Home | History | Annotate | Download | only in TableGen
      1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits a target specifier matcher for converting parsed
     11 // assembly operands in the MCInst structures. It also emits a matcher for
     12 // custom operand parsing.
     13 //
     14 // Converting assembly operands into MCInst structures
     15 // ---------------------------------------------------
     16 //
     17 // The input to the target specific matcher is a list of literal tokens and
     18 // operands. The target specific parser should generally eliminate any syntax
     19 // which is not relevant for matching; for example, comma tokens should have
     20 // already been consumed and eliminated by the parser. Most instructions will
     21 // end up with a single literal token (the instruction name) and some number of
     22 // operands.
     23 //
     24 // Some example inputs, for X86:
     25 //   'addl' (immediate ...) (register ...)
     26 //   'add' (immediate ...) (memory ...)
     27 //   'call' '*' %epc
     28 //
     29 // The assembly matcher is responsible for converting this input into a precise
     30 // machine instruction (i.e., an instruction with a well defined encoding). This
     31 // mapping has several properties which complicate matching:
     32 //
     33 //  - It may be ambiguous; many architectures can legally encode particular
     34 //    variants of an instruction in different ways (for example, using a smaller
     35 //    encoding for small immediates). Such ambiguities should never be
     36 //    arbitrarily resolved by the assembler, the assembler is always responsible
     37 //    for choosing the "best" available instruction.
     38 //
     39 //  - It may depend on the subtarget or the assembler context. Instructions
     40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
     41 //    an SSE instruction in a file being assembled for i486) should be accepted
     42 //    and rejected by the assembler front end. However, if the proper encoding
     43 //    for an instruction is dependent on the assembler context then the matcher
     44 //    is responsible for selecting the correct machine instruction for the
     45 //    current mode.
     46 //
     47 // The core matching algorithm attempts to exploit the regularity in most
     48 // instruction sets to quickly determine the set of possibly matching
     49 // instructions, and the simplify the generated code. Additionally, this helps
     50 // to ensure that the ambiguities are intentionally resolved by the user.
     51 //
     52 // The matching is divided into two distinct phases:
     53 //
     54 //   1. Classification: Each operand is mapped to the unique set which (a)
     55 //      contains it, and (b) is the largest such subset for which a single
     56 //      instruction could match all members.
     57 //
     58 //      For register classes, we can generate these subgroups automatically. For
     59 //      arbitrary operands, we expect the user to define the classes and their
     60 //      relations to one another (for example, 8-bit signed immediates as a
     61 //      subset of 32-bit immediates).
     62 //
     63 //      By partitioning the operands in this way, we guarantee that for any
     64 //      tuple of classes, any single instruction must match either all or none
     65 //      of the sets of operands which could classify to that tuple.
     66 //
     67 //      In addition, the subset relation amongst classes induces a partial order
     68 //      on such tuples, which we use to resolve ambiguities.
     69 //
     70 //   2. The input can now be treated as a tuple of classes (static tokens are
     71 //      simple singleton sets). Each such tuple should generally map to a single
     72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
     73 //      which we can emit a simple matcher for.
     74 //
     75 // Custom Operand Parsing
     76 // ----------------------
     77 //
     78 //  Some targets need a custom way to parse operands, some specific instructions
     79 //  can contain arguments that can represent processor flags and other kinds of
     80 //  identifiers that need to be mapped to specific values in the final encoded
     81 //  instructions. The target specific custom operand parsing works in the
     82 //  following way:
     83 //
     84 //   1. A operand match table is built, each entry contains a mnemonic, an
     85 //      operand class, a mask for all operand positions for that same
     86 //      class/mnemonic and target features to be checked while trying to match.
     87 //
     88 //   2. The operand matcher will try every possible entry with the same
     89 //      mnemonic and will check if the target feature for this mnemonic also
     90 //      matches. After that, if the operand to be matched has its index
     91 //      present in the mask, a successful match occurs. Otherwise, fallback
     92 //      to the regular operand parsing.
     93 //
     94 //   3. For a match success, each operand class that has a 'ParserMethod'
     95 //      becomes part of a switch from where the custom method is called.
     96 //
     97 //===----------------------------------------------------------------------===//
     98 
     99 #include "CodeGenTarget.h"
    100 #include "llvm/ADT/PointerUnion.h"
    101 #include "llvm/ADT/STLExtras.h"
    102 #include "llvm/ADT/SmallPtrSet.h"
    103 #include "llvm/ADT/SmallVector.h"
    104 #include "llvm/ADT/StringExtras.h"
    105 #include "llvm/Support/CommandLine.h"
    106 #include "llvm/Support/Debug.h"
    107 #include "llvm/Support/ErrorHandling.h"
    108 #include "llvm/TableGen/Error.h"
    109 #include "llvm/TableGen/Record.h"
    110 #include "llvm/TableGen/StringMatcher.h"
    111 #include "llvm/TableGen/StringToOffsetTable.h"
    112 #include "llvm/TableGen/TableGenBackend.h"
    113 #include <cassert>
    114 #include <cctype>
    115 #include <map>
    116 #include <set>
    117 #include <sstream>
    118 using namespace llvm;
    119 
    120 #define DEBUG_TYPE "asm-matcher-emitter"
    121 
    122 static cl::opt<std::string>
    123 MatchPrefix("match-prefix", cl::init(""),
    124             cl::desc("Only match instructions with the given prefix"));
    125 
    126 namespace {
    127 class AsmMatcherInfo;
    128 struct SubtargetFeatureInfo;
    129 
    130 // Register sets are used as keys in some second-order sets TableGen creates
    131 // when generating its data structures. This means that the order of two
    132 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
    133 // can even affect compiler output (at least seen in diagnostics produced when
    134 // all matches fail). So we use a type that sorts them consistently.
    135 typedef std::set<Record*, LessRecordByID> RegisterSet;
    136 
    137 class AsmMatcherEmitter {
    138   RecordKeeper &Records;
    139 public:
    140   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
    141 
    142   void run(raw_ostream &o);
    143 };
    144 
    145 /// ClassInfo - Helper class for storing the information about a particular
    146 /// class of operands which can be matched.
    147 struct ClassInfo {
    148   enum ClassInfoKind {
    149     /// Invalid kind, for use as a sentinel value.
    150     Invalid = 0,
    151 
    152     /// The class for a particular token.
    153     Token,
    154 
    155     /// The (first) register class, subsequent register classes are
    156     /// RegisterClass0+1, and so on.
    157     RegisterClass0,
    158 
    159     /// The (first) user defined class, subsequent user defined classes are
    160     /// UserClass0+1, and so on.
    161     UserClass0 = 1<<16
    162   };
    163 
    164   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
    165   /// N) for the Nth user defined class.
    166   unsigned Kind;
    167 
    168   /// SuperClasses - The super classes of this class. Note that for simplicities
    169   /// sake user operands only record their immediate super class, while register
    170   /// operands include all superclasses.
    171   std::vector<ClassInfo*> SuperClasses;
    172 
    173   /// Name - The full class name, suitable for use in an enum.
    174   std::string Name;
    175 
    176   /// ClassName - The unadorned generic name for this class (e.g., Token).
    177   std::string ClassName;
    178 
    179   /// ValueName - The name of the value this class represents; for a token this
    180   /// is the literal token string, for an operand it is the TableGen class (or
    181   /// empty if this is a derived class).
    182   std::string ValueName;
    183 
    184   /// PredicateMethod - The name of the operand method to test whether the
    185   /// operand matches this class; this is not valid for Token or register kinds.
    186   std::string PredicateMethod;
    187 
    188   /// RenderMethod - The name of the operand method to add this operand to an
    189   /// MCInst; this is not valid for Token or register kinds.
    190   std::string RenderMethod;
    191 
    192   /// ParserMethod - The name of the operand method to do a target specific
    193   /// parsing on the operand.
    194   std::string ParserMethod;
    195 
    196   /// For register classes: the records for all the registers in this class.
    197   RegisterSet Registers;
    198 
    199   /// For custom match classes: the diagnostic kind for when the predicate fails.
    200   std::string DiagnosticType;
    201 public:
    202   /// isRegisterClass() - Check if this is a register class.
    203   bool isRegisterClass() const {
    204     return Kind >= RegisterClass0 && Kind < UserClass0;
    205   }
    206 
    207   /// isUserClass() - Check if this is a user defined class.
    208   bool isUserClass() const {
    209     return Kind >= UserClass0;
    210   }
    211 
    212   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
    213   /// are related if they are in the same class hierarchy.
    214   bool isRelatedTo(const ClassInfo &RHS) const {
    215     // Tokens are only related to tokens.
    216     if (Kind == Token || RHS.Kind == Token)
    217       return Kind == Token && RHS.Kind == Token;
    218 
    219     // Registers classes are only related to registers classes, and only if
    220     // their intersection is non-empty.
    221     if (isRegisterClass() || RHS.isRegisterClass()) {
    222       if (!isRegisterClass() || !RHS.isRegisterClass())
    223         return false;
    224 
    225       RegisterSet Tmp;
    226       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
    227       std::set_intersection(Registers.begin(), Registers.end(),
    228                             RHS.Registers.begin(), RHS.Registers.end(),
    229                             II, LessRecordByID());
    230 
    231       return !Tmp.empty();
    232     }
    233 
    234     // Otherwise we have two users operands; they are related if they are in the
    235     // same class hierarchy.
    236     //
    237     // FIXME: This is an oversimplification, they should only be related if they
    238     // intersect, however we don't have that information.
    239     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
    240     const ClassInfo *Root = this;
    241     while (!Root->SuperClasses.empty())
    242       Root = Root->SuperClasses.front();
    243 
    244     const ClassInfo *RHSRoot = &RHS;
    245     while (!RHSRoot->SuperClasses.empty())
    246       RHSRoot = RHSRoot->SuperClasses.front();
    247 
    248     return Root == RHSRoot;
    249   }
    250 
    251   /// isSubsetOf - Test whether this class is a subset of \p RHS.
    252   bool isSubsetOf(const ClassInfo &RHS) const {
    253     // This is a subset of RHS if it is the same class...
    254     if (this == &RHS)
    255       return true;
    256 
    257     // ... or if any of its super classes are a subset of RHS.
    258     for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
    259            ie = SuperClasses.end(); it != ie; ++it)
    260       if ((*it)->isSubsetOf(RHS))
    261         return true;
    262 
    263     return false;
    264   }
    265 
    266   /// operator< - Compare two classes.
    267   bool operator<(const ClassInfo &RHS) const {
    268     if (this == &RHS)
    269       return false;
    270 
    271     // Unrelated classes can be ordered by kind.
    272     if (!isRelatedTo(RHS))
    273       return Kind < RHS.Kind;
    274 
    275     switch (Kind) {
    276     case Invalid:
    277       llvm_unreachable("Invalid kind!");
    278 
    279     default:
    280       // This class precedes the RHS if it is a proper subset of the RHS.
    281       if (isSubsetOf(RHS))
    282         return true;
    283       if (RHS.isSubsetOf(*this))
    284         return false;
    285 
    286       // Otherwise, order by name to ensure we have a total ordering.
    287       return ValueName < RHS.ValueName;
    288     }
    289   }
    290 };
    291 
    292 /// MatchableInfo - Helper class for storing the necessary information for an
    293 /// instruction or alias which is capable of being matched.
    294 struct MatchableInfo {
    295   struct AsmOperand {
    296     /// Token - This is the token that the operand came from.
    297     StringRef Token;
    298 
    299     /// The unique class instance this operand should match.
    300     ClassInfo *Class;
    301 
    302     /// The operand name this is, if anything.
    303     StringRef SrcOpName;
    304 
    305     /// The suboperand index within SrcOpName, or -1 for the entire operand.
    306     int SubOpIdx;
    307 
    308     /// Register record if this token is singleton register.
    309     Record *SingletonReg;
    310 
    311     explicit AsmOperand(StringRef T) : Token(T), Class(nullptr), SubOpIdx(-1),
    312                                        SingletonReg(nullptr) {}
    313   };
    314 
    315   /// ResOperand - This represents a single operand in the result instruction
    316   /// generated by the match.  In cases (like addressing modes) where a single
    317   /// assembler operand expands to multiple MCOperands, this represents the
    318   /// single assembler operand, not the MCOperand.
    319   struct ResOperand {
    320     enum {
    321       /// RenderAsmOperand - This represents an operand result that is
    322       /// generated by calling the render method on the assembly operand.  The
    323       /// corresponding AsmOperand is specified by AsmOperandNum.
    324       RenderAsmOperand,
    325 
    326       /// TiedOperand - This represents a result operand that is a duplicate of
    327       /// a previous result operand.
    328       TiedOperand,
    329 
    330       /// ImmOperand - This represents an immediate value that is dumped into
    331       /// the operand.
    332       ImmOperand,
    333 
    334       /// RegOperand - This represents a fixed register that is dumped in.
    335       RegOperand
    336     } Kind;
    337 
    338     union {
    339       /// This is the operand # in the AsmOperands list that this should be
    340       /// copied from.
    341       unsigned AsmOperandNum;
    342 
    343       /// TiedOperandNum - This is the (earlier) result operand that should be
    344       /// copied from.
    345       unsigned TiedOperandNum;
    346 
    347       /// ImmVal - This is the immediate value added to the instruction.
    348       int64_t ImmVal;
    349 
    350       /// Register - This is the register record.
    351       Record *Register;
    352     };
    353 
    354     /// MINumOperands - The number of MCInst operands populated by this
    355     /// operand.
    356     unsigned MINumOperands;
    357 
    358     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
    359       ResOperand X;
    360       X.Kind = RenderAsmOperand;
    361       X.AsmOperandNum = AsmOpNum;
    362       X.MINumOperands = NumOperands;
    363       return X;
    364     }
    365 
    366     static ResOperand getTiedOp(unsigned TiedOperandNum) {
    367       ResOperand X;
    368       X.Kind = TiedOperand;
    369       X.TiedOperandNum = TiedOperandNum;
    370       X.MINumOperands = 1;
    371       return X;
    372     }
    373 
    374     static ResOperand getImmOp(int64_t Val) {
    375       ResOperand X;
    376       X.Kind = ImmOperand;
    377       X.ImmVal = Val;
    378       X.MINumOperands = 1;
    379       return X;
    380     }
    381 
    382     static ResOperand getRegOp(Record *Reg) {
    383       ResOperand X;
    384       X.Kind = RegOperand;
    385       X.Register = Reg;
    386       X.MINumOperands = 1;
    387       return X;
    388     }
    389   };
    390 
    391   /// AsmVariantID - Target's assembly syntax variant no.
