Home | History | Annotate | Download | only in src
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                        Intel License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
     14 // Third party copyrights are property of their respective owners.
     15 //
     16 // Redistribution and use in source and binary forms, with or without modification,
     17 // are permitted provided that the following conditions are met:
     18 //
     19 //   * Redistribution's of source code must retain the above copyright notice,
     20 //     this list of conditions and the following disclaimer.
     21 //
     22 //   * Redistribution's in binary form must reproduce the above copyright notice,
     23 //     this list of conditions and the following disclaimer in the documentation
     24 //     and/or other materials provided with the distribution.
     25 //
     26 //   * The name of Intel Corporation may not be used to endorse or promote products
     27 //     derived from this software without specific prior written permission.
     28 //
     29 // This software is provided by the copyright holders and contributors "as is" and
     30 // any express or implied warranties, including, but not limited to, the implied
     31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     32 // In no event shall the Intel Corporation or contributors be liable for any direct,
     33 // indirect, incidental, special, exemplary, or consequential damages
     34 // (including, but not limited to, procurement of substitute goods or services;
     35 // loss of use, data, or profits; or business interruption) however caused
     36 // and on any theory of liability, whether in contract, strict liability,
     37 // or tort (including negligence or otherwise) arising in any way out of
     38 // the use of this software, even if advised of the possibility of such damage.
     39 //
     40 //M*/
     41 
     42 #include "_cv.h"
     43 
     44 template<typename T> int icvCompressPoints( T* ptr, const uchar* mask, int mstep, int count )
     45 {
     46     int i, j;
     47     for( i = j = 0; i < count; i++ )
     48         if( mask[i*mstep] )
     49         {
     50             if( i > j )
     51                 ptr[j] = ptr[i];
     52             j++;
     53         }
     54     return j;
     55 }
     56 
     57 class CvModelEstimator2
     58 {
     59 public:
     60     CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions);
     61     virtual ~CvModelEstimator2();
     62 
     63     virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model )=0;
     64     virtual bool runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model,
     65                            CvMat* mask, double confidence=0.99, int maxIters=1000 );
     66     virtual bool runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model,
     67                             CvMat* mask, double threshold,
     68                             double confidence=0.99, int maxIters=1000 );
     69     virtual bool refine( const CvMat*, const CvMat*, CvMat*, int ) { return true; }
     70     virtual void setSeed( int64 seed );
     71 
     72 protected:
     73     virtual void computeReprojError( const CvMat* m1, const CvMat* m2,
     74                                      const CvMat* model, CvMat* error ) = 0;
     75     virtual int findInliers( const CvMat* m1, const CvMat* m2,
     76                              const CvMat* model, CvMat* error,
     77                              CvMat* mask, double threshold );
     78     virtual bool getSubset( const CvMat* m1, const CvMat* m2,
     79                             CvMat* ms1, CvMat* ms2, int maxAttempts=1000 );
     80     virtual bool checkSubset( const CvMat* ms1, int count );
     81 
     82     CvRNG rng;
     83     int modelPoints;
     84     CvSize modelSize;
     85     int maxBasicSolutions;
     86     bool checkPartialSubsets;
     87 };
     88 
     89 
     90 CvModelEstimator2::CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions)
     91 {
     92     modelPoints = _modelPoints;
     93     modelSize = _modelSize;
     94     maxBasicSolutions = _maxBasicSolutions;
     95     checkPartialSubsets = true;
     96     rng = cvRNG(-1);
     97 }
     98 
     99 CvModelEstimator2::~CvModelEstimator2()
    100 {
    101 }
    102 
    103 void CvModelEstimator2::setSeed( int64 seed )
    104 {
    105     rng = cvRNG(seed);
    106 }
    107 
    108 
    109 int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2,
    110                                     const CvMat* model, CvMat* _err,
    111                                     CvMat* _mask, double threshold )
    112 {
    113     int i, count = _err->rows*_err->cols, goodCount = 0;
    114     const float* err = _err->data.fl;
    115     uchar* mask = _mask->data.ptr;
    116 
    117     computeReprojError( m1, m2, model, _err );
    118     threshold *= threshold;
    119     for( i = 0; i < count; i++ )
    120         goodCount += mask[i] = err[i] <= threshold;
    121     return goodCount;
    122 }
    123 
    124 
    125 CV_IMPL int
    126 cvRANSACUpdateNumIters( double p, double ep,
    127                         int model_points, int max_iters )
    128 {
    129     int result = 0;
    130 
    131     CV_FUNCNAME( "cvRANSACUpdateNumIters" );
    132 
    133     __BEGIN__;
    134 
    135     double num, denom;
    136 
    137     if( model_points <= 0 )
    138         CV_ERROR( CV_StsOutOfRange, "the number of model points should be positive" );
    139 
    140     p = MAX(p, 0.);
    141     p = MIN(p, 1.);
    142     ep = MAX(ep, 0.);
    143     ep = MIN(ep, 1.);
    144 
    145     // avoid inf's & nan's
    146     num = MAX(1. - p, DBL_MIN);
    147     denom = 1. - pow(1. - ep,model_points);
    148     if( denom < DBL_MIN )
    149         EXIT;
    150 
    151     num = log(num);
    152     denom = log(denom);
    153 
    154     result = denom >= 0 || -num >= max_iters*(-denom) ?
