.
   1492   std::vector<unsigned> SuperSetIDs;
   1493   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
   1494        SubIdx != EndIdx; ++SubIdx) {
   1495     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
   1496     unsigned SuperIdx = 0;
   1497     for (; SuperIdx != EndIdx; ++SuperIdx) {
   1498       if (SuperIdx == SubIdx)
   1499         continue;
   1500 
   1501       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
   1502       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
   1503       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
   1504           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
   1505           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
   1506           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
   1507         DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
   1508               << "\n");
   1509         break;
   1510       }
   1511     }
   1512     if (SuperIdx == EndIdx)
   1513       SuperSetIDs.push_back(SubIdx);
   1514   }
   1515   // Populate PrunedUnitSets with each equivalence class's superset.
   1516   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
   1517   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
   1518     unsigned SuperIdx = SuperSetIDs[i];
   1519     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
   1520     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
   1521   }
   1522   RegUnitSets.swap(PrunedUnitSets);
   1523 }
   1524 
   1525 // Create a RegUnitSet for each RegClass that contains all units in the class
   1526 // including adopted units that are necessary to model register pressure. Then
   1527 // iteratively compute RegUnitSets such that the union of any two overlapping
   1528 // RegUnitSets is repreresented.
   1529 //
   1530 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
   1531 // RegUnitSet that is a superset of that RegUnitClass.
   1532 void CodeGenRegBank::computeRegUnitSets() {
   1533   assert(RegUnitSets.empty() && "dirty RegUnitSets");
   1534 
   1535   // Compute a unique RegUnitSet for each RegClass.
   1536   const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
   1537   unsigned NumRegClasses = RegClasses.size();
   1538   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
   1539     if (!RegClasses[RCIdx]->Allocatable)
   1540       continue;
   1541 
   1542     // Speculatively grow the RegUnitSets to hold the new set.
   1543     RegUnitSets.resize(RegUnitSets.size() + 1);
   1544     RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
   1545 
   1546     // Compute a sorted list of units in this class.
   1547     RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
   1548 
   1549     // Find an existing RegUnitSet.
   1550     std::vector<RegUnitSet>::const_iterator SetI =
   1551       findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1552     if (SetI != std::prev(RegUnitSets.end()))
   1553       RegUnitSets.pop_back();
   1554   }
   1555 
   1556   DEBUG(dbgs() << "\nBefore pruning:\n";
   1557         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1558              USIdx < USEnd; ++USIdx) {
   1559           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1560                  << ":";
   1561           ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
   1562           for (unsigned i = 0, e = Units.size(); i < e; ++i)
   1563             dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
   1564           dbgs() << "\n";
   1565         });
   1566 
   1567   // Iteratively prune unit sets.
   1568   pruneUnitSets();
   1569 
   1570   DEBUG(dbgs() << "\nBefore union:\n";
   1571         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1572              USIdx < USEnd; ++USIdx) {
   1573           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1574                  << ":";
   1575           ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
   1576           for (unsigned i = 0, e = Units.size(); i < e; ++i)
   1577             dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
   1578           dbgs() << "\n";
   1579         }
   1580         dbgs() << "\nUnion sets:\n");
   1581 
   1582   // Iterate over all unit sets, including new ones added by this loop.
   1583   unsigned NumRegUnitSubSets = RegUnitSets.size();
   1584   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1585     // In theory, this is combinatorial. In practice, it needs to be bounded
   1586     // by a small number of sets for regpressure to be efficient.
   1587     // If the assert is hit, we need to implement pruning.
   1588     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
   1589 
   1590     // Compare new sets with all original classes.
   1591     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
   1592          SearchIdx != EndIdx; ++SearchIdx) {
   1593       std::set<unsigned> Intersection;
   1594       std::set_intersection(RegUnitSets[Idx].Units.begin(),
   1595                             RegUnitSets[Idx].Units.end(),
   1596                             RegUnitSets[SearchIdx].Units.begin(),
   1597                             RegUnitSets[SearchIdx].Units.end(),
   1598                             std::inserter(Intersection, Intersection.begin()));
   1599       if (Intersection.empty())
   1600         continue;
   1601 
   1602       // Speculatively grow the RegUnitSets to hold the new set.