    392   int AsmVariantID;
    393 
    394   /// TheDef - This is the definition of the instruction or InstAlias that this
    395   /// matchable came from.
    396   Record *const TheDef;
    397 
    398   /// DefRec - This is the definition that it came from.
    399   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
    400 
    401   const CodeGenInstruction *getResultInst() const {
    402     if (DefRec.is<const CodeGenInstruction*>())
    403       return DefRec.get<const CodeGenInstruction*>();
    404     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
    405   }
    406 
    407   /// ResOperands - This is the operand list that should be built for the result
    408   /// MCInst.
    409   SmallVector<ResOperand, 8> ResOperands;
    410 
    411   /// AsmString - The assembly string for this instruction (with variants
    412   /// removed), e.g. "movsx $src, $dst".
    413   std::string AsmString;
    414 
    415   /// Mnemonic - This is the first token of the matched instruction, its
    416   /// mnemonic.
    417   StringRef Mnemonic;
    418 
    419   /// AsmOperands - The textual operands that this instruction matches,
    420   /// annotated with a class and where in the OperandList they were defined.
    421   /// This directly corresponds to the tokenized AsmString after the mnemonic is
    422   /// removed.
    423   SmallVector<AsmOperand, 8> AsmOperands;
    424 
    425   /// Predicates - The required subtarget features to match this instruction.
    426   SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
    427 
    428   /// ConversionFnKind - The enum value which is passed to the generated
    429   /// convertToMCInst to convert parsed operands into an MCInst for this
    430   /// function.
    431   std::string ConversionFnKind;
    432 
    433   /// If this instruction is deprecated in some form.
    434   bool HasDeprecation;
    435 
    436   MatchableInfo(const CodeGenInstruction &CGI)
    437     : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
    438       AsmString(CGI.AsmString) {
    439   }
    440 
    441   MatchableInfo(const CodeGenInstAlias *Alias)
    442     : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
    443       AsmString(Alias->AsmString) {
    444   }
    445 
    446   // Two-operand aliases clone from the main matchable, but mark the second
    447   // operand as a tied operand of the first for purposes of the assembler.
    448   void formTwoOperandAlias(StringRef Constraint);
    449 
    450   void initialize(const AsmMatcherInfo &Info,
    451                   SmallPtrSet<Record*, 16> &SingletonRegisters,
    452                   int AsmVariantNo, std::string &RegisterPrefix);
    453 
    454   /// validate - Return true if this matchable is a valid thing to match against
    455   /// and perform a bunch of validity checking.
    456   bool validate(StringRef CommentDelimiter, bool Hack) const;
    457 
    458   /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    459   /// if present, from specified token.
    460   void
    461   extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
    462                                         std::string &RegisterPrefix);
    463 
    464   /// findAsmOperand - Find the AsmOperand with the specified name and
    465   /// suboperand index.
    466   int findAsmOperand(StringRef N, int SubOpIdx) const {
    467     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    468       if (N == AsmOperands[i].SrcOpName &&
    469           SubOpIdx == AsmOperands[i].SubOpIdx)
    470         return i;
    471     return -1;
    472   }
    473 
    474   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
    475   /// This does not check the suboperand index.
    476   int findAsmOperandNamed(StringRef N) const {
    477     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    478       if (N == AsmOperands[i].SrcOpName)
    479         return i;
    480     return -1;
    481   }
    482 
    483   void buildInstructionResultOperands();
    484   void buildAliasResultOperands();
    485 
    486   /// operator< - Compare two matchables.
    487   bool operator<(const MatchableInfo &RHS) const {
    488     // The primary comparator is the instruction mnemonic.
    489     if (Mnemonic != RHS.Mnemonic)
    490       return Mnemonic < RHS.Mnemonic;
    491 
    492     if (AsmOperands.size() != RHS.AsmOperands.size())
    493       return AsmOperands.size() < RHS.AsmOperands.size();
    494 
    495     // Compare lexicographically by operand. The matcher validates that other
    496     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
    497     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    498       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    499         return true;
    500       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    501         return false;
    502     }
    503 
    504     // Give matches that require more features higher precedence. This is useful
    505     // because we cannot define AssemblerPredicates with the negation of
    506     // processor features. For example, ARM v6 "nop" may be either a HINT or
    507     // MOV. With v6, we want to match HINT. The assembler has no way to
    508     // predicate MOV under "NoV6", but HINT will always match first because it
    509     // requires V6 while MOV does not.
    510     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
    511       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
    512 
    513     return false;
    514   }
    515 
    516   /// couldMatchAmbiguouslyWith - Check whether this matchable could
    517   /// ambiguously match the same set of operands as \p RHS (without being a
    518   /// strictly superior match).
    519   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
    520     // The primary comparator is the instruction mnemonic.
    521     if (Mnemonic != RHS.Mnemonic)
    522       return false;
    523 
    524     // The number of operands is unambiguous.
    525     if (AsmOperands.size() != RHS.AsmOperands.size())
    526       return false;
    527 
    528     // Otherwise, make sure the ordering of the two instructions is unambiguous
    529     // by checking that either (a) a token or operand kind discriminates them,
    530     // or (b) the ordering among equivalent kinds is consistent.
    531 
    532     // Tokens and operand kinds are unambiguous (assuming a correct target
    533     // specific parser).
    534     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    535       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
    536           AsmOperands[i].Class->Kind == ClassInfo::Token)
    537         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
    538             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    539           return false;
    540 
    541     // Otherwise, this operand could commute if all operands are equivalent, or
    542     // there is a pair of operands that compare less than and a pair that
    543     // compare greater than.
    544     bool HasLT = false, HasGT = false;
    545     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    546       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    547         HasLT = true;
    548       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    549         HasGT = true;
    550     }
    551 
    552     return !(HasLT ^ HasGT);
    553   }
    554 
    555   void dump();
    556 
    557 private:
    558   void tokenizeAsmString(const AsmMatcherInfo &Info);
    559 };
    560 
    561 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
    562 /// feature which participates in instruction matching.
    563 struct SubtargetFeatureInfo {
    564   /// \brief The predicate record for this feature.
    565   Record *TheDef;
    566 
    567   /// \brief An unique index assigned to represent this feature.
    568   unsigned Index;
    569 
    570   SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
    571 
    572   /// \brief The name of the enumerated constant identifying this feature.
    573   std::string getEnumName() const {
    574     return "Feature_" + TheDef->getName();
    575   }
    576 
    577   void dump() {
    578     errs() << getEnumName() << " " << Index << "\n";
    579     TheDef->dump();
    580   }
    581 };
    582 
    583 struct OperandMatchEntry {
    584   unsigned OperandMask;
    585   MatchableInfo* MI;
    586   ClassInfo *CI;
    587 
    588   static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
    589                                   unsigned opMask) {
    590     OperandMatchEntry X;
    591     X.OperandMask = opMask;
    592     X.CI = ci;
    593     X.MI = mi;
    594     return X;
    595   }
    596 };
    597 
    598 
    599 class AsmMatcherInfo {
    600 public:
    601   /// Tracked Records
    602   RecordKeeper &Records;
    603 
    604   /// The tablegen AsmParser record.
    605   Record *AsmParser;
    606 
    607   /// Target - The target information.
    608   CodeGenTarget &Target;
    609 
    610   /// The classes which are needed for matching.
    611   std::vector<ClassInfo*> Classes;
    612 
    613   /// The information on the matchables to match.
    614   std::vector<MatchableInfo*> Matchables;
    615 
    616   /// Info for custom matching operands by user defined methods.
    617   std::vector<OperandMatchEntry> OperandMatchInfo;
    618 
    619   /// Map of Register records to their class information.
    620   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
    621   RegisterClassesTy RegisterClasses;
    622 
    623   /// Map of Predicate records to their subtarget information.
    624   std::map<Record*, SubtargetFeatureInfo*, LessRecordByID> SubtargetFeatures;
    625 
    626   /// Map of AsmOperandClass records to their class information.
    627   std::map<Record*, ClassInfo*> AsmOperandClasses;
    628 
    629 private:
    630   /// Map of token to class information which has already been constructed.
    631   std::map<std::string, ClassInfo*> TokenClasses;
    632 
    633   /// Map of RegisterClass records to their class information.
    634   std::map<Record*, ClassInfo*> RegisterClassClasses;
    635 
    636 private:
    637   /// getTokenClass - Lookup or create the class for the given token.
    638   ClassInfo *getTokenClass(StringRef Token);
    639 
    640   /// getOperandClass - Lookup or create the class for the given operand.
    641   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
    642                              int SubOpIdx);
    643   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
    644 
    645   /// buildRegisterClasses - Build the ClassInfo* instances for register
    646   /// classes.
    647   void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
    648 
    649   /// buildOperandClasses - Build the ClassInfo* instances for user defined
    650   /// operand classes.
    651   void buildOperandClasses();
    652 
    653   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
    654                                         unsigned AsmOpIdx);
    655   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
    656                                   MatchableInfo::AsmOperand &Op);
    657 
    658 public:
    659   AsmMatcherInfo(Record *AsmParser,
    660                  CodeGenTarget &Target,
    661                  RecordKeeper &Records);
    662 
    663   /// buildInfo - Construct the various tables used during matching.
    664   void buildInfo();
    665 
    666   /// buildOperandMatchInfo - Build the necessary information to handle user
    667   /// defined operand parsing methods.
    668   void buildOperandMatchInfo();
    669 
    670   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
    671   /// given operand.
    672   SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
    673     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
    674     std::map<Record*, SubtargetFeatureInfo*, LessRecordByID>::const_iterator I =
    675       SubtargetFeatures.find(Def);
    676     return I == SubtargetFeatures.end() ? nullptr : I->second;
    677   }
    678 
    679   RecordKeeper &getRecords() const {
    680     return Records;
    681   }
    682 };
    683 
    684 } // End anonymous namespace
    685 
    686 void MatchableInfo::dump() {
    687   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
    688 
    689   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    690     AsmOperand &Op = AsmOperands[i];
    691     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
    692     errs() << '\"' << Op.Token << "\"\n";
    693   }
    694 }
    695 
    696 static std::pair<StringRef, StringRef>
    697 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
    698   // Split via the '='.
    699   std::pair<StringRef, StringRef> Ops = S.split('=');
    700   if (Ops.second == "")
    701     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
    702   // Trim whitespace and the leading '$' on the operand names.
    703   size_t start = Ops.first.find_first_of('$');
    704   if (start == std::string::npos)
    705     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    706   Ops.first = Ops.first.slice(start + 1, std::string::npos);
    707   size_t end = Ops.first.find_last_of(" \t");
    708   Ops.first = Ops.first.slice(0, end);
    709   // Now the second operand.
    710   start = Ops.second.find_first_of('$');
    711   if (start == std::string::npos)
    712     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    713   Ops.second = Ops.second.slice(start + 1, std::string::npos);
    714   end = Ops.second.find_last_of(" \t");
    715   Ops.first = Ops.first.slice(0, end);
    716   return Ops;
    717 }
    718 
    719 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
    720   // Figure out which operands are aliased and mark them as tied.
    721   std::pair<StringRef, StringRef> Ops =
    722     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
    723 
    724   // Find the AsmOperands that refer to the operands we're aliasing.
    725   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
    726   int DstAsmOperand = findAsmOperandNamed(Ops.second);
    727   if (SrcAsmOperand == -1)
    728     PrintFatalError(TheDef->getLoc(),
    729                     "unknown source two-operand alias operand '" + Ops.first +
    730                     "'.");
    731   if (DstAsmOperand == -1)
    732     PrintFatalError(TheDef->getLoc(),
    733                     "unknown destination two-operand alias operand '" +
    734                     Ops.second + "'.");
    735 
    736   // Find the ResOperand that refers to the operand we're aliasing away
    737   // and update it to refer to the combined operand instead.
    738   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    739     ResOperand &Op = ResOperands[i];
    740     if (Op.Kind == ResOperand::RenderAsmOperand &&
    741         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
    742       Op.AsmOperandNum = DstAsmOperand;
    743       break;
    744     }
    745   }
    746   // Remove the AsmOperand for the alias operand.
    747   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
    748   // Adjust the ResOperand references to any AsmOperands that followed
    749   // the one we just deleted.
    750   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    751     ResOperand &Op = ResOperands[i];
    752     switch(Op.Kind) {
    753     default:
    754       // Nothing to do for operands that don't reference AsmOperands.
    755       break;
    756     case ResOperand::RenderAsmOperand:
    757       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
    758         --Op.AsmOperandNum;
    759       break;
    760     case ResOperand::TiedOperand:
    761       if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
    762         --Op.TiedOperandNum;
    763       break;
    764     }
    765   }
    766 }
    767 
    768 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
    769                                SmallPtrSet<Record*, 16> &SingletonRegisters,
    770                                int AsmVariantNo, std::string &RegisterPrefix) {
    771   AsmVariantID = AsmVariantNo;
    772   AsmString =
    773     CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
    774 
    775   tokenizeAsmString(Info);
    776 
    777   // Compute the require features.
    778   std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
    779   for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
    780     if (SubtargetFeatureInfo *Feature =
    781         Info.getSubtargetFeature(Predicates[i]))
    782       RequiredFeatures.push_back(Feature);
    783 
    784   // Collect singleton registers, if used.
    785   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    786     extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
    787     if (Record *Reg = AsmOperands[i].SingletonReg)
    788       SingletonRegisters.insert(Reg);
    789   }
    790 
    791   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
    792   if (!DepMask)
    793     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
    794 
    795   HasDeprecation =
    796       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
    797 }
    798 
    799 /// tokenizeAsmString - Tokenize a simplified assembly string.