    155         max_iters : cvRound(num/denom);
    156 
    157     __END__;
    158 
    159     return result;
    160 }
    161 
    162 bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model,
    163                                         CvMat* mask, double reprojThreshold,
    164                                         double confidence, int maxIters )
    165 {
    166     bool result = false;
    167     CvMat* mask0 = mask, *tmask = 0, *t;
    168     CvMat* models = 0, *err = 0;
    169     CvMat *ms1 = 0, *ms2 = 0;
    170 
    171     CV_FUNCNAME( "CvModelEstimator2::estimateRansac" );
    172 
    173     __BEGIN__;
    174 
    175     int iter, niters = maxIters;
    176     int count = m1->rows*m1->cols, maxGoodCount = 0;
    177     CV_ASSERT( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) );
    178 
    179     if( count < modelPoints )
    180         EXIT;
    181 
    182     models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 );
    183     err = cvCreateMat( 1, count, CV_32FC1 );
    184     tmask = cvCreateMat( 1, count, CV_8UC1 );
    185 
    186     if( count > modelPoints )
    187     {
    188         ms1 = cvCreateMat( 1, modelPoints, m1->type );
    189         ms2 = cvCreateMat( 1, modelPoints, m2->type );
    190     }
    191     else
    192     {
    193         niters = 1;
    194         ms1 = (CvMat*)m1;
    195         ms2 = (CvMat*)m2;
    196     }
    197 
    198     for( iter = 0; iter < niters; iter++ )
    199     {
    200         int i, goodCount, nmodels;
    201         if( count > modelPoints )
    202         {
    203             bool found = getSubset( m1, m2, ms1, ms2, modelPoints );
    204             if( !found )
    205             {
    206                 if( iter == 0 )
    207                     EXIT;
    208                 break;
    209             }
    210         }
    211 
    212         nmodels = runKernel( ms1, ms2, models );
    213         if( nmodels <= 0 )
    214             continue;
    215         for( i = 0; i < nmodels; i++ )
    216         {
    217             CvMat model_i;
    218             cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );
    219             goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold );
    220 
    221             if( goodCount > MAX(maxGoodCount, modelPoints-1) )
    222             {
    223                 CV_SWAP( tmask, mask, t );
    224                 cvCopy( &model_i, model );
    225                 maxGoodCount = goodCount;
    226                 niters = cvRANSACUpdateNumIters( confidence,
    227                     (double)(count - goodCount)/count, modelPoints, niters );
    228             }
    229         }
    230     }
    231 
    232     if( maxGoodCount > 0 )
    233     {
    234         if( mask != mask0 )
    235         {
    236             CV_SWAP( tmask, mask, t );
    237             cvCopy( tmask, mask );
    238         }
    239         result = true;
    240     }
    241 
    242     __END__;
    243 
    244     if( ms1 != m1 )
    245         cvReleaseMat( &ms1 );
    246     if( ms2 != m2 )
    247         cvReleaseMat( &ms2 );
    248     cvReleaseMat( &models );
    249     cvReleaseMat( &err );
    250     cvReleaseMat( &tmask );
    251     return result;
    252 }
    253 
    254 
    255 static CV_IMPLEMENT_QSORT( icvSortDistances, int, CV_LT )
    256 
    257 bool CvModelEstimator2::runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model,
    258                                   CvMat* mask, double confidence, int maxIters )
    259 {
    260     const double outlierRatio = 0.45;
    261     bool result = false;
    262     CvMat* models = 0;
    263     CvMat *ms1 = 0, *ms2 = 0;
    264     CvMat* err = 0;
    265 
    266     CV_FUNCNAME( "CvModelEstimator2::estimateLMeDS" );
    267 
    268     __BEGIN__;
    269 
    270     int iter, niters = maxIters;
    271     int count = m1->rows*m1->cols;
    272     double minMedian = DBL_MAX, sigma;
    273 
    274     CV_ASSERT( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) );
    275 
    276     if( count < modelPoints )
    277         EXIT;
    278 
    279     models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 );
    280     err = cvCreateMat( 1, count, CV_32FC1 );
    281 
    282     if( count > modelPoints )
    283     {
    284         ms1 = cvCreateMat( 1, modelPoints, m1->type );
    285         ms2 = cvCreateMat( 1, modelPoints, m2->type );
    286     }
    287     else
    288     {
    289         niters = 1;
    290         ms1 = (CvMat*)m1;
    291         ms2 = (CvMat*)m2;
    292     }
    293 
    294     niters = cvRound(log(1-confidence)/log(1-pow(1-outlierRatio,(double)modelPoints)));
    295     niters = MIN( MAX(niters, 3), maxIters );
    296 
    297     for( iter = 0; iter < niters; iter++ )
    298     {
    299         int i, nmodels;
    300         if( count > modelPoints )
    301         {
    302             bool found = getSubset( m1, m2, ms1, ms2, 300 );
    303             if( !found )
    304             {
    305                 if( iter == 0 )
    306                     EXIT;
    307                 break;
    308             }
    309         }
    310 
    311         nmodels = runKernel( ms1, ms2, models );
    312         if( nmodels <= 0 )
    313             continue;
    314         for( i = 0; i < nmodels; i++ )
    315         {
    316             CvMat model_i;
    317             cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );
    318             computeReprojError( m1, m2, &model_i, err );
    319             icvSortDistances( err->data.i, count, 0 );
    320 
    321             double median = count % 2 != 0 ?
    322                 err->data.fl[count/2] : (err->data.fl[count/2-1] + err->data.fl[count/2])*0.5;
    323 
    324             if( median < minMedian )
    325             {
    326                 minMedian = median;
    327                 cvCopy( &model_i, model );
    328             }
    329         }
    330     }
    331 
    332     if( minMedian < DBL_MAX )
    333     {
    334         sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*sqrt(minMedian);
    335         sigma = MAX( sigma, FLT_EPSILON*100 );
    336 
    337         count = findInliers( m1, m2, model, err, mask, sigma );
    338         result = count >= modelPoints;
    339     }
    340 
    341     __END__;
    342 
    343     if( ms1 != m1 )
    344         cvReleaseMat( &ms1 );
    345     if( ms2 != m2 )
    346         cvReleaseMat( &ms2 );
    347     cvReleaseMat( &models );
    348     cvReleaseMat( &err );
    349     return result;
    350 }
    351 
    352 
    353 bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2,
    354                                    CvMat* ms1, CvMat* ms2, int maxAttempts )
    355 {
    356     int* idx = (int*)cvStackAlloc( modelPoints*sizeof(idx[0]) );
    357     int i, j, k, idx_i, iters = 0;
    358     int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type);
    359     const int *m1ptr = m1->data.i, *m2ptr = m2->data.i;
    360     int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i;
    361     int count = m1->cols*m1->rows;
    362 
    363     assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) );
    364     elemSize /= sizeof(int);
    365 
    366     for(;;)
    367     {
    368         for( i = 0; i < modelPoints && iters < maxAttempts; iters++ )
    369         {
    370             idx[i] = idx_i = cvRandInt(&rng) % count;
    371             for( j = 0; j < i; j++ )
    372                 if( idx_i == idx[j] )
    373                     break;
    374             if( j < i )
    375                 continue;
    376             for( k = 0; k < elemSize; k++ )
    377             {
    378                 ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k];
    379                 ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k];
    380             }
    381             if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 )))
    382                 continue;
    383             i++;
    384             iters = 0;
    385         }
    386         if( !checkPartialSubsets && i == modelPoints &&
    387             (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 )))
    388             continue;
    389         break;
    390     }
    391 
    392     return i == modelPoints;
    393 }
    394 
    395 
    396 bool CvModelEstimator2::checkSubset( const CvMat* m, int count )
    397 {
    398     int j, k, i = count-1;
    399     CvPoint2D64f* ptr = (CvPoint2D64f*)m->data.ptr;
    400 
    401     assert( CV_MAT_TYPE(m->type) == CV_64FC2 );
    402 
    403     // check that the i-th selected point does not belong
    404     // to a line connecting some previously selected points
    405     for( j = 0; j < i; j++ )
    406     {
    407         double dx1 = ptr[j].x - ptr[i].x;
    408         double dy1 = ptr[j].y - ptr[i].y;
    409         for( k = 0; k < j; k++ )
    410         {
    411             double dx2 = ptr[k].x - ptr[i].x;
    412             double dy2 = ptr[k].y - ptr[i].y;
    413             if( fabs(dx2*dy1 - dy2*dx1) < FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2)))