   1603       RegUnitSets.resize(RegUnitSets.size() + 1);
   1604       RegUnitSets.back().Name =
   1605         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
   1606 
   1607       std::set_union(RegUnitSets[Idx].Units.begin(),
   1608                      RegUnitSets[Idx].Units.end(),
   1609                      RegUnitSets[SearchIdx].Units.begin(),
   1610                      RegUnitSets[SearchIdx].Units.end(),
   1611                      std::inserter(RegUnitSets.back().Units,
   1612                                    RegUnitSets.back().Units.begin()));
   1613 
   1614       // Find an existing RegUnitSet, or add the union to the unique sets.
   1615       std::vector<RegUnitSet>::const_iterator SetI =
   1616         findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1617       if (SetI != std::prev(RegUnitSets.end()))
   1618         RegUnitSets.pop_back();
   1619       else {
   1620         DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
   1621               << " " << RegUnitSets.back().Name << ":";
   1622               ArrayRef<unsigned> Units = RegUnitSets.back().Units;
   1623               for (unsigned i = 0, e = Units.size(); i < e; ++i)
   1624                 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
   1625               dbgs() << "\n";);
   1626       }
   1627     }
   1628   }
   1629 
   1630   // Iteratively prune unit sets after inferring supersets.
   1631   pruneUnitSets();
   1632 
   1633   DEBUG(dbgs() << "\n";
   1634         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1635              USIdx < USEnd; ++USIdx) {
   1636           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1637                  << ":";
   1638           ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
   1639           for (unsigned i = 0, e = Units.size(); i < e; ++i)
   1640             dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
   1641           dbgs() << "\n";
   1642         });
   1643 
   1644   // For each register class, list the UnitSets that are supersets.
   1645   RegClassUnitSets.resize(NumRegClasses);
   1646   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
   1647     if (!RegClasses[RCIdx]->Allocatable)
   1648       continue;
   1649 
   1650     // Recompute the sorted list of units in this class.
   1651     std::vector<unsigned> RCRegUnits;
   1652     RegClasses[RCIdx]->buildRegUnitSet(RCRegUnits);
   1653 
   1654     // Don't increase pressure for unallocatable regclasses.
   1655     if (RCRegUnits.empty())
   1656       continue;
   1657 
   1658     DEBUG(dbgs() << "RC " << RegClasses[RCIdx]->getName() << " Units: \n";
   1659           for (unsigned i = 0, e = RCRegUnits.size(); i < e; ++i)
   1660             dbgs() << RegUnits[RCRegUnits[i]].getRoots()[0]->getName() << " ";
   1661           dbgs() << "\n  UnitSetIDs:");
   1662 
   1663     // Find all supersets.
   1664     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1665          USIdx != USEnd; ++USIdx) {
   1666       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
   1667         DEBUG(dbgs() << " " << USIdx);
   1668         RegClassUnitSets[RCIdx].push_back(USIdx);
   1669       }
   1670     }
   1671     DEBUG(dbgs() << "\n");
   1672     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
   1673   }
   1674 
   1675   // For each register unit, ensure that we have the list of UnitSets that
   1676   // contain the unit. Normally, this matches an existing list of UnitSets for a
   1677   // register class. If not, we create a new entry in RegClassUnitSets as a
   1678   // "fake" register class.
   1679   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
   1680        UnitIdx < UnitEnd; ++UnitIdx) {
   1681     std::vector<unsigned> RUSets;
   1682     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
   1683       RegUnitSet &RUSet = RegUnitSets[i];
   1684       if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
   1685           == RUSet.Units.end())
   1686         continue;
   1687       RUSets.push_back(i);
   1688     }
   1689     unsigned RCUnitSetsIdx = 0;
   1690     for (unsigned e = RegClassUnitSets.size();
   1691          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
   1692       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
   1693         break;
   1694       }
   1695     }
   1696     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
   1697     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
   1698       // Create a new list of UnitSets as a "fake" register class.