    800 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
    801   StringRef String = AsmString;
    802   unsigned Prev = 0;
    803   bool InTok = true;
    804   for (unsigned i = 0, e = String.size(); i != e; ++i) {
    805     switch (String[i]) {
    806     case '[':
    807     case ']':
    808     case '*':
    809     case '!':
    810     case ' ':
    811     case '\t':
    812     case ',':
    813       if (InTok) {
    814         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    815         InTok = false;
    816       }
    817       if (!isspace(String[i]) && String[i] != ',')
    818         AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    819       Prev = i + 1;
    820       break;
    821 
    822     case '\\':
    823       if (InTok) {
    824         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    825         InTok = false;
    826       }
    827       ++i;
    828       assert(i != String.size() && "Invalid quoted character");
    829       AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    830       Prev = i + 1;
    831       break;
    832 
    833     case '$': {
    834       if (InTok) {
    835         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    836         InTok = false;
    837       }
    838 
    839       // If this isn't "${", treat like a normal token.
    840       if (i + 1 == String.size() || String[i + 1] != '{') {
    841         Prev = i;
    842         break;
    843       }
    844 
    845       StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
    846       assert(End != String.end() && "Missing brace in operand reference!");
    847       size_t EndPos = End - String.begin();
    848       AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
    849       Prev = EndPos + 1;
    850       i = EndPos;
    851       break;
    852     }
    853 
    854     case '.':
    855       if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) {
    856         if (InTok)
    857           AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    858         Prev = i;
    859       }
    860       InTok = true;
    861       break;
    862 
    863     default:
    864       InTok = true;
    865     }
    866   }
    867   if (InTok && Prev != String.size())
    868     AsmOperands.push_back(AsmOperand(String.substr(Prev)));
    869 
    870   // The first token of the instruction is the mnemonic, which must be a
    871   // simple string, not a $foo variable or a singleton register.
    872   if (AsmOperands.empty())
    873     PrintFatalError(TheDef->getLoc(),
    874                   "Instruction '" + TheDef->getName() + "' has no tokens");
    875   Mnemonic = AsmOperands[0].Token;
    876   if (Mnemonic.empty())
    877     PrintFatalError(TheDef->getLoc(),
    878                   "Missing instruction mnemonic");
    879   // FIXME : Check and raise an error if it is a register.
    880   if (Mnemonic[0] == '$')
    881     PrintFatalError(TheDef->getLoc(),
    882                     "Invalid instruction mnemonic '" + Mnemonic + "'!");
    883 
    884   // Remove the first operand, it is tracked in the mnemonic field.
    885   AsmOperands.erase(AsmOperands.begin());
    886 }
    887 
    888 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
    889   // Reject matchables with no .s string.
    890   if (AsmString.empty())
    891     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
    892 
    893   // Reject any matchables with a newline in them, they should be marked
    894   // isCodeGenOnly if they are pseudo instructions.
    895   if (AsmString.find('\n') != std::string::npos)
    896     PrintFatalError(TheDef->getLoc(),
    897                   "multiline instruction is not valid for the asmparser, "
    898                   "mark it isCodeGenOnly");
    899 
    900   // Remove comments from the asm string.  We know that the asmstring only
    901   // has one line.
    902   if (!CommentDelimiter.empty() &&
    903       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
    904     PrintFatalError(TheDef->getLoc(),
    905                   "asmstring for instruction has comment character in it, "
    906                   "mark it isCodeGenOnly");
    907 
    908   // Reject matchables with operand modifiers, these aren't something we can
    909   // handle, the target should be refactored to use operands instead of
    910   // modifiers.
    911   //
    912   // Also, check for instructions which reference the operand multiple times;
    913   // this implies a constraint we would not honor.
    914   std::set<std::string> OperandNames;
    915   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    916     StringRef Tok = AsmOperands[i].Token;
    917     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
    918       PrintFatalError(TheDef->getLoc(),
    919                       "matchable with operand modifier '" + Tok +
    920                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
    921 
    922     // Verify that any operand is only mentioned once.
    923     // We reject aliases and ignore instructions for now.
    924     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
    925       if (!Hack)
    926         PrintFatalError(TheDef->getLoc(),
    927                         "ERROR: matchable with tied operand '" + Tok +
    928                         "' can never be matched!");
    929       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
    930       // bunch of instructions.  It is unclear what the right answer is.
    931       DEBUG({
    932         errs() << "warning: '" << TheDef->getName() << "': "
    933                << "ignoring instruction with tied operand '"
    934                << Tok << "'\n";
    935       });
    936       return false;
    937     }
    938   }
    939 
    940   return true;
    941 }
    942 
    943 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    944 /// if present, from specified token.
    945 void MatchableInfo::
    946 extractSingletonRegisterForAsmOperand(unsigned OperandNo,
    947                                       const AsmMatcherInfo &Info,
    948                                       std::string &RegisterPrefix) {
    949   StringRef Tok = AsmOperands[OperandNo].Token;
    950   if (RegisterPrefix.empty()) {
    951     std::string LoweredTok = Tok.lower();
    952     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
    953       AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    954     return;
    955   }
    956 
    957   if (!Tok.startswith(RegisterPrefix))
    958     return;
    959 
    960   StringRef RegName = Tok.substr(RegisterPrefix.size());
    961   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
    962     AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    963 
    964   // If there is no register prefix (i.e. "%" in "%eax"), then this may
    965   // be some random non-register token, just ignore it.
    966   return;
    967 }
    968 
    969 static std::string getEnumNameForToken(StringRef Str) {
    970   std::string Res;
    971 
    972   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
    973     switch (*it) {
    974     case '*': Res += "_STAR_"; break;
    975     case '%': Res += "_PCT_"; break;
    976     case ':': Res += "_COLON_"; break;
    977     case '!': Res += "_EXCLAIM_"; break;
    978     case '.': Res += "_DOT_"; break;
    979     case '<': Res += "_LT_"; break;
    980     case '>': Res += "_GT_"; break;
    981     default:
    982       if ((*it >= 'A' && *it <= 'Z') ||
    983           (*it >= 'a' && *it <= 'z') ||
    984           (*it >= '0' && *it <= '9'))
    985         Res += *it;
    986       else
    987         Res += "_" + utostr((unsigned) *it) + "_";
    988     }
    989   }
    990 
    991   return Res;
    992 }
    993 
    994 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
    995   ClassInfo *&Entry = TokenClasses[Token];
    996 
    997   if (!Entry) {
    998     Entry = new ClassInfo();
    999     Entry->Kind = ClassInfo::Token;
   1000     Entry->ClassName = "Token";
   1001     Entry->Name = "MCK_" + getEnumNameForToken(Token);
   1002     Entry->ValueName = Token;
   1003     Entry->PredicateMethod = "<invalid>";
   1004     Entry->RenderMethod = "<invalid>";
   1005     Entry->ParserMethod = "";
   1006     Entry->DiagnosticType = "";
   1007     Classes.push_back(Entry);
   1008   }
   1009 
   1010   return Entry;
   1011 }
   1012 
   1013 ClassInfo *
   1014 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
   1015                                 int SubOpIdx) {
   1016   Record *Rec = OI.Rec;
   1017   if (SubOpIdx != -1)
   1018     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
   1019   return getOperandClass(Rec, SubOpIdx);
   1020 }
   1021 
   1022 ClassInfo *
   1023 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
   1024   if (Rec->isSubClassOf("RegisterOperand")) {
   1025     // RegisterOperand may have an associated ParserMatchClass. If it does,
   1026     // use it, else just fall back to the underlying register class.
   1027     const RecordVal *R = Rec->getValue("ParserMatchClass");
   1028     if (!R || !R->getValue())
   1029       PrintFatalError("Record `" + Rec->getName() +
   1030         "' does not have a ParserMatchClass!\n");
   1031 
   1032     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
   1033       Record *MatchClass = DI->getDef();
   1034       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1035         return CI;
   1036     }
   1037 
   1038     // No custom match class. Just use the register class.
   1039     Record *ClassRec = Rec->getValueAsDef("RegClass");
   1040     if (!ClassRec)
   1041       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
   1042                     "' has no associated register class!\n");
   1043     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
   1044       return CI;
   1045     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1046   }
   1047 
   1048 
   1049   if (Rec->isSubClassOf("RegisterClass")) {
   1050     if (ClassInfo *CI = RegisterClassClasses[Rec])
   1051       return CI;
   1052     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1053   }
   1054 
   1055   if (!Rec->isSubClassOf("Operand"))
   1056     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
   1057                   "' does not derive from class Operand!\n");
   1058   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1059   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1060     return CI;
   1061 
   1062   PrintFatalError(Rec->getLoc(), "operand has no match class!");
   1063 }
   1064 
   1065 struct LessRegisterSet {
   1066   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
   1067     // std::set<T> defines its own compariso "operator<", but it
   1068     // performs a lexicographical comparison by T's innate comparison
   1069     // for some reason. We don't want non-deterministic pointer
   1070     // comparisons so use this instead.
   1071     return std::lexicographical_compare(LHS.begin(), LHS.end(),
   1072                                         RHS.begin(), RHS.end(),
   1073                                         LessRecordByID());
   1074   }
   1075 };
   1076 
   1077 void AsmMatcherInfo::
   1078 buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
   1079   const std::vector<CodeGenRegister*> &Registers =
   1080     Target.getRegBank().getRegisters();
   1081   ArrayRef<CodeGenRegisterClass*> RegClassList =
   1082     Target.getRegBank().getRegClasses();
   1083 
   1084   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
   1085 
   1086   // The register sets used for matching.
   1087   RegisterSetSet RegisterSets;
   1088 
   1089   // Gather the defined sets.
   1090   for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
   1091          RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
   1092     RegisterSets.insert(RegisterSet(
   1093         (*it)->getOrder().begin(), (*it)->getOrder().end()));
   1094 
   1095   // Add any required singleton sets.
   1096   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
   1097        ie = SingletonRegisters.end(); it != ie; ++it) {
   1098     Record *Rec = *it;
   1099     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
   1100   }
   1101 
   1102   // Introduce derived sets where necessary (when a register does not determine
   1103   // a unique register set class), and build the mapping of registers to the set
   1104   // they should classify to.
   1105   std::map<Record*, RegisterSet> RegisterMap;
   1106   for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
   1107          ie = Registers.end(); it != ie; ++it) {
   1108     const CodeGenRegister &CGR = **it;
   1109     // Compute the intersection of all sets containing this register.
   1110     RegisterSet ContainingSet;
   1111 
   1112     for (RegisterSetSet::iterator it = RegisterSets.begin(),
   1113            ie = RegisterSets.end(); it != ie; ++it) {
   1114       if (!it->count(CGR.TheDef))
   1115         continue;
   1116 
   1117       if (ContainingSet.empty()) {
   1118         ContainingSet = *it;
   1119         continue;
   1120       }
   1121 
   1122       RegisterSet Tmp;
   1123       std::swap(Tmp, ContainingSet);
   1124       std::insert_iterator<RegisterSet> II(ContainingSet,
   1125                                            ContainingSet.begin());
   1126       std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II,
   1127                             LessRecordByID());
   1128     }
   1129 
   1130     if (!ContainingSet.empty()) {
   1131       RegisterSets.insert(ContainingSet);
   1132       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
   1133     }
   1134   }
   1135 
   1136   // Construct the register classes.
   1137   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
   1138   unsigned Index = 0;
   1139   for (RegisterSetSet::iterator it = RegisterSets.begin(),
   1140          ie = RegisterSets.end(); it != ie; ++it, ++Index) {
   1141     ClassInfo *CI = new ClassInfo();
   1142     CI->Kind = ClassInfo::RegisterClass0 + Index;
   1143     CI->ClassName = "Reg" + utostr(Index);
   1144     CI->Name = "MCK_Reg" + utostr(Index);
   1145     CI->ValueName = "";
   1146     CI->PredicateMethod = ""; // unused
   1147     CI->RenderMethod = "addRegOperands";
   1148     CI->Registers = *it;
   1149     // FIXME: diagnostic type.
   1150     CI->DiagnosticType = "";
   1151     Classes.push_back(CI);
   1152     RegisterSetClasses.insert(std::make_pair(*it, CI));
   1153   }
   1154 
   1155   // Find the superclasses; we could compute only the subgroup lattice edges,
   1156   // but there isn't really a point.
   1157   for (RegisterSetSet::iterator it = RegisterSets.begin(),
   1158          ie = RegisterSets.end(); it != ie; ++it) {
   1159     ClassInfo *CI = RegisterSetClasses[*it];
   1160     for (RegisterSetSet::iterator it2 = RegisterSets.begin(),
   1161            ie2 = RegisterSets.end(); it2 != ie2; ++it2)
   1162       if (*it != *it2 &&
   1163           std::includes(it2->begin(), it2->end(), it->begin(), it->end(),
   1164                         LessRecordByID()))
   1165         CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
   1166   }
   1167 
   1168   // Name the register classes which correspond to a user defined RegisterClass.
   1169   for (ArrayRef<CodeGenRegisterClass*>::const_iterator
   1170        it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
   1171     const CodeGenRegisterClass &RC = **it;
   1172     // Def will be NULL for non-user defined register classes.
   1173     Record *Def = RC.getDef();
   1174     if (!Def)
   1175       continue;
   1176     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
   1177                                                    RC.getOrder().end())];
   1178     if (CI->ValueName.empty()) {
   1179       CI->ClassName = RC.getName();
   1180       CI->Name = "MCK_" + RC.getName();
   1181       CI->ValueName = RC.getName();
   1182     } else
   1183       CI->ValueName = CI->ValueName + "," + RC.getName();
   1184 
   1185     RegisterClassClasses.insert(std::make_pair(Def, CI));
   1186   }
   1187 
   1188   // Populate the map for individual registers.
   1189   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
   1190          ie = RegisterMap.end(); it != ie; ++it)
   1191     RegisterClasses[it->first] = RegisterSetClasses[it->second];
   1192 
   1193   // Name the register classes which correspond to singleton registers.
   1194   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
   1195          ie = SingletonRegisters.end(); it != ie; ++it) {
   1196     Record *Rec = *it;
   1197     ClassInfo *CI = RegisterClasses[Rec];
   1198     assert(CI && "Missing singleton register class info!");
   1199 
   1200     if (CI->ValueName.empty()) {
   1201       CI->ClassName = Rec->getName();
   1202       CI->Name = "MCK_" + Rec->getName();
   1203       CI->ValueName = Rec->getName();
   1204     } else
   1205       CI->ValueName = CI->ValueName + "," + Rec->getName();
   1206   }
   1207 }
   1208 
   1209 void AsmMatcherInfo::buildOperandClasses() {
   1210   std::vector<Record*> AsmOperands =
   1211     Records.getAllDerivedDefinitions("AsmOperandClass");
   1212 
   1213   // Pre-populate AsmOperandClasses map.