    414                 break;
    415         }
    416         if( k < j )
    417             break;
    418     }
    419 
    420     return j == i;
    421 }
    422 
    423 
    424 class CvHomographyEstimator : public CvModelEstimator2
    425 {
    426 public:
    427     CvHomographyEstimator( int modelPoints );
    428 
    429     virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model );
    430     virtual bool refine( const CvMat* m1, const CvMat* m2,
    431                          CvMat* model, int maxIters );
    432 protected:
    433     virtual void computeReprojError( const CvMat* m1, const CvMat* m2,
    434                                      const CvMat* model, CvMat* error );
    435 };
    436 
    437 
    438 CvHomographyEstimator::CvHomographyEstimator(int _modelPoints)
    439     : CvModelEstimator2(_modelPoints, cvSize(3,3), 1)
    440 {
    441     assert( _modelPoints == 4 || _modelPoints == 5 );
    442 }
    443 
    444 int CvHomographyEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* H )
    445 {
    446     int i, count = m1->rows*m1->cols;
    447     const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr;
    448     const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr;
    449 
    450     double LtL[9][9], W[9][9], V[9][9];
    451     CvMat _LtL = cvMat( 9, 9, CV_64F, LtL );
    452     CvMat _W = cvMat( 9, 9, CV_64F, W );
    453     CvMat _V = cvMat( 9, 9, CV_64F, V );
    454     CvMat _H0 = cvMat( 3, 3, CV_64F, V[8] );
    455     CvMat _Htemp = cvMat( 3, 3, CV_64F, V[7] );
    456     CvPoint2D64f cM={0,0}, cm={0,0}, sM={0,0}, sm={0,0};
    457 
    458     for( i = 0; i < count; i++ )
    459     {
    460         cm.x += m[i].x; cm.y += m[i].y;
    461         cM.x += M[i].x; cM.y += M[i].y;
    462     }
    463 
    464     cm.x /= count; cm.y /= count;
    465     cM.x /= count; cM.y /= count;
    466 
    467     for( i = 0; i < count; i++ )
    468     {
    469         sm.x += fabs(m[i].x - cm.x);
    470         sm.y += fabs(m[i].y - cm.y);
    471         sM.x += fabs(M[i].x - cM.x);
    472         sM.y += fabs(M[i].y - cM.y);
    473     }
    474 
    475     sm.x = count/sm.x; sm.y = count/sm.y;
    476     sM.x = count/sM.x; sM.y = count/sM.y;
    477 
    478     double invHnorm[9] = { 1./sm.x, 0, cm.x, 0, 1./sm.y, cm.y, 0, 0, 1 };
    479     double Hnorm2[9] = { sM.x, 0, -cM.x*sM.x, 0, sM.y, -cM.y*sM.y, 0, 0, 1 };
    480     CvMat _invHnorm = cvMat( 3, 3, CV_64FC1, invHnorm );
    481     CvMat _Hnorm2 = cvMat( 3, 3, CV_64FC1, Hnorm2 );
    482 
    483     cvZero( &_LtL );
    484     for( i = 0; i < count; i++ )
    485     {
    486         double x = (m[i].x - cm.x)*sm.x, y = (m[i].y - cm.y)*sm.y;
    487         double X = (M[i].x - cM.x)*sM.x, Y = (M[i].y - cM.y)*sM.y;
    488         double Lx[] = { X, Y, 1, 0, 0, 0, -x*X, -x*Y, -x };
    489         double Ly[] = { 0, 0, 0, X, Y, 1, -y*X, -y*Y, -y };
    490         int j, k;
    491         for( j = 0; j < 9; j++ )
    492             for( k = j; k < 9; k++ )
    493                 LtL[j][k] += Lx[j]*Lx[k] + Ly[j]*Ly[k];
    494     }
    495     cvCompleteSymm( &_LtL );
    496 
    497     cvSVD( &_LtL, &_W, 0, &_V, CV_SVD_MODIFY_A + CV_SVD_V_T );
    498     cvMatMul( &_invHnorm, &_H0, &_Htemp );
    499     cvMatMul( &_Htemp, &_Hnorm2, &_H0 );
    500     cvConvertScale( &_H0, H, 1./_H0.data.db[8] );
    501 
    502     return 1;
    503 }
    504 
    505 
    506 void CvHomographyEstimator::computeReprojError( const CvMat* m1, const CvMat* m2,
    507                                                 const CvMat* model, CvMat* _err )
    508 {
    509     int i, count = m1->rows*m1->cols;
    510     const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr;
    511     const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr;
    512     const double* H = model->data.db;
    513     float* err = _err->data.fl;
    514 
    515     for( i = 0; i < count; i++ )
    516     {
    517         double ww = 1./(H[6]*M[i].x + H[7]*M[i].y + 1.);
    518         double dx = (H[0]*M[i].x + H[1]*M[i].y + H[2])*ww - m[i].x;
    519         double dy = (H[3]*M[i].x + H[4]*M[i].y + H[5])*ww - m[i].y;
    520         err[i] = (float)(dx*dx + dy*dy);
    521     }
    522 }
    523 
    524 bool CvHomographyEstimator::refine( const CvMat* m1, const CvMat* m2, CvMat* model, int maxIters )
    525 {
    526     CvLevMarq solver(8, 0, cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, maxIters, DBL_EPSILON));
    527     int i, j, k, count = m1->rows*m1->cols;
    528     const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr;
    529     const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr;
    530     CvMat modelPart = cvMat( solver.param->rows, solver.param->cols, model->type, model->data.ptr );
    531     cvCopy( &modelPart, solver.param );
    532 
    533     for(;;)
    534     {
    535         const CvMat* _param = 0;
    536         CvMat *_JtJ = 0, *_JtErr = 0;
    537         double* _errNorm = 0;
    538 
    539         if( !solver.updateAlt( _param, _JtJ, _JtErr, _errNorm ))
    540             break;
    541 
    542         for( i = 0; i < count; i++ )
    543         {
    544             const double* h = _param->data.db;
    545             double Mx = M[i].x, My = M[i].y;
    546             double ww = 1./(h[6]*Mx + h[7]*My + 1.);
    547             double _xi = (h[0]*Mx + h[1]*My + h[2])*ww;
    548             double _yi = (h[3]*Mx + h[4]*My + h[5])*ww;
    549             double err[] = { _xi - m[i].x, _yi - m[i].y };
    550             if( _JtJ || _JtErr )
    551             {
    552                 double J[][8] =
    553                 {
    554                     { Mx*ww, My*ww, ww, 0, 0, 0, -Mx*ww*_xi, -My*ww*_xi },
    555                     { 0, 0, 0, Mx*ww, My*ww, ww, -Mx*ww*_yi, -My*ww*_yi }
    556                 };
    557 
    558                 for( j = 0; j < 8; j++ )
    559                 {
    560                     for( k = j; k < 8; k++ )
    561                         _JtJ->data.db[j*8+k] += J[0][j]*J[0][k] + J[1][j]*J[1][k];
    562                     _JtErr->data.db[j] += J[0][j]*err[0] + J[1][j]*err[1];
    563                 }
    564             }
    565             if( _errNorm )
    566                 *_errNorm += err[0]*err[0] + err[1]*err[1];
    567         }
    568     }
    569 
    570     cvCopy( solver.param, &modelPart );
    571     return true;
    572 }
    573 
    574 
    575 CV_IMPL int
    576 cvFindHomography( const CvMat* objectPoints, const CvMat* imagePoints,
    577                   CvMat* __H, int method, double ransacReprojThreshold,
    578                   CvMat* mask )
    579 {
    580     const double confidence = 0.99;
    581     bool result = false;
    582     CvMat *m = 0, *M = 0, *tempMask = 0;
    583 
    584     CV_FUNCNAME( "cvFindHomography" );
    585 
    586     __BEGIN__;
    587 
    588     double H[9];
    589     CvMat _H = cvMat( 3, 3, CV_64FC1, H );
    590     int count;
    591 
    592     CV_ASSERT( CV_IS_MAT(imagePoints) && CV_IS_MAT(objectPoints) );
    593 
    594     count = MAX(imagePoints->cols, imagePoints->rows);
    595     CV_ASSERT( count >= 4 );
    596 
    597     m = cvCreateMat( 1, count, CV_64FC2 );
    598     cvConvertPointsHomogeneous( imagePoints, m );
    599 
    600     M = cvCreateMat( 1, count, CV_64FC2 );
    601     cvConvertPointsHomogeneous( objectPoints, M );
    602 
    603     if( mask )
    604     {
    605         CV_ASSERT( CV_IS_MASK_ARR(mask) && CV_IS_MAT_CONT(mask->type) &&
    606             (mask->rows == 1 || mask->cols == 1) &&
    607             mask->rows*mask->cols == count );
    608         tempMask = mask;
    609     }
    610     else if( count > 4 )
    611         tempMask = cvCreateMat( 1, count, CV_8U );
    612     if( tempMask )
    613         cvSet( tempMask, cvScalarAll(1.) );
    614 
    615     {
    616     CvHomographyEstimator estimator( MIN(count, 5) );
    617     if( count == 4 )
    618         method = 0;
    619     if( method == CV_LMEDS )
    620         result = estimator.runLMeDS( M, m, &_H, tempMask, confidence );
    621     else if( method == CV_RANSAC )
    622         result = estimator.runRANSAC( M, m, &_H, tempMask, ransacReprojThreshold, confidence );
    623     else
    624         result = estimator.runKernel( M, m, &_H ) > 0;
    625 
    626     if( result && count > 4 )
    627     {
    628         icvCompressPoints( (CvPoint2D64f*)M->data.ptr, tempMask->data.ptr, 1, count );
    629         count = icvCompressPoints( (CvPoint2D64f*)m->data.ptr, tempMask->data.ptr, 1, count );
    630         M->cols = m->cols = count;
    631         estimator.refine( M, m, &_H, 10 );
    632     }
    633     }
    634 
    635     if( result )
    636         cvConvert( &_H, __H );
    637 
    638     __END__;
    639 
    640     cvReleaseMat( &m );
    641     cvReleaseMat( &M );
    642     if( tempMask != mask )
    643         cvReleaseMat( &tempMask );
    644 
    645     return (int)result;
    646 }
    647 
    648 
    649 /* Evaluation of Fundamental Matrix from point correspondences.