   1699       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
   1700       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
   1701     }
   1702   }
   1703 }
   1704 
   1705 void CodeGenRegBank::computeDerivedInfo() {
   1706   computeComposites();
   1707   computeSubRegIndexLaneMasks();
   1708 
   1709   // Compute a weight for each register unit created during getSubRegs.
   1710   // This may create adopted register units (with unit # >= NumNativeRegUnits).
   1711   computeRegUnitWeights();
   1712 
   1713   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
   1714   // supersets for the union of overlapping sets.
   1715   computeRegUnitSets();
   1716 
   1717   // Get the weight of each set.
   1718   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
   1719     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
   1720 
   1721   // Find the order of each set.
   1722   RegUnitSetOrder.reserve(RegUnitSets.size());
   1723   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
   1724     RegUnitSetOrder.push_back(Idx);
   1725 
   1726   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
   1727                    [this](unsigned ID1, unsigned ID2) {
   1728     return getRegPressureSet(ID1).Units.size() <
   1729            getRegPressureSet(ID2).Units.size();
   1730   });
   1731   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1732     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
   1733   }
   1734 }
   1735 
   1736 //
   1737 // Synthesize missing register class intersections.
   1738 //
   1739 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
   1740 // returns a maximal register class for all X.
   1741 //
   1742 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
   1743   for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
   1744     CodeGenRegisterClass *RC1 = RC;
   1745     CodeGenRegisterClass *RC2 = RegClasses[rci];
   1746     if (RC1 == RC2)
   1747       continue;
   1748 
   1749     // Compute the set intersection of RC1 and RC2.
   1750     const CodeGenRegister::Set &Memb1 = RC1->getMembers();
   1751     const CodeGenRegister::Set &Memb2 = RC2->getMembers();
   1752     CodeGenRegister::Set Intersection;
   1753     std::set_intersection(Memb1.begin(), Memb1.end(),
   1754                           Memb2.begin(), Memb2.end(),
   1755                           std::inserter(Intersection, Intersection.begin()),
   1756                           CodeGenRegister::Less());
   1757 
   1758     // Skip disjoint class pairs.
   1759     if (Intersection.empty())
   1760       continue;
   1761 
   1762     // If RC1 and RC2 have different spill sizes or alignments, use the
   1763     // larger size for sub-classing.  If they are equal, prefer RC1.
   1764     if (RC2->SpillSize > RC1->SpillSize ||
   1765         (RC2->SpillSize == RC1->SpillSize &&
   1766          RC2->SpillAlignment > RC1->SpillAlignment))
   1767       std::swap(RC1, RC2);
   1768 
   1769     getOrCreateSubClass(RC1, &Intersection,
   1770                         RC1->getName() + "_and_" + RC2->getName());
   1771   }
   1772 }
   1773 
   1774 //
   1775 // Synthesize missing sub-classes for getSubClassWithSubReg().
   1776 //
   1777 // Make sure that the set of registers in RC with a given SubIdx sub-register
   1778 // form a register class.  Update RC->SubClassWithSubReg.
   1779 //
   1780 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
   1781   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
   1782   typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
   1783                    CodeGenSubRegIndex::Less> SubReg2SetMap;
   1784 
   1785   // Compute the set of registers supporting each SubRegIndex.
   1786   SubReg2SetMap SRSets;
   1787   for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
   1788        RE = RC->getMembers().end(); RI != RE; ++RI) {
   1789     const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
   1790     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1791          E = SRM.end(); I != E; ++I)
   1792       SRSets[I->first].insert(*RI);
   1793   }
   1794 
   1795   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
   1796   // numerical order to visit synthetic indices last.
   1797   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
   1798     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
   1799     SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
   1800     // Unsupported SubRegIndex. Skip it.