   1214   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
   1215          ie = AsmOperands.end(); it != ie; ++it)
   1216     AsmOperandClasses[*it] = new ClassInfo();
   1217 
   1218   unsigned Index = 0;
   1219   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
   1220          ie = AsmOperands.end(); it != ie; ++it, ++Index) {
   1221     ClassInfo *CI = AsmOperandClasses[*it];
   1222     CI->Kind = ClassInfo::UserClass0 + Index;
   1223 
   1224     ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
   1225     for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
   1226       DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
   1227       if (!DI) {
   1228         PrintError((*it)->getLoc(), "Invalid super class reference!");
   1229         continue;
   1230       }
   1231 
   1232       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
   1233       if (!SC)
   1234         PrintError((*it)->getLoc(), "Invalid super class reference!");
   1235       else
   1236         CI->SuperClasses.push_back(SC);
   1237     }
   1238     CI->ClassName = (*it)->getValueAsString("Name");
   1239     CI->Name = "MCK_" + CI->ClassName;
   1240     CI->ValueName = (*it)->getName();
   1241 
   1242     // Get or construct the predicate method name.
   1243     Init *PMName = (*it)->getValueInit("PredicateMethod");
   1244     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
   1245       CI->PredicateMethod = SI->getValue();
   1246     } else {
   1247       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
   1248       CI->PredicateMethod = "is" + CI->ClassName;
   1249     }
   1250 
   1251     // Get or construct the render method name.
   1252     Init *RMName = (*it)->getValueInit("RenderMethod");
   1253     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
   1254       CI->RenderMethod = SI->getValue();
   1255     } else {
   1256       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
   1257       CI->RenderMethod = "add" + CI->ClassName + "Operands";
   1258     }
   1259 
   1260     // Get the parse method name or leave it as empty.
   1261     Init *PRMName = (*it)->getValueInit("ParserMethod");
   1262     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
   1263       CI->ParserMethod = SI->getValue();
   1264 
   1265     // Get the diagnostic type or leave it as empty.
   1266     // Get the parse method name or leave it as empty.
   1267     Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
   1268     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
   1269       CI->DiagnosticType = SI->getValue();
   1270 
   1271     AsmOperandClasses[*it] = CI;
   1272     Classes.push_back(CI);
   1273   }
   1274 }
   1275 
   1276 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
   1277                                CodeGenTarget &target,
   1278                                RecordKeeper &records)
   1279   : Records(records), AsmParser(asmParser), Target(target) {
   1280 }
   1281 
   1282 /// buildOperandMatchInfo - Build the necessary information to handle user
   1283 /// defined operand parsing methods.
   1284 void AsmMatcherInfo::buildOperandMatchInfo() {
   1285 
   1286   /// Map containing a mask with all operands indices that can be found for
   1287   /// that class inside a instruction.
   1288   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
   1289   OpClassMaskTy OpClassMask;
   1290 
   1291   for (std::vector<MatchableInfo*>::const_iterator it =
   1292        Matchables.begin(), ie = Matchables.end();
   1293        it != ie; ++it) {
   1294     MatchableInfo &II = **it;
   1295     OpClassMask.clear();
   1296 
   1297     // Keep track of all operands of this instructions which belong to the
   1298     // same class.
   1299     for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
   1300       MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
   1301       if (Op.Class->ParserMethod.empty())
   1302         continue;
   1303       unsigned &OperandMask = OpClassMask[Op.Class];
   1304       OperandMask |= (1 << i);
   1305     }
   1306 
   1307     // Generate operand match info for each mnemonic/operand class pair.
   1308     for (OpClassMaskTy::iterator iit = OpClassMask.begin(),
   1309          iie = OpClassMask.end(); iit != iie; ++iit) {
   1310       unsigned OpMask = iit->second;
   1311       ClassInfo *CI = iit->first;
   1312       OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
   1313     }
   1314   }
   1315 }
   1316 
   1317 void AsmMatcherInfo::buildInfo() {
   1318   // Build information about all of the AssemblerPredicates.
   1319   std::vector<Record*> AllPredicates =
   1320     Records.getAllDerivedDefinitions("Predicate");
   1321   for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
   1322     Record *Pred = AllPredicates[i];
   1323     // Ignore predicates that are not intended for the assembler.
   1324     if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
   1325       continue;
   1326 
   1327     if (Pred->getName().empty())
   1328       PrintFatalError(Pred->getLoc(), "Predicate has no name!");
   1329 
   1330     unsigned FeatureNo = SubtargetFeatures.size();
   1331     SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
   1332     DEBUG(SubtargetFeatures[Pred]->dump());
   1333     assert(FeatureNo < 32 && "Too many subtarget features!");
   1334   }
   1335 
   1336   // Parse the instructions; we need to do this first so that we can gather the
   1337   // singleton register classes.
   1338   SmallPtrSet<Record*, 16> SingletonRegisters;
   1339   unsigned VariantCount = Target.getAsmParserVariantCount();
   1340   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   1341     Record *AsmVariant = Target.getAsmParserVariant(VC);
   1342     std::string CommentDelimiter =
   1343       AsmVariant->getValueAsString("CommentDelimiter");
   1344     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
   1345     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   1346 
   1347     for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
   1348            E = Target.inst_end(); I != E; ++I) {
   1349       const CodeGenInstruction &CGI = **I;
   1350 
   1351       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1352       // filter the set of instructions we consider.
   1353       if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
   1354         continue;
   1355 
   1356       // Ignore "codegen only" instructions.
   1357       if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
   1358         continue;
   1359 
   1360       std::unique_ptr<MatchableInfo> II(new MatchableInfo(CGI));
   1361 
   1362       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1363 
   1364       // Ignore instructions which shouldn't be matched and diagnose invalid
   1365       // instruction definitions with an error.
   1366       if (!II->validate(CommentDelimiter, true))
   1367         continue;
   1368 
   1369       // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
   1370       //
   1371       // FIXME: This is a total hack.
   1372       if (StringRef(II->TheDef->getName()).startswith("Int_") ||
   1373           StringRef(II->TheDef->getName()).endswith("_Int"))
   1374         continue;
   1375 
   1376       Matchables.push_back(II.release());
   1377     }
   1378 
   1379     // Parse all of the InstAlias definitions and stick them in the list of
   1380     // matchables.
   1381     std::vector<Record*> AllInstAliases =
   1382       Records.getAllDerivedDefinitions("InstAlias");
   1383     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
   1384       CodeGenInstAlias *Alias =
   1385           new CodeGenInstAlias(AllInstAliases[i], AsmVariantNo, Target);
   1386 
   1387       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1388       // filter the set of instruction aliases we consider, based on the target
   1389       // instruction.
   1390       if (!StringRef(Alias->ResultInst->TheDef->getName())
   1391             .startswith( MatchPrefix))
   1392         continue;
   1393 
   1394       std::unique_ptr<MatchableInfo> II(new MatchableInfo(Alias));
   1395 
   1396       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1397 
   1398       // Validate the alias definitions.
   1399       II->validate(CommentDelimiter, false);
   1400 
   1401       Matchables.push_back(II.release());
   1402     }
   1403   }
   1404 
   1405   // Build info for the register classes.
   1406   buildRegisterClasses(SingletonRegisters);
   1407 
   1408   // Build info for the user defined assembly operand classes.
   1409   buildOperandClasses();
   1410 
   1411   // Build the information about matchables, now that we have fully formed
   1412   // classes.
   1413   std::vector<MatchableInfo*> NewMatchables;
   1414   for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
   1415          ie = Matchables.end(); it != ie; ++it) {
   1416     MatchableInfo *II = *it;
   1417 
   1418     // Parse the tokens after the mnemonic.
   1419     // Note: buildInstructionOperandReference may insert new AsmOperands, so
   1420     // don't precompute the loop bound.
   1421     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
   1422       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
   1423       StringRef Token = Op.Token;
   1424 
   1425       // Check for singleton registers.
   1426       if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
   1427         Op.Class = RegisterClasses[RegRecord];
   1428         assert(Op.Class && Op.Class->Registers.size() == 1 &&
   1429                "Unexpected class for singleton register");
   1430         continue;
   1431       }
   1432 
   1433       // Check for simple tokens.
   1434       if (Token[0] != '$') {
   1435         Op.Class = getTokenClass(Token);
   1436         continue;
   1437       }
   1438 
   1439       if (Token.size() > 1 && isdigit(Token[1])) {
   1440         Op.Class = getTokenClass(Token);
   1441         continue;
   1442       }
   1443 
   1444       // Otherwise this is an operand reference.
   1445       StringRef OperandName;
   1446       if (Token[1] == '{')
   1447         OperandName = Token.substr(2, Token.size() - 3);
   1448       else
   1449         OperandName = Token.substr(1);
   1450 
   1451       if (II->DefRec.is<const CodeGenInstruction*>())
   1452         buildInstructionOperandReference(II, OperandName, i);
   1453       else
   1454         buildAliasOperandReference(II, OperandName, Op);
   1455     }
   1456 
   1457     if (II->DefRec.is<const CodeGenInstruction*>()) {
   1458       II->buildInstructionResultOperands();
   1459       // If the instruction has a two-operand alias, build up the
   1460       // matchable here. We'll add them in bulk at the end to avoid
   1461       // confusing this loop.
   1462       std::string Constraint =
   1463         II->TheDef->getValueAsString("TwoOperandAliasConstraint");
   1464       if (Constraint != "") {
   1465         // Start by making a copy of the original matchable.
   1466         std::unique_ptr<MatchableInfo> AliasII(new MatchableInfo(*II));
   1467 
   1468         // Adjust it to be a two-operand alias.
   1469         AliasII->formTwoOperandAlias(Constraint);
   1470 
   1471         // Add the alias to the matchables list.
   1472         NewMatchables.push_back(AliasII.release());
   1473       }
   1474     } else
   1475       II->buildAliasResultOperands();
   1476   }
   1477   if (!NewMatchables.empty())
   1478     Matchables.insert(Matchables.end(), NewMatchables.begin(),
   1479                       NewMatchables.end());
   1480 
   1481   // Process token alias definitions and set up the associated superclass
   1482   // information.
   1483   std::vector<Record*> AllTokenAliases =
   1484     Records.getAllDerivedDefinitions("TokenAlias");
   1485   for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
   1486     Record *Rec = AllTokenAliases[i];
   1487     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
   1488     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
   1489     if (FromClass == ToClass)
   1490       PrintFatalError(Rec->getLoc(),
   1491                     "error: Destination value identical to source value.");
   1492     FromClass->SuperClasses.push_back(ToClass);
   1493   }
   1494 
   1495   // Reorder classes so that classes precede super classes.
   1496   std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
   1497 }
   1498 
   1499 /// buildInstructionOperandReference - The specified operand is a reference to a
   1500 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
   1501 void AsmMatcherInfo::
   1502 buildInstructionOperandReference(MatchableInfo *II,
   1503                                  StringRef OperandName,
   1504                                  unsigned AsmOpIdx) {
   1505   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
   1506   const CGIOperandList &Operands = CGI.Operands;
   1507   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
   1508 
   1509   // Map this token to an operand.
   1510   unsigned Idx;
   1511   if (!Operands.hasOperandNamed(OperandName, Idx))
   1512     PrintFatalError(II->TheDef->getLoc(),
   1513                     "error: unable to find operand: '" + OperandName + "'");
   1514 
   1515   // If the instruction operand has multiple suboperands, but the parser
   1516   // match class for the asm operand is still the default "ImmAsmOperand",
   1517   // then handle each suboperand separately.
   1518   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
   1519     Record *Rec = Operands[Idx].Rec;
   1520     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
   1521     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1522     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
   1523       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
   1524       StringRef Token = Op->Token; // save this in case Op gets moved
   1525       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
   1526         MatchableInfo::AsmOperand NewAsmOp(Token);
   1527         NewAsmOp.SubOpIdx = SI;
   1528         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
   1529       }
   1530       // Replace Op with first suboperand.
   1531       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
   1532       Op->SubOpIdx = 0;
   1533     }
   1534   }
   1535 
   1536   // Set up the operand class.
   1537   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
   1538 
   1539   // If the named operand is tied, canonicalize it to the untied operand.
   1540   // For example, something like:
   1541   //   (outs GPR:$dst), (ins GPR:$src)
   1542   // with an asmstring of
   1543   //   "inc $src"
   1544   // we want to canonicalize to:
   1545   //   "inc $dst"
   1546   // so that we know how to provide the $dst operand when filling in the result.
   1547   int OITied = -1;
   1548   if (Operands[Idx].MINumOperands == 1)
   1549     OITied = Operands[Idx].getTiedRegister();
   1550   if (OITied != -1) {
   1551     // The tied operand index is an MIOperand index, find the operand that
   1552     // contains it.
   1553     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
   1554     OperandName = Operands[Idx.first].Name;
   1555     Op->SubOpIdx = Idx.second;
   1556   }
   1557 
   1558   Op->SrcOpName = OperandName;
   1559 }
   1560 
   1561 /// buildAliasOperandReference - When parsing an operand reference out of the
   1562 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
   1563 /// operand reference is by looking it up in the result pattern definition.
   1564 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
   1565                                                 StringRef OperandName,
   1566                                                 MatchableInfo::AsmOperand &Op) {
   1567   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
   1568 
   1569   // Set up the operand class.
   1570   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
   1571     if (CGA.ResultOperands[i].isRecord() &&
   1572         CGA.ResultOperands[i].getName() == OperandName) {
   1573       // It's safe to go with the first one we find, because CodeGenInstAlias
   1574       // validates that all operands with the same name have the same record.
   1575       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
   1576       // Use the match class from the Alias definition, not the
   1577       // destination instruction, as we may have an immediate that's
   1578       // being munged by the match class.