    650    The original code has been written by Valery Mosyagin */
    651 
    652 /* The algorithms (except for RANSAC) and the notation have been taken from
    653    Zhengyou Zhang's research report
    654    "Determining the Epipolar Geometry and its Uncertainty: A Review"
    655    that can be found at http://www-sop.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html */
    656 
    657 /************************************** 7-point algorithm *******************************/
    658 class CvFMEstimator : public CvModelEstimator2
    659 {
    660 public:
    661     CvFMEstimator( int _modelPoints );
    662 
    663     virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model );
    664     virtual int run7Point( const CvMat* m1, const CvMat* m2, CvMat* model );
    665     virtual int run8Point( const CvMat* m1, const CvMat* m2, CvMat* model );
    666 protected:
    667     virtual void computeReprojError( const CvMat* m1, const CvMat* m2,
    668                                      const CvMat* model, CvMat* error );
    669 };
    670 
    671 CvFMEstimator::CvFMEstimator( int _modelPoints )
    672 : CvModelEstimator2( _modelPoints, cvSize(3,3), _modelPoints == 7 ? 3 : 1 )
    673 {
    674     assert( _modelPoints == 7 || _modelPoints == 8 );
    675 }
    676 
    677 
    678 int CvFMEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* model )
    679 {
    680     return modelPoints == 7 ? run7Point( m1, m2, model ) : run8Point( m1, m2, model );
    681 }
    682 
    683 int CvFMEstimator::run7Point( const CvMat* _m1, const CvMat* _m2, CvMat* _fmatrix )
    684 {
    685     double a[7*9], w[7], v[9*9], c[4], r[3];
    686     double* f1, *f2;
    687     double t0, t1, t2;
    688     CvMat A = cvMat( 7, 9, CV_64F, a );
    689     CvMat V = cvMat( 9, 9, CV_64F, v );
    690     CvMat W = cvMat( 7, 1, CV_64F, w );
    691     CvMat coeffs = cvMat( 1, 4, CV_64F, c );
    692     CvMat roots = cvMat( 1, 3, CV_64F, r );
    693     const CvPoint2D64f* m1 = (const CvPoint2D64f*)_m1->data.ptr;
    694     const CvPoint2D64f* m2 = (const CvPoint2D64f*)_m2->data.ptr;
    695     double* fmatrix = _fmatrix->data.db;
    696     int i, k, n;
    697 
    698     // form a linear system: i-th row of A(=a) represents
    699     // the equation: (m2[i], 1)'*F*(m1[i], 1) = 0
    700     for( i = 0; i < 7; i++ )
    701     {
    702         double x0 = m1[i].x, y0 = m1[i].y;
    703         double x1 = m2[i].x, y1 = m2[i].y;
    704 
    705         a[i*9+0] = x1*x0;
    706         a[i*9+1] = x1*y0;
    707         a[i*9+2] = x1;
    708         a[i*9+3] = y1*x0;
    709         a[i*9+4] = y1*y0;
    710         a[i*9+5] = y1;
    711         a[i*9+6] = x0;
    712         a[i*9+7] = y0;
    713         a[i*9+8] = 1;
    714     }
    715 
    716     // A*(f11 f12 ... f33)' = 0 is singular (7 equations for 9 variables), so
    717     // the solution is linear subspace of dimensionality 2.
    718     // => use the last two singular vectors as a basis of the space
    719     // (according to SVD properties)
    720     cvSVD( &A, &W, 0, &V, CV_SVD_MODIFY_A + CV_SVD_V_T );
    721     f1 = v + 7*9;
    722     f2 = v + 8*9;
    723 
    724     // f1, f2 is a basis => lambda*f1 + mu*f2 is an arbitrary f. matrix.
    725     // as it is determined up to a scale, normalize lambda & mu (lambda + mu = 1),
    726     // so f ~ lambda*f1 + (1 - lambda)*f2.
    727     // use the additional constraint det(f) = det(lambda*f1 + (1-lambda)*f2) to find lambda.
    728     // it will be a cubic equation.
    729     // find c - polynomial coefficients.
    730     for( i = 0; i < 9; i++ )
    731         f1[i] -= f2[i];
    732 
    733     t0 = f2[4]*f2[8] - f2[5]*f2[7];
    734     t1 = f2[3]*f2[8] - f2[5]*f2[6];
    735     t2 = f2[3]*f2[7] - f2[4]*f2[6];
    736 
    737     c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2;
    738 
    739     c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 -
    740            f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) +
    741            f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) -
    742            f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) +
    743            f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) -
    744            f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) +
    745            f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]);
    746 
    747     t0 = f1[4]*f1[8] - f1[5]*f1[7];
    748     t1 = f1[3]*f1[8] - f1[5]*f1[6];
    749     t2 = f1[3]*f1[7] - f1[4]*f1[6];
    750 
    751     c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 -
    752            f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) +
    753            f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) -
    754            f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) +
    755            f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) -
    756            f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) +
    757            f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]);
    758 
    759     c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2;
    760 
    761     // solve the cubic equation; there can be 1 to 3 roots ...