   1801     if (I == SRSets.end())
   1802       continue;
   1803     // In most cases, all RC registers support the SubRegIndex.
   1804     if (I->second.size() == RC->getMembers().size()) {
   1805       RC->setSubClassWithSubReg(SubIdx, RC);
   1806       continue;
   1807     }
   1808     // This is a real subset.  See if we have a matching class.
   1809     CodeGenRegisterClass *SubRC =
   1810       getOrCreateSubClass(RC, &I->second,
   1811                           RC->getName() + "_with_" + I->first->getName());
   1812     RC->setSubClassWithSubReg(SubIdx, SubRC);
   1813   }
   1814 }
   1815 
   1816 //
   1817 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
   1818 //
   1819 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
   1820 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
   1821 //
   1822 
   1823 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
   1824                                                 unsigned FirstSubRegRC) {
   1825   SmallVector<std::pair<const CodeGenRegister*,
   1826                         const CodeGenRegister*>, 16> SSPairs;
   1827   BitVector TopoSigs(getNumTopoSigs());
   1828 
   1829   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
   1830   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
   1831     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
   1832     // Skip indexes that aren't fully supported by RC's registers. This was
   1833     // computed by inferSubClassWithSubReg() above which should have been
   1834     // called first.
   1835     if (RC->getSubClassWithSubReg(SubIdx) != RC)
   1836       continue;
   1837 
   1838     // Build list of (Super, Sub) pairs for this SubIdx.
   1839     SSPairs.clear();
   1840     TopoSigs.reset();
   1841     for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
   1842          RE = RC->getMembers().end(); RI != RE; ++RI) {
   1843       const CodeGenRegister *Super = *RI;
   1844       const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
   1845       assert(Sub && "Missing sub-register");
   1846       SSPairs.push_back(std::make_pair(Super, Sub));
   1847       TopoSigs.set(Sub->getTopoSig());
   1848     }
   1849 
   1850     // Iterate over sub-register class candidates.  Ignore classes created by
   1851     // this loop. They will never be useful.
   1852     for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
   1853          ++rci) {
   1854       CodeGenRegisterClass *SubRC = RegClasses[rci];
   1855       // Topological shortcut: SubRC members have the wrong shape.
   1856       if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
   1857         continue;
   1858       // Compute the subset of RC that maps into SubRC.
   1859       CodeGenRegister::Set SubSet;
   1860       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
   1861         if (SubRC->contains(SSPairs[i].second))
   1862           SubSet.insert(SSPairs[i].first);
   1863       if (SubSet.empty())
   1864         continue;
   1865       // RC injects completely into SubRC.
   1866       if (SubSet.size() == SSPairs.size()) {
   1867         SubRC->addSuperRegClass(SubIdx, RC);
   1868         continue;
   1869       }
   1870       // Only a subset of RC maps into SubRC. Make sure it is represented by a
   1871       // class.
   1872       getOrCreateSubClass(RC, &SubSet, RC->getName() +
   1873                           "_with_" + SubIdx->getName() +
   1874                           "_in_" + SubRC->getName());
   1875     }
   1876   }
   1877 }
   1878 
   1879 
   1880 //
   1881 // Infer missing register classes.
   1882 //
   1883 void CodeGenRegBank::computeInferredRegisterClasses() {
   1884   // When this function is called, the register classes have not been sorted
   1885   // and assigned EnumValues yet.  That means getSubClasses(),
   1886   // getSuperClasses(), and hasSubClass() functions are defunct.
   1887   unsigned FirstNewRC = RegClasses.size();
   1888 
   1889   // Visit all register classes, including the ones being added by the loop.
   1890   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
   1891     CodeGenRegisterClass *RC = RegClasses[rci];
   1892 
   1893     // Synthesize answers for getSubClassWithSubReg().
   1894     inferSubClassWithSubReg(RC);
   1895 
   1896     // Synthesize answers for getCommonSubClass().
   1897     inferCommonSubClass(RC);
   1898 
   1899     // Synthesize answers for getMatchingSuperRegClass().