   1579       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
   1580                                  Op.SubOpIdx);
   1581       Op.SrcOpName = OperandName;
   1582       return;
   1583     }
   1584 
   1585   PrintFatalError(II->TheDef->getLoc(),
   1586                   "error: unable to find operand: '" + OperandName + "'");
   1587 }
   1588 
   1589 void MatchableInfo::buildInstructionResultOperands() {
   1590   const CodeGenInstruction *ResultInst = getResultInst();
   1591 
   1592   // Loop over all operands of the result instruction, determining how to
   1593   // populate them.
   1594   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1595     const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
   1596 
   1597     // If this is a tied operand, just copy from the previously handled operand.
   1598     int TiedOp = -1;
   1599     if (OpInfo.MINumOperands == 1)
   1600       TiedOp = OpInfo.getTiedRegister();
   1601     if (TiedOp != -1) {
   1602       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1603       continue;
   1604     }
   1605 
   1606     // Find out what operand from the asmparser this MCInst operand comes from.
   1607     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
   1608     if (OpInfo.Name.empty() || SrcOperand == -1) {
   1609       // This may happen for operands that are tied to a suboperand of a
   1610       // complex operand.  Simply use a dummy value here; nobody should
   1611       // use this operand slot.
   1612       // FIXME: The long term goal is for the MCOperand list to not contain
   1613       // tied operands at all.
   1614       ResOperands.push_back(ResOperand::getImmOp(0));
   1615       continue;
   1616     }
   1617 
   1618     // Check if the one AsmOperand populates the entire operand.
   1619     unsigned NumOperands = OpInfo.MINumOperands;
   1620     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
   1621       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
   1622       continue;
   1623     }
   1624 
   1625     // Add a separate ResOperand for each suboperand.
   1626     for (unsigned AI = 0; AI < NumOperands; ++AI) {
   1627       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
   1628              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
   1629              "unexpected AsmOperands for suboperands");
   1630       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
   1631     }
   1632   }
   1633 }
   1634 
   1635 void MatchableInfo::buildAliasResultOperands() {
   1636   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
   1637   const CodeGenInstruction *ResultInst = getResultInst();
   1638 
   1639   // Loop over all operands of the result instruction, determining how to
   1640   // populate them.
   1641   unsigned AliasOpNo = 0;
   1642   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
   1643   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1644     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
   1645 
   1646     // If this is a tied operand, just copy from the previously handled operand.
   1647     int TiedOp = -1;
   1648     if (OpInfo->MINumOperands == 1)
   1649       TiedOp = OpInfo->getTiedRegister();
   1650     if (TiedOp != -1) {
   1651       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1652       continue;
   1653     }
   1654 
   1655     // Handle all the suboperands for this operand.
   1656     const std::string &OpName = OpInfo->Name;
   1657     for ( ; AliasOpNo <  LastOpNo &&
   1658             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
   1659       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
   1660 
   1661       // Find out what operand from the asmparser that this MCInst operand
   1662       // comes from.
   1663       switch (CGA.ResultOperands[AliasOpNo].Kind) {
   1664       case CodeGenInstAlias::ResultOperand::K_Record: {
   1665         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
   1666         int SrcOperand = findAsmOperand(Name, SubIdx);
   1667         if (SrcOperand == -1)
   1668           PrintFatalError(TheDef->getLoc(), "Instruction '" +
   1669                         TheDef->getName() + "' has operand '" + OpName +
   1670                         "' that doesn't appear in asm string!");
   1671         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
   1672         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
   1673                                                         NumOperands));
   1674         break;
   1675       }
   1676       case CodeGenInstAlias::ResultOperand::K_Imm: {
   1677         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
   1678         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
   1679         break;
   1680       }
   1681       case CodeGenInstAlias::ResultOperand::K_Reg: {
   1682         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
   1683         ResOperands.push_back(ResOperand::getRegOp(Reg));
   1684         break;
   1685       }
   1686       }
   1687     }
   1688   }
   1689 }
   1690 
   1691 static unsigned getConverterOperandID(const std::string &Name,
   1692                                       SetVector<std::string> &Table,
   1693                                       bool &IsNew) {
   1694   IsNew = Table.insert(Name);
   1695 
   1696   unsigned ID = IsNew ? Table.size() - 1 :
   1697     std::find(Table.begin(), Table.end(), Name) - Table.begin();
   1698 
   1699   assert(ID < Table.size());
   1700 
   1701   return ID;
   1702 }
   1703 
   1704 
   1705 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
   1706                              std::vector<MatchableInfo*> &Infos,
   1707                              raw_ostream &OS) {
   1708   SetVector<std::string> OperandConversionKinds;
   1709   SetVector<std::string> InstructionConversionKinds;
   1710   std::vector<std::vector<uint8_t> > ConversionTable;
   1711   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
   1712 
   1713   // TargetOperandClass - This is the target's operand class, like X86Operand.
   1714   std::string TargetOperandClass = Target.getName() + "Operand";
   1715 
   1716   // Write the convert function to a separate stream, so we can drop it after
   1717   // the enum. We'll build up the conversion handlers for the individual
   1718   // operand types opportunistically as we encounter them.
   1719   std::string ConvertFnBody;
   1720   raw_string_ostream CvtOS(ConvertFnBody);
   1721   // Start the unified conversion function.
   1722   CvtOS << "void " << Target.getName() << ClassName << "::\n"
   1723         << "convertToMCInst(unsigned Kind, MCInst &Inst, "
   1724         << "unsigned Opcode,\n"
   1725         << "                const OperandVector"
   1726         << " &Operands) {\n"
   1727         << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1728         << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1729         << "  Inst.setOpcode(Opcode);\n"
   1730         << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1731         << "    switch (*p) {\n"
   1732         << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1733         << "    case CVT_Reg:\n"
   1734         << "      static_cast<" << TargetOperandClass
   1735         << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n"
   1736         << "      break;\n"
   1737         << "    case CVT_Tied:\n"
   1738         << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
   1739         << "      break;\n";
   1740 
   1741   std::string OperandFnBody;
   1742   raw_string_ostream OpOS(OperandFnBody);
   1743   // Start the operand number lookup function.
   1744   OpOS << "void " << Target.getName() << ClassName << "::\n"
   1745        << "convertToMapAndConstraints(unsigned Kind,\n";
   1746   OpOS.indent(27);
   1747   OpOS << "const OperandVector &Operands) {\n"
   1748        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1749        << "  unsigned NumMCOperands = 0;\n"
   1750        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1751        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1752        << "    switch (*p) {\n"
   1753        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1754        << "    case CVT_Reg:\n"
   1755        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1756        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
   1757        << "      ++NumMCOperands;\n"
   1758        << "      break;\n"
   1759        << "    case CVT_Tied:\n"
   1760        << "      ++NumMCOperands;\n"
   1761        << "      break;\n";
   1762 
   1763   // Pre-populate the operand conversion kinds with the standard always
   1764   // available entries.
   1765   OperandConversionKinds.insert("CVT_Done");
   1766   OperandConversionKinds.insert("CVT_Reg");
   1767   OperandConversionKinds.insert("CVT_Tied");
   1768   enum { CVT_Done, CVT_Reg, CVT_Tied };
   1769 
   1770   for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
   1771          ie = Infos.end(); it != ie; ++it) {
   1772     MatchableInfo &II = **it;
   1773 
   1774     // Check if we have a custom match function.
   1775     std::string AsmMatchConverter =
   1776       II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
   1777     if (!AsmMatchConverter.empty()) {
   1778       std::string Signature = "ConvertCustom_" + AsmMatchConverter;
   1779       II.ConversionFnKind = Signature;
   1780 
   1781       // Check if we have already generated this signature.
   1782       if (!InstructionConversionKinds.insert(Signature))
   1783         continue;
   1784 
   1785       // Remember this converter for the kind enum.
   1786       unsigned KindID = OperandConversionKinds.size();
   1787       OperandConversionKinds.insert("CVT_" +
   1788                                     getEnumNameForToken(AsmMatchConverter));
   1789 
   1790       // Add the converter row for this instruction.
   1791       ConversionTable.push_back(std::vector<uint8_t>());
   1792       ConversionTable.back().push_back(KindID);
   1793       ConversionTable.back().push_back(CVT_Done);
   1794 
   1795       // Add the handler to the conversion driver function.
   1796       CvtOS << "    case CVT_"
   1797             << getEnumNameForToken(AsmMatchConverter) << ":\n"
   1798             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
   1799             << "      break;\n";
   1800 
   1801       // FIXME: Handle the operand number lookup for custom match functions.
   1802       continue;
   1803     }
   1804 
   1805     // Build the conversion function signature.
   1806     std::string Signature = "Convert";
   1807 
   1808     std::vector<uint8_t> ConversionRow;
   1809 
   1810     // Compute the convert enum and the case body.
   1811     MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 );
   1812 
   1813     for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
   1814       const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
   1815 
   1816       // Generate code to populate each result operand.
   1817       switch (OpInfo.Kind) {
   1818       case MatchableInfo::ResOperand::RenderAsmOperand: {
   1819         // This comes from something we parsed.
   1820         MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
   1821 
   1822         // Registers are always converted the same, don't duplicate the
   1823         // conversion function based on them.
   1824         Signature += "__";
   1825         std::string Class;
   1826         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
   1827         Signature += Class;
   1828         Signature += utostr(OpInfo.MINumOperands);
   1829         Signature += "_" + itostr(OpInfo.AsmOperandNum);
   1830 
   1831         // Add the conversion kind, if necessary, and get the associated ID
   1832         // the index of its entry in the vector).
   1833         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
   1834                                      Op.Class->RenderMethod);
   1835         Name = getEnumNameForToken(Name);
   1836 
   1837         bool IsNewConverter = false;
   1838         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1839                                             IsNewConverter);
   1840 
   1841         // Add the operand entry to the instruction kind conversion row.
   1842         ConversionRow.push_back(ID);
   1843         ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
   1844 
   1845         if (!IsNewConverter)
   1846           break;
   1847 
   1848         // This is a new operand kind. Add a handler for it to the
   1849         // converter driver.
   1850         CvtOS << "    case " << Name << ":\n"
   1851               << "      static_cast<" << TargetOperandClass
   1852               << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod
   1853               << "(Inst, " << OpInfo.MINumOperands << ");\n"
   1854               << "      break;\n";
   1855 
   1856         // Add a handler for the operand number lookup.
   1857         OpOS << "    case " << Name << ":\n"
   1858              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
   1859 
   1860         if (Op.Class->isRegisterClass())
   1861           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
   1862         else
   1863           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
   1864         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
   1865              << "      break;\n";
   1866         break;
   1867       }
   1868       case MatchableInfo::ResOperand::TiedOperand: {
   1869         // If this operand is tied to a previous one, just copy the MCInst
   1870         // operand from the earlier one.We can only tie single MCOperand values.
   1871         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
   1872         unsigned TiedOp = OpInfo.TiedOperandNum;
   1873         assert(i > TiedOp && "Tied operand precedes its target!");
   1874         Signature += "__Tie" + utostr(TiedOp);
   1875         ConversionRow.push_back(CVT_Tied);
   1876         ConversionRow.push_back(TiedOp);
   1877         break;
   1878       }
   1879       case MatchableInfo::ResOperand::ImmOperand: {
   1880         int64_t Val = OpInfo.ImmVal;
   1881         std::string Ty = "imm_" + itostr(Val);
   1882         Signature += "__" + Ty;
   1883 
   1884         std::string Name = "CVT_" + Ty;
   1885         bool IsNewConverter = false;
   1886         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1887                                             IsNewConverter);
   1888         // Add the operand entry to the instruction kind conversion row.
   1889         ConversionRow.push_back(ID);
   1890         ConversionRow.push_back(0);
   1891 
   1892         if (!IsNewConverter)
   1893           break;
   1894 
   1895         CvtOS << "    case " << Name << ":\n"
   1896               << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
   1897               << "      break;\n";
   1898 
   1899         OpOS << "    case " << Name << ":\n"
   1900              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1901              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
   1902              << "      ++NumMCOperands;\n"
   1903              << "      break;\n";
   1904         break;
   1905       }
   1906       case MatchableInfo::ResOperand::RegOperand: {
   1907         std::string Reg, Name;
   1908         if (!OpInfo.Register) {
   1909           Name = "reg0";
   1910           Reg = "0";
   1911         } else {
   1912           Reg = getQualifiedName(OpInfo.Register);
   1913           Name = "reg" + OpInfo.Register->getName();
   1914         }
   1915         Signature += "__" + Name;
   1916         Name = "CVT_" + Name;
   1917         bool IsNewConverter = false;
   1918         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1919                                             IsNewConverter);
   1920         // Add the operand entry to the instruction kind conversion row.
   1921         ConversionRow.push_back(ID);
   1922         ConversionRow.push_back(0);
   1923 
   1924         if (!IsNewConverter)
   1925           break;
   1926         CvtOS << "    case " << Name << ":\n"
   1927               << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
   1928               << "      break;\n";
   1929 
   1930         OpOS << "    case " << Name << ":\n"
   1931              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1932              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
   1933              << "      ++NumMCOperands;\n"
   1934              << "      break;\n";
   1935       }
   1936       }
   1937     }
   1938 
   1939     // If there were no operands, add to the signature to that effect
   1940     if (Signature == "Convert")
   1941       Signature += "_NoOperands";
   1942 
   1943     II.ConversionFnKind = Signature;
   1944 
   1945     // Save the signature. If we already have it, don't add a new row
   1946     // to the table.
   1947     if (!InstructionConversionKinds.insert(Signature))
   1948       continue;
   1949 
   1950     // Add the row to the table.
   1951     ConversionTable.push_back(ConversionRow);
   1952   }
   1953 
   1954   // Finish up the converter driver function.
   1955   CvtOS << "    }\n  }\n}\n\n";
   1956 
   1957   // Finish up the operand number lookup function.
   1958   OpOS << "    }\n  }\n}\n\n";
   1959 
   1960   OS << "namespace {\n";
   1961 
   1962   // Output the operand conversion kind enum.
   1963   OS << "enum OperatorConversionKind {\n";
   1964   for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
   1965     OS << "  " << OperandConversionKinds[i] << ",\n";
   1966   OS << "  CVT_NUM_CONVERTERS\n";
   1967   OS << "};\n\n";
   1968 
   1969   // Output the instruction conversion kind enum.