    762     n = cvSolveCubic( &coeffs, &roots );
    763 
    764     if( n < 1 || n > 3 )
    765         return n;
    766 
    767     for( k = 0; k < n; k++, fmatrix += 9 )
    768     {
    769         // for each root form the fundamental matrix
    770         double lambda = r[k], mu = 1.;
    771         double s = f1[8]*r[k] + f2[8];
    772 
    773         // normalize each matrix, so that F(3,3) (~fmatrix[8]) == 1
    774         if( fabs(s) > DBL_EPSILON )
    775         {
    776             mu = 1./s;
    777             lambda *= mu;
    778             fmatrix[8] = 1.;
    779         }
    780         else
    781             fmatrix[8] = 0.;
    782 
    783         for( i = 0; i < 8; i++ )
    784             fmatrix[i] = f1[i]*lambda + f2[i]*mu;
    785     }
    786 
    787     return n;
    788 }
    789 
    790 
    791 int CvFMEstimator::run8Point( const CvMat* _m1, const CvMat* _m2, CvMat* _fmatrix )
    792 {
    793     double a[9*9], w[9], v[9*9];
    794     CvMat W = cvMat( 1, 9, CV_64F, w );
    795     CvMat V = cvMat( 9, 9, CV_64F, v );
    796     CvMat A = cvMat( 9, 9, CV_64F, a );
    797     CvMat U, F0, TF;
    798 
    799     CvPoint2D64f m0c = {0,0}, m1c = {0,0};
    800     double t, scale0 = 0, scale1 = 0;
    801 
    802     const CvPoint2D64f* m1 = (const CvPoint2D64f*)_m1->data.ptr;
    803     const CvPoint2D64f* m2 = (const CvPoint2D64f*)_m2->data.ptr;
    804     double* fmatrix = _fmatrix->data.db;
    805     int i, j, k, count = _m1->cols*_m1->rows;
    806 
    807     // compute centers and average distances for each of the two point sets
    808     for( i = 0; i < count; i++ )
    809     {
    810         double x = m1[i].x, y = m1[i].y;
    811         m0c.x += x; m0c.y += y;
    812 
    813         x = m2[i].x, y = m2[i].y;
    814         m1c.x += x; m1c.y += y;
    815     }
    816 
    817     // calculate the normalizing transformations for each of the point sets:
    818     // after the transformation each set will have the mass center at the coordinate origin
    819     // and the average distance from the origin will be ~sqrt(2).
    820     t = 1./count;
    821     m0c.x *= t; m0c.y *= t;
    822     m1c.x *= t; m1c.y *= t;
    823 
    824     for( i = 0; i < count; i++ )
    825     {
    826         double x = m1[i].x - m0c.x, y = m1[i].y - m0c.y;
    827         scale0 += sqrt(x*x + y*y);
    828 
    829         x = fabs(m2[i].x - m1c.x), y = fabs(m2[i].y - m1c.y);
    830         scale1 += sqrt(x*x + y*y);
    831     }
    832 
    833     scale0 *= t;
    834     scale1 *= t;
    835 
    836     if( scale0 < FLT_EPSILON || scale1 < FLT_EPSILON )
    837         return 0;
    838 
    839     scale0 = sqrt(2.)/scale0;
    840     scale1 = sqrt(2.)/scale1;
    841 
    842     cvZero( &A );
    843 
    844     // form a linear system Ax=0: for each selected pair of points m1 & m2,
    845     // the row of A(=a) represents the coefficients of equation: (m2, 1)'*F*(m1, 1) = 0
    846     // to save computation time, we compute (At*A) instead of A and then solve (At*A)x=0.
    847     for( i = 0; i < count; i++ )
    848     {
    849         double x0 = (m1[i].x - m0c.x)*scale0;
    850         double y0 = (m1[i].y - m0c.y)*scale0;
    851         double x1 = (m2[i].x - m1c.x)*scale1;
    852         double y1 = (m2[i].y - m1c.y)*scale1;
    853         double r[9] = { x1*x0, x1*y0, x1, y1*x0, y1*y0, y1, x0, y0, 1 };
    854         for( j = 0; j < 9; j++ )
    855             for( k = 0; k < 9; k++ )
    856                 a[j*9+k] += r[j]*r[k];
    857     }
    858 
    859     cvSVD( &A, &W, 0, &V, CV_SVD_MODIFY_A + CV_SVD_V_T );
    860 
    861     for( i = 0; i < 8; i++ )
    862     {
    863         if( fabs(w[i]) < DBL_EPSILON )
    864             break;
    865     }
    866 
    867     if( i < 7 )
    868         return 0;
    869 
    870     F0 = cvMat( 3, 3, CV_64F, v + 9*8 ); // take the last column of v as a solution of Af = 0
    871 
    872     // make F0 singular (of rank 2) by decomposing it with SVD,
    873     // zeroing the last diagonal element of W and then composing the matrices back.
    874 
    875     // use v as a temporary storage for different 3x3 matrices
    876     W = U = V = TF = F0;
    877     W.data.db = v;
    878     U.data.db = v + 9;
    879     V.data.db = v + 18;
    880     TF.data.db = v + 27;
    881 
    882     cvSVD( &F0, &W, &U, &V, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T );
    883     W.data.db[8] = 0.;
    884 
    885     // F0 <- U*diag([W(1), W(2), 0])*V'
    886     cvGEMM( &U, &W, 1., 0, 0., &TF, CV_GEMM_A_T );
    887     cvGEMM( &TF, &V, 1., 0, 0., &F0, 0/*CV_GEMM_B_T*/ );
    888 
    889     // apply the transformation that is inverse
    890     // to what we used to normalize the point coordinates
    891     {
    892         double tt0[] = { scale0, 0, -scale0*m0c.x, 0, scale0, -scale0*m0c.y, 0, 0, 1 };
    893         double tt1[] = { scale1, 0, -scale1*m1c.x, 0, scale1, -scale1*m1c.y, 0, 0, 1 };
    894         CvMat T0, T1;
    895         T0 = T1 = F0;
    896         T0.data.db = tt0;
    897         T1.data.db = tt1;
    898 
    899         // F0 <- T1'*F0*T0
    900         cvGEMM( &T1, &F0, 1., 0, 0., &TF, CV_GEMM_A_T );
    901         F0.data.db = fmatrix;
    902         cvGEMM( &TF, &T0, 1., 0, 0., &F0, 0 );
    903 
    904         // make F(3,3) = 1
    905         if( fabs(F0.data.db[8]) > FLT_EPSILON )
    906             cvScale( &F0, &F0, 1./F0.data.db[8] );
    907     }
    908 
    909     return 1;
    910 }
    911 
    912 
    913 void CvFMEstimator::computeReprojError( const CvMat* _m1, const CvMat* _m2,
    914                                         const CvMat* model, CvMat* _err )
    915 {
    916     int i, count = _m1->rows*_m1->cols;
    917     const CvPoint2D64f* m1 = (const CvPoint2D64f*)_m1->data.ptr;
    918     const CvPoint2D64f* m2 = (const CvPoint2D64f*)_m2->data.ptr;
    919     const double* F = model->data.db;
    920     float* err = _err->data.fl;
    921 
    922     for( i = 0; i < count; i++ )
    923     {
    924         double a, b, c, d1, d2, s1, s2;
    925 
    926         a = F[0]*m1[i].x + F[1]*m1[i].y + F[2];
    927         b = F[3]*m1[i].x + F[4]*m1[i].y + F[5];
    928         c = F[6]*m1[i].x + F[7]*m1[i].y + F[8];
    929 
    930         s2 = 1./(a*a + b*b);
    931         d2 = m2[i].x*a + m2[i].y*b + c;