   1900     inferMatchingSuperRegClass(RC);
   1901 
   1902     // New register classes are created while this loop is running, and we need
   1903     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
   1904     // to match old super-register classes with sub-register classes created
   1905     // after inferMatchingSuperRegClass was called.  At this point,
   1906     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
   1907     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
   1908     if (rci + 1 == FirstNewRC) {
   1909       unsigned NextNewRC = RegClasses.size();
   1910       for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
   1911         inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
   1912       FirstNewRC = NextNewRC;
   1913     }
   1914   }
   1915 }
   1916 
   1917 /// getRegisterClassForRegister - Find the register class that contains the
   1918 /// specified physical register.  If the register is not in a register class,
   1919 /// return null. If the register is in multiple classes, and the classes have a
   1920 /// superset-subset relationship and the same set of types, return the
   1921 /// superclass.  Otherwise return null.
   1922 const CodeGenRegisterClass*
   1923 CodeGenRegBank::getRegClassForRegister(Record *R) {
   1924   const CodeGenRegister *Reg = getReg(R);
   1925   ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
   1926   const CodeGenRegisterClass *FoundRC = nullptr;
   1927   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
   1928     const CodeGenRegisterClass &RC = *RCs[i];
   1929     if (!RC.contains(Reg))
   1930       continue;
   1931 
   1932     // If this is the first class that contains the register,
   1933     // make a note of it and go on to the next class.
   1934     if (!FoundRC) {
   1935       FoundRC = &RC;
   1936       continue;
   1937     }
   1938 
   1939     // If a register's classes have different types, return null.
   1940     if (RC.getValueTypes() != FoundRC->getValueTypes())
   1941       return nullptr;
   1942 
   1943     // Check to see if the previously found class that contains
   1944     // the register is a subclass of the current class. If so,
   1945     // prefer the superclass.
   1946     if (RC.hasSubClass(FoundRC)) {
   1947       FoundRC = &RC;
   1948       continue;
   1949     }
   1950 
   1951     // Check to see if the previously found class that contains
   1952     // the register is a superclass of the current class. If so,
   1953     // prefer the superclass.
   1954     if (FoundRC->hasSubClass(&RC))
   1955       continue;
   1956 
   1957     // Multiple classes, and neither is a superclass of the other.
   1958     // Return null.
   1959     return nullptr;
   1960   }
   1961   return FoundRC;
   1962 }
   1963 
   1964 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
   1965   SetVector<const CodeGenRegister*> Set;
   1966 
   1967   // First add Regs with all sub-registers.
   1968   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   1969     CodeGenRegister *Reg = getReg(Regs[i]);
   1970     if (Set.insert(Reg))
   1971       // Reg is new, add all sub-registers.
   1972       // The pre-ordering is not important here.
   1973       Reg->addSubRegsPreOrder(Set, *this);
   1974   }
   1975 
   1976   // Second, find all super-registers that are completely covered by the set.
   1977   for (unsigned i = 0; i != Set.size(); ++i) {
   1978     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
   1979     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
   1980       const CodeGenRegister *Super = SR[j];
   1981       if (!Super->CoveredBySubRegs || Set.count(Super))
   1982         continue;
   1983       // This new super-register is covered by its sub-registers.
   1984       bool AllSubsInSet = true;
   1985       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
   1986       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1987              E = SRM.end(); I != E; ++I)
   1988         if (!Set.count(I->second)) {
   1989           AllSubsInSet = false;
   1990           break;
   1991         }
   1992       // All sub-registers in Set, add Super as well.
   1993       // We will visit Super later to recheck its super-registers.
   1994       if (AllSubsInSet)
   1995         Set.insert(Super);
   1996     }
   1997   }
   1998 
   1999   // Convert to BitVector.
   2000   BitVector BV(Registers.size() + 1);
   2001   for (unsigned i = 0, e = Set.size(); i != e; ++i)
   2002     BV.set(Set[i]->EnumValue);
   2003   return BV;
   2004 }
   2005