   1970   OS << "enum InstructionConversionKind {\n";
   1971   for (SetVector<std::string>::const_iterator
   1972          i = InstructionConversionKinds.begin(),
   1973          e = InstructionConversionKinds.end(); i != e; ++i)
   1974     OS << "  " << *i << ",\n";
   1975   OS << "  CVT_NUM_SIGNATURES\n";
   1976   OS << "};\n\n";
   1977 
   1978 
   1979   OS << "} // end anonymous namespace\n\n";
   1980 
   1981   // Output the conversion table.
   1982   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
   1983      << MaxRowLength << "] = {\n";
   1984 
   1985   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
   1986     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
   1987     OS << "  // " << InstructionConversionKinds[Row] << "\n";
   1988     OS << "  { ";
   1989     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
   1990       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
   1991          << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
   1992     OS << "CVT_Done },\n";
   1993   }
   1994 
   1995   OS << "};\n\n";
   1996 
   1997   // Spit out the conversion driver function.
   1998   OS << CvtOS.str();
   1999 
   2000   // Spit out the operand number lookup function.
   2001   OS << OpOS.str();
   2002 }
   2003 
   2004 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
   2005 static void emitMatchClassEnumeration(CodeGenTarget &Target,
   2006                                       std::vector<ClassInfo*> &Infos,
   2007                                       raw_ostream &OS) {
   2008   OS << "namespace {\n\n";
   2009 
   2010   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
   2011      << "/// instruction matching.\n";
   2012   OS << "enum MatchClassKind {\n";
   2013   OS << "  InvalidMatchClass = 0,\n";
   2014   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2015          ie = Infos.end(); it != ie; ++it) {
   2016     ClassInfo &CI = **it;
   2017     OS << "  " << CI.Name << ", // ";
   2018     if (CI.Kind == ClassInfo::Token) {
   2019       OS << "'" << CI.ValueName << "'\n";
   2020     } else if (CI.isRegisterClass()) {
   2021       if (!CI.ValueName.empty())
   2022         OS << "register class '" << CI.ValueName << "'\n";
   2023       else
   2024         OS << "derived register class\n";
   2025     } else {
   2026       OS << "user defined class '" << CI.ValueName << "'\n";
   2027     }
   2028   }
   2029   OS << "  NumMatchClassKinds\n";
   2030   OS << "};\n\n";
   2031 
   2032   OS << "}\n\n";
   2033 }
   2034 
   2035 /// emitValidateOperandClass - Emit the function to validate an operand class.
   2036 static void emitValidateOperandClass(AsmMatcherInfo &Info,
   2037                                      raw_ostream &OS) {
   2038   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
   2039      << "MatchClassKind Kind) {\n";
   2040   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
   2041      << Info.Target.getName() << "Operand&)GOp;\n";
   2042 
   2043   // The InvalidMatchClass is not to match any operand.
   2044   OS << "  if (Kind == InvalidMatchClass)\n";
   2045   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2046 
   2047   // Check for Token operands first.
   2048   // FIXME: Use a more specific diagnostic type.
   2049   OS << "  if (Operand.isToken())\n";
   2050   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
   2051      << "             MCTargetAsmParser::Match_Success :\n"
   2052      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2053 
   2054   // Check the user classes. We don't care what order since we're only
   2055   // actually matching against one of them.
   2056   for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
   2057          ie = Info.Classes.end(); it != ie; ++it) {
   2058     ClassInfo &CI = **it;
   2059 
   2060     if (!CI.isUserClass())
   2061       continue;
   2062 
   2063     OS << "  // '" << CI.ClassName << "' class\n";
   2064     OS << "  if (Kind == " << CI.Name << ") {\n";
   2065     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
   2066     OS << "      return MCTargetAsmParser::Match_Success;\n";
   2067     if (!CI.DiagnosticType.empty())
   2068       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
   2069          << CI.DiagnosticType << ";\n";
   2070     OS << "  }\n\n";
   2071   }
   2072 
   2073   // Check for register operands, including sub-classes.
   2074   OS << "  if (Operand.isReg()) {\n";
   2075   OS << "    MatchClassKind OpKind;\n";
   2076   OS << "    switch (Operand.getReg()) {\n";
   2077   OS << "    default: OpKind = InvalidMatchClass; break;\n";
   2078   for (AsmMatcherInfo::RegisterClassesTy::iterator
   2079          it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
   2080        it != ie; ++it)
   2081     OS << "    case " << Info.Target.getName() << "::"
   2082        << it->first->getName() << ": OpKind = " << it->second->Name
   2083        << "; break;\n";
   2084   OS << "    }\n";
   2085   OS << "    return isSubclass(OpKind, Kind) ? "
   2086      << "MCTargetAsmParser::Match_Success :\n                             "
   2087      << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
   2088 
   2089   // Generic fallthrough match failure case for operands that don't have
   2090   // specialized diagnostic types.
   2091   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
   2092   OS << "}\n\n";
   2093 }
   2094 
   2095 /// emitIsSubclass - Emit the subclass predicate function.
   2096 static void emitIsSubclass(CodeGenTarget &Target,
   2097                            std::vector<ClassInfo*> &Infos,
   2098                            raw_ostream &OS) {
   2099   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
   2100   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
   2101   OS << "  if (A == B)\n";
   2102   OS << "    return true;\n\n";
   2103 
   2104   std::string OStr;
   2105   raw_string_ostream SS(OStr);
   2106   unsigned Count = 0;
   2107   SS << "  switch (A) {\n";
   2108   SS << "  default:\n";
   2109   SS << "    return false;\n";
   2110   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2111          ie = Infos.end(); it != ie; ++it) {
   2112     ClassInfo &A = **it;
   2113 
   2114     std::vector<StringRef> SuperClasses;
   2115     for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2116          ie = Infos.end(); it != ie; ++it) {
   2117       ClassInfo &B = **it;
   2118 
   2119       if (&A != &B && A.isSubsetOf(B))
   2120         SuperClasses.push_back(B.Name);
   2121     }
   2122 
   2123     if (SuperClasses.empty())
   2124       continue;
   2125     ++Count;
   2126 
   2127     SS << "\n  case " << A.Name << ":\n";
   2128 
   2129     if (SuperClasses.size() == 1) {
   2130       SS << "    return B == " << SuperClasses.back().str() << ";\n";
   2131       continue;
   2132     }
   2133 
   2134     if (!SuperClasses.empty()) {
   2135       SS << "    switch (B) {\n";
   2136       SS << "    default: return false;\n";
   2137       for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
   2138         SS << "    case " << SuperClasses[i].str() << ": return true;\n";
   2139       SS << "    }\n";
   2140     } else {
   2141       // No case statement to emit
   2142       SS << "    return false;\n";
   2143     }
   2144   }
   2145   SS << "  }\n";
   2146 
   2147   // If there were case statements emitted into the string stream, write them
   2148   // to the output stream, otherwise write the default.
   2149   if (Count)
   2150     OS << SS.str();
   2151   else
   2152     OS << "  return false;\n";
   2153 
   2154   OS << "}\n\n";
   2155 }
   2156 
   2157 /// emitMatchTokenString - Emit the function to match a token string to the
   2158 /// appropriate match class value.
   2159 static void emitMatchTokenString(CodeGenTarget &Target,
   2160                                  std::vector<ClassInfo*> &Infos,
   2161                                  raw_ostream &OS) {
   2162   // Construct the match list.
   2163   std::vector<StringMatcher::StringPair> Matches;
   2164   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2165          ie = Infos.end(); it != ie; ++it) {
   2166     ClassInfo &CI = **it;
   2167 
   2168     if (CI.Kind == ClassInfo::Token)
   2169       Matches.push_back(StringMatcher::StringPair(CI.ValueName,
   2170                                                   "return " + CI.Name + ";"));
   2171   }
   2172 
   2173   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
   2174 
   2175   StringMatcher("Name", Matches, OS).Emit();
   2176 
   2177   OS << "  return InvalidMatchClass;\n";
   2178   OS << "}\n\n";
   2179 }
   2180 
   2181 /// emitMatchRegisterName - Emit the function to match a string to the target
   2182 /// specific register enum.
   2183 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
   2184                                   raw_ostream &OS) {
   2185   // Construct the match list.
   2186   std::vector<StringMatcher::StringPair> Matches;
   2187   const std::vector<CodeGenRegister*> &Regs =
   2188     Target.getRegBank().getRegisters();
   2189   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   2190     const CodeGenRegister *Reg = Regs[i];
   2191     if (Reg->TheDef->getValueAsString("AsmName").empty())
   2192       continue;
   2193 
   2194     Matches.push_back(StringMatcher::StringPair(
   2195                                      Reg->TheDef->getValueAsString("AsmName"),
   2196                                      "return " + utostr(Reg->EnumValue) + ";"));
   2197   }
   2198 
   2199   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
   2200 
   2201   StringMatcher("Name", Matches, OS).Emit();
   2202 
   2203   OS << "  return 0;\n";
   2204   OS << "}\n\n";
   2205 }
   2206 
   2207 static const char *getMinimalTypeForRange(uint64_t Range) {
   2208   assert(Range <= 0xFFFFFFFFULL && "Enum too large");
   2209   if (Range > 0xFFFF)
   2210     return "uint32_t";
   2211   if (Range > 0xFF)
   2212     return "uint16_t";
   2213   return "uint8_t";
   2214 }
   2215 
   2216 static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
   2217   uint64_t MaxIndex = Info.SubtargetFeatures.size();
   2218   if (MaxIndex > 0)
   2219     MaxIndex--;
   2220   return getMinimalTypeForRange(1ULL << MaxIndex);
   2221 }
   2222 
   2223 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
   2224 /// definitions.
   2225 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
   2226                                                 raw_ostream &OS) {
   2227   OS << "// Flags for subtarget features that participate in "
   2228      << "instruction matching.\n";
   2229   OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
   2230      << " {\n";
   2231   for (std::map<Record*, SubtargetFeatureInfo*, LessRecordByID>::const_iterator
   2232          it = Info.SubtargetFeatures.begin(),
   2233          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   2234     SubtargetFeatureInfo &SFI = *it->second;
   2235     OS << "  " << SFI.getEnumName() << " = (1U << " << SFI.Index << "),\n";
   2236   }
   2237   OS << "  Feature_None = 0\n";
   2238   OS << "};\n\n";
   2239 }
   2240 
   2241 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
   2242 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
   2243   // Get the set of diagnostic types from all of the operand classes.
   2244   std::set<StringRef> Types;
   2245   for (std::map<Record*, ClassInfo*>::const_iterator
   2246        I = Info.AsmOperandClasses.begin(),
   2247        E = Info.AsmOperandClasses.end(); I != E; ++I) {
   2248     if (!I->second->DiagnosticType.empty())
   2249       Types.insert(I->second->DiagnosticType);
   2250   }
   2251 
   2252   if (Types.empty()) return;
   2253 
   2254   // Now emit the enum entries.
   2255   for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
   2256        I != E; ++I)
   2257     OS << "  Match_" << *I << ",\n";
   2258   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
   2259 }
   2260 
   2261 /// emitGetSubtargetFeatureName - Emit the helper function to get the
   2262 /// user-level name for a subtarget feature.
   2263 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
   2264   OS << "// User-level names for subtarget features that participate in\n"
   2265      << "// instruction matching.\n"
   2266      << "static const char *getSubtargetFeatureName(unsigned Val) {\n";
   2267   if (!Info.SubtargetFeatures.empty()) {
   2268     OS << "  switch(Val) {\n";
   2269     typedef std::map<Record*, SubtargetFeatureInfo*, LessRecordByID> RecFeatMap;
   2270     for (RecFeatMap::const_iterator it = Info.SubtargetFeatures.begin(),
   2271              ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   2272       SubtargetFeatureInfo &SFI = *it->second;
   2273       // FIXME: Totally just a placeholder name to get the algorithm working.
   2274       OS << "  case " << SFI.getEnumName() << ": return \""
   2275          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
   2276     }
   2277     OS << "  default: return \"(unknown)\";\n";
   2278     OS << "  }\n";
   2279   } else {
   2280     // Nothing to emit, so skip the switch
   2281     OS << "  return \"(unknown)\";\n";
   2282   }
   2283   OS << "}\n\n";
   2284 }
   2285 
   2286 /// emitComputeAvailableFeatures - Emit the function to compute the list of
   2287 /// available features given a subtarget.
   2288 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
   2289                                          raw_ostream &OS) {
   2290   std::string ClassName =
   2291     Info.AsmParser->getValueAsString("AsmParserClassName");
   2292 
   2293   OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
   2294      << "ComputeAvailableFeatures(uint64_t FB) const {\n";
   2295   OS << "  unsigned Features = 0;\n";
   2296   for (std::map<Record*, SubtargetFeatureInfo*, LessRecordByID>::const_iterator
   2297          it = Info.SubtargetFeatures.begin(),
   2298          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   2299     SubtargetFeatureInfo &SFI = *it->second;
   2300 
   2301     OS << "  if (";
   2302     std::string CondStorage =
   2303       SFI.TheDef->getValueAsString("AssemblerCondString");
   2304     StringRef Conds = CondStorage;
   2305     std::pair<StringRef,StringRef> Comma = Conds.split(',');
   2306     bool First = true;
   2307     do {
   2308       if (!First)
   2309         OS << " && ";
   2310 
   2311       bool Neg = false;
   2312       StringRef Cond = Comma.first;
   2313       if (Cond[0] == '!') {
   2314         Neg = true;
   2315         Cond = Cond.substr(1);
   2316       }
   2317 
   2318       OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
   2319       if (Neg)
   2320         OS << " == 0";
   2321       else
   2322         OS << " != 0";
   2323       OS << ")";
   2324 
   2325       if (Comma.second.empty())
   2326         break;
   2327 
   2328       First = false;
   2329       Comma = Comma.second.split(',');
   2330     } while (true);
   2331 
   2332     OS << ")\n";
   2333     OS << "    Features |= " << SFI.getEnumName() << ";\n";
   2334   }
   2335   OS << "  return Features;\n";
   2336   OS << "}\n\n";
   2337 }
   2338 
   2339 static std::string GetAliasRequiredFeatures(Record *R,
   2340                                             const AsmMatcherInfo &Info) {
   2341   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
   2342   std::string Result;
   2343   unsigned NumFeatures = 0;
   2344   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
   2345     SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
   2346 
   2347     if (!F)
   2348       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
   2349                     "' is not marked as an AssemblerPredicate!");
   2350 
   2351     if (NumFeatures)
   2352       Result += '|';
   2353 
   2354     Result += F->getEnumName();
   2355     ++NumFeatures;
   2356   }
   2357 
   2358   if (NumFeatures > 1)
   2359     Result = '(' + Result + ')';
   2360   return Result;
   2361 }
   2362 
   2363 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
   2364                                      std::vector<Record*> &Aliases,
   2365                                      unsigned Indent = 0,
   2366                                   StringRef AsmParserVariantName = StringRef()){
   2367   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
   2368   // iteration order of the map is stable.