    932 
    933         a = F[0]*m2[i].x + F[3]*m2[i].y + F[6];
    934         b = F[1]*m2[i].x + F[4]*m2[i].y + F[7];
    935         c = F[2]*m2[i].x + F[5]*m2[i].y + F[8];
    936 
    937         s1 = 1./(a*a + b*b);
    938         d1 = m1[i].x*a + m1[i].y*b + c;
    939 
    940         err[i] = (float)(d1*d1*s1 + d2*d2*s2);
    941     }
    942 }
    943 
    944 
    945 CV_IMPL int
    946 cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
    947                       CvMat* fmatrix, int method,
    948                       double param1, double param2, CvMat* mask )
    949 {
    950     int result = 0;
    951     CvMat *m1 = 0, *m2 = 0, *tempMask = 0;
    952 
    953     CV_FUNCNAME( "cvFindFundamentalMat" );
    954 
    955     __BEGIN__;
    956 
    957     double F[3*9];
    958     CvMat _F3x3 = cvMat( 3, 3, CV_64FC1, F ), _F9x3 = cvMat( 9, 3, CV_64FC1, F );
    959     int count;
    960 
    961     CV_ASSERT( CV_IS_MAT(points1) && CV_IS_MAT(points2) && CV_ARE_SIZES_EQ(points1, points2) );
    962     CV_ASSERT( CV_IS_MAT(fmatrix) && fmatrix->cols == 3 &&
    963         (fmatrix->rows == 3 || (fmatrix->rows == 9 && method == CV_FM_7POINT)) );
    964 
    965     count = MAX(points1->cols, points1->rows);
    966     if( count < 7 )
    967         EXIT;
    968 
    969     m1 = cvCreateMat( 1, count, CV_64FC2 );
    970     cvConvertPointsHomogeneous( points1, m1 );
    971 
    972     m2 = cvCreateMat( 1, count, CV_64FC2 );
    973     cvConvertPointsHomogeneous( points2, m2 );
    974 
    975     if( mask )
    976     {
    977         CV_ASSERT( CV_IS_MASK_ARR(mask) && CV_IS_MAT_CONT(mask->type) &&
    978             (mask->rows == 1 || mask->cols == 1) &&
    979             mask->rows*mask->cols == count );
    980         tempMask = mask;
    981     }
    982     else if( count > 8 )
    983         tempMask = cvCreateMat( 1, count, CV_8U );
    984     if( tempMask )
    985         cvSet( tempMask, cvScalarAll(1.) );
    986 
    987     {
    988     CvFMEstimator estimator( MIN(count, (method & 3) == CV_FM_7POINT ? 7 : 8) );
    989     if( count == 7 )
    990         result = estimator.run7Point(m1, m2, &_F9x3);
    991     else if( count == 8 || method == CV_FM_8POINT )
    992         result = estimator.run8Point(m1, m2, &_F3x3);
    993     else if( count > 8 )
    994     {
    995         if( param1 <= 0 )
    996             param1 = 3;
    997         if( param2 < DBL_EPSILON || param2 > 1 - DBL_EPSILON )
    998             param2 = 0.99;
    999 
   1000         if( (method & ~3) == CV_RANSAC )
   1001             result = estimator.runRANSAC(m1, m2, &_F3x3, tempMask, param1, param2 );
   1002         else
   1003             result = estimator.runLMeDS(m1, m2, &_F3x3, tempMask, param2 );
   1004         if( result <= 0 )
   1005             EXIT;
   1006         icvCompressPoints( (CvPoint2D64f*)m1->data.ptr, tempMask->data.ptr, 1, count );
   1007         count = icvCompressPoints( (CvPoint2D64f*)m2->data.ptr, tempMask->data.ptr, 1, count );
   1008         assert( count >= 8 );
   1009         m1->cols = m2->cols = count;
   1010         estimator.run8Point(m1, m2, &_F3x3);
   1011     }
   1012     }
   1013 
   1014     if( result )
   1015         cvConvert( fmatrix->rows == 3 ? &_F3x3 : &_F9x3, fmatrix );
   1016 
   1017     __END__;
   1018 
   1019     cvReleaseMat( &m1 );
   1020     cvReleaseMat( &m2 );
   1021     if( tempMask != mask )
   1022         cvReleaseMat( &tempMask );
   1023 
   1024     return result;
   1025 }
   1026 
   1027 
   1028 CV_IMPL void
   1029 cvComputeCorrespondEpilines( const CvMat* points, int pointImageID,
   1030                              const CvMat* fmatrix, CvMat* lines )
   1031 {
   1032     CV_FUNCNAME( "cvComputeCorrespondEpilines" );
   1033 
   1034     __BEGIN__;
   1035 
   1036     int abc_stride, abc_plane_stride, abc_elem_size;
   1037     int plane_stride, stride, elem_size;
   1038     int i, dims, count, depth, cn, abc_dims, abc_count, abc_depth, abc_cn;
   1039     uchar *ap, *bp, *cp;
   1040     const uchar *xp, *yp, *zp;
   1041     double f[9];
   1042     CvMat F = cvMat( 3, 3, CV_64F, f );
   1043 
   1044     if( !CV_IS_MAT(points) )
   1045         CV_ERROR( !points ? CV_StsNullPtr : CV_StsBadArg, "points parameter is not a valid matrix" );
   1046 
   1047     depth = CV_MAT_DEPTH(points->type);
   1048     cn = CV_MAT_CN(points->type);
   1049     if( (depth != CV_32F && depth != CV_64F) || (cn != 1 && cn != 2 && cn != 3) )
   1050         CV_ERROR( CV_StsUnsupportedFormat, "The format of point matrix is unsupported" );
   1051 
   1052     if( points->rows > points->cols )
   1053     {
   1054         dims = cn*points->cols;
   1055         count = points->rows;
   1056     }
   1057     else
   1058     {
   1059         if( (points->rows > 1 && cn > 1) || (points->rows == 1 && cn == 1) )
   1060             CV_ERROR( CV_StsBadSize, "The point matrix does not have a proper layout (2xn, 3xn, nx2 or nx3)" );
   1061         dims = cn * points->rows;
   1062         count = points->cols;
   1063     }
   1064 
   1065     if( dims != 2 && dims != 3 )
   1066         CV_ERROR( CV_StsOutOfRange, "The dimensionality of points must be 2 or 3" );
   1067 
   1068     if( !CV_IS_MAT(fmatrix) )
   1069         CV_ERROR( !fmatrix ? CV_StsNullPtr : CV_StsBadArg, "fmatrix is not a valid matrix" );
   1070 
   1071     if( CV_MAT_TYPE(fmatrix->type) != CV_32FC1 && CV_MAT_TYPE(fmatrix->type) != CV_64FC1 )
   1072         CV_ERROR( CV_StsUnsupportedFormat, "fundamental matrix must have 32fC1 or 64fC1 type" );
   1073 
   1074     if( fmatrix->cols != 3 || fmatrix->rows != 3 )
   1075         CV_ERROR( CV_StsBadSize, "fundamental matrix must be 3x3" );
   1076 
   1077     if( !CV_IS_MAT(lines) )
   1078         CV_ERROR( !lines ? CV_StsNullPtr : CV_StsBadArg, "lines parameter is not a valid matrix" );
   1079 
   1080     abc_depth = CV_MAT_DEPTH(lines->type);
   1081     abc_cn = CV_MAT_CN(lines->type);
   1082     if( (abc_depth != CV_32F && abc_depth != CV_64F) || (abc_cn != 1 && abc_cn != 3) )
   1083         CV_ERROR( CV_StsUnsupportedFormat, "The format of the matrix of lines is unsupported" );
   1084 
   1085     if( lines->rows > lines->cols )
   1086     {
   1087         abc_dims = abc_cn*lines->cols;
   1088         abc_count = lines->rows;
   1089     }
   1090     else
   1091     {
   1092         if( (lines->rows > 1 && abc_cn > 1) || (lines->rows == 1 && abc_cn == 1) )
   1093             CV_ERROR( CV_StsBadSize, "The lines matrix does not have a proper layout (3xn or nx3)" );
   1094         abc_dims = abc_cn * lines->rows;
   1095         abc_count = lines->cols;
   1096     }
   1097 
   1098     if( abc_dims != 3 )
   1099         CV_ERROR( CV_StsOutOfRange, "The lines matrix does not have a proper layout (3xn or nx3)" );
   1100 
   1101     if( abc_count != count )
   1102         CV_ERROR( CV_StsUnmatchedSizes, "The numbers of points and lines are different" );
   1103 
   1104     elem_size = CV_ELEM_SIZE(depth);
   1105     abc_elem_size = CV_ELEM_SIZE(abc_depth);
   1106 
   1107     if( points->rows == dims )
   1108     {
   1109         plane_stride = points->step;
   1110         stride = elem_size;
   1111     }
   1112     else
   1113     {
   1114         plane_stride = elem_size;
   1115         stride = points->rows == 1 ? dims*elem_size : points->step;
   1116     }
   1117 
   1118     if( lines->rows == 3 )
   1119     {
   1120         abc_plane_stride = lines->step;
   1121         abc_stride = abc_elem_size;
   1122     }
   1123     else
   1124     {
   1125         abc_plane_stride = abc_elem_size;
   1126         abc_stride = lines->rows == 1 ? 3*abc_elem_size : lines->step;
   1127     }
   1128 
   1129     CV_CALL( cvConvert( fmatrix, &F ));
   1130     if( pointImageID == 2 )
   1131         cvTranspose( &F, &F );
   1132 
   1133     xp = points->data.ptr;
   1134     yp = xp + plane_stride;
   1135     zp = dims == 3 ? yp + plane_stride : 0;
   1136 
   1137     ap = lines->data.ptr;
   1138     bp = ap + abc_plane_stride;
   1139     cp = bp + abc_plane_stride;
   1140 
   1141     for( i = 0; i < count; i++ )
   1142     {
   1143         double x, y, z = 1.;
   1144         double a, b, c, nu;
   1145 
   1146         if( depth == CV_32F )
   1147         {
   1148             x = *(float*)xp; y = *(float*)yp;
   1149             if( zp )
   1150                 z = *(float*)zp, zp += stride;
   1151         }
   1152         else
   1153         {
   1154             x = *(double*)xp; y = *(double*)yp;
   1155             if( zp )
   1156                 z = *(double*)zp, zp += stride;
   1157         }
   1158 
   1159         xp += stride; yp += stride;
   1160 
   1161         a = f[0]*x + f[1]*y + f[2]*z;
   1162         b = f[3]*x + f[4]*y + f[5]*z;
   1163         c = f[6]*x + f[7]*y + f[8]*z;
   1164         nu = a*a + b*b;
   1165         nu = nu ? 1./sqrt(nu) : 1.;
   1166         a *= nu; b *= nu; c *= nu;
   1167 
   1168         if( abc_depth == CV_32F )
   1169         {
   1170             *(float*)ap = (float)a;
   1171             *(float*)bp = (float)b;
   1172             *(float*)cp = (float)c;
   1173         }
   1174         else
   1175         {
   1176             *(double*)ap = a;
   1177             *(double*)bp = b;
   1178             *(double*)cp = c;
   1179         }
   1180 
   1181         ap += abc_stride;
   1182         bp += abc_stride;
   1183         cp += abc_stride;
   1184     }
   1185 
   1186     __END__;
   1187 }
   1188 
   1189 
   1190 CV_IMPL void
   1191 cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst )
   1192 {
   1193     CvMat* temp = 0;
   1194     CvMat* denom = 0;
   1195 
   1196     CV_FUNCNAME( "cvConvertPointsHomogeneous" );
   1197 
   1198     __BEGIN__;
   1199 
   1200     int i, s_count, s_dims, d_count, d_dims;
   1201     CvMat _src, _dst, _ones;
   1202     CvMat* ones = 0;
   1203 
   1204     if( !CV_IS_MAT(src) )
   1205         CV_ERROR( !src ? CV_StsNullPtr : CV_StsBadArg,
   1206         "The input parameter is not a valid matrix" );
   1207 
   1208     if( !CV_IS_MAT(dst) )
   1209         CV_ERROR( !dst ? CV_StsNullPtr : CV_StsBadArg,
   1210         "The output parameter is not a valid matrix" );
   1211 
   1212     if( src == dst || src->data.ptr == dst->data.ptr )
   1213     {
   1214         if( src != dst && (!CV_ARE_TYPES_EQ(src, dst) || !CV_ARE_SIZES_EQ(src,dst)) )
   1215             CV_ERROR( CV_StsBadArg, "Invalid inplace operation" );
   1216         EXIT;
   1217     }
   1218 
   1219     if( src->rows > src->cols )
   1220     {
   1221         if( !((src->cols > 1) ^ (CV_MAT_CN(src->type) > 1)) )
   1222             CV_ERROR( CV_StsBadSize, "Either the number of channels or columns or rows must be =1" );
   1223 
   1224         s_dims = CV_MAT_CN(src->type)*src->cols;
   1225         s_count = src->rows;
   1226     }
   1227     else
   1228     {
   1229         if( !((src->rows > 1) ^ (CV_MAT_CN(src->type) > 1)) )
   1230             CV_ERROR( CV_StsBadSize, "Either the number of channels or columns or rows must be =1" );
   1231 
   1232         s_dims = CV_MAT_CN(src->type)*src->rows;
   1233         s_count = src->cols;
   1234     }
   1235 
   1236     if( src->rows == 1 || src->cols == 1 )
   1237         src = cvReshape( src, &_src, 1, s_count );
   1238 
   1239     if( dst->rows > dst->cols )
   1240     {
   1241         if( !((dst->cols > 1) ^ (CV_MAT_CN(dst->type) > 1)) )
   1242             CV_ERROR( CV_StsBadSize,
   1243             "Either the number of channels or columns or rows in the input matrix must be =1" );
   1244 
   1245         d_dims = CV_MAT_CN(dst->type)*dst->cols;
   1246         d_count = dst->rows;
   1247     }
   1248     else
   1249     {
   1250         if( !((dst->rows > 1) ^ (CV_MAT_CN(dst->type) > 1)) )
   1251             CV_ERROR( CV_StsBadSize,
   1252             "Either the number of channels or columns or rows in the output matrix must be =1" );
   1253 
   1254         d_dims = CV_MAT_CN(dst->type)*dst->rows;
   1255         d_count = dst->cols;
   1256     }
   1257 
   1258     if( dst->rows == 1 || dst->cols == 1 )
   1259         dst = cvReshape( dst, &_dst, 1, d_count );
   1260 
   1261     if( s_count != d_count )
   1262         CV_ERROR( CV_StsUnmatchedSizes, "Both matrices must have the same number of points" );
   1263 
   1264     if( CV_MAT_DEPTH(src->type) < CV_32F || CV_MAT_DEPTH(dst->type) < CV_32F )
   1265         CV_ERROR( CV_StsUnsupportedFormat,
   1266         "Both matrices must be floating-point (single or double precision)" );
   1267 
   1268     if( s_dims < 2 || s_dims > 4 || d_dims < 2 || d_dims > 4 )
   1269         CV_ERROR( CV_StsOutOfRange,