   2369   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
   2370 
   2371   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
   2372     Record *R = Aliases[i];
   2373     // FIXME: Allow AssemblerVariantName to be a comma separated list.
   2374     std::string AsmVariantName = R->getValueAsString("AsmVariantName");
   2375     if (AsmVariantName != AsmParserVariantName)
   2376       continue;
   2377     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
   2378   }
   2379   if (AliasesFromMnemonic.empty())
   2380     return;
   2381 
   2382   // Process each alias a "from" mnemonic at a time, building the code executed
   2383   // by the string remapper.
   2384   std::vector<StringMatcher::StringPair> Cases;
   2385   for (std::map<std::string, std::vector<Record*> >::iterator
   2386        I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
   2387        I != E; ++I) {
   2388     const std::vector<Record*> &ToVec = I->second;
   2389 
   2390     // Loop through each alias and emit code that handles each case.  If there
   2391     // are two instructions without predicates, emit an error.  If there is one,
   2392     // emit it last.
   2393     std::string MatchCode;
   2394     int AliasWithNoPredicate = -1;
   2395 
   2396     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
   2397       Record *R = ToVec[i];
   2398       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
   2399 
   2400       // If this unconditionally matches, remember it for later and diagnose
   2401       // duplicates.
   2402       if (FeatureMask.empty()) {
   2403         if (AliasWithNoPredicate != -1) {
   2404           // We can't have two aliases from the same mnemonic with no predicate.
   2405           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
   2406                      "two MnemonicAliases with the same 'from' mnemonic!");
   2407           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
   2408         }
   2409 
   2410         AliasWithNoPredicate = i;
   2411         continue;
   2412       }
   2413       if (R->getValueAsString("ToMnemonic") == I->first)
   2414         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
   2415 
   2416       if (!MatchCode.empty())
   2417         MatchCode += "else ";
   2418       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
   2419       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
   2420     }
   2421 
   2422     if (AliasWithNoPredicate != -1) {
   2423       Record *R = ToVec[AliasWithNoPredicate];
   2424       if (!MatchCode.empty())
   2425         MatchCode += "else\n  ";
   2426       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
   2427     }
   2428 
   2429     MatchCode += "return;";
   2430 
   2431     Cases.push_back(std::make_pair(I->first, MatchCode));
   2432   }
   2433   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
   2434 }
   2435 
   2436 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
   2437 /// emit a function for them and return true, otherwise return false.
   2438 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
   2439                                 CodeGenTarget &Target) {
   2440   // Ignore aliases when match-prefix is set.
   2441   if (!MatchPrefix.empty())
   2442     return false;
   2443 
   2444   std::vector<Record*> Aliases =
   2445     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
   2446   if (Aliases.empty()) return false;
   2447 
   2448   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
   2449     "unsigned Features, unsigned VariantID) {\n";
   2450   OS << "  switch (VariantID) {\n";
   2451   unsigned VariantCount = Target.getAsmParserVariantCount();
   2452   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2453     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2454     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
   2455     std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
   2456     OS << "    case " << AsmParserVariantNo << ":\n";
   2457     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
   2458                              AsmParserVariantName);
   2459     OS << "    break;\n";
   2460   }
   2461   OS << "  }\n";
   2462 
   2463   // Emit aliases that apply to all variants.
   2464   emitMnemonicAliasVariant(OS, Info, Aliases);
   2465 
   2466   OS << "}\n\n";
   2467 
   2468   return true;
   2469 }
   2470 
   2471 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
   2472                               const AsmMatcherInfo &Info, StringRef ClassName,
   2473                               StringToOffsetTable &StringTable,
   2474                               unsigned MaxMnemonicIndex) {
   2475   unsigned MaxMask = 0;
   2476   for (std::vector<OperandMatchEntry>::const_iterator it =
   2477        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2478        it != ie; ++it) {
   2479     MaxMask |= it->OperandMask;
   2480   }
   2481 
   2482   // Emit the static custom operand parsing table;
   2483   OS << "namespace {\n";
   2484   OS << "  struct OperandMatchEntry {\n";
   2485   OS << "    " << getMinimalRequiredFeaturesType(Info)
   2486                << " RequiredFeatures;\n";
   2487   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2488                << " Mnemonic;\n";
   2489   OS << "    " << getMinimalTypeForRange(Info.Classes.size())
   2490                << " Class;\n";
   2491   OS << "    " << getMinimalTypeForRange(MaxMask)
   2492                << " OperandMask;\n\n";
   2493   OS << "    StringRef getMnemonic() const {\n";
   2494   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2495   OS << "                       MnemonicTable[Mnemonic]);\n";
   2496   OS << "    }\n";
   2497   OS << "  };\n\n";
   2498 
   2499   OS << "  // Predicate for searching for an opcode.\n";
   2500   OS << "  struct LessOpcodeOperand {\n";
   2501   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
   2502   OS << "      return LHS.getMnemonic()  < RHS;\n";
   2503   OS << "    }\n";
   2504   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
   2505   OS << "      return LHS < RHS.getMnemonic();\n";
   2506   OS << "    }\n";
   2507   OS << "    bool operator()(const OperandMatchEntry &LHS,";
   2508   OS << " const OperandMatchEntry &RHS) {\n";
   2509   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2510   OS << "    }\n";
   2511   OS << "  };\n";
   2512 
   2513   OS << "} // end anonymous namespace.\n\n";
   2514 
   2515   OS << "static const OperandMatchEntry OperandMatchTable["
   2516      << Info.OperandMatchInfo.size() << "] = {\n";
   2517 
   2518   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
   2519   for (std::vector<OperandMatchEntry>::const_iterator it =
   2520        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2521        it != ie; ++it) {
   2522     const OperandMatchEntry &OMI = *it;
   2523     const MatchableInfo &II = *OMI.MI;
   2524 
   2525     OS << "  { ";
   2526 
   2527     // Write the required features mask.
   2528     if (!II.RequiredFeatures.empty()) {
   2529       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2530         if (i) OS << "|";
   2531         OS << II.RequiredFeatures[i]->getEnumName();
   2532       }
   2533     } else
   2534       OS << "0";
   2535 
   2536     // Store a pascal-style length byte in the mnemonic.
   2537     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2538     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2539        << " /* " << II.Mnemonic << " */, ";
   2540 
   2541     OS << OMI.CI->Name;
   2542 
   2543     OS << ", " << OMI.OperandMask;
   2544     OS << " /* ";
   2545     bool printComma = false;
   2546     for (int i = 0, e = 31; i !=e; ++i)
   2547       if (OMI.OperandMask & (1 << i)) {
   2548         if (printComma)
   2549           OS << ", ";
   2550         OS << i;
   2551         printComma = true;
   2552       }
   2553     OS << " */";
   2554 
   2555     OS << " },\n";
   2556   }
   2557   OS << "};\n\n";
   2558 
   2559   // Emit the operand class switch to call the correct custom parser for
   2560   // the found operand class.
   2561   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2562      << Target.getName() << ClassName << "::\n"
   2563      << "tryCustomParseOperand(OperandVector"
   2564      << " &Operands,\n                      unsigned MCK) {\n\n"
   2565      << "  switch(MCK) {\n";
   2566 
   2567   for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
   2568        ie = Info.Classes.end(); it != ie; ++it) {
   2569     ClassInfo *CI = *it;
   2570     if (CI->ParserMethod.empty())
   2571       continue;
   2572     OS << "  case " << CI->Name << ":\n"
   2573        << "    return " << CI->ParserMethod << "(Operands);\n";
   2574   }
   2575 
   2576   OS << "  default:\n";
   2577   OS << "    return MatchOperand_NoMatch;\n";
   2578   OS << "  }\n";
   2579   OS << "  return MatchOperand_NoMatch;\n";
   2580   OS << "}\n\n";
   2581 
   2582   // Emit the static custom operand parser. This code is very similar with
   2583   // the other matcher. Also use MatchResultTy here just in case we go for
   2584   // a better error handling.
   2585   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2586      << Target.getName() << ClassName << "::\n"
   2587      << "MatchOperandParserImpl(OperandVector"
   2588      << " &Operands,\n                       StringRef Mnemonic) {\n";
   2589 
   2590   // Emit code to get the available features.
   2591   OS << "  // Get the current feature set.\n";
   2592   OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
   2593 
   2594   OS << "  // Get the next operand index.\n";
   2595   OS << "  unsigned NextOpNum = Operands.size()-1;\n";
   2596 
   2597   // Emit code to search the table.
   2598   OS << "  // Search the table.\n";
   2599   OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
   2600   OS << " MnemonicRange =\n";
   2601   OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
   2602      << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
   2603      << "                     LessOpcodeOperand());\n\n";
   2604 
   2605   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2606   OS << "    return MatchOperand_NoMatch;\n\n";
   2607 
   2608   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
   2609      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
   2610 
   2611   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2612   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
   2613 
   2614   // Emit check that the required features are available.
   2615   OS << "    // check if the available features match\n";
   2616   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2617      << "!= it->RequiredFeatures) {\n";
   2618   OS << "      continue;\n";
   2619   OS << "    }\n\n";
   2620 
   2621   // Emit check to ensure the operand number matches.
   2622   OS << "    // check if the operand in question has a custom parser.\n";
   2623   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
   2624   OS << "      continue;\n\n";
   2625 
   2626   // Emit call to the custom parser method
   2627   OS << "    // call custom parse method to handle the operand\n";
   2628   OS << "    OperandMatchResultTy Result = ";
   2629   OS << "tryCustomParseOperand(Operands, it->Class);\n";
   2630   OS << "    if (Result != MatchOperand_NoMatch)\n";
   2631   OS << "      return Result;\n";
   2632   OS << "  }\n\n";
   2633 
   2634   OS << "  // Okay, we had no match.\n";
   2635   OS << "  return MatchOperand_NoMatch;\n";
   2636   OS << "}\n\n";
   2637 }
   2638 
   2639 void AsmMatcherEmitter::run(raw_ostream &OS) {
   2640   CodeGenTarget Target(Records);
   2641   Record *AsmParser = Target.getAsmParser();
   2642   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
   2643 
   2644   // Compute the information on the instructions to match.
   2645   AsmMatcherInfo Info(AsmParser, Target, Records);
   2646   Info.buildInfo();
   2647 
   2648   // Sort the instruction table using the partial order on classes. We use
   2649   // stable_sort to ensure that ambiguous instructions are still
   2650   // deterministically ordered.
   2651   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
   2652                    less_ptr<MatchableInfo>());
   2653 
   2654   DEBUG_WITH_TYPE("instruction_info", {
   2655       for (std::vector<MatchableInfo*>::iterator
   2656              it = Info.Matchables.begin(), ie = Info.Matchables.end();
   2657            it != ie; ++it)
   2658         (*it)->dump();
   2659     });
   2660 
   2661   // Check for ambiguous matchables.
   2662   DEBUG_WITH_TYPE("ambiguous_instrs", {
   2663     unsigned NumAmbiguous = 0;
   2664     for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
   2665       for (unsigned j = i + 1; j != e; ++j) {
   2666         MatchableInfo &A = *Info.Matchables[i];
   2667         MatchableInfo &B = *Info.Matchables[j];
   2668 
   2669         if (A.couldMatchAmbiguouslyWith(B)) {
   2670           errs() << "warning: ambiguous matchables:\n";
   2671           A.dump();
   2672           errs() << "\nis incomparable with:\n";
   2673           B.dump();
   2674           errs() << "\n\n";
   2675           ++NumAmbiguous;
   2676         }
   2677       }
   2678     }
   2679     if (NumAmbiguous)
   2680       errs() << "warning: " << NumAmbiguous
   2681              << " ambiguous matchables!\n";
   2682   });
   2683 
   2684   // Compute the information on the custom operand parsing.
   2685   Info.buildOperandMatchInfo();
   2686 
   2687   // Write the output.
   2688 
   2689   // Information for the class declaration.
   2690   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
   2691   OS << "#undef GET_ASSEMBLER_HEADER\n";
   2692   OS << "  // This should be included into the middle of the declaration of\n";
   2693   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
   2694   OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
   2695   OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
   2696      << "unsigned Opcode,\n"
   2697      << "                       const OperandVector "
   2698      << "&Operands);\n";
   2699   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
   2700   OS << "           const OperandVector &Operands) override;\n";
   2701   OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n";
   2702   OS << "  unsigned MatchInstructionImpl(\n";
   2703   OS.indent(27);
   2704   OS << "const OperandVector &Operands,\n"
   2705      << "                                MCInst &Inst,\n"
   2706      << "                                unsigned &ErrorInfo,"
   2707      << " bool matchingInlineAsm,\n"
   2708      << "                                unsigned VariantID = 0);\n";
   2709 
   2710   if (Info.OperandMatchInfo.size()) {
   2711     OS << "\n  enum OperandMatchResultTy {\n";
   2712     OS << "    MatchOperand_Success,    // operand matched successfully\n";
   2713     OS << "    MatchOperand_NoMatch,    // operand did not match\n";
   2714     OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
   2715     OS << "  };\n";
   2716     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
   2717     OS << "    OperandVector &Operands,\n";
   2718     OS << "    StringRef Mnemonic);\n";
   2719 
   2720     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
   2721     OS << "    OperandVector &Operands,\n";
   2722     OS << "    unsigned MCK);\n\n";
   2723   }
   2724 
   2725   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
   2726 
   2727   // Emit the operand match diagnostic enum names.
   2728   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
   2729   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2730   emitOperandDiagnosticTypes(Info, OS);
   2731   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2732 
   2733 
   2734   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
   2735   OS << "#undef GET_REGISTER_MATCHER\n\n";
   2736 
   2737   // Emit the subtarget feature enumeration.