   1270         "Both input and output point dimensionality must be 2, 3 or 4" );
   1271 
   1272     if( s_dims < d_dims - 1 || s_dims > d_dims + 1 )
   1273         CV_ERROR( CV_StsUnmatchedSizes,
   1274         "The dimensionalities of input and output point sets differ too much" );
   1275 
   1276     if( s_dims == d_dims - 1 )
   1277     {
   1278         if( d_count == dst->rows )
   1279         {
   1280             ones = cvGetSubRect( dst, &_ones, cvRect( s_dims, 0, 1, d_count ));
   1281             dst = cvGetSubRect( dst, &_dst, cvRect( 0, 0, s_dims, d_count ));
   1282         }
   1283         else
   1284         {
   1285             ones = cvGetSubRect( dst, &_ones, cvRect( 0, s_dims, d_count, 1 ));
   1286             dst = cvGetSubRect( dst, &_dst, cvRect( 0, 0, d_count, s_dims ));
   1287         }
   1288     }
   1289 
   1290     if( s_dims <= d_dims )
   1291     {
   1292         if( src->rows == dst->rows && src->cols == dst->cols )
   1293         {
   1294             if( CV_ARE_TYPES_EQ( src, dst ) )
   1295                 cvCopy( src, dst );
   1296             else
   1297                 cvConvert( src, dst );
   1298         }
   1299         else
   1300         {
   1301             if( !CV_ARE_TYPES_EQ( src, dst ))
   1302             {
   1303                 CV_CALL( temp = cvCreateMat( src->rows, src->cols, dst->type ));
   1304                 cvConvert( src, temp );
   1305                 src = temp;
   1306             }
   1307             cvTranspose( src, dst );
   1308         }
   1309 
   1310         if( ones )
   1311             cvSet( ones, cvRealScalar(1.) );
   1312     }
   1313     else
   1314     {
   1315         int s_plane_stride, s_stride, d_plane_stride, d_stride, elem_size;
   1316 
   1317         if( !CV_ARE_TYPES_EQ( src, dst ))
   1318         {
   1319             CV_CALL( temp = cvCreateMat( src->rows, src->cols, dst->type ));
   1320             cvConvert( src, temp );
   1321             src = temp;
   1322         }
   1323 
   1324         elem_size = CV_ELEM_SIZE(src->type);
   1325 
   1326         if( s_count == src->cols )
   1327             s_plane_stride = src->step / elem_size, s_stride = 1;
   1328         else
   1329             s_stride = src->step / elem_size, s_plane_stride = 1;
   1330 
   1331         if( d_count == dst->cols )
   1332             d_plane_stride = dst->step / elem_size, d_stride = 1;
   1333         else
   1334             d_stride = dst->step / elem_size, d_plane_stride = 1;
   1335 
   1336         CV_CALL( denom = cvCreateMat( 1, d_count, dst->type ));
   1337 
   1338         if( CV_MAT_DEPTH(dst->type) == CV_32F )
   1339         {
   1340             const float* xs = src->data.fl;
   1341             const float* ys = xs + s_plane_stride;
   1342             const float* zs = 0;
   1343             const float* ws = xs + (s_dims - 1)*s_plane_stride;
   1344 
   1345             float* iw = denom->data.fl;
   1346 
   1347             float* xd = dst->data.fl;
   1348             float* yd = xd + d_plane_stride;
   1349             float* zd = 0;
   1350 
   1351             if( d_dims == 3 )
   1352             {
   1353                 zs = ys + s_plane_stride;
   1354                 zd = yd + d_plane_stride;
   1355             }
   1356 
   1357             for( i = 0; i < d_count; i++, ws += s_stride )
   1358             {
   1359                 float t = *ws;
   1360                 iw[i] = t ? t : 1.f;
   1361             }
   1362 
   1363             cvDiv( 0, denom, denom );
   1364 
   1365             if( d_dims == 3 )
   1366                 for( i = 0; i < d_count; i++ )
   1367                 {
   1368                     float w = iw[i];
   1369                     float x = *xs * w, y = *ys * w, z = *zs * w;
   1370                     xs += s_stride; ys += s_stride; zs += s_stride;
   1371                     *xd = x; *yd = y; *zd = z;
   1372                     xd += d_stride; yd += d_stride; zd += d_stride;
   1373                 }
   1374             else
   1375                 for( i = 0; i < d_count; i++ )
   1376                 {
   1377                     float w = iw[i];
   1378                     float x = *xs * w, y = *ys * w;
   1379                     xs += s_stride; ys += s_stride;
   1380                     *xd = x; *yd = y;
   1381                     xd += d_stride; yd += d_stride;
   1382                 }
   1383         }
   1384         else
   1385         {
   1386             const double* xs = src->data.db;
   1387             const double* ys = xs + s_plane_stride;
   1388             const double* zs = 0;
   1389             const double* ws = xs + (s_dims - 1)*s_plane_stride;
   1390 
   1391             double* iw = denom->data.db;
   1392 
   1393             double* xd = dst->data.db;
   1394             double* yd = xd + d_plane_stride;
   1395             double* zd = 0;
   1396 
   1397             if( d_dims == 3 )
   1398             {
   1399                 zs = ys + s_plane_stride;
   1400                 zd = yd + d_plane_stride;
   1401             }
   1402 
   1403             for( i = 0; i < d_count; i++, ws += s_stride )
   1404             {
   1405                 double t = *ws;
   1406                 iw[i] = t ? t : 1.;
   1407             }
   1408 
   1409             cvDiv( 0, denom, denom );
   1410 
   1411             if( d_dims == 3 )
   1412                 for( i = 0; i < d_count; i++ )
   1413                 {
   1414                     double w = iw[i];
   1415                     double x = *xs * w, y = *ys * w, z = *zs * w;
   1416                     xs += s_stride; ys += s_stride; zs += s_stride;
   1417                     *xd = x; *yd = y; *zd = z;
   1418                     xd += d_stride; yd += d_stride; zd += d_stride;
   1419                 }
   1420             else
   1421                 for( i = 0; i < d_count; i++ )
   1422                 {
   1423                     double w = iw[i];
   1424                     double x = *xs * w, y = *ys * w;
   1425                     xs += s_stride; ys += s_stride;
   1426                     *xd = x; *yd = y;
   1427                     xd += d_stride; yd += d_stride;
   1428                 }
   1429         }
   1430     }
   1431 
   1432     __END__;
   1433 
   1434     cvReleaseMat( &denom );
   1435     cvReleaseMat( &temp );
   1436 }
   1437 
   1438 /* End of file. */
   1439