   2738   emitSubtargetFeatureFlagEnumeration(Info, OS);
   2739 
   2740   // Emit the function to match a register name to number.
   2741   // This should be omitted for Mips target
   2742   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
   2743     emitMatchRegisterName(Target, AsmParser, OS);
   2744 
   2745   OS << "#endif // GET_REGISTER_MATCHER\n\n";
   2746 
   2747   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
   2748   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
   2749 
   2750   // Generate the helper function to get the names for subtarget features.
   2751   emitGetSubtargetFeatureName(Info, OS);
   2752 
   2753   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
   2754 
   2755   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
   2756   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
   2757 
   2758   // Generate the function that remaps for mnemonic aliases.
   2759   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
   2760 
   2761   // Generate the convertToMCInst function to convert operands into an MCInst.
   2762   // Also, generate the convertToMapAndConstraints function for MS-style inline
   2763   // assembly.  The latter doesn't actually generate a MCInst.
   2764   emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
   2765 
   2766   // Emit the enumeration for classes which participate in matching.
   2767   emitMatchClassEnumeration(Target, Info.Classes, OS);
   2768 
   2769   // Emit the routine to match token strings to their match class.
   2770   emitMatchTokenString(Target, Info.Classes, OS);
   2771 
   2772   // Emit the subclass predicate routine.
   2773   emitIsSubclass(Target, Info.Classes, OS);
   2774 
   2775   // Emit the routine to validate an operand against a match class.
   2776   emitValidateOperandClass(Info, OS);
   2777 
   2778   // Emit the available features compute function.
   2779   emitComputeAvailableFeatures(Info, OS);
   2780 
   2781 
   2782   StringToOffsetTable StringTable;
   2783 
   2784   size_t MaxNumOperands = 0;
   2785   unsigned MaxMnemonicIndex = 0;
   2786   bool HasDeprecation = false;
   2787   for (std::vector<MatchableInfo*>::const_iterator it =
   2788          Info.Matchables.begin(), ie = Info.Matchables.end();
   2789        it != ie; ++it) {
   2790     MatchableInfo &II = **it;
   2791     MaxNumOperands = std::max(MaxNumOperands, II.AsmOperands.size());
   2792     HasDeprecation |= II.HasDeprecation;
   2793 
   2794     // Store a pascal-style length byte in the mnemonic.
   2795     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2796     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
   2797                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
   2798   }
   2799 
   2800   OS << "static const char *const MnemonicTable =\n";
   2801   StringTable.EmitString(OS);
   2802   OS << ";\n\n";
   2803 
   2804   // Emit the static match table; unused classes get initalized to 0 which is
   2805   // guaranteed to be InvalidMatchClass.
   2806   //
   2807   // FIXME: We can reduce the size of this table very easily. First, we change
   2808   // it so that store the kinds in separate bit-fields for each index, which
   2809   // only needs to be the max width used for classes at that index (we also need
   2810   // to reject based on this during classification). If we then make sure to
   2811   // order the match kinds appropriately (putting mnemonics last), then we
   2812   // should only end up using a few bits for each class, especially the ones
   2813   // following the mnemonic.
   2814   OS << "namespace {\n";
   2815   OS << "  struct MatchEntry {\n";
   2816   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2817                << " Mnemonic;\n";
   2818   OS << "    uint16_t Opcode;\n";
   2819   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
   2820                << " ConvertFn;\n";
   2821   OS << "    " << getMinimalRequiredFeaturesType(Info)
   2822                << " RequiredFeatures;\n";
   2823   OS << "    " << getMinimalTypeForRange(Info.Classes.size())
   2824                << " Classes[" << MaxNumOperands << "];\n";
   2825   OS << "    StringRef getMnemonic() const {\n";
   2826   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2827   OS << "                       MnemonicTable[Mnemonic]);\n";
   2828   OS << "    }\n";
   2829   OS << "  };\n\n";
   2830 
   2831   OS << "  // Predicate for searching for an opcode.\n";
   2832   OS << "  struct LessOpcode {\n";
   2833   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
   2834   OS << "      return LHS.getMnemonic() < RHS;\n";
   2835   OS << "    }\n";
   2836   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
   2837   OS << "      return LHS < RHS.getMnemonic();\n";
   2838   OS << "    }\n";
   2839   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
   2840   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2841   OS << "    }\n";
   2842   OS << "  };\n";
   2843 
   2844   OS << "} // end anonymous namespace.\n\n";
   2845 
   2846   unsigned VariantCount = Target.getAsmParserVariantCount();
   2847   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2848     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2849     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2850 
   2851     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
   2852 
   2853     for (std::vector<MatchableInfo*>::const_iterator it =
   2854          Info.Matchables.begin(), ie = Info.Matchables.end();
   2855          it != ie; ++it) {
   2856       MatchableInfo &II = **it;
   2857       if (II.AsmVariantID != AsmVariantNo)
   2858         continue;
   2859 
   2860       // Store a pascal-style length byte in the mnemonic.
   2861       std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2862       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2863          << " /* " << II.Mnemonic << " */, "
   2864          << Target.getName() << "::"
   2865          << II.getResultInst()->TheDef->getName() << ", "
   2866          << II.ConversionFnKind << ", ";
   2867 
   2868       // Write the required features mask.
   2869       if (!II.RequiredFeatures.empty()) {
   2870         for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2871           if (i) OS << "|";
   2872           OS << II.RequiredFeatures[i]->getEnumName();
   2873         }
   2874       } else
   2875         OS << "0";
   2876 
   2877       OS << ", { ";
   2878       for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
   2879         MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
   2880 
   2881         if (i) OS << ", ";
   2882         OS << Op.Class->Name;
   2883       }
   2884       OS << " }, },\n";
   2885     }
   2886 
   2887     OS << "};\n\n";
   2888   }
   2889 
   2890   // A method to determine if a mnemonic is in the list.
   2891   OS << "bool " << Target.getName() << ClassName << "::\n"
   2892      << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
   2893   OS << "  // Find the appropriate table for this asm variant.\n";
   2894   OS << "  const MatchEntry *Start, *End;\n";
   2895   OS << "  switch (VariantID) {\n";
   2896   OS << "  default: // unreachable\n";
   2897   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2898     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2899     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2900     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
   2901        << "); End = std::end(MatchTable" << VC << "); break;\n";
   2902   }
   2903   OS << "  }\n";
   2904   OS << "  // Search the table.\n";
   2905   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2906   OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
   2907   OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
   2908   OS << "}\n\n";
   2909 
   2910   // Finally, build the match function.
   2911   OS << "unsigned " << Target.getName() << ClassName << "::\n"
   2912      << "MatchInstructionImpl(const OperandVector"
   2913      << " &Operands,\n";
   2914   OS << "                     MCInst &Inst,\n"
   2915      << "unsigned &ErrorInfo, bool matchingInlineAsm, unsigned VariantID) {\n";
   2916 
   2917   OS << "  // Eliminate obvious mismatches.\n";
   2918   OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
   2919   OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
   2920   OS << "    return Match_InvalidOperand;\n";
   2921   OS << "  }\n\n";
   2922 
   2923   // Emit code to get the available features.
   2924   OS << "  // Get the current feature set.\n";
   2925   OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
   2926 
   2927   OS << "  // Get the instruction mnemonic, which is the first token.\n";
   2928   OS << "  StringRef Mnemonic = ((" << Target.getName()
   2929      << "Operand&)*Operands[0]).getToken();\n\n";
   2930 
   2931   if (HasMnemonicAliases) {
   2932     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
   2933     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
   2934   }
   2935 
   2936   // Emit code to compute the class list for this operand vector.
   2937   OS << "  // Some state to try to produce better error messages.\n";
   2938   OS << "  bool HadMatchOtherThanFeatures = false;\n";
   2939   OS << "  bool HadMatchOtherThanPredicate = false;\n";
   2940   OS << "  unsigned RetCode = Match_InvalidOperand;\n";
   2941   OS << "  unsigned MissingFeatures = ~0U;\n";
   2942   OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
   2943   OS << "  // wrong for all instances of the instruction.\n";
   2944   OS << "  ErrorInfo = ~0U;\n";
   2945 
   2946   // Emit code to search the table.
   2947   OS << "  // Find the appropriate table for this asm variant.\n";
   2948   OS << "  const MatchEntry *Start, *End;\n";
   2949   OS << "  switch (VariantID) {\n";
   2950   OS << "  default: // unreachable\n";
   2951   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2952     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2953     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2954     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
   2955        << "); End = std::end(MatchTable" << VC << "); break;\n";
   2956   }
   2957   OS << "  }\n";
   2958   OS << "  // Search the table.\n";
   2959   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2960   OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
   2961 
   2962   OS << "  // Return a more specific error code if no mnemonics match.\n";
   2963   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2964   OS << "    return Match_MnemonicFail;\n\n";
   2965 
   2966   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
   2967      << "*ie = MnemonicRange.second;\n";
   2968   OS << "       it != ie; ++it) {\n";
   2969 
   2970   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2971   OS << "    assert(Mnemonic == it->getMnemonic());\n";
   2972 
   2973   // Emit check that the subclasses match.
   2974   OS << "    bool OperandsValid = true;\n";
   2975   OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
   2976   OS << "      if (i + 1 >= Operands.size()) {\n";
   2977   OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
   2978   OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
   2979   OS << "        break;\n";
   2980   OS << "      }\n";
   2981   OS << "      unsigned Diag = validateOperandClass(*Operands[i+1],\n";
   2982   OS.indent(43);
   2983   OS << "(MatchClassKind)it->Classes[i]);\n";
   2984   OS << "      if (Diag == Match_Success)\n";
   2985   OS << "        continue;\n";
   2986   OS << "      // If the generic handler indicates an invalid operand\n";
   2987   OS << "      // failure, check for a special case.\n";
   2988   OS << "      if (Diag == Match_InvalidOperand) {\n";
   2989   OS << "        Diag = validateTargetOperandClass(*Operands[i+1],\n";
   2990   OS.indent(43);
   2991   OS << "(MatchClassKind)it->Classes[i]);\n";
   2992   OS << "        if (Diag == Match_Success)\n";
   2993   OS << "          continue;\n";
   2994   OS << "      }\n";
   2995   OS << "      // If this operand is broken for all of the instances of this\n";
   2996   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
   2997   OS << "      // If we already had a match that only failed due to a\n";
   2998   OS << "      // target predicate, that diagnostic is preferred.\n";
   2999   OS << "      if (!HadMatchOtherThanPredicate &&\n";
   3000   OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
   3001   OS << "        ErrorInfo = i+1;\n";
   3002   OS << "        // InvalidOperand is the default. Prefer specificity.\n";
   3003   OS << "        if (Diag != Match_InvalidOperand)\n";
   3004   OS << "          RetCode = Diag;\n";
   3005   OS << "      }\n";
   3006   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
   3007   OS << "      OperandsValid = false;\n";
   3008   OS << "      break;\n";
   3009   OS << "    }\n\n";
   3010 
   3011   OS << "    if (!OperandsValid) continue;\n";
   3012 
   3013   // Emit check that the required features are available.
   3014   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   3015      << "!= it->RequiredFeatures) {\n";
   3016   OS << "      HadMatchOtherThanFeatures = true;\n";
   3017   OS << "      unsigned NewMissingFeatures = it->RequiredFeatures & "
   3018         "~AvailableFeatures;\n";
   3019   OS << "      if (CountPopulation_32(NewMissingFeatures) <=\n"
   3020         "          CountPopulation_32(MissingFeatures))\n";
   3021   OS << "        MissingFeatures = NewMissingFeatures;\n";
   3022   OS << "      continue;\n";
   3023   OS << "    }\n";
   3024   OS << "\n";
   3025   OS << "    if (matchingInlineAsm) {\n";
   3026   OS << "      Inst.setOpcode(it->Opcode);\n";
   3027   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
   3028   OS << "      return Match_Success;\n";
   3029   OS << "    }\n\n";
   3030   OS << "    // We have selected a definite instruction, convert the parsed\n"
   3031      << "    // operands into the appropriate MCInst.\n";
   3032   OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
   3033   OS << "\n";
   3034 
   3035   // Verify the instruction with the target-specific match predicate function.
   3036   OS << "    // We have a potential match. Check the target predicate to\n"
   3037      << "    // handle any context sensitive constraints.\n"
   3038      << "    unsigned MatchResult;\n"
   3039      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
   3040      << " Match_Success) {\n"
   3041      << "      Inst.clear();\n"
   3042      << "      RetCode = MatchResult;\n"
   3043      << "      HadMatchOtherThanPredicate = true;\n"
   3044      << "      continue;\n"
   3045      << "    }\n\n";
   3046 
   3047   // Call the post-processing function, if used.
   3048   std::string InsnCleanupFn =
   3049     AsmParser->getValueAsString("AsmParserInstCleanup");
   3050   if (!InsnCleanupFn.empty())
   3051     OS << "    " << InsnCleanupFn << "(Inst);\n";
   3052 
   3053   if (HasDeprecation) {
   3054     OS << "    std::string Info;\n";
   3055     OS << "    if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, STI, Info)) {\n";
   3056     OS << "      SMLoc Loc = ((" << Target.getName()
   3057        << "Operand&)*Operands[0]).getStartLoc();\n";
   3058     OS << "      Parser.Warning(Loc, Info, None);\n";
   3059     OS << "    }\n";
   3060   }
   3061 
   3062   OS << "    return Match_Success;\n";
   3063   OS << "  }\n\n";
   3064 
   3065   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
   3066   OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
   3067   OS << "    return RetCode;\n\n";
   3068   OS << "  // Missing feature matches return which features were missing\n";
   3069   OS << "  ErrorInfo = MissingFeatures;\n";
   3070   OS << "  return Match_MissingFeature;\n";
   3071   OS << "}\n\n";
   3072 
   3073   if (Info.OperandMatchInfo.size())
   3074     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
   3075                              MaxMnemonicIndex);
   3076 
   3077   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
   3078 }
   3079 
   3080 namespace llvm {
   3081 
   3082 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
   3083   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
   3084   AsmMatcherEmitter(RK).run(OS);
   3085 }
   3086 
   3087 } // End llvm namespace
   3088